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Abstract

Nowadays, thanks to advanced techniques, such as the Next Generation Sequencing (NGS), the

time and costs of DNA sequencing are constantly lowering. These kinds of techniques offer

high throughput, speed and scalability, so that the amount of available data on DNA sequences

is greater than ever before. Nevertheless, when it comes to decoding and understanding what

is encoded within this great number of sequences, there is an urgent need for new technolo-

gies, which can keep up with the data production and be able to comprehend the contextual

information of genes, scattered over long sequences of DNA.

Artificial Intelligence and Deep Learning, in the field of Genomics, promise great advances

in the interpretation and classification of genomic sequences. These kinds of models can learn

and recognize significant genomic sequences and patterns, without the need for expensive, time-

consuming, complicated wet-lab experiments. Moreover, they have been proven to do that, even

when trained with a shortage of data.

This study will describe the state-of-the-art deep-learning model architecture, namely the

Transformer, and how it works. Afterward, two examples of its application to the biolog-

ical problem will be presented: Nucleotide Transformers and Gena-LM, both implementing

advanced foundational DNA language models, capable of high performances in numerous se-

quence prediction tasks. These works will be described and compared.

Lastly, the aforementionedmodels will be tested: the fine-tuning techniquewill be exploited,

assessing the performances of each model on different datasets.

All the results and the fine-tuned models can be found on the HuggingFace page of the

author: https://huggingface.co/LiukG
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Chapter 1

Introduction

In this introductory chapter, a brief overview of Genomics is presented, to better understand its

peculiarities and how deep learning is so impactful in this field.

Secondly, the core of this chapter is devoted to explaining the Transformer architecture:

It will be compared to former architectures, to capture the innovative features that allow this

architecture to stand out, and every component will be explained in detail.

Finally, a brief introduction to foundational models is provided.

1.1 Genomics

Genomics is a field of biology focused on studying all the DNA of an organism —

that is, its genome. Such work includes identifying and characterizing all the genes

and functional elements in an organism’s genome as well as how they interact[1].

This is a relatively recent discipline: Its origin dates back to the late ’80s, when it was first

named in the newborn journal ”Genomics”. It comes from the combination of molecular and cell

biology with genetics and is supported by computational science[2]. In this field, the amount of

data available on DNA sequences is constantly growing, thanks to advanced techniques, such as

the Next Generation Sequencing (NGS), which have been lowering the times and costs of DNA

sequencing. To exploit and analyse such a huge data throughput, nothing could be more useful

than a computer and that is why Bioinformatics is, nowadays, more important than ever.

Bioinformatics is going through an important transformation too; It is led by the recent

methodological developments in deep learning domains such as computer vision or natural lan-

guage processing, paving the way to deep genomics: the application of deep learning to genomic

sequences. These techniques can now provide a lot of information: the protein’s 3D structure,

nucleosome and other protein bindings sites, the local accessibility of the DNA sequence, the

epigenetic, the activity of genes, and much more [3]
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Natural language models applied to DNA sequences are the main interest for this thesis,

some examples will be provided in the following chapters.

1.2 Transformer

Transformer models made their appearance in 2017, when they were first described in the very

well-known article ”Attention is all you need”, by researchers working at Google [4]. As evi-

denced in this article, Transformer architecture was implemented to tackle sequence elaboration,

which includes translation, speech recognition, and text classification to name but a few. Many

other architectures were implemented before this article, achieving high results both in vision

and in natural language processing, but this work marks a turning point in the history of Deep

Learning and in the way of conceiving Artificial Intelligence architectures.

Before this, neural networks used an encoder-decoder architecture. In short, the input se-

quence, which can be a sentence, enters the encoder’s layer, where is transformed into a more

compact mathematical representation. This will be the input of the decoder, which will provide

the output sequence. Two main architectures established themselves in word processing before

the rise of Transformer: Recurrent Neural Networks (RNNs) and Convolutional Neural Net-

works (CNNs). To better appreciate the innovations that have allowed Transformer to emerge,

we will go over these two architecture’s features.

1.2.1 Recurrent Neural Networks

A Recurrent Neural Network can be imagined as the same network H, replicated several times,

in a row. Each of these networks receives its input data from the previous one and hands its

output down to the following. This is what recurrence would be, if we unroll the loop. 1.1

Applying this kind of network to sentence translation, the network processes a word at a

time, adding one to the hidden state at every cycle. This is an important aspect when working

with natural language: as humans, we grasp the meaning of words from their position and, more

in general, from the context they are in. As far as the hidden state is conserved in the loop and

upgraded with the next word cycle after cycle, the word’s order is clear and the following word

is evaluated over the previous ones. When the last word is analysed, the obtained hidden state

is transferred to the decoder, which generates the output. Even if Recurrent Neural Networks

works very well on short sentences, this kind of architecture has two disadvantages:

1. Training such models takes a lot of time and even more, taking into consideration that,

for the same reason, the training process can not be done in parallel, exploiting several

computational units.
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Figure 1.1: The different information’s flow in feed-forward and Recurrent Neural Networks

[5]

2. Recurrent Neural Networks lose efficiency and correctness when it comes to long pieces

of text, as explained in the following example.

Given two sentences of the same text, one far from the other: ”I worked in the Netherlands

for a long period.” and ”Fortunately, I practiced a lot and now I speak a fluent ...”. Looking

at the last sentence, the model can easily predict that the next word should be a language, and

yet, the information it needs, namely ”Netherlands”, was encoded too many words before, to

be still relevant within the hidden state. This Recurrent Neural Network lacks the capability

to distinguish the important information, the most important words, in this case, among all the

others.

Long-short-term memory (LSTM)

Long-short-term memory network is a particular type of Recurrent Neural Network that aims

to overcome the previous problem. They are equipped with the Cell State mechanism, which

allows the network to selectively forget or remember information.

As you can see from the picture 1.2, each cell takes its input and the output of the previ-

ous cell, auditioned to the previous cell state, and generates a new cell state and a new output

weighted on them.[5] This kind of process is more accurate than the one seen above, but it does

not completely solve the problem: the probability of keeping the context given by a far-located

word in a long piece of text decreases exponentially with the distance from the word that has to

be analysed.
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Figure 1.2: The cell state scheme [5]

Attention

To address these problems, researchers have developed ’Attention’: thanks to this technique,

Recurrent Neural Networks can focus on some specific keywords. In fact, every analysed word

has an associated hidden state, which will passed to the decoder directly, and all of them will be

used together to decode the sentence (sticking to our example).

You can look at the picture 1.3 as an example.

Now that the correctness problem has been solved, one last weakness should be enhanced,

and that is time. Apart from attention, the network still analyses word after word only, which

causes the network’s training to last too long.

1.2.2 Convolutional Neural Networks

In order to reduce the time impact, Convolutional Neural Networks come in handy. This is a

network architecture able to capture the dependencies between the inputs spatially and tempo-

rally. CNNs are made up of three different types of layers: convolutional layer, pooling layer

and fully connected layer 1.4. The convolutional layer is the first layer the word embeddings

must go through; it consists of a sliding window that applies a series of filters, designed to detect

patterns or features. This sliding window has some parameters:

• Kernel size: that is the number of elements that the window can pay attention to, at the

same time. In our example: the number of words the window can look at, in each step

(typically between 2 and 5).
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Figure 1.3: Example of an Alignment matrix of “L’accord sur la zone économique européen a

été signé en août 1992” (French) and its English translation “The agreement on the European

Economic Area was signed in August 1992” [5]

• Stride: this indicates how much the window moves at each step. In our example: the

number of words the window proceeds

• Padding: adding zeros to both sides of the input. This is important when the Stride pa-

rameter is >1

• Bias: a bias vector simply added to the filter’s matrix

The turning point we were looking for lies in this matrix, as all the filters and calculations

can be computed in parallel, at each step.

Then, the pooling layer is applied, to reduce the number of parameters. Max-pooling or

mean-pooling can be used: they extract the maximum or the mean of each feature’s values,

respectively.

Finally, a fully connected layer is implemented specifically for different tasks.[6] As far as

the evaluation of the input sentence is made in parallel, words are processed at the same time,

so that they do not depend on the words translated before.

To sum up, CNN can reduce running times and the impact of distance between words, but

they can not still get the dependencies. Eventually, here is where the Transformer makes the

difference.
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Figure 1.4: Model architecture with two channels for an example sentence [7]

1.2.3 Transformer’s architecture

In this section, the architecture of the Transformer will be described and an insight into the

self-attention mechanism will follow. Every image shown in this section was taken from the

aforementioned paper ”Attention is all you need”[4].

Internally, the Transformer is made up of N encoders andN decoders (the value of N depends

on the model). Each encoder shares the same internal architecture, which is a self-attention layer

followed by a feed-forward neural network. The same thing can be said for the decoders: the

first layer is a self-attention layer, which is followed by an attention layer and a feed-forward

neural network. The attention layer in between helps the decoder to focus on important parts of

the input.

Starting from the input sequence, the usual sentence to translate, for instance; Before it

can enter the first encoder module, it must be tokenized, which means that every word of the

sentence must be turned into tokens, numerical vectors that the network can make sense of. In

our example, every word has a corresponding token. Vectors of tokens are called Embeddings,

mathematical representations of the input that will be used by the network to comprehend human

language.

The last step before entering the encoder module is positional encoding. This is a crucial

step, as far as the Transformer does not analyse the tokens sequentially, but in parallel, the

token’s positions would be lost. Positional encoding adds a unique positional signal to the to-

ken’s embedding; in this way, this information is preserved and the network can understand the

context from the token’s position.

The first layer of the encoder is the self-attention layer. This particular layer allows the

encoder to focus on the relevance of each input token, especially on those that are useful when
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Figure 1.5: The Transformer - model architecture.[4]
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it comes to predictions. We will narrow down to the self-attention layer, later in this section.

On top of that, a fully connected feed-forward network is employed: networks in which

information can only flow forward. This layer is used to tune the parameters and perform the task

it was trained for, at its best. Both the sub-layers are immediately followed by a normalisation

layer. This layer limits the output values in a certain range, to avoid numerical instabilities while

calculating derivatives, which would slow down the training process. Residual connections are

added around each sub-layer: they connect the principal components of the network, skipping

heavy operations and making training much faster.

Looking at the decoder module, it is similar to the encoder in many of its parts, except for

the layers described below. The desired output enters the decoder, but this is right-shifted. This

was done for better training results: the network is forced to predict, and translate, the following

word, without knowing the correct translation; otherwise, the network would simply copy and

paste the correct word. The first self-attention layer is modified to mask some tokens, i.e. words,

in the output, training the network to guess them. On top of the decoder module, the linear and

softmax blocks can be found. In the linear block, every token’s score, named logit, is calculated,

whereas the last block, the softmax function, normalizes all the logits, assigning a value to each

possible token. This causes the sum of the latter values to be always equal to 1.

Self-Attention

In this section, the calculation of self-attention will be explained step by step.

The first step is to calculate three vectors out of the input token: query (Q), value (V) and

key (K) vectors. To obtain these vectors, we simply multiply the input embeddings by three

matrices whose values are the result of training.

Secondly, every input word has to be scored against all the other words in the sentence.

This score indicates the amount of attention that must be paid to other parts of the input when

encoding that word in a certain position. The score value is simply the dot product of the query

vector by the key vector of the word we are scoring

Third, the resulting score has to be divided by the square root of the key vector’s dimension,

in order to gain more stable gradients. In the original paper, that dimension was 64, so the scores

were divided by 8.

Then, the softmax function is applied to the obtained results, normalising them, so they are

all positive, in a range from 0 to 1. What is obtained here is a value indicating the likelihood

of a word to be expressed in a certain position; this is useful to see what are the other relevant

words to the one analysed.

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (1.1)
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Figure 1.6: Scaled Dot-Product Attention[4]

In the last step, the softmax results obtained above aremultiplied by the value vector and then

summed all up: We obtained the self-attention score for one input word 1.6. All the calculation

is done in a matrix, for obvious reasons of time 1.7. The idea behind this last step is to filter less

relevant words from the value vectors, multiplying them by a tiny number

This is a revolutionary mechanism when it comes to training this model. First of all, it en-

ables the model to train on multiple examples at the same time, which is an advantage both in

efficiency and accuracy. Secondly, and maybe most importantly, these models can be trained

on huge datasets of unlabeled examples, as they are able to find patterns between them automat-

ically. That is why, nowadays, Transformer seems to be the natural choice to implement DNA

foundational models.

1.3 Foundational Models

Foundational models are deep-learning neural networks that have been trained on a huge amount

of unlabeled data. Moreover, thanks to this kind of training, foundational models internalize

general representations of the data they were trained with, enabling them to perform different

general tasks, such as text classification, text and image generation and so on. Foundational

models, thanks to their adjustability, have reformed the way deep learning models are devel-

oped: instead of implementing and training a new model from scratch, researchers can take the

foundational model that best suits their needs and adjust it with a fine-tuning protocol and their

own data. Fine-tuning is a form of transfer learning, where all the weights of the foundational

9



Figure 1.7: Multi-Head Attention consists of several attention layers running in parallel[4]

model are conserved, while a new Multilayer Perceptron (MLP) network is built and trained on

top of the latter model. The added MLP head network will change its weights according to the

input data and the ’frozen’ weights of the foundational model. Further information about the

fine-tuning technique exploited in this thesis, can be found in the Methods chapter. This will

take less time to implement and train, and it will need way less data to achieve high perfor-

mance in a particular task. Numerous foundational models had been implemented: BERT and

GPT family to list but a few.

Figure 1.8: A foundation model can centralize the information from all the data from various

modalities. This one model can then be adapted to a wide range of downstream tasks[8]
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Chapter 2

Foundational Models for DNA sequences

Transformer-based foundational language model’s potential is not limited to text analysis and

classification, speech recognition and so on. As mentioned above, their adaptability, and fast

improvements over time, make them applicable to tackle genomics problems too. Analysis of

the DNA sequence and the protein structure, are the ones of major interest.

This thesis focuses on the first task: DNA sequence analysis. It takes into consideration two

papers, ”The Nucleotide Transformer: Building and Evaluating Robust Foundation Models for

Human Genomics” by Instadeep[9] and ”GENA-LM: A Family of Open-Source Foundational

DNA Language Models for Long Sequences” by AIRI (Artificial Intelligence Research Insti-

tute)[10], both presenting new state-of-the-art DNA language models available for fine-tuning.

These papers are described, highlighting the major differences in methods and results.

Finally, some of the models are fine-tuned on two different datasets. The objective is to

confirm what is stated, i.e. that applying the fine-tuning method is fast-running, efficient despite

the scarcity of data and widely accessible to everyone.

2.1 The Nucleotide Transformer

In this paper, a family of 8 different models is presented: they can vary in size and training

dataset. Out of convenience, a practical scheme is provided in the table below.

11



model’s name on HuggingFace number of parameters training datasets

nucleotide-transformer-2.5b-multi-species 2.5 billion
850 species from

diverse phyla

nucleotide-transformer-2.5b-1000g 2.5 billion

3,202 genetically

diverse human

genomes

nucleotide-transformer-500m-human-ref 500 million
human reference

genome

nucleotide-transformer-500m-1000g 500 million

3,202 genetically

diverse human

genomes

nucleotide-transformer-v2-50m-multi-species 50 million
850 species from

diverse phyla

nucleotide-transformer-v2-100m-multi-species 100 million
850 species from

diverse phyla

nucleotide-transformer-v2-500m-multi-species 500 million
850 species from

diverse phyla

nucleotide-transformer-v2-250m-multi-species 250 million
850 species from

diverse phyla

As far as the multi-species dataset is concerned, they consider multiple classes, namely Bac-

teria, Fungi, Invertebrate, Protozoa, Mammalian Vertebrate, and other Vertebrate. Bacterial

species outnumber all other classes, but vertebrates are most present in the dataset by number

of nucleotides. The following table shows the model organisms included in the multi-species

dataset:

12



Class Model Organisms

Bacteria Escherichia coli

Fungi Saccharomyces cerevisiae

Invertebrate Caenorhabditis elegans, Drosophila melanogaster

Protozoa Plasmodium vivax, Plasmodium falciparum

Mammalian Vertebrate Homo sapiens, Mus musculus, Rattus norvegicus

Other Vertebrate Danio rerio, Xenopus tropicalis

They assembled 18 different datasets, for 18 different genomic tasks, to evaluate the trans-

former models after self-supervised training. Two evaluation methods were applied: probing

and fine-tuning.

Probing consists of using the model’s embeddings of DNA sequences, learned during train-

ing, and inputting them into a smaller neural network to perform genomic label prediction.

Fine-tuning will be described in detail in the ’Method’ chapter; in short, the DNA language

model’s head is substituted with a classification head, or a regression head, and then retrained on

a task’s specific dataset. Comparing the results obtained with these methods, fine-tuning seems

to be the most effective: fine-tuned models matched or surpassed 15 of the 18 baseline models,

while probed models matched or exceeded those of 12 out of the 18 baseline models[9].

Moreover, using a parameter-efficient technique, they could perform fine-tuning using 0.1%

of the total model’s parameter and a single GPU, only. Furthermore, smaller variances in per-

formance were obtained with this technique, which demonstrates its robustness.

2.1.1 Multispecies models could make the difference

They verified that ”the best performance is both model and layer-dependent”[9], but most im-

portantly and interesting is the following result: not only the larger but also the more diverse

models outperformed their smaller counterparts, which were trained on human genome only.

This subsection collects the paper’s findings dealing with this topic.

Firstly, the multi-species 2.5B model outperforms or matches the 1000G 2.5B model on

tasks based on human-based assays, showing a mean Matthew correlation coefficient (MCC)

across categories of 0.81 and 0.78, respectively.

Moreover, they compared the Nucleotide Transformer Multispecies 2.5B to HyenaDNA,

a model pre-trained on the human reference genome only: the Multispecies 2.5B model out-

performed HyenaDNA in 6 out of 8 human-related tasks, namely splicing classification (both

13



acceptor and donor sites), promoters classification (both TATA and non-TATA), enhancer clas-

sification ( it is an enhancer or not) and enhancer type classification.

Finally, in the paper’s section ”The Nucleotide Transformer model learned to reconstruct

human genetic variants”, the authors verified the capability of the models to reconstruct masked

tokens. They found that the Multispecies 2.5B model achieved the highest accuracy perfor-

mances overall, but when it comes to specific human sequences reconstruction, the highest level

of accuracy is obtained with the Human 1000G 2.5Bmodel. This could mean that only a human-

specialized model could capture certain characteristics.

From these conclusions, increasing data diversity may be a strategy to improve prediction

performances when dealing with limited computational resources and a shortage of data. Due to

that, it is in the interests of this thesis to test whether the opposite phenomenon can also occur:

measuring the performance of human-only trained models, on tasks derived from genomes of

other model species.

2.1.2 Nucleotide Transformer v2

As you can see, the second half of the first table in this chapter hosts four models labeled ”v2”.

Those are the second versions of the Nucleotide Transformer family’s models, implemented by

making some changes to the architecture and lengthening the training time. These changes are

the following:

• incorporation of rotary embeddings (RoPE): This allows the model to encode absolute po-

sition information using a rotating matrix and to incorporate relative position information

in the self-attention formulation.

• implementation of swiGLU activations: an activation function, variation of GLU function

• elimination of MLP biases and dropout mechanisms:

• augmentation of input’s length: from 6 kilobase to 12 kilobase

All the ”v2” models were pre-trained on the same multispecies dataset and then fine-tuned,

to perform the same set of 18 downstream tasks. Their findings are the following:

• TheNT-v2-50million-parametermodel outperformed both the 500million-parameter and

the 2.5 billion-parameter model trained on the 1000G dataset

• None of the ”v2” models surpassed the original 2.5B multispecies model in performance.

• Only the v2-250 million-parameter managed to reach an MCC mean value close to the

2.5B multispecies model.

14



In conclusion, efficient training techniques and architecture, combined with a diverse

dataset, can lead to top-level performances.

2.2 GENA-LM

In this work, a family of transformer-based language models is presented. These models are

obtained by improving already implemented models for DNA sequences: DNABERT and Big-

Bird.

First of all, AIRI Institute’s researchers integrated Byte-Pair Encoding (BPE) for sequence

tokenization. This encoding method creates a sequence dictionary, spotting the most frequent

sequences within the genome. The resulting tokens range from 1 to 64 base pairs, with a mean

length of 9 base pairs. The obtained dictionary reveals some biologically relevant tokens: the

longest tokens, for instance, often indicate somewell-known repetitive elements. Using the BPE

method, it is possible to analyze even longer DNA sequences without changing the input length

of the model, since ”512 overlapping 6-mers represent 512 base pairs, but 512 BPE tokens can

represent approximately 4.5 kb”[10]. Nevertheless, the resolution’s problem must be pointed

out, since the granularity of the model, that is its abstraction of the data, is limited by the token’s

resolution; The application of BPE should be a case-specific choice.

The second enhancement concerns the attention mechanism: foundational GENA models

are equippedwith a conventional attentionmechanism, while the ”sparse” GENAmodels utilize,

in fact, a sparse attention mechanism. The sparse attention mechanism allows the analysis of

longer sequences by limiting the number of connections and, still, it can capture long-distance

dependencies. Using sparse attention andBPE together, the authors could train the sparse GENA

models with 36 kb long sequences.

All the models were trained using the most recent Human T2T genome, together with the

common variants from the 1000-genome project database and genomes from different species,

including model organisms and others among the eukaryote taxa. Out of convenience, the table

below provides a summary[10]
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Model name Number of parameters Training dataset

gena-lm-bert-base 110M T2T

gena-lm-bigbird-base-sparse 110M T2T

gena-lm-bert-base-t2t 110M T2T, 1000G

gena-lm-bert-base-t2t-multi 110M T2T, 1000G , Multispieces

gena-lm-bigbird-base-sparse-t2t 110M T2T, 1000G

gena-lm-bigbird-base-t2t 110M T2T, 1000G

gena-lm-bert-large-t2t 336M T2T, 1000G

gena-lm-bert-base-lastln-t2t 110M T2T, 1000G

Among them, the authors stressed the attention on these three models

1. gena-lm-bert-base-t2t model: this model is the benchmark for the other models

2. gena-lm-bert-large-t2t model: this model has the largest number of parameters (336M)

and 4.5kb input capacity.

3. The gena-lm-bigbird-base-sparse-t2t models: It has the greatest input capacity input

(36kb)

To evaluate the model’s performance, the created task-specific dataset, to perform the tasks

listed below. They are all human-specific tasks, except for the fifth, of course.

1. polyadenylation site prediction

2. promoter classification

3. splicing site identification

4. chromatin profile prediction

5. determining the activity of housekeeping and developmental enhancers in a STARR-seq

assay using Drosophila sequences[10]

Of particular interest for this thesis, is the promoter prediction task. The findings on this

task are listed below:

• Models with a greater number of parameters outperform their smaller counterparts
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• Models exploiting sparse attention, able to handle longer sequences, perform better than

models using traditional full-attention. Nevertheless, It is measured that, models with

shorter inputs and more parameters prevail over the ones using sparse attention.

• Adding multispecies data to the training dataset does not improve the results

• Using a longer input sequence yields better results. The gena-lm-bigbird-base-t2t model

achieved an f1 score of 94.64 ± 0.3 on the 16 kb dataset[10], highlighting the importance

of context in this kind of task.

2.3 Comparison

It is useful to highlight some differences of interest, between these two studies. The first one

relates to the question about multispecies training datasets: can it improve a model’s perfor-

mance? Talking about the same task, namely promoter prediction, the two studies have different

answers: Nucleotide Transformer models improve their performances using a diverse dataset,

while GENA-LM cannot see any difference. One possible explanation to that discrepancy may

lie in the quantity of diverse genomes exploited. Instadeep’s researchers exploited a great num-

ber of genomes other than human’s one, namely 850, whereas AIRI’s researchers used 313 only,

and the species ratios are not provided. Maybe, that quantity of genomes was not enough to train

a model and see an appreciable difference.

Secondly, referring to the same task, the performance should be compared. The Nucleotide

Transformermodels were trainedwith a shorter input sequence length: the latter was 12kb, while

GENA-LMexploited a 16kb long sequence. Nevertheless, comparing the F1 score, nearly all the

Nucleotide Transformer’s models outperform the best-performing model of the GENA family,

gena-lm-bigbird-base-sparse-t2t. In fact, the best-performing Nucleotide Transformer in this

task achieved an F1 score of 0.973. Discussing the latter model’s results on promoter prediction,

GENA’s authors write about the importance of context analysis; However, this comparison

shows that the input’s length may not be sufficient, and the number of parameters becomes

binding for a comprehensive analysis.
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Chapter 3

Results

To test the presented models on downstream tasks and verify the accessibility of fine-tuning

using HuggingFace, two datasets are assembled:

1. The first dataset was assembled to test the fine-tuning of models using an already-seen

genomes. This dataset is composed ofmus musculus’s promoter sequences and the human

gut’s metagenomic sequences.

2. The second dataset is made up of human gut phages genomic sequences and the human

gut’s metagenomic sequences. It was assembled to assess the capability of the models to

recognize genome sequences that are completely different from the ones they were trained

on.

All further information about the datasets can be found in the Methods chapter.

To fine-tune the models, Google colaboratory service was used, and the used code can be

found in the Code chapter. Some of the foundational models were not fine-tuned: the BigBird-

based model using sparse attention was not easily tunable using the notebooks provided by the

authors. The latter comment should not be misunderstood, the author of this thesis adjusted, a

little bit, all the notebooks provided by HuggingFace and by the two papers, both to make the

code clearer and to fix errors. In this way, it was possible to use the pre-trained models with

a new dataset and add some metric calculations. But, in the case mentioned above, the Python

code raises some error messages that go far beyond the author’s knowledge.

The following tables report the resulting metric, calculated during the finetuning process.
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3.1 mus musculus promoter classification

In the HuggingFace repository of the author, fien-tuned models for this task are all named with

the prefix ”mus_promoter-finetuned-lora”, apart from the last one, for which a different ap-

proach was used.

Model name Validation Loss F1 Mcc Accuracy

NT-500m-human-ref 0.4766 0.8732 0.7192 0.8594

NT-500m-1000g 0.3065 0.9351 0.8414 0.9219

NT-2.5b-1000g 0.1687 0.9863 0.9686 -

NT-2.5b-ms 0.0117 1.0 1.0 -

NT-v2-50m-ms 0.1172 0.9863 0.9686 0.9844

NT-v2-100m-ms 0.0387 0.9867 0.9683 0.9844

NT-v2-500m-ms 0.1042 0.9863 0.9686 0.9844

NT-v2-250m-ms 0.0011 1.0 1.0 1.0

bert-large-t2t 0.1108 0.9867 0.9683 0.9844

bert-base-t2t 0.1792 0.9577 0.9094 0.9531

bert-base-lastln-t2t 0.0934 0.9867 0.9683 0.9844

bert-base-t2t-multi 0.0021 1.0 1.0 1.0

gena-bigbird-base-t2t 0.0475 0.9938 0.9866 -

The 2.5B-1000G and 2.5B-Multispecies models of the Nucleotide Transformer don’t show the

Accuracy value because the CUDA device rapidly ran out of memory, and some changes were

applied to the code, to carry out the fine-tuning.

Looking at the NT models, the poorest results were obtained by the 500M NT model, pre-

trained on the reference human genome only. This was easily surpassed by its counterpart, pre-

trained on the 1000G dataset, and overtaken by the ”v2” models. It seems like, using the same

number of parameters, fine-tuning dataset and fine-tuning routine, the model pre-trained on a

diverse dataset of human genomes yielded better results, even if it had to recognize non-human

DNA sequences. Obviously, the best performances were achieved by the models pre-trained

on multi-species datasets, where mice genome was present. The same thing can be said for the

GENA-LM models since the top-performing model was the Bert-based model, pre-trained on

both human and multi-species genomes.

Overall, the obtained values are really high, and that can be explained since humans and

mice are both mammalian vertebrates, and their genomes have tons of similarities.

It is important to point out that the best-performing GENA’s model could reach those results
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with a lower number of parameters (only 110M).

3.2 Phage sequences classification

This is a particular task, and possibly a though one for the models, since they are ask to distin-

guish phage DNA sequencing, which were absolutely absent from every pre-training dataset.

In the HuggingFace repository of the author, fien-tuned models for this task are all named

with the prefix ”gut_1024-finetuned-lora”, apart from the last one, for which a different approach

was used.

Model name Validation Loss F1 Mcc

NT-500m-human-ref 0.5875 0.7769 0.3628

NT-500m-1000g 0.4974 0.8222 0.5121

NT-2.5b-1000g 0.6900 0.8402 0.5492

NT-2.5b-ms 0.6652 0.8473 0.5631

NT-v2-250m-ms 0.4815 0.8414 0.5610

NT-v2-100m-ms 0.5193 0.8251 0.5308

NT-v2-50m-ms 0.4237 0.8660 0.6384

NT-v2-500m-ms 0.4480 0.8532 0.6018

bert-large-t2t 0.4378 0.4378 0.6476

bert-base-t2t 0.4700 0.8448 0.5728

bert-base-t2t-multi 0.4764 0.8478 0.5903

bert-base-lastln-t2t 0.4049 0.8657 0.6421

bigbird-base-t2t 1.2397 0.8195 0.5808

At first sight, all the metrics have values way lower than the ones seen in the previous task.

Nevertheless, those are good results, meaning that the models were able to apply their acquired

knowledge to distinguish the phage sequences. The pattern shown in the task above can be

found in these results too. Comparing the two non-multi-species models, the best-performing

is, again, the one pre-trained on the 1000G dataset, enhancing the hypothesis of the great po-

tential of a diverse training dataset. Moreover, this is an even more outstanding fact, since

the Nucleotide Transformer’s author has voluntarily excluded viruses and plant genomes from

the training dataset, and still, the models capture useful features to work with phage genomes.

Thanks to the architectural advancements, the ”v2” models outperformed the others, in a way

that doesn’t seem bound to the number of parameters.
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Less data were used to fine-tune the 2.5B models, for the same problem mentioned above;

still, both the training and test ratio as the phage and metagenomic ratio was conserved. As you

can see, comparing the results from these models, the one trained on the multipescies model

reached higher performances.
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Chapter 4

Conclusions

Transformer architecture promises great advancement in the near future. Its simplicity and

adaptability allow these kinds of models to perform on different downstream tasks. Thanks

to architectural improvements and the self-attention mechanism, they are suitable models to

analyse long DNA sequences too. The latter is of key importance since contextual information

is crucial to achieving great performances, as shown by the presented papers.

Secondly, another important finding is highlighted. From Instadeep’s paper, it emerged

that training a model on a diverse dataset, gathering different genomes between prokaryotes and

eukaryotes, yields better results. On the other hand, from theGENA-LM’s one, it is stated that no

significant improvements were seen, by using a multi-species training dataset. To reach a deeper

understanding of the matter, this thesis was reported the fine-tuning results of some models. It

emerged that there may be a correlation between the diversity of the training dataset and the

result’s improvement. In addition. it may be possible that no improvements could be seen in

the GENA’s results since they used a small quantity of multi-species data; for the Nucleotide

Transformer models family, a three times larger multi-species dataset has been used.

Moreover, it was assessed the modest ability of those foundational models to recognize

phage DNA sequences, even if there were no virus DNA samples in the training datasets of

both the foundational model families. This is a remarkable finding, showing the efficacy of the

Transformer architecture, and its usefulness in the genomic field.

Finally, fine-tuning seems within everyone’s reach. Thanks to services like the Hugging-

Face website and community, it is possible to fine-tune the most famous and most performing

foundational models existing, at will. Tutorials and example notebooks are provided, covering

a wide range of applications. It must be pointed out that, not all the notebooks work properly

when it comes to non-popular models; still, those can be fixed with a little time and effort.
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In conclusion, Bioinformatics and dry-lab work will get a leading role in the genomic re-

search field, and this new technology, DNA foundational models in particular, will have a promi-

nent role in future discoveries.
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Chapter 5

Methods

5.1 HuggingFace

To have access to the foundational models implemented by Instadeep and AIRI, I used the

HuggingFace website. HuggingFace is a community and platform for data science and machine

learning development. This platform offers many features:

• Model Hub: a library of more than 200,000 publicly available pre-trained models.

• Data sets: this library hosts more than 30,000 datasets provided by the community.

• Transformer library: It allows users to easily implement natural language processingmod-

els from scratch or by fine-tuning a pre-trained model from the model hub

All the results collected in this work were obtained by downloading the pre-trained models

from the hub and fine-tuning them, with the commands provided by HuggingFace, on different

datasets available on the Dataset library

5.2 Google Colaboratory

The utilized code, reported in the dedicated chapter, is fully written in Python. This code was

run using Google Colaboratory notebooks. Colaboratory is a cloud-based Jupyter notebook, that

runs exclusively on browsers and no setups are needed. The code was computed with a T4 GPU

hosted by the same web service.

5.3 Datasets

Below are the details of the datasets used in this work and available on the HuggingFace page

of the author: https://huggingface.co/LiukG
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5.3.1 gut_pahge_and_metagenomic

This dataset gathers genomic sequences of the human gut’s phages and metagenomic sequences

produced by studies on human gut metagenome. This choice of data was considered to be valid

since the fine-tuned foundational models were all pre-trained on the Human genome. Phage

data were downloaded from the PhageScope database, which gathers and systematically elabo-

rates phage sequences from other databases: the used sequences came from GVD (gut virome

database).

The metagenomic sequences were downloaded from the NCBI Assembly database, search-

ing for the latest uploaded assemblies available on Genebanck and downloading the first 20

items. These sequences were collected in a single FASTA file, divided into shorter segments

of 1024 nucleotides and overlapping the previous and following segments for 512 nucleotides.

Every segment was labeled: label ’1’ indicates a phage segment, whereas ’0’ indicates a metage-

nomic sequence. The resulting dataset is made up of two splits, ’train’ and ’test’, for a total

number of 60,000 sequences and a phage sequence percentage of 60

5.3.2 mus_promoter

This dataset gathers promotorial sequences of mus musculus and the metagenomic sequences

used in the dataset above. Mouse’s promoter sequenceswere downloaded fromEPD (Eukaryotic

promoter database ), selecting the species ’mus musculus’ and downloading the corresponding

FASTA file. Additional data were found on the NCBI database, looking formus musculus genes

and filtering the results searching ’promoter’. Sequences were elaborated in the same way as the

dataset above, but the segments were reduced to 300 nucleotides the resulting dataset is made

up of two splits, ’train’ and ’test’, for a total number of 2,570 sequences and a mouse promoter

sequence’s percentage of 53

5.4 Fine-Tuning

In order to adapt the presented models to perform specific downstream tasks, in this thesis, the

fine-tuning technique is exploited. It is a form of transfer learning, a way to leverage the internal

representations and knowledge of the foundational model, acquired during the training process,

and adapt them to perform on a different related task.

This protocol is way more efficient than training a new model from scratch since it needs

less time and fewer data to achieve high performance, in a few epochs of training. Tools from

the HuggingFace’s Transformer library were used, together with the LoRA method.
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5.4.1 LoRa

Low-Rank Adaptation (LoRA) method, is a type of Parameter-efficient Fine-tuning (PEFT) for

large language models, introduced by Microsoft researchers in 2021. Unlike the full-parameter

fine-tuning, the LoRA method tracks the parameters changes in a matrix, instead of upgrading

them directly, and splits that matrix into two smaller matrices. In a nutshell, the so-called matrix

of changes is the product of two sub-matrices: one column vector and one-row vector.

Step by step, when fine-tuning a model on the first batch of data, the model’s parameters

are ”frozen” and the changes are stored. It is trivial, at any time, to multiply the two vectors

and add the matrix of changes to the ”frozen” one. According to the original paper[11], this

method saves 3 times the memory usage and the results are competitive with the full-parameter

fine-tuning method.
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Chapter 6

Code

6.1 Fine-Tuning with Lora method

The code listed below was used to fine-tune the presented models with the LoRA method; This

code is based on the Google Colaboratory’s notebook provided by the ’Nucleotide Transformer’

paper’s authors, with some little adjustments. The original notebook is available at this link:

https://huggingface.co/docs/transformers/notebooks#pytorch-bio

Installing the required modules, libraries and defining the working device:

1 #install
2 ! pip install -q biopython transformers datasets huggingface_hub

accelerate peft
3 ! pip install -U accelerate
4 ! apt install git-lfs
5

6 # Imports
7 from transformers import AutoTokenizer , AutoModelForMaskedLM ,

TrainingArguments , Trainer , AutoModelForSequenceClassification
8 from sklearn.metrics import matthews_corrcoef , f1_score , accuracy_score
9 from sklearn.model_selection import train_test_split
10 from datasets import load_metric , load_dataset , Dataset
11 from peft import LoraConfig , TaskType , get_peft_model
12 import torch
13 import matplotlib.pyplot as plt
14 import numpy as np
15

16

17 #working device
18 device = torch.device("cuda")
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Inserting the links of the model to fine-tune, the chosen dataset (and its number of labels)

and the name of the new model:

1

2 model_to_finet = "____________________"
3 original_model_name = "____________________"
4 new_model_name = "____________________"
5 dataset_link = "____________________"
6 dataset_name = "____________________"
7 num_labels = "______"

Loading the model for the sequence classification task: If you are loading the Nucleotide

Transformer models, you can run the code below:

1

2 model = AutoModelForSequenceClassification.from_pretrained(model_to_finet ,
num_labels=num_labels , trust_remote_code=True)

3 model = model.to(device)

Else, to load the Bert based models, run the following:

1

2 ! pip install deepspeed
3

4 model = AutoModel.from_pretrained(model_to_finet , num_labels=num_labels
, trust_remote_code=True )

5 gena_module_name = model.__class__.__module__
6 cls = getattr(importlib.import_module(gena_module_name), '

BertForSequenceClassification')
7 model = cls.from_pretrained(model_to_finet , num_labels=num_labels ,

trust_remote_code=True )
8 model = model.to(device)

Adding the LoRA parameters and the parameters to fine-tune:

1

2 peft_config = LoraConfig( task_type=TaskType.SEQ_CLS ,
3 inference_mode=False ,
4 r=1,
5 lora_alpha= 32,
6 lora_dropout=0.1,
7 target_modules= ["query", "value"],
8 modules_to_save=["intermediate"] #

modules that are not frozen and updated during the training
9 )
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10 lora_classifier = get_peft_model(model , peft_config) #
transform our classifier into a peft model

11 lora_classifier.print_trainable_parameters()
12 lora_classifier.to(device) #

Put the model on the GPU

Dataset preparation:

1

2 train_dataset = load_dataset(
3 dataset_link ,
4 dataset_name ,
5 split="train",
6 streaming= False ,
7 trust_remote_code=True,
8 )
9 test_dataset = load_dataset(
10 dataset_link ,
11 dataset_name ,
12 split="test",
13 streaming= False ,
14 trust_remote_code=True,
15 )
16

17 # Get training data
18 train_sequences = train_dataset['sequence']
19 train_labels = train_dataset['label']
20

21 # Split the dataset into a training and a validation dataset
22 train_sequences , validation_sequences , train_labels , validation_labels

= train_test_split(
23

train_sequences ,
24

train_labels ,
25

test_size=0.05,
26

random_state=42
27

)
28

29 # Get test data
30 test_sequences = test_dataset['sequence']
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31 test_labels = test_dataset['label']

Tokenizing the dataset:

1

2 # Load the tokenizer
3 tokenizer = AutoTokenizer.from_pretrained(model_to_finet)
4

5 # Dataset
6 ds_train = Dataset.from_dict({"data": train_sequences ,'labels':

train_labels})
7 ds_validation = Dataset.from_dict({"data": validation_sequences ,'labels

':validation_labels})
8 ds_test = Dataset.from_dict({"data": test_sequences ,'labels':

test_labels})
9

10 def tokenize_function(examples):
11 outputs = tokenizer(examples["data"], )
12 return outputs
13

14 # Creating tokenized dataset
15 tokenized_datasets_train = ds_train.map(
16 tokenize_function ,
17 batched=True,
18 remove_columns=["data"],
19 )
20 tokenized_datasets_validation = ds_validation.map(
21 tokenize_function ,
22 batched=True,
23 remove_columns=["

data"],
24 )
25 tokenized_datasets_test = ds_test.map(
26 tokenize_function ,
27 batched=True,
28 remove_columns=["data"],
29 )
30

31

32 from transformers import DataCollatorWithPadding
33 data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
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Loading the metrics:

1 def compute_metrics(eval_pred):
2

3 metric1 = load_metric("f1", trust_remote_code=True)
4 metric2 = load_metric("matthews_correlation", trust_remote_code=

True)
5 metric3 = load_metric("accuracy", trust_remote_code=True)
6

7 logits , labels = eval_pred
8 predictions = np.argmax(logits , axis=-1)
9

10 f1 = metric1.compute(predictions=predictions , references=labels)["
f1"]

11 MCC = metric2.compute(predictions=predictions , references=labels)["
matthews_correlation"]

12 ACC = metric3.compute(predictions=predictions , references=labels)["
accuracy"]

13 return {"f1": f1, "mcc_score": MCC , "accuracy": ACC, }

Defining the training arguments:

1

2 batch_size = 8
3 model_name= new_model_name
4 args = TrainingArguments(
5 f"{model_name}-finetuned -lora -{original_model_name}",
6 remove_unused_columns=False ,
7 evaluation_strategy="steps",
8 save_strategy="steps",
9 learning_rate=5e-4,
10 per_device_train_batch_size=batch_size ,
11 gradient_accumulation_steps= 1,
12 per_device_eval_batch_size= 64,
13 num_train_epochs= 2,
14 logging_steps= 100,
15 load_best_model_at_end=True, # Keep the best model according to

the evaluation
16 metric_for_best_model="f1",
17 label_names=["labels"],
18 dataloader_drop_last=True,
19 max_steps= 1000
20 )

Defining the Trainer and fine-tuning the model:
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1

2 trainer = Trainer(
3 model.to(device),
4 args,
5 train_dataset= tokenized_datasets_train ,
6 eval_dataset= tokenized_datasets_validation ,
7 tokenizer=tokenizer ,
8 data_collator= data_collator ,
9 compute_metrics=compute_metrics
10 )
11 train_results = trainer.train()

6.2 Fine-tuning the Big Bird based models

To fine-tune the GENA’s BigBird based models, the example note-

book provided by AIRI’s researchers, was used. You can find

the original notebook following this link: https://github.com/AIRI-

Institute/GENALM/blob/main/notebooks/GENAsequenceclassificationexample.ipynb

Installing modules:

1 ! pip install torch --index -url https://download.pytorch.org/whl/cu118
2 ! pip install transformers[torch] datasets
3 import torch
4 import importlib
5 from sklearn.metrics import matthews_corrcoef , f1_score , accuracy_score
6 from datasets import load_dataset , Dataset , load_metric
7 from transformers import AutoTokenizer , AutoModel
8 from transformers import TrainingArguments , Trainer
9 import numpy as np

Loading the model:

1

2 model = AutoModel.from_pretrained('AIRI-Institute/gena-lm-bert-base-t2t
', trust_remote_code=True)

3 gena_module_name = model.__class__.__module__
4 cls = getattr(importlib.import_module(gena_module_name), '

BigBirdForSequenceClassification')
5 model = cls.from_pretrained('AIRI-Institute/gena-lm-bert-base-t2t',

num_labels=2)
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Loading the dataset:

1

2 train_dataset = load_dataset(
3 dataset_link ,
4 dataset_name ,
5 split="train",
6 streaming= False ,
7 trust_remote_code=True,
8 )
9 train_dataset = train_dataset.map()
10

11 test_dataset = load_dataset(
12 dataset_link ,
13 dataset_name ,
14 split="test",
15 streaming= False ,
16 trust_remote_code=True,
17 )
18 test_dataset =test_dataset.map()

Tokenizing the dataset:

1

2 tokenizer = AutoTokenizer.from_pretrained('_______________')
3 def preprocess_function(examples):
4 return tokenizer(examples["sequence"], truncation=True, max_length

=128)
5 train_dataset_tokenized = train_dataset.map(preprocess_function ,

batched=True)
6 test_dataset_tokenized = test_dataset.map(preprocess_function , batched=

True)
7

8 from transformers import DataCollatorWithPadding
9 data_collator = DataCollatorWithPadding(tokenizer=tokenizer)

Loading the metrics:

1

2 def compute_metrics(eval_pred):
3

4 metric1 = load_metric("f1", trust_remote_code=True)
5 metric2 = load_metric("matthews_correlation", trust_remote_code=

True)
6 metric3 = load_metric("accuracy", trust_remote_code=True)
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7

8

9 logits , labels = eval_pred
10 predictions = np.argmax(logits , axis=-1)
11

12 f1 = metric1.compute(predictions=predictions , references=labels)["
f1"]

13 MCC = metric2.compute(predictions=predictions , references=labels)["
matthews_correlation"]

14 ACC = metric3.compute(predictions=predictions , references=labels)["
accuracy"]

15 return {"f1": f1, "mcc_score": MCC , "accuracy": ACC, }

Defining the trainin arguments, the Trainer and fine-tuning the model:

1

2 training_args = TrainingArguments(
3 output_dir="test_run",
4 learning_rate=2e-05,
5 lr_scheduler_type="constant_with_warmup",
6 warmup_ratio=0.1,
7 optim='adamw_torch',
8 weight_decay=0.0,
9 per_device_train_batch_size=32,
10 per_device_eval_batch_size=32,
11 num_train_epochs=10,
12 evaluation_strategy="epoch",
13 save_strategy="epoch",
14 logging_strategy="epoch",
15 load_best_model_at_end=True
16 )
17

18 trainer = Trainer(
19 model=model ,
20 args=training_args ,
21 train_dataset=train_dataset_tokenized ,
22 eval_dataset=test_dataset_tokenized ,
23 tokenizer=tokenizer ,
24 data_collator=data_collator ,
25 compute_metrics=compute_metrics ,
26 )
27

28 trainer.train()
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