
Università degli Studi di Padova
Dipartimento di Matematica "Tullio-Levi-Civita"

Master’s degree in Computer Science

Sampling-based Polytope Calculus

for Reachability Analysis

of Dynamical Systems

Supervisor: Candidate:
Prof. Davide Bresolin Davide Zanarini
Co-Supervisor: ID Number:
Prof. Alessandro Abate 2045785
Dr. Yulong Gao

Academic Year 2022/2023



Abstract

Polytope calculus is a powerful and useful tool for generating and computing poly-
topes that őnd use in many applications, from dynamical systems to higher algebra
and graph theory. Despite its usefulness, this branch of study deals with many
computational problems associated with convex polytopes in general dimensions.
In particular, many issues arise when looking at the time complexity of existing
algorithms: for example, set operations like the Minkowski sum or affine mapping
are exponential in time, while volume computation has been proven to be an NP-
hard problem. This study proposes a new approach to the subject, aiming at a
lower time complexity and an increase in scalability: the goal is to produce a new
sample-based algorithm that can output an approximated result for set operations
in polynomial time. The algorithm presented in this work is accompanied by a
proof of tightness and an implementation in both Matlab and Julia programming
languages. The code has been tested for both its computational speed and tight-
ness of approximation, together with a comparison with other existing tools for
exact computation. Additionally, the algorithm is then applied in a case study
of reachability analysis for dynamical systems, showing how it can represent an
improvement in a branch that is now limited to low-dimensional spaces due to the
exponential complexity of exact methods for polytope computation.
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Chapter 1

Introduction

1.1 Motivations

Polytope calculus is a powerful and useful tool for generating and computing struc-
tures that őnd use in many applications, from dynamical systems to higher algebra,
graph theory and model checking. The general idea is to translate all information
about a model into sets of constraints that are then manipulated with the aid
of set operations to study their properties. Polytopes represent a special case
of constraints, where all of them are linear: they represents halfspaces in some n-
dimensional or∞-dimensional space, depending on the number of variables in play
and their intersection is usually required to be compact, closed or at least convex
(depending on different deőnitions found in literature, their properties may vary
a little).

Despite its usefulness, this branch of study deals with computational problems
associated with convex polytopes in general dimensions. In particular, many issues
arise when looking at the time complexity of existing algorithms: set operations
like the Minkowski sum or affine mapping are exponential in time, while volume
computation has been proven to be NP-hard. The main problem in this scenario is
the choice of representation for a polytope: linear constraints are often more com-
mon since they represent an easier way to translate real problems into polytopes.
On the other hand, this formulation does not mix well with many set operations.
Convex hulls, affine maps and many more usually rely on a vertex representation,
i.e. when the polytopes are represented as a list of their vertices (for example,
apply an affine map to a point in space is pretty straightforward, but it is not the
same for a linear equation/inequality).

The translation from halfspace representation (or facets representation) to ver-
tex representation is a very famous problem commonly known as "Vertex enumer-
ation problem" while its dual is called "facets enumeration problem". Sadly, both
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are well-known NP-hard problems[20]. One of the issues in computing vertices
from facets and viceversa is that it is impossible to establish a priori how many
constraints intersect in one point and which ones. Moreover, for each point that
number can be different. Furthermore, it is also impossible to establish a priori
the total number of facets given the number/position of the vertices nor the total
number of vertices given the number of constraints.

Researchers have hence moved their focus to őnd approximated methods, in or-
der to lower the time complexity without losing too much information and keeping
the approximation error within certain bounds.

1.2 Related works

This thesis is part of a project developed by Y. Gao and A. Abate([13]), to whom
paternity for the sampling-based algorithm must be attributed.

The exponential complexity of exact methods have been thoroughly proved
and improved over the years in articles and books like [12], which presents both
a resume of the main deőnitions and properties of polytopes and some of the
most famous pseudo-algorithm for vertex/facets enumeration, set operation and
othe related features, [9], which explore more in-depth the exponential nature
of the existing exact algorithms. In recent years researchers started developing
many alternative algorithms to solve the vertex/facets enumeration problems and
implement set operations. The most useful results have been obtained by approx-
imating polytopes with hyper-boxes[2], through dimensionality reductions[28] and
with vertex approximation algorithms like the one proposed in this thesis, either
adaptive[18] (i.e. vertex are computed one-by-one using each time the new infor-
mation) and non-adaptive[19]. Special cases with better results have been explored
as well, for example applying the methods to unbounded convex sets[10] or gener-
ating particular algorithms whose correctness has been proved only partially, e.g.
for speciőc dimensions[26].

The list above is only a small fraction of the research done in this őeld, and new
methods still appear every year, each one with its advantages and disadvantages.
The main reason for such activity is the huge utility of polytope calculus in many
applications. As mentioned above, polytopes and sets in general are a very easy
and useful way to describe a lot of instances and models from various őelds of
physics (e.g. aerodynamics[21], ŕuid dynamics...), engineering (e.g. robotics) and
math (e.g. control theory, combinatorial optimization theory...), that are later
exported into real-world applications.
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1.3 State-of-the-art tools

The exact algorithms for polytope calculus are implemented by many existing
programming tools, the main one probably being the Polyhedra API[22] in Ju-
lia, which by itself works as a uniőed interface for many polyhedral computation
libraries such as CDDLib[23]. It includes abstract types for polyhedra as well
as all functionalities to convert between representations, remove redundancy in
the vertex/contraint lists, compute many standard set operations and dimension-
ality reduction algorithms like Fourier-Motzkin elimination, import and extract
polyhedron from other libraries like JuMP[29] and MathOptInterface[24]. It also
includes some tools to create meshes in order to plot and visualize 2D and 3D
shapes with other libraries, e.g. Makie[8]. The Polyhedra library encounters the
same theoretical limits explained before: if a set operation is applied to the wrong
representation, it automatically triggers a conversion which is costly.

Another useful tool implementing polyhedral computation is JuliaReach[4] API
and in particular its module LazySets.jl[11], which implements many aspects par-
allel with Polyhedra but some more advanced tools. For examples, this library can
partially handle high dimensions using the "Lazy Paradigm": as explained in its
documentation, "A lazy operation simply returns a wrapper object representing
the result of the operation between the given sets." This means that the concrete
result of the operation requested is not computed, but instead it returns "a new
object that wraps the computation of the linear map until it is actually needed."
The reason behind this choice is that, for example, the result object of a linear map
A ∗X "can be used to reason about the linear map even if computing the result
is expensive (e.g., if X is high-dimensional), since this command just builds an
object representing the linear map of A and X." The concrete operation is carried
on only if the complexity is not exponential, e.g. in the case of affine maps applied
to polytopes in vertex representation, the size of the instance is small enough,
the request falls into some special cases, e.g. when the set projection matrix is
invertible, or it is explicitly requested. If this is the case, LazySets calls back to
the Polyhedra library for concrete polytope manipulation.

The JuliaReach library also includes other repositories like ReachabilityAnal-
ysis.jl [5] and ClosedLoopReachability.jl[30], which uses the structures and oper-
ations of LazySets to model dynamical systems and study their reachable sets of
states.

1.4 Contributions

This study proposes a new approach to the subject: the main algorithm produces
an under-approximated solution to the vertex enumeration problem using a set
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of randomly generated samples. Starting from the halfspace representation of a
polytope, such samples are projected onto its surface to produce the list of vertices
that under-approximate the instance.

The algorithm is then adapted to őt the main convex set operations: Affine/Inverse
mapping, Minkowski Sum/Difference and Intersection. The advantage is that with
this algorithm, both representations can be used as inputs in all of the above with-
out converting them őrst; a mix of the two can even be used, e.g. it is now possible
to compute the intersection of a polytope described by a list of constraints with a
polytope represented as the set of its vertices. The disadvantage is that the output
will be available only as a vertex list.

The main beneőt of this novel method lays in its high scalability: in a branch
limited by the exponential time complexity of the exact algorithms, this method
reduces it down to polynomial times, allowing for solving instances up to thousands
of dimensions. On the machine used for the tests conducted in this thesis, the
biggest instance tested has 1000 dimensions, while the exact methods could not
őnish the computation after a dimensionality of 20 and the elapsed times for the
latter were far bigger that the former’s ones.

On the other hand, the downside for lowering the time complexity is the ap-
proximation level: the quality of the results depends on the number of samples
generated and more considerations have to be done regarding this aspect, expe-
cially recalling the fact that the exact number of vetices not only is impossible to
establish a priori, but it also usually gets really big as a function of the dimen-
sionality. As an example, consider a hyper-square that, in b dimensions, has 2n

corners).

1.5 Structure of the thesis

Introducing the content of this project, theoretical notions of polytope calculus are
presented in chapter 2 to create the base knowledge for the topic. The algorithm
is then presented in chapter 3, accompanied by a proof of tightness for the approx-
imation and an implementation[36] in Julia[3] programming language. The code
has been tested for both its computational speed and tightness of approximation,
together with a comparison with other existing tools for exact computation. All
results have been thoroughly examined and explained in chapter 4.

Additionally, the algorithm is applied in a case study of reachability analysis
for dynamical systems (chapter 5), showing how it can represent an improvement
in a branch that is now limited to low-dimensional spaces due to the exponential
complexity of exact methods for polytope computation. Instances of real-world
situations translated into sets of polytopes have been extracted from previous
works in the őeld and adapted to őt the approximation algorithm.
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Eventually, a conclusive summary of results from the various performance tests
are put together in chapter 6.
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Chapter 2

Polytope Theory

This chapter provides the theoretical basis for understanding the mathematics be-
hind polytope calculus. What follows is an excursus of basic deőnitions and propo-
sitions that starts from linear algebra notions to reach the formal deőnitions of
a polytope, its representations and its set operations, together with some useful
properties. All deőnitions used in this chapter comes from [6] and [16].

2.1 Convex sets

2.1.1 Affine spaces

Deőnition 2.1 (Linear subspace). A linear subspace is a non-empty subset L of
Rd such that

λ1x1 + λ2x2 ∈ L ∀x1, x2 ∈ L, ∀λ1, λ2 ∈ R. (2.1)

Deőnition 2.2 (Linear/affine/convex combination). A linear combination of vec-
tors x1, . . . , xn in Rd is a vector of the form

λ1x1 +⋯+ λnxn,

with λ1, . . . , λn ∈ R.

A linear combination is affine if
n

∑
i=1

λi ≙ 1.

An affine combination is called convex if λi ≥ 0 ∀i ≙ 1, . . . , n.

Property 2.1. Equation 2.1 is equivalent to the following statement:

Any linear combination of vectors from L is again in L. (2.2)

Note that 2.1 and 2.2 are equivalent under the condition that L ≠ ∅, as stated
in the adopted deőnition of linear subspaces.

8



Moreover, the intersection of any collection of linear subspaces of Rd is again
a linear subspace of Rd. Therefore, for any subset M of Rd, there exists a smaller
linear subspace containing M , that is, the intersection of all subspaces containing
M .

Deőnition 2.3 (Linear hull). For any subset M of Rd, the linear hull span(M)
is the smallest subspace of Rd containing M or, equivalently, the set of all linear
combinations of vectors from M .

Deőnition 2.4 (Linearly independent vectors). A collection {x1, . . . , xn} of vector
in Rd is said to be linearly independent if

λ1x1 + . . . + λnxn ≙ 0↔ λi ≙ 0∀i ≙ 1, . . . , n (2.3)

Deőnition 2.5 (Linear basis). A linear basis of a linear subspace L of Rd is a lin-
early independent collection {x1, . . . , xn} of vectors in L s.t. L ≙ span{x1, . . . , xn}.
Deőnition 2.6 (Dimension). The dimension of a subspace L in Rd is the largest
non-negative integer n s.t. there exists a linearly independent collection of n vectors
from L.

Property 2.2. For any subset M of Rd, there exists a linearly independent col-
lection {x1, . . . , xn} of vectors from M s.t.

span(M) ≙ { n

∑
i=1

λixi ∣ λi ∈ R ∀i ≙ 1, . . . , n}. (2.4)

Deőnition 2.7 (Linear map). a map φ from a linear subspace L of Rd into Re is
called linear if it preserves linear combinations, i.e.

φ( n

∑
i=1

λixi) ≙ n

∑
i=1

λiφ(xi). (2.5)

Deőnition 2.8 (Affine subspace). An affine subspace of Rd is either the empty
set ∅ or a translate of a linear subspace, i.e. a subset A ≙ x +L where x ∈ Rd and
L is a linear subspace of Rd.

Property 2.3. A subset A of Rd is an affine subspace if and only if the following
holds:

λ1x1 + λ2x2 ∈ A ∀x1, x2 ∈ A, ∀λ1, λ2 ∈ R s.t. λ1 + λ2 ≙ 1. (2.6)

The set {λ1x1 + λ2x2 ∈ A ∀x1, x2 ∈ A, ∀λ1, λ2 ∈ R s.t. λ1 + λ2 ≙ 1} is called the
line through x1 and x2.
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Property 2.4. Any affine combination of points from an affine subspace A is
again in A.

Deőnition 2.9 (Affine hull). For any subset M of Rd, the affine hull aff(M) is
the set of all affine combinations of points from M .

Deőnition 2.10 (Affinely independent points). A collection {x1, . . . , xn} of points
in Rd is said to be affinely independent if

λ1x1 + . . . + λnxn ≙ 0↔ λi ≙ 0∀i ≙ 1, . . . , n (2.7)

Deőnition 2.11 (Affine basis). An affine basis of an affine subspace A of Rd is a
linearly independent collection {x1, . . . , xn} of vectors in A s.t. A ≙ aff{x1, . . . , xn}.
Deőnition 2.12 (Dimension). The dimension of a non-empty affine subspace A

is the dimension of the linear subspace L s.t. A ≙ x + L. When A ≙ ∅, then we
deőne dim(A) ≙ −1.

The above deőnition means that dim(A) ≙ n − 1 if and only if n is the largest
non-negative integer s.t. there is an affinely independent collection of n points from
A. Viceversa, an affinely independent collection of n points from A is a linear basis
for A if and only if n ≙ dim(A) + 1.
Property 2.5. For any subset M , there exists a affinely independent collection{x1, . . . , xn} of points from M s.t.

aff(M) ≙ { n

∑
i=1

λixi ∣ λi ∈ R ∀i ≙ 1, . . . , n}. (2.8)

From the deőnitions of affine and linear spaces, the difference between the two
is very subtle. Firstly, notice that the elements of linear spaces are called vectors,
while we are referring to elements in affine spaces as points. Also, the dimension
of an affine space is always one less than the dimension of the relative linear space.

The 0-dimensional affine spaces are the 1-point sets of Rd. The 1-dimensional
affine spaces are called lines. Notice that this is equivalent to the deőnition of line
given earlier. We can generalize this concept with the following:

Deőnition 2.13 (Hyperplane). An (n-1)-dimensional affine subspace in an n-
dimensional affine space A, with n ≥ 1, is called a hyperplane in A.

Deőnition 2.14 (Affine map). A map φ from an affine space A of Rd into Re is
called an affine map if it preserves affine combinations, i.e.

φ( n

∑
i=1

λixi) ≙ n

∑
i=1

λiφ(xi). (2.9)
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When φ is affine, then φ(A) is an affine subspace of Re. When A ≙ x+L, with
L a linear subspace of Rd, then a mapping φ ∶ A→ Re is affine if and only if there
exists a linear map ϕ ∶ L→ Re and a point y ∈ Re s.t. φ(x + z) ≙ y + ϕ(z) ∀z ∈ L.

An affine map φ ∶ A → R is called affine function. For each hyperplane H

in A there exists a (non-constant) affine function φ on A s.t. H ≙ φ−1(0) and,
viceversa, φ−1 is an hyperplane in A for any (non-constant) affine function φ on A.
In this scenario, the sets φ−1((−∞,0)) and φ−1((0,∞)) are called open halfspaces,
bounded by the hyperplane H ≙ φ−1(0). closed halfspaces are deőned similarly.

It follows from the deőnition that affine maps can also be represented in ma-
tricial form.

Property 2.6. An affine map φ ∶ A → Re, with A ∈ Rd an affine space, is a map
of the form

φ(x) ≙Mx + b,

with M ∈ Re×d and b ∈ Re.

With this new formulation, we can see hyperplanes as the sets

φ−1λ,b(0) ≙ {x ∈ A ∣ λx + b ≙ 0},
for any λ ∈ R1×d, b ∈ R. Similarly, for (open) halfspaces we get

• φ−1λ,b((−∞,0)) ≙ {x ∈ A ∣ λx + b < 0};
• φ−1λ,b((0,∞)) ≙ {x ∈ A ∣ λx + b > 0}.

2.1.2 Convex sets

Deőnition 2.15 (Convex set). A subset C of Rd is said to be convex if

λ1x1 + λ2 ∈ C ∀x1, x2 ∈ C, ∀λ1, λ2 ∈ R s.t. λ1 + λ2 ≙ 1, λ1, λ2 ≥ 0. (2.10)

Property 2.7. 1. All affine subspaces of Rd, including Rd and ∅, are convex;

2. all halfspace, both closed and open, are convex;

3. the image of a cenvex set under an affine map is convex.

Theorem 2.1. A subset C of Rd is convex if and only if any convex combination
of points from C is again in C.

Deőnition 2.16 (Convex hull). Given a subset M of Rd, the smallest convex set
containing M (or equivalently, the intersection of all convex sets containing M),
namely conv(M), is called the convex hull of M .
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Theorem 2.2. For any subset M of Rd, the convex hull conv(M) is the set of all
convex combinations of points from M .

It follows from the last theorem that conv(x +M) ≙ x + conv(M) and, more
generally, conv(φ(M)) ≙ φ(conv(M)) for any affine map φ.

Theorem 2.3. For any subset M of Rd, the convex hull conv(M) is the set of all
convex combinations

n

∑
i=1

λixi (2.11)

s.t. {x1, . . . , xn} is an affinely independent family of points from M .

In other words, to generate conv(M) we do not need all convex combinations,
only those formed by all affinely independent sets are sufficient. Although, differ-
ently from linear and affine spaces, no single őxed collection (the basis) is enough.

Corollary 2.3.1. For any subset M of Rd with dim(aff(M)) ≙ n, the convex
hull conv(M) is the set of all convex combination of precisely n+1 points from M

Deőnition 2.17 (Relative interior/boundary). We deőne the relative interior of a
convex set C in Rd as the interior of C in the the affine hull aff(C) of C, namely
ri(C).
The set rb(C) ∶≙ cl(C) ∖ ri(C) is called the relative boundary of C.

Deőnition 2.18 (Dimension). The dimension dim(C) of a convex set C is deőned
to be dim(aff(C)). The empty set has dimension −1.

For example, 0-dimensional convex sets are singletons {x}, while 1-dimensional
convex sets are the (closed, half-open and open) segments, the (closed and open)
halŕines and the lines.

Notice that, given C a non-empty convex set in Rd, then ri(C) ≙ int(C) ⇔
int(C) ≠ ∅. More in general, we have the following:

Theorem 2.4. Let C be a non-empty convex set in Rd, then ri(C) ≠ ∅.
Theorem 2.5. Let C be a non-empty convex set in Rd, then for any two points
x0 ∈ ri(C), x1 ∈ cl(C), with x0 ≠ x1, we have ∥x0, x1) ∈ ri(C).
Theorem 2.6. For any convex set C in Rd one has:

1. cl(C) is convex;

2. ri(C) is convex;

3. cl(C) ≙ cl(cl(C)) ≙ cl(ri(C));
12



4. ri(C) ≙ ri(cl(C)) ≙ ri(ri(C));
5. rb(C) ≙ rb(cl(C)) ≙ rb(ri(C));
6. aff(C) ≙ aff(cl(C)) ≙ aff(ri(C));
7. dim(C) ≙ dim(cl(C)) ≙ dim(ri(C)).

2.1.3 Supporting halfspaces and facial structure

Deőnition 2.19 (Supporting halfspace/hyperplane). Let C be a non-empty closed
convex set in Rd. A supporting halfspace of C is a closed halfspace K in Rd s.t.
C ⊂K and H∩C ≠ ∅, with H being the bounding hyperplane of K, called supporting
hyperplane (we denote the two halfspaces divided by H as H− and H+, and the set
of supporting hyperplanes as H(C)).

A supporting hyperplane H is proper if C is not contained in H.

Theorem 2.7. Let C be a non-empty convex set in Rd and let H be a hyperplane
in Rd. Then the following statements are equivalent:

1. H ∩ ri(C) ≙ ∅;
2. C is contained in one of the two closed halfspaces bounded by H, but not in

H.

From this, we get that a supporting hyperplane H is proper for a non-empty
convex set C is and only if H ∩ ri(C) ≙ ∅.

Theorem 2.8. Let C be a closed convex set in Rd, and let x be a point in rb(C).
Then, there exists a proper supporting hyperplane H of C s.t. x ∈H.

Theorem 2.9. Let C be a non-empty closed convex set in Rd. then, C is the
intersection of its supporting halfspaces.

Deőnition 2.20 (Segment). A closed segment between two points y and z is de-
őned as the set ∥y, z∥ ∶≙ {λy + (1 − λ)z ∣ λ ∈ ∥0,1∥}.
Similarly, an open segment is deőned as

(y, z) ∶≙ {λy + (1 − λ)z ∣ λ ∈ (0,1)}.
Deőnition 2.21 (Face/facet). Let C be a closed convex set in Rd. A convex subset
F of C is called a face of C if, for any two distinct point y, z ∈ C s.t. (y, z)∩F ≠ ∅,
then ∥y, z∥ ∈ F .
F is called a k-face if dim(F ) ≙ k. A facet is a k-face s.t. 0 ≤ k ≤ dim(C) − 1.
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Notice that, by convexity, we actually have y, z ∈ F .
Moreover, ∅ and C are also considered faces of C by the deőnition, but are

considered improper faces. The intersection of any set of faces is, again, a face of
C.

Deőnition 2.22 (Extreme point). A point x ∈ C is called extreme if {x} is a face.
The set of extreme points of C are denoted by ext(C).
Deőnition 2.23 (Exposed face/point). We deőne a proper exposed face as a face
F of a C of the form F ≙ H ∩C, for some proper supporting hyperplane H of C.
A point x ∈ C is said to be exposed if {x} is an exposed face of C.

Theorem 2.10. Let F be a face of a closed convex set C in Rd s.t. F ≠ C. Then,
F ∈ rb(C).
Theorem 2.11. Let F be a facet of a closed convex set C in Rd. Then, F is an
exposed face.

Theorem 2.12 (Minkowski’s theorem). Let C be a compact convex set in Rd, and
let M be a subset of C. Then, the two following conditions are equivalent:

1. C ≙ conv(M);
2. ext(C) ∈M .

In particular, C ≙ conv(ext(C)).
Corollary 2.12.1. Let C be a compact convex set in Rd with dim(C) ≙ n. Then,
each point of C is a convex combination of at most n + 1 extreme points of C.

2.2 Polytopes

2.2.1 Deőnitions and representations

Deőnition 2.24 (Polytope). A polytope is the convex hull of a non-empty őnite
set {x1, . . . , xn}.

Observe that, in general, affine maps preserve the polytope structure.

Deőnition 2.25 (Simplex). A polytope S for which exists an affinely independent
collection {x1, . . . , xn} s.t. S ≙ conv{x1, . . . , xn} is called a simplex and the points
x − 1, . . . , xn are the vertices of S.
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I.e., simplices are polytopes for which exists a sort of "convex basis" (the ver-
tices). Moreover, simplices are the only polytopes with such "basis".

We use the term k-polytope (resp, k-simplex ) when we are referring to a poly-
tope (resp, simplex) P s.t. dim(P ) ≙ k. This means that there can exists some
collection of k + 1 affinely independent points in P , but no such collection of k + 2
points exists.

Given the conditions that a polytope has to satisfy w.r.t. to a generic convex
set, we can use some of the knowledge of section 2.1.3 to provide two characteri-
zations for polytopes.

Theorem 2.13. let P be a non-empty subset of Rd. Then, the two following
conditions are equivalent:

1. P is a polytope;

2. P is a compact convex set with a őnite number of extreme points.

Following the common usage, we re-deőne extreme points, i.e. the 0-faces of
P , as its vertices, while the 1-faces are called edges.

Deőnition 2.26 (Adjacent vertices). Two distinct vertices of a polytope P are
called adjacent if the segment joining them is an edge of P.

Deőnition 2.27 (Incident edges/vertices). We deőne a vertex x0 and an edge γ

of a polytope P as incident if x0 is a vertex of γ.

Theorem 2.14. Let P be a polytope in Rd and x0 one of its vertices. Then the
number of adjacent vertices (and equivalently, the number of incident edges) is at
least d.

By restricting Minkowski’s theorem (2.12) to polytopes, we also get the follow-
ing:

Theorem 2.15. Let P be a polytope in Rd and let {x1, . . . , xn} be a őnte subset
of P . Then, the two following conditions are equivalent:

1. P ≙ conv({x1, . . . , xn});
2. ext(P ) ∈ {x1, . . . , xn}.

In particular, P ≙ conv(ext(P )).
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In other words, any polytope P in Rd is uniquely deőned as the convex hull of
its vertices. The identity

P ≙ conv(ext(P ))
is what we call "vertex representation" (V-Representation) of P .

If we now focus our attention to the 1-faces of a polytope, we get the following
results:

Theorem 2.16. Let P be a polytope in Rd and let F be a proper face of P . Then,
F is also a polytope and ext(F ) ≙ F ∩ ext(P ).
Corollary 2.16.1. Let P be a polytope in Rd. Then, the number of faces of P is
őnite.

Theorem 2.17. Let P be a polytope in Rd. Then, every face of P is an exposed
face.

Notice that an exposed face of a polytope P is, by deőnition, the intersection of
P itself with a supporting hyperplane H, hence P sits in one of the two supporting
halfspaces generated by H. W.l.o.g. we can suppose that P ⊆H−.

Following from 2.17, we obtain what’s called "halfspace representation" or
"facet representation" (H-Representation) of a polytope: any shape P is uniquely
deőned as the intersection of its supporting halfspaces H−, i.e.

P ≙
n

⋂
i=1

H−i ≙ {x ∈ Rd ∣ Ax ≤ b}
for some matrix A ∈ Re×d and vector b ∈ Re, or some list {H−

1
, . . . ,H−n} containing

P.
When P ≠ Rd (nor d ≙ 0), there exist inőnite facet representations for P, since new
halfspaces can always be added.

Deőnition 2.28 (irreducible representation). A representation is irreducible if
n ≙ 1, or

P ⊊
n

⋂
i=1,i≠j

H−i ,

for any j ≙ 1, . . . , n.

Obviously, any reducible representation can be turned into an irreducible one
by omitting some hyperplanes. The following theorem proves that the irriducible
representation is unique for any (proper) polytope.
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Theorem 2.18. Let P ∈ Rd be a polytope with dim(P) ≙ d a P ≠ Rd. Let

P ≙
n

⋂
i=1

H−i

be a representation of P with N > 1, where each H−i is a closed halfspace. Then
the representation is irreducible if and only if

H−j ∩ int( n

⋂
i=1,i≠j

H−i ≠ ∅

for each j ≙ 1, . . . , n.

As both the V-representation and the (irreducible) H-representation are unique
for any given polytope P, it follows that they are exactly equivalent.

Translating one representation into the other is a problem known as vertex/facet
enumeration problem. Vertices of a polytope P can be computed as the intersection
of its incident facets and, viceversa, a facet is the convex hull of a closed loop of
adjacent vertices (i.e. an ordered list x0, . . . , xk s.t. xi−1 and xi are adjacent for all
i ≙ 1, . . . , k and xk ≙ x0).

Theorem 2.19. let P be a d-polytope in Rd, x0 one of its vertices, x1, . . . , xk the
vertices adjacent to x0 and H− an hyperplane in Rd s.t. x0 ∈ H− and x1, . . . , xk ∈

K−. Then P ⊂ K−, i.e. H− is a supporting hyperplane of P. If, in addition, we
have x1, . . . , xk /∈H−, then H− ∩ P ≙ {x0}.
2.2.2 Set operations

Here follows a list of the most commonly used set operations.

Deőnition 2.29 (Affine map). Given a set P ⊂ Rd, a matrix M ∈ Rc×d and a
vector q ∈ Rc, let

MP + q ∶≙ {Mx + q ∣ x ∈ P}
When q ≙ 0c, the operation can also be referred to as set projection.

Deőnition 2.30 (Inverse map). Given a set P ⊂ Rd and a matrix M ∈ Rc×d, let

M−1P ∶≙ {x ∣Mx ∈ P}
Deőnition 2.31 (Cartesian product). Given two sets P ⊂ Rd and Q ⊂ Rd, let

P⊗Q ∶≙ {[x
y
] ∣ x ∈ P, y ∈ Q} .
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Deőnition 2.32 (Minkowski sum). Given two sets P ⊂ Rd and Q ⊂ Rd, let

P⊕Q ∶≙ {x + y ∣ x ∈ P, y ∈ x ∈ Q} ≙ {[I I] [x
y
] ∣ (x, y) ∈ P⊗Q} .

Notice how an affine map can also be deőned as the composition of a set
projection and the Minkowski sum with the singleton {q}, hence the deőnition of
affine maps ans set projection are commonly used interchangeably.

Deőnition 2.33 (Minkowski difference). Given two sets P ⊂ Rd and Q ⊂ Rd, let

P⊖Q ∶≙ {x ∣ x⊕Q ⊆ P}.
Deőnition 2.34 (Intersection). Given two sets P ⊂ Rd and Q ⊂ Rd, let

P ∩Q ∶≙ {x ∣ x ∈ P & x ∈ Q}.
Deőnition 2.35 (Union). Given two sets P ⊂ Rd and Q ⊂ Rd, let

P ∪Q ∶≙ {x ∣ x ∈ P or x ∈ Q}.
Property 2.8. Intersection and union are commutative.

Deőnition 2.36 (Set difference). Given two sets P ⊂ Rd and Q ⊂ Rd, let

P ∖Q ∶≙ {x ∣ x ∈ P, x /∈ Q}.
Deőnition 2.37 (Symmetric difference). Given two sets P ⊂ Rd and Q ⊂ Rd, let

P∆Q ∶≙ {x ∣ x ∈ P ∪Q, x /∈ P ∩Q}.
Deőnition 2.38 (Complement). Given a set P ⊂ Rd, let

PC
∶≙ {x ∣ x /∈ P}

Property 2.9. Given three sets P,Q,S ∈ Rd, the following properties hold:

• P ∖ (Q ∩ S) ≙ (P ∖Q) ∪ (P ∖ S)
• P ∖ (Q ∪ S) ≙ (P ∖Q) ∩ (P ∖ S)
• P ∖ (Q ∖ S) ≙ (P ∖Q) ∪ (P ∩ S)
• (Q ∖ S) ∖ P ≙ Q ∖ (S ∪ P)
• (P ∖Q) ∪ S ≙ (P ∪ S) ∖ (Q ∖ S)
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• (P ∖Q) ∩ S ≙ (P ∩ S) ∖Q ≙ P ∩ (S ∖Q)
• P∆Q ≙ (P ∪Q) ∖ (P ∩Q)
• P ∖Q ≙ P ∩QC

Property 2.10. Affine map, inverse map, cartesian product, Minkowski Sum,
Minkowski difference and intersection are convex.

Corollary 2.19.1. Operations in prop. 2.10 preserve polytope/simplex struc-
tures, i.e. if the inputs are polytopes/simplices, then also the outputs are poly-
topes/simplices.
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Chapter 3

The Algorithm

This chapter is the main focus of this work: here we present a novel sampling-based
algorithm and then show a proof for its correctness. Furthermore, the algorithm
is then adapted to őt some of the set operations applicable to polytopes. In the
end, a brief section is dedicated to discuss the differences between the pseudo-codes
provided and their implementation.

3.1 Sample-based algorithm

3.1.1 Problem formulation

Deőnition 3.1 (Vertex enumeration problem). Given in input a list of linear
constraints

Γ ≙ {γi ≙∑
j∈J

ai,jxj ≤ bi}
i∈I

,

compute the set of their intersection points

VΓ ≙ {vK ≙ ⋂
k∈K⊆I

γk}
.

Deőnition 3.2 (Facets enumeration problem). Given a set of points V ≙ {vi}i∈I ,
compute the set of linear equation/inequalities ΓV of which those points are inter-
sections.

As mentioned earlier, both representations are useful in different cases, some
set operations are deőned in such a way that they only work with one rather than
the other. For example, as we will see in chapter 2, set projections require to
compute the product of a matrix with points, hence it can be applied to vertices
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but not linear inequalities. Viceversa, Intersection of polytopes can be done by
intersecting the various hyperplanes but is impossible to do with vertices.

Hence, the main problem of polytope theory can either be interpreted as com-
puting the appropriate representation for each function, or őnding an algorithm
to compute the result of an operation even with the wrong representation as input
(further deőnitions for set operations are enunciated in section 2.2.2). Even in lat-
ter case, outputs might still need to be translated according to the requirements
of the concrete application.

3.1.2 Deőnition

As mentioned in chapter 1, the idea is to provide an efficient and scalable algorithm
for computing the solutions of the vertex enumeration problem, i.e. convert a
polytope in facets representation into its vertex representation, and implement
this method in the computations of convex set operations for polytopes.

More speciőcally, the algorithm for approximating a polytope P is sampling-
based. It starts by extracting samples from a bigger polytope Y, ideally an over-
appromation of P which should be faster to compute. The idea is to project such
samples onto P in order to obtain an approximation of its surface. Since the
samples come from an over-approximation, some of them might actually results
already inside P, which is not useful for the algorithm.

The outside samples will be the ones projected onto the surface rb(P) in or-
der to obtain the V-representation of a polytope that represents a tight under-
approximation of P. The more samples are projected precisely onto the vertices of
P, the tighter the approximation will be.

To actually project the samples onto P a simple quadratic problem is used.
The halfspaces of P’s H-representation will be used as constraints and the 2-norm
as objective function.

The goal is to őnd the combination of over-approximation Y and number of
samples Ns that produces the best approximation possible in a given timeframe,
or viceversa the fastest computation to obtain a őxed accuracy.

Fig. 3.1 shows 2D examples of both a tight approximation, where the sam-
ples are projected exactly on the vertices of the exact polyhedron, and an under-
approximation, where the samples were not enough to cover all vertices.

3.1.3 Correctness and tightness

Theorem 3.1. Consider an integer Ns ∈ N≥1 and two convex polytopes P and Y

s.t.
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Algorithm 1 Sample-based Approximation Method

Input: non-empty convex polytopes P in H-representation, Y ⊂ Rd

and sample number Ns ∈ N≥1

Output: approximated set P̂ of P
1: select uniformly at random a group of samples {ysi }Ns

i=1 from Y

2: for i ≙ 1 ∶ Ns do
3: compute xs

i ≙ argmin
x∈P

∣∣x − ysi ∣∣2
4: end for

5: return P̂Ns
≙ conv({xs

i , i ∈ N∥1,Ns∥})

(a) example of tight approximation (b) example of under-approximation

Figure 3.1: examples of 2D instances

1. P ⊂ Y;

2. dim(P) ≙ dim(Y).
Under algorithm 1, the following holds:

lim
Ns→∞

Pr(P̂Ns
≙ P) ≙ 1, (3.1)

i.e. the probability that the polytope computed by Algorithm 1 coincides with the
input one increases with the number of samples used in the approximation.

Before proceeding with the proof of 3.1, some preliminary results must be
introduced. Firstly, consider the H_representations P ≙ {x ∈ Rd ∣ Pxx ≤ px} and
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Y ≙ {y ∈ Rd ∣ Pyy ≤ py}, with px ∈ Rmx , py ∈ Rmy . Consider a multi-parametric
quadratic program (mp-QP)

⎧⎪⎪⎨⎪⎪⎩
min
x
∣∣x − y∣∣2

s.t. Pxx ≤ px
(3.2)

where x ∈ P is the decision variable and y ∈ Y is the parameter. Given x ∈ P,
let Y(x) be the subset of Y s.t. the optimal solution of mp-QP 3.2 is x for all
y ∈ Y(x).

Consider now x ∈ rb(P). Let Ax ≙ {i ∈ N∥1,mx∥ ∣ P (i)x x ≙ p
(i)
x }, where P

(i)
x is the

i-th row of Px and p
(i)
x is the i-th element of px. Let PAx

x and pAx
x be matrix and

vector formed from Px and px, respectively, according to Ax. The following lemma
shows how to characterize Y(x).
Lemma 3.1. Let PAx

x have row full rank. Then, for any x ∈ rb(P),

Y(x) ≙
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
y ∈ Rd

RRRRRRRRRRR
Px(PAx

x )TΛ(pAx
x − P

Ax
x y) + Pxy ≤ px,

Λ−1(pAx
x − P

Ax
x y) ≤ 0,

Pyy ≤ py

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
, (3.3)

where Λ ≙ ∥PAx
x (PAx

x )T ∥−1.
Proof. The mp-QP 3.2 can be solved by applying the karush-Kuhn-Tucker

(KKT) conditions:

x − y + P T
x λ ≙ 0, λ ∈ R

mx ,

λ(i)(P (i)x x − p
(i)
x ) ≙ 0, i ≙ 1, . . . ,mx,

λ ≥ 0,

Pxx − px ≤ 0,

(3.4)

with λ the positive Lagrange multiplier. Since PAx
x x ≙ pAx

x and PAx
x has row full

rank, it follows from 3.5 that

λAx ≙ Λ(PAx
x y − pAx

x ), (3.5)

which implies that
x(y) ≙ −(PAx

x )TλAx + y. (3.6)

Then the set Y(x) is characterized by substituting 3.5-3.6 into 3.4, which yields
3.3.
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Proof of theorem 3.1. First of all, we have that P̂Ns
≙ P if and only if

ext(P) ⊆ {xs
i , i ∈ N∥1,Ns∥}. In order to evaluate Pr(P̂Ns

≙ P), we need to quantify
Pr(xs

i ∈ ext(P)). Equivalently, we need to őnd the region in Y from which the
projection onto P is a vertex of P.
For any vertex x of P, we have PAx

x x ≙ pAx
x and PAx

x ∈ Rd×d has full rank. then,
the set Y(x) becomes

Y(x) ≙ {y ∈ Rd ∣ ∥(PAx
x )T ∥−1(y − x) ≤ 0,

Pyy ≤ py
} . (3.7)

Since P ⊂ Y, x ∈ ri(Y). Thus, we have that Y(x) is non-empty and in particular
x is also its vertex. Furthermore, since P and Y have the same dimension, Y(x)
also has the same dimension of Y and has non-empty interior.
Let µ be a uniform probability measure assigned to Y, i.e. ∫Y µ(x)dx ≙ 1. For any
vertex x ∈ ext(P), let α(x) ≙ ∫Y(x) µ(x)dx ∈ (0,1). Under uniform sampling over

Y, α(x) is the probability that the projection of a sample onto P is x.
For two different vertices x1 and x2 or P, the interiors of Y(x1) and Y(x2) are

disjoint(insert missing reference here). Then, applying Alg. 1 we have that

Pr(P̂Ns
≙ P) ≙ Pr(ext(P) ⊆ {xs

i , i ∈ N∥1,Ns∥})
≥ 1 − ∑

x∈ext(P)

Pr(x /∈ {xs
i , i ∈ N∥1,Ns∥})

≙ 1 − ∑
x∈ext(P)

(1 − α(x))Ns .
(3.8)

Since ∣ext(P)∣ <∞ (see chapter 2), we obtain

lim
Ns→∞

∥1 − ∑
x∈ext(P)

(1 − α(x))Ns ∥ ≙ 1. (3.9)

It is possible to give a more intuitive explanation of this proof: trivially, 3.2
is simply projecting an outer sample y onto the surface of P (the projections of
samples that are already inside P are the samples themselves but they are useless).
Since all the resulting points x will be inside P by deőnition, their convex hull will
be then fully contained inside P, providing an under-approximation. Moreover, for
any vertex x of P there exists a region Y(x) in Y such that its projection onto P

will coincide with x. If we increase the number N of samples, we also increase the
probability of őnding at least a sample point inside all regions corresponding to
the vertices of P.
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3.2 Implementation

As stated earlier, Alg. 1 can be adjusted to őt the deőnitions of many set oper-
ations. The proofs of correctness and tightness will follow the same structure of
that of 3.1.3, providing that the starting mp-QP correctly satisőes the operation’s
deőnition.

Moreover, each operation can be re-deőned to use either the V-representation
or the H-representation of polytopes as inputs.

For further reference, in the following sampling-based algorithms the over-
approximated polytope Y has been deőned as an hypersquare of which the half-side
has length Y , deőned as the maximum value across all dimensions and among all
points in the resulting polytope, according to the operation’s deőnition. E.g. in
the case of Minkowski Sum, since the operation is the sum between polytopes, Y
is the sum of the maximum dimensions among all vertices in the initial polytopes
in V-rep, while in the case of an H-rep the points are represented by the product
of vector b by A’s pseudoinverse, as an approximation of the inverse of A (which,
if A is non-square, does not exists).

In the following sections, a simpliőed notation is implied: the H-Rep {x ∈
Rd ∣ Ax ≤ b} of a polytope P will be denoted as (A, b) and the V-Rep conv(ext(P)
as (V ).
3.2.1 Pseudo-code

The implementation of an affine mapping algorithm is rather similar to Alg. 1:
instead of having only the x variable, we need two variables x and z for the points
in the domain space and the image space, respectively. x is the point satisfying
the polytope inequalities, while z is the image of x via M .

This algorithm can also be considered as a more general version of Alg. 1: to
obtain it from AffineMap_H, one can simply input the identity matrix as M .

Notice how, in AffineMap_V, no approximation algorithm nor quadratic prob-
lem is necessary: since the V-Rep is just a list of points, it is sufficient to apply M

directly to each one in order to obtain the corresponding projected points in the
image space.
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AffineMap_H

Input: non-empty convex polytope P ≙ (A, b) ⊂ Rd, matrix
M ∈ Rc×d, vector q ∈ Rc and sample number N ∈ N≥1
Output: approximated polytope M̂ of MP, in V-Rep

1: compute Y ≙ (max(∣A−b∣) ⋅max(∣M ∣)) +max{∣qi∣} (where the
entries of A− are the inverses of the entries of A).

2: select uniformly at random a group of samples {si}Ns

i=1 from ∥−Y,Y ∥d
3: for i ≙ 1 ∶ N do

4: compute zi solution of

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

argmin ∣∣z − si∣∣2
s.t. Ax ≤ B

z ≙Mx + q

x ∈ Rd, z ∈ Rc

(3.10) 5: end for

6: return M̂ ≙ConvexHull({zi}Ni=1)

(a) example of tight approximation (b) example of under-approximation

Figure 3.2: 2D examples of AffineMap_H
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AffineMap_V

Input: non-empty convex polytope P ≙ (V ) ⊂ Rd, matrix
M ∈ Rc×d, vector q inRc and sample number N ∈ N≥1
Output: approximated polytope M̂ of MP, in V-Rep

1: for i ≙ 1 ∶ N do
2: compute zi ≙MVi + q

3: end for

4: return M̂ ≙ConvexHull({zi}Ni=1)
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To compute an Inverse Map, the matrix M is őrst applied to the constraints of P
and then the vertices of the starting polytope are retrieved by calling AffineMap_H
with the identity matrix. To produce the vertex representation version, the same
logic of AffineMap_V is applied.

Fig. 3.2 and 3.3 show the results obtainable with different levels of approxima-
tion (i.e. number N of samples used) on randomly generated 2D instances.

InverseMap_H

Input: non-empty convex polytope P ≙ (A, b) ⊂ Rd, matrix
M ∈ Rd×c and sample number N ∈ N≥1
Output: approximated polytope M̂−1 of M−1P, in V-Rep

1: compute P′ ≙ (AM, b)
2: return M̂−1 ≙AffineMap_H(P′, Id,N) (where Id is the d × d

identity matrix)

(a) example of tight approximation (b) example of under-approximation

Figure 3.3: 2D examples of InverseMap_H
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InverseMap_V

Input: non-empty convex polytope P ≙ (V ) ⊂ Rd, matrix
M ∈ Rn×m and sample number N ∈ N≥1
Output: approximated polytope M̂−1 of M−1P, in V-Rep

1: for i ≙ 1 ∶ N do
2: compute zi ≙M−Vi

3: end for

4: return M̂ ≙ConvexHull({zi}Ni=1)

ConvexHull

Input: non-empty set S ≙ {xi}li=1 ⊂ Rd (in matricial form S ∈ Rl×d,
with the points xi as rows)

Output: approximated polytope P̂ of conv(S), in V-rep
1: for i ≙ 1 ∶ N do

2: if feasible, compute zmi solution of

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

argmin t

s.t. Sz − ⟨xi, z⟩ ⋅ ✶ ≤ −ϵ✶ + t ⋅ γ
t ≥ 0, z ∈ Rd

γ ∈ Rd, γi ≙ 1, γj ≙ 0 ∀j ≠ i

✶ ∈ Rd,✶j ≙ 1∀j

3: if feasible, compute zMi solution of

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

argmin t

s.t. Sz − ⟨xi, z⟩ ⋅ ✶ ≥ ϵ✶ − t ⋅ γ
t ≥ 0, z ∈ Rd

γ ∈ Rd, γi ≙ 1, γj ≙ 0∀j ≠ i

✶ ∈ Rd,✶j ≙ 1∀j

(where S here is used in matrix form, i.e. with the samples xi as rows)
4: end for

5: return P̂ ≙ {zmi }li=1 ∪ {zMi }li=1
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We should point out that the ConvexHull algorithm is not a quadratic problem,
but rather a linear problem.

Its linearity is very important in the economy of this project: this function is
present in all other algorithms as well, since the last step is always to compute the
convex hull of the list of projected points. This has to be done since the results of
the quadratic problems are lists of projections of the randomly generated samples,
which also includes points which are not projected onto vertices but onto faces and
edges.

Linearity comes from the fact that the convex hull algorithm is different from
the others: it is not trying to minimize a distance and, as a matter of fact, notice
how we are not generating random samples. Instead, the equation

Sz − ⟨xi, z⟩ ⋅ ✶ ≙ ±(ϵ✶ − t ⋅ γ)
deőnes an hyperplane; by minimizing t, the aim is to őnd the hyperplane closest
to xi so that it will be separated from the other points. If such hyperplane exists,
then xi is a vertex. If not, it means that xi is impossible to isolate and hence it
is not a vertex. This operation has to be repeated twice since a vertex can sit in
either of the two halfspaces generated by the hyperplane.

CartesianProduct_HH

Input: non-empty convex polytopes P ≙ (AP, bP),Q ≙ (AQ, bQ) ⊂ Rd

Output: approximated polytope P̂Q of P⊗Q, in H-Rep

1: compute APQ ≙ [AP 0

0 AQ

] and bPQ ≙ [bPbQ]
2: return P̂Q ≙ (APQ, bPQ)

A point to notice is that CartesianProduct_HH is the only algorithm that
produces a H-rep. This is because, as in the case of AffineMap_V, this is not
an approximation algorithm but an exact one, that does not require a quadratic
problem to be solved. Step 1 is just another formulation for the Cartesian product
operation, equivalent to 2.31.

Fig. 3.4, 3.5 and 3.6 show examples of tight and under-approximations for the
three versions of the Minkowski Sum algorithm.
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MinkowskiSum_HH

Input: non-empty convex polytopes P ≙ (AP, bP), Q ≙ (AQ, bQ) ⊂ Rd

and samples number N ∈ N≥1
Output: approximated polytope Ŝ of P⊕Q, in V-Rep

1: compute C ≙CartesianProduct_HH(P,Q)
2: return Ŝ ≙AffineMap_H(C, ∥Id∣Id∥,N) (where Id is the d × d

identity matrix)

(a) example of tight approximation (b) example of under-approximation

Figure 3.4: 2D examples of MinkowskiSum_HH
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MinkowskiSum_HV

Input: non-empty convex polytopes P ≙ (AP, bP), Q ≙ (VQ) ⊂ Rd

and samples number N ∈ N≥1
Output: approximated polytope Ŝ of P⊕Q, in V-Rep

1: compute Y ≙max(∣A−
P
bP∣) +max(∣VQ∣)

2: select uniformly at random a group of samples {si}Ns

i=1 from ∥−Y,Y ∥d
3: for i ≙ 1 ∶ N do

4: compute zi solution of

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

argmin ∣∣z − si∣∣2
s.t. APzP ≤ bP

zQ ≙ (VQ)tα
z ≙ zP + zQ
l

∑
j=1

αj ≙ 1

zP ∈ Rd, zQ ∈ Rd

α ∈ Rl, αj ≥ 0∀j

5: end for

6: return Ŝ ≙ConvexHull({zi}Ni=1)

(a) example of tight approximation (b) example of under-approximation

Figure 3.5: 2D examples of MinkowskiSum_HV
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MinkowskiSum_VV

Input: non-empty convex polytopes P ≙ (VP), Q ≙ (VQ) ⊂ Rd

and samples number N ∈ N≥1
Output: approximated polytope Ŝ of P⊕Q, in V-Rep

1: compute Y ≙max(∣VP∣) +max(∣VQ∣)
2: select uniformly at random a group of samples {si}Ns

i=1 from ∥−Y,Y ∥d
3: for i ≙ 1 ∶ N do

4: compute zi solution of

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

argmin ∣∣z − si∣∣2
z ≙ zP + zQ

s.t. zP ≙ (VP)tαP

zQ ≙ (VQ)tαQ

lP

∑
j=1

(αP)j ≙ 1,
lQ

∑
j=1

(αQ)j ≙ 1
αP ∈ R

lP , (αP)j ≥ 0∀j
αQ ∈ R

lQ , (αQ)j ≥ 0 ∀j
zP ∈ Rd, zQ ∈ Rd

5: end for

6: return Ŝ ≙ConvexHull({zi}Ni=1)

(a) example of tight approximation (b) example of under-approximation

Figure 3.6: 2D examples of MinkowskiSum_VV
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MinkowskiDiff_HV

Input: non-empty convex polytopes P ≙ (AP, bP), Q ≙ (VQ) ⊂ Rd

and samples number N ∈ N≥1
Output: approximated polytope D̂ of P⊖Q, in V-Rep

1: compute Y ≙max(∣A−
P
bP∣)

2: select uniformly at random a group of samples {si}Ns

i=1 from ∥−Y,Y ∥d
3: for i ≙ 1 ∶ N do

4: compute zi solution of

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
argmin ∣∣z − si∣∣2
s.t. AP(z + (VQ)j) ≤ bP∀j ≙ 1, . . . , l

z ∈ Rd

5: end for

6: return D̂ ≙ConvexHull({zi}Ni=1)

MinkowskiDiff_VV

Input: non-empty convex polytopes P ≙ (VP), Q ≙ (VQ) ⊂ Rd

and samples number N ∈ N≥1
Output: approximated polytope D̂ of P⊖Q, in V-Rep

1: compute Y ≙max(∣VP∣)
2: select uniformly at random a group of samples {si}Ns

i=1 from ∥−Y,Y ∥d
3: for i ≙ 1 ∶ N do

4: compute zi solution of

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

argmin ∣∣z − si∣∣2
s.t. (z + (VQ)i) ≤ VPαi ∀i ≙ 1, . . . , lQ

lP

∑
j=1

αi,j ≙ 1 ∀i ≙ 1, . . . , lQ

α ∈ RlQ×lP , αi,j ≥ 0 ∀i, j

z ∈ Rd

5: end for

6: return D̂ ≙ConvexHull({zi}Ni=1)
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(a) example of tight approximation (b) example of under-approximation

Figure 3.7: 2D examples of MinkowskiDiff_VV

The MinkowskiDiff_HV and MinkowskiDiff_VV algorithms present a rather
critical difference from the other functions: these two are not only quadratic in
terms of the objective function, but they also have a quadratic number of con-
straints instead of a linear one. Moreover, MinkowskiDiff_VV is even worse: it is
the only algorithm that also has a quadratic number of variables as well.

Fig. 3.7 shows 2D examples of a tight approximation and an under-approximation.
The double H-representation version of this operation is missing, since imple-

menting it directly is impossible due to the H-representation for the Q polytope
being incompatible with the constraints of the algorithms, requiring points in Q to
add to z. There exists, anyway, a workaround: since only the H-rep of Q is prob-
lematic in this case, it can be converted in V-rep using the Affine Map algorithm
and then simply apply MinkowskiDiff_HV.

Intersection_HH

Input: non-empty convex polytopes P ≙ (AP, bP),Q ≙ (AQ, bQ) ⊂ Rd

and sample number N ∈ N≥1
Output: approximated polytope T̂ of P ∩Q, in V-Rep

1: compute A′ ≙ [AP

AQ

] and b′ ≙ [bP
bQ
]

2: return T̂ ≙AffineMap_H((A′, b′), Id,N)
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(a) example of tight approximation (b) example of under-approximation

Figure 3.8: 2D examples of Intersection_HH

Intersection_HV

Input: non-empty convex polytopes P ≙ (AP, bP), Q ≙ (VQ) ⊂ Rd

and samples number N ∈ N≥1
Output: approximated polytope T̂ of P ∩Q, in V-Rep

1: compute Y ≙min{max(∣A−
P
bP∣),max(∣VQ∣)}

2: select uniformly at random a group of samples {si}Ns

i=1 from ∥−Y,Y ∥d
3: for i ≙ 1 ∶ N do

4: compute zi solution of

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

argmin ∣∣z − si∣∣2
s.t. APz ≤ bP

z ≙ VQα
l

∑
i=1

αi ≙ 1

α ∈ Rl, αi ≥ 0 ∀i

z ∈ Rd

5: end for

6: return T̂ ≙ConvexHull({zi}Ni=1)

Fig. 3.8, 3.9 and 3.10 show 2D examples of a tight and an under approximated
result for the three Intersection algorithms.
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(a) example of tight approximation (b) example of under-approximation

Figure 3.9: 2D examples of Intersection_HV

Intersection_VV

Input: non-empty convex polytopes P ≙ (VP), Q ≙ (VQ) ⊂ Rd

and samples number N ∈ N≥1
Output: approximated polytope T̂ of P ∩Q, in V-Rep

1: compute Y ≙min{max(∣VP∣),max(∣VP∣)}
2: select uniformly at random a group of samples {si}Ns

i=1 from ∥−Y,Y ∥d
3: for i ≙ 1 ∶ N do

4: compute zi solution of

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

argmin ∣∣z − si∣∣2
s.t. z ≙ (VP)tαP

z ≙ (VQ)tαQ

lP

∑
j=1

(αP)j ≙ 1,
lQ

∑
j=1

(αQ)j ≙ 1
αP ∈ R

lP , (αP)j ≥ 0 ∀j
αQ ∈ R

lQ , (αQ)j ≥ 0 ∀j
z ∈ Rd

5: end for

6: return T̂ ≙ConvexHull({zi}Ni=1)
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(a) example of tight approximation (b) example of under-approximation

Figure 3.10: 2D examples of Intersection_VV
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3.2.2 Implementation

All code produced[36] for this project has been developed in Julia[3] 1.9.2, a C++-
based programming language for high-performance scientiőc programming, and
written with the Visual Studio Code editor for Windows. In particular, the QP
models are developed with the JuMP[29] library for Julia.

A few details have to be addressed regarding the actual implementation of the
algorithms:

• The pseudo-code algorithms do not have any speciőcations regarding the
methods used for solving the QPs, so this choice is completely left to the
user. For this reason, the solver is left as an additional input for all functions.

A comparison between some of the softwares for solving optimization prob-
lems is further and better developed in section 4.1.2.

• In the Julia code, the constant Y , representing the half-size of the initial box
Y used algorithm 1, has been scaled by a factor of 2, in order to start from
a larger square and hence having a higher probability of generating samples
outside of the polytopes rather than inside (recall how inside samples are
useless since they won’t be projected onto the surface).

• The ConvexHull function is not included at the end of any function. This
choice has been done in order to be able to perform the tests, and more
speciőcally those for time complexity, only on the actual algorithm since
ConvexHull has its own complexity and has been tested separately. It’s easy
to see how to run the full version of an algorithms, one can simply run the
related function immediately followed by ConvexHull to obtain the desired
result. Moreover, in some cases it might be preferred to keep some sample
points inside the polytope for further applications or analysis.

• As an additional step, at the end of every function duplicates are removed
from the list of projected samples.

• A set of auxiliary functions have been developed to make the code cleaner
and easier to write:

ś set_workers(): Given in input an integer d, set the number of working
processors exactly to d, i.e. it will add processors in their number is
below d, or remove some if there are more. The processors will work in
parallel and will always be coordinated by processor #1. If 0 is passed
in input, no working processors will be set and all computations will be
performed by #1;
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ś id(): Given in input an integer d, returns the square identity matrix of
size d. This simply is a cleaner and shorter version of the code required
in Julia to generate identity matrices;

ś sample_generator(): Given in input the constant Y , the number of
requested samples N and the dimension d of the polytopes, generate a
random matrix of size N × d with entries in ∥−Y,Y ∥. Samples are the
rows of such matrix;

ś solve_model(): Given in input a model model without objective func-
tion and an expression expr, set the objective function of model to
min(expr), optimize it and return the value of the variable stored as
z in the model. This function is speciőc to the models deőned in the
Julia code provided for this project, since all mp-QP models have the
projection variable named as z and the their objective is to minimize
the objective function;

ś get_BigL(): Given in input a matrix M , return the maximum absolute
value among all entries of M .

ś inv_Ab(): given in input a matrix A and a vector b, computes the
matrix whose entries are the inverse of the A’s entries multiplicated,
for each row i, by the i-th value in b. In other words, it computes the
matrix labelled as A−b in the pseudo-code.
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Chapter 4

Analysis and tests

In this chapter we show the results of a series of tests conducted on the code pro-
duced for this project. They serve as proof for the advantages that a sampling-based
approach can bring to polytope calculus and they help highlighting the disavantages
of such method.

First, the time complexity of the set operations implemented is checked to test
the scalability of Alg. 1, which is the main goal of this project. Then the tightness
of the approximation is tested, in in its computational limits, to control the trade-
off between speed and accuracy of the approximation. Eventually, we also carry
out a comparison with the Polyhedra [22] API to further prove and highlight the
differences between exact and approximated methods.

All tests have been run on an AMP Ryzen 5 4600H 3GHz hexa-core CPU, using
6 parallel processes.

4.1 Time complexity

4.1.1 W.r.t. dimensions

Instances’ dimensionality is the number one parameter in the scope of this work:
recall how the goal is to show how an approximated algorithm can perform faster
that the exact one (with the necessary requirements on the approximation level).

Instances have been generated randomly, according to table 4.1.
To run the tests, all possible pairs of a polytope/map or polytope/polytope (in

either representation) have been tested, according to the input of the operation,
obtaining up to 10 × 10 ≙ 100 results for each dimension.

For time tests w.r.t the input dimension, the number of constraints for the
H-Rep and the number of points for the V-rep have been kept constant to 200.

N.B.: due to the high computational times of the algorithms, in some
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type size number of samples
200 × d for d in

H-Rep (10,20,30,40,50,60,70,80,90,100,150, 10 per size (190 total)
200,250,300,350,400,450,500,1000)

200 × d for d in
V-Rep (10,20,30,40,50,60,70,80,90,100,150, 10 per size (190 total)

200,250,300,350,400,450,500,1000)
d × d for d in

Affine Map (10,20,30,40,50,60,70,80,90,100,150, 10 per size (190 total)
200,250,300,350,400,450,500,1000)

Table 4.1: number and dimensions of the randomly generated instances.

cases the tests have been stopped before the 1000 dimensions.

Figure 4.1: average elapsed times of AffineMap_H and AffineMap_V w.r.t. to input dimensionality.

Looking at őg. 4.1 it is immediately evident how the AffineMap_V algorithm
performs much better than AffineMap_H, with a difference of 4 orders of magni-
tude, going from ∼ 102 to ∼ 10−2 seconds or average. The reason in such a results,
as stated earlier, can be found in the fact that AffineMap_V does not require to
solve an mp-QP problem but it’s just a set of linear operations.

A point in favor of the H version is its steadily time complexity: the average
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times follows almost perfectly a quadratic trend, with small ŕuctuations. It is the
expected result, since we are solving a őxed number N of quadratic problems with
a linear number of constraints.

Despite the absence of a parametric problem to solve, the vertex version is
also expected to follow a quadratic curve, since each matrix × vector product
is also O(d2) in time complexity. This uneven trend does not show up in 4.1,
due to the difference in scale. You may add a new graph to show computation
time of AffineMap_V only, with a scale that shows the uneveness; moreover, the
latter also have a higher variance between the single results, but this is more likely
to be caused by ŕuctuations in the ŕoating point computations operated by the
computer rather than the algorithm itself, given its computational speed.

Both algorithms are also very stable, i.e. the variance among samples is pretty
low.

Figure 4.2: average elapsed times of InverseMap_H and InverseMap_V w.r.t. to input dimensionality.

The same logic applied to the Affine Map algorithms can be found when looking
at the results from the Inverse Map ones (őg. 4.2: the H version is simply calling
AffineMap_H with a different input so O(d2) is to be expected and is, in fact,
obtained. However, the curve in this case is much less steep, almost linear, and
the numerical results are one order of magnitude smaller, since the matrix that we
are passing in input to AffineMap_H is diagonal and hence the computations are
faster.
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Results are similar also for the V version: the same piecewise linear pattern of
AffineMap_V is encountered, but with higher times due to the additional compu-
tation of the M− matrix.

Here the variance behaves differently from the Affine Map version: the vertex
version is still very stable, but the H-rep one shows that the time among instances
tend to stretch more, in both directions.

Figure 4.3: average elapsed time of ConvexHull w.r.t. to input dimensionality.

As expected, ConvexHull proved to be perfectly linear in time (see őg. 4.3),
despite some small oscillation between dimensions and also among instances of the
same size. The reason can be given to the highly variable number of actual vertices
encountered in a V-representation. Out of a number n of points, it is impossible to
establish in prior how many actual vertices are there and hence a higher variance
in the results can be expected, depending on how many linear problems are solved
and how many of them are not feasible.

As shown in őgure 4.4, the three Minkowski Sum algorithms follow their the-
oretical complexity of O(d2). The double H-rep version can be compared to the
Affine Map performance, given that it is actually a call to the AffineMap_H algo-
rithm with an input double in dimension and a diagonal matrix (the two cancel
each other out).

The other two, having a faster ad-hoc model to solve, perform better in time.
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Figure 4.4: average elapsed times of the three MinkowskiSum algorithms w.r.t. to input dimensionality.

In particular, the double V-rep. version is much faster while the HV version is
closer to the double H-rep one.

Variance is also much lower for the őrst case, while the HV version and expe-
cially the HH versions tend to have more oscillation between instances of the same
size. In particular, a small portion of them always run slightly slower than the rest.

Looking at őg. 4.5, it is considerable how the Intersection algorithms also
perform in a perfectly quadratic trend and work in the same time range as for
the Minkowski Sum ones. There are two main differences to highlight: őrst, in
this case the VV version is the slowest and also the one with the highest variance,
while the HH and HV versions perform almost identically, with the latter being
slightly better and also closer to a linear complexity. On the other hand, the
Intersection_HH algorithm appear to be more prone to positive exceptions, with
∼ 8% of cases performing ∼ 50% faster.

It is also remarkable the tendency of the approximation algorithms to follow the
same logic of the exact methods: for operators that are deőned to work in practice
only with the vertex representation, like Minkowski Sums, the V-rep versions of the
respective approximation algorithms performs better and the mixed input version
follows. Viceversa, for operations that require H-rep in input as the intersections,
the algorithm with both V-rep inputs runs slower than the other two.
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Figure 4.5: average elapsed times of the three Intersection algorithms w.r.t. to input dimensionality.

4.1.2 W.r.t other parameters

Despite the dimensionality of the polytopes is the main value to consider, the
speed of the algorithms also varies with respect two other parameters as well:

• Number N of samples:

For this test, only the affine map algorithm has been taken into account.
This is done because most of the algorithms include a callback to it and the
remainders have been shown to perform faster. Therefore, the Affine Map
has been considered as an approximated upper bound on the performance.
As reported in őg. 4.6, the time complexity increases linearly in the number
of random samples generated, as expected. Such a result is another point
in favour of this approximation method: since the approximation accuracy
highly depends on the number of samples projected onto the surface of a
polytope of őxed size, the linear increase in time provide a reliable mecha-
nism. It is in fact possible to run a tuning phase when needed, to őnd the
minimum number of samples needed to reach a given level of accuracy, for a
given family of polytopes.
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Figure 4.6: average elapsed time w.r.t. number of samples used.

• Solver used:

It is important to notice how the code produced is solver-independent. A
list of solvers available for Julia has been tested to provide free choice to
the user depending on the type of algorithms one might want to use to solve
the mp-QP problem. The pseudo algorithms object of this thesis do not
require any speciőcation on the method used to solve it. The only require-
ment is its compatibility with the code, but it is important to remark that
the complexity of the method used by the solver does have an impact on the
total complexity of the algorithm. A list of solvers available for the Julia lan-
guage is available at the following link: http://jump.dev/JuMP.jl/stable/
installation/#Supported-solvers. Figure 4.7 only shows four among the
compatible open-source ones, which are Mosek, OSQP[34], Clarabel[15] and
Ipopt[35]. Other solvers work as well, such as Hypatia[7], COSMO[14] and
MadNLP[31], but have not been included in this test. It also needs to be
pointed out how different solvers may have various parameters that can be
modiőed according to the user preference. For this test, the standard settings
of each optimizer have been left unaltered.
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Figure 4.7: average elapsed times of various solvers w.r.t. to input dimensionality.

4.2 Tightness tests

For small dimensionalities, volume computation is a useful tool when comparing
polytopes. However, as for all other operations, its computation is exponential in
time and hence does not represent a viable way to fulőll the aformentiond task.

In this particular instance, another solution can be found, exploiting the rela-
tionship between the two polytopes we want to compare: since the approximated
polytope is fully contained inside the exact one, it is possible to estimated the
relative space occupied by the smaller one inside the other. To do such thing,
random samples are generated inside the exact one, using its deőnition, and then
we check how many of them also őt inside the approximation. The ratio between
the two gives a valid comparison.

Another problem presents itself here: random uniform sampling in convex poly-
topes is a difficult task and, in particular, the uniformity requirement is what
causes the most problems here.

There are some algorithms in literature which tries to approximate a uniform
distribution, e.g. with a random walk, but it is still computationally expensive
and uniformity is only ensured at the theoretical limit. Another solution is to
generate samples in a bigger box containing the polytope and discard those which
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are not included in it, but this also fails when the dimensionality increases due
to the volume difference (the higher the dimension, the bigger the region outside
the polytope and hence the smaller the probability of hitting a sample inside it).
Other partial solutions, that works for only one of the representation, can be found
but none behaves better in terms of either time complexity or space complexity.

To avoid these issues, in this work a simpler approach has been chosen: instead
of testing tightness on a random polytope, which makes it impossible to either
compute its exact volume or generate a uniform sampling, it has been chosen to
do so on an hyper-rectangle. Although the approximated polytope would still be
generic and hence its volume would be difficult to compute, it is much easier to
generate a uniform sampling in a rectangle.

As described earlier, for any dimension a hyper-rectangle is randomly created,
either in V-representation or in H-representation, together with a set of samples
generated following a uniform distribution (using the coordinates of facets or ver-
tices as bounds). The hyper-rectangles are then passed as input to the functions
and for every sample a small feasibility problem is generated to test if it is a convex
combination of the set of points that the functions output, i.e. it őts inside the
approximated polytope.

The ratio between the samples that őt inside it over their total is then raised
to the 1

n
-th power, where d is the dimension of the instance. This scaling is done

to take into account its dimensionality, a parameter which does not inŕuence on
the ration of samples itself, having them no dimension, but has great impact over
the total volume of a polytope. The idea is to consider this ratio as a combination
of the approximation percentages of all directions; by computing the d-th root,
the result should give the geometric average per dimension. The őnal metric is
deőned as follows:

accf,S(H,N) ≙ (S⋂f(H,N)
∣S∣ )

1

d

,

where f is the algorithm tested, H the randomly generated hyper-rectangle,
d its dimension, S the set of randomly generated samples inside H and N the
number of samples used by the algorithm.

Although the hyper-rectangle is a solution to the samples generation prob-
lem, yet another problem arise: the number of vertices of an hyper-rectangle is
exponential w.r.t. its dimensionality, causing space issues in storing them. Never-
theless, this solution is still faster than the other proposals, allowing us to push a
bit higher in the number of dimensions before reaching the storing capacity limit
of the machine used for testing. Moreover, the hyper-rectangle can be seen as
some sort of lower bound on the performance of the algorithms given its "simple"
deőnition compared to random shapes.
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For these tests, 20 hyper-rectangles have been randomly generated for each
even dimension from 2 up to 10 and the plots below show the average precision
for any combination of dimension and number of samples over the 20 instances.

Instead of testing all implemented functions, AffineMap_H is now considered
the standard reference for all functions that call back to it., i.e. the double H-
representation version of the other binary operation. For the same computational
limits of the time complexity tests, the two Minkowski Difference algorithms are
also ignored.

Figure 4.8: accuracy of the AffineMap_H algorithm w.r.t. the number of samples

The set projection algorithm proved itself to be rather accurate. As expected,
smaller instances require less samples to reach the same level of accuracy, but
even for higher dimensions the plots show a fast initial increase. More speciőcally,
they seem to follow a logarithmic trend (with a different scaling according to the
dimension) and a possible explanation can be found by recalling that the number
of vertices of an hyper-rectangle is exponential.

Moreover, the accuracy depends on the probability of a sample to be projected
onto a new vertex; hence, if we have fewer samples the probability of hitting new
vertices each time is higher and we get a rapid increase of the accuracy. The
more samples we use, the more "duplicates" we get when projecting them and the
convergence slows down.

It is also important to recall that even with 2d samples perfection is not guar-
anteed, since many samples will end up onto facets or edges.
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The rapid initial increase is nevertheless a point in favor of the algorithm: a
"good" approximation can be reached with a number of samples smaller than the
number of vertices of the polytope. On the other hand, The more samples we add
the less improvement we get, hence reaching 100% might be difficult.

Figure 4.9: accuracy of the MinkowskiSum_HV algorithm w.r.t. to the number of samples

Figure 4.10: accuracy of the MinkowskiSum_VV algorithm w.r.t. to the number of samples
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The same trends can be found in all the algorithms that do not call back to
AffineMap_H. The approximation improvement is logarithmic and is scaled down
according to the dimensionality of the instances: bigger polytopes require more
samples to reach the same level of accuracy of smaller ones, but fewer samples
than the number of vertices are overall required to produce a tight approximation.

Figure 4.11: accuracy of the Intersection_HV algorithm w.r.t. to the number of samples

For the issues explained earlier, these tests have been stopped at 10 dimensions,
as this is enough as a proof of concept: the overall outcome is that the accuracy
is an increasing function (probably logarithmic) in the number of samples, which
means that the algorithms can reach any level of approximation when given enough
samples (providing a machine powerful enough to support the computation), and
the improving curve is rather steep at the beginning, meaning goo approximations
with less samples and hence a faster execution time.

The downside is that to reach 100% accuracy the number of samples used is
still required to be at least equal the number of vertices, which can be exponential
w.r.t. the dimensionality.

4.3 Comparison with Polyhedra

For the same reasons explained earlier, for this test only the set projection algo-
rithm has been taken into consideration. Moreover, despite the time complexity
tests have been carried out up to hundreds of dimensions, it has not been necessary
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Figure 4.12: accuracy of the Intersection_VV algorithm w.r.t. to the number of samples

in this situation. The approximated algorithms is run with 1000 samples which
is more than enough to provide a 100% accuracy of the results compared to the
exact polytope for the tested dimensions.

On the other hand, the exact results are provided by the Polyhedra API[22]
for Julia, a standard library, implemented in Python, MATLAB and Julia, to
compute exact operations on polytopes and provide graphic representations in 3D
and 2D. As stated on their documentation, for each of the operations discussed
in this project, only one of the two polytope representations is implemented, i.e.
the one that provides a simple way to carry out the operation; for example, for
Minkowski Sum and Affine Map the V-rep is better while the H-rep makes the
Intersection much easier. By default, if the wrong one is passed in input, this
triggers an automatic conversion between representation which is costly. Since
there is no way to perform an operation with the wrong representation, this con-
version is mandatory and makes the exact methods exponential in time complexity.

As expected, the exponential time of the Polyhedra method overpasses the
AffineMap_H function (őg. 4.13 as soon as a polytope in 8 dimensions is passed in
input. To put it into perspective even more, the time required for the approximated
algorithm on a polytope in 400 dimensions is still lower than the time required by
Polyhedra to resolve the same task on a 10-dimensional polytope (although it is
important to recall that for higher dimensions, the accuracy would be lower and
the number of samples needed might need re-tuning).
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Figure 4.13: comparison between the approximated algorithm and the exact algorithm for the Affine Map
function.
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Chapter 5

Case study: reachability analysis of

constrained systems

A particular application for polytope calculus is the reachability analysis of dynam-
ical systems. These systems can be used to describe many real cases, like heat
diffusion, air ŕow simulations and more. Their formulation can be translated in a
set of polytopes describing the initial conditions, constraints that must be satisőed,
those that must be avoided instead and/or objective conditions to reach. Their
evolution in time (forward or backward) is then modelled using operations on such
polytopes, to obtain new information.

Given the fact that many real-world applications have a high number of variables
in play, scalability is usually a limiting factor for exact methods. In this section,
we analyze some instances of discrete-time dynamical systems to test the efficiency
of the proposed algorithms, using the JuliaReach API[4] as a comparison.

5.1 Models definition

name size d control set
smallSynthetic 6 {x ∈ R6 ∣ ∣∣u0∣∣∞ ≤ 20}
largeSynthetic 20 {x ∈ R20 ∣ ∣∣u0∣∣∞ ≤ 0.25}

distillationColumn 86 {x ∈ R86 ∣ ∣∣u0∣∣∞ ≤ 0.2}
tubularReactor 600 {x ∈ R600 ∣ ∣∣u0∣∣∞ ≤ 0.28}

heatFlow 3481 {x ∈ R3481 ∣ ∣∣u0∣∣∞ ≤ 100}
Table 5.1

The instances are adapted from [17], which implements the ROMPC framework
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described [27] and [28], and reported in table 5.1.

• smallSynthetic: A synthetic discrete-time example, the same used in [27] and
[28];

• largeSynthetic: A synthetic discrete-time example;

• distillationColumn: A time-discretized model of a binary distillation column
from [32],[33];

• tubularReactor: A continuous-time model of a controlled chemical reaction
process derived from [1];

• heatFlow: A time-discretized model for a distributed control heat ŕow prob-
lem, modiőed from the HF2D9 model described in [25].

The approach used is to model a simple discrete-time controlled linear system
that evolves according to the rule

xk+1 ≙ Axk +Buk ∀k ≥ 1

where A is the d × d square state matrix, deőning how the states evolve in time,
and B is the d × c control matrix, with c≪ d.

5.2 Results

For all models and both forward and backward reachability, the horizon has been
kept at 20 iterations and the initial set used is {x ∈ Rn ∣ ∣∣x0∣∣∞ ≤ 5}, with n be-
ing the dimension of the model. The control sets have been extracted form the
original tests this models were prepared for. Also, the number of samples used to
approximate the output has also been kept constant at 1000 samples. This last
parameter has been kept low once again for computation limits, but previous tests
show how the time complexity is linear in the number of samples and hence the
results shown below can easily be scaled up accordingly to the number of samples
preferred.

First, it is important to remark how it is not the goal of this section to seek the
time complexity w.r.t. the size of the instance. The models used are very different
between one another for what concerns the sparsity of the state matrices and the
dimension of the control matrix and this is why the largeSynthetic instance, for
example, performs much more similar to smallSynthetic rather than sitting in be-
tween that one and the distillationColumn model, despite having an intermediate
number of variables.
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name size fwd reach avg time bck reach avg time
smallSynthetic 6 16.145 s 16.000 s
largeSynthetic 20 19.782 s 18.670 s

distillationColumn 86 93.516 s 52.088 s
tubularReactor 600 151.179 s 291.806 s

heatFlow 3481 DNF DNF

Table 5.2: elapsed time of forward and backward reachability of real-world models.

Neither is to prove the accuracy of the approximation: the problems in comput-
ing the approximation level have already been thoroughly discussed in the previous
chapter and this is also why the number of samples used has been kept low and
constant. A simple scaling of this parameter can easily improve the accuracy at
the cost of a linear increase in the elapsed time.

If we compare table 5.2 to őg. 4.13 we can see that even an instance with
600 dimensions can reach an horizon of 20 time instants within 3 minutes for
forward reachability, while one exact computation of a set projection of size 10
takes 5 minutes to compute. Even increasing the number of samples to produce a
better approximation, the numbers do not even come close to an exponential time
complexity at level 600.

Also, it is interesting to notice how forward and backward reachability seem to
behave differently and indipendently from one another, with both being similar on
small instance, then backward steps are almost double as fast for the distillation-
Column while the opposite happens tubularReactor. This difference is probably
due to differences in the formulation of the state matrices: the number of non-zero
values and their position play a crucial role in reachability analysis, since the time
needed for one iteration of the approximation algorithm is repeated for the number
of steps required to reach the horizon, enhancing any difect or advantage in the
formulation.

As a last comment, we reported that the heatFlow model was the őrst for
which the machine couldn’t produce an output and computation was forced to
stop before the machine crashed due to storage issues.

We also report Fig. 5.1 and 5.2 to show the evolution of smallSynthetic and
largeSynthetic, with 1000 and 100 samples respectively, for an horizon of 10 and
restricted to the őrst 2 dimensions.
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Figure 5.1: őrst 10 time steps of smallSynthetic, only őrst 2 dimensions.

Figure 5.2: őrst 10 time steps of largeSynthetic, restricted to őrst 2 dimensions.
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5.3 Comparison with JuliaReach

Forward times from table 5.2 have been compared to the times obtained for the
same task by using JuliaReach functions. Horizon has been kept constant at 20.

name size JuliaReach Lazy time approx. time
smallSynthetic 6 0.02 s 16.145 s
largeSynthetic 20 0.06 s 19.782 s

distillationColumn 86 0.56 s 93.516 s
tubularReactor 600 43.29 s 151.179 s

heatFlow 3481 DNF DNF

Table 5.3: comparison between elapsed time of approx. algorithm and JuliaReach lazy algorithm.

Despite table 5.3 shows how the JuliaReach API apparently handles the in-
stances of all dimensions much faster than the functions implemented in this
project, it is important to remark that, as explained in section 1.3, two main
factors play a part in such results.

First, recall how JuliaReach does not actually compute the results of the oper-
ations, but rather creates a wrapper object for it, using the Lazy paradigm, which
lowers the time complexity by a lot.

Secondly, it converts every polytope into a zonotope beforehand, using them as
representation for all operations. In reality, the conversion from polytope to zono-
tope actually creates an approximation of the original set as well and, moreover, the
opposite conversion is once again exponential in time. the zonotope-to-polytope
conversion function is not actually even present in the library, forcing the user to
adapt to the zonotopical approximation of polytopes. It is possible to retrieve the
vertices of the zonotope but it requires once more an exponential amount of time.

A second test in which JuliaReach has been explicitly asked to produce a
V-representation of the results has been run on the same machine used for all
other tests but, even on the smaller instance, the computation has been forcibly
interrupted after 4 hours before it could produce an output. Put in comparison,
it would take JuliaReach more that 4 hours to retrieve the V-representation a
6-dimensional instance, instead of the 16 seconds it took for the sampling-based
algorithm to achieve the same results with a number of samples more than sufficient
to obtain 100% approximation.

As a last test, we run the JuliaReach version on the heatFlow model, but even
with the Lazy paradigm the run has been forcibly arrested after it wasn’t able to
produce an output after the 1 hour mark. This, together with the few data collected
on smaller samples, conőrm the exponential trend of the Lazy representation as
well.
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Chapter 6

Conclusions and future directions

In the last chapter, we őrst summarize the main results obtained and advantages
of the algorithm proposed in this work. Then, a second section allows for more in-
depth discussions about the many aspects encountered while testing and studying
this method. In the end, some notes about possible future studies and improvements
on the matter are accounted for.

6.1 Conclusions

The main goal of this study is to produce an algorithm to improve the scalability
of set operations on polytopes and the conversion from facets to vertex represen-
tations. Towards this goal, we developed an new sampling-based algorithm.

First, we proved its correctness and, in particular, how this new algorithm is
actually guaranteed to output an under-approximation. This is particularly impor-
tant for real applications: in many cases, the polytopes are deőned by constraints
that must be respected to guarantee certain speciőcations, for example safety mea-
sures or bounds, and the under-approximation has the advantage of always őtting
inside the exact polytope, hence respecting the input constraints.

Secondly, we showed that the scalability of the algorithm is much better than
the state-of-the-art tools already available: time complexity for the implemented
functions is always polynomial in the number of dimensions of the instances, with
expected ŕuctuations among different representations used in input, that relate to
the nature of the operations themselves. Figure 4.13 shows unequivocally how the
H-to-V rep. translation through an approximated affine mapping runs signiőcantly
faster for instances as small as 10 dimensions when compared to a standard library
like Polyhedra.

From the results, we also showed that the algorithm is highly dependant on the
number of samples used from what concerns both time complexity and accuracy

60



of the approximation. Since the vertex enumeration problems has been proven
to be NP-hard, to reduce the time complexity some trade-off must be considered.
However, the number of samples is a parameter that can be easily adjusted to őt
the requirements of the user.
We also tested the sampling-based algorithm in some real applications, where time
complexity is usually more important than 100% accuracy on the results. This is
because it may be enough to have a partial solution in an acceptable amount of
time rather that wait longer to have the complete output.

6.2 Discussions

As mentioned earlier, the trade-off for the scalability is the quality of the approx-
imation and, in this case, it is a pretty heavy downside. Recall őrst of all that
exact volume computation is an NP-hard problem and even approximation algo-
rithms are theoretically more efficient but still too expensive to implement. This
is why tightness tests in this work had to be limited at low dimensions as well.
Nevertheless, they are very useful to prove an important point: the approximation
percentage is an increasing function in the number of samples used and the initial
slope of the curve serves as evidence that a "good" approximation can be obtained
with a number of points signiőcantly smaller than the exact number of vertices
in output (which, for general polytopes, is once more impossible to compute in
polynomial time).

To put numbers in, consider őgure 4.8: for an 10-dimensional hyper-rectangle,
which has 210 ≙ 1024 vertices, 200 points are enough to compute an under-
approximation that covers more than 80% of the total volume. Similar results
should be expected also when increasing the dimensionality of the samples.

Yet, achieving 100% accuracy is very inefficient: to do so, the number of samples
must at least match the number of vertices of the exact polytope and in many
cases it will not be sufficient due to the randomness with which the samples are
generated. The number of samples for a given accuracy is then the most crucial
parameter when running this algorithm and, even is it stands in a linear relation
to the computational time, its complexity with respect to the dimension of the
instances is the only limit for the usability of this method.

Another thing that needs to be addressed regarding the algorithm is random-
ness. Generating a random approximation obviously means that the accuracy of
the result, as well as the elapsed time, are dependant on the initial generation
of samples. Running the algorithm multiple times to compute the average might
look like a good solution, but the deőnition of an "average" between polytopes is
not intuitive. A better solution is to use multiple runs to compute the convex hull
of different outputs: the result is still guaranteed to be an under-approximation,
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due to the convexity of both the operations and the deőnition of polytope, and is
also bigger of any of the stand-alone result since it contains them by deőnition of
convex hull.

The initial generation of samples mainly depends on two things: the distri-
bution used for the sampling and the over-approximation from where they are
spawned from. Regarding the former, uniformity can be a good idea but distribu-
tions that spawn less samples toward the center are preferred in order to have the
least possible amount of points already inside the polytope (which are useless).
Concerning the latter, tighter shapes are always preferred because of the faster
computation to solve the minimization problems. Moreover, as discussed earlier,
sampling from general polytopes is a difficult task, hence choosing more complex
shapes can impact more on the total complexity rather than simple boxes.

Tests on real-world application instances probably conőrms more than any-
thing just how scalable the approximation algorithm compared to exact methods:
600-dimensional instances can be analyzed within minutes even on a portable com-
puter to obtain at least a small subset of reachable points. In comparison, and
despite using the Lazy paradigm, JuliaReach encountered the same limits of the
approximation algorithm on such machine, and without the lazy paradigm wasn’t
even able to produce an actual result within 24 hours due to the zonotopic repre-
sentation used.

To sum up the results discussed, the main advantage of this novel algorithm
lays in its scalability for big dimensionalities, while its downsides is the fact that
both time complexity and approximation level rely on the number of samples
used, which works as a trade-off between the two: more points guarantee a better
approximation but also require more time to compute, and viceversa.

6.3 Future directions

The accuracy percentage of the approximation can be explored more thoroughly
with the use of more powerful machines, different metrics and theoretical tools to
better deőne an asymptotic function or some upper/lower bounds. The ultimate
goal would be to have some sort of reference for the number of samples to use as
a function of the dimension of the instance and the approximation level one wants
to obtain.

Also, recall that the algorithm proposed in this section can only work in one di-
rection, transforming a halfspace/facet representation into a vertex representation.
Despite it being often preferred when working the polytopes, it would obviously
be useful to have an algorithm for the inverse conversion.

Finally, more set operations can be implemented using s a base, like union
and symmetric difference, by adapting it to non-convex sets as well. Also some
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functionalities regarding polytopes, like computing the volume and the center of a
polytope, might be approximated using a sampling-based method.
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