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Abstract

Batch and semi-batch processes are widely used in the chemical industry, due to their
flexibility and capability to deal with fine chemicals and high-added value products. Batch
processes are unsteady-state operations; therefore they are difficult to be controlled. Model
predictive control (MPC) was proved [7] [6] to be a valid choice to regulate transient
operations. Thus, it is capable of control and at the same time optimize the processes. On
the other hand, linear and nonlinear MPC present some drawbacks such as inaccuracy
of the model for LMPC and large computational time and the presence of different local
solutions for NMPC. In order to overcome these issues, Adaptive Model Predictive Control
(AMPC) can be employed. AMPC put together features of linear and nonlinear MPC.
Particularly, a nonlinear model for the process is successively linearized at each time step.
Therefore, the recursive linearization of the model ensures the tracking of the nonlinear
dynamic, with a reduced computational effort and a global solution.
In this work, Adaptive Model Predictive Control (AMPC) was applied on a semi-batch
reactor and a batch distillation column. The results obtained were compared with the
performances achieved utilizing linear and non-linear model predictive control. It was
shown that AMPC is capable of regulating batch operations with product performances
similar to that of NMPC and it requires a computational time significantly lower than the
one required with NMPC. Furthermore, the robustness of AMPC was tested introducing
some process mismatch in the process model. Therefore, it was shown that some recursive
tuning might be necessary to increase robustness.
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Introduction

As the scope of this thesis, Adaptive Model Predictive Control was applied to batch
processes and its performance was compared with the one obtained using linear and
nonlinear Model Predictive Control.

In this years batch and semi-batch operations are gaining lots of importance, due to
the high competitiveness on the market and to strict safety regulations [6]. Batch processes
ensure more flexibility in the operations, since it is possible to change completely feed to
the equipment and obtain the desired output just adjusting the operating conditions [11].
Thus, the scheduling of different operations and the optimization of the processes between
a batch time and the following is allowed. Furthermore, small amount of materials can be
handled, matching safety requirements. These kinds of operations are widely used in the
pharmaceutical, biological and polymers industry [32].
Batch and semi-batch operations are characterized by an unsteady-state nature, which
results in highly nonlinear state equations. Thus, the transient nature makes batch equip-
ment difficult to control.

Due to the unsteady-state behavior, the common controllers such as PI or PID may not
be sufficient to regulate batch operations. Model Predictive Control (MPC) was proved
[7] [6] to be a valid choice for control transient systems. MPC technology has the unique
feature of solving an optimization problem at each time step taking into account con-
straints on both input and output variables. Particularly, at each sampling time, the
controller predicts the behavior of the process until the final time and optimize a certain
number of control moves to minimize a cost function. After that, the first control move is
implemented, and the hole optimization problem solved again at the next time step.

The solution of an optimization problem is a powerful tool that permits to obtain the
maximum performance from the process. Optimization programming requires the knowl-
edge of the process model which is implemented inside the controller. Based on the kind
of model, it is possible to differentiate two type of MPC: linear and nonlinear. Linear
Model Predictive Control (LMPC) is characterized by a linear model, which is usually a
linearization of a more complex nonlinear model. This method requires the solution of a
linear optimization problem, which is fast, easy to use and ensures the identification of
the global minimum. On the other hand, the requirement of a linear model is a significant
limitation, since the accuracy of the prediction is often approximate [37]. Thus, LMPC is
effective when dealing with steady-state processes in which the operating conditions do
not change much with respect to the one considered for the linearization of the model.
Non-linear Model Predictive Control (NMPC) uses nonlinear model. This results in ac-
curate predictions and a wide range of operating conditions in which the controller can



2 Introduction

be applied. NMPC requires the solution of a nonlinear programming (NLP), that re-
quires long computational times. Furthermore, due to the nonconvexity of the problem
the identification of a global optimum is not ensured. Therfore, it is pretty likely that the
algorithm converges to local minima [10].

In order to avoid all these problems, Adaptive Model Predictive Control (AMPC) was
introduced. AMPC combines the feature of LMPC and NMPC. In particular, the dynamic
behavior is tracked by successively linearizing the model. In this way, linear programming
with a quadratic objective function has to be solved. Therefore, the problem is convex and
the convergence to a global minimum is ensured [23]. Besides, the solution of a quadratic
programming (QP) requires usually short time.

In Chapter 1 it is explained how MPC operates, the theory behind it and the action
of the main tuning parameters. Furthermore, a brief history on the introduction and de-
velopment of MPC through the years is reported.

In Chapter 2, the focus is posed on dynamic optimization and particularly on the
methods involved in the solution of non-linear problems.

In Chapter 3, batch and semi-batch operations are reviewed. Particular attention is
addressed on semi-batch reactors and batch distillation columns. Moreover, problems af-
fecting linear and non-linear MPC are presented. Thus, the characteristics of AMPC are
introduced.

In Chapter 4, AMPC is applied on a semi-batch reactor and a batch distillation column.
Thus, its performance is compared with the one obtained applying LMPC and NMPC.
Moreover, AMPC robustness is tested in the presence of parameter uncertainties.
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Model Predictive Control

1.1 Introduction

Model Predictive Control is a technique of advanced control introduced for regulating
difficult multi-variable systems. It is common in the chemical industry to find complex
plants in which multiple inputs and outputs are present and interact in a nested way. More
than that, limitations expressed in terms of inequality constraints, are to be set on the
variables in order to satisfy physical, mechanical or safety limitations. Model Predictive
Control can regulate these complex systems and it does it in an optimal manner. Therefore,
at each time step, an optimization problem is solved and the computed manipulated
variable allows the process to maximize or minimize a particular cost function.

In MPC no explicit pairing of input/output variables is requested and the constraints
are integrated directly in the controller structure [34]. What is required is the availability
of the dynamic model of the process and current outputs measurements. Once this data
is available, it is possible to predict the future behavior of the system. In the same way,
the value of the manipulated variables is calculated based on the prediction forecast.

Model predictive control is an important tool because it allows capturing the dynamic
interactions between input, output and disturbance variables. It considers constraints at
each time and it combines control calculation with estimation of an optimal set point. If
an accurate model of the process is present, it is possible to determine in advance potential
problems [30]. The general objectives of an MPC controller are [15]:

1. prevent violation of input and output constraints,

2. drive the control variables (CV’s) to their steady-state optimal values,

3. drive the manipulated variables (MV’s) during time through an optimal path,

4. prevent excessive movements of the MV’s,

5. when signals and actuators fail, control as much of the plant as possible.
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1.2 Structure and Operation

Figure 1.1 shows a schematic representation of the MPC layout. The outputs from the
plant are measured and sent to the controller. Sometimes a state estimator such as a
Kalman Filter is used to predict the value of missing measurements. Inside the controller,
the model of the process is used for predicting the future directions of the outputs. Thus,
an optimization problem is solved in order to minimize a cost function. Simultaneously,
a number of MVs variables is computed to lead the system to the computed optimum.

Fig. 1.1: Schematic block diagram for MPC.

In figure 1.2 it is reported how the controller operates. The duty of the controller is to
calculate a set of optimal control moves that allows the predicted output sequence to reach
the set point in an optimal way. Therefore, the controller calculates, from the resolution
of an optimization problem, a set of M optimal control moves u(k+1, k+2,..,k+M-1) and
a set of future outputs y(k+1, k+2,..,k+P). M is defined as control horizon and P as pre-

Fig. 1.2: Concepts of prediction and control horizon [36].
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diction horizon. Both are tuning parameters for the controller, with P ≥M . At each time
step, only the first control move is implemented; thus, this approach is known as receding
horizon approach. Particularly, at each step the controller forecasts which direction the
system will take and applies the first move of its optimized prediction. Then the plant
is affected by the input and yields a set of output variables that are measured and send
back to the controller. At this point, the controller forecasts the behavior of the system
and the set of M control moves again. Thus, the procedure is repeated at each time step.
It is important to notice that equality and inequality constraints are integrated into all
the calculations. Usually, two kinds of constraints are set: hard and soft constraints. The
former are bounds that cannot be exceeded. The second one, on the other side, can be
violated for small amounts of time. This differentiation helps the resolution of the opti-
mization problem, that could result in some decision step infeasible.

The MPC predictions are calculated based on a model of the process. In fact, it is
necessary to know how the variables interact to forecast future behavior of the plant.
There are three main categories of models:

• First order: these models are derived from physical consideration of the system, such
as material and energy balances. They are an accurate representation of the reality
and they can be used on a broad range of operating conditions. Tough, complexity
is the main disadvantage, at the point that not always is possible to derive them.

• Empirical: these models are obtained starting from measurements, usually by the
fitting of experimental data. Empirical models are typically simpler than the physical
one, but they can be used only under limited operating conditions.

• Semi-empirical models: these models are a combination of first principle knowledge
and empirical modeling.

Developing an adequate model is not a trivial task and is of fundamental importance. The
model should be as much accurate as possible with respect to the reality to avoid process
mismatch. At the same time the model should be not too complex for lower the computa-
tional effort. Therefore, the step involving the identification of the model is, usually, the
one that requires the major amount of time.

Based on the type of model used inside the controller it is possible to differentiate be-
tween linear (LMPC) and non-linear (NMPC) controller. Both controllers work following
the same scheme, but linear MPC uses a linear model while nonlinear implements a non-
linear one. LMPC is usually fast, but it can yield poor performances dealing with highly
non linear processes [37]. Contrarily, NMPC allows performing a more precise calculation,
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but it requires to solve a non-linear optimization, that introduces lots of issues. In fact,
the computational time can be very high and there is no assurance that a global solution
will be found. Additionally, another form of MPC is available: adaptive model predictive
control (AMPC). This technique combines both linear and nonlinear MPC and permits to
put together the nonlinearity of the models and the speed of the calculations. Hence the
nonlinear model is successively linearized at each time step, yielding a linear optimization
problem (§3.4).

1.2.1 Application to Step Response Models
In order to clarify how the prediction of future outputs works, an example of a step
response model on single input single output (SISO) system is reported. The general form
for expressing a step response model is reported below (1.1).

y(k+ 1) = y0 +
N−1∑
j=1

Sj ∆u(k− j+ 1) +SN u(k−N + 1) (1.1)

Here Sj are the step-model parameters, N is the number of step-response coefficient and
is an integer number. Usually 30 6 N 6 120 and y0 is the initial value of the output at
time t = 0. Assuming that y0 = 0 at the initial time it is possible to use equation 1.1 for
calculate one step ahead prediction ŷ(k+ 1). The formula can be written as:

ŷ(k+ 1) = S1 ∆u(k) +
N−1∑
j=2

Sj ∆u(k− j+ 1) +SN u(k−N + 1). (1.2)

In which is possible to define two contribution. The first term on the right hand side of
the equation accounts for the effect of current control actions, while the second and third
term account for the past control actions. In the same way for a generic i-th step ahead
prediction it becomes:

ŷ(k+ i) =
i∑

j=1
Sj ∆u(k− j+ i) +

N−1∑
j=j+1

Sj ∆u(k− j+ i) +SN u(k−N + i). (1.3)

The second and the third term of the equation 1.3 are often put together and renominated
as predicted unforced response ŷo(k+ i). This therm takes into account all the previous
values of the outputs [36].

The value of i can be used as a tuning parameter. Thus, it is possible to see that, when
i is smaller, the response of the controller is aggressive. Besides, when i is increased the
profile of y become more sluggish and the one of u smoother. The equation 1.3 can already
be used as control law based on a single prediction done for i step ahead. Moreover, when
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the predictions performed are more than one, the formulation will be the same, but it
will be repeated every time step. In this case, it is possible to write the control law in a
compact form using vectorial and matrix notation (equation 1.6). The vector of predicted
responses over the prediction horizon and the one of the control actions over the control
horizon are reported in 1.4. Also the step response coefficient can be put together in a
matrix of dimension P ×M called dynamic matrix (1.5) [36].

Ŷ =


ŷ(k+1)
ŷ(k+2)
...

ŷ(k+P)

 ∆U =


∆u(k)

∆u(k+ 1)
...

∆u(k+M −1)

 (1.4)

S =



S1 0 ... 0
S1 S2 0 ...
SM SM−1 · · · S1

SM+1 SM · · · S2
... ... ... ...
SP SP−1 · · · SP−M+1


(1.5)

In general:
Ŷ = SŶ + Ŷo. (1.6)

Model inaccuracy or disturbances can give rise to imprecise predictions, so usually,
a correction term called bias correction is added [3]. This correction is simply the error
between the real values of the outputs measured and the one calculated with the process
model (1.7). The term so obtained is add to the predicted output and allows to have a
corrected prediction (1.8) [36].

b(k+ i) = y(k)− ŷ(k), (1.7)

ỹ(k+ i) = ŷ(k+ i) + b(k+ i). (1.8)

The bias correction obtained can be incorporated in 1.6 as a P-dimensional vector.
The value of the correction will be held constant over the whole prediction horizon and
updated at each time step [3].

At each time step, control calculations are performed in order to minimize a cost
function that can be expressed as minimization of [3]:

1. the predicted errors over the prediction horizon,

2. the deviation over the control horizon of ∆U,
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3. the deviation of x(k+ j) from its desire steady state value over M.

Furthermore, assuming that a reference trajectory to the optimal set point is available, it
is possible to define a predicted error as:

Ê(k+ 1) = Yreferencetrajectory(k+ 1)− Ŷ(k+ 1). (1.9)

Where Ê(k+ 1) is a P-dimensional vector. Thus, considering the first two types of min-
imization and a quadratic programming objective function, the minimization problem is
expressed as

min
∆U(k)

J = Ê(k+ 1)TQÊ(k+ 1) + ∆U(k)TR∆U(k). (1.10)

Where Q and R are respectively a positive-definite and a positive semi-definite matrix
and are called weighting matrix. Q and R are tuning parameters and are used to give
more importance to the more important variables.

All the calculation reported so far are intended for a SISO system, but they can easily
be extended to a multiple input-multiple putput (MIMO) system using the superposition
principle. Hence, a system with g outputs and h inputs will yield gP-dimensional output
vectors and hM -dimensional input vectors.

A schematic block of the MPC procedure is reported in figure 1.3. The first step is to
measure the value of the output variables. If not all the measurements are available, it is
possible to use a state estimator or not to transmit them. Indeed, MPC can control the
system with a limited number of measured outputs. After that, the model predictions are
updated and the ill-conditioning is checked. In particular, ill-conditioning is a problem
that arises when excessive input movements are required to control the outputs indepen-
dently. These phenomena takes place when inputs have almost the same, but opposite
effect, on two or more outputs. Thus, a nearly singular process gain matrix is obtained. A
large condition number for the process gain matrix means that big moves in the manip-
ulated variable are made with little changes in the controller error [34]. Even though the
ill-conditioning is checked at the beginning of the controller design, it is not possible to
know if there will be some conditioning in a particular process configuration during the
operations. Nevertheless, some methods for removing it are present. The most common
are the singular value tresholding and the input move suppression [34].
In case of steady-state operations, the next step is to perform a local steady-state op-
timization to compute the optimal target. Thus, the optimal targets can change at any
moment due to disturbances or to manual operator changes. Therefore, this local opti-
mization uses a steady-state version of the dynamic model to re-compute the optimal
target. In case of transient operations, such as batch processes, this step is avoided.
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Fig. 1.3: Working procedure for MPC.

Successively, the control calculations are performed. Hence, a dynamic optimization prob-
lem is solved to determine the optimal path for the MV’s. According to the receding horizon
approach, once the optimal solution is found the first value of the manipulated variable is
sent to the plant.

Typically, the optimization problem includes inequality constraints, which are deter-
mined by physical, safety or production requirements. The bounds on the input variable
have, usually, to be fulfilled, mainly because of mechanical limitations. Therefore, these
bounds are set as hard constraints and can never be exceeded. On the other hand, the in-
troduction of constraints increases the complexity of the optimization that can sometimes
become infeasible. Thus, to give some more flexibility to the optimizer, the constraints
on the output variables are set as soft constraints. Therefore, these boundaries can be
exceeded for some iteration and the violation is typically minimized using a quadratic
penalty term in the optimization function [34]. Moreover, the imprecision introduced by
(soft) constraints violation is acceptable, since only the first term of the manipulated
variable is implemented.

1.2.2 Tuning Parameters
To ensure a proper performance of the controller, of great importance is an adequate
tuning. The parameters used for tuning the controller are M, P, ∆t, Q and R. It is not
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possible to know a priori how the parameters affect the solution, but in general [34]:

• ∆t: small ∆t defines a better performance and more accurate solution, but requires
then a bigger P to capture the dynamic of the process adequately. When the model
is unstable or affected by errors a small sampling time is necessary. Moreover, large
sampling time corresponds to more extensive computational time. It is, therefore,
necessary to find a trade-off between accuracy and speed.

• M : a small value of the control horizon yields a sluggish output response and a
conservative input profile. If M is increased the solution is more aggressive, but the
computational effort is greater.

• P: a large value of the prediction horizon implies a more aggressive response and a
larger computational bargain, but a more precise prediction.

• Q and R: the weights define the scaling of the problem and the importance of the
different variables.

1.3 History

MPC was introduced during 1970’ in the industry for controlling difficult multivariable
systems subjected to hard constraints. It was first born as linear controller and then
expanded to the nonlinear version. Nowadays the theory behind linear MPC is largely
developed and understood. The nonlinear version, on the other hand, propose still un-
solved issues such as the feasibility of the online optimization, stability and performance.
Besides, non-linear MPC requires the online solution of an optimization problem that in
most cases requires a non-negligible computational time.

1.3.1 LQG
Model Predictive Control technology was introduced for facing the necessity of control-
ling complex systems subjected to hard constraints on input and output variables. The
development of the idea behind MPC can be tracked in the work of Kalman in the 1960s
[27] with the introduction of LQG (Linear Quadratic Gaussian). In this formulation, the
process considered was a discrete-time, linear state-space model. A cost function needed
to be minimized and had the following form [34]

Φ = ξ(J) ; J =
∞∑

j=1
(‖xk+j‖2Q +‖uk+j‖2R) (1.11)
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Here the objective function penalized the input values and the deviation of the states
from the original value. Two matrices Q and R were used as weighting and tuning param-
eters. The solution of this problem involved two steps. First, the output measurement was
used to obtain an optimal state estimate and then an optimal input value was computed
through an optimal proportional state controller. LQG algorithm involved a theoretically
infinite prediction horizon which led to high stabilization properties as far as Q and R are
positive semidefinite and positive definite, respectively [31]. This controller did not result
in a big success in the chemical industry mainly because the constraints were not taken
into account and nonlinear models not considered [34].

1.3.2 IDCOM
It is well known that the economic operating point of a typical process unit often lies at
the intersection of constraints [18]. Thus, in order to try to keep the system closed to the
boundaries without violating them, different controllers were developed. After the first
development of LQG, a new structure for controlling the processes was introduced. In
particular, a model of the process was introduced and a dynamic optimization problem
solved at each time step. Furthermore, constraints were included directly in the model
formulation in order to avoid possible future violations. Moreover, new methods for esti-
mation of empirical models from test data were introduced, amplifying the capability of
controlling different types of equipment.

A former kind of MPC was introduced in 1976 when Richalet et al. presented a method
called Model Predictive Heuristic Control (MPHC) [25], which commercial software was
known as IDCOM. Its main features were the use of impulse model and a quadratic per-
formance objective over a finite horizon. Furthermore, a reference trajectory was set as a
guide for the future output behavior, and constraints were included in the formulation.
Moreover, the optimal manipulated variables profile was computed using a heuristic iter-
ative algorithm. With this method, it was possible to drive the output variables as close
as possible to the reference trajectory.
Additionally, it was pointed out by the same author that there is a hierarchy of control
in the plant. First of all, time and space scheduling of the production are considered,
after that, an optimization of the set points ensures that a certain goal is achieved. Only
successively dynamic multi-variable control and actual control of the equipment are im-
plemented. Thus, from this hierarchy is underlined how the optimization of the set points
can yield a much greater benefit than just improving the dynamic multi-variable control.
Therefore, it is possible to move the reference trajectory close to the constraints without
violating them, reaching the economic operating points.
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1.3.3 DMC
MPC was independently developed in the 1970’s from engineers at the Shell Oil and
the first application appeared in 1973 [34]. From a theoretical point of view, Cutler and
Ramaker presented at the National AIChE meeting in 1979 a multivariable unconstrained
control algorithm, which was called dynamic matrix control (DMC) [12]. Prett and Gillette
in 1980 described an application of DMC technology able to handle non-linearities and
constraints [18]. The main features of this algorithm were [34]

• the model of the plant was characterized by a linear step response procedure

• the objective with a quadratic performance was applied to a finite prediction horizon

• the future behavior of the outputs was determined following the reference trajectory

• the optimal input profiles were determined by solving a least-squared problem.

Using a step response model allowed to define the value of the outputs depending on the
value of the past manipulated variables. Defining si as step response coefficient, it was
possible to define the control law as [3]

yk+j =
N−1∑
i=1

si∆uk+j−i + sNuk+j−N (1.12)

In other words, it was possible to define the outputs as a linear combination of the inputs.
The matrix that relates I/O was called Dynamic Matrix and allowed the optimal vector
to be computed solving a least-squares problem. Moreover, the output was driven as close
as possible to the reference trajectory with a penalty term on the input. This forced the
manipulated variable to take little step and ensured robustness to model errors.
IDCOM and DMC are usually defined as first order MPC.

1.3.4 QDMC
The tow method described so far did not take into account inequality constraints. For
this reason, the DMC algorithm was modified into a quadratic programming in which
constraints appeared explicitly [13]. This method was referred as QDMC and in it, the
concepts of hard and soft constraints were introduced. QDMC and other algorithms able
to take systematically into account constraints are known as second generation MPC. The
incorporation of the constraints into the problem was possible formulating the problem
as a QP.
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Additionally, with the spreading of the MPC technology, certain problems had to be
solved. Thus, in the first and second version of MPC [34]

• soft constraints were not well posed giving each the same importance,

• the case in which infeasibility occurred was not developed,

• the only models used were step response models, preventing the possibility of using
more detailed models,

• the controller was not able to face the eventuality of lack of measured data,

• a single objective function was sometimes not enough for correctly describe the
performance requirements.

1.3.5 SMOC and IDCOM-M
Later, two different versions of MPC were introduced: IDCOM-M by Setpoint company
and SMOC by Shell Oil. The main features of the IDCOM-M comprehended the capacity
to find out ill-conditioned scenarios, multi-objective function and definition of hard and
soft constraints with priority [26]. The algorithm developed by Shell Oil engineers was
very similar to the modern MPC, in particular [3]:

• full state estimation was used for the output feedback,

• the model used was in the state space form,

• QP formulation was used for accounting input and output constraints,

• a distinction between output variables used in the objective function and used for
state estimation was introduced.

This controllers are referred as third generation MPC. There were also other similar con-
trollers in this generation and they were in general characterized by differentiation of
constraints that could be hard, soft and ranked, ability to recover from infeasible solu-
tions, and a wide range of process dynamics and controller specification [34].

1.3.6 Forth and Fifth Generation
From 1990 to 2000 a forth generation of MPC was present. In this years MPC knew a great
spreading and a high competition between the producing industries. The main leaders of
the market in this field were AspenTech and Honeywell. The principal improvements
introduced in this generation were [29]
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1. windows-based interface,

2. introduction of uncertainties and robust control,

3. different level of optimization to address different priority to the variables,

4. steady state optimization characterized by more flexibility.

From 2000 to nowadays a fifth generation of controller is present on the market. At
this stage, the research is mainly addressed to find adequate fast and reliable methods
for solving nonlinear optimization problems. Furthermore, another issue is the dealing of
uncertainties and the design of controllers in which robustness and performance are well
balanced. Future directions for MPC seems to be in the field of artificial intelligence, thus,
in the capability of the controllers to auto-tune and auto-regulate.
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Dynamic Optimization

The core of Model Predictive Control is the capacity to define an optimal input sequence
that minimizes a cost function. Typically, the objective is to minimize costs or maximize
production. Dynamic optimization operates at more levels, involving the cost function,
the dynamic of the process and the constraints. The dynamics of the process is expressed
through the use of mathematical models, which are usually defined in the form of state
space models.
Particularly, when the vector of the past states is available, together with the model of
the process, the future direction of the system can be predicted. Therefore, it is possible
to drive the process to the desired point.
In this chapter, a brief overview of the main categories and methods of optimization is
reported.

2.1 Continuity

To perform optimization calculations, a model of the process has to be available. It fre-
quently happens, that models derived from experimental data or first order model at
initial conditions have discontinuity points. On the other hand in both numerical or ana-
lytical optimization it is always preferable to work with continuous functions. Continuity
is defined as

f(x0) exists (2.1)

lim
x→x0

f(x) exists (2.2)

lim
x→x0

f(x) = f(x0) (2.3)

A discontinuity in a function may or may not be a problem during the optimization
procedure [41]. For instance, if a minimum occurs far from the discontinuity, this does
not affect the solution. Also having cusp point may not be important, but methods can,
in that case, fail using derivative [41]. Objective functions are often made up of discrete
values and not continuous. Therefore, it is usually possible to interpolate the discrete
values in order to obtain a continuous function.
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2.2 Problem Formulation

The optimization problem can be stated as follow

min
u
J = f(x) (2.4)

s.t. gi(x)≤ 0, i= 1, ..,m (2.5)

hi = 0, i= 1, .., l (2.6)

li ≥ xi(x)≥ ui, i= 1, ..,n. (2.7)

Where x is a vector of n manipulated variables, J is the objective function, g represents
the inequality and h the equality path constraints. The problem is said to be unbounded
if the lower and upper bound are∞ and −∞. If one or more of the g and h functions are
nonlinear, then the problem is also nonlinear. When x is not bounded and the functions
h are not subjected to constraints, the problem is said to be unconstrained. In linearly
constrained problems the cost function is nonlinear and the constraints are linear.
The same formulation can also used in case of integral costs, in that case
J = f(x) +

∫ tf
0 L(x,u)dt.

2.2.1 Convexity Requirement
The existence of optimal points is not always guaranteed as well as the identification of
global and not local optima. Nevertheless, it is present a condition that, when satisfied,
always ensure a global optimum. This requirement is that the space of the equations is
convex. A set is said to be convex when a straight segment joining two points in the
convex set is also in the set. Comes naturally that all the linear combinations of points
inside the set are also entirely in the convex set [41]. In the same way, it is possible to
define a convex function f , as

f [γx1 + (1−γ)x2]≤ γf(x1) + (1−γ)f(x2), (2.8)

where γ is a scalar value between 0≤ γ ≤ 1 and x1 and x2 are two point inside the con-
vex set. Similarly, it is possible to define a concave function as the negative of a convex
function.
When both f(x) and the inequality constraints are convex functions, it is possible to de-
fine a convex programming problem. The peculiarity of this formulation is that each local
minimum of f(x) are also the global minimum. This property introduces an important
grade of simplification in optimization problems. Though, when the constraints are non-
linear, the assumption of convexity does not hold anymore. Thus, it is possible to check
for convexity, but this operation is not always easy to perform. Nonetheless, there are
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solutions for nonlinear programming problems, but it is harder to guarantee the absence
of local optima.
Convex problems are important because [41]:

• when convexity is assumed, many significant mathematical results have been derived
in the field of mathematical programming;

• often results obtained under assumptions of convexity can give insight into the
properties of more general problems. Sometimes, such results may even be carried
over to non-convex problems, but in a weaker form.

Particularly, certain requirements have to be satisfied in order to ensure convexity. There-
fore, a set of point x is convex if

xTH(x)x≤ 1. (2.9)

Where H is a real symmetric positive semi-definite Hessian matrix. From the study of
the Hessian matrix, it is possible to understand the form of the function. For example,
f(x) is concave if H is negative semidefinite and strictly concave only when the Hessian
is negative-definite. The condition of strict convexity is H(x) to be positive definite [41].

Of particular importance is when the function is quadratic or approximated by a
quadratic function. Thus, for quadratic objective functions, the contours always form a
convex region.
A requirement for a successful optimum technique is the ability to move rapidly in a local
region along narrow valleys. A valley lies in the direction of the eigenvector associated
with a small eigenvalue of the Hessian matrix of the objective function [41].

2.3 Linear Programming

When the objective function and the equality constraints are linear, it is possible to talk
about linear optimization. An example of how a linear optimization problem looks like is
reported in figure 2.1.

It is possible to see that the feasible region is the one that lies inside the boundaries.
Thus, the solution of the optimization problem will be in that space and particularly it will
be on a vertex. The main property of linear programming is that the optimal points are
always situated on a vertex independently from the number of variables [41]. Moreover,
this property is at the base of the simplex method of resolution.



18 2. Dynamic Optimization

Fig. 2.1: Graphical example of a linear programming.

In matrix form a linear optimization problem can be written as

min f = cx, (2.10)

s.t. Ax = b, (2.11)

l≤ x≤ u. (2.12)

Where A is a matrix containing constraint coefficients, b,c, l,u are vectors. Equations
2.11 are a set of linear combinations of the states and is possible to treat them using the
common algebra. Therefore, the desired situation for optimization is when the number of
variables is greater than the number of equations, yielding a potentially infinite number
of solutions. The procedure of linear programming is then first to check whether solutions
exist and then finding the one minimizing f .

In 2.11 all the equations are equality constraints, but in real problems also inequality
constraints are present. One advantage of linear ptogramming is that it is easily possible
to transform inequality constraints in equality constraints by adding some terms called
slack variables [41]. For example adding y≥ 0 to 2.13 it becomes

Ax≤ b (2.13)

Ax+y = b (2.14)

The commonly used algorithm for solving LP is the simplex method. A simplex is
an equilateral triangle in two dimensions, a regular tetrahedron in three and so on for
higher dimensionality. This algorithm evaluates f(x) at each vertex of the simplex. Once
the minimum value is found another step is performed. Thus, the new search direction is
opposite to the current vertex passing through the centroid of the simplex. Usually, the
step size is fixed and then decreased when the solution is approached.
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The main advantage of LP is that the feasible region is a convex polytope. A convex
polytope can be defined as a set of convex point in the space. As already stated in section
§ 2.2.1 the characteristic of convexity ensures the presence of a global optimum. Comes
naturally that in this case, the value of the initial guess does not affect the existence and
the quality of the solution.

2.4 Direct Methods

When the set of equations reported in § 2.2 is nonlinear, a nonlinear programming has to
be solved. There are two main approaches to do that:

• direct optimization methods, through which the optimization is computed directly;

• indirect methods, where the original problem is reformulated.

In direct methods the first thing performed is the discretization of the inputs. It is
necessary to define a finite amount of parameters for the input in order to apply a numer-
ical method. The peculiarity of the direct methodology is that the solution is performed
directly on the original problem without reformulating it. Based on how the states are
calculated, direct methods are divided in simultaneous and sequential.

2.4.1 Sequential Approach
In this method, the optimization is performed only by discretizing the input variables.
Thus, at each time step, the differential equations are integrated using an integration
algorithm and the cost function minimized. The optimal sequence of input is calculated
using an NLP solver. This method is also named feasible-path method since time integra-
tion is used and the states computed are always the actual ones without approximation.
The basic procedure for applying it is the following [7]:

1. the input, u, is parametrized using a finite number of decision variables,

2. an initial guess for u is chosen

3. integration to the final time is performed and the objective function computed. At
each time step a set of input moves is defined to minimize the cost while satisfying
equality and inequality constraints,

4. the procedure is repeated until convergence to a minimum value.
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Sequential method usually yields precise solutions, but it can be slow particularly when
dealing with path constraints [7]. The finer the discretization is, the more computational
time is required, so a trade-off between performance and accuracy has to be found.

2.4.2 Simultaneous Approach
The most expensive part of the sequential approach is the accurate integration of the dif-
ferential equations. In the simultaneous approach, this problem is skipped by discretizing
the entire problem with respect to time. In this way, a large system of algebraic equa-
tions is obtained. Generally, the differential equations are satisfied only at the solution of
the optimization problem and for this reason the method is often called infeasible path
approach. The main steps used are the following [7]:

1. parametrization of both the inputs and the states using a finite number of decision
variables (typically piecewise polynomials);

2. discretization of the differential equations. Therefore, the dynamic optimization
problem is changed into a standard nonlinear program (NLP);

3. an initial guess for the input is chosen;

4. the procedure is iteratively repeated optimizing the problem using a NLP solver.

Solving simultaneous problems requires efficient numerical methods. Although this method
is faster with respect to sequential method, it is less precise because of the approximation
introduced with the integration. Simultaneous technique allows the efficient solution of
large-scale optimization problems, anyway a balance between approximation and opti-
mization must be considered carefully [7].

2.4.3 Necessary Conditions of Optimality
When solving nonlinear optimization problems, some conditions have always to be satisfied
to ensure optimality.

In case of unconstrained systems, the necessary and sufficient conditions for guaran-
teeing that the point xopt is a minimum for f(x) are

1. f has zero gradient at xopt

∇f(xopt) = 0 (2.15)

2. the Hessian of f at the correspondent input point uopt is negative semi-definite.
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When inequality constraints are present the so called Karush-Kuhn-Tucker (KKT)
conditions have to be satisfied for optimality. In particular when minimizing a function
f(x) subjected to the inequality constraints g(x) and equality h(x) it is possible to define
the Lagrangian as [35]

L(x,λ,µ) = f(x) +λTg(x) +µTh(x). (2.16)

Where λ and µ are scalar vectors called Lagrangian multipliers. In this case a point xopt

is a minimum if and only if exist a pair of λ* and µ* for which

• L (xopt,λ*,µ*) = 0,

• g(xopt) ≤ 0,

• h(xopt) = 0,

• λ* ≥ 0,

• λ* g(xopt) = 0.

2.5 Indirect Methods

Another approach to solving optimization problems is to use indirect methods. The pe-
culiarity of this approach is that the problem solved is not the same one stated in eq 2.4 -
2.7. Hence, it is reformulated in a new way that already takes into account the optimiza-
tion problem. For this reason, this approach is usually referred as "first optimize and then
discretize".

Considering the system stated below the aim is to find a set of input variables ui that
minimizes a cost function. For a generic free discrete problem [33]

xi+1 = fi(xi,ui), i= 0,1, ...,N −1, x(0) = x0 (2.17)

the cost function is

J = φ(xN ) +
N−1∑
i=0

Li(xi,ui). (2.18)

Here N is given and determines the number of discretization intervals, J, φ and L are
scalars. The problem is to minimize 2.18 with the set of equality constraints 2.17. In
this formulation at each set of equality constraint a vector λ of Lagrange multipliers (or
costates or adjoint states) is associated. The vector of λi+1 is coupled with xi+1 = fi(xi,ui).
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The necessary Euler-Lagrange conditions of optimality are then introduced [33].

xi+1 = fi(xi,ui) state equations (2.19)

λT
i = ∂

∂x
Li(xi,ui) +λT

i
∂

∂x
fi(xi,ui) costate equations (2.20)

0T = ∂

∂u
Li(x,u) +λT

i+1
∂

∂u
fi(xi,ui) stationary conditions (2.21)

subjected to the boundary conditions

x(0) = x0 λT
N = ∂

∂x
φ(xN ). (2.22)

The Hamiltonian function, which is a scalar function, is then defined as

Hi(xi,ui,λi+1) = Li(xi,ui) +λT
i+1fi(xi,ui) (2.23)

Writing everything in a more compact way:

xT
i+1 = ∂

∂λ
Hi; λT

i = ∂

∂x
Hi; 0T = ∂

∂u
Hi. (2.24)

Subjected to the boundary condition of 2.22. It is possible to notice that the state equa-
tions act forward in time, the costate equations backward and the stationary conditions
link the two [33]. The solution of the problem allows finding the value of ui, xi, λi. This
resolution is valid for discrete systems, but it is possible to extend it also to the continuous
case.

2.5.1 LQR
In the same contest it is possible to introduce the linear quadratic regulator. LQR is defined
when the dynamic of the system is described by a set of linear differential equations and
the cost function is described by a quadratic function. For a discrete system

xi+1 = Axi +Bui, J = 1
2x

T
NPxN + 1

2

N−1∑
i=0

(xT
i Qxi +uT

i Rui) (2.25)

It is possible in this case to define a the necessary condition for optimality which is
expressed as [33]

ui =−kixi (2.26)

ki = [R+BTSi+1B]−1BTSi+1A (2.27)

Si = ATSi+ 1A−ATSi+ 1B(BTSi+ 1B+R)−1BSi+ 1A+Q, SN = P (2.28)

where k is a gain given by the equation 2.27 and A, B, Q, R are known real coefficient
matrices. S is a matrix found by the backwards recursion 2.28 which is also known as
Riccati equation. This result can be extended also to the continuous case.
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2.5.2 Optimization with Terminal Constraints
It is not uncommon that terminal constraints are present on all or some of the equality
constraints. In general for a state equation ψ

ψN (xN ) = 0 discrete time (2.29)

ψT (xT ) = 0 continuous time (2.30)

Consider now a discrete time system described by the function 2.31 and subjected to 2.32,
with a single terminal constraint 2.33

xi+1 = fi(xi,ui), i= 0,1, ..,N, x(0) = x0 (2.31)

J = φ(xN ) +
N−1∑
i=0

Li(xi,ui), (2.32)

xN = x̄N (2.33)

where x̄N is a scalar. In this case the aim of the optimization is that to minimize the
objective function while bringing the system from x0 to xN . N represents the length
of the discretization vector and at each of the equality constraints a vector of Lagrange
multiplier λi+1 is associated. In the same way a vector of Lagrange multiplier is associated
also to the terminal constraints equations. This scalar vector is denoted with ν. As before
the Hamiltonian vector is defined as

Hi(xi,ui,λi+1) = Li(xi,ui) +λT
i+1fi(xi,ui) (2.34)

The Euler-Lagrange necessary condition are then defined as [33]

xi+1 = fi(xi,ui) state equations (2.35)

λT
i = ∂

∂xi
Hi costate equations (2.36)

0T = ∂

∂u
Hi stationary conditions (2.37)

x(0) = x0, x(N) = xN boundary conditions (2.38)

λT
N = νT + ∂

∂xN
φ equality constraint onν (2.39)

2.5.3 Pontryagins maximum principle
In PMPmethod the problem 2.31 - 2.32 is reformulated and solved in order to minimize the
Hamiltonian function H(t). The aim of the method is that to find a sequence of control
moves ui that takes the system from the initial to the final state through a path that
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minimizes the cost index J . Considering a continue problem, it is possible to reformulate
the equations as [33]

min
u(t)

= µT
t Lt(xt,ut) +λT

t ft(xt,ut) (2.40)

s.t. ẋ= ft(xt,ut) x(0) = x0 (2.41)

λ̇T
t =−∂H

∂xt
(2.42)

λ̇T
tf

=−
∂φtf

∂x

∣∣∣∣∣
tf

+νT ∂ψ

∂x

∣∣∣∣∣
tf

(2.43)

µTLt = 0, νTψt = 0. (2.44)

Here µ is the vector of Lagrangian multiplier for the path constraints and ν the one
for the terminal constraints. The two terms in 2.44 are different than zero when the
constraints are active and equal to zero otherwise. The necessary condition of optimality
in the PMP principles requires the minimization of the Hamiltonian [38], therefore

∂Ht

∂ut
= 0. (2.45)

Which implies
∂Ht

∂ut
= λT ∂ft

∂ut
+µT ∂ψt

∂ut
. (2.46)

Equation 2.46 is the necessary condition of optimality for indirect methods. One of the
advantage of PMP is that the complexity increases with the parametrization. On the
other hand it is often ill-conditioned [38].

With the use of indirect methods, it is possible to solve analytically simple problems.
More complex and constrained problems require a higher computational bargain and are
usually resolved using shooting methods. The drawback of this approach is that the inte-
gration of the co-state equations forward in time may introduce instabilities that prevent
fast convergence if no good initial guess is available [19]. Nowadays no fast-convergence
solution strategy exists for constrained problem besides shooting method. Recently an al-
ternative approach has been proposed by Aydin et al. 2017 [19]. The idea is to parametrize
the inputs and integrate the state equations forward in time and co-stated backward in
time. Then, a gradient-based algorithm is used for optimization, for which good initial
guess is useful but not necessary for convergence. This method was tested on batch sys-
tems giving promising results.

Another interesting topic in optimization is the one with free ending time. In this way
the optimizer gains flexibility and is more likely to find the optimal solution satisfying
path and mainly terminal constraints.
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A big problem that affects the world of model identification is that of uncertainties.
Always when dealing with situations that describe reality some variables can not be pre-
dicted precisely and for this reason it is necessary to deal with distribution and when
possible density functions [8]. Stochastic dynamic programming and robust optimization
are the two main branches of research that investigates uncertainties. Lots results, espe-
cially in the last years, have been achieved in this fields, but lots have not been investigated
and solved yet.
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3

MPC Applied to Batch and
Semibatch Processes

Chemical processes can be classified in continuous, batch and semibatch.

1. Continuous processes are characterized by a constant flow of material that enters
and exits the system.

2. In Batch processes, all the reagents are charged in the reactor at the beginning.
The system is then run and only at the end of the operations the products are taken
out.

3. Semibatch processes have a configuration in between continuous and batch sys-
tems. It is present a single material stream that enters or exits the equipment during
the operations.

Additionally, chemical processes can be run in two different ways: steady-state or
dynamically. The first condition shows when there is no energy or mass accumulation
in the system. Steady-state operations are typical of productions and of operations which
are easy to control. Dynamic condition presents when the process variables change with
respect to time. This situation is typical for batch processes but also presents in the start-
up and shut-down phase of continuous plants.

Batch processes are mainly used to produce small amounts of products, usually with
high commercial value. Batch and semibatch reactors play a fundamental role in the
production of fine chemicals, pharmaceutical, bioprocess and polymer productions [32].
Batch operations are particularly appreciated for their flexibility. It is, in fact, possible
to use the same batch equipment to treat various substances. By adjusting the operating
condition, a wide range of different processes can be performed. Moreover, safety is an
easier issue to handle, since the quantity of dangerous materials treated is usually lower
than the one handled in continuous operations. Additionally, temperature and pressure
are easier to be controlled, the equipments can be frequently cleaned and it is possible to
treat all gas, liquid and solid phases.

It is possible to define three main steps in batch operations [38]. First of all the process
is designed and the operating conditions specified to achieve a certain product purity and
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quantity. The design phase may differ every time. It changes based on the components
considered and on the result desired.
Secondly, the operations need to be optimized. The batch campaigns have to be care-
fully scheduled in order to maximize productivity. Additionally, the dead-time required
to charge and discharge the equipment is lowered and the duration of the batch operation
optimized. Finally, the transient nature of batch operations has to be taken into account.
An adequate system of control needs to be designed to ensure productivity and safety
requirements.

3.1 Batch and Semibatch Reactors

Fig. 3.1: Schematic representation of a batch reactor.

Figure 3.1 shows the structure of a batch reactor. It is composed of a tank and an im-
peller. No input or output flows are present and perfect mixing is assumed. The reactants
are charged into the reactor at the beginning of the operation and discarded only at the
end of it. A cooling/heating system is always present and is typically used as optimization
variable.

The batch reactor balance in terms of moles for the generic species i is reported in
equation 3.2.

ACCUMULATION = INPUT −OUTOUTPUT +PRODUCTION −CONSUME

(3.1)
dNi

dt
= nin−nout + riV (3.2)

Since in batch operations there is no mass entering and leaving the system and taking into
account all the reactions (NR) in which the species j take part, equation 3.3 is obtained.
The same balance can be written in terms of concentrations assuming constant volume
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(equation 3.4).

dNi

dt
= V

NR∑
j

νjRj , (3.3)

dci
dt

= ri. (3.4)

Semibatch reactors differ from batch because some material enters or leaves the equip-
ment during the operations. A schematic figure of a semibatch reactor is reported in fig
3.2

Fig. 3.2: Semibatch reactors with input feed (1) and output flow (2).

The mass balance for a fed-batch reactor (figure 3.2 (1)) can be derived from 3.2.

dNi

dt
= ninlet + riV (3.5)

Since Ni = ciV and ninlet = ci,inletV̇ and assuming that the concentration of species i in
the inlet is constant, then

dNi

dt
= d(ciV )

dt
= V

dci
dt

+ ci
dV

dt
= V

dci
dt

+ ciV̇ , (3.6)

dci
dt

= V̇

V
(ci,inlet− ci) + ri. (3.7)

Batch reactors are usually non-isothermal. Thus it is appropriate to consider also the
energy balance

ρcP
dT

dt
=

NR∑
j

(−∆HR)jrj−
˙Q(t)
V

. (3.8)



30 3. MPC Applied to Batch and Semibatch Processes

Semibatch reactors present two main manipulated variables. The first one is the quan-
tity of reactants feed or taken out from the reactor. For example, considering the case of a
sequential reactions (equation 3.9) with D as by-product, the way in which the reactants
are dosed during the operations can determine the quantity of sub-product produced. Fur-
thermore, an appropriate dosing allows to control the heat generated during the reaction
and the volume level.

A+B→ C, C→D. (3.9)

The other variable is temperature. Through an appropriate regulation of the tempera-
ture, it is possible to adjust the reaction kinetics. Besides temperature control is very
important to match safety requirements. Especially in case of exothermic reactions, the
cooling system acts to prevent runaway reactions that could lead to dangerous accidents
or equipment breakages. In case of gas phase reactions pressure is an important control
parameter especially to guarantee safety conditions.

3.2 Batch Distillation Columns

Distillation is the most common way to purify, separate or removing wastes from mix-
tures in the chemical industry. There are two main kinds of distillations: continuous and
batch. In continuous distillation columns, there is a constant feed, usually placed in the
middle of the column. Additionally, a lighter product is constantly retrieved from the top
(distillate) and a heavier one from the bottom (residue).
Batch distillation is mainly used for fine chemicals, especially in pharmaceutical industry
and biological applications. In batch distillation columns (fig 3.3) the mixture to separate
is charged at the beginning in the reboiler. The operation is then started heating the
blend. The lighter component is first evaporated and continuously accumulated on the
top, while the heavier elements are concentrated at the bottom. Since the amount and
concentration of distillate and residue changes over time, the process is unsteady-state.
Batch distillation is preferred when small amounts of mixtures are treated or when there
are big changes in the feed composition. Furthermore, it requires a lower capital cost [9].
Batch distillation is also the standard choice when there are seasonal operations or differ-
ent production campaigns. Thus it is possible to treat a diverse range of components by
adjusting only the operating conditions.

Commonly batch distillation columns are operated in three different ways. It is possi-
ble to keep the reflux ratio constant, yielding a variable product composition. Moreover,
it is viable to vary the reflux ratio in order to maintain a precise composition for the
desired component. The other possibility is to work with optimal reflux ratio. This case
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is in between the first two and allows to obtain the most profitable operation for the
distillation [17].

Fig. 3.3: Schematic representation of a batch distillation column.

A rigorous mathematical model for batch distillation was proposed in 1968’ by Diste-
fano [16]. It was pointed out that is much more difficult to solve the system of equations
for a batch distillation column than for continuous one. Furthermore, it is pretty com-
mon to have big changes in the operating conditions and in the dynamic of the column [17].

The model proposed by Distefano takes into account the dynamic of each plate (figure
3.4). Moreover, certain assumptions have to be made [16]:

• negligible vapour hold up;

Fig. 3.4: Schematic representation of a batch distillation tray.
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• adiabatic operations;

• theoretical plates;

• constant molar hold up.

For the generic species i in a mixture, it is possible to obtain the equations 3.10-3.16 [16].
Here Hj is the molar hold up in the plate, N is the number of plates in the column, δtIi

is the enthalpy change of the liquid stream leaving plate j and δtJj is the enthalpy change
of the vapour stream leaving plate j.

dx
(i)
D

dt
= V1
D

(y(i)
1 −x

(i)
D ), condenser dynamic;

(3.10)

x
(i)
j

dt
= Vj

Hj
[Vj+1y

(i)
j+1 +Lj−1x

(i)
j−1−Viy

(i)
i −Ljx

(i)
j ], j = 1,2, ..,N platedynamic;

(3.11)

dx
(i)
B

dt
= 1
B

[LN (x(i)
N −x

(i)
B )−VB(y(i)

B −x
(i)
B )], reboiler dynamic;

(3.12)

dD

dt
= V1

(R+ 1) , distillate flow rate;

(3.13)

dB

dt
= VN+1 +LN−1−VN −VB, bottomflow rate;

(3.14)

QD = V (J1− ID)−HDδtID, condenser duty;
(3.15)

QB = VB(JB− IB)−LN (IN − IB) +BδtIB reboiler duty.

(3.16)

Batch distillation presents some drawbacks. First of all, a high amount of energy is required
for operations, resulting in high costs. Secondly, high temperatures are applied to the
feed vessel, that combined with the long residence time can lead to a degradation of
the components [43]. To make batch distillation operations profitable a control system is
required. Even though this is not a trivial task, in fact, batch columns are subjected to
[39]
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• high non-linearity and strong control loop interactions,

• time delays in the measurements (especially composition),

• noise and disturbances.

3.3 LMPC and NMPC - Pro and Cons

As explained in the previews sections batch processes are characterized by highly nonlin-
ear dynamics. Thus, the application of conventional controller systems such as PI or PID
could be insufficient. Applying MPC permits to control the process and in the meantime
to ensure the optimality of the operations. The most commonly used MPC are the linear
and the nonlinear one. Nevertheless, both present some drawbacks.

Linear model predictive control uses linear models to predict the output moves and
optimize the inputs (§1.2). Linear models have the advantage of being simple to formu-
late and to handle. Frequently these models are linearizations of more complex nonlinear
models. Furthermore, the optimization problem requires the solution of linear optimal
control problems. Then, the solution space is convex; therefore, the identification of a
global solution is ensured and the time needed for the calculations is reduced as opposed
to a non-linear problem. On the other hand, some drawbacks are present. As a matter of
fact the accuracy yield by a linear model is frequently low. This leads to poor solution
performance, especially when complex processes are considered [37].
For continuous complex nonlinear systems, it is possible to perform a model linearization
and use LMPC. Thus the operating conditions do not change much with respect to the lin-
earization point and the approximation introduced with linearization can be acceptable.
Furthermore, since continuous processes have steady states, the process can be pushed to
that steady-state only by some time delay. On the other hand, when dealing with intrin-
sic unsteady-state processes, as batch operations, linear MPC is not able to adequately
control the operations. Nevertheless, due to its relative simplicity, MPC is widely used in
the industry, and many of companies implement it in control systems [34].

NMPC, as described in section §1.2, employs nonlinear models. This kind of models
are harder to derive but they ensure a higher amount of information. The main drawback
is that to optimize the inputs an NLP problem needs to be solved on-line at each time
step. Hence, the equations are nonlinear and the problem results to be generally noncon-
vex [23]. Therefore, the existence of a unique optimal point is not ensured. Moreover, if
a feasible solution is identified, there is no guarantee that it is a global minimum and
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not a local one [23]. Thus the solution of the NLP at each time step is the limiting stage
of NMPC. Frequently the time required for the computations and the sampling time is
comparable, introducing a feedback delay in the control of the process. This implies that
the input signals are implemented in a process that is already some step ahead.
Due to the comparable advantages of both linear and nonlinear MPC’s, it is suggested to
use adaptive MPC for the control of semi-batch processes in this theses.

3.4 Adaptive Model Predictive Control

In order to avoid the problems related to the solutions of NLP, present in NMPC, AMPC
was introduced. The idea behind that is to perform, throughout the computed process
trajectory, linearization using Taylor expansion at the current nominal operating condi-
tions and then to discretize the resulting linear model [40]. If the objective function is
quadratic, resulting structure is a LMPC [34]. Thus, the problem can be then solved by
using simple quadratic programming (QP) algorithms. Additionally, the accuracy of the
model obtained can be increased by linearizing the model equations several times along
the computed system trajectory [44]. This procedure allows maintaining the information
of the nonlinear model since its behavior is tracked. At the same time the convexity of
the problem is guaranteed due to linearized system equations and constraints. For this
reason the solution found is the global one and the calculation are performed in a fast way.

The linearization procedure can be summarized as follow. A generic function f(x)
(3.17) for the states is approximated by a Taylor series (3.18) around a steady-state
operating point xS and input uS .

ẋ= dx

dt
= f(x,u) (3.17)

ẋ= f(xS ,uS) + ∂f

∂x

∣∣∣∣∣
xS ,uS

(x−xS) + ∂f

∂u

∣∣∣∣∣
xS ,uS

(u−uS) + 1
2
∂2f

∂x2

∣∣∣∣∣
xS ,uS

(x−xS)2+

∂2f

∂x∂u

∣∣∣∣∣
xS ,uS

(x−xS)(u−uS)1
2
∂2f

∂u2

∣∣∣∣∣
xS ,uS

(u−uS)2 +higher order terms

(3.18)

At steady-state f(xS ,uS) = 0 and neglecting the higher order terms it becomes
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d(x−xS)
dt

≈ ∂f

∂x

∣∣∣∣∣
xS ,uS

(x−xS) + ∂f

∂u

∣∣∣∣∣
xS ,uS

(u−uS). (3.19)

Defining x̂= x−xS

dx̂

dt
≈ ∂f

∂x

∣∣∣∣∣
xS ,uS

x̂+ ∂f

∂u

∣∣∣∣∣
xS ,uS

û. (3.20)

In state space form

dx̂

dt
≈Ax̂+Bû (3.21)

The same procedure is performed differentiating output equations with respect to the
inputs and the states. This yields

y = g(x,u), (3.22)

g(x,u)≈ g(xS ,uS) + ∂g

∂x

∣∣∣∣∣
xS ,uS

(x−xS) + ∂g

∂u

∣∣∣∣∣
xS ,uS

(u−uS), (3.23)

(y−yS)≈C x̂+D û. (3.24)

In general the linearization procedure results in equations 3.25 and 3.26. Here ˆ̇x and
ŷ represent the linearized state and output equations; x̂= x−xS and û= u−uS , with xS

and uS values of the state and the input around the steady-state operating point.

ˆ̇x= A x̂+B û, (3.25)

ŷ = C x̂+D û. (3.26)

It is possible to graphically represent the successive linearization as in figure 3.5. At
each time step, the model is linearized, and the nonlinear behavior is tracked. It comes
naturally that the smaller ∆t is, the more the linearization is precise.

During the years lots of attention has been posed on linear MPC, leading to many
implementations in the industry. Lately, many studies have also been carried out to better
understand NMPC and solve the main issues such as feasibility, stability and robustness.
As a matter of fact, few studies and application of AMPC have been exploited so far
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Fig. 3.5: Comparison between nonlinear, linearized and successively linearized model.

in the chemical industry. In particular for what concerns batch processes. Thus, just a
few studies on AMPC applied on batch reactor can be found in the literature (such as [24]).

To overcome speed and feasibility problems of NMPC and solution accuracy problems
of LMPC, in this work AMPC was used. In particular, in the next chapter, a comparison
between different controller performances is made on a batch reactor and on a batch
distillation column.



4

Application of AMPC to a
Semibatch Reactor and to a Batch

Distillation Column

In section §3.3 the advantages and disadvantages of linear and nonlinear model predictive
control were discussed. In order to deal with highly nonlinear systems, adaptive model
predictive control was proposed as control technique. In this chapter, AMPC is applied
to two examples and the performances compared to the one obtainable using LMPC and
NMPC. The first application is a semibatch reactor and the second one a batch binary
distillation column. Additionally, some parametric uncertainty realizations are considered
to test the behavior of AMPC in the presence of process mismatches.

4.1 Non-isothermal Semibatch Reactor

Batch and semibatch reactors play a fundamental role in fine chemicals, pharmaceutical,
bioprocess and polymer productions [32]. In particular the use of semibatch reactors im-
proves the selectivity of the reactions and ensures a better temperature control. In the last
years these operations have gained popularity due to the strict environmental regulations
and industrial competitiveness [19]. In order to match production and economic goals,
MPC techniques seem the most appealing way to control the processes. In the following
sections MPC methods are applied on a semibatch reactor (example taken from [7]).

Figure 4.2 shows the system studied. Particularly, a non-isothermal fed-batch reactor
is considered, where the temperature is controlled through a cooling jacket. Inside a
consecutive reaction in the form of equation 4.1 takes place.

A+B
k1−→ C

k2−→D (4.1)
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Fig. 4.1: Non-isothermal semibatch reactor with feed of species B and temperature control.

Here the desired product is C and D is a side product. There are two manipulated
variables: the temperature and the feed flow rate of reactant B. The objective is to max-
imize the final production of C. The process presents constraints on the two inputs T (t)
and u(t) and on the outputs. Particularly, the volume of the reactor cannot exceed 1.1 l
to avoid overflows. Furthermore, the heat produced by the reaction should not be greater
than qmax, to fulfil safety requirements.
The control problem is stated in 4.2 - 4.11. In table 4.1 the values of model parameters,
operating bounds and initial conditions are reported.

Costfunction : max
u(t),T (t)

J = cCV (tf ) (4.2)

State equations : ċA =−k1cAcB + u

V
cA; cA(0) = cA0; (4.3)

ċB =−k1cAcB + u

V
(cB,in− cB); cB(0) = cB0 (4.4)

ċC = k1cAcB + u

V
cA; cC(0) = cC0; (4.5)

V̇ = u; V (0) = V0; (4.6)

k1 = k10e
−E1
RT ; k2 = k20e

−E2
RT ; (4.7)

Pathconstraints : Tmin ≤ T ≤ Tmax; (4.8)

umin ≤ u≤ umax; (4.9)

Output constraints : (−∆H1)k1cA(t)cB(t)V (t) + (−∆H2)k2cC(t)V (t)≤ qrx,max; (4.10)

V (t)≤ Vmax (4.11)

If the manipulated variables are fixed as T = 308K and u = 0.5 l/h, and the process
is run at open loop, the results in figure 4.2 are obtained. Even though a high amount of



4.1. Non-isothermal Semibatch Reactor 39

Tab. 4.1: Values of model parameters, constraints and initial conditions.

V ariable Value Unit of Measurement
k1o 4 l/mol h
k2o 800 l/h
E1 6 ×103 J/mol
E2 20 ×103 J/mol
R 8.31 J/mol K
∆H1 −3 ×104 J/mol
∆H2 −104 J/mol
umin 0 l/h
umax 1 l/h
Vmax 1.1 l
Tmin 20 ◦C
Tmax 50 ◦C
qrx,max 1.5 ×105 J/h
cAom 10 mol/l
cBo 1.1685 mol/l
cCo 0 mol/l
Vo 1 l
cB,in 20 mol/l
tf 0.5 h

species C is produced, the constraints on the volume and the maximum heat of reaction
are violated. It is then clear that a control system is required to regulate the process.

4.1.1 Controller Tuning
In order to apply MPC to the system, some assumptions are made. First of all, full
feedback information is assumed. Thus, all the signals out from the process are collected
and send back to the controller (figure 4.2). In case of slow measurements (e.g. composition
or temperature), it is not possible to have real-time values. In this case, a state-space
estimator, such as a Kalman filter, should be added to predict the value of the missing
measurements [21].

In section §1.2.2 the importance of the sampling time ∆t as tuning parameter was
discussed. Small sampling times ensure a better tracking of the nonlinear system. Mainly,
it permits to have more accurate solutions and allows to deal with model errors. On the
other hand, small sampling time result in high computational bargain. Equation 4.12
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Fig. 4.2: Profiles of heat of reaction, volume and mount of C with respect to time at open
loop with constant value of T = 308 K and u = 0.5 l/h.

indicates the length of the time step used.

∆t= 0.001h= 3.6 s (4.12)

predictionhorizon= 500 (4.13)

control horizion= 20 (4.14)

In dynamic optimization problems, there are two kinds of prediction and control hori-
zons: moving and shrinking. In moving horizon the time/step length considered is always
the same and is shifted ahead of ∆t at each time step. On the contrary, in shrinking
horizon, the time length is kept fixed at the final time and shrunk of ∆t at each time step
(figure 4.3).

As a consequence of fixed final time, shrinking horizon is usually applied to batch
operations. In this problem, the constraints on the outputs are path constraints and have
to be satisfied at each time step. Therefore, computing prediction and control moves until
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Fig. 4.3: Comparison between moving and shrinking horizons.

the final time may not be computationally favorable. Thus, a moving horizon approach
may turn out to be sufficient to predict and optimize the dynamic behavior adequately.
Specifically, it was chosen to predict the moves until the final time but to optimize them
only for a time length equivalent to 1.2 minutes.

Fig. 4.4: Schematic of the control system. All the outputs from the process are measured and
send back to the controller.
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4.1.2 LMPC
To perform this simulation Simulink MPC toolbox was used. The controller model was
linearized at the initial conditions. Figure 4.5 shows the variable profiles obtained from
the simulation. All the figures with output profiles are reported in Appendix A.1.
It is possible to notice that at the beginning the temperature is kept at the maximum
value to push the desired reaction. After some time T is lowered to inhibit the production
of the side product. In the same time, the feed flow rate gradually decreases to satisfy
the volume and heat of reaction constraints. Thus, the constraints Vmax and qrx,max are
never violated.

Even though the process is correctly controlled the final value of product C is partic-
ularly suboptimal (table 4.2 ).

The solution of a linear optimal control, as already discussed in chapter §2, is usually
fast. As a consequence, only around 6 seconds are necessary to complete the simulation
(table 4.3).

Tab. 4.2: Value of the objective function obtained applying LMPC to the system.

Objective function

nC(tf ) 1.467 mole

Tab. 4.3: Computational time required to perform the simulation applying LMPC.

Simulation Time Time per Sampling Time

6.053 sec 0.012 sec

4.1.3 NMPC
To perform the simulation using NMPC an NLP problem has to be solved. Therefore,
IPOPT, an open source software package for large-scale nonlinear optimization problems,
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(a) (b)

(c) (d)

Fig. 4.5: Profiles of temperature (a), feed flow rate (b), volume (c) and heat of reaction (d)
obtained applying linear MPC to the semi-batch reactor system and linearizing the
model at the initial conditions.

is employed using a single shooting method (more information can be found on www.coin-
or.org/Ipopt [1]). To check if the solution found is good, the results obtained at closed
loop are compared with the open loop results reported in the literature (figure 4.6).

Figure 4.7 shows the results obtained from the simulation (Appendix A.2).
It is possible to notice that the input profiles of T and u (figures 4.7a and 4.7b) are

similar to the one reported in the literature fig 4.6.
The feed flow rate profile is high at the beginning. Thus, the volume is pushed closed to
its upper bound and the heat of reaction constraint is kept active (fig 4.7d). When the
volume reaches Vmax (fig 4.7c) no more material is send to the reactor.
Similarly, the temperature profile is kept for the first part at the lower bound and then
set at the maximum value. Therefore, a compromise between main and side reaction is



44 4. Application of AMPC to a Semibatch Reactor and to a Batch Distillation Column

(a) Temperature profile

(b) Feed flow rate profile

Fig. 4.6: Open loop MVs profiles (from Aydin et al., 2017)

Tab. 4.4: Objective function value obtained applying NMPC to the system.

Objective function

nC(tf ) 2.039 mole

found. Furthermore, figure 4.7d indicates a slight violation of the constraint.
The application of NMPC yields the results in table 4.15 and table 4.5. The amount

of species C obtained is the optimal one, but it is slightly different than the results of
nC = 2.05 reported in the literature (e.g., [19] and [7]). Indeed, the nonlinear nature of
the solution method does not exclude different local solutions [10].

Table 4.5 shows that the time required to perform the simulation using NMPC is two
orders of magnitude greater than the one required for linear MPC. Even though it is still
lower than the sampling time, it introduces feedback delay. This means that between the
measurement of the outputs and the actual implementation of the control moves, a certain
amount of time passes. Therefore, the input moves are implemented on a system which is
already forward in time with respect to the one for which the inputs have been computed.
It is clear that this behavior is undesired, especially during transient operations such as
batch operations, and may lead to suboptimality, infeasibility or instability.

Tab. 4.5: Computational time required to perform the simulation applying NMPC.

Simulation Time Time per Sampling Time

7.36 minutes 0.8814 sec
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(a) (b)

(c) (d)

Fig. 4.7: Profiles of temperature (a), feed flow rate (b), volume (c) and heat of reaction (d)
obtained applying non-linear MPC to the semi-batch reactor system.

4.1.4 AMPC
In order to avoid long computational times, but still requiring good performances, adaptive
model predictive control is tested on the system. This simulation is performed using
Simulink Adaptive Model Predictive Control Toolbox.

First of all, successive linearization is performed at open-loop and the profiles compared
with the non-linearized one to check for possible discontinuities or anomalous behaviors
4.8. It is possible to notice from the plot that the nonlinear patterns are well tracked from
the linearized ones. On the other hand, the heat of reaction shows a different behavior
due to its algebraic nature (equation 4.10).

In the simulation ±2% of white noise was added to the output variables. The results
obtained are reported in figure 4.9 (Appendix A.3).
It is possible to notice that the output variables do not violate the constraints, even though



46 4. Application of AMPC to a Semibatch Reactor and to a Batch Distillation Column

Fig. 4.8: Comparison between nonlinear and successively linearized output profiles.

they are still close to the bound (figure 4.9c and 4.9d). The profiles of the manipulated
variables show a path different than the one obtained applying NMPC. In particular, the
temperature grows linearly and sets near to the upper bound to favor the production of
C. Besides, the feed flow rate of B is at the beginning set to zero to inhibit the side
reactions and then it is started to match the volume requirements.

Table 4.6 indicates the amount of product obtained at the final time. While table 4.7
shows the time required to complete the simulation.

Tab. 4.6: Objective function value obtained applying AMPC to the system.

Objective function

nC(tf ) 1.808 mole
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Tab. 4.7: Computational time required to perform the simulation applying AMPC.

Simulation Time Time per Sampling Time

1.737 minutes 0.208 sec

(a) (b)

(c) (d)

Fig. 4.9: Profiles of temperature (a), feed flow rate (b), volume (c) and heat of reaction (d) ob-
tained applying adaprive model predictive control (AMPC) to the semi-batch reactor
system.
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4.1.5 Results
All the results obtained so far are summarized in table 4.8.

Tab. 4.8: Performance comparison between LMPC, NMPC and AMPC for the semi-batch
reactor system.

Controller Comparison

Amount
of Product
[mole]

Simulation Time
[min]

Average Simulation
time per Sampling
Time [sec]

LMPC 1.467 0.101 0.012
NMPC 2.039 7.360 0.8814
AMPC 1.808 1.737 0.208

Tab 4.8 shows that the product performances of AMPC are better than the one of
LMPC and comparable with the one of NMPC. Of great interest is the comparison be-
tween simulation times. As a matter of fact, the time required to perform the simulation
using AMPC is larger than the one necessary for the linear simulation, but it is about
74% lower than the one used for NMPC. This result is of great importance since a fast
response is a critical issue when dealing with unsteady-state systems, particularly with
the ones involving dangerous reactions. Thus, this is a promising result for application of
AMPC to even more complex batch reactor systems.

4.1.6 Process Mismatch
Once AMPC is identified as a promising method to control unsteady-state highly nonlinear
processes, some process mismatches are introduced to test the robustness of the controller.

A sensitivity analysis is performed in order to identify the parameters that more affect
the outputs when subjected to a fixed input change. In particular k01, k02, E1, E2 are
identified as "key" parameters for the process model. Successively a ±20% of uncertainty
is added to these values. Through a Monte Carlo simulation, 20 realizations with different
values of uncertain parameters are implemented in the process model and the system is
run in closed-loop. The results are then put together (figure 4.10) and the worst scenario
is identified.
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Fig. 4.10: Closed-loop Monte Carlo simulations for 20 uncertainties realizations on the semi-
batch reactor system.

In table 4.9 are reported the values of the parameters yielding the worst case scenario,
which corresponds to the most severe constraint violations.

The controller is then re-tuned in order to face the worst scenario without violating
the constraints. The results found are then reported in table 4.10. It is possible to notice
that the new controller gives a lower value of the cost function but the computational
time remains faster than the one required for NMPC.

Tab. 4.9: Values of the parameters yielding the worst possible scenario.

Parameter Value

k01 3.257 l/(mol h)
k02 696.27 l/h
E1 6.53×103 J/mol
E2 19.78×103 J/mol
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Tab. 4.10: Values of cost function and simulation times for the re-tuned controller in the case
of process mismatch.

Retuned Controller

Amount of Product [mole] 1.684
Simulation Time [min] 1.954

Average Simulation time per Sampling Time [sec] 0.2345
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4.2 Batch Distillation Column

Batch distillation is widely used when small amounts of material are processed at sched-
uled time frames. The main advantage is flexibility and the possibility to change the
composition of the feed. AMPC is applied to a binary batch distillation column (from [6])
and the results compared with the one obtained applying LMPC and NMPC.

Fig. 4.11: Schematic of a batch distillation column with three trays and reflux ratio as ma-
nipulated variable.

No reaction takes place inside the column and a binary mixture is separated. Two
constraints are set on the molar fraction of the light component in the distillate and
the residue. The only manipulated variable is represented by the reflux ratio, which is
bounded between 0 ≤ r ≤ 1. The goal of the optimization is to maximize the amount of
distillate.
The control problem is described from equations 4.15 - 4.23. In table 4.11 the values of
the main parameters are reported.



52 4. Application of AMPC to a Semibatch Reactor and to a Batch Distillation Column

Tab. 4.11: Values of model parameters, constraints and initial conditions for the batch distil-
lation process.

Vapor flow rate, V 50 kmol/h
Relative volatility, α 2.25 -
Initial charge, B0 115 kmol
Molar fraction of B in the charge, xB0 0.4 -
Molar hold-up per plate, M 5 kmol
Final time, tf 3 h

Cost function : minr(t)J = D(tf ) (4.15)

State equations : Ḋ = V (1− r); D(0) = 0; (4.16)

Ḃ = V (r−1); B(0) =B0; (4.17)

ẋB = V

B
(xB−yB + r(x1−xB); xB(0) = xB0; (4.18)

ẋk = V

M
(yk−1−yk + r(xk+1−xk);xk(0) = xB0;k = 1,2,3; (4.19)

ẋD = V (1− r)
D

(y3−xD); xD(0) = xB0; (4.20)

y0 = yB; x4 = y3; yk = αxk
1 + (α−1)xk

;k =B,1, ..,3; (4.21)

Output costraints : xD(tf )≥ 0.8;xB(tf )≤ 0.2; (4.22)

Pathconstraints : 0≤ r(t)≤ 1 (4.23)

The system is tested at open loop keeping the value of the manipulated variable constant
at r= 0.6. The results show that one constraint is not satisfied. Therefore, a control system
is required in order to satisfy the constraints and in the meantime increase the distillate
production.
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Fig. 4.12: Open-loop behaviour of the process with fixed r = 0.6.

4.2.1 Tuning Parameters
As already stated for the batch reactor (§ 4.1.1), full feedback information is assumed.
Distillations are generally slow processes. For this reason the sampling time is set as

∆t= 0.01h= 36 sec. (4.24)

From equation 4.22 it is possible to see that the bounds on the output variables are final
constraints. Hence, a shrinking horizon approach is implemented. In this way, the whole
time horizon is taken into account at each time step, for both prediction and control
actions. Even though this approach increases the computational effort, it guarantees a
more accurate control and feasibility.

predictionhorizon= 300, (4.25)

control horizon= 300. (4.26)
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Fig. 4.13: Schematic of the control system.

4.2.2 LMPC
First of all, linear model predictive control is applied to the system. The process model(equations
4.16 - 4.21) is linearized at the initial conditions. Even though the controller is properly
tuned it is not possible to achieve the desired specification for the outputs (figure 4.14
and Appendix B.1 ). It is clear, that, due to the high nonlinearity of the system, a single
linearization point is not enough to capture the dynamic behavior of the process.

Since the constraints are not respected the objective value cannot be taken into account
for considerations on productivity performances. On the other hand, the time required
for the simulation is still of interest for a later comparison(table 4.12).
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Tab. 4.12: Computational time required to perform the simulation applying LMPC to the
batch distillation column, lnearizing the process model at the initial conditions.

Simulation Time Time per Sampling Time

7.36 minutes 0.8814 sec

(a) (b)

(c) (d)

Fig. 4.14: Profiles of reflux ratio (a), distillate amount (b), bottom composition (c) and distil-
late composition (d) obtained applying linear MPC to the batch distillation system
and lineazizing the model at the initial conditions.
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4.2.3 NMPC
The control problem is solved using nonlinear model predictive control.

Figure 4.16 shows the results obtained from the simulation (Appendix B.2). It is pos-
sible to notice that the final constraint requirements are satisfied. In fact, the distillate
composition is greater than xD ≥ 0.8 and the bottom one lower than xB ≤ 0.2.
At the beginning, the reflux ratio (figure 4.16a) is the maximum possible. All the conden-
sate is sent back in the column in order to increase the purity of the distillate. Therefore,
in this time frame, the concentration of the light component in the bottom continuously
decrease because it evaporates. After 0.5 hours the value of the reflux ratio is lowered
and then kept almost constant to maximize the value of the cost function. Due to the
shrinking horizon approach, the behavior of the controller becomes more aggressive and
the profile shows some oscillations approaching the final time. Decreasing the sampling
time could avoid some oscillations but then the computational time would increase.
The closed-loop profile of r obtained is comparable with the open-loop behavior reported
in the literature (fig 4.15).

Fig. 4.15: Open-loop reflux ratio profile obtained applying PMP method and direct simulta-
neous method (From Aydin et al., 2017)

The optimal distillation amount produced is 39.02 moles and is lower than the one
obtained at open-loop. Thus, at each time step, the optimization problem is started at
different conditions, sometimes leading to suboptimal solutions.
The time required to complete the simulation is of 12 minutes (table 4.14), which cor-
responds to an average of 2.39 seconds each time step. This time is still lower than the
sampling time ∆t but it introduces a feedback delay which cannot be neglected.
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(a) (b)

(c) (d)

Fig. 4.16: Profiles of reflux ratio (a), distillate amount (b), bottom composition (c) and dis-
tillate composition (d) obtained applying nonlinear MPC to the batch distillation
system.
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Tab. 4.13: Optimal cost function value obtained applying NMPC to the batch distillation
system.

Objective function

D 39.02 mole

Tab. 4.14: Computational time required to perform the simulation applying NMPC to the
batch distillation system.

Simulation Time Time per Sampling Time

12 minutes 2.39 sec

4.2.4 AMPC
The core of adaptive model predictive control is the successive linearization of the nonlin-
ear model. Therefore an open loop successive linearization is performed using the optimal
input profile found applying NMPC(fig. 4.16a). In this way, it is possible to check how
the nonlinear behavior is tracked.

Figure 4.17 illustrates that the linearized model tracks the nonlinear one, but it also
shows that some discrepancies are present concurrently with the oscillations of the input
variable.

The adaptive scheme is applied to the system introducing a ±2% of noise to the output
variables. The profile of the reflux ratio obtained (fig 4.18b) shows a path similar to the
one coming from NMPC. In the beginning, the reflux is almost total to maintain the purity
of the distillate. After 15 minutes it is lowered to increase the distillate production. At the
end of the batch time, the specifications on the bottom and top compositions are satisfied.

At the final time, the amount of distillate produced is of D = 38.117 mole and the
time required for the simulation is tsimulation = 2.40 minutes (table 4.16).
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Fig. 4.17: Successive linearization of the nonlinear model profiles coming from the closed loop
simulation applying NMPC to the batch distillation system.

Tab. 4.15: Objective function value obtained applying AMPC to the batch distillation system.

Objective function

D 38.117 mole

4.2.5 Results
In table 4.17 all the performances of the controllers are reported. The linear model pre-
dictive controller shows to be unable to regulate the system. The process nonlinearity is
too high to be accurately described by a model linearized in a single point. The maxi-
mum value of distillate is obtained applying NMPC. Nevertheless, the distillate amount
retrieved with AMPC is comparable to the maximum one, since it is only 2.3% less than
the one resulting from NMPC application.

Linear MPC remains as a faster method to solve the problem, but AMPC shows to
be competitive. The adaptive time to perform the simulation is −88% less than the one
required for NMPC.
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(a) (b)

(c) (d)

Fig. 4.18: Profiles of reflux ratio (a), distillate amount (b), bottom composition (c) and dis-
tillate composition (d) obtained applying AMPC to the batch distillation system.
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Tab. 4.16: Computational time required to perform the simulation applying AMPC to the
batch distillation system.

Simulation Time Time per Sampling Time

2.40 minutes 0.5316 sec

Tab. 4.17: Value of the optimal cost, simulation time and average simulation time per sampling
time for the different controllers applied to the batch distillation system.

Controller Comparison

Amount
of Product
[mole]

Simulation Time
[min]

Average Simulation
time per Sampling
Time [sec]

LMPC Infeasible 1.35 0.269
NMPC 39.02 12 2.392
AMPC 38.12 2.40 0.532

4.2.6 Process Mismatch
To test the robustness of the controller some process mismatch is applied to the process. In
particular, an uncertainty of ±5% is added to the volatility parameter α. A Monte Carlo
simulation is performed at open-loop in order to identify the worst possible scenario (fig
4.19). As expected, lowering the volatility of −5% yields the biggest final constraints
violation. In this case, the controller is not re-tuned but the final time is let free. When
the time is not fixed, more flexibility is given to the system, allowing the controller to
regulate the system better. The simulation is then stopped when the constraints are
satisfied. Table 4.18 reports the value of the new final time. Figure 4.20 indicates the
profiles of the input and the outputs with final time free to change. It appears that,
even though more flexibility is given to the system, one constraint is slightly violated in
some cases. This result implies that some recursive tuning would be necessary in order to
increase robustness.

Tab. 4.18: Final time at which the simulation is stopped in case of process mismatch.

Final Time

tf 3.36 h
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Fig. 4.19: Closed-loop Monte Carlo simulations for 20 uncertainties realizations.
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(a) (b)

(c) (d)

Fig. 4.20: Profiles of reflux ratio (a), distillate amount (b), bottom composition (c) and dis-
tillate composition (d) obtained letting the final time free.



64 4. Application of AMPC to a Semibatch Reactor and to a Batch Distillation Column



Conclusions

As the scope of this thesis, Adaptive Model Predictive Control was applied to batch pro-
cesses and its performance is compared with the one obtained using linear and nonlinear
Model Predictive Control.

Due to the high competitiveness on the market and to strict safety regulations, batch
and semi-batch operations are gaining lots of importance. Based on their unsteady-state
nature, this processes are characterized by highly nonlinear state equations. Thus, they
are difficult to control. Nevertheless, Model Predictive Control was introduced as a valid
choice for control this transient systems and at the same time optimize them.

In this work, AMPC method was applied to two case studies: a semi-batch reactor and
a batch binary distillation column. In both cases, AMPC has shown promising results.
The value of the optimal cost was in both cases higher than the one coming from LMPC
but lower that the one from NMPC. Though, the costs were comparable and the difference
lower than the 11%. The more promising result is the one concerning the computational
time. In fact, it was shown that AMPC requires a simulation time up to 88% lower than the
one required from NMPC. This result is of great importance since the high computational
time is one of the biggest issue.

To test the robustness of AMPC parametric uncertainties were added to the process
and multiple realizations performed through a Monte Carlo simulation to identify the
worst possible scenario. It turned out that, in the presence of process mismatch higher
than about 5%, the constraints are not satisfied anymore. For this reason, recursive tuning
might be necessary to increase robustness.

After this study, the benefits of the application of AMPC on batch operations has been
found significant. The computational time is significantly reduced, while maintaining a
relatively closer optimal cost. Finally, this work has pointed out that future investigations
are required to increase the capability of AMPC to deal with parametric uncertainties.
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A

Semi-batch Reactor

A.1 LMPC

Tab. A.1: Weights applied on output and manipulated variables using LMPC.

Weights on Output Variables Weights on Manipulated Variables

CA 0 T 0
CB 0 u 0
CC 50
V 100
qrx 500

Fig. A.1: Moles of C producted with respect to time, obtained applying LMPC to the batch
reactor system.
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Fig. A.2: Concentration of specie A profile with respect to time, obtained applying LMPC to
the batch reactor system.

Fig. A.3: Concentration of specie B profile with respect to time, obtained applying LMPC to
the batch reactor system.
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Fig. A.4: Concentration of specie C profile with respect to time, obtained applying LMPC to
the batch reactor system.
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A.2 NMPC

Fig. A.5: Moles of C producted with respect to time, obtained applying NMPC to the batch
reactor system.

Fig. A.6: Concentration of specie A profile with respect to time, obtained applying NMPC to
the batch reactor system.
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Fig. A.7: Concentration of specie B profile with respect to time, obtained applying NMPC to
the batch reactor system.

Fig. A.8: Concentration of specie C profile with respect to time, obtained applying NMPC to
the batch reactor system.
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A.3 AMPC

Tab. A.2: Weights applied on output and manipulated variables using AMPC.

Weights on Output Variables Weights on Manipulated Variables

CA 0 T 50
CB 0 u 50
CC 0
V 91
qrx 800

Fig. A.9: Moles of C producted with respect to time, obtained applying AMPC to the batch
reactor system.
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Fig. A.10: Concentration of specie A profile with respect to time, obtained applying AMPC
to the batch reactor system.

]

Fig. A.11: Concentration of specie B profile with respect to time, obtained applying AMPC
to the batch reactor system.

A.4 AMPC - Process Mismatch
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Fig. A.12: Concentration of specie C profile with respect to time, obtained applying AMPC
to the batch reactor system.

Fig. A.13: Manipulated and output variables profile obtained re-tuning the controller in pres-
ence of process mismatch.



B

Batch Distillation Column

B.1 LMPC

Tab. B.1: Weights applied on output and manipulated variables using LMPC.

Weights on Output Variables Weights on Manipulated Variables

D 500 r 50
B 0
xB 1
x1 1
x2 1
x3 50
xD 1
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Fig. B.1: Profile of the residue amount B with respect to time, obtained applying LMPC to
the batch distillation column.

Fig. B.2: Molar fraction of light component on the first tray obtained applying LMPC to the
batch distillation column.
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Fig. B.3: Molar fraction of light component on the second tray obtained applying LMPC to
the batch distillation column.

Fig. B.4: Molar fraction of light component on the third tray obtained applying LMPC to the
batch distillation column.
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B.2 NMPC

Fig. B.5: Profile of the residue amount B with respect to time, obtained applying NMPC to
the batch distillation column.

Fig. B.6: Molar fraction of light component on the first tray obtained applying NMPC to the
batch distillation column.



B.2. NMPC 81

Fig. B.7: Molar fraction of light component on the second tray obtained applying NMPC to
the batch distillation column.

Fig. B.8: Molar fraction of light component on the third tray obtained applying NMPC to the
batch distillation column.
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B.3 AMPC

Tab. B.2: Weights applied on output and manipulated variables using LMPC.

Weights on Output Variables Weights on Manipulated Variables

D 40 r 50
B 0
xB 1
x1 200
x2 200
x3 200
xD 500

Fig. B.9: Profile of the residue amount B with respect to time, obtained applying AMPC to
the batch distillation column.
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Fig. B.10: Molar fraction of light component on the first tray obtained applying AMPC to
the batch distillation column.

Fig. B.11: Molar fraction of light component on the second tray obtained applying AMPC to
the batch distillation column.
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Fig. B.12: Molar fraction of light component on the third tray obtained applying AMPC to
the batch distillation column.
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