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Abstract

People suffering from complete motor paralysis with no severe deficiency in cognitive abili-
ties, syndrome calledCompletelyLocked inState (CLIS), remain awareof their surroundings
without being able to interact and communicate in any way.

In this context, the only possibility of communicating with the social environment is by
the techniques of Brain-Computer Interface.

Several efforts have already been made to develop BCI-based communication systems for
CLIS patients; while any attempt to use EEG signals was unsuccessful, discreet and good
results were obtained using the signals acquired with near-infrared spectroscopy techniques
(fNIRS signals).

In this work, the focus is on the techniques of features extraction and selection on EEG
and fNIRS signals and, finally, on the combination of the two to develop a system capable
of classifying affirmative and negative answers from users in CLIS. The proposed analysis
is entirely offline but has been carried out taking into account the constraints of a possible
online system. The analysis considers the data collected in 4 visits to one patient. The choice
to focus on a single case was made because the psychophysical considerations on the state of
the patient are fundamental for a correct interpretation of the results and the author of this
work had the opportunity to participate directly in the acquisition of some of these data.

Offline analysis led to good results in the classification of fNIRS signals, according to the
different psychophysical states of the patient. Once again, using EEG signals it was not pos-
sible to successfully classify yes/no answers. Finally, the combination of the characteristics
extracted from the EEG and fNIRS signals did not improve the performance of the system.
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Preface

I worked on this thesis during a 5 months traineeship at the Institute ofMedical Psychology
and Behavioral Neurobiology of Tübingen where I joined the group lead by Ujwal Chaud-
hary and Niels Birbaumer.
During this period as intern student, I had the opportunity to actively contribute to design
and improve communication BCI-based systems for LIS and CLIS patients affected by ALS.

I also participated in a one week visit to Patient6. There, I could practically test our work
but, most of all, I could understand what it means relating to patients and their families.
I have experienced how emotional and psychological aspects are a fundamental part of our
work and how gaining the confidence of the patient and his family is essential because collab-
oration is the only means to achieve good results.
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1
Introduction

Communication is the manifestation of many verbal and non-verbal skills, like languages,

gestures, facial expressions, body movements, voice tones, written texts, and it is the process

of sharing thoughts, intentions, emotions, and feelings with other human beings.

Due to some disease, like Amyotrophic Lateral Sclerosis (ALS), patients progressively lose

the control of anyvoluntarymuscles and eventually are in a completely paralyzed state, known

as Completely Locked-in State (CLIS), without severe deficiency in cognitive abilities. Since

all the possible ways of communication are based on the use of some voluntary motor con-

trols which activate and make body muscles move, subjects in CLIS are completely unable

to communicate and interact with the social environment. The inability to communicate

prevents patients from expressing their basic needs. The lack of communication, besides

being a factor of psychological challenge for the patients themselves, greatly exacerbates the

difficulties faced by the families and caregivers of people in CLIS.

In this scenario, the Brain-Computer Interface (BCI) techniques represent a good, and at
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the moment the only one, chance to re-establish communication with CLIS patients.

This work presents a BCI system to recognize yes and no answers to questions presented

to a CLIS subject. The “incipit” is an already existing BCI system (see Section 1.3), developed

by Chaudhary et al. and presented in [1]. This is able to classify yes and no answers, with dis-

creet performance, using exclusively the change in oxygenated hemoglobin signal. Here, the

focus is on the techniques of features extraction and selection used before the classification

phase, where a simple SVM classifier is adopted, trying to achieve a stable and performing

system. To do this, different biological signals are recorded and analyzed, comparing their

characteristics and suitability for differentiating yes and no answers.

In the following, first of all, a brief and general overview of BCI systems, the acquisition

techniquesused, theLocked-in Syndrome and theAmyotrophicLateral Sclerosis is proposed

to introduce in the specific topic. In the second chapter, the acquisition protocol and the sig-

nals analysis and classificationmethods are explained. Then, in chapter 3 and4, the results are

presented and discussed with some proposals for improvements and future works. Finally,

in the conclusive chapter, there is an overview of the whole work.
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Figure 1.1: General components of a BCI system:

in each BCI systemwe can identify four main components: the user, the acquisition device, the translation block, and

the actuation devices

1.1 Brain Computer Interface

A Brain-Computer interface system uses the neural activity generated by the brain to pro-

vide communication and control channels to its users, bypassing the brain’s normal output

channels of peripheral nerves and muscles. For this reason, BCI represents a useful augmen-

tative technology for those who are unable to generate voluntary muscular movement due

to severe motor disabilities.

The term “brain-computer interface” (BCI) was used for the first time in 1973 by the

French neurophysiologist Jaques Vidal, who predicted the possibility of combining the in-

coming technological power of the computers and the possibility of recording the brain activ-

ity. In the same period, studies conducted by Joe Kamiya demonstrated that healthy persons

could learn to voluntary change the alpha waves of their EEG signal, process known as “neu-

rofeedback”, which opened the way of the BCIs studies. [2]

The goal of aBCI system is to enable theuser to control the external device byusinghis/her

brain activity. Almost all the BCI systems have four main components:

1. Users: is any entity that can relay its intent by intentionally altering its brain state to
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generate the control signals used as input for the BCI system.

2. Acquisition devices: BCI systems can use invasive or noninvasive techniques to record
brain activity. Computerized tomography (CT), positron electron tomography (PET),
magnetic resonance imaging (MRI), functional magnetic resonance imaging (fMRI),
magnetoencephalography (MEG), functional near-infrared spectroscopy (fNIRS) and
electroencephalography (EEG) have been used for noninvasive acquisitions. How-
ever, the most prevalent methods are EEG and, lately, fNIRS as both of them are rela-
tively easy to use, cheap and portable devices, desirable features for such systems. The
low spatial resolution and the distance of the electrode from the source of the signal,
with consequent problems of noise and attenuation, are the main problems of these
devices. These are the techniques used in this work and further explained in the fol-
lowing sections.

The invasive technique requires a surgery to implant microelectrodes in the cortical
area of the brain to record the activity even of few neurons. Themain advantage is the
quality of the signals acquired invasively: they aren’t attenuated and the noise compo-
nents are quite absent. On the other hand, in addition to the risks and disadvantages
associated with surgery, this kind of electrodes has a limited lifetime and has a stable
recording capability of some months.

3. Translation block: here, the brain signal is converted into a command signal. The
acquired digitalized signals are, first of all, processed to maximize the signal-to-noise
ratio (SNR) removing noise and artifacts (i.e. movements due to eyes blink, breath,
heartbeat etc.). Then the features extraction process obtain the characteristics of the
signals that can better reflect the users’ intent. A classification algorithm is finally used
to associate the features with one of the possible output commands of the system.
Different approaches can be used in this phase according to the characteristics of the
signal and the purpose of the system.

4. Actuation device: it is composed of physical (i.e. robotic arm, wheelchair, ecc.) and
software components (i.e. communication systems for world spelling, yes/no answers
etc.). The device receives control signals from the translation block and uses them to
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drive an application. The functioning of the device gives the feedback to the user and
a feedback signal is also sent to the processing block to update the state of the system.

Each BCI system has some distinctive characteristics. These include the input signals; the

translation algorithm; response time, speed and accuracy and their combination into infor-

mation transfer rate; type and extent of user training required, appropriate user population;

appropriate applications; and constraints imposed on concurrent conventional sensory in-

put and motor output (e.g., the need for a stereotyped visual input, or the requirement that

the user remain motionless). [3]

Since the effectiveness of BCI depends on the capability of the user to control his/her

brain activity, training methods are necessary to learn how to control the system. The main

approaches for the training are cognitive task, when the user is asked to perform voluntary

and consciousmental activity, like image tomove a limb, or operant conditioning, where the

users think about anything and the feedback provided by the system serves to condition the

user to continue to produce and control the components that have achieved the desired out-

come. Multiple factors, like concentration, distraction, frustration, emotional state, fatigue,

motivation, and intentions can affect the results. For this reason, the feedback loops play a

fundamental role in the good performance of all the BCI systems, informing each compo-

nent of the state of the devices and representing a reward for the user’s attempts.

1.1.1 Electroencephalography

The electroencephalogram(EEG) is themeasure of the electrical activity of thebrain recorded

from electrodes placed on the scalp. The first EEG recording was made by the German psy-

chiatrist Hans Berger in 1924. The EEG devices record the potential differences between

electrodes which reflects the current density that arises from the action of a chemical trans-

mitter on postsynaptic cortical neurons. The action causes localized depolarization, that is

an excitatory postsynaptic potential (EPSP), or hyperpolarization, that is an inhibitory post-

synaptic potential (IPSP).

5



The potential differences are measured either between pairs of scalp electrodes (bipolar)

or between individual electrodes and a common reference point (unipolar). In the second

arrangement, the reference point is usually a relatively inactive site on the scalp.

The amplitude of the EEG signals for healthy subjects is about 100 µV while the band-

width is from under 1 Hz to about 50 Hz. From the EEG signal, it is possible to differentiate

alpha (α), beta (β), delta (δ), theta (Θ) and gamma (γ)waves, according to different frequency

spectrum. In Table 1.1 the typical frequency bands, their characteristics, and locations are re-

ported.

The placement of the electrode on the scalp is generally based on the international 10-20

system, in which the measurements from four standard position on the head (nasion, inion,

right and left preauricular points) determine the position of 21 electrodes. High density elec-

trode settings use up to 320 electrodes and the 10-10 (see Figure 1.2) or 10-5 placement systems.

In the clinical contest, EEG recordings are used to investigate the brain’s spontaneous

electrical activity over a period of time, the event-related potentials, the spectral content of

the signals and to diagnose epilepsy, sleep disorders, depth of anesthesia, strokes, coma, en-

cephalopathies, and brain death.

EEG recordings have a high temporal resolution since the devices have a sampling rate

ranging between 250 and 2000 Hz. The spatial resolution of this technique is low and the

exact areas of activations can be identified onlywith sophisticatedmethods of spatial filtering

and interpolation.

Frequency Band Characteristic stage Location
Delta 0.5-4 Hz Deep sleep Deep structures
Theta 4-8 Hz Relaxation, drowsiness, sleep Frontal regions
Alpha 8-14 Hz Relaxation, thinking, closed-eyes Occipital regions
Beta 14-30 Hz Active thinking, focus, high alert, Parietal and frontal lobes

Gamma >30 Hz Combination of sensory processing Somatosensory cortex

Table 1.1: EEG characteristic waves:

In the EEG signals, it is possible to differentiate five different waves according to different frequency bands
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Figure 1.2: 10-10 system for electrodes placement

EEG signals can be affected by many kinds of biological, instrumental or environmental

noise and artifacts. Bioelectric artifacts can be generated by any kind of movement, (eye and

chewmovement particularly affect EEG recordings due to the closenesswith the scalp), heart-

beat, sweat, and breath. In general, artifacts are recognized because of their temporal relation-

ship to other bioelectrical signals, like electrocardiogram(ECG), electrooculogram (EOG) or

electromyogram (EMG), because of their unusual appearance, or because the electrical field

of the event is hard to interpret in a biologically plausible manner. [4]

Furthermore, scalp EEG electrodes are mostly sensitive to activity correlated over large

areas of the superficial cortical area of the brain, with smaller contributions from deeper

sources.

The acquisition of the brain activity based on the same principles of EEG using micro-

electrodes implanted in the brain is named Electrocorticography (ECoG), or intracranial

electroencephalography (iEEG). These techniques allow the measurement of the bioelectric

events produced by single neurons with invasive micro-electrodes targeting the cells of inter-

est. The amplitude of the signals measure directly on the surface of the brain with invasive

microelectrodes is about 1-2 mV.
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1.1.2 Functional Near-Infrared Spectroscopy

Near-infrared spectroscopy (NIRS) is a neuroimaging technique which uses light in the near

infrared range (650nm- 900nm) to study the functional activity of the brain. The possibility

of evaluating the absorption and scattering proprieties of the near-infrared light (NIR) to

study the brain activation was for the first time discovered in 1977 by Jobsis [5]

During NIRS, the source optodes placed on the head surface emit a NIR light beam. An

attenuated and scattered signal, after traveling through the cortical regions of the brain, is

received by some detector optodes placed on the scalp at a certain distance from the source

optode. The acquired signals are processed to quantify the cerebral oxygenation and changes

in oxy (HbO), de-oxy (HbR) and total hemoglobin (HbT). [6]

The neuronal activation in response to a stimulus involves secretion of neurotransmitters,

change in the size of surrounding cells, vasodilation or constriction, change in the cerebral

blood flow and change in oxygenation state of the blood in the brain. [7] [8] NIRS mea-

sures these responses of the cerebral blood vessels, i.e. the change in cerebral blood flow and

the change in oxygenation state of blood in the brain, to evaluate the brain activation and

functionality.

In the human brain, there are different light absorbing species named chromophores,

such as water, cytochrome c oxidase, and hemoglobin. The brain is opaque to the visible

range of light, as this is strongly absorbed by water and cerebral tissues. Conversely, in NIR

range, light absorption by water and tissues changes drastically, and the only dominant chro-

mophores present at thiswavelength are cytochrome coxidase andhemoglobin. The content

of hemoglobinwithin thebrain tissue is approximately 600mg/100mg tissue,which is several

times the concentration of cytochrome oxidase. Thus, the dominant chromophore present

in the brain during NIRS acquisitions is hemoglobin, which accounts for the majority of

light attenuation and scattering in the brain. [9]. Since the scattering event of photon domi-

nates the absorption event, the optical transport of light in the brain is scattering dominant.

Thus, light in the range of 650-900nm is minimally absorbed and preferentially scattered by
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the hemoglobin present in the brain. [10] [11] In particular, NIR light of wavelength close

to 690 nm and 830 nm provide dominant information about HbR and HbO, respectively.

[12]

The light transport model used to describe the attenuation of light as it passes through

the highly scattering brain media is theModified Beer-Lambert Law. The Beer-Lambert law

quantifies the attenuation of light at given a wavelength when it passes through a media

containing chromophores using the Equation 1.1:

A(t, λ) = log(
I(t, λ)

I0(t, λ)
) = ε(λ) ∗ C(λ) ∗ d(λ) (1.1)

where: A(t,λ) is the attenuation of the λ wavelength light crossing the given media at time

t; I(t,λ) is the intensity of the λwavelength light transmitted out of the given media at time

t; I0(t,λ) is the initial intensity of the λwavelength light incident on themedia at time t; ε(λ)

is the molar extinction coefficient of a chromophore at λ of wavelength light, expressed in

mM-1cm-1; C(λ) is the concentration of chromophore in the media at λ of wavelength light

and d(λ) is the direct path length of a photon from the emitting to the receiving optode

placed on the media surface, at λ of wavelength light.

The Beer-Lambert law is true only for purely absorbing media. For scattering media such

as the brain, the modified Beer-Lambert law has to be used, which takes into account the

attenuation due to scattering in the media and the changes in the path length of the photon

due to its scattering. Indeed, in highly scattering media the path length of the photon is

greater than the geometrical distance between the optodes because of the scattering events.

Delpy et al. [13] defined a scaling factor to correct for the path-length: the differential path-

length factor (DPF). Thus the modified Beer-Lambert law is described by the expression

shown in Eq. 1.2

A(t, λ) = log(
I(t, λ)

I0(t, λ)
) = ε(λ) ∗ C(λ) ∗ d(λ) ∗DPF (λ) +G(λ) (1.2)
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where DFP(λ) is the differential pathlength factor at λ of wavelength light as defined by

Delpy [13], and it depends on the number of scattering events that occur. G(λ) is an un-

known term representing scattering coefficient of the tissue together with the geometry of

the optodes. Therefore, an absolute calculation of chromophore concentration cannot be

derived from Eq. 1.2. However, it is possible to calculate changes in the concentration of

chromophores by calculating changes in optical density (i.e. A(t, λ)) at two different wave-

lengths of light in order to cancel out the G term, assuming the same value of G(λ)for all

chromophores in the medium: [14]

∆ODλ1 = ελ1
HbR ∗ L ∗ [HbR] + ελ1

HbO ∗ L ∗ [HbO] (1.3)

∆ODλ2 = ελ2
HbR ∗ L ∗ [HbR] + ελ2

HbO ∗ L ∗ [HbO] (1.4)

In Eq. 1.3 and 1.4, ∆ODλ1 and ∆ODλ2 are the changes in optical density at λ1 and λ2

respectively, while εHbO
λ1 , εHbO

λ2 , εHbR
λ1 and εHbR

λ2 are the absorption coefficient of HbO

and HbR at λ1 and λ2. L is the effective average pathlength of light through the tissue. L

is obtained from the product of the actual source-detector separation and DPF. The source-

detector separation ismeasurable along the surface of the head, and the extinction coefficient

for a given chromophore can be looked up in tables [15].

Using the Eq.1.3 and 1.4 the change in otpical density is calculated and used to evaluate the

changes in concentrationofHboandHbR:∆[HbO]and∆[HbR].Thewavelength chosen

in this case areλ1=830 nm andλ2=690 nm as themost sensitive to the changes in, respectively,

HbOandHbRconcentrations. Knowing∆[HbO] and∆[HbR] is also possible to evaluate

the change in the total hemoglobin as:

∆[HbT ] = ∆[HbO] + ∆[HbR] (1.5)

NIRS technologies can be used to obtain either spectroscopy signals or, if the number of

optodes is sufficiently big, the signals are reconstructed to obtain an image calledDiffuseOp-
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Figure 1.3: Diffuse Optical Image obtained with NIRS

When a high number of optodes is used to record the change in HbO, HbR, andHbT, it is possible to reconstruct im-

ages tomap the behavior of different brain regions.

tical Imaging (DOI) representing the cerebral oxygenation and hemodynamics. (see Figure

1.3) [16]

NIRS provides excellent temporal resolution and a reasonable spatial sensitivity. Addi-

tionally, NIRS is robust to movement artifacts, enabling investigations during routine hu-

man activity in moving subjects. [15]With this characteristic, NIRS could override the most

usedneuroimaging techniques for hemodynamic studies, the functionalmagnetic resonance,

which has low temporal resolution and is highly susceptible to movement artifacts.

The major limitation of NIRS is reduced depth penetration of NIR light in the brain,

which limits its capability to investigate hemodynamics only to the surface of the cerebral

cortex. [16]

1.2 Locked-in and Completely Locked-in State

Locked-in syndrome was defined for the first time in 1966 by Plum and Posner as quadriple-

gia, anarthria, and paralysis of all the facial muscles, except the vertical eye movement, due

to bilateral lesions of the corticospinal and corticobulbar tracts in the ventral portion of the

pons. [17]
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The cause of the Locked-in syndrome can be ischemic, hemorrhage, traumatic, tumor,

metabolic, infectious, systemic: neurological disease such as ALS, end-stage Parkinson, mul-

tiple sclerosis can lead to a Locked-in State (LIS) with different etiological and neuropatho-

logical features. [18] [19].

Patient affected by theLocked-In syndrome are completely conscious but, attention, intel-

lectual ability, perception, visual and verbal memory can sometimes be affected. [20] Hear-

ing is usually well preserved, while, visual difficulties can arise from blurring and diplopia.

[18] Due to the many different possible causes, this syndrome is not a homogeneous neuro-

logical entity but has numerous variations. Locked-in syndrome can be differentiated into

three categories:[21]

• Classic: total paralysis, except for eyes movements and blinking, and preserved con-
sciousness (LIS)

• Incomplete: total paralysis, with remnants voluntary movement other than eye move-
ment, and preserved consciousness

• Complete: total paralysis and inability to communicate and preserved consciousness.
(Completely locked-in State, CLIS)

The capability to move the eyes enable people in LIS to use non-verbal communication

devices, like eyes tracker, or to adopt many strategies to answer simple close questions. This

is also a fundamental tool to confirm the diagnosis and assess consciousness and cognitive

capabilities.

The cerebral metabolism can distinguish subjects in LIS/CLIS from patients in vegetative

state; indeed, as reported by Zeman in studies with positron emission tomography [22], the

cerebral metabolism is middle reduced in LIS/CLIS subjects, while severely reduced in the

others. Furthermore, the EEG-reactivity (event-related synchronization (ERS), and event-

related desynchronization, (ERD)) can differentiate LIS/CLIS from Coma. [23]
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Pulmonary complications are the leading cause of death for LIS patients: dysphagia and

impaired cough reflex leads to further complications, including atelectasis and pneumonia;

immobility predisposes to pulmonary embolus.[18]

1.2.1 Amyotrophic lateral sclerosis

Amyotrophic lateral sclerosis is a neurodegenerative disease characterized by the progressive

degeneration of motor neurons in the primary motor cortex, corticospinal tracts, brainstem

and spinal cord which leads to a progressive paralysis of the voluntary muscles. The term

“amyotrophic” refers to the muscle atrophy, weakness, and fasciculation, while “lateral scle-

rosis” refers to hardening of the anterior and lateral corticospinal tracts as motor neurons

in these areas degenerate and are replaced by gliosis.[24] The exact cause of motor neuron

degeneration in ALS is unknown but is likely to be a complex interplay between multiple

pathogenic cellular mechanisms, including genetic factors (mutations in the Copper-Zinc

superoxide dismutase (SOD1) gene cause a toxic gain of function), excitotoxicity (a neu-

ronal injury induced by excessive glutamate. An overstimulation of glutamate receptors

results in massive calcium influx into the neurons, leading to increased nitric oxide forma-

tion and, finally, neuronal death), oxidative stress (accumulation of reactive oxygen species

(ROS) causes cell death and consequently neurodegeneration), mitochondrial dysfunction,

impaired axonal transport, neurofilament aggregation, protein aggregation, and inflamma-

tory dysfunction. [24] [25]

ALS is relentlessly progressive; 50% of patients die within 30 months of symptom onset

and about 20% of patients survive between 5 years and 10 years after symptom onset. Respi-

ratory failure and complications are the usual cause of death in ALS.

A crucial moment in the progress of the disease occurs when the patient is no longer able

to breathe and feed autonomously. At this point, those who decide to stay alive are subjected

to artificial ventilation and PEG (Percutaneous Endoscopic Gastrostomy) nutrition, devel-

oping a profoundmotor paralysis state recognized as Locked-in syndrome, with incomplete
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and, eventually, complete classification. The time elapsing between the onset of the disease,

the need for ventilation and artificial nutrition, been in LIS and CLIS has a great variability

between subjects.

As reported byKiernan [26], the incidence ofALS inEurope is uniformat 2,16 per 100000

person-year while a worldwide estimation of the disease is not available. Men have a higher

incidence (3 per 100000 person-year) than women (2,4 per 100000 person-year) and the life-

time risk of ALS is 1:400 for woman and 1:350 for men.

The diagnosis of ALS is mainly based on the presence of very characteristics clinical find-

ings but, since there is no specific diagnostic test, it is sometimes difficult to distinguish be-

tween ALS and other motor neuron diseases. The ’El Escorial’ diagnostic criteria [27], devel-

oped by theWorld Federation ofNeurology (WFN)ResearchGroup onMotorNeuronDis-

eases, and the revised ’Airlie House’ criteria [28] defines some clinical, electrophysiological

and neuroimaging features to establish the level of diagnostic certainty. Degeneration signs

of the Upper Motor Neuron (UMN) and Lower Motor Neuron (LMN) are the main fea-

tures representing ALS and they can be examined in four regions (bulbar, cervical, thoracic

and lumbosacral) considering clinical, electrophysiological or neuropathologic examinations

and evaluating the progressive spread of signs within a region or to other regions. The signs

of degeneration for the LMN are weakness, wasting and fasciculation, while, for the UMN,

pathologically increased reflexes and spasticity; these can be found by physical and neuro-

logical examination. Neuroimaging techniques, in particular, MRI, mainly contribute to

excluding alternative pathological causes, as much as electrophysiological investigations, like

nerve conduction studies and electromyography. There are no clinical laboratory tests which

confirm the diagnosis of ALS.

1.3 State of the art: communication and BCIs for CLIS patients

The first BCI for communication inALSpatientswith intact eyemuscles (LIS)waspresented

by Birbaumer et al. in 1999[29]; since then, several successful invasive and noninvasive BCI
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systems have been developed for communication in LIS patients affected by ALS or other

diseases, with the possibility for the subject to spell words and compose sentences. Though,

none of the BCI techniques used with LIS patients are able to provide the same means of

communication for the patients in CLIS due to ALS. All the existing BCIs for communica-

tion, indeed, rely on two elements: first, the neuro-electric signal (EEG or ECoG) control

and second at least an intact eye muscle; thus, so far, all the systems designed for LIS subjects

did not work in patients in CLIS, in which eye movement control is lost.

Chaudhary et al [1] developed fNIRS based BCI system for communication in CLIS pa-

tients.

In this study, whichwas the first of its kind, fNIRS-basedBCIwas used for binary commu-

nication in four ALS patients in CLIS. Several questions with known yes or no answer were

presented to the subjects while fNIRS, EEG from fronto-central brain regions and EOG sig-

nals were acquired. After training a classifier separating “yes” from “no” answers for several

days, thepatientswere given feedbackof their response toquestionswithknownanswers and

open questions. In each session, fNIRS, EEG and EOG signals were recorded but the online

analysis and the feedback were provided only using the HbO signal from fNIRS. Chaud-

hary et al. [1] reported that four patients in CLIS communicated with frontocentral cortical

oxygenation-based BCI with an above-chance-level correct response rate over 70% during a

period of several weeks.

The change in HbO, EOG, and EEG signals in response to true and false questions, ob-

tained from the frontocentral region of the brain, were used in the offline analysis to deter-

mine the SVM classification accuracy of yes and no answers. The analysis performed using

the EEG signals in the time domain across all the training sessions showed no significant dif-

ferences between yes andno thinking, aswell as the analysis of eyemovementsmeasuredwith

EOG. The EEG signal was also studied to evaluate the correlation between fNIRS classifica-

tion accuracy and low-frequency bands mean power since these bands are the most related

with vigilance. In three out of four patients, a negative averaged correlation was found be-
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tween low-theta band mean power and fNIRS classification accuracy.
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2
Material and method

2.1 Patient and visits

The following analyses consider the data acquired from a single patient, hereinafter referred

to as Patient 6.

Patient 6 (Male, 38 years old, CLIS) was diagnosed with bulbar ALS in 2009. He lost

speech and capability to move by 2010. He has been artificially ventilated since September

2010 and is inhome care. No communicationwith eyemovements, othermuscles, or assistive

communication devices was possible since 2012.

Patient 6 was visited in total 7 times from May 2017 to September 2018. In three of the

visits (v02, v03, and v04) different studies were performed (stimulation, evoked potential,

motor imagery etc.) and none of the BCI acquisition followed the ”standard” protocol (see

section 2.3). The details of each visit are reported in Table 2.1
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Visit Name Date BCI sessions Acquisition channels

v01 29-05/02-06-2017 6 FC5, FC6, C5, C6, Cz, EMGUL, EMGDL, EMGUR,

EMGDR,EOGUL, EOGDL, EOGUR, EOGD

8 fNIRS source optodes + 8 fNIRS detector optodes

v02 11-09/16-09-2017 0 //

v03 28-09/02-10-2017 0 //

v04 02-11/06-11-2017 0 //

v05 14-04/17-04-2018 4 R1, R2, L1, L2, Cz, C1, C2,

EOGU,EOGD,EOGL, EOGR

8 fNIRS source optodes + 8 fNIRS detector optodes

v06 21-05/25-05-2018 5 R1, R2, L1, L2, Cz, C1, C2,

EOGU, EOGL, EOGR

8 fNIRS source optodes + 8 fNIRS detector optodes

v07 24-09/29-09-2018 4 R1, R2, L1, L2, C1, C2, Cz, Fz, P3, P4, Pz,

EMGL, EMGR, EOGR, EOGU, EOGL

8 fNIRS source optodes + 8 fNIRS detector optodes

Table 2.1: Details of the visits to Patient 6

2.2 Instrumentation

2.2.1 EEG acquisition

During theBCI sessions, theEEG,EOGandEMGsignalswere recordedwith amulti-channel

EEG amplifier (VAmpDC, Brain Products, Germany) using different number and position

of Ag/AgCl active electrodes.

The table 2.1 shows the positions of the electrodes, in each visit, according to the interna-

tional system 10 - 10 (see Figure 1.2), except for the electrodes L1, L2, R1 and R2 which were
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Figure 2.1: Placement of EOG and EMG electrodes

not positioned in the standard position but slightly shifted from the positions F4 (R1), FC4

(R2), F3(L1) and FC3 (L2) to allow the insertion of the optodes for the acquisition of the

fNIRS signals. The placement of EOG and EMG electrodes is shown in Figure 2.1.

Each channel was referenced to an electrode on the right mastoid and grounded to the

electrode placed at Fpz location of the scalp. Electrode impedances were kept below 10 kΩ

and the EEG signal was sampled at 500 Hz.

2.2.2 fNIRS acquisition

A continuous wave (CW)-based fNIRS system, NIRSPORT (NIRx Medical Technologies

[30]) was used. This performs dual-wavelength (760 nm and 850 nm) CW near-infrared

spectroscopic measurement at a sampling rate of 7,81 Hz.

TheNIRSoptodeswere placed on the frontocentral brain regions. In all the visit, 8 source

optodes and 8 detector optodes were used, placed as shown in Figure 2.2.
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Figure 2.2: fNIRS optodes placement:

arrangement of the optodes in the front-central region of the headwith reference to the position of the EEG elec-

trodes in the international 10-10 system. The optodes represented in orange are the NIR light sources while those in

blue are the detectors.

2.2.3 Software

The EEG signals were imported and stored using Brain Vision Analyzer provided by Brain

Products GmbH. [31]

The fNIRS signals were imported and stored using NIRStar provided by NIRx Medical

Technologies. [30]

All the analysis were done using the software Matlab_2018a.
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2.3 Acquisition Protocol

In the following sections, a block is a single continuous signals acquisition while a session is

considered as a set of subsequent acquisition blocks, even of different kinds and with differ-

ent tasks performed by the patient. Before every single block, the patient is clearly instructed

to the task he’s required to perform during the following acquisition.

For the purposes of thiswork,which consists of the offline studyof a classificationmethod,

only the blocks of training and feedback will be equivalently considered and analyzed.

Throughout all the acquisition period, the EEG signal was continuously visually moni-

tored to avoid long periods of slow-wave sleep during the BCI evaluation.

2.3.1 Preliminary recordings

Every session started with 10 minutes of resting state EEG and fNIRS signals recording. In

this phase, the patient was instructed to relax and to not think. Secondly, transcranial Direct-

Current Stimulation (tDCS) was performed for 10 minutes. During the tDCS, EEG and

fNIRS signals were also acquired. Finally, 10 more minutes of resting state EEG and fNIRS

signals were recorded.

Transcranial Direct-Current Stimulation (tDCS) is a non-invasive stimulation technique

that delivers a low electric current to the scalp. A fixed current between 1 and 2mA is typically

applied. tDCS works by applying a positive (anodal) or negative (cathodal) current via elec-

trodes to an area, facilitating the depolarization or hyperpolarization of neurons, respectively.

Naro et al. in [32], demonstrated that a-tDCS was able to boost cortical connectivity and ex-

citability in healthy subjects as well as in patients with Disorders of Consciousness (DOC)

and thus could improve the patient responsiveness and attention during the following BCI

acquisitions.

The main purpose of the resting state acquisition before and after the tDCS is to control

the effectiveness of the stimulation but this kind of analysis is beyond the scope of this work.
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Event Trigger value

Yes Question No Question Open Question
Acquisition Start 9
Baseline 10 11 12
Question Presentation 5 6 7
Thinking Period 4 8 13
Feedback 1 2 3
Acquisition end 15

Table 2.2: Triggers values:

Values of the triggers used to record the onset of each event

2.3.2 Training blocks

The training blocks are the first part of the actual BCI protocol. In each block, 20 questions

are presented to the patient: 10 with ”yes” answer and 10 with ”no” answer.

In this phase, the proposed questions must have a sure answer, like for example ”Rome is

the capital of Italy” or ”Rome is the capital of Germany”. ”. Question formulation is crucial

for the performance of the BCI system as it is very important to keep the patient motivated

and avoid boredom. Hence all the questions are formulatedwith the help of the family based

on the biography of the patient.

During a training block, EEG and fNIRS are acquired constantly. Using a triggering sys-

tem, the onset of each event (acquisition start, baseline, question presentation, thinking pe-

riod, feedback, acquisition end) is recorded in a vector. The triggers differentiate the events

and the yes or no questions, as reported in Table 2.2 and displayed in Figure 2.3.

Before the presentation of a question, 5 seconds of baseline signals are acquired to check,

if there is, the different brain activations during the questions listening and the response.

The questions are recorded and presented through a speaker controlled by the BCI system

to synchronize the timing. After the presentation of each question, 10 seconds of ”thinking

period” are acquired in which the subject is supposed to answer. The patient is informed by

the system of the end of the thinking period through a vocal signal, usually a ”thank you”.
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Figure 2.3: Plot of a triggers vector

Visual representation of a triggers vector used to record the onset of each event during the acquisitions. In particular,

the vector plotted is from a training block of visit7 (v07_d1_b04)

The patient can be instructed differently on how to answer the questions. The most used

method is to ask the patient to just keep thinking yes or no. Sometimes it’s also possible to

tell the patient to perform a task to answer yes and to do nothing to answer no. The task

can be motor imagery or the attempt to move a muscle if there is the chance of some remain

muscle control. The instructions should remain the sameduring a session to avoid confusing

the patient and otherwise, it would be difficult, and even wrong, trying to find a model to

describe and classify the signals afterward.

2.3.3 Feedback blocks

After at least twoblocks of training in the same session, amodel to predict the subject answers

is built. Using the same closed questions of the training and instructing the patients exactly

as before, after each thinking period, the signals are analyzed and classified by the model and
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a feedback is given to the subject.

The feedback, in this case, consists of a voice informing how the signals corresponding

to the last response were classified. This is very important to keep the patient focused, to

gain his confidence in the BCI system and motivate him to continue answering questions

that may seem trivial. Sometimes, to avoid the dejection produced by wrong feedbacks, it’s

possible to set the system so that only when the signals are correctly classified the complete

feedback is reported to the patient and otherwise only a ”thank you” informs on the end of

the thinking period.

The acquisition procedure is the same used for the training blocks, with questions chosen

from the same set, the same triggering system, and both EEG and fNIRS simultaneously

acquired.

2.3.4 Open question blocks

The possibility to answer to open questions is, obviously, the final goal of this BCI system.

To reach this stage, it is essential that the model, built and tested in the previous phases of

training and feedback, gave excellent performance in terms of classification and stability.

The procedure is the same used for the previous blocks, with the recorded questions, the

trigger system and the same time intervals for thinking and baseline periods. Only the num-

ber of questions in each block can vary.

Usually, to double check the accuracy of the classification, the same question is asked both

in a positive and negative way, for example, that both ”are you tired?” and ”are you rested?”

are asked. Furthermore, if the questions are particularly sensitive, they are asked many times

and in different sessions.

When the system is stable, with an accuracy of response classification of more than 90%,

the patient can use spellers to freely formwords and phrases. To date, the use of such systems

has only been possible with LIS patients.

24



2.4 Signals Processing

Given the different nature of EEG and fNIRS signals, they require different processing tech-

niques to remove artifacts and all components not related to brain activity. The twodifferent

procedures applied are explained in detail in the next sections 2.4.1 and 2.4.2

2.4.1 Processing of EEG signals

For each performedblock, a continuous EEG signal, of 10-12minutes (about 300000-360000

samples) is recorded covering 20 questions asked to the subject and their response. The sig-

nals acquired by the amplifier are saved in .vhdr format and imported into the Matlab soft-

ware using the ”eeglab” tool.

First of all, the signals are broughtback tonullmean, i.e. thenew signal x̄ = [x̄1, x̄2, ...., x̄N ]

is obtained with:

x̄i = xi −
1

N

N∑
k=1

xk (2.1)

for i = [1 : N ]

This operation is done to make possible the comparison of the characteristics of different

signals and is done to the signals of all the channels.

The signals are then divided according to the triggers recorded extracting the 20 segments

corresponding to the 10 seconds thinking periods, i.e the periods in which the patient was

supposed to answer the questions.

The segmented signals corresponding to the EEG, EOG and EMG channels are then fil-

tered separately to better preserve the characteristics of each type of signal.

To avoid signal distortions that could typically appear in the firsts and lasts samples of the

signal after the filtering phase, every signal is cut 200 samples before the trigger representing

the onset of the thinking period and 200 samples after the trigger representing the end of the

thinking period. After the filtering, these 400 samples are removed.
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The EMG signals are filtered using a bandpass finite impulse response (FIR) filter of fixed

order n=400. According to the physiological characteristic of these signals, the bandpass

is set at [2-70] Hz. The filter is designed using the function fir1 provided by Matlab; a

Gaussian window was used.

The EOG signals are filtered using the same kind of filter used for the EMG signals but

the bandpass is set at [2-50] Hz.

Both the EOG and EMG signals are further filtered using a Notch filter with the notch

located at 50Hz to avoid electrical noise. The filter, designed using the Matlab function

iirnotch, is a second-order infinite impulse response (IIR) notch filter.

The choice of the filter order is made by mediating between the need for a not too high

order that would otherwise, in online applications, dilate processing times, and a frequency

response as close as possible to the required characteristics. For the offline analysis, in fact, we

try to reproduce faithfully the processing operations used online to avoid large differences in

final performance. For the same reason, a FIR filter is chosen.

The EEG signals are filtered in 5 different ways obtaining 5 different signals, to better cap-

ture all the characteristics and dynamics. In any case, the filter used is a bandpass FIR filter of

n=400 order designed using the Matlab function fir1, with a Gaussian window; the only

difference between the five filters is the bandpass.

The bands are chosen according to the characteristic waves of EEG signals reported in Ta-

ble 1.1. In particular, the bandpass of the filters are set at [2-30]Hz obtaining the “wideband”

signal, [0.5-4] Hz for the Delta-band signal, [4-7] Hz for the Theta-band signal, [7-15] Hz

for the Alpha-band signal and [15-30] Hz for the Beta-band signal.

Higher frequencies are discarded because observing the spectrum of the signal before the

filtering, it’s impossible to recognized activity above the 30Hz imputable as brain activation.

It is known that in patients with ALS, the spectrogram of brain electrical activity is shifted

to low frequencies compared to that of a healthy individual.
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2.4.2 Processing of fNIRS signals

The raw optical data acquired at 830 nm and 690 nm is filtered using a bandpass filter (0.001-

0.5 Hz) to remove the signals arising from systemic physiology. The optical signals acquired

fromthe surface of thehead is contaminatedby systemic signals like theheartbeat, respiratory

signal, and others. The filtered optical data is further normalized to remove the instrument

effect.

The optical signals are then processed using modified Beer-Lambert law (see Section 1.1.2,

Equations 1.2, 1.3, 1.4) to calculate the relative change in concentration of HbO and HbR.

For the acquisition of fNIRS signals, 8 optode sources and 8 optode NIR light detectors

are used. The light emitted by one source is received by all the detectors and potentially 64

signals can be reconstructed. This makes no sense because very little intensity of the light

emitted by a source is received by the farthest detectors. Sources and detectors are therefore

coupled so that only the closest to each other form an acquisition channel. 20 acquisition

channels are considered in the analysis, 10 on each side of each hemisphere as reported in

Table 2.3

In the offline analysis, the fNIRS signals are first processed and then segmented according

to the same triggering system used for EEG signals and shown in Table 2.2 and Figure 2.3.

2.5 Features Extraction

At this stage, some features are extracted from the time series recorded during the response

periods.

A feature is an individual measurable property of the process being observed. The aim is

to describe and quantify the signals trend in the time domain and, only for EEG signals, in

the frequency domain. The final goal is to differentiate a yes and no thinking period.

Since we do not know in advance which features or set of features can best distinguish

between a yes and ano and the variability of the signal implies that the features used to classify
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Left hemisphere Right hemisphere

Source Detector Channel Name Source Detector Channel Name

S1 D1 Ch. 1 S5 D5 Ch. 11
S1 D2 Ch. 2 S5 D6 Ch. 12
S1 D3 Ch.3 S5 D7 Ch. 13
S2 D1 Ch. 4 S6 D5 Ch. 14
S2 D3 Ch. 5 S6 S7 Ch. 15
S2 D4 Ch. 6 S6 D8 Ch. 16
S3 D2 Ch. 7 S7 D6 Ch. 17
S3 D3 Ch. 8 S7 D7 Ch. 18
S4 D3 Ch. 9 S8 D7 Ch. 19
S4 D4 Ch. 10 S8 D8 Ch. 20

Table 2.3: Coupling of fNIRS optodes for signal reconstruction:

Sources and detectors are named and placed as shown in Figure 2.2

can vary in different sessions, a large number of features are extracted in order to describe the

signal in every aspect.

2.5.1 EEG features

All the features are extracted from the signals of each channel and of each frequency bands

used to filter the signals (see Section 2.4.1). In the following, x is the vector, containing the

N samples of the signal recorded during one thinking period, from one channel and filtered

in one frequency band.

For the EEG signals, 29 different features are extracted and they can be divided into three

categories: amplitude features, range features, and spectral features. The EEG features ex-

tracted for a single thinking period signal are 29features ∗ 5bands ∗ nchannels

Manyof the EEG features are taken and adapted from the software forMatlab ’NEURAL’,

developed by Toole [33].
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Amplitude Features

The amplitude features consider the dynamic of the signals in the time domain. Each feature

is calculated on every segment of the recorded signals representing the thinking period, x,

which has approximately a length of L = 5000samples

– Total Power: is the power of the signal in the time domain. It is evaluated as:

TotalPower =
1

N

N∑
k=1

x2
k (2.2)

– Standard Deviation: measure of variability of the signal about amean value. It is esti-
mated using theMatlab function nanstd(x), which evaluate the standard deviation
of the signal in x after removing all NaN values.

– Skewness: measure of the degree of asymmetry of the distribution of the data around
themean value. A symmetrical distribution of the data has skewness equal to 0, while,
a negative skew commonly indicates that the tail of the distribution of the data is on
the left side, and a positive skew indicates that the tail is on the right. It is calculated
using the Matlab function skewness(x).

– Kurtosis: it is an index of the Gaussianity of the data distribution. The kurtosis
of any univariate normal distribution is 3; if >3 the curve is defined as leptokurtic,
that is, more ”pointed” than a normal distributed one. < 3 the curve is defined as
platykurtic, i.e. more ”flat” than a normal distributed one. It is calculated using the
Matlab function kurtosis(x).

– Maximum andMinimum: theminimumand themaximumvalue of the amplitude
of the signal in the time domain.

– Position of Maximum and Minimum: index of the sample in which the maximum
andminimumvalue of the amplitude of the signal is recorded. In each trial of thinking
period, the samples are numbered from 1 to L
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– Area Under the Curve: evaluated using theMatlab function trapz(x), which com-
putes the approximate integral of x via the trapezoidal method with unit spacing.

– Number of Peaks: number of local maximum of the signal. A local maximum is a
sample which larger than its two neighboring samples. It is evaluated with theMatlab
function findpeaks(x)

– Peaks Mean: mean of the value of the local maximum of the signal.

Range Features

Range features also characterize the EEG signals in the time domain, but, instead of consid-

ering the signal as a time-series of measure, a new vector is obtained from the peak to peak

measure of the voltage. This new signal, named rangeEEG, is calculated over a short-time

windowed segment as the difference between the maximum and minimum:

rEEGi[l] = max(xi[n]w[n− lK])−min(xi[n]w[n− lK]) (2.3)

w[n] is theHammingwindowused. The length of thewindow,M , is 1/5 of the length of the

segment x,N . K is the time-shift factor, related to the percentage overlapH , set at 50, and

window length M as K = [M(1 − H/100)]. To represent the range EEG, the following

features are used:

– Mean: meanvalueof the rangeEEG. It is evaluatedwith theMatlab functionnanmean(rEEG),
which calculates the mean of rEEG after removing the NaN values.

– StandardDeviation: as for the amplitude features, evaluatedwithMatlab asnanstd(rEEG)

– Coefficient of Variation: is the ratio between the standard deviation and the mean, as
evaluated above.

30



– Median: evaluated with theMatlab function nanmedian(rEEG)which returns the
sample median of the range eeg, treating NaNs as missing values.

– Lower and Upper Margin: are evaluated as the 5th 95th percentiles respectively and
represented in the following asRlower andRupper They are calculated inMatlab asRlower

= percentile(rEEG, 5) and Rupper = percentile(rEEG, 95)

– Width: is ameasure of the spread og the rEEG. It calculated as the difference between
the upper and lower margin:

Rwidth = Rupper −Rlower (2.4)

.

– Asymmetry: is a mesure of the symmetry of the rEEG and it’s calculated as:

Rasymm =
(Rupper −Rmedian)− (Rmedian −Rlower)

Rwidth

(2.5)

Rasymm ranges from -1 to 1; values close to 0 indicate symmetry and values close to± 1
indicate asymmetry of the rEEG

Spectral Features

These features represent the spectral characteristics of the signals. The first step to evaluate

all the spectral features is to estimate the power spectral density (PSD) of each segment of the

EEG signals, x[n], of lengthN (approximately 10 seconds/5000 samples).

The PSD estimate used is the Welch priodogram Px[K]:

Px[k] =
1

LMU

L−1∑
l=0

|
M−1∑
n=0

x[n]w[n− lK] ∗ e−j2πkn/M |2 (2.6)
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wherew[m] is the analysis window of lengthM with energyU , aHammingwindow is used;

K is the time shift factor related to the percentage overlapH and to the window lengthM

as K = [M(1 − H/100)]; L is the number of segments obtained with the windowing:

L = [(N +K −M)/K]

In particular, the PSD is estimated using thematlab function pwelch, with the following

options:

Window type: Hamming

Window length (M ): 1/2 of the length of x[n]

Overlap percentage: 50

Number of DFT points: 5000 (If it is greater than the segment length, the data is zero-

padded)

The features used for describing the signals in the frequency domain are listed below; Px

is the PSD estimate.

– Power: calculated as the area under the curve delineated byPx, inmatlabtrapz(Px).

– Mean: mean of the values in Px

– Number of Peaks: number of local maximum (as defined for the amplitude feature)
in the power spectrumPx. The number of peaks is quantified using theMatlab func-
tion findpeaks(Px).

– Peaks Mean: mean of the value of the local maximum of Px.

– Maximum and Minimum: values of the absolute maximum and minimum of Px.

– Position ofMaximum andMinimum: indexof the frequency atwhich themaximum
and minimum value of the amplitude of Px is recorded.

– Flatness: also known asWiener entropy, is a measure of the width and uniformity of
the power spectrum. It is estimated using:

Fwiener =
exp ( 1

L

∑b
k=a logPx[k])

1
L

∑b
k=a logPx[k]

(2.7)
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where L is the length of the sequence [a, b] representing the range of the frequency
band.

– Entropy: also known as Shannon entropy, quantifies the global regularity of the
power spectrum. It is estimated using:

Fshannon = − 1

logL

b∑
k=a

P̄ x[k] log P̄x[k] (2.8)

where P̄ x is calculates as P̄x = Px[k]/
∑b

k=a Px[k]

2.5.2 fNIRS features

In the following, the vector containing the N samples of one thinking period recorded in

one channel is indicated with y. The features extracted from the fNIRS signals are:

– Mean: is the mean of the signal in the time domain.

– Variance: expected value of the squared deviation from themean of y. It is quantified
using the Matlab function var(y).

– Maximum and Minimum: values of the absolute maximum and minimum of y.

– Skewness: measure of the degree of asymmetry of the distribution of the data around
the mean value. As for the EEG signals, it is evaluated using the Matlab function
skewness(y).

– Kurtosis: it is an index of the Gaussianity of the data distribution. As for the EEG
signals, it is calculated using the Matlab function kurtosis(y).

– Root Mean Squared: is defined as the square root of the mean square, i.e. the arith-
metic mean of the squares of a set of numbers and it is a measure of the magnitude of
the data. It is estimated using the Matlab function rms(y).
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– Slope: the data in the vector are fitted using a 1st order polynomial: y[n] = P (1) ∗
n+P (2). The coefficients of the polynomial are estimated using theMatlab function
polyfit(t, y, 1), where t is a vector containing the istants of sampling. The first
coefficient (P (1)) is considered as the features Slope.

– Polynomial Slope: the data in the vector y are fitted using a polynomial of degree 4:
y[n] = P (1) ∗n4+P (2) ∗n3+P (3) ∗n2+P (4) ∗n+P (5). The first coefficient
(P (1)) is considered as the features Polynomial Slope.

2.6 Features Selection

After the features extraction phase, regardless of the type of signal that has been processed

(EEG only, NIRS only, both), hundreds of variables are obtained that could potentially be

used for classification. The high dimensionality of the data often decreases the ability of

learning algorithms to extract useful information and correctly classify the classes.

Feature selection is the process of identifying a subset of relevant features that are themost

suitable to distinguish the classes and it is necessary mainly for three reasons:

1. Improving of classifier generalization: generalization is a kind of ability with which a
learnedmodel can obtain good prediction results on unseen data. Learning unknown
models from a high-dimensional feature space runs the risk of overfitting leading to
poor generalization and consequently bad classification performances. [34]

2. Removing irrelevant and dependent variables: a feature can be regarded as irrelevant
if it is conditionally independent of the class labels. To remove an irrelevant feature, a
feature selection criterion is required which can measure the relevance of each feature
with the output class/labels. [35]

3. Reducing the effect of noise: the data collected is often contaminated by a lot of noise.
Although in the filtering phase much of the noise is removed, some components may
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remain in the signals and some of the extracted features, although theoretically rele-
vant for classification,may reflect these components instead of the useful information,
degrading learning abilities.

Hence, some procedure to evaluate, rank and eventually remove the features must be

adopted to obtain a subset of features. The features selection methods can be divided into

three categories: [36]

1. Filter methods: use different techniques to rank the features according to some prop-
erties (i.e relevance); the highly ranked features or the features above a certain thresh-
old are selected and applied to a predictor.

2. Wrapped Methods: the selection criterion is the performance of the predictor using
a subset of features. Since directly evaluating all the subsets of features for a given
dataset becomes a hard or even infeasible problem in terms of computational costs,
suboptimal subsets are found by employing search algorithms.

3. Embedded methods: a trade-off between the first two methods by embedding the
feature selection into themodel construction. Embeddedmethods select features dur-
ing the process of model construction to perform feature selection without further
evaluation of the features.

In this work, a wrappedmethod is used: several subsets of features are created and the one

where the classifier has better performance is chosen.

The subsets of features are first created by choosing the features extracted from the signals

of thenc channels ranked asmost informative; then thenumber of features is further reduced

by choosing, for EEG signals, the features of themostnb informative frequency bands, while

for fNIRS signals the features of the signal types (oxy/doxy) ranked asmost informative. The

following sections 2.6.1 and 2.6.2 explain how the channels, bands and types of signals are

sorted.

After the selection of channels, bands, and signal types the number of features is further

reduced: features belonging to the selected nc channels and nb bands/types are ranked using
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the Maximum Relevance Minimum Redundancy (mRMR) method (see 2.6.3) and the first

nf features are used to the learning process of the classifier.

A remaining issue is how to determine the optimal number of channelsnc, of bands/types

nb, and features nf to use to create the optimal subset of features. For this reason, many sub-

sets of features are created, varying the number of channels nc, the number of frequency

bands/types of signal nb and, finally, the number of features used nf . The different subsets

thus created are used to train and test as many classifiers. (See Section 2.7 for classifiers de-

scription). Then the subset of features is chosenwhose corresponding classifier has obtained

the best performance in prediction. If two subsets lead to the same accuracy, the one with

the lowest number of features is chosen to reduce the computational cost.

Before using any features ranking or selectionmethod, features are normalized by subtract-

ing the mean and dividing by the standard deviation.

2.6.1 Channels selection

Some of the channels used for the acquisition of signals, both EEG and fNIRS, sometimes,

due to their position or to some malfunction, do not bring any useful information to the

classification. For this reason, the channels are ranked on the basis of their mutual informa-

tion with the class labels. The channel selection is treated as a features selection problem,

considering all features coming from a channel together; in particular, the mutual informa-

tion between the set of features extracted from a channel and the class labels is estimated:

[I1(xc1, c), I2(xc2, c),..., Id(xcd, c)]. xc1 is the set of features extracted by the signals of

channel 1, c are the class labels and d is the number of channels. [37]

Only the features belonging to the nc channels with the higher mutual information will

pass to the selection phases described in the next sections 2.6.2 and 2.6.3. The number of

channels selected nc varies across the different features subsets.
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2.6.2 Bands and type selection

The selection of the bands (EEG signals) and of the types of signals (fNIRS signals) happens

exactly in the same way as the selection of the channels but, the mutual information is cal-

culated between the class labels and blocks of features that have in common the frequency

band or the type of signals from which they have been extracted.

The number of bands/signal types selected nb varies across the different features subsets.

2.6.3 Features ranking

The features contained in each subset created with the channel and band/type selection are

still some tens. Some of them could be redundant, correlated or irrelevant, undesirable char-

acteristics for the features to be used in the prediction process since adding no information

but just noise to the prediction process.

To select the features with maximal relevance to the target class c, measures of mutual in-

formation or correlation are usually used. These methods operate a sequential search, rank-

ing the features with a score and selecting the nf best individual features. Though “the nf

best features are not the best nf features”: it is likely that features selected according toMax-

Relevance could have large redundancy. When two features highly depend on each other,

the respective class-discriminative power would not change much if one of them were re-

moved, but, oppositely, there would be less probability of over-fitting and addition of noise.

So, in this final phase of features selection, the Max-Relevance, Min-Redundancy (mRMR)

method is applied to have mutually exclusive and relevant features. [38]

In mRMR method, features are subsequently added to the new subset to maximize the

operator Φ(D,R) = D − R where D represent the relevance of a features and is obtained

with

D =
1

|S|
∑
xi∈S

I(xi, c) (2.9)
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and R, representing the redundancy factor, with

R =
1

|S|2
∑

xi,xj∈S

I(xi, xj) (2.10)

I(xi, c), in 2.9, is the mutual information between the individual feature xi and the class

labels in c; I(xi, xj), in 2.10, is themutual informationbetween the featurexi andxj ;S is the

cardinality of the subset of already selected features, xi is the feture candidate to participate

in the subset.

The operator Φ(D,R) combine the constraints of the maximal relevance criterion and

minimal redundancy condition, respectively: maxD(S, c) andminR(S).

In practice, every feature is added to the subset of selected features when maximizes Φ

until the subset has reached the maximum desired cardinality nf .

This features selection method has been implemented by adapting the code proposed in

the Matlab toolbox ”FSLib 2018” developed by Roffo et al.[39] [40]

2.7 Classification

For the classification task, a support vector machine (SVM) model is used. The classifier is

built using theMatlab fitcsvmwhich trains an SVMmodel for two-class classification on a

low-dimensional predictor data set with automatic parameter optimization obtained setting

the ’OptimizeHyperparameters’ option as ’auto’. For more robust results, 5-fold validation

is used with a different partition at each iteration.

To verify that the built classifier is significantly different from a random one, the chance

level with a confidence interval at α = 0.05 was calculated as proposed by Müller-Putz et

al. in [41]. Indeed, it is not only meaningful to present classification accuracies, but also

the number of trials on which the computations are based. Exemplarily, the chance level in a

simple 2-class paradigm is not exactly 50%;more precisely, it is 50%with a confidence interval
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at a certain level α depending on the number of trials. The confidence intervals are given by

p±
√

p(1− p)

n+ 4
Z(1−α

2
) (2.11)

where p is the theoretical chance level and, since both classes are equally likely to occur; p =

0.5; n is the number of trials used to evaluate the accuracy; Z(1−α
2
) is the 1 − α

2
quantile of

the standard normal distribution.

2.8 Offline Analysis method

The offline analysis is carried out considering the blocks acquired during the same session.

The blocks are initially processed all together and then, before extracting features, the sig-

nals are divided into two parts, train and test set, considering the chronological order of ac-

quisition. In all the offline analysis, 2/3 of the thinking period signals compose the train test

and the remaining 1/3 is used for the test set.

From the first set of signals, all the available features are extracted and normalized (i.e.

mean subtraction and division for the standard deviation), saving the parameters (mean and

standard deviation) used for the normalization which will be used on the test set to simulate

the online procedure. These features are then passed to the selection process.

As explained in the sections 2.6.1, 2.6.2 and 2.6.3, the subsets to be tested are created first

by varying the number of channels chosen nc from 1 to 5, and then varying the number of

bands/typesnb from 1 to 3 (for fNIRS signals, there being only 2 different types, the number

varies from 1 to 2), obtaining nb ∗ nc different subsets. The ni features contained in each

of these nb ∗ nc subsets are now ranked with the mRMR method and the final subsets to

be tested are created by varying from 1 to ni/2 the number of features chosen from the best

ranked.

Once obtained many subsets of features, to choose the best one for predicting, there is

a further random subdivision to evaluate the performance of the classifier: each subset of
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features is again divided into a sub-train (70%) and a validation (30%) set. The sub-train set

is used to train the classifier and built the model which is then used to predict the samples

in the validation set and thus have an estimate of the accuracy. This operation is repeated

several times (200) generating randomly different subdivisions of sub-train and validation

set. The accuracies obtained using the different pairs of sub-train/validation sets from the

same subset of features are averaged to have a stable estimate of performance. The subset

which obtains the best accuracy in this phase is then selected as the (sub-)optimal one.

Subsequently, the chosen features are extracted from the test set signals and normalized

using the mean and standard deviation calculated on the train set.

The model is built with the optimal subset of features using the 2/3 of the signals as the

train set, on which the accuracy of the model is evaluated and the remaining 1/3 as the test

set, trying to predict the labels as in the online application and evaluating the performances.

The offline analysis was carried out using:

1. only the features extracted from the EEG signals;

2. only the features extracted from the fNIRS signals;

3. the features extracted from both signals at the same time.

In the latter case, the train set is obtained by concatenating the features extracted from the

EEG and fNIRS signals and then using the features selection as explained in Section 2.6.
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3
Results

3.1 Signals Processing

The goal of this phase is to remove noise and artifacts that always affect the signals but, at the

same time, preserve the information.

In Figure 3.1, the effect of subtracting themean from the EEG, EMG and EOG signals can

be assessed. After this operation, the signals maintain their characteristics intact and they are

more easily comparable with each other. The choice to bring the signal to null average and

not to normalize it (bring it to unitary variance) was made to better preserve the amplitude

of peaks that could be decisive in the classification.

In the Figure 3.2, a yes and a no response sample are plotted. In both cases, the signalwidth

is almost 20 times smaller in the Beta band than in the Delta band. In general, therefore,

the filtered signal in the wideband mainly reflects the components of the two slowest bands,

Delta andTheta, while the two fastest bands provide little information, as expected from the
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physiological characteristics of the EEG signals of this patient.

Figure 3.1: EEG, EOG and EMG signals before and after mean subtraction:

The plots show a fraction (700s) of the signals acquired from 5 EEG, 4 EMG and 4 EOG channels during a training

block (in particular visit 1, day 1, block 1). The raw signals, as acquired from the amplifier are plotted on the left while,

on the right side, there are the same signals after themean subtraction.
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Figure 3.2: EEG Yes and No signals filtered in 5 bands

Example of two segments of EEG signal, representing one yes thinking period (above) and one no thinking period

(below), filtered and divided in the 5 bands of interest. The signals plotted are form channel Cz, extracted from block 4

of visit 7, day 3
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Figure 3.3: EEG, EMG and EOG before and after processing

The signal represents the first thinking period acquired in an EEG (Cz), EMG (EMGL) and EOG (EOGR) channel of

visit7, Day3, block 4. Each of the signals is plotted as acquired (1), after themean subtraction (2) and after the band-

pass filtering (3)
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In Figure 3.3, the main phases of the processing are shown for EEG, EMG and EOG sig-

nals. Bandpass filtering removes the fastest components of the signal which, considering the

physiological characteristics of the brain activity of patients with ALS, are attributable only

to noise. With this operation, as it is clearly seen in the figure 3.3, also the drift of the signals,

attributable to artifacts caused by the instrumentation, is removed.
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Figure 3.4: Power Spectrum of EEG, EOG and EMG signals: Plot in the window [0-70Hz] of the PSD of the first thinking

period acquired in a EEG (Cz), EMG (EMGL) and EOG (EOGR) channel of visit7, Day3, block 4.

The spectral analysis of the EEG, EOG and EMG signals, of which a visual example is

plotted in Figure 3.4, leads to the exclusion of the EOG and EMG signals from the following

phases. These signals are mainly acquired to verify if there is some residual muscular activity

that can be used to differentiate between affirmative and negative responses, for example by

asking the patient to move a muscle to answer yes and do nothing to answer no. In this case,

the activity by EMG and EOG is too slow and weak to be traced back to voluntary muscle

activity. Including these signals in the following phases of features extraction and selection

would lead to include signals that are not very informative but noisy.
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Figure 3.5: HbO and HbR fNIRS Yes and No signals

Example of two segments of fNIRS signals, representing one yes thinking period (above) and one no thinking period

(below). The signals on the left are themeasure of the relative changes in the concentration of HbO, while the signals

on the right are themeasure of the relative changes in the concentration of HbR. The signals plotted are recorded

from the same channel, extracted from block 4 of visit 7, day 4

The Figure 3.5 shows three fNIRS signal segments once fully processed and obtained the

relative concentrations of HbO and HbR. The three segments represent a yes response pe-

riod, a no response period and a baseline period. There is a considerable difference in the

amplitude of the HbO and HbR signals.

3.2 Features Extraction and Selection

From the acquired EEGor fNIRS signals, the features, used in the following phases ofmodel

construction and prediction, are extracted. EEG and fNIRS signals are treated separately

respecting their different physiological nature, as explained in Section 2.5.1 and 2.5.2.

The extracted features are organized in nt × nf matrices where nt is the number of trials
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considers and nf is the number of features extracted.

3.2.1 Features extracted from EEG signals

Initially nftot × nctot × nbtot features are extracted from each EEG thinking period signal in

the train and validation sets, where nftot = 29 is the total number of available features for

EEG signals; nctot is the total number of EEG acquisition channels which varies among the

different visits and is reported in 2.1; andnbtot = 5 is the number of frequency band inwhich

the signals are filtered (Wide band, Delta band, Theta Band, Beta Band, and Alpha Band).

The followingTables show the number of channels, bands and features chosen to obtain the

(sub)optimal subset of features extracted from EEG signals for classification in each session.

Session N° of blocks
Validation

Accuracy (%)
nc nb nf

Day 1 2 87.00 2 3 73

Day 2 4 70,437 1 1 8

Day 3 2 91.250 1 2 6

Day 4 3 84.833 5 3 97

Day 5 2 86.375 3 2 5

Day 6 4 66,562 5 3 47

Table 3.1: Selection of features extracted from the EEG signals of visit1

Session N° of blocks
Validation

Accuracy (%)
nc nb nf

Day 1 5 70.55 4 1 1

Day 2 4 72.063 2 2 10

Day 3 1 90 2 2 1

Table 3.2: Selection of features extracted from the EEG signals of visit5
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Session N° of blocks
Validation

Accuracy (%)
nc nb nf

Day 1 2 64.250 1 3 14

Day 2 3 79.5 3 2 3

Day 3 4 79.125 5 3 14

Day 4 5 68.250 2 3 12

Day 5 4 70.937 1 1 3

Table 3.3: Selection of features extracted from the EEG signals of visit6

Session N° of blocks
Validation

Accuracy (%)
nc nb nf

Day 1 3 71.334 2 1 3

Day 2 4 63.5 2 3 13

Day 3 3 73.312 5 1 3

Day 4 4 75.812 3 3 54

Table 3.4: Selection of features extracted from the EEG signals of visit7

3.2.2 Features extracted from fNIRS signals

Initially nftot ×nctot ×nttot = 440 features are extracted from each fNIRS thinking period

signal in the train and validation sets, where nftot = 11 is the total number of available

features for fNIRS signals; nctot = 20 is the total number of fNIRS acquisition channels;

nttot = 2 is the number of different types of fNIRS signals reconstructed (oxy/dxy). The

following Tables show the number of channels, type of signal and features chosen to obtain

the (sub)optimal subset of features extracted from fNIRS signals for classification in each

session.
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Session N° of blocks
Validation

Accuracy (%)
nc nb nf

Day 1 2 77.5 4 1 24

Day 2 4 68.187 5 1 28

Day 3 1 92.25 4 1 7

Day 4 3 72.5 4 2 1

Day 5 2 73.125 5 2 8

Day 6 4 67.5 4 1 11

Table 3.5: Selection of features extracted from the fNIRS signals of visit1

Session N° of blocks
Validation

Accuracy (%)
nc nb nf

Day 3 4 64.875 5 2 26

Table 3.6: Selection of features extracted from the fNIRS signals of visit5

Session N° of blocks
Validation

Accuracy (%)
nc nb nf

Day 1 2 83.125 4 1 1

Day 2 3 60.2 2 1 10

Day 3 4 64.625 5 2 26

Day 4 5 74.437 5 1 2

Day 5 4 74.625 5 2 13

Table 3.7: Selection of features extracted from the fNIRS signals of visit6
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Session N° of blocks
Validation

Accuracy (%)
nc nb nf

Day 1 2 83.125 4 1 1

Day 2 3 60.2 2 1 10

Day 3 4 64.625 5 2 26

Day 4 5 74.437 5 1 2

Table 3.8: Selection of features extracted from the fNIRS signals of visit7

3.2.3 Combination of features extracted from EEG and fNIRS signals

Beforeproceedingwith the combined analysis of the features extracted fromEEGand fNIRS,

the perfect correspondence between the blocks acquired with the twomethods was checked,

verifying the coincidence of the triggers and the class labels. In some cases, in fact, for various

reasons, the acquisition may not have taken place with both techniques at the same time.

Following these checks, the combined analysis was not possible for the sessions of visit 5 and

for the Day 2 of visit 6. For the same reason, in some sessions, only fewer blocks are used

than in the corresponding separate EEG and fNIRS analyses.

The combination of the features of the EEG and fNIRS signals was obtained by chaining

the two matrices resulting separately from the two different extraction procedures.

The features selection then takes place in the same way as when only one type of signal is

considered. The channels are sorted and if the bests are only the fNIRS acquisition channels,

in the next step only the type of signals between oxy and dxy is chosen. If instead some EEG

channels and some fNIRS channels are chosen at the same time, the ranking to choose nb is

made between the frequency bands and the types of signals (oxy/dxy).
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Session N° of blocks
Validation

Accuracy (%)
nc

(EEG/fNIRS)
nb nf

Day 1 2 78.375
5

(3/2)
3 124

Day 2 4 68.5
5

(0/5)
1 28

Day 3 1 92.5
4

(0/4)
1 13

Day 4 3 72.667
3

(0/3)
1 7

Day 5 2 73.125
5

(1/4)
3 19

Day 6 4 66.625
5

(0/5)
1 12

Table 3.9: Selection of features extracted from the EEG and fNIRS signals of visit1

Session N° of blocks
Validation

Accuracy (%)
nc

(EEG/fNIRS)
nb nf

Day 1 2 83.75
3

(1/2)
2 1

Day 3 4 65.687
5

(0/5)
2 26

Day 4 5 75.5
5

(0/5)
1 2

Day 5 4 74.187
4

(0/4)
1 6

Table 3.10: Selection of features extracted from the EEG and fNIRS signals of visit6 The analysis of day 2was not possible

due tomismatch of the fNIRS and EEG signal blocks
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Session N° of blocks
Validation

Accuracy (%)
nc

(EEG/fNIRS)
nb nf

Day 1 3 68.167
5

(2/3)
2 5

Day 2 4 67.25
3

(0/3)
1 15

Day 3 4 67,313
5

(0/5)
2 2

Day 4 3 69.375
3

(0/3)
1 4

Table 3.11: Selection of features extracted from the EEG and fNIRS signals of visit7

3.3 Classification

First of all, the adjusted chance levels are calculated based on the number of trials consid-

ered, as proposed in [41]. Indeed, the chance level in a 2-class paradigm is not exactly 50%,

but, more precisely, it is 50% with a confidence interval at a certain level α depending on the

number of trials. In particular, the chance levels calculated in the Table 3.12 using Equation

2.11 with α = 0.05, serve to assume that, if a given classifier has prediction accuracy greater

than the corresponding chance level, it differs significantly from a random one with 95%

confidence.

In Table 3.12, the new estimated chance levels are shown for a correct analysis of the results

of the classification reported below

N° of blocks Test trials Test trials/class
Chance level

(95% confidence)

2 14 7 70 %
3 20 10 67 %
4 26 13 65 %
5 34 17 63 %

Table 3.12: Adjusted chance level:

calculated as proposed byMüller-Putz et al. in [41] on the basis of the number of trials on which themodel accuracy is

evaluated
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In the following, ”Model Accuracy” is the accuracy obtained on the train test with the

validation process, while ”Classification Accuracy” is the accuracy of the classifier predicting

the class of the samples in the test set.

In all the cases reportedbelow, themodel accuracy is obtainedwith the 5-fold cross-validation

on the train set while the classification accuracy is obtained using the model created with the

Matlab function traincsvm to predict the classes of the test set.

3.3.1 Classification with EEG signals

The results obtained using only the features extracted from the EEG signals are shown below.

The number of features used to create the train and test set in each session, as well as the

number of blocks considered, is the one reported in the corresponding Tables 3.1, 3.2 3.3, and

3.4 of the Section 3.2.1.

The results obtained are poor with only 1 session out of 18 above the chance level.
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Figure 3.6: Classification results using EEG signals for visit 1
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Figure 3.7: Classification results using EEG signals for visit 5
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Figure 3.8: Classification results using EEG signals for visit 6
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Figure 3.9: Classification results using EEG signals for visit 7

3.3.2 Classification with fNIRS signals

The results obtained using only the features extracted from the fNIRS signals are shown

below. The number of features used to create the train and test set in each session, as well as

the number of blocks considered, is the one reported in the corresponding Tables 3.5 3.6 3.7,

and 3.8 of the Section 3.2.2.

In 7 out of 16 sessions analyzed it was possible to predict the thinking period signal class

using the features extracted from the fNIRS signals with an accuracy above the chance level.
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Figure 3.10: Classification results using fNIRS signals for visit 1
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Figure 3.11: Classification results using fNIRS signals for visit 5
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Figure 3.12: Classification results using fNIRS signals for visit 6
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Figure 3.13: Classification results using fNIRS signals for visit 7

3.3.3 Classification with EEG and fNIRS signals

The results obtained by concatenating the features extracted from the EEG and fNIRS sig-

nals before selecting the features are shown below. The number of features used to create
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the train and test set in each session, as well as the number of blocks considered, is the one

reported in the corresponding Tables 3.9, 3.10, and 3.11 of the Section 3.2.3.
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Figure 3.14: Classification results using combination of features from EEG and fNIRS signals for visit 1
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Figure 3.15: Classification results using combination of features from EEG and fNIRS signals for visit 6
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Figure 3.16: Classification results using combination of features from EEG and fNIRS signals for visit 7
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4
Discussion

4.1 Considerations on the psychophysical condition of the patient dur-

ing the visits

Classifying the signs of the thinking period following a yes or no answer to a question is a

particularly difficult task when working with CLIS patients even for reasons beyond mathe-

matical considerations. The lack of communication with the patient prevents any feedback

regarding the state of health, wakefulness, attention, and interest of the subject, which are

extremely important for the functioning of the system. When information on the state of

the patient is available mainly thanks to the presence and collaboration of family members

and caregivers, the interpretation of the results and of the correct functioning of the system

is simpler and at the same time more complete.

In the cases considered, information on the psychophysical state of the patient is only

available for visits 1 and 7.
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Visit 1 was held at a time when, in some cases, the patient was still able to communicate

using jaw movements that family members were capable of interpreting to understand his

condition. In the first three days of acquisition of visit 1, the patient was not in good psycho-

physical condition, unlike the following days. The first visit was in fact held in Germany, in

Tübingen. The patient, who lives in Italy, had faced a long journey that could have initially

destabilized him. According to the relatives, however, after the necessary settling and rest

following the trip, the patient greatly appreciates changing the environment. This trend is

clearly reflected in the good performance of days 4,5 and 6 compared to the first three.

Visit 7washeld at thepatient’s home inSeptember 2018. According to familymembers, on

rare occasions, the patient was still able to move his jaw, especially in case of pain or discom-

fort. This type of movement probably represents an involuntary reflex but it is nevertheless

useful for interpreting the subject’s state.

During this visit, 4 days of acquisition were carried out: on days 1 and 2 the patient was

instructed to think yes or no to answer the questions while, on days 3 and 4, the patient was

instructed to think yes and try tomove the jaw to say yes and think no and do nothing to say

no. In the first twodays of acquisitions of visit 7, sufficient performances are obtained; onday

3 when the patient received different instructions, the classification accuracy is particularly

high. Even if analyzing the EMG signals acquired during day 3 there are no clear muscle

activations, considering the good classification performance in that session, it can be assumed

that it still exists a strong activation in the brain resulting from an attempt to move a muscle.

This hypothesis is supported by the fact that the jaw muscle was the last muscle the patient

was able to move voluntarily before the transition from LIS to CLIS.

In day 4, the patient was in a state of discomfort following a night of little sleep and pain

communicated withmovements of the jaw, and it was also necessary to stop acquisitions sev-

eral times so that the caregivers could intervene tomeet the primary needs of the patient. For

this reason, it has been possible to evaluate the paradigm of day 3 only on one session and

this does not allow to say with certainty that asking the patient to try tomove amuscle is bet-
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ter than just asking him to think yes or no. To confirm this hypothesis, further acquisitions

already planned for the next months, would be necessary.

4.2 Classification with features from EEG signals

Observing the results reported in the histograms 3.6, 3.7, 3.8 and 3.9, in almost no case it is

possible to classify the signal classes with accuracy above the chance level using the features

extracted from the EEG signals. This leads to the assumption that the EEG signals are not

very informative for the classification task using the paradigm presented.

By comparing the EEG signals of a healthy individual with the ones of anALS patient, the

latter aremuch slower andweaker due to physiological changes in brain functionality caused

by the disease. As consequence, the non-invasively recorded EEG signals of ALS patients in

this BCI system, further attenuated by the distance between source and receiver, could be

overly attenuated and covered by noise to provide the information needed for classification.

Despite the fact that EEG signals from ALS patients are rather slow, their dynamic is still

fast compared to other biological and neurological process and they immediately reflect a

brain activation when it occurs. The features extracted and used for the classification are cal-

culated on 10 seconds of thinking period EEG signal. It is likely that only a fraction of the

EEG thinking period signal contains information about the response given by the subject

and these are covered by the rest of the samples considered. It would, therefore, be necessary

an approach that considers narrower windows, of 1 or 2 seconds, of EEG thinking period sig-

nals. In this case, the first problem to be addressed would be to identify which time window

represents the patient’s response, i.e. in which instant the brain activation corresponding to

the patient answer occurs.

4.3 Classification with features from fNIRS signals

Unlike the classification using the features extracted from the EEG signals which did not lead

to any significant results, using the features extracted from the fNIRS signals an accuracy
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above the chance level was achieved for 7 sessions.

In the histograms in Figure 4.1 and 4.2 it is reported the distribution of features selected

for classification respectively in all sessions and only in sessions with the accuracy above the

chance level.

In both histograms, we observe first of all that all 9 different features proposed have been

chosen for classification at least once. From this, it can be deduced that all the features and/or

their combination contain some information useful to discriminate between yes and no an-

swers.

In the sessionswith the accuracy above the chance level, only 12 of the 20 channels available

were taken into account; this could suggest a repositioning of the channels in order to map

more densely the areas where there is more activity useful for classification. It is interesting

to note that these 12 more informative channels are the channels positioned centrally on the

scalp. The central histogram of Figure 4.1 shows that in sessions with classification below

the chance level, different channels are chosen for classification than those used in sessions

with good results. In these sessions, where the distinction between yes and no is probably

less clear (or non-existent because the patient was not responding), the choice of channels is

probably driven by the noise and overfitting of the model.

As can be deduced from the third histogram of both Figures 4.1 and 4.2, the signals of

variation of concentration of HbO (oxy) and HbR (dxy) are equally informative and it is,

therefore, necessary to consider them both for the choice of features.

A possible explanation why classification with fNIRS signals leads to better performance

than with EEG signals is that the former have a slower dynamic. The effects measured with

the fNIRS technique, i.e. the change in relative concentration ofHbO andHbR, occur after

brain activation and last for several seconds. The duration of 10 seconds of thinking period

was chosen precisely to appreciate and record this type of response even if the subject actually

performs the task required (answer the question) for a more limited time period.
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Figure 4.1: Selected features distribution in all the sessions:

distribution among the features typology (left), acquisition channel (center) and signal type (right) of the features

selected for the classification in all the sessions considered
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Figure 4.2: Selected features distribution in the sessions with accuracy above the chance level:

distribution among the features typology (left), acquisition channel (center) and signal type (right) of the features

selected for the classification inthe sessions with accuracy above the chance level (i.e. visit 1,Day 4, Day 5 andDay 6;

visit 5 Day 3; visit 7 Day 1, Day 2 andDay 3)
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4.4 Classification with combination of features from fNIRS and EEG sig-

nals

The concatenation of the features extracted from the EEG and fNIRS signals before their

selectiondidnot lead to clear improvements in the system’s performance but, on the contrary,

almost in any case degraded them. This is due to the fact that the high dimensionality of

the features and the small number of samples easily leads to the overfitting of the model,

distorting the decision of which features are more informative than others.

On day 3 of visit 7, a session that in general has the best performance, chaining the features

extracted from the EEG and fNIRS signals, exactly the same features of the case in which the

selection is only among those extracted from the fNIRS signals are chosen. This means that

the classifier is trained correctly and even increasing the dimensionality of the dataset with

features that are not very informative (with only the EEG signals of the same session the

chance level is not reached) the classifier does not go into overfitting and is able to choose the

best features.

4.5 Comparison with online results

A direct comparison is possible only with the sessions of visit 7 in which the author of this

work was present during the acquisitions. During the first two days of the visit, feedback

sessions were done using features extracted from the EEG signals to build the model. The

systemof choice of featureswas different from the one proposed but did not lead to sufficient

performance in the online classification of the signals corresponding to the thinking period.

During the day 3 feedback sessionwas given to the patient by building themodel using the

fNIRS signals acquired during two training blocks. In this case, the model was built using

a single function extracted on all channels and choosing one of the signals of the HbO and

HbR concentration variation. The accuracy achieved online was 70%. The online system

used a much simpler method for choosing features, without considering, for example, that
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some channels may not be informative, that multiple features at the same timemay improve

performance and that both HbR and HbO can provide different information simultane-

ously. The development of a feature selection system that takes these considerations into

account has improved performance on the same acquisition from 70% to 81.5%.
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5
Conclusion

What emerges from this work is that, using the EEG signals and the proposed paradigm it is

challenging to discriminate between affirmative and negative responses of the subject. Vari-

ous classification approaches have been tested with the same signals leading to similar results.

Several hypotheses can be advanced to explain this: recording channels in a non-invasive way,

the signal already naturally weak due to the disease is excessively attenuated and covered by

noise to be informative; the recorded channels are in insufficient number or in an unsuitable

position; the task required from the patient and the paradigm used do not produce different

brain activations for yes and no responses. However, it is important, during this BCI com-

munication paradigm, to continue recording EEG signals fromwhich useful information on

the patient’s waking state can be derived.

Using fNIRS signals instead, it is sometimes possible to obtain discreet results in the clas-

sification of yes and no answers. However, the results are not stable, making it difficult for

this specific patient to communicate with open questions (with no known answer).
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The combination of the EEG and fNIRS features, as proposed in this work, has not led

to obvious improvements in classification performance but, on the contrary, has sometimes

made it more difficult to identify the most informative features and deteriorating the results.

However, it cannot be excluded that combining the two signals will not improve the perfor-

mance of the system because there are several ways to explore. The combination can be done

either at the level of features extraction, i.e. studying features that consider simultaneously

the trend of the two signals and their correlation, or at the level of features selection, i.e. as

proposed in this paper by treating the two signals separately and then concatenating their

features. Without a doubt, this way will have to be taken into account in future work.

The main problem with this system is the lack of ground truth. It is impossible to say

with certainty that the patient is answering all the questions and in the correct way, since he

could at any time be confused, distracted or not having understood the question. To test

the patient’s responsiveness, for example, an option could be checking if there is a significant

difference between the signal acquired in the baseline before the question and during the

response period, and then not include in the process of constructing the model the thinking

periods in which this difference does not occur.

Anothermajor problem is the lack of data. During a session, in fact, it is difficult to acquire

more than 4/5 blocks, corresponding to 40/50 samples per class, because each block has a

duration of 12/13 minutes and prolonging the acquisitions for several hours leads to fatigue

and boredom in the patient, deteriorating the results. These numbers are poor to obtain

reliable statistics in the selection of features and model construction or to be able to apply

more advanced and complex methods of machine learning and classification. Combining

the blocks acquired in subsequent days could be a solution but even small differences in the

psychophysical state of the patient would lead to false results.

Studying the trend of signals, the selected features, channels and types over time is, how-

ever, necessary way to stabilize the system. In this sense, it is essential to collect data fre-

quently so that they are comparable with each other. The temporal distance between differ-
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ent acquisitions is a concern as the patient may change the method of response and his brain

activity may bemarkedly different due to the processes of adaptation and plasticity to which

each brain is constantly subjected. This obviously requires considerable economic effort and

availability of trained personnel to operate the system.

In conclusion, there are still many possibilities for study and improvement of the pro-

posed system and it is of fundamental importance to continue this research mainly for two

reasons. On the one hand, finding a stable and performing system also means better un-

derstanding the brain structure and activity in CLIS patients, fundamental information for

those studying the development, diagnosis, and treatment of this syndrome. On the other

hand, a system capable of restoring communication between a conscious person but unable

to relate to the environment around him could greatly improve the psychological well-being

of the patient himself but in the same way of his family and caregivers.
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