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Introduction

The ideas. The final goal of this thesis is to state and prove the Main
Conjecture of Iwasawa theory for cyclotomic fields. It is actually a theorem:
its first proof was given by Barry Mazur and Andrew Wiles in [MW84].
This theorem is fundamental for multiple reasons: it is the deepest result
concerning the theory of cyclotomic fields; it is related to other important
results in this theory, like the converse of Herbrand-Ribet theorem, and the
conjectures by Gras and Vandiver; it can be used to derive useful properties
of the cyclotomic fields, for example, about the ideal class groups; it is the
first and simplest of a series of conjectures that link Iwasawa theory with key
objects in number theory and arithmetic geometry, like totally real fields or
elliptic curves, discussing arithmetic and analytical invariants. The analytic
part is played by an L-function, seen as p-adic function, while the algebraic
side concerns particular ideals built from modules over the Iwasawa algebra.

The proof that appears in this thesis is due to Karl Rubin, who in the
appendix of Serge Lang’s book [Lan90], following the pioneering work of
Francisco Thaine ([Tha88]) and Victor Kolyvagin ([Kol90]), was able to give
a much more simpler proof the conjecture, making hard use of Kolyvagin’s
Euler systems. These are collections of cohomology classes indexed on number
fields that play a crucial role in number theory, since they can be used to
derive fundamental information about Selmer groups. For example, some
of the known results regarding the Birch and Swinnerton-Dyer conjecture
have been proved using the Euler systems, and also other main conjectures
can be approached with these objects. This is linked to a second goal of this
work, maybe less evident but surely as much fundamental: to study in detail
“stylish” tools of modern number theory, such as Euler systems, Selmer group,
and p-adic representations. For example, these representations are one of
the most successful way to deduce information about the explicit description
of absolute Galois group of Q, probably the most important problem in
algebraic number theory. Precisely because of their importance, in this thesis
these objects are introduced to the most general setting possible, despite the
fact that in their application to the study of cyclotomic fields they appears
in a much more accessible formulation.
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The mathematics. Iwasawa theory is build around (cyclotomic) Zp-extensions
of number fields. If p is an odd prime and K = Q(µp), the extension obtained
adding to Q the p-th roots of unity, then we can consider the tower of fields

K = K0 ⊆ K1 ⊆ · · · ⊆ K∞ =
⋃
Kn,

with Kn = Q(µpn+1) and K∞ = Q(µp∞). By Galois theory,

Γ = Gal(K∞/K) ∼= Zp.

We are interested mainly in the arithmetic of K, and the previous tower can
be used exactly for this goal. If Γn = Gal(Kn/K) ∼= Z/pnZ, we can define
the Iwasawa algebra

Λ = lim←−
n

Zp[Γn],

which is isomorphic to Zp[[T ]], the ring of formal power series in one variable
T , with coefficients in Zp. This follows from the identification γ → 1 + T ,
where γ is a topological generator of Γ. In this setting, by a classification
theorem due to Serre, we can attach to every finitely generated torsion
Λ-module M a well defined invariant, the characteristic ideal, denoted by
char(M). The study of these kind of modules is another key part of this
theory. If Cn is the p-part of the ideal class group of Kn, and Ēn and Vn are
particular p-adic objects obtained by respectively the global and cyclotomic
units of Kn, the inverse limits under the norm maps

C∞ = lim←−
n

Cn, E∞ = lim←−
n

Ēn, V∞ = lim←−
n

Vn

give rise to well defined Λ-modules. If χ is an even p-adic character of
∆ = Gal(K/Q) ∼= (Z/pZ)×, we can consider their eigenspaces C∞(χ), E∞(χ),
V∞(χ) under χ, and the main conjecture states that

char(C∞(χ)) = char(E∞(χ)/V∞(χ)).

There are several different but equivalent formulations of this important
result, and moving between them is possible due to some results in class
field theory and in Kummer duality. The former version does not require
the intervention of a p-adic L-function, since it is specific for Euler systems.
These collections of classes are related to Selmer groups, objects obtained
by a p-adic representation, after the choices of some local conditions on
cohomology groups. In our case, a certain Selmer group has a strict relation
with C∞(χ), being its Pontryagin dual. The information we can get using
the Euler systems are just algebraic, at least in appearance. Indeed, if T is a
free Zp-module of finite rank on which the absolute Galois group of Q acts
continuously, and it satisfies suitable arithmetic conditions, then a discrete
Selmer group associated to T is finite, and its length as Zp-module can be
controlled by explicit algebraic bounds.
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Organization. This work is divided in four Chapters.
In Chapter 1, we give all the preliminaries notions we will need during our

path. After a brief review of class field theory, we deal with cohomology of
profinite groups, fundamental tool in order to understand the definition of an
Euler system. Then we work with Zp-extensions and Λ-modules, in particular
with their relation with p-adic characters. These objects are protagonists of
Iwasawa theory.

The aim of Chapter 2 is to introduce p-adic Galois representations and
Selmer groups. In particular, we apply the general results of Chapter 1 to
Galois groups, to define local and global cohomology group, from which derive
the definition of a Selmer group. We also see how a well-known Selmer group,
the one associated to an elliptic curve, is part of this general setting.

In Chapter 3 we give the definition of an Euler system, in the most possible
general setting, and we give fundamental theorems about their relations with
Selmer groups. Some of the results here are not proved, but as always, precise
references and ideas are reported.

Finally, in Chapter 4, we state and prove the main conjecture. We do not
use directly the results of Chapter 3, but instead we explicitly see how the
cyclotomic Euler system allows use to show one of the two divisibility of this
result. After the proof, we see which is the role of the Selmer group in the
conjecture, and we state equivalent formulations and important consequences.
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Chapter 1

Preliminary results

We begin this dissertation introducing some prerequisites in number theory.
These are mostly elementary and well-known results, but they are basic for
the sequel. Also, we provide them without proofs, but always giving precise
references.

1.1 Class field theory

Class field theory is the study of abelian extensions. It can be global, concern-
ing global fields, like number fields, or local, regarding local fields. Despite
the first developments of this theory were made via ideals, the most recent
approach is to study local class field theory first, and then to apply the results
to global fields, via ideles. However, for the aim of this work, we will deal just
with “classical” class field theory for number fields, following mainly [Jan96]
and [Cox13]. The other point of view can be found in [AT90] and [Neu99],
while for local class field theory we cite [Iwa86].

For this Section, we fix K a number field, and we denote by OK its ring
of integers.

Definition 1.1. A prime or place of K is an equivalence class of nontrivial
absolute values on K. The nonarchimedean equivalence classes are called
finite primes, while the archimedean ones are called infinite primes.

Finite primes coincides with ordinary prime ideals p of OK , with absolute
value induced by the p-adic valuation on K, denoted by vp. Infinite primes
are obtained by embeddings σ : K → C. There are two sorts of infinite
primes: real primes, given by real embeddings, and complex primes, given by
a pair of conjugate nonreal embeddings (see, for example, [Jan96]).

For p prime, finite or infinite, we denote by Kp the completion of K with
respect to the topology defined by the prime. We remark that if p is a real
prime, Kp

∼= R, while if p is complex, Kp
∼= C.
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If L/K is an algebraic extension (it can be infinite) and v is a place of
K, there is a notion of place of L lying over v, where a place of an infinite
extension of Q is defined in the same way. We could talk about decomposition
group, inertia group, and ramification, but we do not enter in details here.
We refer mainly to [Neu99], but also to Appendix 2 of [Was97] and Chapter
8 of [Koc02], just remarking how unramified coincides with trivial inertia.

Definition 1.2. A modulus (or cycle) for K is a formal product

m =
∏
p

pn(p)

taken over all primes p of K, such that:

• n(p) ≥ 0, and n(p) = 0 for all but finitely many primes;

• n(p) = 0 for p complex;

• n(p) ≤ 1 for p real.

A modulus can be seen as a formal product m0m∞, where

m0 =
∏

p finite

pn(p)

is the finite part of m, a nonzero integral ideal of OK , while

m∞ =
∏
p real

pn(p)

is the infinite part of m, a formal squarefree product of real primes.

Definition 1.3. Let m = m0m∞ be a modulus for a number field K.

• Let IK(m) be the free abelian group generated by the prime ideals of
OK not dividing m0.

• For α ∈ K×, we say that α ≡∗ 1 (mod m) if vp(α− 1) ≥ n(p) for every
p finite prime in the factorization of m0, and α > 0 under every real
embedding corresponding to the archimedean primes in m∞.

• Let PK(m) be the group of principal fractional ideals generated by
elements α ≡∗ 1 (mod m).

The quotient CK(m) = IK(m)/PK(m) is called ray class group mod m. It is
a finite group ([Jan96], Chapter IV, Corollary 1.6).

Example 1.4.

• CK(OK) = CK(1) = CK is just the ideal class group of K.

2



• If m0 = OK and m∞ is the formal product of all the real embeddings,
CK(m) is called narrow ideal class group.

• CQ(n∞) ∼= (Z/nZ)×.

• CQ(n) ∼= (Z/nZ)×/{±1}.

Let L/K be a Galois extension of number fields. If p is an unramified
prime ideal of OK and P a prime of OL above it, there is a unique element of
Gal(L/K) (actually lying in the decomposition group DP), called Frobenius
and denoted by FrP, which is identified by the condition

FrP(α) ≡ α|OK/p| (mod P), for all α ∈ OL.

If the extension is abelian (that is, the Galois group is abelian), this element
does not depend on the primes above p, therefore we call it Frp (see, for
example, [Mar18], Chapter 4).

Definition 1.5. If L/K is an abelian extension and m is a modulus divisible
by all ramified primes (finite and infinite), then the map

ϕm : IK(m) −→ Gal(L/K)
n∏
i=1

pnii 7−→
n∏
i=1

Frnipi

is called Artin map. It is a surjective map ([Jan96], Chapter IV, Theorem
5.3).

Definition 1.6. A subgroup H ⊆ IK(m) is called a congruence subgroup for
m if it satisfies

PK(m) ⊆ H ⊆ IK(m).

The quotient IK(m)/H is called generalized ideal class group for m.

The important result is that generalized ideal class groups corresponds to
the Galois groups of all the abelian extension of K, and the link is provided
by the Artin map. The first step is the following:

Theorem 1.7 (Artin reciprocity theorem, [Jan96], Chapter V, Theorem 5.8).
Let L/K be an abelian extension and m a modulus divisible by all ramified
primes of K. If the exponents of the finite primes in the factorization of
m are sufficiently large, then the kernel of the Artin map is a congruence
subgroup. In particular, Gal(L/K) is isomorphic to a generalized ideal class
group.

We sure cannot hope that the modulus m for which the kernel of ϕm

is a congruence subgroup is unique. For instance, if n is a modulus such
that m | n (in the obvious sense), then also the kernel of ϕn is a congruence
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subgroup. But there is one modulus which is “better” than the others. The
next Theorem summarizes part of [Jan96], Chapter V, Section 6 and Theorem
11.11.

Theorem 1.8. Let L/K be an abelian extension. Then there is a modulus
f = f(L/K) such that

(a) f is divided exactly by the ramified primes of K in L.

(b) If m is a modulus divided by all ramified primes of K in L, then the
kernel of ϕm is a congruence subgroup for m if and only if f | m.

This modulus, uniquely determined by K ⊆ L, is called conductor. We
are ready for the classification theorem:

Theorem 1.9 (Existence theorem, [Jan96], Chapter V, Theorem 9.9). Let
m be a modulus of K, and let H be a congruence subgroup for m. Then there
exists a unique abelian extension L of K, all of whose ramified primes divide
m, such that the kernel of the Artin map ϕm is precisely H.

The importance of this result is that we can construct abelian extensions
with specified Galois group and restricted ramification.

Stated the basic theorems of class field theory, we can see the most
important consequences. For K = Q and m = m∞, we easily deduce the
well-know Kronecker-Weber theorem:

Theorem 1.10 (Kronecker-Weber theorem, [Cox13], Theorem 8.8). If L is
an abelian extension of Q, then there exists a positive integer m such that
L is contained in the cyclotomic field Q(ζm), for ζm primitive m-th root of
unity.

Let m = 1. Since PK(1) = PK is trivially a congruence subgroup, by the
existence theorem there is a unique abelian unramified extension L of K such
that

CK ∼= Gal(L/K)

via the Artin map. L is called Hilbert class field.

Theorem 1.11 ([Cox13], Theorem 8.10). The Hilbert class field is the maxi-
mal unramified abelian extension of K.

We can generalize this construction. Given a modulus m, there exists a
unique abelian extension Km of K such that

CK(m) ∼= Gal(Km/K).

It is called ray class field mod m, and its ramified primes divide m.

4



Example 1.12.

• For m = 1, the ray class group Km is just the Hilbert class field.

• If K = Q and m = n∞, then Km ∼= Q(ζn).

• If K = Q and m = n, then Km ∼= Q(ζn + ζ−1
n ) = Q(ζn)+, the maximal

real subfield of Q(ζn).

We conclude giving a useful interpretation of the conductor: if L/K is
an abelian extension, the conductor f(L/K) is the minimal modulus m such
that L is contained in the ray class field Km.

1.2 Continuous group cohomology

We recall the most important results about cohomology of topological group.
These will be very useful in the following Chapters, in order to deal with
Galois cohomology and p-adic representations. In fact, for us, the group G
acting will be always a Galois group. However, in this Section, we put ourself
in a more general setting, where G is profinite. We mainly follow [Wil98]
and the appendix B of [Rub00]. A useful review may be found in [Tat76]
in the most general possible setting: G is a topological group. Finally, two
cornerstones for Galois cohomology are [Ser97] and [NSW08], which focus
their attention mainly on discrete Galois modules.

Let G be a profinite group and A a topological G-module, that is, a
topological abelian group with a continuous action of G, compatible with the
abelian group structure. For every n ∈ N, let Cn = Cn(G,A) be the set of
continuous maps Gn → A, where G0 is the trivial group, so C0 = A. These
sets are abelian groups in the obvious way, and their elements are called
n-cochains. Let dn be the homomorphism

dn : Cn → Cn+1

defined by

dn(f)(σ1, . . . , σn+1) = σ1f(σ2, . . . , σn+1)

+
n∑
i=1

(−1)if(σ1, . . . , σiσi+1, . . . , σn+1)

+ (−1)n+1f(σ1, . . . , σn).

For all n ≥ 1, dn ◦ dn−1 = 0, therefore Im(dn−1) ⊆ ker(dn). In this way we
get a complex C•(G,A).
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Definition 1.13. For n ≥ 0, the n-th continuous cohomology group of G
with coefficients in A is the quotient group

Hn(G,A) = ker(dn)/ Im(dn−1),

where we set Im(d−1) = 0. Elements in ker(dn) are called (continuous)
cocyles, while elements of Im(dn−1) are called (continuous) coboundaries.

Despite being defined for every n ≥ 0, the cohomology groups we are
interested in are usually Hn(G,A) with n = 0, 1. We can give a more explicit
description for them:

H0(G,A) = {a ∈ A | σa = a for all σ ∈ G} = AG;

H1(G,A) =
{f : G→ A continuous | f(στ) = f(σ) + σf(τ) for all σ, τ ∈ G}

{f : G→ A | f(σ) = σa− a for a fixed a ∈ A}
.

Remark 1.14. When the action of G on A is trivial, H0(G,A) = A and
H1(G,A) = Hom(G,A), where the homomorphisms between topological
groups are always assumed to be continuous.

Let A be a G-module and A′ a G′-module, with G, G′ profinite groups.
Given two continuous homomorphisms

ϕ : G′ → G, f : A→ A′,

we say that ϕ and f are compatible if f(ϕ(σ′)a) = σ′f(a) for all a ∈ A,
σ′ ∈ G′. From this pair of maps, we can get canonical homomorphisms

Hn(G,A)→ Hn(G′, A′)

(see [Wil98], Lemma 9.2.1). The first important example occurs when we
consider the identity Id : G→ G and a G-module homomorphism f : A→ B,
that is a continuous group homomorphism compatible with the action of G.
In this case, we get

Hn(G,A)→ Hn(G,B).

In particular, given a short exact sequence of G-modules, we would like to
have a corresponding long exact sequence of cohomology groups. This is
always true for discrete modules. However, for the general case, we need to
add more restrictive hypothesis on the sequence:

Definition 1.15. An exact sequence 0 → A → B → C → 0 of abelian
topological groups is called well-adjusted if the map A → B induces an
homeomorphism from A to its image, and there is a continuous section of
B → C (not necessarily a homomorphism).

Clearly all short exact sequence of discrete topological groups are well-
adjusted, and this is also true for short exact sequences of profinite groups
([Wil98], Lemma 0.1.2 and Proposition 1.3.3).
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Theorem 1.16 ([Wil98], Theorem 9.3.3). To each well-adjusted short exact
sequence

0→ A→ B → C → 0

of G-modules there corresponds a long exact sequence

0→AG → BG → CG → H1(G,A)→ · · ·
· · · → Hn(G,B)→ Hn(G,C)→ Hn+1(G,A)→ · · ·

of cohomology groups.

We will always use cohomology groups in situations in which the hypothe-
sis is satisfied. For example, when A is an open submodule of B and C = B/A
is the quotient module with the quotient topology, which is discrete.

We see other important examples of compatible maps:

• Let ϕ : H → G be the inclusion and f : A→ A be the identity, where
H is a subgroup of G. We get a restriction homomorphism:

res : Hn(G,A)→ Hn(H,A).

• Let H be a normal subgroup. If ϕ : G → G/H is the projection and
f : AH → A the inclusion, we get an inflation homomorphism:

inf : Hn(G/H,AH)→ Hn(G,A).

• If H is a normal subgroup of G and σ ∈ G, we can consider ϕ : H → H,
τ 7→ σ−1τσ and f : A→ A, a→ σa. We denote by σ̄ the map we get:

σ̄ : Hn(H,A)→ Hn(H,A).

One can show (see for example [Wil98], Lemma 10.2.4 for the discrete
case) that from this map we can give to Hn(H,A) the structure of
G/H-module, and that the image of res : Hn(G,A)→ Hn(H,A) is in
Hn(H,A)G/H .

This homomorphisms are part of an important exact sequence:

Proposition 1.17 ([Rub00], Appendix B, Proposition 2.5). Let H be a
closed, normal subgroup of G.

(a) There is an inflation-restriction exact sequence

0→ H1(G/H,AH)→ H1(G,A)→ H1(H,A).
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(b) Suppose moreover that p is a prime and for every G-module (resp.
H-module) S of finite, p-power order, H1(G,S) and H2(G,S) (resp.
H1(H,S)) are finite. If A is discrete, or A is a finitely generated Zp-
module, or A is a finite-dimensional Qp-vector space, then there is a
Hochschild-Serre exact sequence extending the previous one:

0→ H1(G/H,AH)→ H1(G,A)→ H1(H,A)G/H →
→ H2(G/H,AH)→ H2(G,A).

In order to apply this Proposition, we need to check if a group G has
the property that Hn(G,S) is finite for every G-module S of finite, p-power
order. Before seeing an helpful Proposition in this sense, we briefly recall
an important construction in group theory and number theory, following
mainly [NSW08]. Let A be a locally compact abelian group, that is, an
abelian topological group whose topology is Hausdorff and locally compact
(for example, a discrete group or a compact group).

Definition 1.18. The Pontryagin dual of A is the group

A∨ = Hom(A,R/Z),

with the compact-open topology.

If A is profinite or discrete torsion, then

A∨ = Hom(A,Q/Z),

while if A is pro-p or discrete p-torsion (for example, a finitely generated
Zp-module), then

A∨ = Hom(A,Qp/Zp).

Finally, if A is a topological G-module, then also A∨ has a natural structure
of G-module: for g ∈ G, f ∈ A∨ and a ∈ A,

(g · f)(a) = f(g−1a).

Theorem 1.19 (Pontryagin Duality, [NSW08], Theorem 1.1.11). If A is a
locally compact abelian group, then the same is true for A∨ with the compact-
open topology. The canonical homomorphism

A→ (A∨)∨

is an isomorphism of groups. Therefore ∨ defines a contravariant functor on
the category of abelian locally compact groups which commutes with limits. In
addiction, ∨ induces equivalences of categories

abelian compact groups ∨⇐⇒ discrete abelian groups,

abelian profinite groups ∨⇐⇒ discrete abelian torsion groups.

8



Definition 1.20. A Zp-module is cofinitely generated if its Pontryagin dual
is finitely generated.

The following Proposition is well-known by class field theory for n = 1.
Note that if A is a G-module which is also a Zp-module, then the group
Hn(G,A) is a Zp-module in a natural way.

Proposition 1.21 ([Rub00], Appendix B, Proposition 2.7). Suppose that
one of the following holds:

• K is a global field, KS is a Galois extension unramified outside a finite
set off places of K and G = Gal(KS/K);

• K is a local field and G = GK ;

• K is a local field of residue characteristic different from p, and G is the
inertia subgroup of GK .

If A is a G-module which is finite (resp. finitely generated over Zp, resp.
cofinitely generated over Zp) and n ≥ 0, then Hn(G,A) is finite (resp. finitely
generated over Zp, resp. cofinitely generated over Zp).

There is a last relevant map, which cannot be obtained by compatible
homomorphisms. It is the corestriction:

cor : Hn(H,A)→ Hn(G,A),

with H open subgroup of G (recall that an open subgroup of a profinite
group is closed and has finite index). For an explicit construction we refer
to [Tat76] or [NSW08]. We just underline that it is a transitive map (for
example, [NSW08], Chapter I), and when n = 0, it is just the trace or norm
map:

cor : AH → AG

a 7→
∑
σ∈R

σa,

where R is a representative of the left cosets of H in G. The following result,
proved in [NSW08] just in the discrete case, but easily generalizable, allows
us to work explicitly with corestriction also at level n = 1:

Proposition 1.22 ([NSW08], Proposition 1.5.2). The corestriction map is
functorial in the G-module considered, and it commutes with the connecting
homomorphisms. That is, given a well-adjusted short exact sequence of
G-modules

0→ A→ B → C → 0,

9



the following diagram is commutative:

Hn(H,C) Hn+1(H,A)

Hn(G,C) Hn+1(G,A).

cor cor

The same result is true for every pair of compatible maps ([Wil98],
Theorem 9.3.4).

Remark 1.23. If G is finite and A is discrete, we can forget about topology
and we get the “classical” cohomology groups (see, for example, [Ser79]). But
this is not enough for us, since the group acting will be the Galois group of
an (infinite) Galois extension. Also, A will not always be discrete: it can be
a finitely generated Zp-module or a finite-dimensional Qp-vector space, both
with the natural p-adic topology. However, the following propositions show
us how to reduce to simpler cases.

Let G be a profinite group and A a G-module.

Theorem 1.24 ([Wil98], Theorem 9.7.2 and Theorem 9.7.3). Suppose A is
discrete.

(a) If A = lim−→B, then there is an isomorphism

Hn(G,A) ∼= lim−→Hn(G,B).

(b) There is an isomorphism

Hn(G,A) ∼= lim−→
U

Hn(G/U,AU ),

where U runs through the open normal subgroups of G.

Proposition 1.25 ([Tat76], Corollary 2.2 and [Rub00], Appendix B, Propo-
sition 2.3). Suppose n > 0 and A = lim←−Ai, where each Ai is a finite (discrete)
G-module. If Hn−1(G,Ai) is finite for every i, then

Hn(G,A) = lim←−
i

Hn(G,Ai).

If A is a finitely generated Zp-module, tensoring it over Zp with the exact
sequence 0→ Zp → Qp → Qp/Zp → 0, we get

0→ A→ V →W → 0,

with V finite-dimensional Qp vector space, A open compact subgroup and
W discrete divisible torsion group. We denote by Adiv the maximal divisible
subgroup.

10



Proposition 1.26 ([Tat76], Proposition 2.3 and [Rub00], Appendix B, Propo-
sition 2.4). In the long exact sequence in cohomology associated to

0→ A→ V →W → 0,

the kernel of the connecting homomorphism

Hn−1(G,W )→ Hn(G,A)

is Hn−1(G,W )div, and its image is Hn(G,A)tors. In addiction, Hn(G,A)
has no divisible elements and there is an isomorphism

Hn(G,A)⊗Qp
∼= Hn(G,A⊗Qp).

We conclude this Section recalling an important operation between coho-
mology groups.

Definition 1.27. Given G-modules A, A′ and B, a map

A×A b−→ B

is a G-pairing if it is bi-additive and it respects the action of G:

b(σa, σa′) = σb(a, a′)

for all σ ∈ G, a ∈ A, a′ ∈ A′.

Such a pairing induces a map

∪ : Cr(G,A)× Cs(G,A′)→ Cr+s(G,B)

as follows: given f ∈ Cr(G,A) and f ′ ∈ Cr(G,A′), the cochain

f ∪ f ′ ∈ Cr+s(G,A)

is defined to be

(f ∪ f ′)(σ1, . . . , σr+s) = b(f(σ1, . . . , σr), σ1 . . . σrf
′(σr+1, . . . , σr+s)).

By the rule

dr+s(f ∪ f ′) = dr(f) ∪ f ′ + (−1)rf ∪ ds(f ′),

this map yields a bilinear cup product, again denoted by ∪:

∪ : Hr(G,A)×Hs(G,A′)→ Hr+s(G,B).

11



1.3 Cyclotomic fields

The goal of this Section is to work with cyclotomic fields, in order to have
all the instruments to state and prove the main conjecture. In particular,
we investigate the relation between cyclotomic fields and Iwasawa theory,
introducing Zp-extensions and modules over the Iwasawa algebra. All these
results may be found in [Was97] and in [Lan90]. Also, some results about
modules are taken by [Lan02]. Finally, we have to cite the pioneering work
of Iwasawa in [Iwa73].

Definition 1.28. Let K be a number field. A Zp-extension of K is a Galois
extension K∞/K with Galois group Gal(K∞/K) isomorphic to the additive
group of p-adic integers Zp.

Every number field K has at least one Zp-extension, the cyclotomic
Zp-extension. It is obtained by an appropriate subfield of K(µp∞), where

µp∞ =
⋃
n

µpn

is the union of all the p-power roots of unity contained in a fixed algebraic
closure K, in the following way: if p is odd (just to simplify the notation), let
ζpn+1 be a primitive pn+1-th root of unity. We consider K = Q first. Since

Gal(Q(ζpn+1)/Q) ∼= (Z/pn+1Z)× ∼= (Z/pZ)× × Z/pnZ,

we can define Qn to be the fixed field of (Z/pZ)× in Q(ζpn+1), to get

Gal(Qn/Q) ∼= Z/pnZ.

Then Q∞ =
⋃
nQn is a field with the desired property:

Gal(Q∞/Q) ∼= lim←−
n

Gal(Qn/Q) ∼= lim←−
n

Z/pnZ ∼= Zp.

By Kronecker-Weber theorem (Theorem 1.10) and ramification considerations,
this is the unique Zp-extension of Q. If K is a number field, it is enough to
consider K∞ = KQ∞.

Note that we can always regard a Zp-extension of a number field K as a
tower of fields

K = K0 ⊆ K1 ⊆ · · · ⊆ K∞ =
⋃
n

Kn,

with
Gal(Kn/K) ∼= Z/pnZ,

since the nontrivial closed subgroups of Zp are of the form pnZp for some n.
In particular, [Kn : K] = pn for all n.

The following proposition summarizes the behaviour of primes in a Zp-
extension.
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Proposition 1.29 ([Was97], Proposition 13.2 and Lemma 13.3). Let K∞/K
be a Zp-extension.

(a) K∞/K is unramified outside p, which means that it is unramified at
every prime (possibly infinite) not lying above p.

(b) At least one prime ramifies, and there exists n ≥ 0 such that every
prime ramified in K∞/Kn is totally ramified.

We move now our attention to Λ-modules.

Definition 1.30. Let G be a profinite group. The Iwasawa algebra Λ(G)
is the inverse limit of the group rings Zp[G/N ], where N runs through the
open normal subgroups of G:

Λ(G) = lim←−Zp[G/N ].

We are interested in the case when G is isomorphic to Zp. We underline
how this results may be extended taking, instead of Zp, the ring of integers
O of a field K, with K/Qp finite extension. We simplify the notation setting
Λ = Λ(G). If, for example, G is the Galois group of the Zp-extension

K = K0 ⊆ K1 ⊆ · · · ⊆ K∞ =
⋃
n

Kn,

then
Λ = Λ(G) = lim←−

n

Gal(Kn/K).

Theorem 1.31 ([Was97], Theorem 7.1). Λ is isomorphic to Zp[[T ]], the ring
of formal power series with coefficients in Zp. The isomorphism is induced
by γ 7→ 1 + T , where γ is a topological generator of G ∼= Zp.

Our aim is to describe the ring Λ = Zp[[T ]] and to give a structure
theorem for modules over it.

Definition 1.32. A nonconstant polynomial P (T ) ∈ Λ is called distinguished
if P (T ) = Tn + an−1T

n−1 + · · ·+ a0 with p | ai for all i ∈ {0, . . . , n− 1}.

Using the p-adic Weierstrass preparation theorem ([Was97], Theorem
7.3) and a division algorithm on Λ ([Was97], Lemma 7.5), one can show
that Λ is a unique factorization domain. Its irreducible elements are p and
the irreducible distinguished polynomials, while units are power series with
constant term in Z×p .

Proposition 1.33 ([Was97], Proposition 13.9). The prime ideals of Λ are
0, (p), (p, T ) and the ideals (P (T )) for P (T ) ∈ Λ irreducible distinguished
polynomial. Λ is a local ring, with unique maximal ideal (p, T ).
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Since Zp is Noetherian, also Λ is Noetherian ([Lan02], Chapter IV, Theo-
rem 9.4). Summarizing, Λ is:

• an unique factorization domain;

• Noetherian;

• local.

Definition 1.34. We say that two Λ-modulesM andN are pseudo-isomorphic
(or quasi-isomorphic) if there exists a homomorphism M → N with finite
kernel and cokernel. In other words, M and N sit in an exact sequence of
Λ-modules

0→ A→M → N → B → 0

with A and B finite Λ-modules.

We write M ∼ N for two pseudo-isomorphic Λ-modules M and N . Note
that this relation is not symmetric in general: for example, (p, T ) ∼ Λ but
Λ 6∼ (p, T ). But ifM andN are two finitely generated torsion Λ-modules, then
M ∼ N if and only if N ∼M . Now we can state the structure theorem, due
to Serre, classifying finitely generated Λ-modules up to pseudo-isomorphism.

Theorem 1.35 ([Was97], Theorem 13.12). Let M be a finitely generated
Λ-module. Then

M ∼ Λr ⊕

(
s⊕
i=1

Λ/(pni)

)
⊕

 t⊕
j=1

Λ/(fj(T )mj )

 ,

where r, s, t, ni and mj are integers and fj(T ) are distinguished and irre-
ducible polynomial.

This factorization is uniquely determined byM ([Was97], Corollary 15.19).
We observe that this result is analogue to the structure theorem for modules
over principal ideal domain (see [Lan02], Chapter III, Theorems 7.2 and 7.7),
except that here we work with pseudo-isomorphisms. In fact, also the proof
is similar, based on row and column operations.

The following deep result, known as Iwasawa’s theorem is proved making
hard use of the structure theorem stated above.

Theorem 1.36 (Iwasawa’s theorem, [Was97], Theorem 13.13). Let K∞/K
be a Zp-extension. For every n, let pen be the order of the p-part of the
ideal class group of Kn. There there exist integers λ ≥ 0, µ ≥ 0 and ν, all
independent of n, and an integer n0 such that, for all n ≥ n0,

en = λn+ µpn + ν.
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We will work mainly with finitely generated torsion Λ-modules, which are
pseudo-isomorphic to elementary modules of the form

E =
n⊕
i=1

Λ/(fi),

with fi ∈ Λ. A priori, these elements are not well-defined. They are if we
take fi to be powers of distinguished polynomials or powers of p. However,
we can associate to every finitely generated torsion Λ-module a well-defined
invariant:

Definition 1.37. The characteristic ideal of a finitely generated torsion
Λ-module M is the ideal generated by

∏n
i=1 fi, where

M ∼
n⊕
i=1

Λ/(fi).

We denote it by char(M):

char(M) =

(
n∏
i=1

fi

)
Λ.

Remark 1.38. This ideal is defined for torsion modules, since this is really the
case in which it has great utility. However, one can extend the definition to
every finitely generated Λ-modules, in two different ways: if M is a finitely
generated not torsion Λ-module, then char(M) = 0 (as in [Rub00], Section
2.3) or char(M) = char(Mtors) (as in [Was97]). In any case, the next results
hold.

Lemma 1.39 ([Was97], Lemma 15.17). Let M be a finitely generated torsion
Λ-module.

(a) char(M) ·M is finite.

(b) If M is also finite, then (p, T )nM = 0 for n large enough. Therefore
the annihilator of a finite Λ-module has finite index in Λ.

Proposition 1.40 ([Was97], Proposition 15.22). If

0→M1 →M2 →M3 → 0

is an exact sequence of finitely generated (torsion) Λ-modules, then

char(M1) · char(M3) = char(M2).

Note that if M is a finite Λ-module, then M ∼ 0, so char(M) = 1. This
follows from the next useful Lemma:

Lemma 1.41 ([Was97], Lemma 13.10). If f ∈ Λ is not a unit, then Λ/fΛ
is infinite.

We deduce that if M1 ∼M2, then

char(M1) = char(M2).
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1.4 Characters and modules

For this last part of the first Chapter, we put ourself in the setting of the
main conjecture, to have all the descriptions we need to understand and prove
this result. We follow again [Lan90] and [Was97].

The Zp-extension we will work with is the following: fix K = K0 = Q(µp),
for p odd prime, and K∞ = Q(µp∞). Then K∞/K is a Zp-extension, and
for all n, Kn = Q(µpn+1). We have Γn = Gal(Kn/K), Γ = Gal(K∞/K) =
lim←−Γn. If we denote as ∆ the Galois group of K/Q, then

Gal(K∞/Q) ∼= ∆× Γ,

Gal(Kn/Q) ∼= ∆× Γn.

This means that every Gal(K∞/Q)-module is also a ∆-module in a natural
way (and also this is true for every Gal(Kn/Q)-module). The importance
of this fact is that we will not work directly with Λ-modules, but with their
χ-components, where χ is a p-adic Dirichlet character of ∆. We give now
some information about this construction.

Let χ be a p-adic character of ∆ ∼= (Z/pZ)×: a continuous homomorphism

χ : (Z/pZ)× → Z×p .

Since (Z/pZ)× is cyclic of order p − 1, there are exactly p − 1 characters,
and this makes sense since by Hensel lemma ([Neu99], Chapter II, Lemma
4.6), Zp contains exactly p− 1 distinct p− 1-th roots of unity, so µp−1 ⊆ Zp.
There is a character which has an important role: the Teichmüller character,
denoted by ω. It is the character defined by the condition

ω(a) ≡ a (mod p),

for every a ∈ (Z/pZ)×. In fact, the group of p-adic characters ∆̂ of ∆ ∼=
(Z/pZ)× is generated by ω:

∆̂ = {ωi | i ∈ {0, . . . , p− 2}}.

In particular, ω0 = 1 is the trivial character, the even powers are the
even characters (χ(−1) = 1) and the odd powers are the odd characters
(χ(−1) = −1). For every χ ∈ ∆̂, since p − 1 in invertible in Zp, we can
consider

e(χ) =
1

p− 1

∑
δ∈∆

χ−1(δ)δ ∈ Zp[∆].

It is just a matter of computation to verify that e(χ) satisfies the following
properties:

• e(χ)2 = e(χ);
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• e(χ)e(ψ) = 0 if χ 6= ψ;

• 1 =
∑

χ∈∆̂ e(χ);

• e(χ)σ = χ(σ)e(χ).

These elements are called the orthogonal idempotent of Zp[∆]. If M is a
Zp[∆]-module, then we can write

M =
⊕
χ∈∆̂

M(χ),

where

M(χ) = e(χ)M = {m ∈M | δm = χ(δ)m for all δ ∈ ∆}.

We will consider Λ-modules which are also Zp[∆]-modules, and we will
take their χ-components, which will be again Λ-modules. Note that since Λ
is Noetherian, every finitely generated Λ-modules is Noetherian, therefore if
M is a Zp[∆]-module which is finitely generated and torsion as Λ-module,
then M(χ) is also finitely generated and torsion.

In what follows, we fix γ a topological generator of Γ. Let Cn denotes
the p-part of the ideal class group of Kn. Then we have surjective maps

Cn+1 → Cn

given by the norm maps between ideal class groups. One way to build
a Λ-module is to consider the inverse limits of Zp[Γn]-modules Mn, with
homomorphisms

Mn+1 →Mn

compatible with the action of the group rings Zp[Γn+1] and Zp[Γn]. This is
precisely the case and the next Theorem holds:

Theorem 1.42 ([Lan90], Chapter 5, Theorems 4.1 and 4.4). The Λ-module

C∞ = lim←−Cn

is a finitely generated torsion Λ-module, and there is an isomorphism

C∞/(γ
pn − 1)C∞ ∼= Cn.

We will also work with A∞ = lim−→Cn, where the limit is taken under the
natural maps

Cn → Cn+1.

There is a fundamental relation between these two objects:
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Theorem 1.43 ([Iwa73], Theorem 11). There is a pseudo-isomorphism

C∞ ∼ Hom(A∞,Qp/Zp).

Let us now consider Ωn, the maximal abelian p-extension ofKn unramified
outside p. Denote by Xn the Galois group of Ωn/Kn. We will work mostly
with

X∞ = Gal(Ω∞/K∞).

It has a natural structure of Λ-module (Γ acts via conjugation), and

Theorem 1.44 ([Lan90], Chapter 5, Theorem 6.1). The Λ-module X∞ is
finitely generated.

When χ is even and nontrivial, X∞(χ) is also torsion (see the final Remark
in [Lan90], Section 7.5), and one can repeat the proof of Theorem 1.42 to
deduce that

X∞/(γ
pn − 1)X∞ ∼= Xn.

Denote by Kn,p = Qp(µpn+1) the completion of Kn with respect to the
unique prime above p. If pn is the maximal ideal, then define Un to be the
group of units congruent to 1 modulo pn, that is, the group of principal units.
Then we can consider the inverse limit under the norm maps

U∞ = lim←−Un,

which is both a Zp-module and a Λ-module, since for every n,

Γn = Gal(Kn/K) = Gal(Kn,p/Kp)

(this is [Neu99], Proposition 7.13).

Theorem 1.45 ([Lan90], Chapter 7, Theorem 2.1). For every nontrivial
character χ 6= ω of ∆,

U∞(χ) ∼= Λ,

that is, it is free of dimension 1 over Λ.

Theorem 1.46. For χ 6= 1, there is an isomorphism

U∞(χ)/(γp
n − 1)U∞(χ) ∼= Un(χ).

Before introducing the final modules, we need to recall the notion of
cyclotomic unit. If n 6≡ 2 (mod 4) and ζn denotes a primitive n-th root of
unity, we can consider

En = En ∩ E′n,

where En is the group of units of Q(ζn) and E′n is the multiplicative group
generated by

{±ζn, 1− ζan | 1 ≤ a ≤ n− 1}.
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En is called the group of cyclotomic units of Q(ζn). When K is an abelian
number field with group of units EK , we can take the minimal n 6≡ 2 (mod 4)
such that K ⊆ Q(ζn) and define EK = En ∩ EK . In particular, this works
well for Q(ζn)+. When n is the power of an odd prime p, the cyclotomic
units have an important property, due to Hasse:

Theorem 1.47 ([Was97], Theorem 8.2). Let p be an odd prime and m ≥ 1.
Then the cyclotomic units E+

pm of Q(ζpm)+ have finite index in the full unit
group E+

pm , and this index is the class number h+
pm of Q(ζpm)+.

Define now En and En to be the global units and the cyclotomic units of
Kn. Take Ēn and Vn to be the closure of their intersection with Un, in Un.
Then we can consider ([Lan90], Section 6.5) the well-defined inverse limit
under the norm maps:

E∞ = lim←− Ēn,
V∞ = lim←−Vn.

These objects have both natural the structures of Zp[∆] and Λ-modules.
Then the following results hold.

Theorem 1.48 ([Lan90], Chapter 7, Theorem 5.1). If χ is a nontrivial even
character, then V∞(χ) is free of rank one over Λ, and there is an isomorphism

V∞(χ)/(γp
n − 1)V∞(χ) ∼= Vn(χ).

Theorem 1.49 ([Lan90], Chapter 7, Theorem 5.2). If χ is a nontrivial even
character, then U∞(χ)/V∞(χ) is torsion.

We will discuss more about this fact in Section 4.4, since the generator of
the characteristic ideal of U∞(χ)/V∞(χ) has a strict relation with a p-adic
L-function. In addiction, if χ is even and nontrivial, then also E∞(χ)/V∞(χ)
is torsion. The same is true for χ trivial, by the following

Proposition 1.50 ([Was97], Proposition 15.43). If χ = 1 then for every n,
Ēn(χ)/Vn(χ) and Cn(χ) are trivial.

All these modules are part of an important exact sequence, which relies in
the adelic formulation of class field theory, in particular in this fundamental
result:

Theorem 1.51 ([Lan90], Chapter 5, Theorem 5.1). For every n, if Hn is
the p-Hilbert class field of Kn, then

Gal(Ωn/Hn) ∼= Un/Ēn.
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From this, we get the exact sequence

0→ Un/Ēn → Xn → Cn → 0,

and taking limits and χ-components, for χ is even and nontrivial, we derive

0→ U∞(χ)/E∞(χ)→ X∞(χ)→ C∞(χ)→ 0.

Here we are using that finite abelian group satisfy the Mittag-Leffler condition
(see [Wei94], Section 3.5), therefore the inverse limit functor is exact.

We shall rewrite this sequence as

0→ E∞(χ)/V∞(χ)→ U∞(χ)/V∞(χ)→ X∞(χ)→ C∞(χ)→ 0, (1.1)

since the relation between U∞(χ)/V∞(χ) and a p-adic L-function, and
E∞(χ)/V∞(χ) explicitly appears in the statement of the main conjecture. In
fact, this sequence will allow us to easily move between different formulations
of the principal result.
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Chapter 2

Galois cohomology of p-adic
representation

In this Chapter, following [Rub00], we introduce the objects we are mainly
interested in: p-adic representations of Galois groups, the cohomology groups
associated, and Selmer groups. After some general definitions, we apply the
results of Section 1.2 for G being a Galois group, then we introduce local
conditions for the cohomology groups, in order to define what a Selmer group
is. One example to have clear in mind is the Tate module of an elliptic curve
over a number field. We refer to [Sil09] and [Gre99] for the theory of elliptic
curves.

2.1 p-adic Galois representations

Let us consider a field K and a fixed separable closure K. We denote by GK
the absolute Galois group Gal(K/K). If Φ is a finite extension of Qp, with p
a rational prime, and O is its ring of integers, we can give the following

Definition 2.1. A p-adic (Galois) representation of GK with coefficients in
O is a free O-module T of finite rank, together with a continuous O-linear
action of GK . The dimension of the representation is the rank of T as
O-module.

Usually, a representation is related to vector fields, instead of modules.
Many authors define a p-adic Galois representation to be a continuous group
homomorphism

ρ : GK −→ GLd(Φ) ∼= Aut(V ),

where V is a d-dimensional Φ-vector space, like in [Ser89], or equivalently,
a Φ[GK ]-module finite-dimensional as Φ-vector space. However, given a
representation in the sense of definition 2.1, we can naturally extend it to a
representation for the Φ-vector space V = T ⊗O Φ. If we denote by D the
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divisible module Φ/O, we also define the following objects:

W = V/T = T ⊗O D,
WM = M−1T/T ⊆W, for M ∈ O − {0},

so WM is the M -torsion in W , and we have the relations

W = lim−→WM , T = lim←−WM .

A first example of representation is the trivial representation. When we
consider O, Φ and D as representations, we let G act trivially on them. We
deal now with two more interesting examples.

Example 2.2. Given a continuous character

ρ : GK −→ O×,

we can consider as p-adic representation a free O-module Oρ of rank one, on
which GK acts via ρ. In fact, every one-dimensional p-adic representation of
GK arises in this way. For example, let O = Zp. If the characteristic of K is
not p, we can consider the group of p-power roots of unity in K

µp∞ = lim−→
n

µpn ,

with µpn ∼= Z/pnZ as abelian groups. The p-power maps

µpn+1
ζ 7→ζp−−−→ µpn

give rise to an inverse system of discrete groups, for which we can compute
the inverse limit:

Zp(1) := lim←−
n

µpn .

Hence this object is a free Zp-module of rank 1: it is isomorphic to Zp as
abelian groups, but the symbol (1) indicates that the action of GK is not
the trivial one, as on Zp, but it is induced by the cyclotomic character, the
natural continuous homomorphism

χp : GK −→ Aut(µp∞) ∼= Z×p .

This representation is called the cyclotomic representation. We denote by
Qp(1) the one-dimensional Qp-vector space Zp(1) ⊗Zp Qp, and we have
W = (Qp/Zp)(1) = µp∞ . Again, Qp(1) is isomorphic to Qp as Qp-vector
space, but the action of GK is different.

For a general O, we also write O(1) = O ⊗ Zp(1), Φ(1) = Φ ⊗Qp(1),
D(1) = D ⊗ Zp(1). We are twisting with the cyclotomic character, an
operation called Tate twist.
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Example 2.3. Let E/K be an elliptic curve, where K is a field of charac-
teristic different from p. We denote by E[pn] the kernel of the surjective
multiplication-by-pn isogeny

E
[pn]−−→ E,

hence E[pn] consists of the pn-torsion points of E. Then there is an isomor-
phism of abstract groups E[pn] ∼= Z/pnZ×Z/pnZ ([Sil09], Corollary III.6.4).
We can define the p-adic Tate module of E as the group

Tp(E) = lim←−
n

E[pn],

where the inverse limit is taken with respect to the multiplication-by-p maps:

E[pn+1]
[p]−→ E[pn].

Every E[pn] is a free Z/pnZ-module of rank 2, therefore Tp(E) is a free
Zp-module of rank 2:

Tp(E) ∼= Zp × Zp.

GK acts continuously on every E[pn] in a natural way, and this action com-
mutes with the multiplication-by-p maps, allowing us to obtain a continuous
action of GK on Tp(E).

Definition 2.4. If T is a p-adic representation of GK with coefficients in O
and the characteristic of K is not p, we can consider the dual representation

T ∗ = HomO(T,O(1)).

The action of GK is the following: for ϕ ∈ HomO(T,O(1)), g ∈ GK and
x ∈ T ,

(gϕ)(x) = g(ϕ(g−1x)).

We will also write

V ∗ = HomO(V,Φ(1)) = T ∗ ⊗O Φ,

W ∗ = V ∗/T ∗ = HomO(T,D(1)).

Example 2.5. If Oρ is the representation obtained by a continuous character
ρ : GK → O× and χp is the cyclotomic character, then

T ∗ = Oρ−1χp .
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2.2 Galois cohomology

If K is a field and A is an abelian topological group on which GK acts, we
can define the continuous group cohomology as in Section 1.2. To lighten
the notation, we write Hn(K,A) for Hn(GK , A), and if the action of GK
factors through Gal(L/K) for some extension L/K, we write Hn(L/K,A)
for Hn(Gal(L/K), A). In particular, if T is a p-adic representation of GK , it
makes sense to consider Hn(K,T ), Hn(K,T ⊗Φ), Hn(K,T ⊗Φ/O), and for
these groups we will have available the long exact sequence of Theorem 1.16.

Recall that if GK acts on A trivially, then the first cohomology group is
just the group of continuous homomorphisms from GK to A. Therefore,

H1(K,Qp/Zp) = Hom(GK ,Qp/Zp),

H1(K,Zp) = Hom(GK ,Zp).

If L/K is a Galois extension, then Gal(L/K) acts naturally on the additive
abelian group L and on the multiplicative abelian groups L×. If nothing is
specified, these are assumed to have the discrete topology.

Theorem 2.6. Let L/K be a Galois extension.

(a) H1(L/K,L) = 0;

(b) H1(L/K,L×) = 0.

For a proof, we refer to [Ser79], Chapter X. The result (b) is the well-known
Hilbert’s theorem 90.

There is an important application of this theorem in Kummer theory (a
concise reference for this is [Bir67]). If n is a positive integer and K is a field
with characteristic coprime with n, we can consider the cyclic group of the
n-th roots of unity µn contained in K. From the exact sequence

1 −→ µn −→ K
× x 7→xn−−−−→ K

× −→ 1,

we derive the exact sequence

1 −→ K×/(K×)n −→ H1(K,µn) −→ H1(K,K
×

) = 0,

therefore
H1(K,µn) ∼= K×/(K×)n.

If K already contains all the n-th roots of unity, we deduce that

Hom(GK ,Z/nZ) ∼= K×/(K×)n.

As a consequence, one can derive that any Galois extension L/K with Galois
group Z/nZ is of the form L = K(α1/n), when K already contains all the
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n-th roots of unity.

We can do more: if K is a field of characteristic different from p, we have

H1(K,µpn) ∼= K×/(K×)p
n ∼= K× ⊗ Zp/p

nZp ∼= K× ⊗ 1

pn
Zp/Zp,

therefore, by Theorem 1.24,

H1(K,µp∞) ∼= lim−→
n

H1(K,µpn) ∼= lim−→
n

K× ⊗ 1

pn
Zp/Zp ∼= K× ⊗Qp/Zp.

Similarly, by Theorem 1.25,

H1(K,Zp(1)) ∼= lim←−
n

K×/(K×)p
n ∼= (K×)̂,

where (K×)̂ denotes the p-adic completion of K×, which coincides with the
p-adically completed tensor product K×⊗̂Zp.

Now we come back to the general setting: T is a p-adic representation
of GK with coefficients in O, V = T ⊗ Φ and W = V/T . Let M ∈ O − {0}.
There are exact sequences:

0 WM W W 0.M (2.1)

0 T T WM 0,

0 T V W 0.

M M−1

M−1 (2.2)

Lemma 2.7. Suppose M ∈ O − {0}.

(a) The sequence (2.1) induces an exact sequence

0→WGK/MWGK → H1(K,WM )→ H1(K,W )M → 0.

(b) The bottom row of (2.2) induces an exact sequence

V GK →WGK → H1(K,T )tors → 0.

Proof.

(a) This follows from applying the long exact sequence in cohomology
to (2.1), noting that

H1(K,W )M = ker(H1(K,W )
M−→ H1(K,W )).

(b) As before, since from Proposition 1.26

H1(K,T )tors = ker(H1(K,T )→ H1(K,V )).
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2.3 Local cohomology groups

Let K be a finite extension of Ql, for some rational prime l. We denote by F
its residue fields, by Kur ⊆ K the maximal unramified subfield of K and by
I the inertia subgroup Gal(K/Kur). There is an exact sequence

1→ I → GK → GF → 1,

where
Gal(Kur/K) ∼= GF = Gal(F/F) ∼= Ẑ,

with Ẑ ∼= lim←−Z/nZ ∼=
∏
p Zp the profinite completion of Z. Here the Frobe-

nius element Fr ∈ Gal(Kur/K) corresponds to the Frobenius automorphism
in Gal(F/F), namely x 7→ x|F|, which corresponds to 1 ∈ Ẑ. In particular,
Gal(Kur/K) is topologically generated by the element Fr.

Definition 2.8. We say that a GK-module A is unramified if I acts trivially
on it. We define the subgroup of unramified cohomology classes by

H1
ur(K,A) = ker(H1(K,A)→ H1(I, A)) ⊆ H1(K,A).

Remark 2.9. If T is a p-adic representation of GK , T is unramified if and
only if V is unramified if and only if W is unramified, and if l 6= p, this is
true also for the dual representations.

Lemma 2.10. If G ∼= Ẑ with topological generator γ and A is a Zp[G]-
module with is either a finitely generated Zp-module, or a finite-dimensional
Qp-vector space, or a discrete torsion Zp-module, then

H1(G,A) ∼= A/(γ − 1)A,

where the isomorphism is induced by evaluating cocycles at γ.

Proof. The fact that the evaluation of cocycles at γ induces a well-defined
injective homomorphism

H1(G,A)→ A/(γ − 1)A

is easy to prove. Using direct and inverse limits and tensoring with Qp, as
seen in Section 1.2, we can reduce to the case where A is finite. In this case,
this result is well known: we refer to [Ser79], Section XIII.1.

Lemma 2.11. Suppose that A is a GK-module which is either a finitely
generated Zp-module, or a finite-dimensional Qp-vector space, or a discrete
torsion Zp-module. Then

H1
ur(K,A) ∼= H1(Kur/K,AI) ∼= AI/(Fr−1)AI .

If l 6= p, then
H1(K,A)/H1

ur(K,A) ∼= H1(I, A)Fr=1,

where with H1(I, A)Fr=1 are the elements of H1(I, A) fixed by the Frobenius.
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Proof. The first isomorphisms easily follows by applying the inflation-restriction
exact sequence (Proposition 1.17) and Lemma 2.10. By Propositions 1.17
and 1.21, we have a Hochschild-Serre spectral sequence

0→ H1(Kur/K,AI)→ H1(K,A)→ H1(I, A)Fr=1 → H2(Kur/K,AI).

Since Gal(Kur/K) ∼= Ẑ has cohomological dimension 1 (see [Wil98], Chapter
11), H2(Kur/K,AI) = 0, and this yields the last isomorphism.

Example 2.12. If K = Ql, we can consider the trivial action of GQl
on

T = O = Zp. In this case,

H1
ur(Ql,Zp) ∼= ZIp/(Fr−1)ZIp = Zp/(Fr−1)Zp = Zp.

Remark 2.13. If V is a finite Qp-vector space and a p-adic representation of
a group G, then we can naturally give the structure of a Qp-vector space
to the cohomology groups Hn(G,V ). Despite having great properties, these
groups are not finite-dimensional in general. Recall from last section that
since K has characteristic different from p,

H1(K,Zp(1)) ∼= K×⊗̂Zp.

In particular, we can build an injection

K× ⊗Qp ↪→ H1(K,Qp(1))

which shows that H1(K,Qp(1)) cannot be finite-dimensional, since K× has
countably infinite rank. Unramified cohomology groups come to the aid to
solve this problem:

Corollary 2.14. If l 6= p and V is a Qp[Gk]-module, finite-dimensional as
Qp-vector space, then

dimQp(H
1
ur(K,V )) = dimQp(V

GK ) <∞.

Proof. By Lemma 2.11, we have an exact sequence

0→ V GK → V I
Fr−1−−−→ V I → H1

ur(K,V )→ 0.

From a well-known result regarding the dimension of vector spaces in exact
sequences, we derive our thesis.

We now broaden our view: K will be a finite extension of Ql, but we allow
l =∞. This means that K can be R or C. Let T be a p-adic representation
of GK , V = T ⊗ Φ and W = V/T as usual. We define special subgroups
H1
f (K, · ) of the cohomology groups H1(K, · ), following the work of Bloch

and Kato in [BK90]. There is a natural choice for l 6= p,∞:
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Definition 2.15. Suppose l 6= p,∞. We define the finite part of H1(K,V )
by

H1
f (K,V ) = H1

ur(K,V ).

We define H1
f (K,T ) ⊆ H1(K,T ) and H1

f (K,W ) ⊆ H1(K,W ) to be the
inverse image and image, respectively, of H1

f (K,V ) under the natural maps

H1(K,T )→ H1(K,V )→ H1(K,W ).

In the same way, for M ∈ O − {0} we define H1
f (K,WM ) to be the inverse

image of H1
f (K,W ) under the map induced by the inclusion WM ↪→ W .

Finally, for V , T , W or WM we define the singular quotient of H1(K, · ) by

H1
s (K, · ) = H1(K, · )/H1

f (K, · ),

therefore there is an exact sequence

0→ Hf (K, · )→ H1(K, · )→ H1
s (K, · )→ 0.

The next Lemma includes important features of these cohomology sub-
groups and quotients.

Lemma 2.16. Let T be a p-adic representation of GK , with l 6= p,∞.

(a) H1
f (K,W ) = H1

ur(K,W )div.

(b) H1
ur(K,T ) ⊆ H1

f (K,T ) with finite index, and H1
s (K,T ) is torsion free.

(c) Denote by W the quotient W I/(W I)div. There are natural isomor-
phisms

H1
ur(K,W )/H1

f (K,W ) ∼=W/(Fr−1)W,

H1
f (K,T )/H1

ur(K,T ) ∼=WFr=1.

(d) If T is unramified, then

H1
f (K,T ) = H1

ur(K,T ) and H1
f (K,W ) = H1

ur(K,W ).

Proof. By their definitions, H1
f (K,W ) is divisible and H1

s (K,T ) is torsion
free. From the exact commutative diagram

0 H1
ur(K,T ) H1(K,T ) H1(I, T )

0 H1
f (K,V ) H1(K,V ) H1(I, V )

0 H1
ur(K,W ) H1(K,W ) H1(I,W )
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we get H1
ur(K,T ) ⊆ H1

f (K,T ) and H1
f (K,W ) ⊆ H1

ur(K,W ). The rest of (a)
and (b) will follow from (c), since W is finite: by Proposition 1.25, W is
isomorphic to H1(K,T )tors, which is finite, being the torsion part of a finitely
generated module over Zp.

(c) The image of V I →W I is (W I)div (again Proposition 1.25), therefore,
taking first I-cohomology and then Gal(Kur/K)-invariants of the exact
sequence 0→ T → V →W → 0, we derive an exact sequence

0→ (W)Fr=1 → H1(I, T )Fr=1 → H1(I, V )Fr=1.

Using Lemma 2.11, we get

Hf (K,T )/Hur(K,T ) = ker(H1(K,T )/H1
ur(K,T )→ H1(K,V )/H1

ur(K,V ))

= ker(H1(I, T )Fr=1 → H1(I, V )Fr=1)

= (W)Fr−1,

Hur(K,W )/Hf (K,W ) = coker(H1
ur(K,V )/→ H1

ur(K,W ))

= coker(V I/(Fr−1)V I →W I/(Fr−1)W I)

= W I/((W I)div + (Fr−1)W I)

=W/(Fr−1)W.

(d) If T is unramified then W I = W is divisible, hence (d) follows immedi-
ately from (c).

When l = p, the choice of a subspace is H1
f (K,V ) is more complicated.

In [BK90], the authors use a ring defined by Fontaine in [Fon82], namely the
ring Bcris:

H1
f (K,V ) = ker(H1(K,V )→ H1(K,V ⊗Bcris)).

However, for our purposes, it will be not necessary to enter in details, and
we can just fix an arbitrary subspace of H1(K,V ), denoting it by H1

f (K,V ).
Natural choices are H1

f (K,V ) = 0 or H1
f (K,V ) = H1(K,V ). Once this

choice is made, we can define Hf (K,T ), Hf (K,W ) and Hf (K,WM ) as be-
fore.

Finally, when l =∞, K = R or C, we have GK finite of order 1 or 2. One
can easily show that since V is torsion-free and divisible, then H1(K,V ) = 0
(for example, using the fact that |GK | : V → V is an isomorphism). As before:

• H1
f (K,V ) = 0;

• H1
f (K,W ) = 0;
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• H1
f (K,T ) = H1(K,T );

• H1
f (K,WM ) = ker(H1(K,WM )→ H1(K,W )) = WGK/MWGK .

Remark 2.17. Let us consider WM , for M ∈ O − {0}. It is a subgroup of W
but also a quotient of T , hence the subgroup Hf (K,WM ) can be defined to
be inverse image of H1

f (K,W ) (as we did) or the image of H1
f (K,T ). The

next result shows that there is no difference.

Lemma 2.18. Suppose M ∈ O − {0}.

(a) H1
f (K,WM ) is the image of H1

f (K,T ) under the map

H1(K,T )→ H1(K,WM )

induced by T �M−1T/T = WM .

(b) If l 6= p,∞ and T is unramified, then H1
f (K,WM ) = H1

ur(K,WM ).

Proof.

(a) The diagram (2.2) gives rise to a commutative diagram with exact rows

H1(K,T ) H1(K,T ) H1(K,WM ) H2(K,T )

H1(K,T ) H1(K,V ) H1(K,W ) H2(K,T ),

M

M−1

from which we easily deduce that the image of H1
f (K,T ) is contained

in H1
f (K,WM ).

Conversely, if cWM
∈ H1

f (K,WM ), then its image in H1(K,W ) is the
image of some cV ∈ H1

f (K,V ). Since, by the previous diagram, the
image of cV is 0 in H2(K,T ), also the image of cWM

has to be 0
in H2(K,T ). By exactness, there exists an element cT ∈ H1(K,T )
which maps to cWM

. Its image in H1(K,V ) under the map induced
by M−1 differs from cV by an element in the kernel of H1(K,V ) →
H1(K,W ), which is the image of H1(K,T ), so it differs by an element
c′ ∈ H1(K,T ). We conclude that the element cT −Mc′ belongs to
H1
f (K,T ) and maps to cWM

.

(b) If l 6= p and T is unramified, then H1
f (H,T ) = H1

ur(H,T ), and by (a)

H1
f (K,WM ) = Im(H1

f (K,T )) = Im(H1
ur(K,T )) ⊆ H1

ur(K,WM ).

Conversely, denoted by ιM the map H1(K,WM )→ H1(K,W ), we have

Hf (K,WM ) = ι−1
M (H1

f (K,W )) = ι−1
M (H1

ur(K,W )) ⊇ H1
ur(K,WM ),

since H1
f (H,W ) = H1

ur(H,W ).
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Corollary 2.19. There are natural horizontal exact sequences with vertical
isomorphisms

0 H1
f (K,W ) H1(K,W ) H1

s (K,W ) 0

0 lim−→H1
f (K,WM ) lim−→H1(K,WM ) lim−→H1

s (K,WM ) 0

0 H1
f (K,T ) H1(K,T ) H1

s (K,T ) 0

0 lim←−H
1
f (K,WM ) lim←−H

1(K,WM ) lim←−H
1
s (K,WM ) 0.

∼ ∼ ∼

∼ ∼ ∼

Proof. Every WM is finite, therefore, by Proposition 1.21, the groups inside
the inverse limits are finite. It follows that the horizontal sequences are exact,
by the Mittag-Leffler condition.

Since T = lim←−WM and W = lim−→WM , we have

H1(K,W ) = lim−→H1(K,WM ),

H1(K,T ) = lim←−H
1(K,WM ).

Similarly, by their definitions,

H1
f (K,W ) = lim−→H1

f (K,WM ),

H1
f (K,T ) = lim←−H

1
f (K,WM ),

we derive

H1
s (K,W ) = lim−→H1

s (K,WM ),

H1
s (K,T ) = lim←−H

1
s (K,WM )

(note that we are using Lemma 2.18 (a) for the second set of isomorphisms).

2.4 Global cohomology and Selmer groups

Let K be a number field and T a p-adic representation of GK with coefficients
in O. As usual, we take V = T ⊗ Φ and W = V/T . If v is a place of K,
we can consider the decomposition group of any place of K in GK , and we
denote it by GKv , since it is the absolute Galois group of the completion Kv

of K under the prime v ([Neu99], Chapter II, Proposition 9.6). We write Iv
for the inertia subgroup contained in GKv . We have a canonical restriction
map

H1(K, · )→ H1(Kv, · ),
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denoted by c 7→ cv. As before, we say that T is unramified at a place v if
the inertia group Iv acts trivially on T (note that this does not depend on
the choice of the prime over v, since all inertia subgroups are conjugated).
We assume that T is unramified outside a finite set of primes of K.

Remark 2.20. If v is a place of K lying over the prime l (it can be ∞) of
Q, then Kv is a finite extension of Ql. In particular, it makes sense to
repeat the construction of the previous Section, and we are able to pick a
subspace H1

f (Kv, V ) of H1(Kv, V ). If v is a finite place not lying over p,
then it is the unramified cohomology group H1

ur(Kv, V ); if v lies over p, then
H1
f (Kv, V ) is an arbitrary subspace of H1(Kv, V ); if v is archimedean, then

H1
f (Kv, V ) = 0.

Let Σ be a finite set of places of K. KΣ will denote the maximal extension
of K contained in K unramified outside Σ.

Definition 2.21. We introduce some Selmer groups corresponding to Σ as
follows. If A is T , W or WM for some M ∈ O − {0}, recalling that

H1
s (Kv, A) = H1(Kv, A)/Hf (Kv, A),

we define
SΣ(K,A) ⊆ SΣ(K,A) ⊆ H1(K,A)

by

SΣ(K,A) = ker
(
H1(K,A)→

∏
v 6∈Σ

H1
s (Kv, A)

)
,

SΣ(K,A) = ker
(
SΣ(K,A)→

⊕
v∈Σ

H1(Kv, A)
)
.

In other words, a class c ∈ H1(K,A) belongs to SΣ(K,A) if, for every v /∈ Σ,

cv ∈ H1
f (Kv, A),

while it belongs to SΣ(K,A) if in addiction

cv = 0

for every v ∈ Σ. When Σ = ∅, we get the true Selmer group

S(K,W ) = S∅(K,W ) = S∅(K,W )

= ker
(
H1(K,A)→

∏
v place of K

H1
s (Kv, A)

)
.

This group was firstly introduced by Bloch e Kato in [BK90], Section 5.
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Remark 2.22. When A = W , the map

H1(K,W )→
∏
v 6∈Σ

H1
s (Kv,W )

actually lands in ⊕
v 6∈Σ

H1
s (Kv,W ).

This is true by discreteness of W . Indeed, if f : GK →W is a cocycle, then
the preimage of {0} has to be open in GK , so it is Gal(K/L) for some L/K
finite Galois. But L ramifies only at finite primes, so the inertia with respect
to the others is trivial, and for almost all places v, H1

f (Kv,W ) = H1
ur(Kv,W ).

Remark 2.23. A priori the Selmer groups depend on the choice of H1
f (Kv, V )

for v lying above p, but this is not the case when Σ contains all the finite
primes above p. We will usually get rid of the “bad” primes, making them
belong to Σ.

Lemma 2.24. The absolute Galois group of KΣ is the closure of the subgroup
generated by all the possible inertia Iv̄/v, for all possible places v of K, and
for all possible extensions v̄, places of K.

Proof. It is well-known ([Koc02], Theorem 8.3) that the fixed field of Iv̄/v
is the maximal extension of K in which the restriction of v̄ is unramified.
Therefore KΣ is contained in the fixed field of every Iv̄/v, and this means that
Gal(K/KΣ), being closed (by infinite Galois correspondence), contains the
closure of the subgroup generated by the inertia. If this containment is strict,
then the fixed field of this closure would be an extension of K unramified
outside Σ strictly larger then KΣ, and this is a contradiction.

Lemma 2.25. If Σ contains all infinite places, all primes above p and all
primes of K where T is ramified, then

SΣ(K,A) = H1(KΣ/K,A),

where A can be T , W or WM , with M ∈ O − {0}.

Proof. For every place v 6∈ Σ, H1
f (Kv, A) = H1

ur(Kv, A). Therefore

SΣ(K,A) = ker
(
H1(K,A)→

∏
v∈Σ

Hom(Iv, A)
)

= ker
(
H1(K,A)→ H1(KΣ, A)

)
= H1(KΣ/K,A),

where the first equality follows from Lemma 2.11 (enlarging the codomain),
the second from Lemma 2.24 and the last from the inflation-restriction
sequence (Proposition 1.17).
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Proposition 2.26. Let Σ be a finite set of primes of K.

(a) SΣ(K,T ) = lim←−S
Σ(K,WM ) and SΣ(K,T ) = lim←−SΣ(K,WM ).

(b) SΣ(K,W ) = lim−→SΣ(K,WM ) and SΣ(K,W ) = lim−→SΣ(K,WM ).

Proof. Immediate consequence of Corollary 2.19.

The next Lemma is one of the reasons for which working with the Selmer
groups is easier than working just with the global cohomology group H1(K, · ):

Lemma 2.27. If M ∈ O − {0} and Σ is a finite set of primes of K, then

(a) SΣ(K,WM ) is finite.

(b) SΣ(K,T ) is a finitely generated O-module.

(c) The Pontryagin dual of SΣ(K,W ) is a finitely generated O-module.

Proof. Without loss of generality, we may enlarge Σ so that it containing all
the infinite places, all primes above p and all primes where T is ramifies By
Lemma 2.25, if A = WM , T or W , then

SΣ(K,A) = H1(KΣ/K,A),

which has the desired properties by Proposition 1.21.

Remark 2.28. In [MR04], Chapter 2, the authors introduce a more general
setup for Selmer groups: if A is a topological O-module with a continuous
O-linear action of GK unramified outside a finite set of places, a Selmer
structure for A is a choice, for every place v of K, of O-submodules

HF (Kv, A) ⊆ H1(Kv, A),

such that for almost all places v,

HF (Kv, A) = H1
ur(Kv, A).

Then a Selmer group for this collection is

S(K,A) = ker
(
H1(K,A)→

∏
v place of K

H1(Kv, A)/H1
F (Kv, A)

)
,

or equivalently (as in Lemma 2.25),

S(K,A) = ker
(
H1(KΣ, A)→

∏
v∈Σ

H1(Kv, A)/H1
F (Kv, A)

)
,

where Σ is a finite set of places containing all primes for which A is unramified
and the primes for which H1

F (Kv, A) 6= H1
f (Kv, A). Then it is clear that our

choices of H1
f (Kv, A) give rise to a Selmer structure, and Definition 2.21 is

just an application of this more general description.
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We deal now with important examples of this construction. Firstly, take
O = Zp = T with trivial GK action. Then, by Lemma 2.16 and Lemma 2.11,
for every prime v of K not above p, we get

H1
f (Kv,Qp/Zp) = H1

ur(Kv,Qp/Zp) = Hom(Gal(Kur
v /Kv),Qp/Zp).

As in Remark 2.22 and Lemma 2.25, if Σ is a finite set of places containing
the ones above p, it follows that

H1(K,Qp/Zp) = Hom(GK ,Qp/Zp),

SΣ(K,Qp/Zp) = Hom(Gal(KΣ/K),Qp/Zp),

SΣ(K,Qp/Zp) = Hom(Gal(HK,Σ/K),Qp/Zp),

where HK,Σ is the maximal unramified abelian extension of K in which the
places in Σ splits completely. This is clearly a subfield of the Hilbert class
field of K, therefore Gal(HK,Σ/K) is a quotient of the ideal class group AK .
By the correspondence we built in Section 1.1, it is the quotient of AK modulo
the subgroup generated by the classes of primes in Σ. Denoted by AK,Σ this
quotient, we get

SΣ(K,Qp/Zp) = Hom(AK,Σ,Qp/Zp).

We see now that when Σ is empty there is an appropriate choice of subspaces
H1
f (Kv,Qp) such that

S(K,Qp/Zp) = Hom(AK ,Qp/Zp).

More in general, if χ : GK → O× is a character of finite, prime-to-p order
(recall that the order of a character is the order of its image) and T = Oχ,
a free rank-one O-module on which GK acts via χ, then there exists an
abelian extension L of K, of degree prime to p, such that χ factors through
∆ = Gal(L/K), by an easy topological argument. We write Dχ = D⊗Oχ
and Φχ = Φ⊗Oχ. Given a place v of K, if w a place of L lying over v, we
denote by Dw and Iw the decomposition group ad the inertia group of w. By
the restriction map and Corollary 5.3 in the Appendix B of [Rub00],

H1(Kv, V ) ∼= (⊕w|v Hom(Dw, V ))∆ = (⊕w|v Hom(Dw,Φχ))∆.

Therefore, if v - p, this identifies

H1
f (Kv, V ) = H1

ur(Kv, V ) = (⊕w|v Hom(Dw/Iw, V ))∆,

and if v | p, we can take this as definition for H1
f (Kv, V ) as well; this agree

with the definition of Bloch-Kato ([BK90]).

Proposition 2.29. There is an isomorphism

S(K,W ) ∼= Hom(AL,Dχ)∆.
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Proof. Since [L : K] is prime to p, the restriction map gives an isomorphism

H1(K,W ) ∼= H1(L,W )∆ = Hom(GL,Dχ)∆.

This follows from the fact that [L : K] : W →W is an isomorphism, and so
H1(∆,W ) = H2(∆,W ) = 0.

Also, since Dw/Iw is torsion free, ⊕w|v Hom(Dw/Iw,W )∆ is divisible,
and from the isomorphism

H1(Kv,W ) ∼= (⊕w|v Hom(Dw,W ))∆,

we get an isomorphism

H1
f (Kv,W ) ∼= (⊕w|v Hom(Dw/Iw,W ))∆.

If L1 denotes the Hilbert class field of L, we conclude that

S(K,W ) ∼= {φ ∈ Hom(Gl,Dχ)∆ | φ(Iw) = 0 for every w}
= Hom(Gal(L1/L),Dχ)∆ = Hom(AL,Dχ)∆.

In particular, for L = K, we deduce the important identification

S(K,Qp/Zp) = Hom(AK ,Qp/Zp).

The second example concerns elliptic curves. Let us consider an elliptic
curve E/K, where K is a number field. Fix p an odd prime and denote by
[pn] the multiplication-by-pn isogeny, where n ≥ 1. Then from the exact
sequence

0→ E[pn]→ E
[pn]−−→ E → 0,

we get the exact sequence

0→ E(K)/pnE(K)
δ−→ H1(K,E[pn])→ H1(K,E)pn → 0,

where δ is the Kummer map. The same reasoning can be repeated after
localizing with a place v of K, and denoted by δv the Kummer map

δv : E(Kv)/p
nE(Kv) ↪→ H1(Kv, E[pn]),

we get a commutative diagram with exact rows

0 E(K)/pnE(K) H1(K,E[pn]) H1(K,E)pn 0

0
∏
v

E(Kv)/p
nE(Kv)

∏
v

H1(Kv, E[pn])
∏
v

H1(Kv, E)pn 0.

The pn-Selmer group of E/K is defined by

S(pn)(E/K) = ker
(
H1(K,E[pn])→

∏
v

H1(Kv, E)
)
.
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The Shafarevich-Tate group of E/K is defined by

X(E/K) = ker
(
H1(K,E)→

∏
v

H1(Kv, E)
)
.

Finally, the p-power Selmer group of E/K is

S(p∞)(E/K) = lim−→
n

S(pn)(E/K).

The relation with the Bloch-Kato Selmer group is the following: take
T = Tp(E), the Tate module. The action of GK on T is unramified at every
prime v not lying over p for which E has good reduction ([Sil09], Chapter
VII, Proposition 4.1). We have

V = Vp(E) = Tp(E)⊗Qp,

W = Vp(E)/Tp(E) = E[p∞].

From the injection

E(Kv)/p
nE(Kv) ↪→ H1(Kv, E[pn]),

we also derive the following Kummer maps, again denoted by δv:

E(Kv)⊗Qp/Zp ↪→ H1(Kv, E[p∞]),

E(Kv )̂ ↪→ H1(Kv, Tp(E)),

E(Kv )̂ ⊗Qp ↪→ H1(Kv, Vp(E)).

Note that by commutativity,

S(pn)(E/K) = ker
(
H1(K,E[pn])→

∏
v

H1(Kv, E[pn])/ Im(δv)
)
,

and also

S(p∞)(E/K) = ker
(
H1(K,E[p∞])→

∏
v

H1(Kv, E[p∞])/ Im(δv)
)
.

If v is a prime above p we can define H1
f (Kv, Vp(E)) as the image of the

Kummer map, and this coincide with the Bloch-Kato definition, by the
renowned Example 3.11 of [BK90].
Remark 2.30. By the Weil pairing ([Sil09], Section III.8), V ∼= V ∗, T ∼= T ∗,
and W ∼= W ∗. Therefore H1

f (Kv, V
∗) = H1

f (Kv, V ), and they are orthogonal
complements under the local pairing, as one requires.

Proposition 2.31 ([Gre99], Proposition 2.1). If v - p, then the image of the
Kummer map

E(Kv)⊗Qp/Zp ↪→ H1(Kv, E[p∞])

is trivial.
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Proposition 2.32. The Selmer group S(K,E[p∞]) is the p-power Selmer
group of E/K, and it sits in an exact sequence

0→ E(K)⊗Qp/Zp → S(K,E[p∞])→X(E/K)p∞ → 0,

where X(E/K)p∞ is the p-part of the Shafarevich-Tate group.

Proof. If v - p, then by [Sil09], Chapter VII, Proposition 6.3, E(Kv) contains
a subgroup of finite index which is a pro-l-group, with l rational prime below v.
In particular, E(Kv )̂ is finite, and so H1

f (Kv, Vp(E)) = 0. Therefore, for every
v, H1

f (Kv, Vp(E)) is the image of E(Kv )̂⊗ZpQp under the Kummer map. We
conclude that for every v, H1

f (Kv, E[p∞]) is the image of E(Kv )̂ ⊗Zp Qp/Zp
under the Kummer map, that is, the two definitions coincide.
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Chapter 3

Euler systems

In this Chapter, we deal with the main results. Firstly, we introduce the
powerful instrument of the Euler systems, in the most possible general setting.
Then we see how it relates with Selmer groups, stating fundamental Theorems
in order to control their sizes. The proof of some Theorems requires difficult
and deep techniques, developed in Chapters IV, V and VII of [Rub00], and
in this case we just provide precise references. In particular, the Kolyvagin
derivatives play a special role in the proofs, and in Chapter 4 we will introduce
them and explicitly see their importance in our setting: the main conjecture.
We follow again [Rub00], remarking how similar results can be found in [Kol90],
[Kat99] and [MR04].

3.1 Euler systems: definition

Let K be a number field. As usual, OK will be the ring of integers of K. We
consider a p-adic representation T of GK with coefficients in O, where p is
a rational prime and O is the ring of integers of Φ, a finite extension of Qp.
We assume that T is unramified outside a finite set of primes of K.

If q is a finite prime of K non dividing p where T is unramified, then
we can take the ray class field modulo q, Kq. Denote by K(q) the maximal
p-extension of K contained in Kq. We define

P (Fr−1
q | T ∗;x) = det(1− Fr−1

q x | T ∗) ∈ O[x],

where Frq is a Frobenius of q in GK .
Remark 3.1. The Frobenius is not uniquely defined: it depends on a choice
of a prime of K lying over q, but only up to conjugation, and it is defined
modulo an inertia subgroup. However, since T is unramified at q and q
does not lie over p, also T ∗ is unramified at q, hence this determinant is
well-defined.

We write
K ⊆f F
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to indicate that F/K is a finite extension.

Definition 3.2. Let K be an (infinite) abelian extension of K and N be an
ideal of K divisible by p and by all primes where T is ramified, such that:

• K contains K(q) for every finite prime q of K not dividing N .

• K contains an extension K∞ of K such that Gal(K∞/K) ∼= Zdp for
some d ≥ 1, and no finite prime of K splits completely in K∞/K.

A collection of classes

c = {cF ∈ H1(K,T ) | K ⊆f F ⊆ K}

is called an Euler system for (T,K,N ) if, whenever K ⊆f F ⊆f F ′ ⊆ K, we
have

corF ′/F (cF ′) =

 ∏
q∈Σ(F ′/F )

P (Fr−1
q | T ∗; Fr−1

q )

 cf ,

where Σ(F ′/F ) denotes the set of finite primes of K, not dividing N , which
ramify in F ′ but not in F , and corF ′/F is the corestriction map

corF ′/F : H1(F ′, T )→ H1(F, T ),

induced by the inclusion Gal(K/F ′) ⊆ Gal(K/F ).
We say that a collection c = {cF ∈ H1(F, T )} is an Euler systems for

T if we can choose, as before, K and N such that c is an Euler system for
(T,K,N ).

Finally, if K∞ is a Zdp-extension of K in which no finite prime splits
completely, we say that a collection c = {cF ∈ H1(F, T )} is an Euler systems
for (T,K∞) if we can choose, as before, K ⊇ K∞ and N such that c is an
Euler system for (T,K,N ).

Since Zdp has no proper finite subgroup, a prime does not split completely
in K∞/K if and only if its decomposition group is infinite. For example, K∞
may be the cyclotomic Zp-extension of K, because no finite prime of K splits
completely there: by K∞ = KQ∞, without loss of generality, we can show
this for K = Q. Also, to simplify the notation, take p 6= 2. As we have seen
in Section 1.3, Qn, the degree pn subextension of Q∞, is obtained as the fixed
field of (Z/pZ)× ∼= µp−1 in Q(ζpn+1), with Gal(Q(ζpn+1)/Q) ∼= (Z/pn+1Z)×.
If l 6= p, the Frobenius of l in Gal(Q(ζpn+1)/Q) is (isomorphic to) l mod
pn+1, therefore l splits completely in Qn if lp−1 ≡ 1 (mod pn+1), and this
clearly can happen only for finitely many n.

Since p divides N , no Euler factor at primes dividing p are considered.
The only unramified primes in K∞ lies above p (Proposition 1.29), therefore
the Euler systems classes are “universal norms” in the K∞/K direction: if
K ⊆f F ⊆f F ′ ⊆ K∞, Σ(F ′/F ) is empty, thus

corF ′/F (cF ′) = cF .
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Remark 3.3. Given K and N as before, an Euler system for (T,K,N ) is
equivalent to a collection

{c̃m ∈ H1(Km ∩ K, T ) | m is a modulus of K}

satisfying

corKmq∩K/Km∩K(c̃mq) =

{
P (Fr−1

q | T ∗; Fr−1
q )c̃m if q - mN

c̃m if q | mN .

Indeed, given such a collection, if K ⊆f F , we define

cF = corKm∩K/F (c̃m),

where m = f(F/K) is the conductor of F/K. Then it is straightforward to
check that the collection {cF } is an Euler system. Conversely, given an Euler
system c = {cF }, for every modulus m of K we define

c̃m =
∏

P (Fr−1
q | T ∗; Fr−1

q )cKm∩K,

where the product is taken over primes q dividing m, not dividing N , unram-
ified in (Km ∩ K)/K.

Remark 3.4. If we are givenN andK∞/K as in Definition 3.2 and t = q1 · · · qk
is a squarefree product of finite primes not dividing N , we can define K(t)
to be the compositum

K(t) = K(q1) · · ·K(qk).

If K ⊆f F ⊆ K∞, we write F (t) = FK(t). Denoted by Kmin the compositum
of K∞ and all K(q) for finite primes q not dividing N , then Kmin is the
smallest extension of K satisfying Definition 3.2. Every finite extension of K
in Kmin is contained in F (t) for some K ⊆f F ⊆ K∞ and some squarefree
ideal τ prime to N . It follows that an Euler system for (T,Kmin,N ) is
completely determined by the subcollection

{cF (t) | t is squarefree and prime to N , K ⊆f F ⊆ K∞}.

Conversely, suppose that we are given a collection {cF (t)} such that if

K ⊆f F ⊆f F ′ ⊆ K∞,

t is a squarefree ideal of K prime to N , and q is a finite prime of K not
dividing tN such that K(q) 6= K, then

corF (tq)/F (t)(cF (tq)) = P (Fr−1
q | T ∗; Fr−1

q )cF (t),

corF ′(t)/F (t)(cF ′(t)) = cF (t)
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(if K(q) = K, then F (tq) = F (t)). Then this collection determines an Euler
system: for K ⊆f L ⊆ Kmin, we can set

cL = corF (t)/L(cF (t)),

where t and F are minimal such that L ⊆ F (t). We conclude that we can
view an Euler system for (T,Kmin,N ) as such a collection {cF (t)}.
Remark 3.5. Kolyvagin’s original definition of Euler systems in [Kol90] re-
quired also an additional “congruence” condition, with which we will deal
explicitly during the developing of the main conjecture. However, by the
assumption that K contains K∞, we can bypass the need for this condition,
since it follows easily from the techniques used in Chapter IV of [Rub00].

3.2 Results over K

In the usual setting, we denote by p the maximal ideal of O and F = O/p
the residue field. Following the notation above, let K(1) be the maximal
p-extension ofK inside the Hilbert class field ofK. We introduce two different
sets of hypothesis on the Galois representation T : Hyp(K,T ) and Hyp(K,V ).
The fomer is stronger than the latter, therefore it will allow us to get stronger
conclusions.

Hyp(K,T ):

(a) There is a τ ∈ GK such that:

• τ is trivial on µp∞ , on (O×K)1/p∞ (the p-power roots of units in
(OK)×) and on K(1);
• T/(τ − 1)T is free of rank one over O.

(b) T ⊗ F is an irreducible F[GK ]-module.

Hyp(K,V ):

(a) There is a τ ∈ GK such that:

• τ is trivial on µp∞ , on (O×K)1/p∞ and on K(1);
• dimΦ(V/(τ − 1))V = 1.

(b) V is an irreducible Φ[GK ]-module.

Remark 3.6. The hypotheses Hyp(K,T ) are satisfied if the image of the
Galois representation on T is “sufficiently large”. They often hold in practice.
For example, if the rank of T as O-module is one, then they hold with τ = 1.

Definition 3.7. The index of divisibility of an Euler system c is

indO(c) = sup{n | cK ∈ pnH1(K,T ) +H1(K,T )tors} ≤ ∞.
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This means that pindO(c) is the largest power of the maximal ideal by
which cK can be divided in H1(K,T )/H1(K,T )tors.

Given an O-module A, we denote by `O(A) the length of A, which can
be ∞.

Define Ω = K(1)K(W )K(µp∞ , (O×K)1/p∞), where K(W ) is the smallest
extension of K such that its absolute Galois group acts trivially on W .

We denote by Σp the set of primes of K above p.

Theorem 3.8 ([Rub00], Chapter II, Theorem 2.2). Let c be an Euler system
for T , with T satisfying Hyp(K,T ). If p > 2, then

`O(SΣp(K,W
∗)) ≤ indO(c) + nW + n∗W ,

where

nW = `O(H1(Ω/K,W ) ∩ SΣp(K,W )),

n∗W = `O(H1(Ω/K,W ∗) ∩ SΣp(K,W
∗)).

Remark 3.9. Clearly our aim is to have this length as small as possible. The
terms nW and n∗W are relate to the extension Ω/K, a nice extension we hope
we can control. For example, if K = Q and T = Zp(1), then Ω is just the
well-behaved field Q(µp∞). Also, frequently, these “error terms” are zero.

Theorem 3.10 ([Rub00], Chapter II, Theorem 2.3). Let c be an Euler system
for T , where T is not the one-dimensional trivial representation. If V satisfies
Hyp(K,V ) and cK 6∈ H1(K,T )tors, then SΣp(K,W

∗) is finite.

Remark 3.11. If T = O, then SΣp(K,W
∗) is finite if and only if Leopoldt’s

conjecture holds for K (see [Rub00], Chapter I, Corollary 6.4).

Remark 3.12. For the trivial Euler system defined by cF (t) = 0 for all F and
t, Theorems 3.8 and 3.10 say nothing, since indO(c) =∞.

Remark 3.13. Despite all the Euler system c is needed in the proofs of these
Theorems, only the class cK appears in the statements. Also, these Theorems
depend directly on the choice of the subspaces H1

f (K,V ).

Note that Theorem 3.8 gives a bound for the size of SΣp(K,W
∗), not of

the true Selmer group S(K,W ∗). To get some information about S(K,W ∗),
we need to add an hypothesis regarding the choice of the subspaces H1

f (Kv, · )
for primes v dividing p. If L is a finite extension of Ql for some prime l of Q,
n = 0, 1, 2 if l is finite, n = 1 if l is infinite, then the cup product and the
bilinear map

V × V ∗ → Φ(1),

given by the fact that V ∗ = HomO(V,Φ(1)), induce a perfect pairing

Hn(K,V )×H2−n(K,V ∗)→ H2(K,Φ(1)) ∼= Φ,

43



denoted by 〈 , 〉Kv . For a proof, we can just apply Propositions 1.25 and
1.26 to [Ser97], Section II.5.2.

To get our thesis, we have to require that the subspaces H1
f (Kv, V ) and

H1
f (Kv, V

∗) are orthogonal complement under this pairing, for v | p. This is
always true for v - p ([Rub00], Chapter I, Proposition 4.2). We write

H1(Kp, · ) =
⊕
v|p

H1(Kv, · )

and the same for H1
f and H1

s . Let locsΣp denote the localization map

locsΣp : SΣp(K,T )→ H1
s (Kp, T ).

By Lemma 2.16 and [Rub00], Appendix B, Corollary 3.4, if c is an Euler
system, then cK ∈ SΣp(K,T ) ⊆ H1(K,T ).

Corollary 3.14 ([Rub00], Chapter I, Corollary 7.5). There is an isomorphism

S(K,W ∗)/SΣp(K,W
∗) ∼= HomO(coker(locsΣp),D). (3.1)

Theorem 3.15. Let c be an Euler system for T and suppose that

locsΣp(cK) 6= 0.

(a) If T is not the one-dimensional trivial representation, V satisfies
Hyp(K,V ), and [H1

s (Kp, T ) : O locsΣp(cK)] is finite, then also S(K,W ∗)
is finite.

(b) If p > 2 and T satisfies Hyp(K,T ), then

`O(S(K,W ∗)) ≤ `O(H1
s (Kp, T )/O locsΣp(cK)) + nW + n∗W .

Proof. We use Theorems 3.8 and 3.10 to bound SΣp(K,W
∗), and then (3.1)

to control [S(K,W ∗) : SΣp(K,W
∗)].

(a) For every v, H1
s (Kv, T ) is torsion free, since it injects into the vector

space H1
s (Kv, V ). Therefore, the hypothesis locsΣp(cK) 6= 0 implies that

cK /∈ H1(K,T )tors. By Theorem 3.10, SΣp(K,W
∗) is finite and since,

by (3.1),

[S(K,W ∗) : SΣp(K,W
∗)] = [H1

s (Kp, T ) : locsΣp(S
Σp(K,T ))]

≤ [H1
s (Kp, T ) : O locsΣp(cK)]

we derive our first assertion.
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(b) AlsoH1(K,T )/SΣp(K,T ) is torsion free, since it injects in⊕v-pH1
s (Kv, T ).

Therefore, for every n,

ck ∈ pnH1(K,T ) +H1(K,T )tors ⇒ ck ∈ pnSΣp(K,T ) +H1(K,T )tors

⇒ locsΣp(S
Σp(K,T )).

Since locsΣp(cK) 6= 0,

indO(c) ≤ `O(locsΣp(S
Σp(K,T ))/O locsΣp(cK)),

and by Theorem 3.8,

`O(SΣp(K,W
∗)) ≤ `O(locsΣp(S

Σp(K,T ))/O locsΣp(cK)) + nW + n∗W .

Then again by (3.1), we derive our result.

3.3 Results over Q∞

After the results for the base fieldK, we want to explore the Zdp-extensionK∞.
However, since our final goal is to prove theorems regarding the arithmetic of
the cyclotomic extension of Q, and since in Section 1.3 we gave properties in
the particular case d = 1 for Q, for this Section, we consider K = Q and we
let Q∞ be the cyclotomic Zp-extension of Q. These results can be found in
the most general setting in [Rub00].

Let T be a p-adic representation of GQ with coefficients in Zp unramified
outside a finite set of places. We write Hyp(Q∞, T ) (resp. Hyp(Q∞, V )) for
Hyp(Q, T ) (resp. Hyp(Q, V )) with GQ replaced by GQ∞ :

Hyp(Q∞, T ):

(a) There is a τ ∈ GK such that:

• τ is trivial on µp∞ ;

• T/(τ − 1)T is free of rank one over Zp.

(b) T/pT is an irreducible Fp[GQ∞ ]-module, where Fp is the field with p
elements.

Hyp(Q∞, V ):

(a) There is a τ ∈ GK such that:

• τ is trivial on µp∞ ;

• dimQp(V/(τ − 1))V = 1.
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(b) V is an irreducible Qp[GQ∞ ]-module.

Recall the Iwasawa algebra of the Zp-extension Q∞/Q:

Λ = lim←−
n

Zp[Gal(Qn/Q)].

Definition 3.16. We define the following Λ-modules:

SΣp(Q∞,W
∗) = lim−→

n

SΣp(Qn,W
∗),

X∞ = Hom(SΣp(Q∞,W
∗),Qp/Zp),

H1
∞(Q, T ) = lim←−

n

H1(Qn, T ),

where the limits are taken respectively under restriction and corestriction
maps.

Here, every SΣp(Qn,W
∗) has a structure of Zp[Gal(Qn/Q)]-module,

since this is true for H1(Qn,W
∗) and also, fixed a prime l 6= p of Q, for

⊕v|lH1(Qn,v,W
∗), by [Rub00], Section B.5. On the Pontryagin dual, Γ acts

by γf(x) = f(γ−1x), therefore the action of Λ = Zp[[T ]] is the following:

g(T )f(x) = f(g((1 + T )−1 − 1)x).

Definition 3.17. If c is an Euler system, we let cQ,∞ denote the correspond-
ing element of H1

∞(K,T ). Define an ideal

indΛ(c) = {φ(cQ,∞) | φ ∈ HomΛ(H1
∞(K,T ),Λ)} ⊆ Λ.

The ideal indΛ is the analogue for Λ of the index of divisibility indZp(c)
we introduced before. The next three Theorems are proved generalizing
Theorem 3.8 for every Qn, and then passing to the limit. The first, is usually
known as weak Leopoldt conjecture for T . Consider an Euler system c for
(T,Q∞).

Theorem 3.18 ([Rub00], Chapter II, Theorem 3.2). If V satisfies Hyp(Q∞, V )
and cQ,∞ 6∈ H1

∞(K,T )Λ−tors, then X∞ is finitely generated a torsion Λ-
module.

Theorem 3.19 ([Rub00], Chapter II, Theorem 3.3). If T satisfies Hyp(Q∞, T ),
then

char(X∞) divides indΛ(c).

Theorem 3.20 ([Rub00], Chapter II, Theorem 3.4). If V satisfies Hyp(Q∞, V ),
then there exists a nonnegative integer t such that

char(X∞) divides pt indΛ(c).
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Remark 3.21. Again, these Theorems give bounds for the size of SΣp(Q∞,W
∗).

We see now how to deduce results concerning the true Selmer group lim−→S(Qn,W
∗).

We need some assumptions about the choices of subspaces H1
f (Qn,p, V ) ⊆

H1(Qn,p, V ) and H1
f (Qn,p, V

∗) ⊆ H1(Qn,p, V
∗):

• H1
f (Qn,p, V ) and H1

f (Qn,p, V
∗) are orthogonal complements under the

cup product pairing

H1(Qn,p, V )×H1(Qn,p, V
∗)→ H2(Qn,p,Qp(1)) = Qp.

• If m ≥ n, then

corQm,p/Qn,p
H1
f (Qm,p, V ) ⊆ H1

f (Qn,p, V ),

resQm,p/Qn,p
H1
f (Qn,p, V

∗) ⊆ H1
f (Qm,p, V

∗).

These requirements ensure that for m ≥ n, the restriction and corestriction
maps induces respectively

S(Qn,W
∗)→ S(Qm,W

∗),

H1
s (Qm,p, T )→ H1

s (Qn,p, T ),

and so we can define the following Λ-modules:

S(Q∞,W
∗) = lim−→

n

S(Qn,W
∗),

H1
∞,s(Qp, T ) = lim←−

n

H1
s (Qn,p, T ).

Proposition 3.22. Denote by locsΣp the localization map

locsΣp : H1
∞(Q, T )→ H1

∞,s(Qp, T ).

Then there is an exact sequence

0→ H1
∞,s(Qp, T )/ locsΣp(H

1
∞(Q, T ))→ Hom(S(Q∞,W

∗),Qp/Zp)→ X∞ → 0.

Proof. Again by [Rub00], Appendix B, Corollary 3.4,

H1
∞(Q, T ) = lim←−

n

SΣp(Qn, T ).

Then the assertion follows passing to direct limit from (3.1) and then applying
Hom( ·,Qp/Zp).

Theorem 3.23. If V satisfies Hyp(Q∞, V ), locsΣp(cQ,∞) 6∈ H1
∞,s(Qp, T )Λ−tors

and H1
∞,s(Qp, T )/Λ locsΣp(cQ,∞) is a finitely generated torsion Λ-module, then
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(a) Hom(S(Q∞,W
∗),Qp/Zp) is a finitely generated torsion Λ-module.

(b) There is a nonnegative integer t such that

char(Hom(S(Q∞,W
∗),Qp/Zp)) divides pt char(H1

∞,s(Qp, T )/Λ locsΣp(cQ,∞)).

If in addiction T satisfies Hyp(Q∞, T ), then

char(Hom(S(Q∞,W
∗),Qp/Zp)) divides char(H1

∞,s(Qp, T )/Λ locsΣp(cQ,∞)).

Proof.

(a) Since locsΣp(cQ,∞) 6∈ H1
∞,s(Qp, T )Λ−tors, cQ,∞ 6∈ H1

∞(Q, T )Λ−tors. There-
fore, by 3.18, X∞ is a finitely generated torsion Λ-module, and by 3.22,
also

Hom(S(Q∞,W
∗),Qp/Zp)

is a finitely generated torsion Λ-module such that

char(Hom(S(Q∞,W
∗),Qp/Zp)) = char(X∞) char(H1

∞,s(Qp, T )/ locΣp(H
1
∞(Q, T ))).

(b) By our assumptions, locsΣp(H
1
∞(Q, T )) is a rank one Λ-module, therefore

there is a pseudo-isomorphism

ψ : locsΣp(H
1
∞(Q, T ))→ Λ.

We deduce that

ψ(locsΣp(cQ,∞))Λ = char(ψ(locsΣp(H
1
∞(Q, T )))/ψ(locsΣp(cQ,∞))Λ)

⊃ char(locsΣp(H
1
∞(Q, T )))/(locsΣp(cQ,∞))Λ).

The assertions then follow from the definition of indΛ(c) and by the
divisibilities of Theorems 3.19 and 3.20.

3.4 Twisting by characters of finite order

For this Section, we come back to a more general situation: K is a number
field, T is a p-adic representation of GK and c is an Euler system for (T,K,N ).
We discuss a little more about the field K: the results described in the previous
Sections does not depend on K, except that it has to contain K∞, therefore
generally we can ignore it, taking just K = Kmin. However, if K is not the
minimal field, it contains more information, and now we see a way to use this
extra information, using characters.

If χ : GK → O× is a character of finite order, then we can denote by Oχ
a free, rank-one O-module on which GK acts via χ, fixing a generator ξχ.
We write T ⊗ χ for the representation T ⊗O Oχ.
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Definition 3.24. If c is an Euler system for (T,K,N ) and

χ : Gal(K/K)→ O×

is a character of finite order, then consider L = Kker(χ), the field cut out by
χ. For K ⊆f F ⊆ K we define cχF ∈ H1(F, T ⊗ χ) to be the image of cFL
under the composition

H1(FL, T )
⊗ξχ−−→ H1(FL, T )⊗Oχ ∼= H1(FL, T ⊗ χ)

cor−−→ H1(F, T ⊗ χ),

where the isomorphism depends on the fact that GFL is in the kernel of χ.

Proposition 3.25. Suppose c is an Euler system for (T,K,N ) and

χ : Gal(K/K)→ O×

is a character of finite order. If f is the conductor of χ (that is, the conductor
of the field cut out by χ), then the collection

{cχF | K ⊆f F ⊆ K}

defined above is an Euler system for (T ⊗ χ,K, fN ).

Proof. If K ⊆f F ⊆f F ′ ⊆ K, then

corF ′/F (cχF ′) = corF ′L/F (cF ′L ⊗ ξχ)

= corFL/L((corF ′L/FL cF ′L)⊗ ξχ)

= corFL/F

( ∏
q∈Σ(F ′L/FL)

P (Fr−1
q | T ∗; Fr−1

q )cFL

)
⊗ ξχ


= corFL/F

 ∏
q∈Σ(F ′L/FL)

P (Fr−1
q | T ∗;χ(Frq) Fr−1

q )(cFL ⊗ ξχ)


=

∏
q∈Σ(F ′L/FL)

P (Fr−1
q | T ∗;χ(Frq) Fr−1

q ) corFL/F (cFL ⊗ ξχ)

=
∏

q∈Σ(F ′L/FL)

P (Fr−1
q | (T ⊗ χ)∗; Fr−1

q )cχF ,

where
P (Fr−1

q | (T ⊗ χ)∗;x) = det(1− Fr−1
q x | (T ⊗ χ)∗),

and

Σ(F ′L/FL) = {primes q not dividing N that ramify in F ′L but not in FL}
= {primes q not dividing fN that ramify in F ′ but not in F}.

This proves our result.
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Lemma 3.26. If K ⊆f F ⊆ K∞, L ⊆ L′ ⊆ K and the conductor of L′/K is
equal to the conductor of L/K, then the image of cχF under the composition

H1(F, T ⊗ χ)
res−−→ H1(FL′, T ⊗ χ)

⊗ξ−1
χ−−−→ H1(FL′, T )

is ∑
δ∈Gal(FL′/F )

χ(δ)δ(cFL′).

Proof. Since the conductors are equal, every prime which ramifies in L′/K
ramifies also in L/K, therefore

corFL′/FL cFL′ = cFL.

We deduce that

(resFL′/F corFL/F (cFL ⊗ ξχ))⊗ ξ−1
χ = (resFL′/F corFL′/F (cFL′ ⊗ ξχ))⊗ ξ−1

χ

=

 ∑
δ∈Gal(FL′/F )

δ(cFL′ ⊗ ξχ)

⊗ ξ−1
χ

=
∑

δ∈Gal(FL′/F )

χ(δ)δ(cFL′).
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Chapter 4

Main conjecture

4.1 Cyclotomic Euler system

Take K = Q, and consider the cyclotomic representation Zp(1), induced by
the cyclotomic character

χp : GQ → Z×p .

An equivalent description of the character is the following: for every n, the
projections

Gal(Q/Q)→ Gal(Q(µpn)/Q)

give rise to an inverse systems of maps

GQ → (Z/pnZ)×,

from which we get the desired map

GQ → Z×p .

In particular, from this construction, it follows easily that the cyclotomic
character is unramified outside p, since every prime different from p is
unramified in every Q(µpn)/Q, and so it has trivial inertia.

This means that it makes sense to ask for an Euler system for T = Zp(1).
As “big” field K we can consider Qab, which contains every abelian extension
of Q, so in particular the cyclotomic extension Q∞ and all the maximal
p-extensions contained in the ray class fields modulo finite primes different
from p. As ideal, N will be the ideal generated by p; we will call it simply p.
Therefore we are looking for an Euler system for (Zp(1),Qab, p).

There are two sorts of modulus for Q: m = m and m = m∞, where m
is an integer and ∞ is the unique real embedding Q ↪→ R. The ray class
field modulo m is Q(µm)+, while the ray class field modulo m∞ is Q(µm).
Both are already contained in Qab, thus, by Remark 3.3, an Euler system for
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(Zp(1),Qab, p) consists in a collection {c̃m∞, c̃m} satisfying the compatibility
conditions, where

c̃m∞ ∈ H1(Q(µm),Zp(1)),

c̃m ∈ H1(Q(µm)+,Zp(1)).

The conditions to be satisfied are related to corestriction maps and to the
Euler factor

P (Fr−1
l | Zp(1)∗;x) = det(1− Fr−1

l x | Zp(1)∗),

for l 6= p rational prime. But

Zp(1)∗ = Hom(Zp(1),Zp(1)) = Zp

with trivial GQ action, therefore

P (Fr−1
l | Zp(1)∗;x) = 1− x.

For every number field F , we have seen that

H1(F,Zp(1)) = lim←−
n

F×/(F×)p
n

= (F×)̂,

the p-adic completion of F×. In particular, there is a natural injection

F× ↪→ H1(F,Zp(1)),

which we can use to define the classes. With this in mind, we fix a collection
{ζm | m ≥ 1}, where every ζm is a primitive m-th root of unity such that
ζnmn = ζm for every m and n. For example, we can embed Q in C and pick
ζm = e2πi/m. If L/F is a finite Galois extension, denote by NL/K the field
norm: for any α ∈ L,

NL/K(α) =
∏

σ∈Gal(L/K)

σ(α) ∈ K.

Then the collection {ζm | m ≥ 1} satisfy the following relations:

NQ(µml)/Q(µm)(1−ζml) =


1− ζm if l | m
(1− Fr−1

l )(1− ζm) if l - m and m > 1

l if m = 1

, (4.1)

where l is a prime and Frl is the Frobenius of l in Gal(Q(µm)/Q).

Remark 4.1. From now on, despite working with multiplicative groups, we
will use additive notation for Q(µm)×.
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This (pleasant) computation can be found in Section 6.3 of [Lan90]. Then
for m ≥ 1 we can define

c̃m∞ = NQ(µmp)/Q(µm)(1− ζmp) ∈ Q(µm)× ⊆ H1(Q(µm),Zp(1)),

c̃m = NQ(µm)/Q(µm)+(c̃m∞) ∈ (Q(µm)+)× ⊆ H1(Q(µm)+,Zp(1)).

To check that this is an Euler system, we need to verify the compatibility
conditions; since these elements are defined at cohomological level zero, by the
structure of H1(F,Zp(1)) for every number field F and by Proposition 1.22,
it is enough to study the corestriction at level zero, where it is just the field
norm. The Equation 4.1 precisely tells us that these elements verify the
needed congruence, since for every prime l 6= p,

P (Fr−1
l | Zp(1)∗; Fr−1

l ) = 1− Fr−1
l ,

and therefore {c̃m∞, c̃m} is an Euler system for (Zp(1),Qab, p).
To get the information we need to prove the main conjecture, we do

not use directly the Euler system, but a collection of cohomology elements
associated to them. Also, not all the system is needed: fix an integer n > 0
and let F = Q(µpn+1)+. Define P to be the set of positive squarefree integers
divisible only by primes l splitting completely in F/Q, that is,

l ≡ ±1 (mod pn+1).

Every r ∈P is coprime with p, therefore we write

Gr = Gal(F (µr)/F ) ∼= Gal(Q(µr)/Q).

We denote by Nr the norm operator

Nr =
∑
τ∈Gr

τ ∈ Z[Gr],

and since, by Theorem 1.14 of Chapter VI in [Lan02], there is a natural
isomorphism Gr ∼=

∏
l|rGl (implicitly taken on all the prime divisors), we

have
Nr =

∏
l|r

Nl ∈ Z[Gr].

When l ∈P is a prime not dividing r, we can identify Gl = Gal(F (µl)/F )
with Gal(F (µrl)/F (µr)), and Frl will denote the Frobenius of l in Gr, the
automorphism sending each r-th root of unity to its l-th power. Since for
every prime l ∈P the group Gl is cyclic of order l− 1, we can fix a generator
σl.
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Definition 4.2. If r ∈P, the r-th derivative element is

Dr =
∏
l|r

Dl ∈ Z[Gr],

where for every prime l ∈P,

Dl =
l−2∑
i=1

iσil ∈ Z[Gl].

This operator satisfies an important relation:

Lemma 4.3. For every l ∈P prime, we have

(σl − 1)Dl = (l − 1)−Nl.

Proof.

σlDl =

l−2∑
i=1

iσi+1
l =

l−1∑
i=1

(i− 1)σil =

l−1∑
i=1

iσil −
l−1∑
i=1

σil = (Dl + l − 1)−Nl.

Fix now an odd integer M , which will be a large power of some prime p.
We set

PM = {r ∈P | r is divisible by only primes l ≡ 1 (mod M)}.

The elements of the Euler system we will use are the ones of F (µr), for
r ∈PM . We denote them by αr:

αr = NQ(µpn+1r)/F (µr)
(1− ζpn+1r) = (1− ζpn+1ζr)(1− ζ−1

pn+1ζr) ∈ F (µr)
×.

Remark 4.4. We are using a little abuse of notation here, since it is not true
that ζpn+1r = ζpn+1ζr, but instead ζpn+1r = ζ ′pn+1ζ

′
r, for some other primitive

roots of unity.

These elements satisfy, for l - r, l ∈P:

Nl(αrl) = (Frl−1)αr.

Remark 4.5. These units also satisfy

αrl ≡ αr (mod L ),

for every prime L of F (µr) above l, since ζl ≡ 1 (mod L ), which is true
since the residue field modulo L has characteristic l. This is exactly the
Kolyvagin additional congruence we cited in Remark 3.5.

Lemma 4.6. If r ∈PM , then the class of Drαr belongs to

[F (µr)
×/(F (µr)

×)M ]Gr .
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Proof. We work by induction of the number of prime divisors of r. If r = 1,
Gr = 1, so the result is clear. If r = ls with l, s ∈PM , l prime, then

(σl − 1)Drαr = (l − 1−Nl)Dsαr = (l − 1)Dsαr + (1− Frl)Dsαs,

using the Euler system relation. The last term is congruent to (1− Frl)Dsαs
modulo (F (µr)

×)l−1. By inductive hypothesis,

(1− Frl)Dsαs ∈ (F (µs)
×)M ,

and since l ≡ 1 (mod M) and Gr is generated by all the σl for l | r prime,
the assertion follows.

Note that since M is odd and F is real, µM ∩ F = {1}, and also
µM ∩ F (µr) = {1}, because M and r are coprime. This means that Gr
acts trivially on µM , and applying the Hochschild-Serre exact sequence
(Proposition 1.17) to G = GF (µr)

and H = GF , we deduce that

[F (µr)
×/(F (µr)

×)M ]Gr ∼= H1(F (µr),µM )Gr ∼= H1(F,µM ) ∼= F×/(F×)M .

In particular, there is a unique element κr ∈ F×/(F×)M , called Kolyvagin
derivative of αr, corresponding to the element Drαr. Denoted by κ̃r a lift of
κr in F×, there exists an element βr ∈ F (µr)

× such that

Drαr = κ̃rβ
M
r .

If we make things explicit, this element satisfies

(σ − 1)βr = [(σ − 1)Drαr]
1/M ,

for every σ ∈ Gr.

Denote by IF the group of fractional ideals of F . It is the free abelian
group generated by the finite primes λ of OF , so using additive notation we
write

IF =
⊕
λ

Zλ =
⊕
l

Il,

where for every rational prime l we set

Il =
⊕
λ|l

Zλ.

If y ∈ F×, we write:

• (y) for the principal ideal generated by y;

• (y)l for its projection in Il;
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• [y] for its projection in IF /MIF ;

• [y]l for its projection in Il/MIl,

We remark how [y] and [y]l are well-defined also for y ∈ F×/(F×)M . Let
G = Gal(F/Q). Recall that a map is G-equivariant if it is a homomorphism
of G-modules.

Lemma 4.7. If l splits completely in F and l ≡ 1 (mod M), then there
exists an unique G-equivariant surjection

ϕl : (OF /lOF )× → Il/MIl

such that the following diagram is commutative:

F (µl)
×

(OF /lOF )× Il/MIl

x 7→(1−σl)x x 7→[Nlx]l

ϕl

Proof. First, note that since l splits completely in F , every prime λ of F
above is totally ramified in F (µl). In particular, we can identify OF (µl)

/λ′

with OF /λ, where λ′ is the prime above λ. We have

OF /lOF ∼=
∏
λ|l

OF /λ ∼=
∏
λ′|l

OF (µl)
/λ′.

Since for every x ∈ F (µl)
× and for every prime λ′ | l of F (µl), vλ′(σlx) =

vλ′(x), x/σlx is a unit in the completion of F (µl) with respect to λ′. In
particular, we get a the well-defined G-equivariant vertical map on the left,
which is surjective since every prime of F above l is also tamely ramified.
Also the G-equivariant map on the right is surjective, because the primes
of F above l are totally ramified. The kernel of the left-hand map is the
subgroup

{x ∈ F (µl)
× | x has valuation divisible by l − 1 at all primes above l}.

If x is in this kernel, then M , which divides l− 1, divides vλ(x) for every λ | l
prime of F , thus x is also in the kernel of the right-hand map. The assertion
then follows.

For a prime l as in Lemma 4.7, we denote by ϕl also the induced homo-
morphism

ϕl : {y ∈ F×/(F×)M | [y]l = 0} → Il/MIl :

every y ∈ F×/(F×)M such that [y]l = 0 can be seen as element of OF /lOF ,
and then send to Il/MIl as in the Lemma. Also, it follows that the kernel of
ϕl consists of the elements which are M -th power modulo λ, for all λ above l.
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Proposition 4.8 (Kolyvagin). Suppose r ∈PM and l is a rational prime.

(a) If l - r, then [κr]l = 0.

(b) If l | r, then [κr]l = ϕl(κr/l).

Proof. First, we remark how if a prime l does not divide r ∈PM , then κ̃r
can be chosen so that βr is a unit at all primes above l, that is, if λ′ | l is a
prime of F (µr), then vλ′(βr) = 0. This easily follows from the fact that no
primes over l ramifies in F (µr)/F .

(a) If l - r, then βr is a unit at all primes above l, and this is also true for
κ̃r, since Drαr is a unit. Therefore the result follows.

(b) If r = ls, then we can find βr ∈ F (µr)
× and βs ∈ F (µs)

× such that

(σ − 1)βr = [(σ − 1)Drαr]
1/M ,

(σ − 1)βs = [(σ − 1)Dsαs]
1/M ,

where we can assume that βs is a unit at all the primes above l. By

κ̃rβ
M
r = Drαr,

we deduce that the valuation of βMr at every prime of F (µr) above l has
to be a multiple of l − 1, the ramification index. Also, since for these
primes there is no ramification in F (µr)/F (µr) (so the completions
have the same uniformizer), we deduce that we can find an element
γ ∈ F (µl)

× such that βrγ(l−1)/M has trivial valuation, so is a unit, at
all primes above l. Clearly Nl(γ) and γl−1 have the same valuation,
and again by the previous equality, we get

[Nlγ]l = [κr]l.

Therefore, modulo any prime above l of F (µr) (which is totally ramified
over F ), using the properties introduced in this Section, we find

(1− σl)γ(l−1)/M ≡ (σl − 1)βr = [((l − 1)−Nl)Dsαr]
1/M

=
Dsα

(l−1)/M
r

[(Frl−1)Dsαs]1/M
≡ Dsα

(l−1)/M
s

(Frl−1)βs

≡
(
Dsαs
βMs

)(l−1)/M

= κ̃(l−1)/M
r .

We conclude applying the diagram of Lemma 4.7 with γ ∈ F (µl)
×:

[κr]l = ϕl(κs).
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We conclude this Section with an application of the Chebotarev density
theorem, a well-known result in algebraic number theory, describing the
splitting of primes in a number field K statistically. We refer to [Neu99],
Section VII.13 for this Theorem, without entering in details. Here we see
how to use (a consequence of) this result to deduce the existence of primes
with useful properties.

Fix a rational prime p > 2 and we denote by C the p-part of CF , the
ideal class group of F .

Theorem 4.9. If c ∈ C, M ∈ Z is a power of p, W is a finite ∆-submodule
of F×/(F×)M , and ψ is a Galois-equivariant map

ψ : W → (Z/MZ)[G],

then there are infinitely many primes λ of F such that

(a) λ ∈ c.

(b) The rational prime l below λ splits completely in F/Q, and l ≡ 1
(mod M).

(c) [w]l = 0 for all w ∈W , and there is a u ∈ (Z/MZ)× such that

ϕl(w) = uψ(w)λ

for all w ∈W .

Proof. If H denotes the maximal abelian unramified p-extension of F , then
by the correspondence of class field theory, we can identify C with Gal(H/F ).
Write F ′ = F (µM ). Then we have

F ′(W 1/M )

H F ′

F

Q

C

G

Since M is a power of p, the inertia group of p in Gal(F ′/F ) has index either
1 or 2, therefore there is no nontrivial unramified p-extension of F in F ′ (p is
odd). We deduce that F ′ ∩H = F . We claim that also F ′(W 1/M ) ∩H = F .
There is a Kummer nondegenerate Gal(F ′/Q)-equivariant pairing

Gal(F ′(W 1/M )/F ′)×W/W ′ → µM ,
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where W ′ is the kernel of the map from W into (F ′)×/[(F ′)×]M (see, for
example, Chapter 6 of [Lan90], or Section 10.2 of [Was97]). If τ denotes the
complex conjugation in Gal(F ′/F ), then τ acts trivially on W and by −1
on µM , and therefore also on Gal(F ′(W 1/M )/F ′). On the other side, F is
totally real and H is an abelian extension with Galois group isomorphic to
the p-part of the ideal class group of F , hence τ acts trivially on Gal(H/F ) ∼=
Gal(HF ′/F ′). This means that τ acts on Gal(F ′(W 1/M )∩HF ′/F ′) by both 1
and −1, so F ′(W 1/M )∩HF = F , and also F ′(W 1/M )∩H = F by F ′∩H = F .
M is odd, hence µM ∩F = {1} and H0(Gal(F ′/F ),µM ) = 0. But Gal(F ′/F )
is cyclic, therefore also H1(Gal(F ′/F ),µM ) = 0 (this follows applying Tate
cohomology to the finite cyclic group, and then considering its Herbrand
quotient. We just refer to [Ser79] for this). By the inflation-restriction
sequence, this implies that the map

F×/(F×)M → (F ′)×/[(F ′)×]M

is injective, and so from the previous pairing we get an isomorphism:

Gal(F ′(W 1/M )/F ′) ∼= Hom(W,µM ).

Now we start the construction of λ. Fixed a primitive M -th root of unity
µM , define ι : (Z/MZ)[G]→ µM by ι(1G) = ζM and ι(g) = 1 for all g 6= 1G
in G. Denote as γ the element of Gal(F ′(W 1/M )/F ′) corresponding to
ι ◦ ψ ∈ Hom(W,µM ) via the Kummer pairing. Therefore γ satisfies

ι ◦ ψ(w) = γ(w1/M )w1/M

for all w ∈W .
By F ′(W 1/M ) ∩ H = F , we can choose δ ∈ Gal(HF ′(W 1/M )/F ) such

that δ restricts to γ on F ′(W 1/M ) and to c ∈ C = Gal(H/F ) on H. Now
we apply the Chebotarev theorem: since W is finite, there exist infinitely
many primes λ such that λ has inertia degree 1 and is unramified over Q, is
unramified in HF ′(W 1/M ), and its Frobenius in Gal(HF ′(W 1/M )/F ′) is the
conjugacy class of G. Fix one of those and l be the rational prime below it.
We check the three desired properties.

(a) The identification C = Gal(H/F ) sends the class of λ to the Frobenius
of λ, hence λ ∈ c.

(b) l splits completely in F , since the degree of λ is 1 and it is unramified.
The Frobenius of l in Q(µM ) is the restriction of the Frobenius of
HF ′(W 1/M ), which is the class of δ. But δ is trivial on F ′, so on
Q(µM ), hence l splits completely also in Q(µM )/Q.

(c) [w]l = 0 for all w ∈W holds because λ is unramified in F ′(W 1/M )/F .
By definition, vλ(ϕl(w)) = 0 if and only if w is an M -th power modulo
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λ. But we also have

vλ(ψ(w)λ) = 0 ⇐⇒ i ◦ ψ(w) = 1 ⇐⇒ γ(w1/M )/w1/M = 1

⇐⇒ w is an M -th power modulo λ.

Thus there exists an unit u ∈ (Z/MZ)× such that

vλ(ϕl(w)) = uvλ(ψ(w)λ)

for all w ∈ W . Then the map w 7→ ϕl(w) − uψ(w)λ is a Gal(F/K)-
equivariant homomorphism into ⊕λ′|l, λ′ 6=λ(Z/MZ)λ′, which has no
nonzero Gal(F/K)-stable submodules. The assertion then follows.

4.2 The Main Conjecture

Let p be a rational odd prime. For every n ≥ 0, we let

Kn = Q(µpn+1),

K∞ =
⋃
Kn.

Write

∆ = Gal(K0/Q) ∼= (Z/pZ)×,

Γ = Gal(K∞/K0) ∼= Zp,

so that
Gal(K∞/Q) = ∆× Γ.

Recall the Iwasawa algebra

Λ = Λ(Γ) = lim←−Zp[Gal(Kn/K0)].

From now on, we write character to indicate a p-adic valued character of ∆.
So let χ be a character

χ : ∆→ Zp
×.

Recall that (Section 1.4):

• C∞(χ) is a finitely generated torsion Λ-module.

• If χ is even, then E∞(χ)/V∞(χ) is a finitely generated torsion Λ-module.

• If χ is even and nontrivial, then X∞(χ) and U∞(χ)/V∞(χ) are finitely
generated torsion Λ-module.

We can finally state (one of the several equivalent formulations of) the
Iwasawa’s main conjecture for cyclotomic fields.
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Theorem 4.10 (Main conjecture, version 1). For all even characters χ of
∆,

char(C∞(χ)) = char(E∞(χ)/V∞(χ)).

In order to prove this Theorem, we need to analize the structure of Cn
and Ēn as Zp[Gal(Kn/Q)]-modules. For any fixed n, we do not have many
information; what we know is that C∞ and E∞ are well-behaved Λ-modules.
Therefore we need to relate Cn and Ēn with C∞ and E∞.

For every n, consider Γn = Gal(K∞/Kn). It is the subgroup of index pn

in Γ, and it is generated by γpn . Take

In = (γp
n − 1)Λ,

and write
Λn = Λ/InΛ ∼= Zp[Gal(Kn/K0)].

If Y is a Λ-module, then define

YΓn = Y/InY = Y/(γp
n − 1)Y = Y ⊗ Λn.

We want to study the following natural maps, induced by the projections:

X∞(χ)Γn → Xn(χ), C∞(χ)Γn → Cn(χ), U∞(χ)Γn → Un(χ),

E∞(χ)Γn → Ēn(χ) and V∞(χ)Γn → Vn(χ).

These projections are in fact well-defined, since for a Λ-module Y , YΓn

is the maximal quotient of Y on which Γn acts trivially. We discussed the
following Theorem in Section 1.4:

Theorem 4.11. For every character χ, the map C∞(χ)Γn → Cn(χ) is an
isomorphism. If χ is even and χ 6= 1, then the maps

X∞(χ)Γn → Xn(χ), U∞(χ)Γn → Un(χ) and V∞(χ)Γn → Vn(χ)

are isomorphisms.

Lemma 4.12. Suppose

0→W → Y → Z → 0

is an exact sequence of Λ-modules. Then for every n the kernel of the induced
map WΓn → YΓn is a quotient of ZΓn. If Z is a finitely generated Λ-module
and ZΓn is finite, then also ZΓn is finite.
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Proof. Applying the snake lemma to

0 0 0

0 WΓn Y Γn ZΓn

0 W Y Z 0

0 W Y Z 0

WΓn YΓn ZΓn 0

0 0 0

(γp
n−1) (γp

n−1) (γp
n−1)

the first assertion follows. Now suppose that Z is finitely generated and
ZΓn = Z/(γp

n−1)Z is finite. Note that this implies that Z is torsion, since the
constant term (T +1)p

n−1, the element of Zp[[T ]] corresponding to γpn−1, is
zero, so it is not a unit in Λ, and therefore by 1.41, Λ/(γp

n−1)Λ is infinite. The
third column and the multiplicativity imply that char(ZΓn) = char(ZΓn) = 1,
so ZΓn is finite by Lemma 1.39.

Theorem 4.13. If χ is an even nontrivial character, then there is an ideal
A of finite index in Λ such that for every n, A annihilates the kernel and
the cokernel of the map E∞(χ)Γn → Ēn(χ). In particular, the kernel and
cokernel are finite with order bounded independently of n.

Proof. Consider the following two commutative diagrams with exact rows,
the first obtained similarly as (1.1):

(U∞(χ)/E∞(χ))Γn X∞(χ)Γn C∞(χ)Γn 0

0 Un(χ)/Ēn(χ) Xn(χ) Cn(χ) 0,

φ1

πU/E

E∞(χ)Γn U∞(χ)Γn (U∞(χ)/E∞(χ))Γn 0

0 Ēn(χ) Un(χ) Un(χ)/Ēn(χ) 0.

φ2

πE πE

Since the map U∞(χ)Γn → Un(χ) is an isomorphism, applying the snake
lemma to the second diagram we get

coker(πE) ∼= ker(πU/E).
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Also, the map X∞(χ)Γn → Xn(χ) is injective, so

ker(πU/E) = ker(φ1).

Since C∞(χ)Γn
∼= Cn(χ) is finite, by Lemma 4.12, ker(φ1) is a quotient of

C∞(χ)finite, the maximal finite Λ-submodule of C∞(χ). Similarly, we have
ker(πE) = ker(φ2). By [Lan90], Chapter 4, Theorem 4.2, if χ 6= 1, then

[Un(χ) : Ēn(χ)]

is finite, so

|(U∞(χ)/E∞(χ))Γn | ≤ [Un(χ) : Ēn(χ)]|ker(πU/E)|

is finite as well. Therefore, again by Lemma 4.12, ker(φ2) is a quotient of
(U∞(χ)/E∞(χ))finite. If we take as A the annihilator in Λ of

C∞(χ)finite

⊕
(U∞(χ)/E∞(χ))finite,

it has finite index, since it annihilates a finite Λ-module (Lemma 1.39). Then
the assertion follows.

If χ is a even nontrivial character of ∆, fix a generator hχ ∈ Λ of
char(E∞(χ)/V∞(χ)).

Corollary 4.14. If χ is an even nontrivial character, then there is an ideal
A of finite index in Λ such that for every η ∈ A and every n, there is a map

θn,η : Ēn(χ)→ Λn

with
θn,η(Vn(χ)) = ηhχΛn.

Proof. The module U∞(χ) is free of rank one over Λ (Theorem 1.45) and
0 6= E∞(χ) ⊆ U∞(χ), thus E∞(χ) is torsion free and has rank one. This
means that there is an injective homomorphism

θ : E∞ → Λ

with finite cokernel. This maps clearly induces a pseudo-isomorphism

E∞(χ)/V∞(χ) ∼ Λ/θ(V∞(χ)).

But also V∞(χ) is free of rank one (Theorem 1.48), therefore

θ(V∞(χ)) = char(Λ/θ(V∞(χ))) = char(E∞(χ)/V∞(χ)) = hχΛ.
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Let A be a finite index ideal of Λ satisfying Theorem 4.13. Fix an n and let
θn denote the homomorphism from E∞(χ)Γn to Λn induced by θ, and πn the
projection map from E∞(χ)Γn to Ēn(χ). For every η ∈ A , we define

θn,η : Ēn(χ)→ Λn

to be the map making the following diagram commute:

E∞(χ)Γn Λ

Ēn(χ) Λn,

πn

θn

η

θn,η

that is,
θn,η(u) = θn(π−1

n (ηu)).

The well-definition follows from the fact that by Theorem 4.13, η annihi-
lates coker(πn) and ker(πn) is finite, so ker(πn) ⊆ ker(θn). Since Vn(χ) =
πn(V∞(χ)), we conclude that

θn,η(Vn(χ)) = ηθn(V∞(χ)) = ηhχΛn.

By the classification theorem, there is a pseudo-isomorphism

C∞(χ) ∼
k⊕
i=1

Λ/fiΛ,

with nonzero fi ∈ Λ. Then

char(C∞(χ)) = fχΛ,

with

fχ =
k∏
i=1

fi.

Corollary 4.15. There is an ideal B of finite index in Λ and for every n
there are classes c1, . . . , ck ∈ Cn(χ) such that the annihilator Ann(ci) ⊆ Λn

of ci in Cn(χ)/(Λnc1 + . . .+ Λnci−1) satisfies B Ann(ci) ⊆ fiΛn.

Proof. The pseudo-isomorphism relation, a priori not reflexive, is reflexive
on torsion Λ-modules. Therefore there is an exact sequence

0→
k⊕
i=1

Λ/fiΛ→ C∞(χ)→ Z → 0,

64



with Z finite Λ-module. By Theorem 4.11 and Lemma 4.12, if we tensor with
Λn = Λ/InΛ we get

ZΓn →
k⊕
i=1

Λn/fiΛn → Cn(χ)→ ZΓn → 0.

Let B be the annihilator of the finite module Z and choose ci to be the
image of 1 in the i-th summand Λn/fiΛn under this map. Then B satisfies
the desired property.

We conclude this series of results with a final Lemma.

Lemma 4.16. Let χ be an even character of ∆, and let

fχΛ = char(C∞(χ))

hχΛ = char(E∞(χ)/V∞(χ))

as above.

(a) For every n, Λn/fχΛn and Λn/hχΛn are finite.

(b) There is a positive constant c such that for all n,

c−1 ≤ |Cn(χ)|
|Λn/fχΛn|

≤ c, c−1 ≤ |Ēn(χ)/Vn(χ)|
|Λn/hχΛn|

≤ c

(c) If χ = 1, then fχ and hχ are units in Λ.

Proof. From the pseudo-isomorphism

C∞(χ) ∼
k⊕
i=1

Λ/fiΛ

we get, for every n, a map

Cn(χ) ∼= C∞(χ)Γn →
k⊕
i=1

Λn/fiΛn

with kernel and cokernel finite and bounded independently of n. Therefore
also Λn/fχΛn is finite for every n, and by [Lan90], Chapter 5, Theorem 1.2,
the quotient

|Λn/fχΛn|/|
k⊕
i=1

Λn/fiΛn|

is bounded above and below independently of n. Repeating the same argument
with the maps

(E∞(χ)/V∞(χ))Γn → Λn/hχΛn,

(E∞(χ)/V∞(χ))Γn → Ēn(χ)/Vn(χ),

we deduce that we have proved (a) and (b) with χ 6= 1.
If χ = 1, then hχ is a unit and the inequalities of (b) holds with χ = 1,

c = 1 by Proposition 1.50.
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4.3 The proof

We can finally come to the main result. We fix n, and we let C = Cn,
E = En and V = Vn. We want to apply the results of the previous sections
to F = K+

n . When χ is even, we can identify Cn(χ) with the χ-component of
the p-part of the ideal class group of F (this follows from [Lan90], Chapter 3,
Theorems 4.2 and 4.3). If l is a rational prime splitting completely in F , then
Il ⊗ Zp is a Zp-module, and it makes sense to consider Il(χ) = e(χ)(Il ⊗ Zp).
This is free of rank one over Λn, generated by the element λ(χ) = e(χ)λ,
where λ is a prime of F above, and we can define

σλ = σλ,χ : F× → Λn

by
σλ(w)λ(χ) = e(χ)(w)l.

We denote by σ̄λ the corresponding map

σ̄λ : F×/(F×)M → Λn/MΛn,

satisfying
σ̄λ(w)λ(χ) = e(χ)[w]l.

Recall that for r ∈PM , we can choose an element κr ∈ F×/(F×)M .

Lemma 4.17. Suppose we have r ∈ PM , l prime dividing r and λ prime
of F above l. Let B the subgroup of the ideal subgroup C generated by the
primes of F dividing r/l. Write c ∈ C(χ) for the class of e(χ)λ and W
for the Λn-submodule of F×/(F×)M generated by e(χ)κr. If η, f ∈ Λn have
the properties that the annihilator Ann(c) ⊆ Λn of c in C(χ)/B(χ) satisfies
ηAnn(c) ⊆ fΛn, Λn/fΛn is finite and

M ≥ |C(χ)| · |(Il(χ)/MIl(χ))/Λn[e(χ)κr]l|,

then there is a Galois-equivariant map ψ : W → Λn/MΛn such that

fψ(e(χ)κr) = ησ̄λ(κr).

Proof. We denote by β any lift of e(χ)κr to F×. We have

e(χ)(β) = e(χ)(β)l +
∑
q 6=l

e(χ)(β)q = σλ(β)λ(χ) +
∑
q 6=l

e(χ)(β)q.

By Proposition 4.8, if q 6= r, then (β)q ∈MIq. Since M annihilates |C(χ)|,
we deduce that σλ(β)λ(χ) projects to 0 in C(χ)/B(χ) and thus ησλ(β) ∈ fΛn.
We define

δ =
ησλ(β)

f
,
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where the division by f is uniquely-defined since Λn/fΛn is finite. We define
ψ : W → Λn/MΛn by

ψ(ρe(χ)κr) = ρδ,

for all ρ ∈ Z[Gal(Kn/K0)]. Then this map has by construction the desired
property, but we have to show that it is well defined. So, suppose ρe(χ)κr = 0.
This means that there exists x ∈ F× such that ρβ = xM . In particular,
ρ[e(χ)κr]l = 0. Writing h = |C(χ)|, we have by assumption

(M/h)(Il(χ)/MIl(χ)) ⊆ Λn[e(χ)κr]l,

so ρ ∈ hΛn. Then

e(χ)(x) =
∑
q

e(χ)(x)q

= M−1e(χ)(ρβ)l +
∑
q|(r/l)

e(χ)(x)q +
∑
q-r

he(χ)(ρ/h)(M−1(β)q)

≡M−1e(χ)(ρβ)l (mod
⊕
q|(r/l)

Iq(χ), hI(χ)).

From the fact that h annihilates C(χ), we conclude that M−1e(χ)(ρβ)l
projects to 0 in C(χ)/B(χ). Therefore M−1σλ(ρβ)c = 0 in C(χ)/B(χ) so
ρδf = ησλ(ρβ) ∈MfΛn and

ψ(ρe(χ)κr) = ρδ ∈MΛn.

This means that the map ψ is well-defined.

Recall that char(E∞(χ)/V∞(χ)) = hχΛ and char(C∞(χ)) = fχΛ, with
fχ =

∏k
i=1 fi.

Theorem 4.18. For every even character χ of ∆, char(C∞(χ)) divides
char(E∞(χ)/V∞(χ)).

Proof. If χ = 1, then both characteristic ideals are trivial by Lemma 4.16, so
the assertion is clear.

Suppose χ 6= 1. Consider κ1, which we can represent by α = α1 =
(ζpn − 1)(ζ−1

pn − 1) ∈ F×. As we already said, α(χ) = αe(χ) is a generator of
Vn(χ). We pick c1, . . . , ck ∈ C(χ) as in Corollary 4.15, and we also choose
one more class ck+1, which can be any element of C(χ), like ck+1 = 0. Fix an
ideal C of Λ with finite index, satisfying both Corollary 4.14 and 4.15. Let
η ∈ C be such that Λm/ηΛm is finite for all m, that is, η is prime to γpm − 1,
with γ generator of Γ. Consider

θ = θn,η : Ē(χ)→ Λn,
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the map given by Corollary 4.14, and normalize it to have

θ(α(χ)) = ηhχ.

Denote by h an integer such that ph ≥ |Λn/ηΛn| and ph ≥ |Λn/hχΛn| (this
is finite by Lemma 4.16), and let

M = |C(χ)| · pn+(k+1)h.

Our goal is to use Theorem 4.9 to choose inductively primes λi of F lying
above primes li of Q for 1 ≤ i ≤ k + 1, satisfying:

λi ∈ ci, li ≡ 1 (mod M), (4.2)
σ̄λ1(κl1) = u1ηhχ, fi−1σ̄λi(κri) = uiησ̄λi−1

(κri−1), for 2 ≤ i ≤ k + 1,
(4.3)

with ri =
∏
j≤i lj and ui ∈ (Z/MZ)×.

Firstly, take c = c1, W = (E/EM )(χ) and

ψ : W → Ē(χ)→ Ē(χ)M
θ−→ Λn/MΛn

e(χ)−−→ e(χ)(Z/MZ)[Gal(F/Q)].

If λ1 is a prime satisfying Theorem 4.9 with this data, then (4.2) also is
satisfied. Also, again by Theorem 4.9 and by Proposition 4.8, for some
u1 ∈ (Z/MZ)×,

σ̄λ1(κl1) = e(χ)[κl1 ]l1 = e(χ)ϕl1(κ1) = u1ψ(κ1)λ1(χ)

= u1θ(α(χ))λ1(χ) = u1ηhχλ1(χ).

Since λ1(χ) is a generator of the free Λn/MΛn-module (Il1/MIl1), also (4.3)
is proved for i = 1.

Suppose now that 2 ≤ i ≤ k+1 and we have chosen λ1, . . . , λi−1 satisfying
the desired properties. We define λi. Consider ri−1 =

∏
j<i lj . By (4.3),

σ̄λi−1
(κri−1) divides ηi−1hχ, thus

|(Ili−1
/MIli−1

)/Λn[κri−1 ]li−1
| ≤ |Λn/ηi−1hχΛn| ≤ pih.

Denote by Wi the Λn-submodule of F×/(F×)M generated by e(χ)κri−1 .
We apply Corollary 4.15, Lemma 4.16 and Lemma 4.17 with r = ri−1 and
l = li−1, to get a map

ψi : Wi → Λn/MΛn

such that
fi−1ψi(e(χ)κri−1) = ηv̄λi−1

(κri−1).

It is enough now to pick λi satisfying Theorem 4.9 with c = ci, W = Wi,
ψ = e(χ)ψi and M as above, to have (4.2). Also, there is a ui ∈ (Z/MZ)×

such that

fi−1σ̄λi(κri)λi(χ) = fi−1e(χ)[κri ]li = fi−1ϕli(e(χ)ri−1)

= fi−1uiψi(e(χ)κri−1λi(χ) = uiηv̄λi−1
(κri−1)λi(χ),
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so also (4.3) is true for i.
If we continue this induction for k + 1 steps, then combining all the

relations (4.3) we get

ηk+1hχ = u

(
k∏
i=1

fi

)
σ̄λk+1

(κrk+1
) in Λn/MΛn

for some u ∈ (Z/MZ)×. We deduce that fχ =
∏k
i=1 fi divides η

k+1hχ in
Λn/p

nΛn for all n, and so also in Λ. To conclude, we need to remove the
factor ηk+1. There are two ways. Firstly, recall that C is an ideal of Λ with
finite index and η ∈ C has the property that Λn/ηΛn is finite for every n.
Therefore, we can choose η as a power of p, and fχ does not divide p by
Ferrero-Washington theorem ([Lan90], Chapter 10, Theorem 2.3). But we can
also avoid the use of this result, just saying that it is possible to choose two
different η which are relatively prime, and since Λ is a unique factorization
domain, we conclude that fχ divides hχ.

Let

f =
∏
χ even

fχ,

h =
∏
χ even

hχ,

where again fχ = char(C∞(χ)) and hχ = char(E∞(χ)/V∞(χ)). We want to
show that fΛ = hΛ. From this and Theorem 4.18, it will follow that for
every χ, fχΛ = hχΛ. If an, bn are two sequences of positive integers, we write
an ≈ bn to mean that an/bn is bounded above and below independently of n.

Lemma 4.19. If g1, g2 ∈ Λ such that g1 | g2 and |(Λ/g1λ)Γn | ≈ |(Λ/g2λ)Γn |,
then g1Λ = g2Λ.

Proof. Immediate consequence of Theorem 1.2 of Chapter 5 in [Lan90].

Finally, the proof we were looking for.

Proof of Theorem 4.10. By Theorem 1.2 of Chapter 5 in [Lan90] and Lemma 4.16,

|(Λ/fΛ)Γn | ≈
∏
χ even

|(Λ/fχΛ)Γn | ≈
∏
χ even

|Cn(χ)|,

|(Λ/hΛ)Γn | ≈
∏
χ even

|(Λ/hχΛ)Γn | ≈
∏
χ even

[Ēn(χ) : Vn(χ)].

The analytic class number formula ([Lan90], Chapter 3, Theorem 5.1) and
Theorem 4.2 of Chapter 4 in [Lan90] implies that

|Cn| = [Ēn : Vn].

69



Thus
|(Λ/fλ)Γn | ≈ |(Λ/hλ)Γn |,

and since by Theorem 4.18 we have f | h, by Lemma 4.19 we derive fΛ = hΛ.
Again by Theorem 4.18 we conclude that fχΛ = hχΛ for all χ even, that is,

char(C∞(χ)) = char(E∞(χ)/V∞(χ)).

4.4 Equivalent formulations and consequences

We conclude by seeing other formulations of the main conjecture, and de-
ducing some important consequences. But first, we briefly describe the role
of the Selmer group in this setting, since in the last Sections we explicitly
used the cyclotomic Euler system to construct annihilators and deduce one
divisibility of the main conjecture, without using Theorems of Section 3.3.
Here we follow [Rub00], [Was97] and [Lan90].

Consider then a nontrivial even character χ : ∆ → Z×p , which we can
extend as character of GQ. Denote by T = (Zp)χ the free Zp-module of rank
one on which GQ acts by χ. Therefore

T ∗ = Zp(1)⊗ χ−1 = (Zp)χ−1χp ,

W = (Qp/Zp)χ,

(W ∗)∗ = W.

We have to take the character χ into consideration, thus we use the
cyclotomic Euler system introduced in Section 4.1 to get an Euler system
for (T ∗,Qab, p), which we denote by cχ, exactly as in Section 3.4. This fact,
during the proof we gave in the last Sections, is reflected in the use of the
images of the Kolyvagin classes associated to the Euler system c under the
idempotent e(χ) associated to the character χ.

We have the following field diagram:

K∞

Q∞

Kn

Qn K

Q

pnZp

pnZp

∆

Z/pnZ

Z/pnZ

∆

∆
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By Proposition 2.29, if C = C0 denotes the p-part of the ideal class group
of K = K0, then

S(Q,W ) ∼= Hom(C(χ),Qp/Zp),

S(Q∞,W ) ∼= Hom(C∞(χ),Qp/Zp)

This implies the following key fact:

C∞(χ) ∼= Hom(S(Q∞,W ),Qp/Zp),

that is, C∞(χ) is the Pontryagin dual of S(Q∞,W ). Therefore

char(C∞(χ)) = char(Hom(S(Q∞,W ),Qp/Zp)),

and we can apply Theorems of Section 3.3 to deduce divisibilities for char(C∞(χ))
(see [Rub00], Section III.2).

We move now our attention to other formulations of the conjecture, and
in particular, we investigate the role of the p-adic L-function.

Recall that if χ is a (complex) Dirichlet character from (Z/pZ)×, we can
extend it naturally to all Z, and attach to it a complex L-function

L(s, χ) =
∞∑
n=1

χ(n)n−s, Re(s) > 1.

It is well-known that if χ 6= 1, L(s, χ) can be analytically continued to
the entire complex plane, while if χ = 1, then L(s, χ) has a meromorphic
continuation to all the complex plane, with a simple pole at s = 1. Also,
L(s, χ) admits the following convergent Euler product:

L(s, χ) =
∏

p prime

(1− χ(p)p−s)−1, Re(s) > 1.

Definition 4.20. If χ is a Dirichlet character of conductor p, then the can
define the generalized Bernoulli numbers by

p∑
j=1

χ(j)tejt

ept − 1
=
∞∑
k=0

Bk,χ
tk

k!
.

These numbers are related to the L-functions as the “classical” Bernoulli
numbers to the Riemann zeta function:

Theorem 4.21 ([Was97], Theorem 4.2). For m ≥ 1, we have

L(1− k, χ) = −
Bk,χ
k

.

71



We can generalize this construction. Recall that ω denotes the Teichmüller
character.

Theorem 4.22 ([Was97], Theorem 5.11). Let χ be a Dirichlet character
of conductor p. Then there exists a p-adic meromorphic function Lp(s, χ),
analytic for χ 6= 1, defined on {s ∈ Cp | |s| > p1−1/(p−1)}, such that for
k ≥ 1,

Lp(1− k, χ) = −(1− χω−k(p)pk−1)
Bk,χω−k

k
.

One way to see this p-adic function is as p-adic interpolation of the
complex function L(s, χ). For k ≥ 1,

Lp(1− k, χ) = (1− χω−k(p)pk−1)L(1− k, χω−k).

As promised in Section 1.4, we can now discuss about the relation between
the p-adic L-function and the generator of U∞(χ)/V∞(χ), for χ nontrivial
and even.

Theorem 4.23 ([Was97], Theorem 13.56). If χ is a nontrivial even character
of ∆, then

char(U∞(χ)/V∞(χ)) = gχΛ,

where if seen as element of Zp[[T ]], gχ satisfies, for all s ∈ Zp,

gχ((1 + p)s − 1) = Lp(1− s, χ).

In particular, for k ≥ 1,

gχ((1 + p)k − 1) = Lp(1− k, χ) = −(1− χω−k(p)pk−1)
Bk,χω−k

k
.

We deduce the second equivalent version of the main conjecture:

Theorem 4.24 (Main conjecture, version 2). For all nontrivial even charac-
ters χ of ∆,

char(X∞(χ)) = gχΛ.

Proof. Recall the exact sequence (1.1):

0→ E∞(χ)/V∞(χ)→ U∞(χ)/V∞(χ)→ X∞(χ)→ C∞(χ)→ 0.

By the first formulation of the conjecture and multiplicativity, we immediately
conclude that

char(X∞(χ)) = char(U∞(χ)/V∞(χ)) = gχΛ.
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If χ is even and nontrivial, now consider the element fχ ∈ Λ which
corresponding power series satisfying, for all s ∈ Zp,

fχ((1 + p)s − 1) = Lp(s, χ).

Then the following change of variables holds:

gχ(T ) = fχ((1 + p)(1 + T )−1 − 1).

We can use Kummer theory and Theorems 2.2 and 2.3 of [Lan90], Chapter 6,
to get a nondegenerate pairing

A∞(χ−1ω)×X∞(χ)→ µp∞ .

Therefore,
X∞(χ) ∼= Hom(A∞(χ−1ω),µp∞).

It follows that

X∞(χ)−1 ∼= Hom(A∞(χ−1ω),Qp/Zp),

where
X∞(χ)−1 = X∞(χ)⊗ Zp(−1)

and
Zp(−1) = Hom(Zp(1),Zp) = (Zp)χ−1

p
.

Using this fact, the pseudo-isomorphism C∞(χ) ∼ Hom(A∞(χ),Qp/Zp)
(Theorem 1.43), and the theory of Adjoints (see [Was97], Section 15.5), one
can deduce the following

Proposition 4.25 ([Was97], Proposition 15.37). If the characteristic ideal
of X∞(χ) is generated by gχ, then the characteristic ideal of C∞(χ−1ω) is
generated by

gχ((1 + p)(1 + T )−1 − 1).

This implies the formulation of the main conjecture proved in [MW84]:

Theorem 4.26 (Main conjecture, version 3). For every nontrivial even
character χ of ∆,

char(C∞(χ−1ω)) = fχΛ.

Remark 4.27. When χ = ω, C∞(χ) = 0. This is Corollary 2, Section 1.3
of [Lan90].

Finally, we see how the main conjecture can be used to deduce results for
the field K = K0. Recall that Γn = Gal(Kn/K0).

Proposition 4.28. For every odd character χ 6= ω of ∆, A∞(χ)Γn = Cn(χ).
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Proof. We need to use some results from [Lan90]. The first is Theorem 4.1
of Chapter 3, for which, since χ 6= ω is odd, Ēn(χ) = {1}. The second is
Theorem 4.3, Chapter 6, for which the maps Cn(χ)→ Cm(χ) are injective
whenever m ≥ n. We deduce that

Cn(χ) ⊆ A∞(χ)Γn .

Denoted by γn a generator of Γn, we have an exact sequence

0→ Cm(χ)Γn → Cm(χ)
γ−1−−→ Cm(χ)→ Cm(χ)/(γ − 1)Cm(χ)→ 0.

Using Theorem 4.1 of Chapter 5, we get

Cm(χ)/(γ − 1)Cm(χ) ∼= Cn(χ),

and so we conclude that, whenever m ≥ n,

|Cm(χ)Γn | = |Cn(χ)|.

Therefore
|A∞(χ)Γn | = |Cn(χ)|,

and the assertion follows.

Lemma 4.29. If Y is a finitely generated torsion Λ-module with no nonzero
finite Λ-submodules, γ ∈ Γ, a ∈ 1 + pZp and Y/(γ − a)Y is finite, then

|Y/(γ − a)Y | = |Λ/(char(Y ), (γ − a)Λ)|.

Proof. Consider a pseudo-isomorphism

Y →
⊕

Λ/fiΛ,

with finite cokernel Z. Then by hypothesis the kernel must be trivial. We
have the following commutative exact diagram:

0 0 0

0 Y(γ−a)

⊕
(Λ/fiΛ)(γ−a) Z(γ−a)

0 Y
⊕

Λ/fiΛ Z 0

0 Y
⊕

Λ/fiΛ Z 0

Y/(γ − a)Y
⊕

(Λ/(fi, γ − a)Λ) Z/(γ − a)Z 0

0 0 0

(γ−a) (γ−a) (γ−a)
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where Y(γ−a) means the kernel of the map (γ − a) of Y , and same for
the other modules. Then we deduce that each fi is prime to γ − a and
⊕(Λ/fiΛ)(γ−a) = 0. Also, since Z is finite, we have

|Z(γ−a)| = |Z/(γ − a)Z|.

Applying the snake lemma, we get

|Y/(γ − a)Y | = |
⊕

Λ/(fi, γ − a)Λ|.

Finally, since every fi is prime to γ − a, the equality

|
⊕

Λ/(fi, γ − a)Λ| = |Λ/(
∏

fi, γ − a)Λ|

follows.

The next result is due to Iwasawa([Iwa73], Theorem 18).

Lemma 4.30. For every even character χ of ∆, X∞(χ) ha no nonzero finite
Λ-submodules.

Proof. By the previous Kummer pairing, it is enough to show that A∞(χ−1ω)
has no proper Λ-submodules of finite index. If A ⊆ A∞(χ−1ω) is sta-
ble and has finite index pk, then we can choose N large enough to that
Gal(K∞/KN ) acts trivially on A∞(χ−1ω)/A. For every m ≥ N the map
NKm+k/Km : Cm+k → Cm is surjective ([Lan90], Section 5.4), thus

Cm(χ−1ω) = NKm+k/KmCm+k(χ
−1ω) ⊆ A,

and A∞(χ−1ω) ⊆ A.

Finally, the consequence we were looking for.

Theorem 4.31 (Mazur-Wiles, Kolyvagin). For every odd character χ 6= ω
of ∆, if m(χ) = vp(B1,χ−1), then

|C(χ)| = pm(χ).

Proof. Recall that a generator γ of Γ acts on µp∞ as 1 + p. By the Kummer
pairing and Proposition 4.28,

C0(χ) = Hom(X∞(χ−1ω),µp∞)Γ

= Hom(X∞(χ−1ω)/(γ − (1 + p))X∞(χ−1ω),µp∞),

where as usual γ is a generator of Γ. Using the results of this Section, we get

|C0(χ)| = |X∞(χ−1ω)/(γ − (1 + p))X∞(χ−1ω)|
= |Zp[[T ]]/(gχ−1ω(T ), 1 + T − (1 + p))Zp[[T ]]|
= |Zp/gχ−1ω((1 + p)− 1)Zp|
= |Zp/B1,χ−1Zp|.
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