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Abstract

In this thesis work we propose and evaluate a strategy to improve
transmission in IEEE 802.15.4g SUN networks. This kind of network
is at the basis of many promising IoT applications that require a high
reliability while maintaining low power consumption.

The proposed strategy consists in two distinct parts: re-transmission
shaping and modulation selection. The re-transmission shaping mecha-
nism keeps track of unused packet re-transmissions and allocates addi-
tional re-transmissions when the instantaneous link quality decreases
due to channel impairments. The modulation selection strategies apply
Multi Armed Bandits algorithms to dynamically choose the best trans-
mission modulation. The combined effect of these two mechanisms
aims to maximize link reliability, while minimizing energy consumption
and meeting radio-frequency regulation constraints.

To evaluate the proposed methods we use trace-based simulations using
a IEEE 802.15.4g SUN data-set and two widely used metrics, the PDR
(Packet Delivery Ratio) and the RNP (Required Number of Packets).

The obtained results show that re-transmission shaping and modulation
selection are useful mechanism to improve link reliability of low-power
wireless communications. Their combined use can increase PDR from
77.9% to 98.7% while sustaining a RNP of 1.7 re-transmissions per
packet, when compared to using a single re-transmission per packet.
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Preface

The pervasive adoption of wireless communications is at the basis of new industrial and
social paradigms that are likely to deeply impact on both economy and personal life.
The possibility of allowing objects of everyday life with micro-controllers and radio
transceivers for digital communication opens up a new world of potential services.

The Internet of Things (IoT) is a recent paradigm in which the objects of everyday
life will be able to communicate between them and with the users, becoming an
integral part of the Internet. Heterogeneous end devices communicate without
human intervention, a kind of communication known as machine-to-machine (M2M)
communication. A big challenge for the actual realization of the IoT paradigm is the
creation of a environment able to integrate a wide variety of smart devices provided
with different communication stacks.

There is a variety of application domains that will be impacted by IoT: in
[Gubbi et al., 2013] it is presented a list of distinction between personal and home,
enterprise, utilities, and mobile domains, depending on the scale interested by the
network.

Within the variety of application of IoT, Smart City is worthy of specific attention,
due to the huge social impact that it is likely to have. Smart City is a model that
aims at exploiting the most advanced communication technologies to support added-
value services for the administration of the city and for the citizens. It relies on a
wide IoT architecture, spread across a whole city interconnecting public buildings
and infrastructures, means of transport, and public services providers. It should
be also able to interconnect with private citizens and to integrate with existing
communication infrastructures to support a progressive evolution and re-shaping of
the IoT by connecting new devices and deploying new functionalities and services.
The effects of this urban architectural model are not restricted to the increased
efficiency in service provision but can also promote the awareness and the active
participation of citizens in public matters [A. Mulligan and Olsson, 2013].

Among the services that can be offered in such an autonomous and interconnected
fashion, it can be mentioned building structural health, air quality monitoring,
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noise monitoring, traffic congestion, city energy consumption, smart parking, smart
lighting, and automation and salubrity of public buildings. All these services may
rely on wireless network based on the IEEE 802.15.4 standard, with traffic rates
around 1 packet every 10 minutes per device [Zanella et al., 2014]. Depending on
the application these services may be battery operated or rely on energy harvesting,
i.e. based on devices capable of retrieving small amount of energy from ambient
background. In both cases it is evident how the energetic efficiency of the end devices,
in addition to an efficient data delivery, is of substantial importance to allow the
effective deployment of these services.

A relevant example of successfully experimental implementation of a Smart City
infrastructure is "Padova Smart City" project [Castellani et al., 2011]. It consists
in a network of wireless sensors presenting more than 300 nodes deployed at the
University of Padova. Its aim is to promote the adoption of open data and advanced
telecommunication solutions in the public administration. The network consists in
nodes equipped with different kinds of sensors, placed on street light poles. The nodes
control the public street lighting in an efficient way by measuring the light intensity
at each post, and collect environmental data such as CO level, air temperature and
humidity, vibrations, noise, and so on.

This example, as many others exciting applications, relies on the possibility of pro-
viding a reliable communication infrastructure, able to meet the energy requirements
of low-power end devices. The IEEE 802.15.4 standard is a promising technology in
this direction. This work analyzes a specific use-case in which a IEEE 802.15.4 SUN
network is deployed in a challenging environment. The proposed solutions increase
the network reliability while meeting low power consumption requirements.



Chapter 1

Introduction

1.1 Problem overview

In this work we propose and discuss two mechanisms to enhance reliability in a
IEEE 802.15.4g-based wireless network. The network used to evaluate the mechanisms
presents some specific characteristics; in spite of this, the methods have not been
designed specifically for the network in use and the analysis provided in this work are
expected to provide general results.

The network used to provide data to validate the methods has been installed in a
warehouse located in Madrid for industrial purposes. It is composed by 11 sensors and
one central gateway that collects the environmental variables sensed by the end-nodes
(like humidity, pressure, temperature etc.). A general requirement for this kind of
network is the ease of installation and maintenance. Therefore any kind of wired
connections should be avoided and the battery of the devices should last for a long
time.

The presence of sophisticated tools to improve the packet delivery strategies (like
channel synchronization between sensor and gateway) is not compatible with these
simplicity requirements. The sensor nodes are supposed to have a limited computing
power, both to reduce the battery drain and to keep the sensor hardware cheap and
simple.

The objective of this work is to provide a transmission mechanism able to reach
99% of successfully transmitted packets while keeping the battery drain under a
threshold that should be set in each specific implementation. It is important, once
specified the threshold, not to overcome this value. Any solution consistent with the
power efficiency requirements and able to provide the required PDR value, however, is
to be considered as equally good. This is justified by reasons of practical utility: the
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batteries of the sensors should be re-charged regularly (e.g. every 2 years), when the
time expires the batteries are re-charged and the presence of eventual residual power
becomes irrelevant. In a more general scenario, even considering energy harvesting
devices, it is reasonable to consider an average energy consumption that should not
be exceeded. For example a solar-powered device is re-charged every day when it is
exposed to the sun light and the energy consumption rate shouldn’t be allowed to
overcome the average energy provided daily by the solar cell. Under this consumption
rate, any energetic behaviour is fine.

The environment in which the network has been deployed constitutes an additional
challenge to the network reliability. As in many indoor scenarios, the problems of
signal attenuation and multi-path propagation compromise the quality of the signal.
In an industrial scenario (like the one in which the analyzed network has been
deployed), these problems show up with even more intensity, due to the abundance
of reflective metal surfaces. In addition, the presence of other wireless networks that
may operate in the same frequency band increases the environment problematic.

The second main challenge posed by this kind of setting is due to the non-
stationary nature of the environment. Machinery are allowed to move into the
warehouse, modifying the multi-path propagation of the signal, and scaffolds may be
filled or cleaned out, thus shielding or allowing the direct propagation of the signal
between two nodes. This leads to the necessity of developing algorithms able to
handle the non-stationarity of the environment.

1.2 Original Contribution

In this work we propose two mechanisms to enhance the channel reliability in
IEEE 802.15.4g networks as alternative to the established methods.

Packet re-transmissions is the most straightforward way to guarantee data delivery
over unreliable wireless links. It simply consists in re-transmitting each data packet
up to n times until an acknowledgement packet is received successfully. If the
acknowledgement is not received within n repetitions and the transmission process
expires, the data packet is considered lost. Even though effective, this approach poses
various problems, the most important of which is the high energy expenditure that
might be required. In addition to that, it is possible to observe a channel correlation,
i.e. multiple consecutive re-transmissions are likely to present the same outcome,
thus reducing the usefulness of re-transmitting a lost packet over the same channel.

Hence, the proposed methods have been designed to overcome these limitations,
enabling a more robust and energy-efficient signal transmission. These methods are:
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• Modulation selection: dynamic choice of the best modulation for each packet
re-transmission depending on channel condition based on Multi Armed Bandit
algorithms;

• Re-transmission shaping: better redistribution of available packet re-transmissions
while meeting energy constraints.

Re-transmission shaping has been presented in 17th ACM Symposium on Per-
formance Evaluation of Wireless Ad Hoc, Sensor, & Ubiquitous Networks (PE-
WASUN’20) [Solimini et al., 2020]. Multi armed bandit algorithms have already been
applied in wireless network field for modulation selection, but not in the same con-
text. This method and its combined effect with re-transmission shaping will be soon
presented in [Solimini et al., 2021]. In this thesis work are present contributions from
both the articles, together with further explanations and a more detailed presentation
of the background and the evaluation process.

1.3 Organization

This thesis is organized in this first introductory part plus five other chapters and a
conclusion.

Firstly, Chapter 2 describes the general behaviour of a wireless channel with
specific emphasis to the signal deterioration due to multi path propagation and
interference. These effects are particularly relevant in the dataset analyzed in this
work.

Chapter 3 presents the related work, firstly describing in detail the IEEE 802.15.4g
standard with its associated SUN modulations (i.e., SUN-FSK, SUN-OQPSK and
SUN-OFDM) in Section 3.1. Then Section 3.2 discusses the efforts made to guarantee
the reliability of a IEEE 802.15.4g network and, finally, Section 3.3 presents some
relevant case of application of Multi Armed Bandits to the channel selection problem
in wireless networks.

This studies are interesting to introduce the modulation selection strategies
described in Chapter 4. This chapter presents the two methods introduced in this
work to increase the network reliability i.e. the re-transmission shaping mechanism in
Section 4.1 and the modulation selection strategies in Section 4.2 with a description
of the combined methods in Section 4.3.

Chapter 5 discusses the evaluation methodology consisting in the data acquisition
part comprehensive of a first data pre-processing (in Section 5.1 and in the simulation
of the packets transmission within the network by applying the proposed methods
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separately and in conjunction. Within this Chapter, Section 5.2.1 presents the
parameters used to evaluate the network performances in this work, namely the Packet
Delivery Ratio (PDR) that indicates the ratio of successfully transmitted packets
over the total number of transmission attempts, and the required Number of Packet
Transmissions (NRP), used to take trace of the average number of re-transmissions
needed to send a packet. Section 5.2.2 presents the modulation selection strategies
used to compare the results obtained with the proposed methods.

The experimental results are presented in Chapter 6, separately for the re-
transmission shaping and modulation selection, and then jointly. It is shown how the
combined effect of the two proposed mechanisms is capable of reaching the target
transmission efficiency of 99% while meeting the energy constraints.

Finally, Chapter 7 draws the conclusions of the whole work, describing also some
possible further developments that can be explored to extend and improve the results
obtained in this work in Section 7.2.



Chapter 2

Wireless Communications
Background

This Chapter provides the background to understand the problems posed by a
pervasive application of wireless communication devices in urban and industrial
environments like the one in which the network analyzed in this work has been deployed.
Sections 2.1 and 2.2 contain respectively a general description of the properties of
the transmission of an electromagnetic wave-front in a complex environment, and
a description of the interference phenomena that a wireless device operating in an
unlicensed band could face.

2.1 Signal Propagation
Wireless communications pose several challenges to the service quality due to the
unpredictable evolution and the low reliability of the channel. Noise and interference
are related to the non-stationary nature of the environment and with the presence of
several other transmitting sources.

The main effects due to signal weakening through the medium can be summarized
in two general categories:

Path Loss describes the dissipation of the emitted power in the propagation channel;

Path Shadowing includes the effects related with the emitted power absorption,
reflection, diffraction and scattering by obstacles in the propagation channel.

Those are so called large scale propagation effects to remark the difference with respect
to multi-path components interference which are referred to as small scale propagation
effects.

13
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The general problem is determining the shape of the electromagnetic wave incoming
to the receiver knowing the emitted signal and the nature of the channel. This is
obviously useful only in the very rare cases in which the channel is easy to model and
presents constant properties.

The transmitted signal is a sinusoidal electromagnetic wave modulated by a
function of the time that is called complex envelope. The path loss is defined as the
ratio between the received and the transmitted power, expressed in dB as

PL(dB) = 10 log10
Pt

Pr

(2.1)

where Pt and Pr are respectively the transmitted and received power carried by the
the electromagnetic wave. Sometimes the path gain is also used and it is defined as
the opposite of the path loss.

The exact shape of the wave incoming to the receiver can be computed knowing
the exact characteristics of the channel. In the vast majority of cases this is not
possible so various approximation techniques have been developed. When the channel
presents simple and regular properties, it is possible to develop physic models to
approximately describe the interaction of the wave with the environment.

The strongest simplification possible consists in assuming the channel to be empty
so that the transmitted waveform can freely propagate without any absorption or
reflection. In this ideal case, the only part of the wave-front that interacts with the
receiver is the one that propagates through the straight line between the emitter
and the receiver. The problem, therefore, can be immediately simplified with a one-
dimensional formulation; the channel model associated with this transmission is called
a line-of-sight (LOS) channel, and the corresponding received signal is called the LOS
signal or ray. The only aspect that highlights the difference with a mono-dimensional
wave is the attenuation of the signal, proportional to the square of the distance
spanned by the signal.

In many realistic settings in which the radio signal is subjected to multiple
reflections and other scattering phenomena, it is possible to separately consider
each of the components of the wave-front that reaches the receiver. Each one of
these components, called multi-path signal components, can be described considering
uniquely the mono-dimensional path connecting the source to the various reflecting
surfaces to the receiver with no need to consider the evolution of the whole wave-front.
That allows using simple geometric arguments instead of solving numerically the
Maxwell equations given the boundary information.

It is important to notice that this model is capable of good performance whenever
the position and the characteristic of the reflecting surfaces are known in each moment.
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If those quantity can evolve unpredictably through time it is necessary to rely on
some statistical approximations to characterize the received signal.

Several models have been developed to describe different environments that are
typically encountered when dealing with channel behaviour prediction like the Two-
Rays Model, used in urban scenarios when a single ground reflection dominates the
multi-path effect, and the Dielectric Canyon, used in urban environments.

2.1.1 Path Loss Models

Accurate analysis of the signal propagation is possible using complex ray-tracing
models or employing empirical measures. Nevertheless, results are approximated and
specifically tailored for the analyzed scenario. For a general analysis of a certain
architecture performance, a more convenient solution is developing a simplified model
that captures the essential evolution of the signal in a general real-use scenario. The
Simplified Path Loss Model is the most simple one and tries to capture the essential
behavior of the signal attenuation in a few parameters. In all those cases in which
the environment is too elaborate for the Simplified Path Loss Model to provide good
results, several empirical path loss models have been developed.

Simplified Path Loss Model

The Simplified Path Loss Model is a model generally used to describe the attenuation
of the signal, it consists in a simple law depending on a few parameters

Pr = PtK

(︃
d0
d

)︃γ

(2.2)

where K is a unit-less constant which depends on the antenna characteristics and the
average channel attenuation, d is the distance at which the signal is observed and d0
is a reference distance for the antenna far-field.

The attenuation (in dB) is therefore:

Pr(dBm) = Pt((dBm) +K(dB)− 10γ log10

[︃
d

d0

]︃
. (2.3)

The model is a good approximation of the real experimental results when d is
sensibly greater than d0. The constant γ is called path loss exponent and assumes
different values according to the complexity of the environment in which the signal
travels and to the frequency of the signal itself. Therefore, despite the value for γ in
the free-space model is always 2, in typical applications it lies between 3.6 and 5.1 in a
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Non-Line-of-Sight (NLoS) mobile-to-mobile environment [Turkka and Renfors, 2008].
Therefore, the signal attenuates exponentially with a high coefficient and transmitting
at high distances might become challenging. Nevertheless, adopting a multi-hop
topology in order to reduce the distances crossed by the signal is not feasible. As
explained in [Tuset-Peiro et al., 2013] multi-hop links are complex to manage because
they require some degree of synchronization among the involved devices, and the
execution of routing protocols to determine and update the routes between any end
device and its intended destination becomes necessary.

Indoor Empirical Models

More recently the problem of describing the path loss in indoor environment has been
addressed. It is difficult to express in a general form since indoor environment can
differ widely in size, shape and materials. The reflection and absorption effects also
depend on the frequency of the signal and many investigations have been carried out
to explore the attenuation effect of walls and floors to a signal of specified frequency.
As an indicative quantity it can be reported the value of 10-20dB of attenuation for a
signal at 900MHz passing through a floor in a building. Increasing the number of
floors makes the attenuation due to the last of them more and more weak up to a
few decibels).

Also the material of the partition must be taken into account. Even if measure-
ments taken by different researchers may vary significantly, an indicative information
can be kept. In Table 2.1 the partition loss is measured at 900-1300MHz for different
materials resulting in the following data.

Partition Type Partition Loss (dB)

Cloth Partition 1.4
Double Plasterboard Wall 3.4

Foil Insulation 3.9
Concrete Wall 20.4

All Metal 26

Table 2.1: Typical Partition Losses depending on the partition structure and material.

As said, it is difficult to provide a precise confidence interval for the Partition
Loss value but it is possible to observe a qualitative difference between the various
partitions types. The metallic partition is by far the one presenting the highest
partition loss between the analyzed ones, followed by the concrete. This remarks
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the relevance of the materials used to build a specific indoor environment. For an
industrial setting, the abundance of metal and concrete makes the environment one
of the most challenging with regard to the signal attenuation.

A simple way to integrate the effect of walls and generic partitions into the path
loss computation is to modify the simple path loss model by adding two additional
terms representing the floor attenuation factor and the partition attenuation factor
for each of the floors and the partitions traversed by the signal.

The last effect worthy of being cited is the penetration loss due to the penetration
of the signal inside the indoor environment in the case in which the antenna is placed
outside the building.

2.1.2 Shadow Fading

Path loss represents the mean effect of the absorption and reflection of the wave-front
with the various obstacles that can interfere with the signal propagation. In addition
to that, variations of the signal due to slightly different paths result in an effect
known as shadow fading. Since the exact positions, shapes and dielectric properties
of the obstacles cannot be always determined exactly and, even if this was possible, it
may require an excessive computational cost to exactly simulate the environment, a
statistical model is often used to concisely describe the environment properties both
in indoors and outdoors scenarios.

The distribution from the which the path loss is sampled out is a log-normal
distribution. The mean value is usually referred to as average path loss, empirical
measurements for this value range between 4 and 12 dB. The apparent awkwardness
of the log-normal distribution is due to the logarithmic transformation used to express
the path loss in Decibel.

A simple justification of this model can be based on the fact that a signal that
traverses a number of objects faces an attenuation of s = ce−α

∑︁
i di = ce−αdt , where

di depend on the specific shape and dielectric properties of the objects. in a situation
in which the number of objects is large, dt can be treated ad a Gaussian random
variable and log(s) will have a Gaussian distribution as well. The shadow fading
and the path loss find a natural way to be combined by including the mean of the
shadow fading into the path loss (constant) term thus describing the shadow fading
as a Gaussian variable of mean zero.

This formalism is used to compute the outage probability i.e. the probability
for a receiver to sense a signal of power higher than a minimum level below which
performance is considered to be unacceptable and thus to design the structure of a
wireless network to guarantee the minimum power level in each point of interest with
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a specified minimum probability.

2.1.3 Multi-path Channel Models

In this section fading models for the constructive and destructive addition of different
multi-path components introduced by the channel are examined. Deterministic models
are rarely available, a statistical characterization of the channel is required to fit
solutions that can evolve through time or not be entirely known.

In the analysis of the effects due to the superposition of different multi-path
components, two important effects arises presenting different time scales:

• fast channel variations happens when delay between different multi-path compo-
nents could be noticeable with respect to the inverse of the channel bandwidth;

• slow channel variations happens time-varying nature of the multi-path channel
due to a movement of the of either the transmitter of the receiver.

To better understand how these effects are generated and how they impact the
final received signal, let’s start by analysing the transformations that occur in the
propagation of the wave-front in the channel.

Given the transmitted signal, the received signal is reconstructed by summing
(with an obvious generalization in the continuum case) all the terms modified by
the propagation of the wave-front in the channel. A convenient way to express the
resulting signal is summing all the resolvable multi-path components which correspond
to the multi-paths associated with similar scattering events and, therefore, cannot be
separated by the receiver. In more detail, two multi-path components with delay τ1
and τ2 are resolvable if their delay difference is significantly greater than the inverse of
the signal bandwidth, otherwise are said to be non-resolvable. All the non-resolvable
components are seen by the receiver as a single wave-front and are combined into a
single multi-path component with delay τ ≈ τ1 ≈ τ2 with a perturbation in phase
and amplitude due to the specific path and interactions. Typically, these combined
components undergo fast variations due to slight differences in the paths that result
in sudden variations of the received signal called fast fading to differentiate them
from the channel variations due to some modification of the environment crossed by
the waveform, that are referred to as slow fading.

Even though fast fading cannot be predicted and generates a sudden variation in
the channel between two consecutive transmission attempts, slow fading can be regular
enough to allow to exploit the previous history of the channel to infer information
about future channel states.
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Depending on the spread of time delays between different non-resolvable compo-
nents, two different models are introduced:

• if the channel delay spread is small, then the LOS and all multi-path components
are typically non-resolvable, leading to the narrow-band fading model ;

• if the delay spread is large, then the LOS and all multi-path components are
typically resolvable, leading to the wide-band fading model.

2.2 Interference in Wireless Networks

Interference is well known problem in the unlicensed bands used by wireless LANs
(WLANs), and is an increasing challenge in all kind of WLAN environments. In-
terference in WLAN applications leads to a reduction in data-traffic throughput as
well as a reduction in the effective communication range. This is particularly critical
for human-like communications (voice and video applications) causing a bad user
experience of service (EoS), but in the worst cases can also include the temporary
failure of a given link, thus affecting severely any kind of communication. As the
number of unlicensed devices grows and as ever more mission-critical applications
are deployed on WLANs, interference represents a challenge that must be addressed.
With the unlicensed bands available to many devices beyond WLANs, these potential
sources of interference are, like WLANs themselves, increasing in number. This
presentation follows the White Paper released in 2010 by Cisco [CISCO, 2010], one
of the most important players in the field of IoT and wireless communications.

In particular, Radio-Frequency Interference (RFI) is a major problem in the
deployment and use of WLANs that operate in the unlicensed bands like the one
analyzed in this work. The unlicensed band is a spectrum band reserved by regulators
worldwide for applications without any requirement for the individual user. This is
a big advantage for the ease of installation and the absence of costs to transmit in
this band but, at the same time, a potentially large number of wireless devices may
be competing to transmit in the same frequency in a particular location. This can
lead to interference and thus degraded user connectivity in terms of throughput, link
quality, and range.

As consequence of the lack of restriction for the number of devices that can
transmit in the unlicensed band, devices operating in this band should accept any
interference that may be present. Even if it is possible to attack a wireless network
by generating a strong signal in the same operational bandwidth (jamming), this
phenomenon is rarely encountered and interference in the unlicensed bands is usually
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unintentional and due to other devices operating legally in this band. Interference
may also arise from licensed services, including amateur radio equipment, RADAR
systems, and many other devices allowed to operate at much higher power than their
unlicensed counterparts.

From a more technical point of view, interference occurs when two radio signals
with sufficient proximity to each other are transmitted on the same frequency at the
same time. Interference can can affect simultaneously multiple signals that present
similar transmit power, and so it is likely that they can mutually interfere. Otherwise
if one signal has greater power than the others present in the same bandwidth, weaker
signals will suffer interference from the stronger, which instead won’t be affected
significantly.

As explained in the previous section, the attenuation of the signal of radio waves
decreases polinomially with the distance with a coefficient that is 2 in open spaces
but can assume higher values in indoor environments. Therefore the intensity of a
radio signal may decrease strongly while moving from transmitter to receiver, causing
the signal to change from interferer to interferee with respect to an other other signal
that experience a different power variation.

Interference is not only a function of relative power but also depends on the
transmit duty cycle. The higher percentage of time that a given device is transmitting
with a large share, the greater the probability of interference. It is possible for
two otherwise potentially interfering signals to “timeshare” a given frequency (in an
uncoordinated fashion), resulting in relatively little mutual interference.

With respect to WLANs, as said before, interference may come from a variety of
sources, in particular from other WLAN networks and from other devices that use
different transmission protocols. This leads to different situations that are worthy of
being analyzed separately.

• Interference from other WLAN networks can belong to two general categories:
co-channel interference (CCI), or adjacent-channel interference (ACI). In the
first case, the interference phenomenon interests two access points on the same
channel, in the latter interests two access points operating in close proximity
channels. To assess the channel freedom, WLANs adopt a “listen-before-talk”
protocol, based on Carrier Sense Multiple Access with Collision Avoidance
(CSMA/CA). As a consequence of that, each network waits to transmit until
the channel is free and this helps the two networks to cooperatively share (even
if not optimally) the channel capacity.

• Non-WLAN sources use transmission protocols different from those of WLANs.
There is no verification of clean channel before transmitting and this leads
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more often in a severe degradation of WLAN transmissions. The amount of
non-WLAN devices operating in the unlicensed band is huge. There is a wide
range of domestic use devices that exploit the unlicensed band such as Bluetooth
products (some of them may operate at the same power levels as WLANs). In
addition, there is a variety of industrial devices that may potentially interfere
with WLANs such as wireless video surveillance cameras, wireless security
and energy management systems, proprietary wireless bridges, and computer
peripherals.

This distinction helps to understand a major problem in detecting and solving
interference problems. Since a WLAN transceiver can only detect a WLAN signal,
the radios used in WLAN networks (both on servers and clients) do not perform well
in diagnosing interference due to sources external to a WLAN network. As discussed
earlier in this section, the amount of non-WLAN devices commonly used both for
private and entrepreneurial purposes is constantly growing. To identify these signals
not generated by a WLAN it is commonly used a spectrum analyzer. Unfortunately
this tool is quite expensive and requires some expertise to be used. Therefore it is
not suitable for a network that should meet the easy of use and installation required
in the problem analyzed in this work and different methods to handle the interference
problem should be found.
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Chapter 3

Related Work

This Chapter presents in depth the background of IEEE 802.15.4g SUN networks,
comprehensive of the IEEE 802.15.4g SUN modulations used in this work, and the
work related to communication reliability using diversity mechanisms and machine
learning algorithms in this network type. Then, Section 3.3 presents an overview
of the applications of Multi Armed Bandit based algorithms to wireless networks
channel selection. This is preparatory to the introduction of the modulation selection
strategies presented in Section 4.2.

3.1 IEEE 802.15.4g Standard

IEEE 802.15.4 is a technical standard which defines the operation of low-rate wireless
personal area networks (LR-WPANs). It was first released in May 2003 and defining a
PHY (PHYsical) layer and a MAC (Medium Access Control) layer. Recently various
studies have been focused on the analysis of performance of IEEE 802.15.4g SUN
(Smart Utility Network) modulations showing a rising interest in this subject.

At the physical layer, the standard employed the Direct Sequence Spread Spectrum
- Offset Quadrature Phase Shift Keying (DSSS-OQPSK) modulation and provides
data rates of 20 kbps and 40 kbps in the Sub-GHz bands (868 MHz in Europe,
915 MHz in America), respectively, and of 250 kbps in the 2.4 GHz band (avail-
able worldwide). The selected modulation provided a good trade-off between radio
transceiver complexity, robustness, energy consumption, and communication range
[Muñoz et al., 2018b]. At the MAC layer, the standard defined slotted/synchronized
and unslotted/unsynchronized operation based on the CSMA/CA (Carrier Sense
Multiple Access with Collision Avoidance) channel access mechanism to trade off
bandwidth, latency and energy consumption of the devices.
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The adoption of the IEEE 802.15.4g standard by different low-power wireless
technologies has promoted the revision of the standard three times (i.e., in 2006,
2011 and 2015) in order to clarify the operation and to add new features to both the
PHY and MAC layers. For example, the 2015 standard revision adopted the MAC
layer proposals defined in the IEEE 802.15.4e-2012 [IEEE, 2012] amendment. This
amendment defined the Time Slotted Channel Hopping (TSCH), a channel access
mechanism that combines Time Division Multiple Access (TDMA) and Frequency
Division Multiple Access (FDMA) to support industrial requirements which in the
toughest cases may require reliable packet delivery up to 99.999% in adverse conditions,
such as multi-path propagation and external interference. This is not an ubiquitous
requirements in any industrial application; in fact in the work-case presented in the
following chapters the requirement is a reliable packet delivery of 99% but in presence
of extremely harsh environmental conditions.

Of particular relevance for this work is the adoption in the IEEE 802.15.4-2015
standard revision of the three new physical layers targeted to SUN (Smart Utility
Network) applications, as previously defined in the IEEE 802.15.4g-2012 amendment.
The modulations present different target objectives: SUN-FSK and SUN-OQPSK
modulations are focused on maintaining backwards compatibility with previous
standards and commercially available transceivers. SUN-OFDM, instead, is focused
on robustness and spectrum efficiency at the physical layer.

In the following sections the modulations SUN-FSK, SUN-OQPSK and SUN-
OFDM are described in detail, since these modulations are used to provide the channel
diversity necessary to implement the modulation selection strategy.

SUN-FSK

The SUN-FSK modulation has two main advantages: the first one is the good
power efficiency and the low implementation complexity, and the second one is the
compatibility with legacy systems. At the same time has shown good performances
in the dataset used in this work, proving to have a good reliability with respect to
the other SUN modulations in harsh conditions.

An advantage of SUN-FSK modulation is its availability in different countries due
to the possibility of using it in different frequency bands. For example in Europe
it can be used both the 863-870 MHz and the 2.4 GHz bands. The latter is freely
available worldwide.

Depending on the frequency band, different operation modes are defined. An
operation mode is a protocol that specifies transmission parameters such as the
modulation type (2-FSK or 4-FSK), the modulation index and the channel spacing.
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Focusing on the 863–870 MHz band, which is the one used for the data acquisition
process, three different data rates are supported. The data rate is specified by the
selected operation mode and may assume a value of 50 kbps, 100 kbps, and 200 kbps.
The 200 kbps data rate is achieved when using 4-FSK, the other two are achieved
using 2-FSK.

In the deployment described in this work, the Mode 1 was used, which uses 2-FSK,
with a data rate of 50 kbps. In this mode, the total number of channels is 34, with a
channel spacing of 200 kHz.

SUN-OQPSK

The OQPSK modulation was introduced in the first version of the IEEE 802.15.4
standard, in 2003. It was firstly defined only for the 2.4 GHz band, providing a bit
rate of 250 kbps, subsequently other frequency bands have been added. In the IEEE
802.15.4g bitrates values may vary from 6.25 to 500 kbps.

SUN-OQPSK adopts a mechanisms to handle the interference problems called
Direct Sequence Spread Spectrum (DSSS). It also exists an alternative spreading
mode, called Multiplexed DSSS (MDSSS).

The symbol rate is defined as the bit rate of the synchronization header (SHR).
Other important parameters are defined in the the physical layer packet header (PHR),
such as the spreading mode, and the rate mode. The Forward Error Correction (FEC)
is always applied in the PHR field. When using DSSS as the spreading mode, FEC
shall also be applied to the Physical Service Data Unit bits. For spreading mode set
to MDSSS, FEC is optional, depending on the rate mode. To improve robustness,
interleaving may be used in conjunction with FEC.

For each frequency band, up to four rate modes are supported, but only the rate
mode 0 is mandatory. In Mode 3 of the sub-GHz bands (including 863-870 MHz),
DSSS is not used for the payload, this allows to achieve a higher data rate. For the
2.4 GHz, instead, DSSS is used for the payload in all rate modes.

SUN-OFDM

The SUN-OFDM was first defined in the IEEE 802.15.4g standard, and after incor-
porated in the IEEE 802.15.4-2015. It present features slightly different from the
other described modulation since it has been designed to provide high data rates and
long range, which are not required in the specific setting considered in this work and
presented in detail in Section 5.1. As a consequence of that, differently from FSK and
OQPSK, OFDM have not been widely used for low-power wireless communications,
due to the stringent processing, memory and energy consumption requirements. As
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in the previous cases OFDM tries to be robust to interference and multi-path fading
problems.

The SUN-OFDM may be used in different frequency bands (both 863-870 MHz
and 2.4 GHz), and provides data rates from 50 kbps to 800 kbps. The sub-carrier
spacing is constant and is equal to 10416-2/3 Hz, while the symbol rate is equal to
8-1/3 ksymbol/s (a symbol period of 120 µs).

Four different options are defined, for each option, a set of Modulation and Coding
Schemes (MCS), numbered from 0 to 6, may be used. In the acquired dataset, the
lowest supported MSC have been chosen for the option being used, both for SHR
and PHR.

The Protocol Data Unit at Presentation Layer (PPDU) of the SUN-OFDM (which
is informally referred to as a packet in the following sections) is composed by a SHR,
the payload, and the PHR, that contains the information about the transmission
configuration.

3.2 Reliability in IEEE 802.15.4g Networks
Diversity schemes are widely used in wireless networks to improve the communication
reliability, and to deal with the temporal and spatial variations in link quality. Different
strategies may be adopted in different layers. At the physical layer antenna and coding
diversity are two well-established mechanisms, but they are not widely used in low-
power networks as they require additional or complex hardware. At the data-link layer,
packet replication in the time and frequency domains are two widely used diversity
schemes thanks to their simplicity. However, packet replication increases node energy
consumption and impacts network congestion, whereas frequency diversity requires
time-synchronization among nodes, thus increasing complexity.

Several papers have proposed the use of diversity schemes in IEEE 802.15.4 net-
works. For example, the authors of [Park et al., 2010] focus on the data-link layer and
propose an adaptive algorithm based on MAC (Medium Access Control) parameters
(i.e., macMinBE, macMax-CSMABackoffs, and macMaxFrameRetries) for minimizing
power consumption while guaranteeing reliability and delay constraints in the packet
transmission. [Watteyne et al., 2009] and [Watteyne et al., 2010] proposed using time
synchronization and channel hopping (i.e., sending subsequent packets over different
frequency channels) at the physical layer as a means to combat both multi-path
propagation and external interference. The protocol proposed in [Gomes et al., 2019]
combines multi-channel communication, real-time link quality estimation, and dy-
namic channel allocation, to deal with the problems that affect the link quality in
industrial environments.
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Several recent papers have applied machine learning in IEEE 802.15.4 networks.
In [Bombino et al., 2020] different supervised-learning algorithms are evaluated for
the inference of the radio-link state (i.e. LoS or NLoS radio links). By monitoring
the link state in real-time it is possible to dynamic adapt the transmission scheme to
improve reliability. However, only the O-QPSK modulation at 2.4 GHz is considered
in the evaluations, and no diversity mechanism is proposed.

Some articles already discussed in this section propose adaptive diversity strategies
to improve network reliability, but they do not consider the use of multiple modulations.
Modulation diversity is a method to improve the reliability of communications by
using different modulations. That is, consecutive packets can be transmitted using
two or more modulations (e.g., FSK or PSK), taking advantage of their different
properties regarding propagation and interference effects. For example, it is well known
that narrowband modulations, such as FSK, are more robust against interference,
whereas wideband modulations, such as OQPSK-DSSS, provide better tolerance
against multi-path propagation.

Regarding modulation diversity, some papers have applied this concept in different
ways and for different purposes. In [Zubair et al., 2016], a dual mode IEEE 802.15.4
receiver is proposed. The receiver can choose between a MSK (Minimum Shift
Keying) detector or a OQPSK detector to trade energy consumption, latency, and
reliability. In addition, the it can define the mode based on a SNR indicator,
to optimize performance. However, the authors do not consider the use of the
SUN modulations, neither propose the use of different modulations to transmit the
packets. In [Sousa et al., 2014] the authors propose using cooperative modulation
diversity to improve reliability. In particular, nodes rotate a QPSK constellation
and interleave the phase and quadrature components independently. However, this
approach requires modification at the physical layer, and the use of relay nodes,
which can be difficult in sparse networks. Finally, in [Savazzi et al., 2019] the authors
propose using modulation diversity for LoRa networks to improve a localization
algorithm. The modulation diversity is obtained by changing bandwidth, spreading
factor and code rate. Overall, these papers propose the use of modulation diversity,
but they do not propose or evaluate adaptive modulation selection strategies for
low-power wireless networks.

In [Gomes et al., 2020] three different adaptive modulation diversity strategies are
proposed, for IEEE 802.15.4g SUN networks, called 1M, 2M, and 3M. These strategies
use a simple link quality estimation mechanism, based on the ACK Reception Ratio.
In this work, it will be compared the proposed adaptive modulation selection strategies
based on MAB algorithms to the 3M mechanism, which presents the best performance
in the evaluations described in [Gomes et al., 2020].
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Over the past few years several research papers have evaluated IEEE 802.15.4g
networks. In [Muñoz et al., 2018], the authors evaluate all 31 physical layer configura-
tions of the IEEE 802.15.4g for environmental observations. The results show that the
longest radio links were obtained when using SUN-FSK or SUN-OQSPK, compared
to SUN-OFDM. In [Muñoz et al., 2018a], the authors evaluate three IEEE 802.15.4g
configurations operating at 2.4 GHz: O-QPSK, OFDM with frequency repetition,
and OFDM without frequency repetition, and show that channel hopping makes
sense even when using SUN-OFDM, as the channel width is small and all sub-carriers
are influenced in a similar way by multipath fading. In [Muñoz et al., 2018b], the
authors also evaluate the IEEE 802.15.4g using the 2.4 GHz ISM band, for smart
building applications. The results show that for the considered indoor scenario, which
is severely impacted by multi-path propagation, SUN-OFDM can provide better
reliability than SUN-OQPSK. Overall, these papers show that the different physical
layer configurations may present different levels of quality for different scenarios.
However, the authors do not propose or evaluate any mechanism to deal with the
different challenges of low-power wireless communications.

3.3 MAB strategies for Wireless Networks
The Multi Armed Bandit (MAB) problem consists in finding, within a set of options
that gives stochastic rewards, the most profitable one. It can be effectively applied
to many network problems by choosing the best channel of communication between
the available ones based on some feedback provided from the environment. The
advantage of this formulation is that it does not require a detailed knowledge of the
environment and only exploits the channel response, thus it is easy to generalize to a
variety of use cases.

In 2020 the dynamical channel selection in a IEEE802.11a-based, four-channel
WLAN has been addressed by using MAB algorithms in a dynamically changing
electromagnetic environment [Takeuchi et al., 2020]. In this specific application the
kind of communication is different to the, and the quality of the user’s experience
is strongly influenced by the delay in the packets transmission. Therefore specific
attention has been put into the speed of transition between channels when the
environment conditions change.

In recent publications like [Taheri Javan et al., 2020], [Gomes et al., 2018], and
[Dakdouk et al., 2018], MAB algorithms are used to optimize IEEE 802.15.4-TSCH
(Time Slotted Channel Hopping) networks. In the first one, the scheduling problem is
modeled in terms of a combinatorial MAB process, in order to compute the optimal
schedule based on real-time interactions with the wireless network. In the second
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one, the channel quality estimation process is modeled as a MAB problem, in order
to classify the channels and manage the blacklists (i.e. the list of channels that are
not allowed to be used by the nodes). In [Dakdouk et al., 2018] the authors also use
MAB algorithms to select channels in TSCH networks. In [Hasegawa et al., 2020]
the distributed channel selection problem is modeled as a MAB problem, to select
channels in IEEE 802.15.4g networks under interference of Sigfox and LoRaWAN
devices.

In addition to well known established algorithms [Sutton and Barto, 2018] new
methods inspired to physical models to solve the MAB problem are getting attention.
The underlying idea is that biological systems usually cope with the complexity of their
decision making problems by exploiting basic physical phenomena, resulting in a much
simpler and more efficient method than a classic algorithm. In particular the Amoeba
reaction to external stimuli has inspired a method that consists in manipulating an
in-compressible fluid straining it towards points in the space that represent possible
actions. The resulting algorithm is called tug-of-war (TOW) [Kim and Aono, 2015].
Also photonic behaviour has been studied to address the problem of competitive
MAB (CMAB) i.e. maximizing the social rewards of a set of players while ensuring
equality [Chauvet et al., 2019].
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Chapter 4

Proposed Methods

This section presents the two mechanisms proposed in this work to improve the channel
reliability: the re-transmission shaping and the modulation selection strategies. The
role of the re-transmission shaping is to efficiently determine the maximum number
of re-transmissions for each packet, regardless the modulation used to transmit it.
The modulation selection, instead, aims to provide the best modulation to transmit
each packet for each re-transmission attempt. Therefore, these two strategies address
complementary tasks. After a detailed description of both the mechanisms, it is also
discussed their combined implementation.

4.1 Re-transmission Shaping

Re-transmissions are a common mechanism used at the data-link layer to guarantee
the delivery of data packets between an end-device and a gateway using a wireless
communication technology. Whenever the acknowledgment packet from the gateway is
not received at the end-device due to physical layer effects (i.e., multi-path propagation
or internal/external interference), the end-device will re-transmit the original data
packet again to provide another opportunity for the packet to be successfully received
at the gateway. However, since physical layer effects are not deterministic and
packet re-transmission increases end-device energy consumption and network load, a
maximum number of re-transmissions per data packet is typically set. But assigning
a fixed number of re-transmissions per packet may not be optimal, as if channel
conditions are too adverse, the originating end-device could need more than the fixed
number of re-transmissions to deliver a data packet and, hence, this would be lost.

Taking that into account, the aim of the re-transmission shaping mechanism
that we present in this section is to dynamically adapt the number of maximum
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re-transmissions per packet according to channel conditions in order to meet both
the data delivery requirements of the application and the target battery lifetime of
end-devices. That is, given the average number of re-transmissions per data packet,
the re-transmission shaping mechanism keeps track of the number of re-transmissions
that have not been used to transmit previous data packets (i.e., if packets have
been received by the gateway at the first transmission attempt). These unused
re-transmission attempts are accumulated and can be used in the future when channel
conditions are bad and the average number of re-transmissions per data packet is not
sufficient to guarantee successful delivery.

Considering this high-level description, we now focus on presenting the system
model that defines how re-transmission shaping operates. For that, we assume that
we have a network with n end-devices, with a battery of capacity C (mAh) that
transmit a data packet with length L (bytes) and period T (seconds), and one gateway
that receives the packets transmitted by end-devices. Upon successfully receiving a
data packet from any end-device the gateway transmits an acknowledgment packet
(ACK) back to the originating end-device. If the originating end-device does not
receive the acknowledgment packet, either because the original data packet is not
successfully received or the acknowledgment packet is lost, then the originating
end-device re-transmits the data packet.

Considering the values of C, L and T , the average number of re-transmissions per
data packet is NAVERAGE and we assume that it is set to a value that allows to meet
the battery lifetime of the device. That is, if NAVERAGE=3 the device is allowed to
perform 3 re-transmissions per data packet while operating for 1 year1. Then, when
the source end-device succeeds in transmitting a data packet i with a number Xi

of re-transmissions, being 0 ≤ Xi < NAVERAGE, the number Ui = NAVERAGE −Xi of
unused re-transmissions can be accumulated for the re-transmission of subsequent
data packets.

Hence, as depicted in Figure 4.1, the model of the re-transmission shaping
mechanism is based on 5 variables NAVERAGE, NMAXIMUM, NALLOWED, NUSED and
NAVAILABLE, as described next:

• NAVERAGE is an input value that represents the average number of re-transmissions
per data packet that are allowed while ensuring the lifetime of the end-device.
It is not required to be an integer, it can be directly derived from the device
power constraint.

1Of course, the exact values will depend on C, L and T , as well as the voltage and the
transmit/receive current consumption of the radio transceiver, and the battery capacity, among
others, but this discussion is out of the scope of the paper.
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• NMAXIMUM is an input value that represents the number of extra re-transmissions
per packet that are allowed in addition to NAVERAGE.

• NALLOWED is an output value that represents the maximum number of re-
transmissions that are allowed for the current data packet being transmitted.

• NUSED is an input value that represents the number of re-transmissions that have
been required to successfully deliver the previous data packet to the gateway.

• NAVAILABLE is an internal state variable that accumulates the number of re-
transmissions that have not been spent in previous data packet transmissions
and, hence, can be used in the future. It is initialized to zero.

Figure 4.1: Diagram of the re-transmission shaping mechanism with the input
(NAVERAGE, NMAXIMUM and NUSED), output (NALLOWED) and the internal state
(NAVAILABLE) variables, and its relationship with the data-link layer.

Regarding NMAXIMUM, notice that its value is set to avoid a given packet trans-
mission that experiences bad instantaneous channel conditions to deplete all the
NALLOWED re-transmissions available. Hence, its value has to be set depending on
the context of each deployment. For environments presenting short deep drops in the
link reliability it can be set to a high value, allowing to strongly increase the number
of re-transmissions for short periods of time. In contrast, for environments with long
shallow drops in link reliability it can be set to a low value, allowing to extend the
effects of re-transmission shaping for a longer period of time.

Using these variables, the operating principle of the re-transmission shaping mech-
anism is the following. Before a data packet transmission starts, the re-transmission
shaping mechanism calculates the NALLOWED of re-transmissions available as

NALLOWED(k) = floor(NAVERAGE +min{NAVAILABLE(k), NMAXIMUM}). (4.1)
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so that, if unused re-transmissions are available, they are added to NAVERAGE without
exceeding the threshold set by NMAXIMUM.

The NALLOWED value is then used by the physical layer to perform re-transmissions
until the data packet is either successfully received (i.e., including the acknowledgment)
or the number of re-transmissions becomes zero and no more re-transmissions can be
performed. In either case, the re-transmission shaping module receives the number
NUSED of re-transmissions used for that particular data packet and performs the
following operation to update the internal NAVAILABLE variable:

NAVAILABLE(k + 1) = NAVAILABLE(k) + (NAVERAGE −NUSED(k)). (4.2)

Notice that it cannot be negative because NUSED is always lower than NALLOWED,
which depends on NAVAILABLE as in Equation 4.1.

Since in the first iteration NAVAILABLE = 0, the formula that expresses NAVAILABLE

for a generic time step k is

NAVAILABLE(k) =
k−1∑︂
i=0

(NAVERAGE(i)−NUSED(i)). (4.3)

Notice that using these variables, the re-transmission shaping mechanism can
emulate the usual re-transmissions strategy where NAVERAGE is set to a constant
value per data packet. This behavior can be achieved by setting NAVERAGE to an
integer value and making NMAXIMUM equal to zero. In that case, for every data packet
transmission the maximum number of re-transmission attempts is constantly equal to
NAVERAGE. In this case, the re-transmission shaping mechanism does not perform any
additional task to the basic fixed number of re-transmissions case. In fact, as it can
be noticed from Equation 4.1, despite NAVAILABLE increases, the value of NALLOWED

is always upper bounded by NAVERAGE. Hereinafter, we will refer to the particular
case in which NMAXIMUM is set to zero as no re-transmission shaping (i.e., noRS), as
this represents the base scenario that allows to compare the performance gains of our
proposal.

4.2 Modulation Selection
Whenever a variety of mechanisms are available to transmit data packets between
a gateway and an end-device, a natural way of improving the network reliability
is adopting for each packet transmission the mechanism that presents the higher
probability of successfully delivery. In the current framework the different transmission
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mechanisms consist in the SUN modulations presented in Section 3.1. The randomness
of the channel evolution makes impossible to predict the most convenient modulation
on theoretical basis, it is possible instead to exploit the history of the transmission
attempts to estimate in each time the best modulation. This can be done by keeping
track of the acknowledgment received by the end-device from the gateway for each
transmission attempt made with a specific modulation.

The exact form in which the best strategy computation has been performed will
be presented later in this chapter, now the focus is on the high level implementation
of the strategies by considering the actual modulation selection mechanism as a black
box and discussing the interaction of the model with the channel. As depicted in
Figure 4.2, for each transmission attempt k the selected modulation MODK is used to
transmit the packet. The gateway sends an aknowledgement (ACK) to the end-device
whenever it receives a packet. It should be noticed, however, that the ACK reception
by the end-device is subject to the status of channel reliability. Therefore it is possible
that, even if the packet is received by the gateway, no ACK reaches the end-device
and the transmission is erroneously considered as unsuccessful. Each packet can
be re-transmitted NAVERAGE times in order to increase the transmission probability,
therefore this value is given in input to the modulation selector module.

Figure 4.2: Diagram of the modulation selection mechanism with input (NAVERAGE,
ACK) and output variables (MODK) and internal state (list of available modulations
MODAVAILABLE with an associated quality score).

4.2.1 Restless Multi Armed Bandit Problem

The problem of recurrently choosing an action from a (finite or infinite) set based
on the expected reward that the action will produce has been widely studied and
formalized in the model known as Multi Armed Bandit (MAB) problem.
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In its most basic formulation, a K-armed bandit problem is defined by random
variables Xi,n for 1 ≤ i ≤ K and n ≥ 1, where i is the index of a gambling machine
(i.e., the “arm” of a bandit) and n is the index of the iteration of plays of the
machine. Rewards obtained by different plays of a machine are independent and
identically distributed according to an unknown probability measure with unknown
expectation µi. In general each machine has a different probability measure associated.
Also rewards obtained by different machines Xi,s and Xj,t are independent for each
1 ≤ i, j ≤ K and each s, t ≥ 1.

A policy, or allocation strategy, A is a function that specifies the machine to
play depending on the sequence of past plays and obtained rewards. Let Ti(n) be
the number of times machine i has been played by A during the first n plays. The
expectation regret of A after n plays RE(n) is the expected loss due to the fact that
the policy does not always play the best machine; it is defined as

RE(n) := nµ∗ − µj

K∑︂
j=1

E[Tj(n)] where µ∗ = max
1≤i≤K

µi . (4.4)

so it corresponds to the maximum possible reward minus the expected one obtained
in the first n plays, conditional on all contextual variables, with expectation taken
over repeated plays of an arm at a fixed point in time.

In [Lai and Robbins, 1985] it is shown how

E(Tj(n)) ≥
log(n)

D(pk||p∗)
(4.5)

where D(pj||p∗) is the Kullback-Leibler divergence between the reward probability
density of the suboptimal arm pk and the reward probability density of the optimal
arm p∗. Therefore the regret grows at least logarithmically, that is, RE(n) = Ω(log n)
and an algorithm is said to solve the multi-armed bandit problem if it can match this
lower bound, i.e. if RE(n) = O(log n).

These algorithms work by associating a quantity called upper confidence index to
each machine. The computation of this index is not trivial: it relies on the entire
sequence of rewards obtained so far from a given machine. Once the index for each
machine is computed, the policy uses it as an estimate for the corresponding reward
expectation, picking for the next play the machine with the current highest index.

The previous description, however, assumes that rewards obtained by different
plays of a same machine are identically distributed, that means that the the underlying
distribution are stationary. This approximation does not always fit the experimental
conditions, the framework in which the reward distributions are not stationary is
called Restless Multi Armed Bandit.
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A known behaviour that leads to non-stationarity is due to the presence of change-
points in correspondence of whom the distribution presents an abrupt change. The
Adapt-EvE algorithm [Hartland et al., 2011] uses the Page-Hinckley test to identify
change-points and add a meta bandit with two arms that controls the MAB algorithm
that actually chooses the arm of the problem (the Adapt-EvE implementation uses
UCB algorithm described in the following section but the same approach can be
applied to other algorithms). The meta bandit algorithm decides if to keep the learned
parameters of UCB or to restart it from scratch. This approach is capable of good
performance but it is unfeasible in the scenario analyzed in this work as the evolution
of the rewards distribution varies constantly.

In the dataset described in Section 5.1, however, the non-stationarity is due to a
series of unpredictable changes in the channel as explained in Chapter 2 and there
is no satisfactory way to describe the modulation quality evolution by means of
the change-points model. In this scenario it lacks a comprehensive mathematical
formulation as well as convergence results for the algorithms that can be applied.
Therefore the most straightforward approach consists in exploring the performances
of the most known algorithms for the non-stationary case to investigate how they
perform in the specific setting, without relying on theoretical results for convergence
speed.

4.2.2 Algorithms

Among the variety of algorithms that can be used to address the problem of selecting
the best arm in a MAB framework, we have selected some of the most known between
the ones that present a low computational charge. In fact these solutions are meant
to be deployed in real case scenarios in which the power drain of the sensor is a
crucial aspect to evaluate the effectiveness of the implementation. In the rest of this
section the selected algorithms will be presented in the general form; in this specific
case however the possible actions coincide with the SUN modulations and the reward
assumes only the values 0 and 1 accordingly to the transmission outcome and to the
reception of the ACK by the end-device.

Epsilon-greedy

The epsilon-greedy policy (EG) is a widely used algorithm in Reinforcement Learning
problems [Sutton and Barto, 2018]. It is based on a simple heuristic: given an
arbitrary value ε ∈ [0; 1], in each round the arm with maximum expected utility is
selected with probability 1-ε, otherwise an arm is chosen with random probability
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among the whole action space without consideration for the estimated values of the
arms. The value of each action is computed recursively as

Qt+1(a) = Qt(a) + α(Rt,a −Qt(a)) (4.6)

were Rt,a is the reward at round t having played arm a and α ∈ (0; 1] is the learning
coefficient that is kept fixed. In this way, from 4.6 we have that

Qt+1(a) = (1− α)tQ1(a) +
t∑︂

i=1

α(1− α)t−1Ri,a (4.7)

thus the effect of rewards decreases exponentially with the number of rounds and the
policy is able to adapt to the evolution of the environment. The higher the value of
α, the faster the old rewards are ignored in favour of more recent information.

Algorithm 1 Epsilon-Greedy Policy
1: Define the set of possible actions A
2: Define a map from a ∈ A to its value Q0(a)
3: Set value for ε ∈ (0; 1) and stepsize α
4: for t from 0 to tmax do
5: Sample ξ from U[0;1]

6: if ξ ≥ ε then
7: Set â equal to argmaxa∈A(Qt(a))
8: else
9: Randomly sample â from A

10: Get the reward Rt

11: Set Qt+1 equal to Qt

12: Set Qt+1(â) equal to Qt(â) + α(Rt −Qt(â))

Softmax

The second considered algorithm is softmax also known as Boltzmann Exploration(BE).
It consists in sequentially choosing for each round t one arm a from the Boltzmann
distribution

Pt(a) =
exp(τQt(a))∑︁

a′∈A exp(τQt(a′))
(4.8)

where Qt(a) is the expected value of the arm a at round t and τ is a parameter
that defines the randomness of the choice and, from a physical analogy, it can be
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referred to as the inverse temperature of the system. For τ equal to zero the choice
is completely random while for τ approaching infinity the sampler tends to chose
each time the arm presenting the highest empirical average, thus renouncing to the
exploration phase. In [Cesa-Bianchi et al., 2017] it is highlighted the importance of
choosing a suitable evolution scheme for the parameter τ as function of time; however
those theoretical results hold for a stationary MAB problem and can not be used to
address the non stationary version of the problem.

Algorithm 2 Softmax
1: Define the set of possible actions A
2: Define a map from a ∈ A to its value Q0(a)
3: Set value for τ ∈ (0; 1) and stepsize α
4: Initialize Q0(a) = 1 ∀a ∈ A
5: for t from 0 to tmax do
6: Set B(a) = exp(Q(a)/τ)∑︁

a′∈A exp(Q(a′)/τ)
∀a ∈ A

7: Sample â from A with probability B
8: Get the reward Rt

9: Set Qt+1 equal to Qt

10: Set Qt+1(â) equal to Qt(â) + α(Rt −Qt(â))

Upper Confidence Bound

The last policy that we have implemented is the Upper Confidence Bound action
selection (UCB). This policy aims to choose every time an action considering the
expected value and the uncertainty of the estimate. If an action has been explored
a very limited number of times, it could be worthy to be explored again even if the
estimated value is lower than other actions. The UCB policy consists, therefore, in
choosing in each stage the action that maximizes a function of the expected values
and the number of tries

at = argmaxa∈A

[︄
Qt(a) +

√︄
2 log t

Nt(a)

]︄
(4.9)

where Nt(a) is the number of times in which action a has been selected and the
function that is added to Qt(a) is referred to as padding function. the argument
of the argmax function is called index of the arm a. This approach presents some
obvious problem in the non stationary case, in fact, even if an action has been widely
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explored, it doesn’t mean that we have reliable information about its behaviour in a
subsequent stage. Therefore the relevance of old exploration should be reduced with
the number of stages. Two methods have been implemented to achieve this goal: the
discounted UCB (D-UPB) and the sliding window UCB (SW-UCB) approaches.

In the first one the actions counter is computed recursively applying a discount
factor defined by a coefficient γ as

Nt+1(ā) = γNt(ā) + δāat+1
. (4.10)

Algorithm 3 Discounted UCB
1: Define the set of possible actions A
2: Set value for γ in (0; 1)
3: Initialize Q(a) = 1 and N(a) = 0 ∀a ∈ A
4: for t from 0 to tmax do
5: for a ∈ A do
6: if N(a)=0 then P (a) = +∞
7: else P (a) = Q(a) +

√︂
2 log(n)
N(a)

8: â = argmax(P (a))
9: Get the reward Rt

10: Set Q(â) equal to γQ(â) +Rt

11: Set N(a) equal to γN(a) ∀a ̸= â
12: Set N(â) equal to γN(â) + 1

The SW-UCB is similar and consider only those action performed in the last τ
stages as relevant for evaluating the function used to choose the action as in 4.9. It can
be interpreted as a hard version of D-UCB since it cuts the experience accumulated
before a time delay τ while in the previous case the relevance of old rewards decreases
exponentially thus becoming negligible after some iterations.

Since the two approaches have shown fairly identical results, only D-UCB have
been used for results presentation.

Note that in the stationary version of this algorithm Qt(a) corresponds approxi-
mately to µaNt(a). Therefore the algorithm without the padding function would pick
the arm a if µa is big and the number of times it has been explored is big enough.
The presence of the padding function indeed helps to choose the arm a when the
number of times the action has been explored is too small.
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4.3 Combined Methods
Once defined the two proposed mechanisms to increment the channel reliability it is
natural to think about applying the two methods at the same time to further increase
the channel reliability. In Figure 4.3 it is represented the diagram of the combined
methods. Once presented the two methods individually it is easy to understand
their combined implementation: from the perspective of the re-transmission shaping
mechanism, the modulation selection mechanism is just part of the packet transmission
details handled by the data link layer block. The modulation selector block, similarly,
is completely agnostic to the choice of the number of re-transmission for a specific
packet, it takes this value as input and keep re-transmitting the current packet
accordingly until an ACK is received. The implementation details of the two methods
therefore are not influenced by their joint deployment. The only difference with the
description done in the previous sections consists in the value of NUSED outputted by
the modulation selector block and storing the number of re-transmission performed
before receiving an ACK or before reaching the maximum re-transmissions value
specified by NMAXIMUM.

Figure 4.3: Diagram of the final architecture obtained by deploying the two proposed
methods.
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Chapter 5

Evaluation Methodology

This chapter introduces the dataset, the simulator, the metrics and the parameters
that used to evaluate the modulation selection strategies and the re-transmission
shaping mechanism described in the previous chapter.

5.1 Data Acquisition

The proposed methods have been tested using data gathered in 2020 with the specific
purpose of exploring the capabilities of IEEE 802.15.4g in an challenging industrial
scenario [Tuset-Peiró et al., 2020c]. A network of 11 sensor nodes and 1 gateway has
been deployed in a warehouse located in Madrid (Spain). The warehouse is built
with steel and concrete, as illustrated in Figure 5.1, and measures 451m × 244m.
The influence of steel in the reflection and multi-path propagation effects have been
introduced in Chapter 2. In such a industrial setting the presence of external sources
of interference, as other other networks operating in the same band (i.e., 868 MHz),
is highly probable. Finally, the presence of machinery moving across the warehouse
constantly modifies the signal propagation effects, thus making the environment
particularly challenging.

Regarding the specific deployment of the network, the nodes location is depicted
in Figure 5.2: the gateway has been located near the warehouse entrance, whereas
the nodes have been placed at different distances and heights. In particular nodes
5599, 55DD, 5565 and 560B have been placed on the same vertical line but at different
heights thus resulting in different distance and path propagation to the gateway.

Table 5.1 shows the node identifiers (last two bytes of the EUI-64 address) and the
distance to the gateway, which is comprised between 34.0 meters and 273.5 meters.

The details of the hardware implementation of the network are represented in

43
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(a) (b) (c)

Figure 5.1: Examples of the warehouse environment.

Figure 5.2: Map of the warehouse with the position of the sensors nodes (orange) and
the gateway (green).
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Node ID distance (m) height (m)

56-53 34.0 12.0
55-AD 63.0 2.0
55-E4 80.0 6.0
55-99 115.1 2.0
55-DD 115.1 6.0
55-65 115.1 10.0
55-65 115.1 14.0
56-32 172.5 2.0
55-B3 221.4 2.0
55-63 224.4 2.0
63-0A 273.5 2.0

Table 5.1: Nodes identifiers, horizontal distance to the gateway and height.

Figure 5.3, where the nodes are represented by the circles on the left and the gateway
with Internet access is shown on the right. The sensors transmits every minute the
retrieved environmental variables. The active sensing and transmitting time is 1750
ms, as depicted in Figure 5.4, resulting in an active time ratio of 2.9%. During the
active period the nodes sample the environmental sensors (100 ms) and then perform
3 transmit cycles. At each transmit cycle the node transmits 3 different packets, one
with each of the SUN modulations (i.e., SUN-FSK, SUN-OQPSK and SUN-OFDM).
Between two consecutive packets in a transmit cycle there is a 50 ms inter-packet
delay. Also, between the 1st and 2nd cycle there is a 100 ms delay, whereas between
the 2nd and 3rd cycle there is a 200 ms delay. That is, the interference between
different nodes can be safely assumed as negligible, also considering the small number
of transmitting devices.

Nodes are equipped with a mechanism to reduce the number of lost packets by
sensing the frequency bandwidth used to transmit before the transmission in order to
check if the noise level in the channel is low enough to transmit safely. Before each
packet transmission, therefore, the sensing nodes execute a CSMA/CA (Carrier Sense
Multiple Access/Collision Avoidance) protocol with CCA (Clear Channel Assessment)
to determine if the channel is busy. If the noise level (energy present in the channel)
is below a threshold specified for the modulation in use, the CSMA/CA succeeds and
the packet is loaded to the radio transceiver and transmitted subsequently. Otherwise,
if the energy is above the specified threshold, the transmission is delayed for a random
time between 0 and 10 ms. This check is iteratively done until the noise level in
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Figure 5.3: Hardware setup.

Figure 5.4: Transmission timeline.

the channel is considered safe to send the packet. The CCA threshold values for
SUN-FSK, SUN-OQPSK and SUN-OFDM have been determined experimentally by
the authors of [Tuset-Peiró et al., 2020c] and have been set to -94 dBm, -93 dBm and
-91 dBm, respectively.

5.1.1 Sensors Clustering

Following the approach introduced in previous works on the same dataset [Gomes et al., 2020,
Tuset-Peiró et al., 2020a], we have considered different groups of sensors based on
their distance from the gateway and on their position in the warehouse where data
has been collected. More specifically, nodes deployed within a distance of 80 m (56-53,
55-AD and 55-E4) have been included in the close group, nodes presenting a distance
between 80m and 150m from the gateway (55-99, 55-DD, 55-65 and 56-0B) have been
included in the medium group while all the remaining ones (56-32, 55-B3, 55-63 and
63-0A) have been considered as belonging to the far group.

Figure 5.5 represents the evolution of the ratio of received packages with respect
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to the total transmission attempts number (PDR) for the defined sensor groups. The
PDR variance is slightly reduced (in the plots the inter-quartile range is represented),
especially in the close group. However it is evident from the plots how the group
definition does not add enough information to easily predict the best SUN modulation
given the previous history of the system. It is also worthy to notice how the quality
of the channel is highly unstable sometimes dropping abruptly resulting in an average
PDR value around 20%.

(a) Close-distance group. (b) Medium-distance group.

(c) Far-distance group. (d) All sensors.

Figure 5.5: Median (solid line) and inter-quartile range (shaded area) of the PDR for
the SUN-FSK (blue), SUN-OQPSK (purple) and SUN-OFDM (orange) modulations,
and the median computed over all modulations’ PDR (solid black line) for different
node groups. Median and inter-quartile range have been computed over PDR data
stored in the trace file accumulated over one hour for all the devices in the data-set.
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5.1.2 Trace Files

A trace file has been created from the original dataset estimating the transmission
success probability for each modulation, by computing the frequency of successful
transmissions over a sliding n minutes window (n = 5 was used in this analysis). The
windows do not overlap: each new window starts where the previous one ends. To
avoid windows with a transmitting probability equal to zero for all the modulations,
windows have been spread until the first successful transmission has been found, the
width of each window has been recorded. If no successful transmission has been
recorded in more than 75 minutes, the corresponding window has been removed from
the trace file. This was done to remove periods of time without packet reception due
to the lack of Internet connection at the gateway, a problem known and described in
the dataset specifics.

For each n-minutes wide window, n new packet transmission simulations have been
run, where the probability of transmission corresponds to the frequency of successful
transmissions within the window. Since in the real case a transmission attempt
requires as much as 100ms and the time between two different packet transmissions
is approximately one minute, all the re-transmissions of a specific packet has been
ideally considered as instantaneous. As a consequence probability of transmission is
considered to be equal for all the re-transmission attempts and there is no limit for
the number of re-transmissions within a window.

From the sensor side, however, this is not sufficient to consider the transmission as
successful. When the gateway receives the packets, transmits an ACK with the same
modulation of the incoming packet. The probability of the ACK of being received
is considered equal to the probability of transmitting the packet i.e. the channel is
considered to be symmetric in the two directions of transmission. The sensor is able
to detect a successful transmission only when the ACK is received.

5.2 Simulation process

To evaluate the modulation selection strategies a Python simulator has been deployed
to simulate the transmission procedure and to implement the re-transmission shaping
mechanism and the modulation selection strategies presented in the previous chapter
as well as to compute the chosen evaluation parameters discussed in Section 5.2.1
and to simulate the other control strategies that are presented later in this Chapter
in Section 5.2.2.
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5.2.1 Evaluation parameters

As in [Gomes et al., 2020], the metrics that we are considering to evaluate the perfor-
mances of the various solutions are the PDR (Packet Delivery Ratio), defined as the
ratio between received and transmitted packets at the application layer, and the RNP
(Required Number of Packet Transmissions), defined as the average number of packet
repetitions before a successful transmission. We have computed those metrics after
each attempt to transmit a distinct packet for each sensor and modulation selection
strategy. Even though those metrics are related with each other, individually they
are not sufficient to exhaustively describe the transmission properties. A low value of
RNP (with respect to the maximum number of allowed re-transmissions) indicates
that the packets are often received before the maximum number of re-transmission is
reached. The RNP value, however, is upper bounded by the maximum number of
allowed re-transmissions, therefore a high value of RNP may be associated with a low
PDR if the re-transmission procedure stops because the maximum available number
is reached or may be associated to a high PDR if the transmission succeeds frequently
in correspondence to the last re-transmission. Consequently the PDR value is not
useful to predict the RNP.

5.2.2 Modulation selection strategies

To implement the modulation selection strategies presented in Section 4.2 the simulator
keeps in memory the set of the modulations as well as the estimated utility values
of each modulation in order to select each time the most suited one. The maximum
number of allowed re-transmission is given as input (it does not change as the
re-transmission shaping mechanism is not implemented at this stage) and all the
hyper-parameters needed by the various algorithms have been manually set. For
each transmission attempt, the ACK is estimated by randomly sample it from a
Bernoulli distribution presenting p equals to the transmission success probability
obtained by the trace file. The ACK value is used to update the internal state of the
modulation selector block by updating the utility score associated to each modulation.
These updated values are used to select the subsequent modulation accordingly to
the selected algorithm.

In addition, to provide a comparison term to the modulation selection strategies,
the RANDOM and the BEST strategies have been implemented. The RANDOM
strategy consists simply in randomly choosing a modulation for each transmission
attempt from a uniform distribution. The BEST consists in choosing always the
modulation associated with the highest probability of receiving the packet. Hence,
the RANDOM strategy represents a lower performance bound, whereas the BEST
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strategy represents an upper bound for the specific case.
In addition to the RANDOM and BEST strategies, we also compare the pro-

posed modulation selection strategies to the 3M strategy, which was introduced in
[Gomes et al., 2020] and represents, to the best of our knowledge, the best result
obtained so far to address the problem of dynamically select the best modulation in
this specific scenario. In particular, for each transmission 3M evaluates the probability
to use of each modulation a according to

Pt(a) =
(1 + ARR(a))w∑︁

a′∈A(1 + ARR(a′))w
, (5.1)

where parameter w is used to control the differences between the calculated
probabilities and ARR(a) is the ACK Reception Ratio defined as the ratio between
the number of ACKs received successfully and the number of transmitted packets
in a given interval with modulation a. The width of the interval used to compute
ARR(a) has been set equal to 10 consecutive re-transmissions while the value of w
has been set equal to 20. Once Pa(t) has been computed the algorithm then samples
the modulation from the obtained probability distribution.

The parameters optimization process for the proposed algorithms should take into
account the purpose of the methods, that should be able to adapt to a variety of
environments. Because of that an offline tuning of hyperparameters on the basis of
the knowledge of the channel evolution, by means of a grid search for example, is not
to be taken in consideration since it would lead to a strong overfitting, invalidating
the evaluation procedure.

The parameters used for the various algorithms are summarized in Table 5.2.

Algorithm Parameters

EG α = 0.1 τ = 0.1
BE α = 0.1 ϵ = 0.1
D-UCB γ = 0.9

Table 5.2: Parameters choice for the algorithms used.

An important aspect to validate the parameters choice is the results stability with
respect to slight modification of the parameters themselves. This aspect has been
investigated by running multiple transmission simulations with a reduced number of
packets (1000) with different parameters choices and verifying that the performance
remains almost invariant for moderate parameters variations.
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A future development of this approach could consist in the on-line tuning of
parameters, allowing the model to tune the balance between the exploration of the
environment and the exploitation of results according to the stability of the channel
performance.

5.2.3 Re-transmission Shaping

To simulate the transmission of a given data packet the simulator first determines the
value of NALLOWED based on the values of NAVERAGE, NMAXIMUM and NAVAILABLE

of the re-transmissions shaping mechanism, as described in Section 4.1. Then, for
each NALLOWED the simulator determines which IEEE 802.15.4g SUN modulation
to use using one of the two simple strategies available: RANDOM and BEST. In
the RANDOM strategy the transmitting device randomly selects one of the three
IEEE 802.15.4g SUN modulations available by sampling from a uniform distribution.
In contrast, when using the BEST strategy the transmitting end-device always selects
the modulation that has the best instantaneous PDR. Of course, the BEST strategy
is an ideal scenario, as the instantaneous PDR value cannot be predicted in advance.
However, using this strategy allows us to have an upper performance bound that
allows to compare the performance of the RANDOM strategy too.

Once the modulation is selected, the channel simulator uses the PDR values
for the given IEEE 802.15.4g SUN modulation and end-device, which have been
obtained from the data-set, to determine if a the data packet transmission and its
acknowledgment are successfully received or not. It does so by comparing a randomly
generated number using a uniform distribution with the computed PDR value for
the current data packet transmission. If the random value is below the computed
PDR value the data packet is considered as successfully received. Otherwise, the data
packet is considered as not successfully received. If the data packet is successfully
received, the process is then repeated for the acknowledgment packet using the same
PDR value and procedure. That is, the simulator assumes that links are symmetric
and data packets are received according to a Bernoulli trial with probability equal to
the computed PDR value.

The process is repeated until the data packet and the acknowledgment are suc-
cessfully received or the number of transmissions for the current data packet reaches
NALLOWED. If the data packet and the acknowledgment are successfully received, the
channel simulator returns the number of transmissions used (NUSED) for the current
packet to the re-transmission shaping module. On the contrary, if the data packet has
not been successfully received the simulator returns 0 to the re-transmission shaping
module, indicating that all transmission attempts have been used.
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Finally, upon receiving NUSED value the re-transmission shaping mechanism
updates the NAVAILABLE value according to Equation 4.2 and the process is repeated
for the remaining data packet transmissions.

5.2.4 Combined Methods

As explained in Section 4.3 the re-transmission shaping and the modulation selector
blocks operate almost independently so it is straightforward to implement them
in conjunction. The value of NALLOWED outputted by the re-transmission shaping
module is received as input by the modulation selector module, determining the
required value of NMAXIMUM for each packet. The modulation selector module instead
needs to be slightly modified by keeping in memory the number of re-transmission
used for each packet NUSED. Once the allowed number of re-transmissions is completed
or the ACK is received, the modulation selector module sends the value of NUSED

to the re-transmission shaping module that uses this value to update the internal
variable NAVAILABLE accordingly to Equation 4.2.



Chapter 6

Results

This section presents the results obtained when applying the dynamic modulation
selection strategies and re-transmission shaping to the IEEE 802.15.4g SUN dataset
presented in Section 5.1 with the objective of improving link reliability. In particular,
Section 6.1 presents the results for modulation selection, Section 6.2 presents the
results for re-transmission shaping and, finally, Section 6.3 presents the results for
combining modulation selection with re-transmission shaping.

In all cases the PDR and RNP metrics have been used to evaluate results and
the results presented are the average for 30 repetitions for each maximum number of
packet re-transmissions value. This has be done in order to reduce the variability of
the simulations thus increasing the consistency of results.

In all the plots showing the evolution of some metric through time, it is important
to notice that the x-axis represents the number of different packets sent. Since the
re-transmission procedure has been approximated as instantaneous, the lines shown
in each plot are synchronized in time, making it possible to observe the common
behaviour of the series in correspondence of a drop in the channel reliability caused
by environmental conditions.

6.1 Modulation selection

Figures 6.1 and 6.2 presents the evolution of the average PDR and the RNP respectively
for 3 re-transmissions per packet (i.e., RTX=3), whereas Table 6.1 presents the raw
values for a different number of packet re-transmissions (i.e., RTX=1, 2, 3, 6 and 9,
respectively).

Regarding the two Figures, it can be remarked the following:
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• the drops in the PDR and the corresponding boosts in RNP are caused by a
drop in the quality of all the available channels, as can noticed by the fact that
the BEST strategy follows the same general schema of the other modulation
selection strategies;

• even though the metrics values can vary during the various transmission at-
tempts, the relative order of the best performing strategies remains invariant;

• as expected, the BEST and RANDOM strategies present respectively the
highest and lowest PDR and the lowest and the highest RNP for all the groups
and for each number of packet transmissions;

• none of the strategies, including BEST, is able to reach PDR values close to
99%.

For what concerns the role of the modulation selection strategies to improve the
RANDOM re-transmission strategy, we can notice how all the proposed strategies
perform similarly and are also close to the 3M strategy as shown in Table 6.1.
The gap between the best performing strategy between the non trivial ones (EG)
and the worst one (3M) is noticeable, being close to one percentage point. In the
global scenario (All-distance group) the EG strategy allows us to increase the base
PDR (with RANDOM strategy) by two percentage points (from 94% to 96%) while
also decreasing the RNP from 1.48 to 1.32, resulting in an overall more efficient
transmission strategy.

Figure 6.3 presents the variation of the final PDR-RNP values by varying the
maximum number of allowed re-transmissions (RTX) for the different groups. The
values used to explore different performances are 1, 2, 3, 6, 9. This range of values
is wide enough to observe different relative variation of metrics within the explored
modulation selection strategies: for RTX=1 the value of RNP is trivially equal for
all the strategies while the PDR difference is maximum. Increasing the RTX value
the PDR difference is reduced while the RNP difference increases, when RTX is
equal to 9 the PDR difference is almost negligible while the RNP is widely spread
going from 1.55 for the BEST strategy to 1.97 for the RANDOM strategy with a
relative increase of 27%. As depicted in Figure 6.3, we observe that the BE and EG
provide a PDR=0.95 with a RNP=1.35 for 3 re-transmissions. In contrast, the 3M
strategy provide an average PDR=0.90 and a RNP=1.21 for the same number of
re-transmissions. This represents an increase of 5.3% in the PDR and a reduction of
RNP of 10.4%.

The role of the modulation selections is particularly evident in the case of one
transmission per packet. The EG strategy is able to bring the PDR from the baseline
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Figure 6.1: Temporal evolution of accumulated PDR for all the modulation selection
strategies averaged for different node groups with NAVG = 3 re-transmissions per
packet.

Figure 6.2: Temporal evolution of accumulated RNP for all the modulation selection
strategies averaged for different node groups with NAVG = 3 re-transmissions per
packet.
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of 78% (RANDOM strategy) to 86% with no increase in the RNP, performing almost
midway between 3M (82%) and BEST (89%).

On the other extreme, with the highest explored number of re-transmissions (NAVG

= 9) the differences between PDR values weakens (99% for the BEST against 98% for
the RANDOM strategy) but EG strategy actually needs 15% less re-transmissions
than RANDOM (1.66 against 1.95).

Overall, this shows the possibility for the proposed modulation selection strategies
to obtain higher performances in one of the two metrics at the cost of performing
worse in the other one. The optimal threshold to mediate between the necessity of
keeping the number of transmission low while loosing the lowest information possible
can be evaluated according to the specific implementation requirements.

It should be remarked how the evolution of the metrics for maximum re-transmission
values different then 3 are similar to what shown in Figures 6.1 and 6.2 with the rela-
tive order of the best performing modulation selection strategies remaining invariant
and a trend similar to the case of RTX=3 with higher PDR as RTX increases and
higher RNP as RTX decreases, as explained before.

Figure 6.3: Final PDR-RNP values for different maximum re-transmission values
(i.e., 1, 2, 3, 6 and 9) for all the discussed modulation selection strategies and for all
nodes groups.
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Group Strat NAVG = 1 NAVG = 2 NAVG = 3 NAVG = 6 NAVG = 9

PDR RNP PDR RNP PDR RNP PDR RNP PDR RNP

Close RND 75% 1.00 88% 1.37 93% 1.59 98% 1.95 99% 2.16
3M 82% 1.00 92% 1.25 95% 1.43 98% 1.70 99% 1.86
EG 83% 1.00 93% 1.26 96% 1.41 99% 1.66 99% 1.79
BST 86% 1.00 94% 1.22 97% 1.34 99% 1.54 100% 1.64

Med RND 78% 1.00 89% 1.30 93% 1.49 96% 1.84 97% 2.07
3M 85% 1.00 91% 1.21 94% 1.36 97% 1.64 98% 1.85
EG 85% 1.00 92% 1.21 95% 1.35 97% 1.62 98% 1.80
BST 87% 1.00 93% 1.19 96% 1.31 98% 1.54 99% 1.70

Far RND 79% 1.00 90% 1.28 94% 1.42 98% 1.64 98% 1.77
3M 91% 1.00 95% 1.13 97% 1.22 98% 1.36 99% 1.46
EG 90% 1.00 96% 1.14 97% 1.22 99% 1.35 99% 1.44
BST 93% 1.00 97% 1.11 98% 1.18 99% 1.30 99% 1.37

All RND 77% 1.00 89% 1.31 93% 1.49 97% 1.80 98% 1.98
3M 86% 1.00 93% 1.19 95% 1.33 98% 1.55 98% 1.71
EG 86% 1.00 94% 1.20 96% 1.32 98% 1.53 99% 1.67
BST 89% 1.00 95% 1.17 97% 1.27 99% 1.45 99% 1.56

Table 6.1: Final PDR-RNP values for different maximum re-transmission values (1,
2, 3, 6, 9) and without re-transmission shaping for RANDOM, 3M, EG and BEST
modulation selection strategies for all nodes groups.

6.2 Re-transmission shaping

In this subsection it will be analyzed the benefits of adding re-transmission shaping,
which allows to accumulate the unused packet re-transmissions and use them at a
later moment to compensate for the lower PDR values that may occur unexpectedly
due to propagation and interference conditions.

Figures 6.7 and 6.7 respectively present the evolution of the PDR and RNP
metrics for the RANDOM and BEST strategies with and without re-transmission
shaping for NAVERAGE = 3. The results are the average of all the devices present in
the deployment.

As it can be observed, re-transmission shaping allows to increase the PDR for
both the RANDOM and the BEST strategies. In particular, re-transmission shaping
increases the PDR by 4.92% (from 0.935 to 0.981) for the RANDOM strategy and by
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2.17% (from 0.969 to 0.990) for the BEST strategy. Regarding RNP, re-transmission
shaping increases the average RNP for both the RANDOM and the BEST strategies.
Specifically, re-transmission shaping increases the RNP by 40% (from 1.50 to 2.10)
for the RANDOM strategy and by 27% (from 1.26 to 1.6) for the BEST strategy.

In turn, Figure 6.6 and Table 6.2 show the relation between the PDR and
the RNP metrics for different values of average re-transmissions per packet (i.e.,
NAVG = {2, 3, 6, 9}) and maximum re-transmissions per packet (i.e., NMAXIMUM = 9).
For NAVERAGE = 1 we can observe that PDR is 77.4% and 88.9% for the BEST and
RANDOM strategies regardless of whether re-transmission shaping is enabled or
not. Also, for NAVERAGE = 1 we have that RNP = 1 for all cases. Both results are
expected, as we only allow one packet re-transmission per packet and, hence, the
re-transmission shaping does not make any effect.

It is interesting to notice that for the RANDOM strategy with NAVERAGE = 2
using re-transmission shaping the PDR improves by 6.9% (from 89.3% to 96.2%)
while the RNP increases 35.9% (from 1.31 to 1.78). In contrast, adding another
transmission attempt to the RANDOM strategy without re-transmission shaping
would increase PDR by 4.6% (from 89.3% to 93.4%) while the RNP would increase
by 13.7% (from 1.31 to 1.49). Of course, increasing the PDR is more difficult as
its value approaches 100%, but the mean RNP value is still below the target (i.e.,
NAVERAGE = 2). Adding more re-transmissions per packet allows to further increase
the PDR at the expense of increasing the RNP and, hence, the energy consumption.
With NAVERAGE = 6 and re-transmission shaping the PDR reaches 98.8%, whereas
with NAVERAGE = 9 the PDR reaches 99.2%. Of course, the RNP raises to 2.20 and
2.35 respectively, indicating that more packets are required on average.

NAVG = 1 NAVG = 2 NAVG = 3 NAVG = 6 NAVG = 9

RS Strat PDR RNP PDR RNP PDR RNP PDR RNP PDR RNP

No RND 77.4% 1.00 89.3% 1.31 93.4% 1.49 97.1% 1.80 98.2% 1.98
BST 88.9% 1.00 94.8% 1.17 96.9% 1.27 98.6% 1.45 99.2% 1.56

Yes RND 77.4% 1.00 96.2% 1.78 98.2% 2.03 98.8% 2.20 99.2% 2.35
BST 88.9% 1.00 98.5% 1.51 99.1% 1.59 99.5% 1.72 99.6% 1.79

Table 6.2: Final PDR-RNP values for the RANDOM and BEST modulation selec-
tion strategies with and without the re-transmission shaping (RS) mechanism for
NAVERAGE = {2, 3, 6, 9} and NMAXIMUM = 9.
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Figure 6.4: Temporal evolution of accumulated PDR (a) and RNP (b) values for
the RANDOM and BEST strategies with and without re-transmission shaping using
NAVERAGE = 3 re-transmissions per data packet.

Figure 6.5: Temporal evolution of accumulated PDR (a) and RNP (b) values for
the RANDOM and BEST strategies with and without re-transmission shaping using
NAVERAGE = 3 re-transmissions per data packet.
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Figure 6.6: Final PDR-RNP values for the RANDOM and BEST re-transmission
strategies with and without the re-transmission shaping mechanism. The results are
presented for NAVERAGE = {2, 3, 6, 9} and NMAXIMUM = 9.

6.3 Combined Results

In this subsection are explored the benefits brought by combining the modulation
selection strategies, whose individual effect has been presented in Section 6.1, and
with the energy shaping, whose individual effect has been presented in Section 6.2.

A more efficient allocation of the available energy can drastically improve the
PDR values while keeping the RNP under a specified threshold; combining this with
an optimized selection of the modulation used to send each packet leads to a nearly
optimal transmission schedule, given the constraints of the available power and the
channel impairments.

In Figure 6.7 and 6.8 the accumulated PDR and RNP are plotted against the
number of packets transmission attempts, as discussed for Figure 6.1 and 6.2. For seek
of easy of read, only the all-distances group results have been graphically shown in
this chapter. The plots related to all the other groups have been inserted in Appendix
for easy of read. For the all-distances group the RANDOM strategy with energy
shaping presents higher PDR than the BEST strategy in the base case. For all the
groups the improvement in PDR due to the application of the modulation selection
strategies over what can be achieved with the 3M strategy is within one percentage
point. The gap between the RANDOM and BEST strategies however is strongly
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reduced respect to the case in which only the modulation selection has been applied,
being always below four percentage points.

With a specific focus to the RANDOM -BEST gap, indeed, it is worthy to remark
how the modulation selection strategies is able to reduce the PDR gap up to 61%
(with EG algorithm) against 27% obtained with 3M algorithm with energy shaping
with 3 re-transmissions per packet averaged over all distance nodes. This effect is
shown in the side box of Figure 6.7. The reduction in RNP is slighter but still
noticeable since the EG algorithm reduces the RNP gap of 76% against the 65%
obtained by 3M as shown in the side box of Figure 6.8.

In Figure 6.7 we have to comment that all reinforced learning strategies perform
similar in terms of PDR and RNP, with the EG strategy performing slightly better
for the medium-distance group. This can be expected, as in the medium-distance
group the delivery probabilities for the different modulations are similar and, hence,
it is more difficult to learn which to use.

As in previous cases, it can be noticed that in Figure 6.8 there is a sharp rise
in the mean RNP around packet 25000 and it is flat afterwards. This sharp rise is
because the PDR is bad and we have to spend the energy surplus accumulated from
past transmissions to compensate. The flat area is because the PDR is still bad but
we do not have more packets than the average. After the PDR becomes better we
begin to save energy again, which can be used later to compensate.
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Figure 6.7: Temporal evolution of accumulated PDR for all the modulation selection
strategies with energy shaping for all distance nodes with 3 re-transmissions per
packet. Baseline tracks for RANDOM and BEST strategies without energy shaping
for the same re-transmission value are included for comparison. The side box shows
in greater scale the final PDR values for all the tracks except for the baselines.

Figure 6.8: Temporal evolution of accumulated RNP for all the modulation selection
strategies with energy shaping for all distance nodes with 3 re-transmissions per
packet. Baseline tracks for RANDOM and BEST strategies without energy shaping
for the same re-transmission value are included for comparison. The side box shows
in greater scale the final RNP values for all the tracks except for the baselines.



6.3. COMBINED RESULTS 63

Group Strat NAVG = 2 NAVG = 3 NAVG = 6 NAVG = 9

PDR RNP PDR RNP PDR RNP PDR RNP

Close RND 96% 1.92 99% 2.30 100% 2.40 100% 2.49
3M 99% 1.84 99% 1.97 100% 2.05 100% 2.12
EG 99% 1.81 100% 1.89 100% 1.96 100% 2.01
BST 100% 1.69 100% 1.71 100% 1.76 100% 1.80

Med RND 95% 1.76 97% 2.00 98% 2.31 99% 2.58
3M 96% 1.59 97% 1.80 98% 2.08 99% 2.31
EG 96% 1.57 98% 1.76 99% 2.04 99% 2.20
BST 97% 1.51 98% 1.66 99% 1.92 100% 2.04

Far RND 98% 1.71 99% 1.86 99% 1.95 99% 2.02
3M 99% 1.46 99% 1.53 99% 1.60 99% 1.67
EG 99% 1.44 99% 1.51 99% 1.57 99% 1.63
BST 99% 1.38 99% 1.43 99% 1.48 100% 1.53

All RND 96% 1.78 98% 2.03 99% 2.20 99% 2.35
3M 97% 1.61 98% 1.75 99% 1.90 99% 2.02
EG 98% 1.59 99% 1.70 99% 1.85 99% 1.94
BST 99% 1.51 99% 1.59 100% 1.72 100% 1.79

Table 6.3: Final PDR-RNP values for the RANDOM, 3M, EG and BEST modulation
selection strategies with Energy Shaping. The results are presented for NAVG =
{2, 3, 6, 9} and NMAX_SURPLUS = 12 for all nodes groups (i.e., close, medium, far and
all).



64 CHAPTER 6. RESULTS

Figure 6.9: Final PDR-RNP values for different values of average re-transmission
numbers (i.e., 2, 3, 6 and 9 re-transmissions per packet and NMAX_SURPLUS=9) for
all the modulation selection strategies with energy shaping for all distance nodes.
Baseline tracks for RANDOM and BEST strategies without energy shaping for the
same set of re-transmission values are included for comparison.



Chapter 7

Conclusions and Future Work

7.1 Conclusions

This thesis work has introduced the application of dynamic modulation selection in
the context of IEEE 802.15g SUN alongside a novel mechanism of redistribution of
available transmission power. These two mechanisms aim to improve the communi-
cation reliability of IEEE 802.15g SUN (Smart Utility Networks), a communication
standard of extreme interest in the IoT (Internet of Things) area.

Regarding energy shaping, we have designed a simple algorithm that takes two
input values describing the average number of available re-transmissions per packet
(NAVERAGE) and the maximum number of extra re-transmissions allowed for any
single packet (NMAX_SURPLUS). Based on these two values, the algorithm chooses
each time the maximum number of re-transmission allowed for the current packet
(NALLOWED). With respect to the standard re-transmission approach, consisting in
re-transmitting the packet up to a fixed maximum allowed re-transmission value,
our method shows higher percentage of delivered packets while enforcing the energy
constraints. Another advantage consists in the fact that NAVERAGE is not required to
be an integer, allowing for a finer tuning of the energy requirements.

Regarding the dynamic modulation selection strategies, various MAB (Multi-
Armed Bandit) algorithms have been applied to determining the best combination
of IEEE 802.15.4g SUN modulations (i.e., FSK, OQPSK and OFDM) to transmit a
given number of packet repetitions (i.e., 1, 2, 3, 6 and 9, respectively).

To evaluate their performance, both strategies have been applied to a dataset
obtained from a real-world scenario and we have used the PDR (Packet Delivery
Ratio) and the RNP (Required Number of Packets) as the metrics to determine the
suitability of each approach.

65
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The results show that both modulation selection and energy shaping are useful
tools to improve link quality of IEEE 802.15.4g SUN networks. Each strategy alone
allows to improve over the baseline and, as expected, combining them allows to
achieve the best results. The re-transmission shaping improves the distribution
of the available energy, determining an efficient choice of the maximum number
of re-transmissions per packet. The modulation selection, complementary, works
considering the number of available transmissions per packet as assigned. It aims
to determine for each transmission attempts the channel with the highest success
probability. This allows to significantly reduce the performance gap between the
already existing modulation selection algorithms [Tuset-Peiró et al., 2020b] and the
theoretically best possible strategy. The joint use of the two methods is capable of
meeting the industrial requirements specific for this application (i.e., 99% of PDR)
with a RNP value of 1.7.

Hence, we conclude that applying adaptive modulation selection and energy
shaping is a good to improve reliability of IEEE 802.15.4g SUN deployments.

7.2 Future Work
Given the interest of the results and its potential applicability to a real-world environ-
ment, as future work we will implement the different modulation selection algorithms
in a real-world scenario to validate that the findings are applicable considering the im-
pact on node energy consumption. The obtained savings in terms of re-transmissions
are worthless if the computational cost of the algorithms used to achieve this goal
requires an energy expenditure higher than the energy saved by reducing the number
of transmissions.

Another relevant aspect to investigate is the optimal value of NMAXIMUM as
a function of other parameters stored in the re-transmission module to optimize
performances of re-transmission shaping. For example, it is possible to hypothesize
that reducing the value of NMAXIMUM in correspondence of a low value of NAVAILABLE

(i.e., when the average energy consumption is close to its maximum allowed value)
could help improving performances.
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Appendix A

Additional Tables

(a) Close-distance group. (b) Medium-distance group.

(c) Far-distance group. (d) All sensors.

Figure A.1: Evolution of PDR values for a value of 3 re-transmissions per packet
for RANDOM and BEST modulation selection strategies with and without energy
shaping for different nodes groups.
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(a) Close-distance group. (b) Medium-distance group.

(c) Far-distance group. (d) All sensors.

Figure A.2: Evolution of RNP values for a value of 3 re-transmissions per packet
for RANDOM and BEST modulation selection strategies with and without energy
shaping for different nodes groups.
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(a) Close-distance group. (b) Medium-distance group.

(c) Far-distance group. (d) All sensors.

Figure A.3: Final PDR-RNP values for different values of re-transmission numbers (i.e.
1, 2, 3, 6 and 9 re-transmissions per packet) for RANDOM and BEST modulation
selection strategies modulation selection strategies with and without energy shaping
for different nodes groups.
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(a) Close-distance group. (b) Medium-distance group.

(c) Far-distance group. (d) All sensors.

Figure A.4: Evolution of PDR values for a value of 3 re-transmissions per packet
for all the modulation selection strategies without energy shaping for different nodes
groups.
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(a) Close-distance group. (b) Medium-distance group.

(c) Far-distance group. (d) All sensors.

Figure A.5: Evolution of PDR values for a value of 3 re-transmissions per packet
for all the modulation selection strategies without energy shaping for different nodes
groups.
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(a) Close-distance group. (b) Medium-distance group.

(c) Far-distance group. (d) All sensors.

Figure A.6: Final PDR-RNP values for different values of re-transmission numbers
(i.e. 1, 2, 3, 6 and 9 re-transmissions per packet) for all the modulation selection
strategies without energy shaping for different nodes groups.
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(a) Close-distance group. (b) Medium-distance group.

(c) Far-distance group. (d) All sensors.

Figure A.7: Evolution of PDR values for a value of 3 re-transmissions per packet for
all the modulation selection strategies with energy shaping for different nodes groups.
Baseline tracks for RANDOM and BEST strategies without energy shaping for the
same re-transmission value are included for comparison.
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(a) Close-distance group. (b) Medium-distance group.

(c) Far-distance group. (d) All sensors.

Figure A.8: Evolution of RNP values for a value of 3 re-transmissions per packet for
all the modulation selection strategies with energy shaping for different nodes groups.
Baseline tracks for RANDOM and BEST strategies without energy shaping for the
same re-transmission value are included for comparison.
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(a) Close-distance group. (b) Medium-distance group.

(c) Far-distance group. (d) All sensors.

Figure A.9: Final PDR-RNP values for different values of average re-transmission
numbers (i.e., 2, 3, 6 and 9 re-transmissions per packet and NMAX_SURPLUS=9) for
all the modulation selection strategies with energy shaping for different nodes groups.
Baseline tracks for RANDOM and BEST strategies without energy shaping for the
same set of re-transmission values are included for comparison.
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