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Abstract

Diffusion Kurtosis Imaging (DKI) is a Neuroimaging analysis technique that
models the water molecules diffusion pattern and shapes the complex brain
microstructural environment through the extraction of specific diffusion met-
rics. This kind of methodology has proved to be an alternative and effective
inspection tool especially in pathologic applications, such as de novo gliomas.
Glioma, defined as a brain tumour originating in the supportive glial cells, has
an infiltrative behaviour in the white matter brain tissue, potentially leading to
the disruption or displacement of the axonal fibers. In this context, DKI was
exploited to assess the glioma grade, to differentiate glioma recurrence from
pseudo-progression and to investigate the proliferative activity of cancer cells.
In addition, DKI revealed to be a powerful tool to also evaluate the alteration
of the microstructure environment at the centre and periphery of the glioma
lesion. The work of this thesis includes both the application and evaluation of
a neural-networks optimization-based non-linear estimation algorithm used to
fit the DKI model, followed by the diffusion metrics extraction, and the em-
ployment of graph techniques to associate the diffusion metrics with the brain
diffusion microstructural connectivity evaluation. The final result of this project
is to provide a quantitative analysis of brain microstructure parameters in pa-
tients affected by glioma, including the extraction of graph measures thought
to be associated with functional activation patterns. The main aim of this
project is to identify a preferred functional activation pattern based on diffu-
sion microstructure parameters region-specific correlation through graph theory
assessment methodology.
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Chapter 1

Introduction

1.1 Gliomas and Diffusion Weighted Imaging.

1.1.1 Gliomas general introduction

Gliomas are the most frequent primary tumors of the central nervous system
(CNS) and form a heterogeneous group of neoplasms with multiple histologic
types and malignancy grades. Gliomas are considered to originate from glial
cells or stem cells that develop glial characteristics upon neoplastic transforma-
tion. The term glioma includes astrocytic tumors, oligodendrogliomas, ependy-
momas, and mixed gliomas. The vast majority of glial neoplasms in adult pa-
tients are diffuse gliomas. Such gliomas are characterized by diffusely infiltrative
growth within the CNS parenchyma, with tumor cells invading individually or
as groups of cells forming a network throughout the neuropil. Diffuse glioma
growth is often further accompanied by aggregation of neoplastic cells around
neurons and blood vessels. Moreover, diffuse gliomas tend to invade over large
distances along myelinated fiber tracts, quite frequently crossing the corpus cal-
losum into the opposite hemisphere, generating the so-called ‘butterfly glioma’
pattern [1].

Histopathologically, the tumor cells have the tendency of pervading individ-
ually or in small groups in between the dense network of neuronal and glial cell
processes. In large areas of diffuse gliomas, the tumor cells exploit pre-existent
“supply lines” for oxygen and nutrients rather than constructing their own [2].
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Figure 1.1: Types of brain cells [2].

Until recently, the histologic diagnosis was the main reference for the clas-
sification, conveying important prognostic information and forming the basis
for further patient management. However, classification of gliomas can be chal-
lenging because of inadequate tissue sampling, imprecise diagnostic criteria, and
because the biology of gliomas is not fully represented by its histology alone [3].

Magnetic Resonance Imaging (MRI) is now the gold standard for defining
brain tumor anatomy in a clinical setting. Challenges for imaging include not
only the diagnos¬tic accuracy for unknown lesions but also the sensitivity and,
even more importantly, the specificity of follow up images in the context of
therapy-induced changes, termed pseudoresponse and pseudoprogression. Con-
ventional MRI sequences commonly used for evaluation of intracranial malig-
nancy include T1-weighted (T1W), T2-weighted (T2W), fluid attenuated inver-
sion recovery (FLAIR), T2*W gradient echo and post-contrast T1W images.
These sequences provide sharp anatomic details, and the use of a gadolinium-
based contrast agent in this protocol allows for the detection of areas where the
blood-brain barrier is compromised [4].

Clinically, gadolinium-enhanced MRI is considered the primary imaging modal-
ity for initial work up and follow up of patients with gliomas, although it has
some limitations, especially in differentiating high from low grade tumours and
in distinguishing disease recurrence from post-therapy changes. Hybrid positron
emission tomography (PET)/MRI is a relatively novel tool that combines MRI
sequences with metabolic information from PET in a single scan [5].
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Figure 1.2: Neuroimaging and histological features of gliomas [2].

Thanks to these different techniques, gliomas can be classified from a his-
tological perspective, by disease severity grade and by spreading location. His-
tologically, gliomas are named according to the specific cell with which they
share most of their cytological features, but not necessarily from which they
originate [2]. The main types of gliomas are:

• Ependymomas: ependymal cells.

• Astrocytomas: astrocytes.

• Oligodendrogliomas: oligodendrocytes.

• Brainstem gliomas: develop in the brain stem.

• Optical nerve gliomas: originate in or around the optical nerve.

• Mixed gliomas: includes cell of different types of glia.

Gliomas are further categorized according to their grade, which is determined
by pathologic evaluation of the tumour. The neuropathological evaluation and
diagnostics of brain tumour specimens is performed according to the World
Health Organization (WHO) Classification of Tumours of the Central Nervous
System. The WHO glioma grading has the following composition:

• Grade I: gliomas are slow growing, usually well-demarcated and are as-
sociated with favourable prognoses.

• Grade II: gliomas are also slow growing but often show brain-invasive
growth that precludes complete resection.

• Grade III: gliomas are rapidly growing high-grade tumours characterized
by histological features of anaplasia, in particular high cellularity, cellular
pleomorphism, increased nuclear atypia and brisk mitotic activity.
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• Grade IV: is reserved for glioblastomas, variants include giant cell glioblas-
toma and gliosarcoma. Glioblastomas are the most malignant gliomas that
are microscopically distinguished from WHO grade III anaplastic astro-
cytomas by the presence of pathological microvascular proliferation and
areas of necrosis. [2]

Figure 1.3: Classification of glioma in types and WHO grades [6].

More recently, as the use of molecular biomarkers in brain and spinal cord
tumor diagnosis has been further elucidated, challenges have arisen in how to
organize the classification of tumor types. Some are readily and consistently
characterized by defining molecular features; for some, molecular parameters are
not required but may support their classification; yet others are rarely or never
diagnosed using molecular approaches. The resulting organization is therefore
also mixed. For this reasons the WHO has introduced a more detailed and spe-
cific classification of tumors of the central nervous system [7]. This fifth edition
of tumor classification, called WHO CNS5, has grouped tumors according to
the genetic changes that enable a complete diagnosis, such as isocitrate dehy-
drogenase (IDH) muation, by looser oncogenic associations, by histological and
histogenetic similarities, even though molecular signatures vary, and by using
molecular features to define new types and subtypes. This hybrid taxonomy
represents the current state of the field but is likely only an intermediate stage
to an even more precise future classification [7]. In particular, the main types
of gliomas, glioneuronal tumors and neuronal tumors are divided as follows:

• Adult-type diffuse gliomas: Astrocytoma, Oligodendroglioma and Glioblas-
toma.

• Pediatric-type diffuse low-grade gliomas: Diffuse astrocytoma, Angiocen-
tric glioma and Diffuse low-grade glioma.

• Pediatric-type diffuse high-grade gliomas: Diffuse midline glioma, Diffuse
hemispheric glioma, Diffuse pediatric-type high-grade glioma and Infant-
type hemispheric glioma.
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• Circumscribed astrocytic gliomas: Pilocytic astrocytoma, High-grade as-
trocytoma with piloid features, Subependymal giant cell astrocytoma,
Chordoid glioma and Astroblastoma.

• Glioneuronal and neuronal tumors: Ganglioglioma, Papillary glioneuronal
tumor, Myxoid glioneuronal tumor, Gangliocytoma, Central neurocytoma
and Extraventricular neurocytoma.

• Ependymal tumors: Supratentorial ependymoma, Spinal ependymoma,
Posterior fossa ependymoma, Myxopapillary ependymoma and Subependy-
moma.

• Embryonal tumors: molecular-defined Medulloblastomas and histological-
defined Medulloblastomas.

Finally, gliomas can be classified according to whether they are above or be-
low a membrane in the brain called the tentorium, which separates the cerebrum
(above) from the cerebellum (below).

It is fundamental to highlight that, of all above mentioned classification
methods, the one of the WHO is the most exploited in order to provide diag-
nosis, prognosis and to assess possible treatment approaches [8]. Despite its
widespread use, the WHO histopathological classification is limited by substan-
tial interobserver variability and poor correlation with clinical outcome [9].

The recognition of diffuse infiltrative versus other types of glial tumors has
significant prognostic and therapeutic implications. While the diffuse infiltrative
growth pattern is characteristic for both low- and high-grade diffuse gliomas,
the exact growing scheme of gliomas cannot always be assessed in biopsy speci-
mens, but specific histopathological features strongly favor a diffuse infiltrative
nature of the glial neoplasm. Glioma cells can disseminate via white matter
tracts, cerebrospinal fluid pathways, or meninges and thus give rise to multi-
focal gliomas. In addition, compared to low-grade diffuse gliomas, high-grade
tumors are often radiologically more heterogeneous and are accompanied by
more severe edema. The occurrence of contrast-enhancement in diffuse gliomas
generally signifies a more malignant biological behavior. Furthermore, it is im-
portant to realize that the diffuse infiltrative growth pattern is not just the
result of malignant progression as both low- and high-grade diffuse gliomas dis-
play this phenomenon. Therefore, in a clinical setting combination of clinical,
radiological, and pathological information is warranted to avoid diagnostic in-
accuracy, particularly in cases where only small biopsy specimens are available
for histopathological diagnosis [10].
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Figure 1.4: Multidisciplinary approach to treatment of glioma [11].

1.1.2 Diffusion Weighted Imaging (DWI) for glioma ap-
plications

New MR modalities may contribute to better radiological classification and de-
lineation of glial brain tumors as well as assist in identification of the best spot
for a biopsy. With the development of diffusion-weighted MR pulse sequences in
which strong diffusion gradients are used, images can be obtained that are de-
pendent on the diffusion of water molecules. These images reflect the molecular
translational motion, Brownian motion, of water within the section of inter-
est. DWI, along with a related approach called diffusion tensor imaging (DTI),
can thus be used to image indirectly infiltration of glioma cells in normal brain
tissue.

From a few decades, DWI has started to be employed in clinical applications
in order to provide additional neuroimaging information for the pathological
evaluation of the lesion. In fact, Tien et al. conducted one of the first innova-
tive works with the purpose of evaluating the usefulness of diffusion weighted
echoplanar MR imaging in the examination of high-grade brain gliomas com-
pared with that of conventional spin-echo (SE) or fast spin-echo (FSE) MR
imaging. After the examination of the diffusion weighted images, in particular
of the apparent diffusion coefficient (ADC) map, they concluded that DWI is
a useful technique for investigating high-grade cerebral gliomas, enabling the
differentiation of various components of the tumor and the distinguishment of
areas of predominantly non-enhancing tumor from areas of predominantly per-
itumoral edema [12].

A few years later, Sugahara et al. published a study to assess the utility
of diffusion MRI, with echo-planar imaging (EPI) technique, in depicting the
tumor cellularity and grading of gliomas. Their main findings regard the higher
sensitivity of the ADC map compared to the anatomical sequences. In fact,
tumor cellularity correlated well with the minimum ADC value of the gliomas,
but not with the signal intensity on the T2-weighted images. In addition, the
minimum ADC of the high-grade gliomas was significantly higher than that of
the low-grade gliomas. These results led to the conclusion that this combination
of imaging approaches reveals crucial information that cannot be obtained with

7



standard MRI acquisition sequences [13].
More recently, the research activity has been focused on analyzing the role of

Diffusion-weighted MRI as a biomarker for treatment response in glioma. Since
ADC is inversely correlated with tumor cell density, this measure can be used
for detecting probable invading tumor cells that are not always visible with the
anatomical images. In addition, functional diffusion maps (fDMs) approach,
which shows ADC changes over time, exhibited a promising marker of response
to chemotherapy within enhancing lesions. The final results of this findings
expressed the fDMs potential to predict response to newer therapeutic regimens
earlier than standard radiologic assessment criteria [14].

A peculiar diffusion weighted model, called Perfusion imaging, is able to
capture the tumor abnormal microvascular environment, allowing a better un-
derstanding of the tumour biology and vasculature. In this context, MR perfu-
sion imaging provides information potentially relevant to tumour grade, treat-
ment response and tumour aggressiveness. Perfusion imaging is in widespread
use clinically, and it has been shown to prospectively impact the confidence of
both imagers in assessing tumour status and clinicians in determining treatment
plans [15].

With the advancing technology and methodology, DWI now relies on more
complex reconstruction models in order to extract diverse type of information
from the acquired images. Exploiting these computational means, Bai et al.
focused on studying how combined model-fitting strategies can be helpful for
the assessment of glioma grade. In particular, given that the DWI is an ex-
ponential decaying signal, they compared the potential of various diffusion pa-
rameters obtained from monoexponential, biexponential, and stretched expo-
nential diffusion-weighted imaging models and diffusion kurtosis imaging. This
integrated procedure led to the conclusion that different diffusion metrics may
provide additional information and improve the grading of gliomas compared
with conventional diffusion parameters [16].

More recently, histogram ADC maps profiling has been proved to be a valu-
able biomarker both in low-grade (LGGs) and high-grade gliomas (HGGs).
Starting from low grade gliomas, Gihr et al. provided an in vivo characterization
of tumor architecture and corresponding neuropathology. Specifically, they in-
vestigated whether histogram profiling of ADC distinguishes grade I from grade
II glioma, reflects the proliferation index Ki-67 and associates with molecular
characteristics, such as isocitrate dehydrogenase (IDH) mutation. Their find-
ings revealed that ADC histogram-profiling is a valuable radiomic approach,
which helps differentiating tumor grade, estimating growth kinetics and proba-
bly prognostic relevant genetic alterations in LGGs [17].

Soon after, the same research team led by Gihr, applied the same analy-
sis approach to high grade glioma. In addition, they included the correlation
with the prognostic relevant MGMT (methylguanine- DNA methyltransferase)
promotor methylation status. The outcomes of this retrospective study showed
that ADC histogram parameters differ significantly between glioblastoma and
anaplastic astrocytoma and exhibit distinct associations with the proliferative
activity in both HGG, suggesting that ADC histogram profiling as promising
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biomarker for differentiation of both types of high-grade gliomas [18].
Future works are moving to the improvement of noninvasive classification of

glioma genetic subtype with deep learning and diffusion weighted imaging. In
this scenario, convolutional neural networks are trained in order to provide the
genetic subtype classification receiving as input the acquired diffusion weighted
images. The results not only confirm the significant support of the artificial
intelligence, exploiting in particular transfer learning strategies, in clinical ap-
plications, achieving classification accuracies above 85% [19].

1.2 Diffusion Tensor Imaging and Diffusion Kur-
tosis Imaging

1.2.1 Diffusion Tensor Imaging (DTI) model

The human brain anatomical composition is made by three main different types
of tissues, corresponding to the different kind of cells and structures inside it.
Starting from the neurons, they are particular cells belonging to the brain tissue
that are composed by a body, which contains the nucleus and the cytoplasm, and
some extensions of this body that are distinguished in dendrites and axons. The
two main differences between these two kinds of structures are that dendrites
are much shorter than axons and are employed by the neuron for information
integration, while axons, being significantly longer, are principally devoted to
information communication and are covered with a myelin sheath. Therefore,
axons are the principal communication ways for establishing connections among
neurons, which are mainly designated to carry out information processing. It
is important to highlight the fact that the term information refers to, anatomi-
cally and physiologically speaking, electrical and chemical stimuli. In addition,
glial cells, useful for support, nutrition and protection of the neurons, are to be
considered in the whole composition of the brain tissue, along with the cere-
brospinal fluid and the blood vessels. Usually, neurons are referred to as Grey
Matter(GM), while axons and dendrites as White Matter(WM) [20].

In this complex assemble of different anatomic structures, Diffusion Tensor
Imaging (DTI) techniques is able to capture the principal directions of diffusion
of water molecules that can be facilitated or hindered by all the microstructures
belonging to the brain tissue. Before going into the details of the diffusion
topic, it may be useful to introduce the basic concepts of Magnetic Resonance
Imaging (MRI) working principle and the corresponding signal acquired. This
particular technique relies on the “spin” property of the atomic nucleus of certain
elements, such as hydrogen H or phosphorus P, that can be interpreted as the
nucleus spinning around its own axis, generating a local magnetic field. More
specifically, to each atomic nucleus is associated a spin characterized by its own
spin momentum M, by a spin number N and 2N + 1 energy levels. If the number
of protons and neutrons in the atom is not the same, it results that N0 and it
is therefore possible to define a magnetic momentum defined as =N in which
stands for the gyromagnetic ratio. In absence of external magnetic fields, the
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magnetic moments of the various spin have random directions whose resultant
is zero. However, the application of an external magnetic field B0 with high
intensity, always present and constant along a direction (usually the z direction
in the scanners), causes the orientation of the magnetic moments of the spin
along the direction of B0. The application of other non-constant external fields,
called gradients, in the various directions of space causes the local alteration of
the field B0 and allows to derive important parameters, such as the relaxation
times T1 and T2, which are related to the spin and characteristic of the tissue
to which they belong [21].

Once described the basic working principle of the MRI signal, it is now
important to explain the concept of diffusion in order to later introduce the Dif-
fusion MRI (dMRI) acquisition technique. Physically, diffusion is defined as the
thermal translation movement of water molecules. Within this phenomenon,
two different types of movement can be distinguished: one refers to an isotropic
diffusion of molecules, meaning that there is not a preferential direction of diffu-
sion, and the other regards an anisotropic dynamic of the movement of particles,
in which instead a privileged diffusion trajectory can be detected. Considering
the first diffusion condition mentioned, in order to mathematically describe the
process, is fundamental to introduce the diffusion coefficient D, that is calcu-
lated according to the formulation derived from the Stokes-Einstein relation:

D=kT/6πηr

in which k is the Boltzmann constant, T is the temperature measured in
Kelvin, η stands for the viscosity of the fluid considered and r indicates the
radius of the molecules.

With this kind of definition, the expansion of the diffusion kinetics is assumed
to be equal in every direction. Regarding the anisotropic diffusion instead, the
calculation of the only D value is no longer sufficient to quantify the diffusion
extent in different directions, so the specification of the Diffusion Tensor (DT)
is needed in order to consider a more suitable and reliable formulation for this
kind of dynamic. The DT describes the diffusion of water molecules using a
Gaussian Model and is defined as a 3x3 matrix that reads:

DT=

Dxx Dxy Dxz

Dyz Dyy Dyz

Dzx Dzy Dzz


and represents the mathematical model used to perform subsequent analysis

in Diffusion Tensor Imaging analysis [22].
DTI consists in an established and reliable MRI technique for imaging the

diffusion of water molecules in human tissues, particularly useful for visualizing
white matter structures in the brain. This MRI acquiring strategy is based
on the Steijskal-Tanner acquisition sequence, which is specifically designed in
order to relate the dMRI output signal with the diffusion of water molecules in
different directions. This kind of implementation allows to describe the extent of
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water diffusion with a rotationally invariant description, consequently enabling
the characterization of complex white matter tracts. The renowned specific
Steijskal-Tanner sequence is composed by two oscillating radio frequency (RF)
pulses, respectively at 90° and 180° (degrees), both with equal intensity but
opposite direction and separated in time by the interval TE

2 , which is exactly
corresponding to the half echo time of the acquisition sequence. In addition to
this RF pulses, gradient pulses of intensity G and lasting period δ are inserted
symmetrically beside the 180° RF pulse, in terms of timing interval, separated
by a time gap . These additional gradients play a crucial role in order to build
echo-planar sequences that allow a reduction of the artifacts present during the
scanning session, such as cardiac and CSF pulsations, and movement. Given
that the effect of the gradient pulses is strictly related to the position, if the
spins are subjected to motion, they will experience a phase shift, resulting in
a significant reduction of the total magnetization. Diffusion imaging works by
introducing extra gradient pulses whose effect discards the stationary water
molecules and causes a random phase shift for molecules that diffuse.

Figure 1.5: Stejskal-Tanner acquisition sequence [23]

In addition, the b-value allows to calculate both the Apparent Diffusion
Coefficient(ADC), in case of isotropic diffusion, and the Diffusion Tensor for
anisotropic diffusion. Starting from the first dispersion condition, the ADC
computation is expressed as:

ln
(

S
S0

)
= −ADC · b

Concerning the diffusion tensor instead, it describes the diffusion of wa-
ter molecules using a Gaussian Model that models the displacements of the
molecules. The DT consists in a symmetric and positive-definite matrix, with 3
orthogonal eigenvectors and three positive eigenvalues. The major eigenvector
of the diffusion tensor points in the principal diffusion direction that corresponds
to the direction of the fastest diffusion. In anisotropic fibrous tissues the major
eigenvector also defines the fibre tract axis of the tissue, and thus the three
orthogonal eigenvectors can be thought of as a local fibre coordinate system.
The three positive eigenvalues, λ1, λ2, λ3, of the tensor give the diffusivity in
the direction of each eigenvector. . Together, the eigenvectors and eigenvalues
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define an ellipsoid that represents an iso-surface of diffusion probability. In or-
der to have a more reliable and useful interpretation of the diffusion tensor, the
eigenvalues are used to provide a suitable computation of some diffusion metrics
that allow to understand the water propagation distribution [24].

Figure 1.6: Ellipsoid mathematical model [24].

To obtain an overall evaluation of the diffusion in a voxel or region, it is
crucial to consider an invariant factor that is independent of the orientation.
In this case the invariant component of the diffusion tensor corresponds to its
trace, defined as:

Tr (DT ) = Dxx +Dyy +Dzz

and it is useful for the calculation of the Mean Diffusivity (MD) parameter,
expressed as:

MD = Tr(DT )
3

Another useful parameter is the Apparent Diffusion Coefficient (ADC) that
represents the magnitude of diffusion of water molecules within tissue, calculated
as the mean of the three eigenvalues of the diffusion tensor matrix:

ADC = λ1+λ2+λ3

3

On the other hand, tensor anisotropy is measured by ratios of the eigenvalues
used to quantify the shape of the diffusion and the amount of tissue organiza-
tion. The main measures used in order to extract some useful information from
DTI images are: Fractional Anisotropy, Axial Diffusivity, Radial Diffusivity and
Volume Ratio. It is crucial to highlight that the following metrics formulations
are not fixed but may differ in some values combination, however without al-
tering the semantic of the parameters. The fractional anisotropy, or FA, is the
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most widely used anisotropy measure, and, as the name suggests, it measures
the fraction of the diffusion that is anisotropic. The FA parameter can be inter-
preted as the difference of the tensor ellipsoid with the sphere shape, calculated
as a normalized variance of eigenvalues:

FA = 1√
2

√
(λ1−λm)2+(λ2−λm)2+(λ3−λm)2√

λ1+λ2+λ3

in which λm is referring to the mean value of the eigenvalues. FA is often
considered a measure of white matter integrity, but it is important to underline
that changes in the FA value may be caused by several different factors. The
Axial Diffusivity (AD) refers to the magnitude of diffusion parallel to fiber
tracts. Mathematically, the AD measure corresponds to the major eigenvector,
λ1, of the diffusion tensor, and the lowering of AD might reflect axonal injury,
reduced axonal radius or less coherent orientation of axons. Moving forward,
Radial Anisotropy (RA) gives information on the ratio between the isotropic
and anisotropic components of the diffusion tensor. In particular, RA is defined
as:

RA = 1√
3

√
(λ1−λm)2+(λ2−λm)2+(λ3−λm)2

λm

Finally, the Volume Ratio (VR) takes into consideration the ratio between
the volume of the ellipsoid and the one of a perfect sphere of radius λm, and it
is expressed as:

V R = λ1·λ2·λ3

λm
3

From these metrics it is possible to create maps of values, ranging from
0 to 1, which allow to evaluate not only the dynamics and extent of water
diffusion within the brain microstructures, but also the white matter structural
integrity [22].

Figure 1.7: Maps derived from the diffusion metrics [22].
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1.2.2 Diffusion Kurtosis Imaging (DKI) model

An extension of the DTI model is the so-called Diffusion Kurtosis Imaging,
which takes into consideration the kurtosis contribution to the diffusion pro-
cesses. Since the DTI formulation assumes that the water molecules displace-
ment function is Gaussian shaped, it is necessary to introduce an additional
measure in order to assess the extent of the non-Gaussian properties of the
diffusion dynamics. In fact, in the complex brain tissue composition and with
high b-value acquisition protocols, the Gaussian model leaks of precision while
assessing the diffusion metrics, leading to the need of computing an additional
measure. The latter consists in the kurtosis, which by mathematical definition
corresponds to the quantification of the deviation of a probability density func-
tion (PDF) of interest from the Normal PDF, for which the kurtosis in equal
to zero. In particular, if the PDF if more peaked than a Gaussian with shorter
tails the kurtosis index is grater than 0, otherwise is lower than zero [25].

Figure 1.8: Kurtosis analytical definition [25]

In the context of the dMRI signal, the deviation from the Gaussian behaviour
is significantly influenced by the degree of tissue complexity, thus the excess
kurtosis can provide a reliable index to evaluate the proportion of organized
microstructures within the water molecules diffuse. Being an extension of the
DTI model, the DKI acquisition sequence still refers to the one of Stejskal-
Tanner used for DTI, with the only difference that the b-values for the kurtosis
estimation need to be larger compared to the ones used for DTI, specifically
above 1000 but not greater than 3000 mm

s2 . DKI also offers a better fit to
the diffusion data acquired with b-value above 1000 mm

s2 , since the kurtosis
term contributes to the deviation of the model fitting curve, resulting in an
improved goodness of fit. It is fundamental to underline that the DKI framework
is a model independent approach that describes the diffusion weighted signal
without imposing any biophysical assumption. Finally, DKI provides a practical
clinical technique for quantifying non-Gaussian water diffusion and for probing
the microscopic structure of biologic tissues [26].
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Figure 1.9: DTI vs DKI diffusion displacement model [27].

The analytical model of the DKI, as mentioned before, consists in the Taylor
expansion of the logarithm formulation of DTI, resulting in:

ln [S (b)] = ln [S (0)]− bDapp +
1
6b

2D2
appKapp

in which Dapp and Kapp represent the apparent diffusion and kurtosis co-
efficients respectively. Knowing that Dapp is an estimate of the diffusion co-
efficient in the orientation parallel to the diffusion sensitizing gradients, Kapp

corresponds to the index of diffusional kurtosis along the same direction.

Figure 1.10: DTI vs DKI model fit [27].

In general, the measured diffusional kurtosis depends on the direction of the
diffusion sensitizing gradients. This dependence on direction is described by a
tensor with 15 independent components. As for the DT, in order to determine
the full diffusional kurtosis tensor, the diffusional kurtosis must be measured in
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at least 15 different directions. Analytically, the tensor is defined as:

Wijkl (t) = 9 · <sisjsksl>−<sisj><sksl>−<sisk><sjsl>−<sisl><sjsk>
<s·s>2

where si indicates a directional component of the displacement vector s [26].
Therefore, it is possible to introduce the formulation of the diffusional kurtosis
coefficient, nominally Kapp, along an arbitrary direction, that reads:

Kapp = MD2

D2
app

·
∑3

i=1

∑3
j=1

∑3
k=1

∑3
l=1 ninjnknlWijkl

in which ni represents the i-th element of the diffusion direction [25].
It is important to highlight the fact that the Kapp is much more sensitive,

compared to the Dapp, to the direction of the diffusion due to its dependence
from the DK tensor which is more complex than the DT. This sensibility can
be clearly seen in the figure 2.9 in which three different acquisition directions
(phase, read, slice) are showed for both Dapp and Kapp. In fact, the Dapp

intensity pattern is more or less stable among the three directions, while the
one of Kapp changes significantly depending on the direction considered [26].

Figure 1.11: Phase, Read, Slice direction of Dapp and Kapp maps [26].

Given that the DKI model formulation includes both the estimation of the
Diffusion and Diffusional Kurtosis tensors, the number of parameters to be com-
puted is equal to 21, resulting from the 6 belonging to the DT to be added to
the 15 just mentioned of the DK tensor. Therefore, with a suitable acquisition
protocol that includes a multi-shell configuration with b-values ranging from
below 1000 up to 3000mm

s2 , it is possible to provide a simultaneous assessment
of both the diffusion metrics, already described in the previous paragraph, and
the kurtosis metrics that are next to be discussed. As in DTI the indices of
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interest principally refer to the values associated to the three eigenvalues orien-
tations and their mathematical combination, also in DKI the metric extraction
approach is associated to the principal eigenvalues directions, except for the
Mean Kurtosis (MK). In fact, the latter consists in an average measure of the
different kurtosis values estimated for each sampling direction of the diffusion
sensitizing gradients, resulting in:

MK = 1
n

∑n
i=1 (Kapp)i

where i is equal to the number of acquisition directions [25]. MK is be-
lieved to be generally proportional to the heterogeneity and complexity of the
microstructure of the brain, where increased MK may indicate more densely
packed cells or higher cellular complexity, and decreased MK may indicate loss
of cellular structure. In addition to MK, it is possible to assess the magni-
tude of the kurtosis along the axial and radial direction of the major diffusion
eigenvalue [27].

Figure 1.12: Kurtosis and Diffusion ellipsoids [27].

More specifically, assuming that K1,K2,K3, are the kurtosis vectors along
the corresponding DT eigenvector λi, the main kurtosis metrics that can be
extracted correspond to the Axial Kurtosis (AK), defined as the kurtosis esti-
mation along the principal eigenvalue, resulting in AK = K1 , and the Radial
Kurtosis (RK) which is computed by averaging the two kurtosis contributions
orthogonal to the principal diffusion direction, mathematically:

RK = K2+K3

2

RK is to be considered the main index of the DKI model useful to assess
white matter structural coherence along with integrity of the cell membrane
and surrounding myelin sheaths. The last kurtosis measure is the so-called
Anisotropy Kurtosis (FAK) that shares the same computation idea of the FA
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obtained from the DTI model, as it can be clearly noticed by its mathematical
formulation given by:

FAK =

√
3
2

(K1−K̄)
2
+(K2−K̄)

2
+(K3−K̄)

2

K1+K2+K3

in which K̄ is the Mean Kurtosis. In this computation FAK is determined
only from three directional kurtosis estimates (K1,K2,K3). To conclude, DKI
offers a more comprehensive approach than DTI in describing the complex water
diffusion process in vivo. By quantifying both mean and directional kurtoses
and diffusivities, DKI may provide improved sensitivity and specificity in MR
diffusion characterization of neural tissues [25].

Figure 1.13: DKI parametrics maps [27].

1.2.3 DKI for glioma applications

Diffusion Kurtosis Imaging has been recently exploited to investigate the glioma
behaviour in the brain microstructural environment and has proved to be a
valid and efficient inspection tool. In fact, Jiang et al. demonstrated how
DKI is able to assess the glioma grade and its proliferative activity. In 2015,
they carried out DKI analysis and metrics extraction in a cohort of 74 patients
with histopathological confirmed glioma. In this study, the relationships of
these measures with the glioma grade and Ki-67 expression, which is a nuclear
antigen expressed in proliferating cells that indicates cellular proliferation, were
evaluated. Moreover, the diagnostic efficiency of DKI metrics in grading was
further compared. It was demonstrated that compared with the conventional
diffusion metrics, the kurtosis metrics were more promising imaging markers
in distinguishing high-grade from low-grade gliomas and distinguishing among
grade II, III and IV gliomas; the kurtosis metrics also showed great potential in
the prediction of Ki-67 expression [28].

Soon after, Tonoyan et al. conducted a similar work, aiming to to assess
the capabilities of diffusion kurtosis imaging in diagnosis of the glioma prolif-
erative activity and to evaluate a relationship between the glioma proliferative
activity index and diffusion parameters of the contralateral normal appearing
white matter (CNAWM). In order to do so, the study included 47 patients with
newly diagnosed brain gliomas, distributed in 23 low-grade, 13 grade III, and 11
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grade IV gliomas. Then, they determined a relationship between absolute and
normalized parameters of both diffusion tensor and diffusion kurtosis models,
and the proliferative activity index in the most malignant part of the lesion.
Their results showed that the correlation between all the absolute and normal-
ized diffusion parameters and the glioma proliferative activity index was found
to be statistically significant. These outcomes led to the conclusions that DKI
has good capabilities to detect immunohistochemical changes in gliomas and
demonstrated a high sensitivity in detection of microstructural changes in the
CNAWM in patients with brain gliomas [29].

The following year, Li et al. provided a quantitative evaluation of histopatho-
logical changes in the microstructure at the center and periphery of glioma
tumors using diffusional kurtosis imaging in a selection of 37 patients with diag-
nosticated cerebral gliomas. Correlations between normalized FA, MD, and MK
and histopathological findings (tumor cell density, total vascular area [TVA], and
Ki-67 labeling index [LI]) were assessed using Pearson correlation analyses. The
results revealed that normalized MK exhibited the highest sensitivity (80%) and
specificity (100%) in distinguishing HGGs from LGGs. Relative to the tumor
center, normalized MK was significantly increased in the tumor periphery in
LGGs and significantly decreased in HGGs, inferring that DKI, especially con-
cerning the MK parameter, demonstrated high sensitivity in the detection of
microstructural changes in patients with brain gliomas [30].

In another study, conducted by Hempel et al., the diagnostic performance
of DKI for in vivo molecular profiling of human glioma was tested. The results
of normalized MK and MD in 50 glioma patients were compared in regard
to the WHO-based histological findings and molecular characteristics leading
to integrated diagnosis. The main result of this work is that the diagnostic
performance of MK seems to fit more with the integrated molecular approach
than the conventional histological findings [31].

Lately, DKI has been extensively used to evaluate different glioma diffusion
activity. Wu et al. focused on differentiating high-grade glioma recurrence from
pseudo progression, comparing diffusion kurtosis imaging and diffusion tensor
imaging. To do this, they recruited 40 patients with new enhancing lesions,
specifically 24 high-grade glioma recurrence and 16 pseudo progression, and
extracted both DTI and DKI parameters in the enhancing lesions and in the
perilesional edema. This kind of analysis resulted to be very informative about
DKI performances, showing how this imaging technique had superior perfor-
mance in differentiating high-grade glioma recurrence from pseudo progression
and relative MK appeared to be the best independent predictor [32].

Furthermore, Li et al. carried out a survival prediction analysis in glioblas-
toma (GBM) with Diffusion Kurtosis Imaging, aiming in particular to investi-
gate whether any of the diffusion kurtosis parameters derived from is a signifi-
cant predictor of overall survival. In this work, 33 GMB patients were included
and both univariate and multivariate Cox models were used to evaluate the
DKI parameters and clinical factors for prediction of overall survival (OS) and
progression free survival (PFS). The DKI model demonstrated the potential to
predict OS and PFS in the patients with GBM, inferring that further develop-
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ment and histopathological validation of the DKI model will warrant its role in
clinical management of GBM [33].

Finally, Qiu et al. applied diffusion kurtosis imaging to the study of edema
in solid and peritumoral areas of glioma. When gliomas grow in an infiltra-
tive form, high-grade malignant glioma tissue extends beyond the contrast-
enhancing tumor boundary, and this diffuse non-enhancing tumor infiltration
is not visible on conventional MRI. In fact, the purpose of this study was to
evaluate DKI-derived parameters in a group of 51 patients with pre-operative
gliomas, assess changes in the solid tumor and peritumoral edema area and
investigate the use of these measures for recurrence and prognosis estimation.
In their work, DKI showed potential utility for studying solid tumor and peri-
tumoral edema of high-grade gliomas, reporting significant differences between
groups with grade III and IV gliomas in the peritumoral edema area, and cor-
relation with clinical Ki-67 scores within the solid tumor area [34].

1.3 Graph Theory and Brain Network Analysis

1.3.1 Graph theory basic principles

Nowadays networks occur in very different scientific disciplines: economics, orga-
nizational studies, social sciences, biology, logistics, internet, and many others.
Fortunately, the terminology that is used to describe the different networks in
each discipline is largely the same, which makes it relatively easy for members of
different communities to cooperate in understanding the foundations of complex
networks. In addition, networks from very different fields often look so much
alike. This common terminology and the strong resemblance of networks across
scientific applications has been influential in boosting network science [35].

Network Vertices Edges
Airline Transportation Airports Flights
Train Transportation Train Stations Railways

World Wide Web (WWW) Web pages Hyperlinks
Internet Routers Cable connections
Citation Authors Citations
Genetic Genes Transcription factors
Brain Neurons Synapses

Table 1.1: Examples of networks [35].

The popular idea of network comes from the mathematical definition of
graph. In fact, network science can be referred as graph theory equivalently. In
order to introduce the basic concepts of networks, the fundamental formalities
and notations from graph theory, together with a few fundamental properties
that characterize networks, need to be explained. In its simplest form, a graph
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is a collection of vertices, also called nodes, that can be connected to each other
by means of edges, or links. In particular, each edge of graph joins exactly two
vertices. As mentioned before, the nodes and connections may represent people
and their social relations, molecules and their interactions, or web pages and
hyperlinks. Undirected graphs have edges that do not have a direction. The
edges indicate a two-way relationship, in that each edge can be traversed in both
directions. Contrarily, in a directed graph, also called digraph, all the edges are
directed from one vertex, allowing connection only in the directions represented
by the edges. If not specifically made explicit, usually the graph configuration
considered is the one of undirected edges. V(G) and E(G) denote the set of
vertices and edges associated with graph G, respectively. It is important to
notice that an edge can be represented as an unordered tuple of two vertices,
that is, its end points. For instance, < u, v > defines an edge connecting vertices
u and v, which is the equivalent formulation of < v, u >, since they both mean
that the vertices taken into consideration are adjacent. In terms of links, loops
and multiple edges connection, that is a set of edges each having u and v as
their end points, are allowed. A graph without loops or multiple edges is called
simple. As in so many practical situations, it is often convenient to talk about
neighbors. In graph-theoretical terms, the neighbors of a vertex u are formed
by the vertices that are adjacent to u [35].

Figure 1.14: Graph topology [35].

An important property of a vertex is the number of edges that are incident
with it. This number is called the degree of a vertex. In particular, a fundamen-
tal theorem of graph theory states that for all graphs G, the sum of the vertex
degrees is twice the number of edges. The vertex degree is a simple, yet powerful
concept and is used in many different ways, along with the degree distribution.
For example, when considering social networks, we can use vertex degrees to
express the importance of a person within a social group. Another important
concept of graphs is that of a subgraph. A graph H is a subgraph of G if H
consists of a subset of the edges and vertices of G, such that the end points of
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edges in H are also contained in H. There are different ways to represent graphs,
especially when the representation must be suitable for automated processing.
The most common one is to use an adjacency matrix. Consider a graph G with
n vertices and m edges. Its adjacency matrix is nothing else but a table A with
n rows and m columns with entry A[i, j] denoting the number of edges joining
vertex vi and vj [35].

Figure 1.15: Undirected graph and its corresponding adjacency matrix [36].

In a network, a path is defined as the set of edges and vertices through which
a pair of nodes in linked. Using the notion of a path, a graph in considered to
be connected when there is a path between each pair of distinct vertices. It is
important to underline that, even if the vast majority of networks configuration
is connected, there are some special cases in which there could be disconnected
components of a graph. This means that a graph could also consist as a collec-
tion of components, where each component is a connected subgraph. The notion
of connectivity is important, especially when considering the robustness of net-
works. Robustness in this context means how well the network stays connected
when vertices or edges are removed. For instance, in the internet networks, it
is a crucial ability to sustain serious attacks and failures such that connectivity
is still guaranteed. Finding shortest paths, that is the shortest number of steps
needed to link a pair of vertices, is a central problem in all networks. Fortu-
nately, there exists an efficient algorithm (Dijkstra’s algorithm) for computing
the shortest paths from a given vertex u to all other vertices in a given undi-
rected graph. It is important to highlight that there could be several shortest
paths all having the same minimal length. In addition, another peculiarity of
networks is to assign a weight to each edge, indicating some cost or strength
in connections [35]. In order to extract meaningful information from networks’
configurations, network analysis is exploited to compute specific connectivity
metrics. Besides the already mentioned vertex degree and degree distribution,
one of the most common estimates is the characteristic path length, also called
average path length, defined as the average number of steps along the shortest
paths for all possible pairs of network nodes. It is a measure of the efficiency of
information or mass transport on a network. The clustering coefficient, which
is a measure of the degree to which nodes in a graph tend to cluster together,
is another principal measure that can be extracted from a graph. This con-
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cept is particularly important in scenarios of information spreading or epidemic
dissemination and it is used also to classify networks. If weights represent the
intensity by which, for example, interactions take place, then weights are also
indicative for the strength, or looseness of a group. Another key metric for net-
work analysis is deciding on whether there are any vertices “more important”
than others. This concept of importance can be assessed by introducing the
centrality measure. In a network, centrality can be computed by taking into
consideration different aspects, which of course carry diverse information. The
simplest centrality measure is the degree centrality (DC), which is defined by
the number of connections attached to each node, calculated as:

ki =
∑N

j=1 Aij

in which Aij are the adjacency matrix entries, equal to 1 if vertices i and j
are linked, and N is the number of nodes in the network. Node centrality can
also be defined in terms of the shortest paths. The distance between nodes i
and j is given by the number of edges in the shortest path connecting them. A
central node is close to all other nodes in the network in terms of this distance.
This idea is enclosed in the closeness centrality measure, which is defined in
terms of the average distance of each node to all others. Mathematically, the
closeness centrality (CC) of node i is defined as:

Ci =
N∑N

j=1,j ̸=i dij

where dij is the length of the shortest path between i and j. Closeness cen-
trality has the advantage to be very intuitive and suitable to characterize a
process in which the information travel through the shortest distances and it is
more suitable when dealing with spatial networks. Another important central-
ity measure is the so-called betweenness centrality (BC), defined as the fraction
of shortest paths, passing through a vertex i, connecting each pair of nodes.
Analytically,

Bi =
∑

a,b
η(a,i,b)
η(a,b)

in which η(a, i, b) is the number of shortest paths connecting vertices a and
b that pass transit over vertex i and η(a, b) is the total number of shortest paths
between a and b [36].

Figure 1.16: Graphical representation of centrality measures [37].
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1.3.2 Brain complex networks

Nervous systems are the most complex networks known to man, capable of gen-
erating and integrating information from multiple external and internal sources
in real time. Within the neuroanatomical substrate, the dynamics of neurons
and neuronal activations result in patterns of statistical dependencies and causal
interactions, defining three major modalities of complex brain networks: struc-
tural connectivity, functional connectivity, and effective connectivity. The first,
also termed anatomical connectivity, is the set of physical or structural connec-
tions linking neuronal units at a given time. Anatomical connection patterns
are relatively static at shorter time ratios but can be dynamic at longer time
scales, for example during learning or development. Functional connectivity in-
stead describes human cognition associated with rapidly changing and widely
distributed neural activation patterns, which involve numerous cortical and sub-
cortical regions activated in different combinations and contexts. Last, but not
least, effective connectivity illustrates the set of causal effects of one neural
system over another. Thus, unlike functional connectivity, requires the specifi-
cation of a causal model including structural parameters. It is fundamental to
underline the fact that structural, functional and effective connectivity are mu-
tually interrelated. Clearly, structural connectivity is a major constraint on the
kinds of patterns of functional or effective connectivity that can be generated
in a network [38].

Most structural analyses of brain networks have been carried out to reveal
several organizational principles. At the local level, simple statistical measures
can be used to characterize inputs and outputs of individual areas. Such mea-
sures allow identification of highly connected nodes (hubs) and provide an initial
functional characterization of areas as either ‘broadcasters’ or ‘integrators’ of
signals. In addition, all large-scale cortical connection patterns exhibited small-
world attributes with short path lengths and high clustering coefficients. The
quantitative analysis of structural connection patterns using graph theory tools
provides several insights into the functioning of neural architectures [38].
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Figure 1.17: Types of brain connectivity [38].

The main aim of this kind of procedure is to build the so-called human con-
nectome, which is mathematically defined as the connection matrix of brain.
This allows not only for an inference from structural to functional connectivity,
but also for a potential approach to capture the effects of developmental varia-
tions or abnormalities, traumatic brain injury, or neurodegenerative disease as
specific structural variants of the human connectome [39].

Two major organizational principles of the cerebral cortex are functional
segregation and functional integration, enabling the rapid extraction of infor-
mation and the generation of brain states. Functional segregation in the brain
is the ability for specialized processing to occur within densely interconnected
groups of brain regions. Measures of segregation primarily quantify the pres-
ence of such groups, known as clusters or modules, within the network, having
interpretations in anatomical and functional networks. The presence of clus-
ters in anatomical networks suggests the potential for functional segregation
in these networks, while the presence of clusters in functional networks sug-
gests an organization of statistical dependencies indicative of segregated neural
processing. The mean clustering coefficient for the network hence reflects, on
average, the prevalence of clustered connectivity around individual nodes. More
sophisticated measures of segregation not only describe the presence of densely
interconnected groups of regions, but also find the exact size and composition of
these individual groups. This composition is known as the network’s modular
structure, or community structure. On the other hand, functional integration
in the brain is the ability to rapidly combine specialized information from dis-
tributed brain regions. Measures of integration characterize this concept by
estimating the ease with which brain regions communicate and are commonly
based on the concept of network path. The average shortest path length is the
most commonly used measure of functional integration. The average inverse
shortest path length is a related measure known as the global efficiency. More
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generally, the characteristic path length is primarily influenced by long paths,
while the global efficiency is primarily influenced by short paths. Anatomical
brain connectivity is thought to simultaneously reconcile the opposing demands
of functional integration and segregation [39].

Furthermore, most studies examining functional brain networks also report
various degrees of small-world organization. It is commonly thought that such
an organization reflects an optimal balance of functional integration and segre-
gation. Anatomical and effective networks are simultaneously highly segregated
and integrated, and consequently have small-world topologies. In comparison,
the functional network is also highly segregated but has a lower global efficiency,
and therefore weaker small-world attributes. Concerning centrality, the degree
centrality has a neurobiological interpretation: nodes with a high degree are
interacting, structurally or functionally, with many other nodes in the network.
The degree may be a sensitive measure of centrality in anatomical networks
with nonhomogeneous degree distributions. Many measures of centrality are
based on the idea that central nodes participate in many short paths within a
network, and consequently act as important controls of information flow. In
this context, the notion of betweenness centrality is naturally extended to links
and could therefore also be used to detect important anatomical or functional
connections [40].

Figure 1.18: Brain network organizational principles [41].

Recent studies have demonstrated the existence of a number of highly con-
nected and highly central neocortical hub regions, regions that play a key role
in global information integration between different parts of the network, named
‘brain hubs’. In particular, Sporns et al. conducted a study aiming to map out
both the subcortical and neocortical hubs of the brain and examine their mutual
relationship, particularly their structural linkages. Their results demonstrated
that brain hubs form a so-called “rich club,” characterized by a tendency for
high-degree nodes to be more densely connected among themselves than nodes
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of a lower degree, providing important information on the higher-level topology
of the brain network. These nodes are characterized by a high level of be-
tweenness centrality and play a key role of functional hubs in optimizing global
brain communication efficiency. These findings of a rich-club organization of the
connectome provided new insight into how disorders affect brain topology and
functioning, suggesting connectome alterations in a wide range of neurological
and psychiatric brain disorders [42].

Figure 1.19: Rich club organization of the human connectome [42].

A number of emerging trends are the growing use of generative models, dy-
namic (time-varying) and multilayer networks. Starting from generative models,
they are used for including statistical relevance and significance to the estimated
measures of the network. In fact, null models that fix a number of different fac-
tors such as local node measures, spatial locations, and wiring cost effectively
become generative models of the empirical data, able to account for topologi-
cal features. Thus, generative models can provide important insights into the
factors that have shaped the emergence of specific architectural or performance
characteristics. Since brain networks are mutable model, it is important to con-
sider time dependent factors, exploiting multilayer networks, that may influence
the graph structure and metrics. Data on time varying brain graphs generally
takes on the form of time series of graphs that form an ordered series of records,
for example acquired while learning or across developmental stages. Changes
in network topology can be tracked by computing graph measures on each time
point, allowing the derivation of nodal measures of flexibility which can highlight
parts of the network that are more variable across learning or development [43].

Finally, general developments in future will require conceptual efforts, par-
ticularly in the characterization of functional brain activity. One of the major
challenges consists of better representing the functional space and improving
the specificity of observed anatomical and dynamical networks associated with
functional activity, and understanding which observed differences in network
representations are neutral with respect to function. In addition, following
complex network theory applications to neuroscience will demand that, instead
of borrowing already available graph theoretical metrics designed to describe
the brain connectome, neuroscientists should propose innovative network the-
ory where the specific properties of the brain are taken into account. This means
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involving the brain’s complex adaptive nature and redefining concepts in terms
of not only distances but also community structures [44].
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Chapter 2

Materials and Methods

2.1 MRI acquisition and pre-processing

Twenty patients suffering from de novo brain tumours have been recruited and
acquired at the University Hospital of Padova from July 2017 to March 2021.
All procedures were in accordance with the ethical standards of the institutional
research committee and with the 1964 Helsinki declaration plus later amend-
ments. All participants provided informed, written consent in accordance with
the local University Hospital Institutional Review Board.

Data acquisition was performed with a 3T Siemens Biograph mMR-PET/MR
scanner equipped with a 16-channels head-neck coil. The multi-shell dMRI
protocol comprised a total of 100 diffusion weighted images (DWIs) (TR/TE
5355/104 ms; voxel size 2x2x2 mm3; FOV 220x220 mm2; 68 slices; multiband ac-
celerator factor=2): 10 images at b=0 s/mm2, 30 DWIs at b-value=710 s/mm2
and 60 DWIs at b-value=2855 s/mm2. In addition, the acquisition protocol
included anatomical imaging, which comprised a 3D T2-weighted (T2w) Fluid
Attenuated Inversion Recovery (FLAIR) image (TR/TE 5000/395 ms; voxel size
1x1x1 mm3; FOV 250x250 mm2), two 3D T1-weighted (T1w) magnetization-
prepared rapid acquisition gradient echo (MPRAGE, TR/TE 2400/3.2 ms; voxel
size 1x1x1 mm3; FOV 256x256 mm2; 160 slices) acquired both before and af-
ter contrast agent injection and a T2w image (TR/TE 3200/536 ms; voxel size
1x1x1 mm3; FOV 256x256 mm2; 160 slices). The anatomical images of each pa-
tient were linearly registered to the patient näıve T1w image with the Advanced
Normalization Tools (ANTs (Avants et al. 2011), v. 2.0.1). Employing these
images, two masks were manually delineated through the ITK-SNAP software
(http://www.itksnap.org/) by an expert neuroradiologist with more than five
years of experience. The first mask, the T, included the tumour core (contrast
agent enhancing and non-enhancing regions) and the necrosis, where present.
The second mask, the T+O, was created by adding the oedema area to the T
mask. In addition, each tumour was labelled by the same neuroradiologist as
left, right or bilateral according to the location of its core and to the mainly
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involved hemisphere [45].

• Diffusion MRI Pre-processing: The acquired diffusion weighted volumes
were visually inspected to identify and remove those images affected by in-
terslice instabilities (J. D. Tournier, Mori, and Leemans 2011) which were
deemed excessively corrupted for subsequent pre-processing techniques to
correct. The rest of the preprocessing was executed in its entirety within
the MRtrix3 Software (J.-D. Tournier et al. 2019) and was featured by an
initial denoising step based on random matrix theory (Veraart, Fieremans,
and Novikov 2016), and a subsequent call to the tools TOPUP (Anders-
son, Skare, and Ashburner 2003) and eddy (Andersson and Sotiropoulos
2016) from the FMRIB Software library (FSL) for B0 inhomogeneity, eddy
current and motion joint correction. T1w segmentation results (including
GM, subcortical parcellation, lesion and tumour masks) were registered
to the näıve B0 volume using ANTs, by applying an affine transformation
previously estimated on the patient’s näıve T1w image.

• Diffusion Tractography specifications: The patient structural connectome
reconstruction was performed in its entirety within the MRtrix3 soft-
ware. We firstly performed multi-shell multi-tissue spherical deconvolution
(Jeurissen et al. 2014) to recover the orientation distribution functions for
each voxel. Subsequently, we computed the structural connectome by em-
ploying Anatomically Constrained Tractography (R. E. Smith et al. 2012),
tracking individual fibres with a second-order Integration over Fiber Ori-
entation Distributions algorithm (J.-D. Tournier, Calamante, and Con-
nelly 2010). Standard streamline termination criteria values were used.
The number of generated streamlines for each patient initially amounted
to 100M, which were quantitatively reduced to 10M via the Spherical-
deconvolution Informed Filtering of Tractograms framework (R. Smith et
al. 2013) [45].

2.2 DKI estimation algorithms

In order to extract the Diffusion Kurtosis metrics, different estimation algo-
rithms are used relying on both linear and non-linear methods. Specifically, the
former refers to the Weighted Least Squares (WLS) implementation and the lat-
ter to the Non-linear Least Squares (NLS) computation. Usually, the non-linear
approaches lead to a better fit of the model with the acquired data. The WLS
used to be preferred for its simplicity and speed, but with the recent increase
of computational power the NLS is more exploited than before. In fact, many
variants of the WLS have been proposed in order to reduce the calculation bur-
den and at the same time be competitive with the NLS method, which is known
to be very slow but also robust against outliers. In this project, a standard
WLS framework is compared to a regularized NLS algorithm. Analytically, the
weighted linear estimator is defined as:
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β = (XTWX)−1XTWy

in which β represent the model parameters to be estimated, y refers to
the acquired data, W is the weighting matrix, built as a diagonal matrix with
diag(W ) = y2, and finally X consists in the so-called design matrix, which con-
tains all the acquisition information regarding the diffusion gradient strengths
and directions. Focusing on the β term, it is important to specify that it in-
cludes 15 variables, which compose the diffusion kurtosis tensor, and the S(0)
image that shows the signal approximation without the diffusion sensitizing
gradients [46].

Moving forward to the non-linear approach, the regularized NLS, it is an in-
novative methodology to compute the DKI model parameters involving a scalar
kurtosis index to regularize the fit. First of all, this kind of implementation
extracts the powder average signal of the dMRI, which is computed as:

logS(b) = Sb=0 − bḊ + 1
6b

2Ḋ2K̇2

where Ḋ and K̇ are the contribution of the scalar diffusion and excess kur-
tosis of powder signals, respectively. It is meaningful to underline the fact that
from these scalar measurements does not allow for the estimation of directional
diffusion and kurtosis values. From this data manipulation, the following step
regards a robust mean kurtosis estimation, without relying on the full diffusion
kurtosis tensor. For finite b-values, a mean kurtosis prediction can be obtained
from K̇ and the diffusion tensor D̄ using a polynomial regression model in which
the thousands of non-problematic voxels, that is, positive apparent kurtosis in
each direction, serve as training data. In this strategy, called Voxel Quality
Transfer, the polynomial coefficients are estimated using a multivariate polyno-
mial regression defined as:

K̂ = Pn(K̇, D̄, δ|Cn)

in which K̇ is the predicted mean kurtosis, D̄ is the whole diffusion tensor, δ
is a linear combination of the D̄ matrix components and Cn are the polynomial
coefficients [47].

Figure 2.1: Mean Kurtosis VS Predicted Mean Kurtosis [47].
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The next step is the definition of the non-linear fitting estimator, which
analytically is designed as:

θ̂ = argminθ(||S − exp(Bθ)2||+ α||h(θ)− K̂||2)

where α is the regularization weight and h(θ) the operator that computes the

true mean kurtosis K̄ from the tensor coefficients θ̂. For α = 0, the estimator
reduces to the ordinary NLS estimator, a widely adopted estimator for DTI and
DKI. The nonlinear fitting is initiated by a starting point obtained by fitting
the DKI model using the ordinary NLS estimator. It is important to underline
that the L2 norm of the difference between K and K regularizes and stabilizes
the DKI fit. By default,

α = 0.1 · MSENLS

MSEMK

where the numerator is the median squared error of the standard NLS, and
the denominator is the median squared error of the MK prediction carried out
by the polynomial regression [47].

Figure 2.2: Kurtosis geometry: Non- Problematic VS Problematic voxel [47].

Figure 2.3: Ordinary VS Regularized MK estimation [47].
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More recently, Kerkelä et al. provided an optimized version of this regular-
ized NLS fit, exploiting the same strategy of the previously mentioned approach,
but with a different Mean Kurtosis prediction method. In fact, in place of the
polynomial regression estimation algorithm, they implemented a Multi-Layer
Perceptron (MLP). The key role of this neural network is to learn MK, AK and
RK predicted maps from data in voxels where the standard NLS was successful,
and then use these estimates in the denominator of the formulation mentioned
above. In such manner, the computation of the regularization weight of the
following regularized NLS is informed by a more robust prediction algorithm,
allowing for more reproducible results. The MLP architecture consists in a fully-
connected feed-forward neural network with rectified linear units as activation
functions. The network has an input layer size equal to the number of acquisi-
tions, three hidden layers with 50 neurons each, and an output layer with size 3
(MK, AK and RK prediction). The initial weights are randomly generated with
a hard-coded pseudorandom number generator seed. The loss function chosen
is the mean squared error and Adam is used as the optimizer, with batch size
equal to 200. The training is stopped when the loss does not improve by more
than 10( − 4) for 10 consecutive epochs and this training procedure is repeated
for each scan [48].

Figure 2.4: MLP architecture for MK, AK and RK maps prediction [48].

The final parameter estimates were obtained by solving the following opti-
mization problem using Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm:

β̂ = argminβ

(
1
N ||S − exp(Xβ)||22 + α

(
(M̂K −m(β))2 + (ÂK − a(β))2 +

(R̂K − r(β))2
))

in which M̂K, ÂK and R̂K are the predicted kurtosis values, α is a constant
controlling the magnitude of the regularization terms, and m(β), a(β), and
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r(β) are functions for numerically computing mean, axial, and radial kurtosis,
respectively [48].

Figure 2.5: DKI parameter maps of different estimation algorithms [48].

2.3 DKI metrics sensibility analysis

From the literature it has been proved that some DTI metrics, such as the
ADC or FA, are useful as biomarker for distinguishing not only different glioma
grades, but also for separating the tumoral and periturmoral areas from the
Normal Appearing White Matter (NAWM) tissue [28]. In this project, thanks
to the innovative DKI model implementation, a tumor-specific sensibility anal-
ysis is carried out in order to verify whether both the principal diffusion and
kurtosis indices are valuable informative measures to characterize different dis-
eased tissues belonging to the tumoral area and to possibly identify a prefer-
ential spreading direction or pattern. In particular, the metrics of interest are
the Fractional Anistropy and Mean Diffusivity as diffusion metrics, while Mean
Kurtosis and Radial Kurtosis were considered as the diffusion kurtosis reference
values.

Regarding the subdivision of the tumoral regions, the different tissues iden-
tified are labelled as:

34



• Necrosis region: is the death of brain tissue. It occurs when too little
blood flows to the tissue and cannot be reversed.

• Tumor enhancing region: refers to the uptake of Gadolinium-based con-
trast agent in the lesion, meaning an increased vasculaziration or inflam-
mation or angiogenesis [49].

• Tumor non-enhancing region: areas of increased T2 signal intensity asso-
ciated with mass effect and architectural distortion such as blurring of the
gray-white interface [50].

• Oedema region: concerns the swelling of the brain. Cerebral edema cate-
gorizes into either vasogenic, cellular, osmotic, and interstitial causes. It
can arise from a variety of causes, including head trauma, vascular is-
chemia, intracranial lesions. The consequences of cerebral edema can be
devastating, even fatal, if untreated [51].

Figure 2.6: Glioma tumoral sub-regions. [52].

In order to carry out an accurate and effective analysis, only the subjects
with 3 and 4 different tumor region masks were selected. For each of the consid-
ered areas, boxplots of FA, MD, MK and RK metrics were computed to evaluate
not only the specific region values, but also the tumor region value distribution.

2.4 DKI metrics network analysis

Thanks to the creation of the diffusion and diffusion kurtosis maps for the
selected subjects, it was possible to conduct a network analysis based on the
DKI microparameters. The methodology to carry out this kind of investigation
is described in this section. First of all, the brain cortical tissue has been divided
according to the Schaefer atlas, which consist in a functional atlas. Specifically
this operation is called brain parcellation and the atlas employed includes 7
functional networks that comprehend a 200 region parcellation of cortical brain
regions, equally divided between the left and right hemispheres of the brain.
The networks identified by resting-state functional MRI (rs-fMRI) investigation
studies [53] are:
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• Visual

• Default

• Control

• Somato-Motor

• Dorsal-Attention

• Ventral-Attention

• Limbic

For each subject and for each cortical region, the average value of diffusion
and diffusion kurtosis metrics was extracted in order to build an association
matrix of size 10 by 200, in which the rows represents the different subjects and
the columns the mean value of the metric under investigation for each of the
cortical regions considered. After that, the metrics connectivity matrices were
computed by calculating the correlation index across the columns of the associa-
tion matrix mentioned before. This operation returns a 200 by 200 connectivity
matrix in which each entry correspond to the correlation index of a cortical
region with another one, avoiding the self-correlation computation by setting
the diagonal values equal to zero. The following procedure consisted in creat-
ing some sparsity in the microparameters correlation matrices built before, by
applying a correction strategy that implies keeping only the correlation values
that returned a p-value lower or equal to 0.05. These last sparse matrices were
used as the adjacency matrices of the brain diffusion microparameters networks,
for which the main centrality measures of degree, betweenness and eigenvector
were determined in order to evaluate the connection behaviour of the networks
considered, taking into consideration also the nodes’ funtional network belong-
ing.

Figure 2.7: Brain Scheafer parcellation and functional networks.
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Chapter 3

Results

3.1 Sensibility analysis

The total number of subjects for which the sensibility analysis was performed
is equal to 10. In particular, the first four had 3 different tumoral tissue type
masks, corresponding to Tumor Enhancing, Non-enhancing and Oedema, while
the other six allowed to have a complete overview of the considered metrics over
the 4 tumor tissue types, with the added Tumor Necrosis region. It has to be
highlighted also the fact that the results are influenced also by the sizes of the
masks of the different tumoral tissue type, which is different for every subject,
given that the tumor behaviour is subject-dependent.

Starting from the first subject investigated, the boxplots of the diffusion
metrics, both revealed a clear distinction of Tumor Non-enhancing region from
the regions of Tumor Enhancing and Oedema areas. More specifically, FA and
MD were not able to separate the Tumor Enhancing and Oedema regions, both
in terms of difference in values and distribution. Taking into consideration
the kurtosis indices instead, there is a slight differentiating capability for the
Tumor Enhancing region from the other Non-enhancing and Oedema zones. In
this case, MK and RK boxplots are very similar to each other, showing how the
value distribution of the Tumor Oedema area is much different compared to the
Enhancing and Non-enhancing sections.
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Figure 3.1: Subject 1 MD and FA region-specific tumor boxplots.

Figure 3.2: Subject 1 MK and RK region-specific tumor boxplots.

Metric Enhancing Non-Enhancing Oedema
Subject 1 Median ± std Median ± std Median ± std

FA 0.166 ± 0.076 0.079 ± 0.077 0.175 ± 0.079
MD 1.122 ± 0.224 2.203 ± 0.727 1.160 ± 0.237
MK 0.717 ± 0.158 0.514 ± 0.217 0.575 ± 0.088
RK 0.719 ± 0.157 0.511 ± 0.205 0.572 ± 0.107

Table 3.1: Subject 1 sensibility table.

For the second individual considered, the trend of both diffusion and kurtosis
metrics is very similar to the previous subject, with some marginal differences.
In fact, MD and FA boxplots are more capable of distinguishing the three tu-
moral regions, even if with a marginal variation from the precedent case, giving
also information about the value distribution variability among the diseased tis-
sue types. The same happens when evaluating the kurtosis metrics, for which
the boxplots highlight not only the similarity of classification of MK and RK,
but also the high dissimilarity of the distribution of the values in the three tissue
involved.
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Figure 3.3: Subject 5 MD and FA region-specific tumor boxplots.

Figure 3.4: Subject 5 MK and RK region-specific tumor boxplots.

Metric Enhancing Non-Enhancing Oedema
Subject 5 Median ± std Median ± std Median ± std

FA 0.135 ± 0.075 0.044 ± 0.031 0.216 ± 0.074
MD 1.397 ± 0.247 1.898 ± 0.274 1.562 ± 0.253
MK 0.555 ± 0.085 0.573 ± 0.079 0.511 ± 0.084
RK 0.560 ± 0.093 0.564 ± 0.084 0.537 ± 0.107

Table 3.2: Subject 5 sensibility table.

The third subject exhibited a different trend from the previous cases. In
fact, regarding the diffusion metrics, it is evident that MD boxplots are not able
to provide a significant separation among the different tissues and only carry
information about the value distribution. Contrarily, FA seems to be a more
valuable measure to distinguish the diverse tumoral tissue areas, but it is lack-
ing in terms of distribution characterization. Concerning the kurtosis indices,
they both produce a valuable division of the tumor region-specific tissue, even if
some differences need to be underlined. In fact, MK furnish an acceptable differ-
entiation of Tumor Non-enhancing region compared to Enhancing and Oedema
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areas, whose boxplots are very similar. RK instead allows for a complete distinc-
tion of all diseased tissue taken into consideration, resulting the most reliable
sensibility index.

Figure 3.5: Subject 6 MD and FA region-specific tumor boxplots.

Figure 3.6: Subject 6 MK and RK region-specific tumor boxplots.

Metric Enhancing Non-Enhancing Oedema
Subject 6 Median ± std Median ± std Median ± std

FA 0.233 ± 0.102 0.074 ± 0.032 0.172 ± 0.064
MD 1.025 ± 0.190 0.978 ± 0.130 1.042 ± 0.239
MK 0.690 ± 0.173 1.014 ± 0.135 0.559 ± 0.096
RK 0.740 ± 0.218 0.991 ± 0.125 0.556 ± 0.126

Table 3.3: Subject 6 sensibility table.

For the last subject with 3 different tumoral tissue types, diffusion metrics
produce an effective diversification. In particular, MD is effectively distinguish-
ing the Tumor Enhacing and Oedema regions and reveals a slight change be-
tween Tumor Non-Enhancing and Enhancing or Oedema zones. On the other
hand, FA is even more sensible to provide an efficient distinction among all the
tumor affected tissues. Regarding the kurtosis indices, it is evident that they
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provide the same differentiation performance. In fact, both MK and RK, can-
not separate the tissue types in an acceptable manner, but they give important
information about the value distribution in the diseased regions, highlighting a
smaller variation range in the Tumor Oedema, accompanied by a higher number
of outliers, compared to the Enhancing and Non-enhancing areas.

Figure 3.7: Subject 7 MD and FA region-specific tumor boxplots.

Figure 3.8: Subject 7 MK and RK region-specific tumor boxplots.

Metric Enhancing Non-Enhancing Oedema
Subject 7 Median ± std Median ± std Median ± std

FA 0.176 ± 0.069 0.062 ± 0.031 0.216 ± 0.061
MD 0.958 ± 0.146 1.118 ± 0.194 1.320 ± 0.136
MK 0.821 ± 0.141 0.860 ± 0.124 0.632 ± 0.060
RK 0.905 ± 0.152 0.871 ± 0.139 0.736 ± 0.096

Table 3.4: Subject 7 sensibility table.

From now on, all the remaining included subjects show also the presence
of the Tumor Necrosis. Starting from the first complete individual, the sensi-
bility analysis showed that diffusion metrics can provide a valuable diversifica-
tion. In fact, MD boxplots distinguish Tumor Necrosis, Enhancing and Non-
enhancing regions, while producing only a slight change between Non-enhancing
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and Oedema areas. In addition, FA boxplots produce an even more accurate tu-
moral tissue differentiation, resulting to be a reliable sensibility index, showing
a slight change only between Tumor Necrosis and Oedema zones. On the other
hand, the kurtosis metrics exhibit more or less the same trend. In particular,
MK shows a good distinction property among Tumor Necrosis, Enhancing and
Non-enhancing regions, while presenting only a subtle contrast between Tumor
Necrosis and Oedema areas. The same trend is showed by the RK boxplots.

Figure 3.9: Subject 9 MD and FA region-specific tumor boxplots.

Figure 3.10: Subject 9 MK and RK region-specific tumor boxplots.

Metric Necrosis Enhancing Non-Enhancing Oedema
Subject 9 Median ± std Median ± std Median ± std Median ± std

FA 0.183 ± 0.078 0.362 ± 0.108 0.068 ± 0.026 0.165 ± 0.056
MD 1.064 ± 0.236 0.702 ± 0.128 1.414 ± 0.255 1.384 ± 0.206
MK 0.534 ± 0.124 0.896 ± 0.152 0.688 ± 0.095 0.581 ± 0.090
RK 0.538 ± 0.163 1.012 ± 0.229 0.700 ± 0.104 0.604 ± 0.119

Table 3.5: Subject 9 sensibility table.

Moving to the next analysed subject, the kurtosis metrics showed a higher
sensibility compared to the diffusion indices. In fact, MD is effective only for
the diversification of the Tumor Non-enhancing region from the the other three

42



tumoral tissues, and the same is happening for FA. Contrarily, MK and RK,
which show more or less the same value and distribution of the different diseased
tissues, are able to provide a reliable differentiation and may be used for the
identification of the tumor region-specific tissue.

Figure 3.11: Subject 12 MD and FA region-specific tumor boxplots.

Figure 3.12: Subject 12 MK and RK region-specific tumor boxplots.

Metric Necrosis Enhancing Non-Enhancing Oedema
Subject 12 Median ± std Median ± std Median ± std Median ± std

FA 0.157 ± 0.060 0.144 ± 0.060 0.076 ± 0.035 0.288 ± 0.078
MD 1.568 ± 0.253 1.534 ± 0.455 3.221 ± 0.120 1.306 ± 0.153
MK 0.415 ± 0.067 0.507 ± 0.074 0.361 ± 0.011 0.593 ± 0.075
RK 0.420 ± 0.081 0.521 ± 0.086 0.356 ± 0.014 0.652 ± 0.111

Table 3.6: Subject 12 sensibility table.

In the following subject, the metrics sensibility quite resembles the situa-
tion seen for the previous individual. In fact, the only valuable differentiation
showed by MD boxplots is the one of the Tumor Non-enhancing region from
the other three tumor areas. However it has to be highlighted the fact that the
Tumor Oedema also can be considered distinct from the others in an acceptable
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way. For the FA index, the same considerations of MD can be draw, show-
ing an even worse performance. On the other hand, kurtosis metrics exhibit
a similar classification between each other. Precisely, both MK and RK box-
plots reveal significant differences in the Tumor Non-enhancing area compared
to the remaining three tissues, with a slight distinction of the Tumor Oedema
zone. In this case, diffusion and kurtosis indices provide the same diversification
interpretation.

Figure 3.13: Subject 14 MD and FA region-specific tumor boxplots.

Figure 3.14: Subject 14 MK and RK region-specific tumor boxplots.

Metric Necrosis Enhancing Non-Enhancing Oedema
Subject 14 Median ± std Median ± std Median ± std Median ± std

FA 0.202 ± 0.078 0.138 ± 0.059 0.098 ± 0.048 0.213 ± 0.065
MD 1.133 ± 0.339 1.194 ± 0.476 3.267 ± 0.307 1.454 ± 0.218
MK 0.552 ± 0.107 0.736 ± 0.168 0.366 ± 0.036 0.552 ± 0.074
RK 0.552 ± 0.137 0.732 ± 0.160 0.372 ± 0.042 0.577 ± 0.112

Table 3.7: Subject 14 sensibility table.

The trend of the diffusion metrics for the next subject is quite similar to
the precedent case. In fact, MD and FA boxplots are able to show a significant
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distinction only for the Tumor Non-enhancing zone, while the Tumor Oedema
exhibits only a different value distribution. Contrarily, kurtosis metrics can
assess two different groups of tissues. Specifically, MK and RK boxplots identify
a valuable separation between the two couples of tumoral tissue composed by
Tumor Necrosis and Enhancing, and Tumor Non-enhancing and Oedema. In
this case, RK results to be slightly more sensible compared to MK.

Figure 3.15: Subject 17 MD and FA region-specific tumor boxplots.

Figure 3.16: Subject 17 MK and RK region-specific tumor boxplots.

Metric Necrosis Enhancing Non-Enhancing Oedema
Subject 17 Median ± std Median ± std Median ± std Median ± std

FA 0.278 ± 0.091 0.277 ± 0.101 0.055 ± 0.038 0.251 ± 0.104
MD 1.081 ± 0.211 1.146 ± 0.253 2.280 ± 0.449 1.246 ± 0.252
MK 0.528 ± 0.122 0.544 ± 0.108 0.460 ± 0.087 0.526 ± 0.107
RK 0.533 ± 0.158 0.588 ± 0.129 0.462 ± 0.097 0.543 ± 0.152

Table 3.8: Subject 17 sensibility table.

For the following individual, diffusion metrics are to be considered more
reliable compared to the kurtosis ones. In fact, both MD and FA can distinguish
the Tumor Enhancing and Non-enhancing regions from the rest of the tumoral
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tissue. A subtle change also can be noted between Tumor Necrosis and Oedema,
but not significant. Concering the kurtosis metrics instead, MK and RK are
both only able to separate the Tumor Non-enhancing area from the other ones,
and only slight differences can be noted among the Tumor Necrosis, Enhancing
and Oedema zones.

Figure 3.17: Subject 19 MD and FA region-specific tumor boxplots.

Figure 3.18: Subject 19 MK and RK region-specific tumor boxplots.

Metric Necrosis Enhancing Non-Enhancing Oedema
Subject 19 Median ± std Median ± std Median ± std Median ± std

FA 0.198 ± 0.052 0.146 ± 0.077 0.043 ± 0.020 0.187 ± 0.083
MD 1.558 ± 0.221 1.459 ± 0.305 3.303 ± 0.223 1.648 ± 0.281
MK 0.504 ± 0.042 0.562 ± 0.071 0.363 ± 0.026 0.505 ± 0.083
RK 0.535 ± 0.041 0.562 ± 0.076 0.375 ± 0.027 0.562 ± 0.137

Table 3.9: Subject 19 sensibility table.

The last included subject shows a similar differentiation trend compared
to the previous individual. In fact, MD only provides a significant distinc-
tion for the Tumor Non-enhancing region, while FA is effectively differentiating
both Tumor Non-enhancing and Oedema areas. Regarding the kurtosis metrics,
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which show a similar value distribution trend, are able to separate the Tumor
Necrosis and Enhancing tissues, while there is only a change between Tumor
Non-enhancing and Oedema zones in terms of value distribution.

Figure 3.19: Subject 20 MD and FA region-specific tumor boxplots.

Figure 3.20: Subject 20 MK and RK region-specific tumor boxplots.

Metric Necrosis Enhancing Non-Enhancing Oedema
Subject 20 Median ± std Median ± std Median ± std Median ± std

FA 0.085 ± 0.031 0.121 ± 0.055 0.064 ± 0.035 0.184 ± 0.076
MD 1.501 ± 0.243 1.487 ± 0.298 1.988 ± 0.581 1.564 ± 0.264
MK 0.473 ± 0.054 0.579 ± 0.088 0.525 ± 0.123 0.574 ± 0.090
RK 0.504 ± 0.056 0.607 ± 0.101 0.548 ± 0.127 0.654 ± 0.139

Table 3.10: Subject 20 sensibility table.
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3.2 Network analysis

The results of the microparameters network analysis are showed in this section.
First of all, the diffusion and diffusion kurtosis connectivity matrices display an
evident clustered configuration that reveals the different brain functional net-
works. In particular, this kind of pattern is more observable for MD and MK
matrices that can well capture the diffusion dynamics in the gray matter cortical
regions. Contrarily, FA and RK, being metrics of white matter integrity esti-
mation, are less able to identify the brain functional block structures. However,
the network analysis was carried out for all the metrics computed in order to
inspect all the different possible insights each measure can provide. For each
metric, network degree, betweenness and eigenvector centrality measures were
extracted to identify brain hubs, bridges and the nodes with high transitive
influence on others, respectively. For each of these network metrics, the top 5
high-scoring nodes were reported in tables to have also a functional reference
for the different network configurations considered.

Figure 3.21: MD and FA region-specific connectivity matrices.

Figure 3.22: MK and RK region-specific connectivity matrices.
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The first diffusion metric under investigation is FA. Starting from the mea-
sure of degree centrality, is clear that the main hub roles are played by the nodes
belonging to the Dorsal and Ventral Attention networks. However, is important
to include also regions of both Somato-Motor and Default networks. It is also
worth to highlight the fact that four the top 5 scoring hubs are placed in the
right hemisphere (RH) of the brain functional configuration.

Figure 3.23: FA degree connectivity graph.

FA DEGREE CENTRALITY
Top 5 Hubs Degree Functional Network

RH DorsAttn FEF 2 23 Dorsal-Attention
RH Default PFCdPFCm 7 22 Default

RH SomMot 4 22 Somato-Motor
LH DorsAttn Post 3 21 Dorsal-Attention
RH Cont PFCmp 2 20 Control

Table 3.11: FA connectivity degree centrality.
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The situation for the betweenness centrality netowrk organization is similar
to the one presented for the degree. In fact, the main functional bridges for FA
connectivity are represented by regions belonging to the Dorsal-Attention net-
works. Certainly, it is meaningful to include also nodes of Default and Somato-
Motor networks. As noted in the previous network configuration, also here four
of the top 5 scoring nodes are associated to the RH area of the brain.

Figure 3.24: FA betweenness connectivity graph.

FA BETWEENNESS CENTRALITY
Top 5 Betweenness Functional Network

RH DorsAttn PrCv 1 1118 Dorsal-Attention
LH DorsAttn Post 3 1117 Dorsal-Attention

RH Default PFCdPFCm 7 1151 Default
RH SomMot 12 1128 Somato-Motor

RH DorsAttn FEF 2 992 Dorsal-Attention

Table 3.12: FA connectivity betweenness centrality.
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Much different is the network configuration concerning the eigenvector cen-
trality of the FA connectivity graph. In fact, here almost all functional networks
are included in describing the influence of brain regions over others. Specifically,
only the visual and limbic networks are excluded from contributing to delineate
the eigenvector arrangement of the graph. As for the previous FA connectivity
networks, the most involved nodes belong to the RH of the brain.

Figure 3.25: FA eigenvector connectivity graph.

FA EIGENVECTOR CENTRALITY
Top 5 Eigenvector Functional Network

RH DorsAttn FEF 2 1 Dorsal-Attention
RH Default PFCdPFCm 7 0.935 Default

RH SomMot 4 0.912 Somato-Motor
RH Cont PFCmp 2 0.905 Control
LH DorsAttn Post 3 0.851 Dorsal-Attention

Table 3.13: FA connectivity eigenvector centrality.
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Considering the other diffusion metric under investigation, the MD connec-
tivity network reveals different aspects compared to the FA results. In fact, by
looking at the degree MD graph, it is evident that the major hub nodes belong
to the Attention networks, both Dorsal and Ventral. In addition, it is remark-
able to include also brain regions associated to the Somato-Motor and Default
networks. In this case, it is possible to hypothesize that in glioma patients the
Attention, Default and Somato-Motor functional networks activation could by
synchronized, as for rs-fMRI data.

Figure 3.26: MD degree connectivity graph.

MD DEGREE CENTRALITY
Top 5 Hubs Degree Functional Network

LH SalVentAttn Med 1 37 Dorsal-Attention
RH Default Par 2 36 Default
RH SomMot 10 35 Somato-Motor

RH SalVentAttn Med 2 31 Ventral-Attention
LH DorsAttn Post 9 30 Dorsal-Attention

Table 3.14: MD connectivity degree centrality.
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Moving to the betwennees centrality measure extracted from the MD connec-
tivity graph, it is clear from the graphical representation that the main bridge
roles of the network are played by brain regions member of Ventral-Attention,
Somato-Motor and Visual functional networks. In this case, it could be reason-
able to infer that these areas are crucial for the exchange of information in the
whole brain architecture. In addition, it is worth mentioning the importance
of the Default and Dorsal-Attention nodes which are also relevant interchange
vertices.

Figure 3.27: MD betweenness connectivity graph.

MD BETWEENNESS CENTRALITY
Top 5 Betweenness Functional Network

LH SalVentAttn Med 1 1340 Ventral-Attention
RH SomMot 11 1269 Somato-Motor

RH Vis 2 1029 Visual
RH Default Par 3 888 Default

RH DorsAttn FEF 2 805 Dorsal-Attention

Table 3.15: MD connectivity betweenness centrality.

53



Regarding the eigenvector centrality estimation extrapolated from the MD
connectivity network, it has to be highlighted the fact that the most influent
brain regions are mainly associated to Somato-Motor and Default functional
networks. These results may suggest that these brain regions are to be con-
sidered the most important for the functional activation influence, originating
a ripple stimulating effect also on the other functional connected networks and
causing their partial activation. Along with the above mentioned networks,
the Ventral-Attention and Control areas are to be included in the noteworthy
findings, even if they have a minor contribution to the chain activation effects.

Figure 3.28: MD eigenvector connectivity graph.

MD EIGENVECTOR CENTRALITY
Top 5 Eigenvector Functional Network

RH SomMot 10 1 Somato-Motor
RH Default Par 2 0.884 Default

LH SalVentAttn Med 1 0.850 Ventral-Attention
RH SalVentAttn Med 2 0.825 Ventral-Attention

RH Cont Par 1 0.819 Control

Table 3.16: MD connectivity eigenvector centrality.
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Moving to the kurtosis metrics, the MK connectivity graph reveals a sim-
ilar hubs identification compared to the MD estimation. In fact, a part from
the peculiar degree score, the most important nodes correspond with the same
functional networks found in the MD graph, specifically the Dorsal and Ventral-
Attention networks, along with Default and Somato-Motor functional areas.
Contrarily to MD degree graph, for MK the top 5 scoring hubs principally be-
long to the brain left hemispher (LH), showing how the MK metric provides an
integration of information concerning the brain network functional configura-
tion. Also in this context it is possible to deduce that these regions could have
synchronized activation similar to the one investigated in fMRI investigations.

Figure 3.29: MK degree connectivity graph.

MK DEGREE CENTRALITY
Top 5 Hubs Degree Functional Network

LH SalVentAttn Med 1 11 Dorsal-Attention
RH Default Temp 4 10 Default

LH SomMot 2 9 Somato-Motor
LH SalVentAttn FrOperIns 4 9 Ventral-Attention

LH SomMot 11 8 Somato-Motor

Table 3.17: MK connectivity degree centrality.
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Considering the betweenness centrality measure extracted from the MK con-
nectivity graph, it is interesting to underline the fact that the key bridges nodes
belong mainly to the Dorsal-Attention, Somato-Motor and Visual functional
networks. As hypothesised for MD, which shares a similar betweenness top 5
scoring regions, these areas may be the most involved in the information signal
transfer through the entire brain network configuration. Differently from MD
betweenness connectivity, here the Default network nodes are not significantly
contributing to cover bridge roles in this type of architecture.

Figure 3.30: MK betweenness connectivity graph.

MK BETWEENNESS CENTRALITY
Top 5 Betweenness Functional Network

LH DorsAttn Post 6 1707 Dorsal-Attention
LH SomMot 2 1560 Somato-Motor

RH DorsAttn Post 7 1295 Dorsal-Attention
RH Vis 8 1170 Visual

LH SalVentAttn FrOperIns 4 614 Ventral-Attention

Table 3.18: MK connectivity betweenness centrality.
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Contrarily to MD eigenvector results, in which the top 5 central nodes were
distributed among four different functional networks, for MK there is an almost
complete overtaking of the Somato-Motor functional network over the others. It
is also clear from the graphical representation that the Limbic and Visual areas
are not so influent in the activation pattern of the brain. On the other hand,
the Default and Somato-Motor regions may be the mainly activation regulators
of the brain functional activity, followed by the Attention networks, both Dorsal
and Ventral, and the Control areas.

Figure 3.31: MK eigenvector connectivity graph.

MK EIGENVECTOR CENTRALITY
Top 5 Eigenvector Functional Network

RH Default Temp 4 1 Default
RH SomMot 2 0.961 Somato-Motor
RH SomMot 13 0.888 Somato-Motor
RH SomMot 15 0.888 Somato-Motor

LH DorsAttn Post 10 0.888 Dorsal-Attention

Table 3.19: MK connectivity eigenvector centrality.
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Concerning the last kurtosis metric taken into consideration, the RK connec-
tivity graph shows some similar results compared to the FA network. In particu-
lar, the presence of hubs belonging principally to the Default and Somato-Motor
functional networks is shared by these two metrics, along with the poor degree
score showed by Visual and Control areas. However, contrarily to FA degree
connectivity graph, for RK there is a hub distribution mainly concentrated on
the LH of the brain, as it can be clearly seen from the top 5 scoring hubs of
the RK degree network. Being both FA and RK measures of white matter tract
integrity, no inferences on the activation synchronization can be made, but they
offer different insights to be integrated if a comprehensive view is desired.

Figure 3.32: RK degree connectivity graph.

RK DEGREE CENTRALITY
Top 5 Hubs Degree Functional Network

LH Default PFC 9 19 Default
LH SalVentAttn Med 2 14 Ventral-Attention
RH Default Temp 4 14 Default

LH SomMot 2 12 Somato-Motor
LH SalVentAttn FrOperIns 4 12 Ventral-Attention

Table 3.20: RK connectivity degree centrality.
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Regarding the betweenness estimation extracted from the RK graph, it can
be noticed a resemblance with the FA output results. In fact, also here there
main bridge roles are played by Dorsal-,Ventral-Attention and Default functional
networks nodes. On the other hand, in the top 5 betweenness scoring vertices,
RK connectivity identifies the principal interconnection region in the Control
network area, while for FA this node belong to the Dorsal-Attention functional
zone. In addition, it is evident from the graphical representation that the Default
network contributes significantly for the architecture interconnection.

Figure 3.33: RK betweenness connectivity graph.

RK BETWEENNESS CENTRALITY
Top 5 Betweenness Functional Network

RH Cont Par 2 1351 Control
RH DorsAttn Post 2 1327 Dorsal-Attention

LH SomMot 10 1281 Somato-Motor
LH SalVentAttn FrOperIns 2 8 1079 Ventral-Attention

LH Default Temp 4 1051 Default

Table 3.21: RK connectivity betweenness centrality.
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To conclude the network analysis of the RK connectivity graph, the eigen-
vector centrality measure was also computed. It is clear not only from the
graphical representation, but also from the reported top 5 scoring nodes, that
the most influent nodes belong almost exclusively to the Default and Somato-
Motor functional networks. This behaviour is much different compared to the
results obtained for FA, therefore it may be reasonable to assume that RK
outputs could bring additional information to be integrated in order to have a
satisfactory overview of the network connections, as for the FA and RK degree
centrality measure.

Figure 3.34: RK eigenvector connectivity graph.

RK EIGENVECTOR CENTRALITY
Top 5 Eigenvector Functional Network

LH Default PFC 9 1 Default
LH Default Temp 0.770 1051 Default

LH SomMot 2 0.761 Somato-Motor
RH SomMot 2 0.714 Somato-Motor

LH SalVentAttn Med 2 0.680 Ventral-Attention

Table 3.22: RK connectivity eigenvector centrality.
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Finally, a particular insight is given by the combination of MD and MK
connectivity graphs. In fact, by keeping only the connections identified by
both MD and MK connectivity matrices, it is possible to obtain the combined
network configuration. As for all the diffusion and diffusion kurtosis metrics,
also in this context the degree, betweenness and eigenvector centrality measures.
Starting from the degree centrality, the intragration of the diffusion connectivity
graphs returns the hypothesis of synchronized activation mainly of the Dorsal-
Attention, Default and Somato-Motor functional networks. This is in line with
both of the output results found for both MD and MK, leading to the conclusion
that these areas could operate simultaneously, given that a similar diffusion
pattern could mean a high activation correlation.

Figure 3.35: MD and MK degree connectivity graph.

MD and MK DEGREE CENTRALITY
Top 5 Hubs Degree Functional Network

LH SalVentAttn Med 1 43 Dorsal-Attention
RH Default Par 2 40 Default
RH SomMot 10 39 Somato-Motor

RH DorsAttn Post 3 33 Dorsal-Attention
RH SalVentAttn TempOccPar 33 Ventral-Attention

Table 3.23: MD and MK connectivity degree centrality.
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Moving to the betweenness centrality measure combination, this result to
be a bit different compared to the merged results of MD and MK singularly.
In fact, the Visual network, which was a key bridge area for both MD and
MK connectivity graphs, does not contribute so much in the information signal
interchange in the combined network configuration. However, the prevalence of
the Dorsal-Attention and Default and functional networks as main activation
information exchange areas, suggests that these could be the more important
linking brain regions for correlated triggering.

Figure 3.36: MD and MK betweenness connectivity graph.

MD and MK BETWEENNESS CENTRALITY
Top 5 Betweenness Functional Network

LH SalVentAttn Med 1 1301 Dorsal-Attention
RH Limbic OFC 2 996 Limbic
LH Default PFC 9 899 Default
RH Default Par 2 726 Default

LH Default pCunPCC 3 696 Default

Table 3.24: MD and MK connectivity betweenness centrality.
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Finally, the combined eigenvector results show almost a perfect intersection
of the MD and MK findings combination. In fact, if in MK the main influent
brain network is the Somato-Motor, along with the Default area, and in MD
there is also the important presence of the Ventral-Attention region, here the
integration of this different results leads to the outcome of identifying as main
activation influence regions both the Somato-Motor and Default functional net-
works, followed by the Ventral and Dorsal Attention areas. These findings may
suggest not only that the above mentioned regions could influence the trigger-
ing chain among themselves and also the other functional zones of the brain,
but also that the nodes belonging to these functional networks have the highest
transitive activation control on the other brain areas.

Figure 3.37: MD and MK eigenvector connectivity graph.

MD and MK EIGENVECTOR CENTRALITY
Top 5 Eigenvector Functional Network

RH SomMot 10 1 Somato-Motor
RH Default Par 2 0.902 Default

LH SalVentAttn Med 1 0.874 Ventral-Attention
RH DorsAttn Post 3 0.834 Dorsal-Attention

RH SalVentAttn TempOccPar 3 0.808 Ventral-Attention

Table 3.25: MD and MK connectivity eigenvector centrality.
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Chapter 4

Discussion

4.1 Sensibility Analysis

Concerning the first subject under investigation, the boxplots of the diffusion
metrics, both revealed a clear distinction of Tumor Non-enhancing region from
the regions of Tumor Enhancing and Oedema areas. More specifically, FA and
MD, were not able to separate the Tumor Enhancing and Oedema regions, both
in terms of difference in values and distribution. On the other hand, MK and
RK boxplots are very similar to each other, showing how the value distribu-
tion of the Tumor Oedema area is much different compared to the Enhancing
and Non-enhancing sections. Moving to the second individual, MD and FA box-
plots are more capable of distinguishing the three tumoral regions, even if with a
marginal variation from the precedent case. The same happens when evaluating
the kurtosis metrics, for which the boxplots highlight not only the similarity of
classification of MK and RK, but also the high dissimilarity of the distribution
of the values in the three tissue involved. For the third patient, MD boxplots
are not able to provide a significant separation among the different tissues and
only carry information about the value distribution. Contrarily, FA seems to
be a more valuable measure to distinguish the diverse tumoral tissue area. MK
furnish an acceptable differentiation of Tumor Non-enhancing region compared
to Enhancing and Oedema areas, while RK allows for a complete distinction of
all diseased tissue taken into consideration, resulting in the most reliable sensi-
bility index. To conclude the discussion of the sensibility analysis of the subjects
with 3 different tumor tissues, only MD and FA can provide an acceptable dif-
ferentiation performance. MK and RK instead cannot separate the tissue types
in an acceptable manner, but they give important information about the value
distribution in the diseased regions. The other remaining results regard the sen-
sibility on all the four tumoral tissue types. In the first case, diffusion metrics
can provide a valuable diversification and the kurtosis measures exhibit more or
less the same trend. In particular, FA oxplots produce an even more accurate
tumoral tissue differentiation, resulting to be a reliable sensibility index, while
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MK shows a good distinction property among Tumor Necrosis, Enhancing and
Non-enhancing regions, while presenting only a subtle contrast between Tumor
Necrosis and Oedema area. Concerning the second complete individual, the
kurtosis metrics showed a higher sensibility compared to the diffusion indices.
In fact, MK and RK, which show more or less the same value and distribution
of the different diseased tissues, are able to provide a reliable differentiation and
may be used for the identification of the tumor region-specific tissue. In the
following subject, the metrics sensibility quite resembles the situation seen for
the previous individual. In fact, the only valuable differentiation showed by MD
boxplots is the one of the Tumor Non-enhancing region from the other three
tumor areas. Kurtosis metrics instead, sis metrics exhibit a similar classifica-
tion between each other. Precisely, both MK and RK boxplots reveal significant
differences in the Tumor Non-enhancing area compared to the remaining three
tissues. A similar situation is displyed by the sensibility assessment for the
following individual. In fact, MD and FA boxplots are able to show a signifi-
cant distinction only for the Tumor Non-enhancing zone. Contrarily, MK and
RK boxplots identify a valuable separation between the two couples of tumoral
tissue composed byTumor Necrosis and Enhancing, and Tumor Non-enhancing
and Oedema. In this case, RK results to be slightly more sensible compared
to MK. For the second-last investigated patient diffusion metrics are to be con-
sidered more reliable compared to the kurtosis ones. In fact, both MD and FA
can distinguish the Tumor Enhancing and Non-enhancing regions from the rest
of the tumoral tissue. Concering the kurtosis metrics instead, MK and RK are
both only able to separate the Tumor Non-enhancing area from the other ones,
and only slight differences can be noted among the Tumor Necrosis, Enhancing
and Oedema zones. The last included subject shows a similar differentiation
trend compared to the previous individual.

4.2 Network Analysis

Starting from the raw connectivity matrices, both the diffusion and kurtosis
microparameters show evident clustered configuration that reveals the different
brain functional networks. In particular, this kind of pattern is more observable
for MD and MK matrices that can well capture the diffusion dynamics in the
gray matter cortical regions. FA and RK, being metrics of white matter integrity
estimation, are less able to identify the brain functional block structures, even
if they are still notable. In addition, the p-value correlation corrected network
reveals some interesting outcomes. Starting from FA degree measure, it shows
how the most important hubs are placed in the right hemisphere of the brain
functional organization. In particular, they belong to the Attention, Default
and Somato-Motor networks, which are to be considered the most triggered ar-
eas. Regarding FA betweenness centrality results, these are found to be very
similar to the previous mentioned case. On the other hand, much different is
the network configuration concerning the eigenvector centrality of the FA con-
nectivity graph. In fact, here almost all functional networks are included in
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describing the influence of brain regions over others, excluding only the Limbic
and Visual functional areas. Moving to the MD connectivity analysis results,
here it is possible to make inference regarding the activation synchronization
and influence, along with activation information signal transfer, given by de-
gree, eigenvector and betweenness centrality measures. Starting from the hubs
identification, it is clear that the major hub nodes belong to the Attention
networks, both Dorsal and Ventral, followed by Somato-Motor and Default net-
works. Given this situation, it may be probable that in glioma patients the
Attention, Default and Somato-Motor functional networks activation could by
synchronized. Moving to the betwennees centrality measure extracted from the
MD connectivity graph, it is evident from the graphical representation that
the main bridge roles of the network are played by brain regions member of
Ventral-Attention, Somato-Motor and Visual functional networks. In this con-
text, it is also noteworthy to mention the Default and Dorsal-Attention areas.
Concerning the eigenvector estimated scores, it has to be highlighted the fact
that the most influent brain regions are mainly associated to Somato-Motor
and Default functional networks. These findings may signify that the above
mentioned brain regions could be the most important in terms of activation
influence, causing the partial triggering also of the connected functional areas.
In addition, a minor contribution is given by the Ventral-Attention and Control
networks. The second part of the network analysis discussion regards the kur-
tosis metrics connectivity graphs. Given that the MK metric is suitable also for
model the diffusion dynamics in GM regions, it has to be highlighted that MK
connectivity results may give the possibility to hypothesize functional activation
triggering patterns, as said for MD findings. Starting from MK degree central-
ity outcomes, the most important nodes correspond with the same functional
networks found in the MD graph, specifically the Dorsal and Ventral-Attention
networks, along with Default and Somato-Motor functional areas. However, for
MK the top 5 scoring hubs principally belong to the brain left hemispher (LH),
showing how the MK metric provides an integration of information concerning
the brain network synchronized functional configuration. Also for the betwen-
ness measure MD shares a similar top 5 scoring regions, suggesting that the
Dorsal-Attention, Somato-Motor and Visual areas may be covering the most
important roles for the activation information signal transfer. Concerning the
last centrality measure of MK connectivity graph, the eigenvector scores show
that there is a different distribution pattern compared to the one of MD. In
fact, for MK there is a completely dominance of the Somato-Motor regions over
the others, in term of activation influence. Default and Somato-Motor func-
tional networks may be the mainly activation regulators of the brain functional
activity, followed by the Attention networks, both Dorsal and Ventral, and the
Control areas. Taking into consideration the last kurtosis metric connectivity
graph, RK in general shows some similar results compared to the ones obtained
for FA. In fact, regarding the degree centrality measures, the top 5 scoring
hubs belong principally to the Default and Somato-Motor functional networks,
along with the poor degree contribution showed by Visual and Control areas.
However, contrarily to FA degree connectivity graph, for RK there is a hub dis-
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tribution mainly concentrated on the LH of the brain. Unfortunately, as for FA,
also in this context no inferences on the activation synchronization can be made,
but they offer different insights that need to be taken into consideration for a
broader analysis. Also in the betweenness estimation of RK connectivity graph
a resemblance with FA results can be noticed. In fact, the main bridge roles
are played by Dorsal-,Ventral-Attention and Default functional networks nodes.
However, RK connectivity identifies the principal interconnection region in the
Control network area, while for FA this node belong to the Dorsal-Attention
functional zone. For both FA and RK, the Default network contributes sig-
nificantly for the architecture interconnection. From the eigenvector centrality
measure, it is evident that the most influent nodes belong almost exclusively to
the Default and Somato-Motor functional networks. This pattern is much dif-
ferent compared to the results obtained for FA, therefore it may be reasonable
to assume that RK outputs could bring additional information to the overall
diffusion microstructural connectivity analysis. Finally, peculiar insights coulb
be given by the network organization built from the combination of both MD
and MK connectivity matrices. Concerning the degree centrality measure, the
results suggest that the mainly synchronized regions correspond to the Dorsal-
Attention, Default and Somato-Motor functional networks. This is in line with
both of the output results found for both MD and MK, leading to the conclu-
sion that these areas could operate simultaneously. Moving to the betweenness
centrality measure combination, the prevalence of the Dorsal-Attention and De-
fault and functional networks as main activation information exchange areas,
suggests that these could be the more important linking brain regions for cor-
related triggering. However, he Visual network, which was a key bridge area
for both MD and MK connectivity graphs, does not contribute so much in the
information signal interchange in the combined network configuration. Finally,
the eigenvector estimation returns the integration of the different results from
MD and MK, leading to the outcome of identifying as main activation influ-
ence regions both the Somato-Motor and Default functional networks, followed
by the Ventral and Dorsal Attention areas. These findings may indicate that
the nodes belonging to the functional networks just mentioned have the highest
transitive activation control on the other brain areas.
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Chapter 5

Conclusions

This thesis proposes the innovative idea of microparameters connectivity inves-
tigation. This means that, thanks to the exploitation of a new neural network
optimization-based fitting model, it was possible to evaluate the diffusion mi-
croparameters pattern, of a pool of selected subjects affected by de novo glioma,
through graph theory methodologies.

By virtue of diffusion MRI, which is one of the most valuable tools for ex-
plore the human brain structural composition, the DKI reconstruction model
was applied in order to provide a broader description of the brain microstruc-
tural organization, by the assessment of both diffusion and diffusion kurtosis
metrics. In particular, the optimized version of this model allows to compute
reliable estimations thanks both to the regularization and stabilization terms
that contribute to the final parameters computation.

Then, knowing the potential application of DKI in the context of gliomas, a
tumor-specific sensibility analysis was carried out to test the accuracy capability
of the implemented model. To this end, both diffusion and diffusion kurtosis
indices were extracted and evaluated for the different types of the tumor tissue.

Certainly the results of this sensibility study were biased not only by the
different sizes of the tumor tissue types, but also by the diverse pathological
situation of the included individuals, but it revealed some interesting findings
that may inspire the future use of this kind of methodology to furnish more
precise diagnostic and prognostic assessments.

In addition, the computed indices maps were utilized to build the diffusion
microstructural connectivity matrices, which are a new investigation method to
be correlated with the human brain functional activity. In fact, by capturing the
diffusion pattern of the cortical brain regions and implementing a multi-subject
correlation study, it is possible to evaluate the brain functional activation from
a network prospective, especially for the diffusion and kurtosis metrics that can
model the water molecules displacement dynamics in grey matter areas.

Therefore, the brain diffusion microstructural network representation was
used to extract meaningful centrality measures to be associated mainly with
synchronized and influenced functional triggering. Unfortunately, this project
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does not analyze the correlation between this network model procedure and
functional MRI data, but the obtained results are interpretable enough to make
reasonable inferences.

To conclude, future brain disease investigations should include the diffu-
sion MRI data in order to have additional and valuable information regarding
the dynamics of the pathology taken into consideration. In particular, both
structural and region-specific diffusion microstuctural connectivity, along with
network analysis, are emerging methodologies which are increasingly contribut-
ing to help neurologists and neuroradiologists in identifying not only patient-
designed therapies, but also suitable prevention strategies.

69



Bibliography

[1] J. A. Schwartzbaum, J. L. Fisher, K. D. Aldape, and M. Wrensch, “Epi-
demiology and molecular pathology of glioma,” Nature clinical practice
Neurology, vol. 2, no. 9, pp. 494–503, 2006.

[2] M. Weller, W. Wick, K. Aldape, M. Brada, M. Berger, S. M. Pfister,
R. Nishikawa, M. Rosenthal, P. Y. Wen, R. Stupp, et al., “Glioma,” Nature
reviews Disease primers, vol. 1, no. 1, pp. 1–18, 2015.

[3] A. Perry and P. Wesseling, “Histologic classification of gliomas,” Handbook
of clinical neurology, vol. 134, pp. 71–95, 2016.

[4] W. B. Pope and G. Brandal, “Conventional and advanced magnetic reso-
nance imaging in patients with high-grade glioma,” The quarterly journal of
nuclear medicine and molecular imaging: official publication of the Italian
Association of Nuclear Medicine (AIMN)[and] the International Associa-
tion of Radiopharmacology (IAR),[and] Section of the Society of..., vol. 62,
no. 3, p. 239, 2018.

[5] K. O. Almansory and F. Fraioli, “Combined pet/mri in brain glioma imag-
ing,” British Journal of Hospital Medicine, vol. 80, no. 7, pp. 380–386,
2019.

[6] W. Taal, J. E. Bromberg, and M. J. van den Bent, “Chemotherapy in
glioma,” CNS oncology, vol. 4, no. 3, pp. 179–192, 2015.

[7] D. N. Louis, A. Perry, P. Wesseling, D. J. Brat, I. A. Cree, D. Figarella-
Branger, C. Hawkins, H. Ng, S. M. Pfister, G. Reifenberger, et al., “The
2021 who classification of tumors of the central nervous system: a sum-
mary,” Neuro-oncology, vol. 23, no. 8, pp. 1231–1251, 2021.

[8] D. N. Louis, E. C. Holland, and J. G. Cairncross, “Glioma classification: a
molecular reappraisal,” The American journal of pathology, vol. 159, no. 3,
p. 779, 2001.

[9] P. Y. Wen and D. A. Reardon, “Progress in glioma diagnosis, classification
and treatment,” Nature Reviews Neurology, vol. 12, no. 2, pp. 69–70, 2016.

70



[10] A. Claes, A. J. Idema, and P. Wesseling, “Diffuse glioma growth: a guerilla
war,” Acta neuropathologica, vol. 114, no. 5, pp. 443–458, 2007.

[11] N. A. O. Bush, S. M. Chang, and M. S. Berger, “Current and future strate-
gies for treatment of glioma,” Neurosurgical review, vol. 40, no. 1, pp. 1–14,
2017.

[12] R. D. Tien, G. Felsberg, H. Friedman, M. Brown, and J. MacFall, “Mr
imaging of high-grade cerebral gliomas: value of diffusion-weighted echo-
planar pulse sequences.,” AJR. American journal of roentgenology, vol. 162,
no. 3, pp. 671–677, 1994.

[13] T. Sugahara, Y. Korogi, M. Kochi, I. Ikushima, Y. Shigematu, T. Hirai,
T. Okuda, L. Liang, Y. Ge, Y. Komohara, et al., “Usefulness of diffusion-
weighted mri with echo-planar technique in the evaluation of cellularity in
gliomas,” Journal of Magnetic Resonance Imaging: An Official Journal of
the International Society for Magnetic Resonance in Medicine, vol. 9, no. 1,
pp. 53–60, 1999.

[14] K. M. Schmainda, “Diffusion-weighted mri as a biomarker for treatment
response in glioma,” CNS oncology, vol. 1, no. 2, pp. 169–180, 2012.

[15] C. Geer, J. Simonds, A. Anvery, M. Chen, J. Burdette, M. Zapadka, T. El-
lis, S. Tatter, G. Lesser, M. Chan, et al., “Does mr perfusion imaging
impact management decisions for patients with brain tumors? a prospec-
tive study,” American journal of neuroradiology, vol. 33, no. 3, pp. 556–562,
2012.

[16] Y. Bai, Y. Lin, J. Tian, D. Shi, J. Cheng, E. M. Haacke, X. Hong, B. Ma,
J. Zhou, and M. Wang, “Grading of gliomas by using monoexponential, bi-
exponential, and stretched exponential diffusion-weighted mr imaging and
diffusion kurtosis mr imaging,” Radiology, vol. 278, no. 2, pp. 496–504,
2016.

[17] G. A. Gihr, D. Horvath-Rizea, E. Hekeler, O. Ganslandt, H. Henkes, K.-
T. Hoffmann, C. Scherlach, and S. Schob, “Histogram analysis of diffu-
sion weighted imaging in low-grade gliomas: in vivo characterization of
tumor architecture and corresponding neuropathology,” Frontiers in On-
cology, vol. 10, p. 206, 2020.

[18] G. Gihr, D. Horvath-Rizea, E. Hekeler, O. Ganslandt, H. Henkes, K.-T.
Hoffmann, C. Scherlach, and S. Schob, “Diffusion weighted imaging in high-
grade gliomas: A histogram-based analysis of apparent diffusion coefficient
profile,” Plos one, vol. 16, no. 4, p. e0249878, 2021.

[19] J. Cluceru, Y. Interian, J. J. Phillips, A. M. Molinaro, T. L. Luks,
P. Alcaide-Leon, M. P. Olson, D. Nair, M. LaFontaine, A. Shai, et al.,
“Improving the noninvasive classification of glioma genetic subtype with
deep learning and diffusion-weighted imaging,” Neuro-oncology, vol. 24,
no. 4, pp. 639–652, 2022.

71



[20] J. Jefferys and A. Cooper, “Brain basics,” The Human Brain and Its Dis-
orders, 2007.

[21] V. P. Grover, J. M. Tognarelli, M. M. Crossey, I. J. Cox, S. D. Taylor-
Robinson, and M. J. McPhail, “Magnetic resonance imaging: principles
and techniques: lessons for clinicians,” Journal of clinical and experimental
hepatology, vol. 5, no. 3, pp. 246–255, 2015.

[22] D. Le Bihan, J.-F. Mangin, C. Poupon, C. A. Clark, S. Pappata, N. Molko,
and H. Chabriat, “Diffusion tensor imaging: concepts and applications,”
Journal of Magnetic Resonance Imaging: An Official Journal of the In-
ternational Society for Magnetic Resonance in Medicine, vol. 13, no. 4,
pp. 534–546, 2001.

[23] E. O. Stejskal and J. E. Tanner, “Spin diffusion measurements: spin echoes
in the presence of a time-dependent field gradient,” The journal of chemical
physics, vol. 42, no. 1, pp. 288–292, 1965.

[24] L. J. O’Donnell and C.-F. Westin, “An introduction to diffusion tensor
image analysis,” Neurosurgery Clinics of North America, vol. 22, no. 2,
pp. 185–196, 2011. Functional Imaging.

[25] E. X. Wu and M. M. Cheung, “Mr diffusion kurtosis imaging for neural
tissue characterization,” NMR in Biomedicine, vol. 23, no. 7, pp. 836–848,
2010.

[26] J. H. Jensen, J. A. Helpern, A. Ramani, H. Lu, and K. Kaczynski, “Dif-
fusional kurtosis imaging: the quantification of non-gaussian water diffu-
sion by means of magnetic resonance imaging,” Magnetic Resonance in
Medicine: An Official Journal of the International Society for Magnetic
Resonance in Medicine, vol. 53, no. 6, pp. 1432–1440, 2005.

[27] A. J. Steven, J. Zhuo, and E. R. Melhem, “Diffusion kurtosis imaging: an
emerging technique for evaluating the microstructural environment of the
brain,” American journal of roentgenology, vol. 202, no. 1, pp. W26–W33,
2014.

[28] R. Jiang, J. Jiang, L. Zhao, J. Zhang, S. Zhang, Y. Yao, S. Yang, J. Shi,
N. Shen, C. Su, et al., “Diffusion kurtosis imaging can efficiently assess the
glioma grade and cellular proliferation,” Oncotarget, vol. 6, no. 39, p. 42380,
2015.

[29] A. Tonoyan, I. Pronin, D. Pitshelauri, L. Shishkina, L. Fadeeva, E. Pogos-
bekyan, N. Zakharova, E. Shults, N. Khachanova, V. Kornienko, et al., “A
correlation between diffusion kurtosis imaging and the proliferative activ-
ity of brain glioma,” Zh Vopr Neirokhir Im NN Burdenko, vol. 79, no. 6,
pp. 5–14, 2015.

72



[30] F. Li, W. Shi, D. Wang, Y. Xu, H. Li, J. He, and Q. Zeng, “Evaluation of
histopathological changes in the microstructure at the center and periphery
of glioma tumors using diffusional kurtosis imaging,” Clinical Neurology
and Neurosurgery, vol. 151, pp. 120–127, 2016.

[31] J.-M. Hempel, S. Bisdas, J. Schittenhelm, C. Brendle, B. Bender, H. Wass-
mann, M. Skardelly, G. Tabatabai, S. C. Vega, U. Ernemann, et al., “In
vivo molecular profiling of human glioma using diffusion kurtosis imaging,”
Journal of neuro-oncology, vol. 131, no. 1, pp. 93–101, 2017.

[32] X.-f. Wu, X. Liang, X.-c. Wang, J.-b. Qin, L. Zhang, Y. Tan, and
H. Zhang, “Differentiating high-grade glioma recurrence from pseudopro-
gression: Comparing diffusion kurtosis imaging and diffusion tensor imag-
ing,” European Journal of Radiology, vol. 135, p. 109445, 2021.

[33] Y. Li, M. M. Kim, D. R. Wahl, T. S. Lawrence, H. Parmar, and Y. Cao,
“Survival prediction analysis in glioblastoma with diffusion kurtosis imag-
ing,” Frontiers in Oncology, vol. 11, 2021.

[34] J. Qiu, K. Deng, P. Wang, C. Chen, Y. Luo, S. Yuan, and J. Wen, “Ap-
plication of diffusion kurtosis imaging to the study of edema in solid and
peritumoral areas of glioma,” Magnetic resonance imaging, vol. 86, pp. 10–
16, 2022.

[35] M. Van Steen, “Graph theory and complex networks,” An introduction,
vol. 144, 2010.

[36] F. A. Rodrigues, “Network centrality: an introduction,” in A mathematical
modeling approach from nonlinear dynamics to complex systems, pp. 177–
196, Springer, 2019.

[37] F. V. Farahani, W. Karwowski, and N. R. Lighthall, “Application of graph
theory for identifying connectivity patterns in human brain networks: a
systematic review,” frontiers in Neuroscience, vol. 13, p. 585, 2019.

[38] O. Sporns, D. R. Chialvo, M. Kaiser, and C. C. Hilgetag, “Complex net-
works: small-world and scale-free architectures,” Trends in Cognitive Sci-
ences, vol. 9, no. 8, pp. 418–425, 2004.

[39] O. Sporns, G. Tononi, and R. Kötter, “The human connectome: a struc-
tural description of the human brain,” PLoS computational biology, vol. 1,
no. 4, p. e42, 2005.

[40] M. Rubinov and O. Sporns, “Complex network measures of brain connec-
tivity: uses and interpretations,” Neuroimage, vol. 52, no. 3, pp. 1059–1069,
2010.

[41] O. Sporns, “Network attributes for segregation and integration in the hu-
man brain,” Current opinion in neurobiology, vol. 23, no. 2, pp. 162–171,
2013.

73



[42] M. P. Van Den Heuvel and O. Sporns, “Rich-club organization of the human
connectome,” Journal of Neuroscience, vol. 31, no. 44, pp. 15775–15786,
2011.

[43] O. Sporns, “Graph theory methods: applications in brain networks,” Dia-
logues in clinical neuroscience, 2022.
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