
UNIVERSITÀ DEGLI STUDI DI PADOVA
Dipartimento di Fisica e Astronomia "Galileo Galilei"

Corso di Laurea Magistrale in Fisica

Tesi di Laurea

Controlling foam ageing in viscoelastic media

Relatore Laureanda

Prof. Giampaolo Mistura Chiara Guidolin

Correlatrici

Prof. Anniina Salonen

Prof. Emmanuelle Rio

Anno Accademico 2017/2018





Per aspera ad astra





Acknowledgements

The present thesis is the result of the internship done at LPS laboratory of Université
Paris-Sud in Orsay, France.

First of all, I would like to express my gratitude to my supervisor Prof. Anniina
Salonen for taking me into MMOI research group and giving me the opportunity to
discover the wonderful world of foams. I can not find the right words to thank her for
constantly supporting me with her contagious enthusiasm.

I would like to thank Prof. Emmanuelle Rio as well, for being always ready to kindly
help me and especially for the patience she showed in teaching me how to deal with
Matlab struggles. I am also grateful to all the people of MMOI group for making me
always feel welcome during my stay.

I would like to thank Prof. Giampaolo Mistura, for accepting to be my internal
supervisor and for providing me precious advice which made me understand what I
really want to do after my master degree.

A great thank goes to my mother and my brother, for always leaving me free to
decide about my education. We are the only ones who know the sacrifice we did and
what this degree means to us. I think I will never thank them enough.

I owe the most special thank to Tommaso, for his love and his unconditional support,
for always trusting me and pushing me to do my best even when I was not sure I could
do it. I would have never reached this goal without him by my side.

Finally, I thank myself for my tenacity and determination, which allowed me to never
give up despite all the countless adversities.

i



ii



Contents

Introduction 1

1 Theoretical background 3
1.1 Foam structure at equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Foamability and the role of surfactants . . . . . . . . . . . . . . . . . . . . 5
1.3 Foam ageing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 Drainage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.2 Coalescence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.3 Coarsening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Controlling and arresting foam ageing . . . . . . . . . . . . . . . . . . . . 12
1.5 Avoidance of drainage and coalescence . . . . . . . . . . . . . . . . . . . . 13

1.5.1 The storage modulus . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5.2 Emulsions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Experimental approach 17
2.1 Emulsions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.1.2 Rheology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Foam generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 Measuring the bubble size . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Diffusing Wave Spectroscopy . . . . . . . . . . . . . . . . . . . . . 22
2.3.2 Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 2D foam set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Results 29
3.1 Emulsion viscoelasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Bubble size evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4 Film permeability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Conclusions 61

Bibliography 65

iii





Introduction

A foam can be roughly defined as a dispersion of gas bubbles in a continuous medium.
Everyone meets several kinds of foams in daily life, from whipped-cream to sea "white
horses", from shampoo lather to the head on a pint of beer.

Each foam contains stabilisers, such as surface active molecules, polymers or particles,
which make the bubbles stable by arranging themselves at the gas/liquid interfaces.

This complex system is characterised by a typical cellular structure. The gas bubbles
are tightly packed together, so that the liquid phase is spread in a network of thin films
between neighbouring bubbles, and Plateau borders, that are triangular-shaped channels
made by the intersection of three different films [18].

Thanks to their lightness, their large surface area and their peculiar mechanical
properties [19], foams often represent the best solution for a large number of industrial
applications [6]. Liquid foams are usually preferable to other fluids because they allow to
employ less material, by filling the same volume without decreasing the product effect.
Treating a material with a foam rather than a liquid, leads not only to a product economy
but also to a much less waste to reprocess afterwards. This aspect finds application,
for example, in the decontamination of nuclear power stations and in all those processes
which require a capture of small solid particles, ions or molecules. Furthermore, the large
number of interfaces inside a foam increases enormously the possibilities for molecular
transfer, which has relevance in food industry, where foams are used as strong flavour
enhancers, allowing to reduce salt and sugar contents [9]. Foams ability to quickly fill
large spaces makes them suitable also for fire-fighting, since they rapidly smother the
fire by isolating the source of combustion from oxygen in the air. Finally, liquid foams
are employed as precursors in the production of solid foams for industrial purposes, such
as polyurethane and cellular concrete, but also for our daily life, such as bread, cakes
and meringues.

Foams are intrinsically unstable. During their life, they can undergo three different
mechanisms of destabilisation: drainage, coalescence and coarsening. Drainage is due
to the flow of the liquid through the Plateau borders, driven by gravity, and results
in a dryer foam on the top and a wetter foam on the bottom. Coalescence consists of
the thinning and consequent rupture of the film between neighbouring bubbles. Finally,
coarsening is due to the gas flux between bubbles of different size, driven by the Laplace
pressure difference.
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These ageing processes alter the foam structure and can be a strong limitation,
for example, to the elaboration of solid foams with a controlled morphology, inherited
from their liquid precursors. Since the final solid foam structure depends on the ageing
processes occured during solidification, stable liquid precursors where ageing is slowed
down or arrested are crucial to design materials with controlled bubble size, gas volume
fraction and packing structure.

The desired longevity of a foam is then clearly related to the specific applications,
which call for a thorough understanding of foam stabilisation. This explains the in-
creasing interest in studying the origins of foam ageing mechanisms and the different
possibilities to inhibit them.

Several strategies to obtain highly stable foams have been reported in the scientific
literature. The rate of gravitational drainage can be decreased by increasing the viscosity
of the continuous phase. For this purpose, several studies report the use of complex fluids
such as clay particles [17] or flocculated suspensions [23]. Recently, experimental studies
have been developed in foams where the aqueous phase consists of a polymer hydrogel [8].
When the foam is not too dry, coalescence can be in principle avoided if the surface active
molecules are efficient enough to withstand film rupture. Finally, it has been observed
that the coarsening process can be slowed down either if an insoluble gas is used to form
bubbles or if the continuous phase is made of polymer gels [3].

The purpose of the present thesis is to investigate how the mechanical properties
of the continuous phase impact on foam coarsening, in conditions where drainage and
coalescence can both be neglected. In order to do that, we shall use emulsions as liquid
phase, because of their viscoelasticity, which will be first investigated by rheological
measurements. It will be a preliminary experimental study, since there is a lack of
fundamental studies devoted to foamed emulsions stability.

Traditional microscopy is not suitable for probing the internal structure of three
dimensional foams, because the high number of interfaces scatter light. Moreover, the
study of foams requires the application of non-invasive methods: treatments like dilution,
freezing or drying would result in fact in an irreversible sample damage.

Thus, foamed emulsions will be studied by employing diffusing-wave spectroscopy,
a technique which exploits the strong multiple scattering undergone by transmitted
light to get information about the average bubble size and their rearrangements during
coarsening. Finally, quasi-2D foam imaging experiments will be carried out in order to
estimate the gas permeability of the liquid films between the bubbles.

The present thesis is organised as follows. In the first chapter a theoretical overview
of the foam systems will be presented. We shall first describe the structure of foams at
equilibrium and then explain the main mechanisms of foam ageing, focussing on foam
coarsening either in two or three dimensions. In the second chapter all the experimental
methods employed will be illustrated in detail. Finally, in the third chapter we shall
report and analyse all the results obtained.
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1 Theoretical background

In this chapter, we shall present the scientific background for the basic understanding of
foam systems. We will start from a short description of foam structure at equilibrium.
Before speaking about the different mechanisms of liquid foam destabilization, we will
explain the relevant role of surfactants in foam stability. We will then highlight the main
aspects of foam coarsening, from theoretical prediction to experimental observations in
the literature. Finally, we shall explain how to study coarsening without the effects of
drainage and coalescence, showing the relevance of the mechanical properties of the liquid
phase and justifying our choice to study foamed emulsions.

1.1 Foam structure at equilibrium

Foams are multiscale systems, since they present peculiar structures on different length
scales, ranging from macroscopic to molecular.

At the observer’s scale, a liquid foam appears as a soft, opaque and homogeneous
solid, as shown in figure 1.1 (a). At this macroscopic level its exterior aspect and
properties may be totally characterised by its liquid volume fraction, defined as:

ε = Vliq
Vfoam

(1.1)

that is the ratio between the volume of liquid Vliq and the total volume of the foam Vfoam,
which quantifies the amount of liquid contained in it.

A jump into a millimetric scale shows something more about the structure: as can
be seen in figure 1.1 (b), foams are metastable packings of small soft units, gas bubbles,
whose typical size ranges from 10 µm to 1 cm.

Depending on the liquid fraction, this cellular structure may appear very different.
If ε is higher than a critical value ε∗, the bubbles are spherical and do not touch each
other: this is what is called a bubbly liquid. When ε < ε∗ the bubbles start touching
each other and change their shape into squashed spheres: this is a wet foam. Further
decreasing the liquid fraction, the bubbles start to be polyhedral, giving rise to a dry
foam. The transition from bubbly liquid to wet foam occurs at a precise value of liquid
fraction ε∗ close to 0.36, corresponding to the vanishing of the osmotic pressure.
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By contrast, the transition between wet and dry foam is less well defined: we usually
speak of dry foam when the presence of the liquid plays a negligible role in the observed
phenomenon, typically when ε < 5% [6].

A closer look reveals how the liquid is distributed among the bubbles. Let us first
consider a foam whose liquid fraction is sufficiently small. Here, a foam can be thought
of as a network of thin liquid films that separate neighbouring bubbles, with a thickness
generally between 10 nm and a few µm. Three films intersect along the edges, forming
liquid-carrying channels named Plateau borders after Joseph Plateau (1801 - 1883). They
act as collectors of liquid coming from the films and they have a triangle-shaped cross
section with concave sides, as sketched in figure 1.1 (c). Then four Plateau borders meet
in a junction that is called vertex or node.

The structure of a real foam is not completely disordered: a small group of local
geometric rules, named Plateau’s laws, describes how the bubbles pack together to form
the foam skeleton. In a three-dimensional dry foam the bubble shape is approximately
polyhedral and those rules state that, at equilibrium, three films must join at each
Plateau border at mutual angles of 120o, resulting from the balancing of the surface
tension forces along each film. Likewise, four Plateau borders must form tetrahedral
symmetric vertices, with angles of 109.47o between each other. These angular constraints
are satisfied if the polyhedral bubbles have curved faces and edges [22]. Similar rules
hold also in two dimensions: if the foam is dry enough and approximately monodisperse,
the bubbles assume in average an hexagonal shape.

Descending even more into a nanometric scale, the molecular structure of the in-
terfaces appears. The presence of particular molecules, which position themselves at
the gas/liquid interfaces like in figure 1.1 (d), is essential to the understanding of the
formation and stability of foams, whose specific aspects are better discussed in the next
paragraph.

Figure 1.1: Foam: a multiscale system. These pictures show the typical structures
displayed by foams at different scales. At the observer’s scale (∼10−2−1 m) it appears
like a soft homogeneous solid (a). At a microscopic scale (∼10−4−10−2 m) one can recog-
nise the gas bubbles dispersed in the liquid phase (b) and a closer look (∼10−8−10−4m)
reveals the liquid distribution among them (c). At a molecular scale (∼10−10−10−8m)
one can observe the structure of the gas liquid interfaces (d).
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1.2 Foamability and the role of surfactants

Foams do not form spontaneously, because energy is required to disperse gas in a liquid.
It can be easily observed that not all liquids foam in the same way. They can show
different foamability, that is a qualitative measure of their capacity to produce a foam
by shaking or by injection of air bubbles [6].

To create a new interface of area dA, an amount of energy equal to dE = γdA is
needed, where the proportional factor γ is the surface tension, measured in Nm−1, that
is the force per unit area that the liquid exerts to reduce the interface.
This proportional relation means that the lower the value of γ, the less expensive in
energy is the creation of a new interface, suggesting that a low surface tension should
improve foamability. However, a low surface tension alone does not ensure foam stability.

As we said in the previous paragraph, two neighbouring bubbles within a foam share
a thin film of liquid that appears as a slightly curved facet: this film plays a fundamental
role in the overall stability of the foam. In fact, if the gas/liquid interfaces are clean, this
is a very unstable situation. The distance between the two interfaces tends to decrease
because of Van der Waals forces; the liquid is drawn from the film into the Plateau
borders, so that the film starts thinning until it eventually breaks.

In order to make more stable foams, specific kinds of molecules must be added to the
solution: surfactants. Surfactants usually consist of molecules with a polar hydrophilic
head and a long hydrophobic carbon chain for a tail.

If such molecules are dissolved in the liquid, they tend to adsorb to the interfaces,
with their heads in the water and their tails in the air. Thus, both sides of the liquid
film between two bubbles will be covered by a monolayer of molecules which lowers
the surface tension of the interface. Since certain amphiphilic molecules carry a small
electric charge, these two layers repel each other mainly by electrostatic repulsion or
steric interaction [2]. The repulsive force can be thought of as an effective pressure inside
the film, the disjoining pressure, which compensates for the Van der Waals attraction,
leading to an enhanced stability of the film.

However, it is the adsorption dynamic that matters, that is the speed with which
surfactants completely cover the interface. New bubbles need to be covered with sur-
factant as quickly as possible, so if the adsorption is too slow, the foamability of the
solution will be poor, even if the final value of γ is very low.

Moreover, in order to withstand deformations without rupturing, the thin liquid
film between bubbles must be somewhat elastic [34]. When the liquid film undergoes a
sudden expansion, the expanded portion of the film has a lower surface concentration of
surfactants than other parts because the surface area has increased. This causes a local
rise in surface tension which provides resistance to further expansions and, at the same
time, produces an immediate contraction of the surface.

Since the surface is coupled by viscous forces to the underlying liquid layers, the
contraction of the surface induces liquid flow from the low-tension region to the high-
tension region, as shown in figure 1.2. The transport of bulk liquid due to surface tension
gradients is called Marangoni effect: it re-thickens the thin films and provides a resisting
force to counteract film thinning and possible rupture.
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This effect only exists until the surfactant adsorption equilibrium is re-established
in the film. However, there has to be enough surfactant dissolved near the extended
surface region to restore the equilibrium, hence the bulk and the surface surfactant con-
centrations are crucial parameters.

Figure 1.2: The Marangoni effect. The picture sketches the mechanism of liquid mass
transfer along the thin film due to the gradient in surface tension. This effect provides
stability to the thin film between adjacent bubbles by recovering the film thickness and
preventing its rupture.

Above a certain concentration, called critical micelle concentration (cmc), surfac-
tants in solution start gathering to form micelles, like the one shown in figure 1.3. Every
surfactant has a specific cmc which depends on temperature, pressure and on the pos-
sible presence of other active molecules. This is an important parameter since before
reaching the cmc, the surface tension of the solution changes strongly with the surfactant
concentration, whereas after reaching the cmc, the surface tension remains constant [6].

Figure 1.3: Critical micelle concentration. The picture shows the distribution of
surfactants at the surface and in the bulk at equilibrium. Above the cmc, surfactants
start assembling to form micelles. However, the presence of micelles does not preclude
the possibility to find free molecules in solution.
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1.3 Foam ageing

Liquid foams are meta-stable systems. After their generation, they may undergo different
mechanisms of destabilisation over time, which slowly lead to a reduction of the total
number of bubbles and to a decrease of the foam volume, resulting in an irreversible foam
damage. The process that leads the foam to death can be thought of as a competition
between three mechanisms: drainage, coalescence and coarsening. The physical reasons
which lie behind each of these processes are different, as they impact on foam structure at
different scales, but they are strongly correlated to each other. In the next subsections
we shall discuss each of these mechanisms separately, with a special focus on foam
coarsening, that is the main subject of the present study.

1.3.1 Drainage

Drainage consists of the downward flow of the liquid phase through the foam due to
gravity. Since the film thickness is very small at equilibrium, the liquid drainage in
dry foams occurs mainly through the network of Plateau borders [21], hence it strongly
depends on the cross section of these liquid channels, that is variable and deeply related
to the liquid fraction: the wetter the foam, the more pronounced the drainage. Drainage
is a crucial process in foam evolution, because it causes a gradual change in the liquid
distribution inside the foam. A typical example of drainage effect is shown in figure 1.4.
As the liquid flows downwards, the top of the foam becomes dryer than the bottom,
the upper bubbles become polyhedral and the Plateau borders become thinner. It is
intuitive why it is necessary to find a way to make this effect negligible for studying
foam evolution at a constant liquid fraction.

Figure 1.4: Foam drainage. The picture shows a typical example of gravitational
drainage in an aqueous foam. As the liquid flows downwards the foam becomes dryer on
the top, with polyhedral bubbles, and wetter on the bottom, where the bubbles become
approximately spherical.
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1.3.2 Coalescence

When the liquid film between two neighbouring bubbles becomes too thin, it breaks
and the bubbles are said to coalesce. This film rupture can occur when the stabilising
mechanisms are absent or too weak or it simply results from liquid evaporation when
it involves the bubbles on the external part of the foam. This process is strongly cou-
pled to drainage and arises when the liquid fraction decreases below a threshold value
depending on the surfactant and its concentration [19]. Despite several hypothesis have
been developed to explain its origin [30], coalescence still remains the least understood
mechanism of foam evolution. Since two coalescing bubbles give birth to a single final
bubble, the essential results of coalescence are a reduction of the total number of bub-
bles and a loss of gas from the boundary bubbles to the environment, so that the total
volume decreases until the foam completely disappears.

1.3.3 Coarsening

If drainage and coalescence are negligible, the main foam ripening mechanism is gas
diffusion through the continuous phase, that allows some bubbles to expand at the
expense of others, which shrink and gradually disappear. This process is driven by the
Laplace pressure difference between two neighbouring bubbles of different sizes, which
causes a gas flux from the smaller bubble to the bigger one.

Let us consider a curved surface like the one shown in figure 1.5. The Young-Laplace
law states that the pressure difference existing between the two sides of the surface is
related to the surface tension γ and to the shape of the surface by the two principal radii
of curvature R′ and R′′:

∆P = PA − PB = γ

( 1
R′

+ 1
R′′

)
' 2γ

R
if R′ ' R′′ ' R (1.2)

This relation means that the surface tension tends to reduce the curvature of an inter-
face, making it flatter, and that it is offset by a pressure difference, which tends to bend
the interface.

Figure 1.5: The Young-Laplace law. The picture sketches a portion of a curved sur-
face, having principal radii of curvature R′ and R′′. Pressure is higher in the convex side
than in the concave one. The pressure difference between the two sides is proportional
to the surface tension and to the surface curvature, according to the Young-Laplace law.

8



So if we consider two neighbouring bubbles of different radii R1 and R2, the Laplace
pressure difference between them will be:

∆P = 2γ
( 1
R1
− 1
R2

)
(1.3)

meaning that the bubble with a smaller radius has a higher pressure than the larger one.
The fact that large bubbles grow at the expense of smaller ones, leads to a reduction
of the total number of bubbles, just like coalescence, but in a completely different way.
Once the drainage and coalescence can be neglected, this process leads asymptotically
to a scaling behaviour where the bubble growth is statistically self-similar. We shall first
present in detail the features of foam coarsening in two dimensions, before extending the
results to three-dimensional foams.

2D foams

Quasi-two-dimensional foams provide the framework for dynamical studies in foam sys-
tems. They consist of a single layer of bubbles, which can be experimentally obtained
by sandwiching a foam between two rigid plates with a spacing smaller than the bubble
size. This way bubbles of a two dimensional dry froth have a polygonal shape, whose
sides correspond to films and vertices to vertical Plateau borders. We can distinguish
the internal Plateau borders, which span vertically the gap between the plates, from the
external Plateau borders, which spread out horizontally on the plates’ surface, as shown
in figure 1.6. Euler’s theorem relates the number of polygons P, sides S and vertices V
by P − S + V = 2. This equation, combined with the observation that three sides meet
at every vertex and every side connects two vertices, leads to the conclusion that for an
infinite 2D foam the average number of sides per polygon is six.

Figure 1.6: Quasi-2D foam. Picture (a) represents a section of a 2D foam cell, showing
the monolayer of bubbles with external and internal Plateau borders. The same struc-
tures can be recognised in picture (b), which shows an example of a real 2D coarsening
foam, sandwiched between two transparent surfaces.
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What plays a fundamental role in 2D foam coarsening is the topology of the bubble
pattern [6] or, more precisely, the number of neighbours of a bubble.
Let us consider a bubble i with n neighbouring bubbles j within a dry 2D foam. We can
define the geometrical charge of the bubble as the quantity:

q =
n∑
j=1

kijlij (1.4)

where kij is the curvature of the edge ij and lij its length. This quantity is proportional
to the topological charge qt = 6 − n that describes the difference from an ordered foam
with hexagonal bubbles:

q =
n∑
j=1

kijlij = π

3 (6− n) = π

3 qt (1.5)

This relation describes the link between the number of sides of a bubble and its shape.
As can be seen in figure 1.7, a bubble with less than six sides has a positive geometric
charge, consequently it has convex sides on average. By contrast, bubbles with more
than six sides have a negative geometric charge, so their sides are concave. Finally, if all
the edges of the bubble are flat, the curvature is equal to zero, then the bubble must be
an hexagon.

Figure 1.7: The role of topology. Starting from the left, a bubble with less than
six neighbours has convex sides, hence Von Neumann results state that its pressure is
greater than the average pressure of its neighbours P0 and it shrinks until it disappears.
The curvature of a six-sided bubble is zero on average, therefore its pressure is equal to
P0. Finally, a bubble with more than six sides is concave on average, hence its pressure
is lower than its neighbours and it grows.
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A fundamental equation for 2D foams, which links the pressure in a bubble to its
shape and to its number of neighbours, was discovered in 1952 by Von Neumann:

n∑
j=1

e

2λ(Pi − Pj)lij =
n∑
j=1

kijlij = π

3 (6− n) = q (1.6)

where e is the thickness of the 2D foam and λ is the line tension. Bubbles with pos-
itive geometric charge consequently have a higher pressure than the average of their
neighbours, while bubbles with many sides have a lower pressure than their neighbours.

If the gas diffuses from a bubble i to a neighbouring bubble j only through the film ij,
the flux from one bubble to the other will be proportional to lij(Pi − Pj), that is the
product of the driving force (the pressure difference) and the size of the region of gas
exchange (the length of the film). If the flux is positive, the amount of gas contained in
bubble i decreases, and so does its area Ai, so we can write:

dAi
dt
∝

n∑
j=1

lij(Pi − Pj) (1.7)

namely the time variation of the area of the bubble i results from the sum of the fluxes
to all its n neighbours. By combining this relation with equation (1.6) one can obtain
the following remarkable result due to Von Neumann:

dAi
dt

= −Deff q = π

3Deff (n− 6) (1.8)

which relates topology, geometry, forces and the evolution of the bubble i. Deff is
the effective diffusion constant which is positive and measured in m2/s. Consequently,
bubbles with positive geometric charge lose their gas to bubbles which have more than
six sides.

The mentioned effective diffusion constant Deff is proportional to the rate of gas
diffusion Df but it is also related to several other parameters:

Deff = Df
2He γ Vm

h
a(ε) (1.9)

where He is the Henry coefficient, which reflects the solubility of the gas in the liquid,
Vm is the molar volume of the gas at ambient temperature and pressure, γ is the surface
tension, h is the film thickness and a(ε) is a geometric factor which takes into account
the liquid fraction [6]. The dimensionless parameter a(ε) expresses the proportion of
the bubble surface covered by thin films rather than Plateau borders. It is through this
effective surface that gas diffuses from bubble to bubble, since diffusion across Plateau
borders is much slower as they are several orders of magnitude thicker. One of the
expressions used for a(ε) in the literature [6] is the following:

a(ε) = 1−
(
ε

ε∗

)1/2
with ε∗ = 0.36 (1.10)
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3D foams

The results found for 2D foams by Von Neumann can not be generalised in three dimen-
sions exactly as they are. A law that describes the volume variation of a bubble with f
facets was found by Mullins [26] [27]:

V
−1/3
f

dVf
dt

= −Deff q(f) (1.11)

where theDeff is the same effective diffusion coefficient as in 2D and q(f) is the geometric
charge of the bubble. Since large bubbles have statistically more faces than small ones, it
means that the largest bubbles (f > 13) will grow and the smallest bubbles (f < 13) will
slowly disappear. This leads to a reduction of the number of bubbles and a consequent
increase of the average volume of the bubbles left.

This growth process can be described in terms of a statistically self-similar size
distribution [26]. Experimental observations [12] show that, after a certain time that
depends on the foam, foams that coarsen reach an asymptotic regime in which the
average bubble size increases in a simple way. More precisely, for dry foams the mean
bubble radius 〈R〉 evolves like:

〈R(t)〉2 = 〈R(t0)〉2 +K(t− t0) (1.12)

where the coarsening constant K depends not only on Deff but also on the bubble size
distribution. So we can see that for dry foams the average bubble size grows as t1/2.

If the foam contains a non negligible amount of liquid, namely if we consider a wet
foam, the self similar behaviour is slightly different. The growth process is slowed down
by the liquid between bubbles, which acts as a reservoir of gas, resulting in a power law
〈R〉 ∼ t1/3. This is called Ostwald ripening [6].

Obviously, between these two opposite situations there must be a transition, which
is still not well-known, characterised by power laws with intermediate values of time
exponent. The lack of theoretical models makes the study of intermediate cases very
interesting to probe.

1.4 Controlling and arresting foam ageing

In the previous section we have illustrated the possible mechanisms of foam ageing.
Since they destabilise liquid foams and alter their structure, many industrial applica-
tions require an in-depth understanding of these processes and of the possible methods
to inhibit them. In this section we shall briefly review part of the relevant current
background existing in the literature.

A drainage halt has been experimentally observed in foams having a concentrated
clay particle suspension as the continuous phase [17]. As found in an interesting paper [5],
gravitational foam drainage can be delayed if the yield stress of the continuous phase is
higher than the buoyancy force per unit area exerted between the bubble and the liquid

12



phase, namely ∼ ρgR/3. As the foam coarsens, the radii of the bubbles increase and so
does the buoyancy force, until the liquid phase starts draining downward.

Coarsening process can be hindered in different ways. Intuitively, a geometrical
method consists of generating monodisperse bubbles arranged in almost crystalline struc-
tures, where the Laplace pressures in neighbouring bubbles are nearly the same. How-
ever, such structures generally present defects which become natural nucleation sites for
coarsening.

Alternative methods involve physicochemical features of foams. As we have seen in
the previous section, the coarsening rate is fixed by the effective diffusion coefficientDeff .
Thus, a way to slow down coarsening consists of reducing the liquid film permeability. For
example, permeability results decreased when a dense surfactant monolayer is adsorbed
at the liquid/gas interfaces [35]. Alternatively, one can play on the gas phase and use
a mixture containing an insoluble gas species: as the soluble gases diffuse out of the
bubble, the internal concentration of the insoluble one increases, generating an osmotic
pressure that is opposed to the Laplace pressure.

It has been theoretically shown that the dissolution of a bubble can be delayed if the
surrounding liquid phase is viscoelastic [16]. Another relevant theoretical study [37] has
shown that the kinetics of coarsening is determined by either the rate of gas diffusion
or the rate at which bubbles rearrange, with the slowest process determining the bub-
ble growth rate. When the bubble rearrangements are negligible, the gradual increase
of elastic stresses among the bubbles can arrest the coarsening of well-separated large
bubbles and elastically stabilise the whole foam.

As supposed in [5], coarsening can be in principle arrested if the Laplace pressure is
smaller than the yield stress of the continuous phase. However, the halt of coarsening
due specifically to the elasticity of the continuous phase has not been experimentally
shown.

A recent experimental study [3] has investigated the effect of an elastic continuous
phase combined with the use of insoluble gas species. By employing a polymer gel to
generate a monodisperse foam, they experimentally observed a slowing down of coarsen-
ing. They have found that the stability domain of foam is governed by a critical radius
set by the ratio of the surface tension to the foam storage modulus.

The present thesis aims to experimentally probe the impact of an elastic liquid phase
on foam coarsening. In the next section we shall better illustrate the conditions we want
to work in and how to realise them.

1.5 Avoidance of drainage and coalescence

As we have already stated, the purpose of this study is to understand how the mechanical
properties of the liquid phase impact on foam coarsening. Thus, it is necessary to find a
way to get rid of drainage and coalescence, which would otherwise affect foam evolution,
making difficult to observe and decouple the coarsening.
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1.5.1 The storage modulus

Before discussing how to skip undesired mechanisms of foam evolution, let us briefly
review some rheological properties of complex fluids.

Let us consider a small volume of fluid, like the one shown in figure 1.8. Imposing a
shear stress σ on the fluid surface, it will deform and we can define the shear strain γ
as the tangent of the deformation angle.

If the stress is small enough and the fluid is elastic, it will behave like an elastic solid,
namely the strain will be proportional to the applied stress following Hooke’s law:

σ = Gγ (1.13)

and the proportionality factor G is called the storage modulus, since it represents the
storage of elastic energy inside the fluid. On the other hand, the strain rate γ̇ is linked
to the fluid viscosity η by the relation:

σ = ηγ̇ (1.14)

meaning that the more viscous the fluid, the slower will be the deformation.

Figure 1.8: Shear stress and shear strain. When a shear stress σ = F/Σ is applied
on the surface of a small portion of fluid, the fluid deformation is represented by the
shear strain γ = d/h. Likewise, if we slightly deform a small element of an elastic fluid,
it will answer with a stress proportional to the applied strain.

In order to avoid drainage during the experiments, the fluid to choose as the contin-
uous medium of our foams must have specific rheological properties. It has to be elastic
enough to withstand the hydrostatic pressure inside the Plateau borders ∆Ph = ρgR to
stop the bubbles from rising and effectively stop drainage. For a typical bubble radius
of 400 µm and a liquid density of about 1000 kg/m3, ∆Ph results approximately 4 Pa.
At the same time, if we want the foam to coarsen, the liquid can not be too elastic to
contrast the Laplace pressure difference ∆PL = 2γ/R that, for the same bubble size and
a surface tension of around 30 mN/m, assumes an approximate value of 150 Pa. So, if
we want drainage to be negligible during coarsening, the storage modulus of the liquid
should range between these two values.
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Let us now take into account coalescence. Since we know that it is strongly coupled
to drainage, we can assume that if the foam does not drain, the liquid fraction remains
constant and homogeneous and will not decrease below a critical value during the exper-
iment. Therefore, in the absence of drainage, if the foam is not too dry and an efficient
surfactant provides enough stability to the thin films, the foam should not coalesce. The
surfactant used in our study is efficient, so we assume that we have negligible coalescence
in our system. However, we will monitor the foams during their ageing to ensure that
this is true.

1.5.2 Emulsions

In order to provide the right viscoelasticity to the continuous medium, emulsions are
chosen to be employed as the liquid phase of foams.

Like foams, emulsions are colloidal dispersions of two immiscible fluids, in which a
liquid is dispersed in a continuous liquid phase of different composition [34]. In most
emulsions, one of the liquids is aqueous while the other is hydrocarbon and referred to
as oil. Two types of emulsion are easily distinguished, depending on which kind of liquid
forms the continuous phase: oil-in-water (O/W) for oil droplets dispersed in water,
water-in-oil (W/O) for water droplets dispersed in oil.

Most emulsions are not thermodynamically stable, but quite stable emulsions can
be obtained by adding an emulsifying agent or stabiliser, which is usually a surfactant.
Surfactants make the emulsion easier to form, but they also provide stability to the
droplets by forming a protective film that prevent their breakage and keep their size
distribution from changing with time, even when the droplet concentration is changed
by dilution. A picture showing a typical O/W emulsion structure is reported in figure 1.9.

Figure 1.9: Oil-in-water emulsion. The picture sketches the typical structure of a
diluted O/W emulsion, with spherical oil droplets dispersed in the aqueous phase. A
zoom on a droplet reveals the surfactants adsorbed on the oil/water interface.
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A relevant parameter for O/W emulsions is the oil volume fraction, that describes
the quantity of oil dispersed in the emulsion. It is defined as the ratio between the
volume of oil Voil and the total volume of the emulsion Vemulsion:

φ = Voil
Vemulsion

(1.15)

This parameter can span values from zero to almost one. At low oil fractions, emul-
sions consist of unpacked spherical droplets, like the ones shown in figure 1.9, but owing
to the deformability of the droplets, they may be concentrated up to oil fractions much
higher than the volume fraction of randomly close packed hard spheres φ∗ = 0.64.

When φ exceeds φ∗, the oil droplets deform and as φ tends to one the continuous
phase of the emulsion is confined to thin films between deformed droplets, resembling
the liquid films of a foam.

Increasing systematically the volume fraction of droplets, one expects eventually to
find a point of phase inversion where the oil becomes the continuous phase. This can
be avoided by the surfactant adsorbed onto the droplets interfaces, which allows the
emulsion to remain stable even when the oil fraction approaches unity [22].

Despite being composed solely of fluids, at high droplet concentrations emulsions can
possess a shear rigidity and act like an elastic solid [4]. This elasticity exists only when
the repulsive droplets have been concentrated to a volume fraction φ sufficiently large
to permit the storage of interfacial energy from an additional deformation of the shape
induced by an applied strain. The energy scale that controls this deformation is the
Laplace pressure of the droplets γ/R, where γ is the surface tension and R is the radius
of the undeformed droplets.

The key to the origin of the elastic modulus of an emulsion is its dependence on φ.
The analogy between emulsion and foam structure suggests that, for φ approaching to
one, an emulsion should act like a dry foam, where the elasticity results entirely from
the stretching of the interfaces. In the literature [24], it has been found experimentally
that the storage modulus of a monodisperse emulsion shows a universal dependence on
φ when scaled by the Laplace pressure, following the relation:

G′ ∼ φ(φ− φ∗) γ
R

(1.16)

This scaling confirms that the elasticity of compressed monodisperse emulsions arises
from the storage of energy at the droplets interfaces and that it depends only on the
packing geometry of the droplets.

These rheological properties of emulsions at high oil fractions, make them the best
candidate for the continuous phase of our foams. Their storage modulus is in fact in
the right range for our purposes, as will be experimentally verified in §3.1. We shall
study foamed emulsions at different oil fractions, to investigate the impact of emulsion
elasticity on foam coarsening.
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2 Experimental approach

In this chapter, we shall describe all the materials and experimental techniques used for
the present study. We shall start from emulsion characterisation, by describing their
composition, their generation process and their rheological investigation. We shall then
switch to foams, describing first their creation and then the methods used to measure
the bubble size evolution. For this purpose, we carried out both imaging and spectroscopy
experiments, hence a short description of the main features of diffusing-wave spectroscopy
is given. Then we shall explain the realisation of 2D foams and the set-up used for
studying such systems. A description of the image treatment is provided in each case.

2.1 Emulsions

The emulsions used as the liquid phase of foams are O/W emulsions at high oil fractions.
The oil used to prepare them is commercial rapeseed oil (Leader Price distribution). We
chose to employ a commercial oil because of the large quantity of emulsion needed to
produce foam with our method and, since we are interested in bulk properties, potential
impurities should not affect substantially our results. Rapeseed oil has a density of
0.91 g/cm3 and a surface tension of 33.8 mN/m at 20oC, as reported in the literature [13].

The surfactant used in the present thesis is Sodium Dodecyl Sulphate (SDS, Sigma-
Aldrich), also known as Sodium Lauryl Sulphate, that is how it appears on the labels
of most commercial cleaning products. This is an anionic surfactant, meaning that it
carries a negative electrostatic charge, and it is formed by a 12-carbon tail attached to
a sulphate group, as shown in figure 2.1. Some physical and chemical characteristics of
rapeseed oil and SDS are summarised in table 2.1.

The aqueous surfactant solution was prepared by dissolving SDS in ultra-pure water
at a concentration 20 g/L, which corresponds to approximately ten times its critical
micelle concentration. The millipore water, with a 18.2 MΩ resistivity, was freshly
obtained from a specific filtering device (Purelab Flex).
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Rapeseed oil
T [oC] ρ [g/cm3] γ [mN/m]

20 0.9145 33.8
30 0.9080 33.0
40 0.9027 32.1

(a)

Sodium Dodecyl Sulfate
Density 1.01 g/cm3

Molar mass 288.38 g/mol
cmc @ 25oC 8.2 mM
Solubility 200 mg/ml

(b)

Table 2.1: Physical and chemical features. Density and surface tension at different
temperatures for rapeseed oil from [13] (a). Some parameters for SDS (b); solubility and
cmc are meant in pure water.

Figure 2.1: Sodium Dodecyl Sulfate. The picture shows the molecular structure of
the anionic surfactant, with the hydrophobic carbon-tail and the hydrophilic polar head.
Its chemical formula is CH3(CH2)11SO4 Na.

2.1.1 Generation

There are several ways for preparing emulsions in the literature. Basically, one can me-
chanically blend the different components or induce phase separation by thermal quench
or by chemical reactions [22]. In our case emulsions were prepared by mechanically
mixing the two different liquids by using the so-called two syringes method.

The technique consists of two syringes (60 ml, Codan Medical) connected by a short
piece of tube, as shown in figure 2.2, which are filled with well-defined volumes of rapeseed
oil and SDS solution, corresponding to the desired oil fraction. The emulsification occurs
by pushing both liquids repeatedly through the connection at least ten times. The outlets
of the syringes are thinner than the connecting tube, so they form constrictions in the flow
path leading to emulsion generation. For spectroscopy experiments, this pushing action
was automated by using a custom-made machine [15], while for all other experiments
this procedure was made by hand. The emulsions obtained with this technique result
polydisperse.
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Figure 2.2: The two syringes method. Syringes are first filled with the desired quan-
tities of oil and surfactant solution, then connected by a short junction. Emulsification
occurs by pushing repeatedly both liquids through the connection.

2.1.2 Rheology

As commonly done in the literature, the rheological properties of the emulsions were
probed by performing rheological strain sweep tests [25], which allow to get the G′ and
the G′′ moduli by imposing an oscillatory shear in a cylindrical Couette geometry, like
the one shown in figure 2.3, and measuring the resulting stress.

A sinusoidal strain of increasing amplitude γ(t) is applied by rotating the inner cylin-
der at constant frequency ω equal to 1 rad/s, while the external cup is kept stationary.

If the strain amplitude is sufficiently small that the fluid is not much disturbed by the
deformation, then the resulting stress σ(t) measured during the oscillations is controlled
by the rates of spontaneous rearrangements inside the fluid. Hence the shear stress will
be sinusoidal as well, with an amplitude proportional to the amplitude of the applied
strain:

σ(t) = γ(t)[G′(ω)sin(ωt) +G′′(ω)cos(ωt)] (2.1)

The first term is in phase with the strain γ and is proportional to the storage modulus
G′, whereas the second term is in phase with the strain rate γ̇ and is proportional to the
loss modulus G′′ that represents the viscous dissipation.

All the measurements were performed with a compact rheometer (Physica MCR 301
by Anton Paar). To avoid emulsion slippage when imposing the strain, the surface of
the inner cylinder has been sand blasted to make it rough. The temperature, controlled
by a Peltier device, was fixed to (21.0± 0.5)oC for each probe.
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Figure 2.3: Couette geometry. The picture shows a section of the cylindrical Couette
geometry employed for the strain sweep tests. The inner cylinder rotates with constant
frequency ω and time-increasing amplitude. Its rough surface drags the emulsion inside
the gap and the resulting stress is measured, in order to get the G′ and G′′ moduli.

2.2 Foam generation

There are several methods to generate foams in the literature [10], but the use of a
planetary mixer represents the most efficient way for foaming viscous and viscoelastic
fluids [29].
After emulsion preparation, foams were then created by using a kitchen mixer (Kenwood
Multione). This familiar device is equipped with a whisk that rotates simultaneously
around two different axes: as shown at the top of figure 2.4, the primary axis of rotation
is the axis of the mixing tool, while the second one is located at the centre of the vessel
containing the foaming emulsion.

The foaming process is displayed at the bottom of figure 2.4. Basically, the mecha-
nism of air entrapment can be described as follows. The double rotation of the mixing
tool generates waves on the surface of the foamed emulsion. These surface waves produce
cavities which are then covered by other foam layers dragged by the metal rods of the
mixing tool, leading to the formation of large air pockets. These air pockets are then
gradually broken down into smaller bubbles under the action of the shear forces inside
the agitated foam. The two processes of air entrapment and bubble breakage occur
simultaneously, ensuring an increase of the air volume fraction inside the foam and a
gradual decrease of the mean bubble size [29]. Foams are always created by gradually
increasing the rotation speed from the lowest to the highest level, then leaving the mixer
running at maximum speed for at least half an hour. The final result is a large amount
of foam which is quite dry but very polydisperse.
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Unfortunately, this foaming method does not allow to set a specific liquid fraction a
priori, but we can evaluate it once the foam is created. Thus, in order to quantify the
final foam dryness, the volume liquid fraction is measured by weighing a known volume
of foam, using a scientific scale with an accuracy of 0.01 g. Knowing the density of the
rapeseed oil and taking into account the different oil fractions for each emulsion, we can
easily estimate the volume of the emulsion contained in the foam sample. Dividing by
the total volume, we finally get the liquid fraction. The use of the mixer allows to get
quite dry foamed emulsions, with liquid fractions down to 8%.

Figure 2.4: Foam generation process. The top figure shows the double axis of rotation
of the mixing whisk. At the bottom, a sequence of pictures displays how the waves on
the emulsion surface generate air pockets, leading to foam creation.

2.3 Measuring the bubble size

Transparent foams do not exist. The gas/liquid interfaces inside a foam sample cause
light to reflect and refract many times during the crossing. A direct visualisation of the
internal structure of a three dimensional foam is then precluded by this unavoidable mul-
tiple scattering of light, which gives bulk foams their familiar white opaque appearance.

However, if we want to study foam coarsening, we need to follow the time evolution
of the average bubble size inside the sample. For studying highly scattering media like
foams, alternative optical methods have been developed and systematically studied, like
diffuse-transmission [20] and diffusing-wave spectroscopy [28].
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In the following subsection we shall briefly illustrate the basic principles which lie
behind diffusing-wave spectroscopy, the main tool we used for studying 3D foams in
the present thesis, showing how it provides a non-invasive probe of the structure and
dynamics of the foam which allows to follow its time evolution.

In order to check whether there was coalescence or not in the foam samples, for
each experiment we simultaneously took pictures of another sample of the same foam.
In §2.3.2 we shall explain how we could also get information on the average bubble size
evolution from those pictures, which constitute a further check for spectroscopy results.

2.3.1 Diffusing Wave Spectroscopy

Diffusing-wave spectroscopy (DWS) is a photon-correlation technique, that exploits mul-
tiple light scattering to probe the internal structure and rearrangements inside very tur-
bid media [38] and it has been widely used for studying foam systems. It is based on
the strong assumption that the propagation of light in such media can be described as
a diffusion process: each photon is scattered many times before exiting the sample and
executes a many-step random walk as it travels through it.

In this approximation, the light transport is described by a diffusion equation, with
a diffusivity given by D = c l∗/3, where c is the speed of light in the medium and l∗ is
the photon transport mean free path, that can be thought of as the average distance a
photon can travel before its direction and phase are completely randomised. This way,
all the effects of interference of the fields within the medium are neglected.

An experimental study [36] has shown how the key parameters of photon transport
depend on the foam strucure and composition. They found a direct proportionality
between the mean free path l∗ and the mean bubble radius R, with a constant that
depends on the liquid fraction ε:

l∗

2R =
√

1
ε

(2.2)

This means that light is scattered more strongly by wetter foams. Deviations from this
rule occur for very dry or very wet foams, since this result holds under the assumption
that the film thickness is small compared to the radius of curvature of the Plateau
borders and that the latter is small compared to the radius of the bubbles.

Let us consider a foam sample of thickness e crossed by a coherent light beam. If
e >> l∗, the transmitted light intensity will be approximately proportional to the ratio
l∗/e and so proportional to the bubble radius R. Therefore one can write the relation:

I(t) ∝ 〈R(t)〉 (2.3)

which shows how it is possible to learn information about the foam structure evolution by
simply detecting the transmitted light intensity and it has been experimentally verified
for quite dry foams [12].
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The diffusive propagation of light helps not only in the analysis of the time average
of the transmitted light intensity. DWS is a powerful tool also for the investigation of
structural rearrangements inside the foam. As the foam coarsens and packing conditions
change, local stress differences grow until a structural rearrangement occurs. This tech-
nique allows to get information about the internal dynamics by interpreting the temporal
fluctuations of light through the photon autocorrelation function [11].

However, the physical system under investigation does not contain only two phases
like a traditional aqueous foam: the choice of employing an emulsion as the continuous
medium makes the treatment of the correlation function more complicated, as one needs
to decouple the rearrangements of bubbles from the local rearrangements of the oil
droplets dispersed in the Plateau borders. In the present thesis we focus only on the
bulk structure evolution of foamed emulsions, namely we look at how the mean bubble
radius changes over time by exploiting only diffusive light transmission.

Experimental set-up

All the diffusing-wave spectroscopy experiments were carried out in a transmission con-
figuration set-up, that is sketched in figure 2.5. Coherent green light of wavelength
λ = 515 nm, provided by a IIIb class laser (Compass 315M-100), crosses a series of
filters (ThorLabs) to reduce stray rays and adjust incident light intensity, before being
reflected 90o by a mirror placed at 45o respect to the optical path. The light beam is
then spread by a divergent lens onto the foam sample and undergoes multiple scattering
mainly due to the liquid/gas interfaces inside the foam. The transmitted light is de-
tected and amplified by a photomultiplier (PMT-120-OP/B) which is linked to a digital
correlator (Flex03lq-12), in order to obtain the intensity over time and the photon auto-
correlation function. During the experiments everything was covered by a black curtain.
The foam cells used for DWS experiments were obtained from a square Petri dish by
gluing a joint of gum of thickness e = 20 mm. This sample thickness is not always
much larger than the mean bubble radius R of our foamed emulsions, but thanks to the
presence of the oil droplets dispersed in the liquid phase, which in turn scatter light, the
diffusion limit is ensured.

2.3.2 Imaging

After foam generation, we filled not only the cell for DWS, but also a second sample
of thickness 10 mm for monitoring foams via imaging. The foam cell is illuminated by
transmission of white light by a LED lamp placed under the cell. Sequences of pictures,
with a 2560x1920 pixels resolution, were taken at constant frame rate by a camera (uEye,
model UI-148xSE-C) orthogonal to the sample surface and equipped with a suitable
objective (Ricoh, Lens Pentax C2514-5M, 1.4/25mm). This way we could make a video
of the foam ageing to check if coalescence was negligible.

By analysing these pictures, we could also learn information about the average bubble
size inside the sample. Of course, this method takes into account only the boundary
bubbles which are in contact with the cell surface. Pictures of the DWS samples were
also taken at the end of each experiment to calibrate the curves obtained by spectroscopy.
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Figure 2.5: DWS set-up. The picture shows a diagram of the experimental set-up used
for diffusing-wave spectroscopy. A coherent green light beam crosses the foam sample and
the transmitted light intensity is detected and properly amplified by a photomultiplier.
A digital correlator records also the photon autocorrelation function.

Image treatment

Image treatment is divided in two steps. First, pictures are pre-treated by adjusting
the brightness and enhancing the contrast with ImageJ, in order to better identify the
borders of the surfacial bubbles. Then, a custom-made Matlab program, basically based
on the available function imfindcircles, is used to recognise the bubbles by finding the
circles on the pictures, after setting reasonable ranges of radii. An example of the basic
steps of image treatment for one picture are shown in figure 2.6: one can see the original
picture (a) and the same one after contrast and brightness adjustment (b), while the
overlap of the circles detected by the Matlab program is shown in (c).

Since the foam sample is three dimensional, the program detects some circles also
from the underlying layers of bubbles; moreover, the contact with the surface results in
a deformation of boundary bubbles shape, so that the program is unable to detect some
very big bubbles that are not perfectly round.

For these reasons, this method is not accurate enough for directly studying the foam
evolution, as already stated at the beginning of this section, hence we used it only as
a further check. Anyway, we used this method also to obtain an average bubble radius
for calibrating DWS results: another way to do this would have been observing under
a microscope a small sample of freshly created foam. However, if the foam is quite dry,
bubbles are tightly packed together so that if we want bubbles to appear as circles, that
could be analysed even directly with ImageJ, the foam on the glass slide needs to be
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Figure 2.6: Image treatment. An example of image treatment for a 3D foamed
emulsion having φ = 80% and ε = 9%. The brightness and the contrast of the original
cropped picture (a) are adjusted in order to enhance the sharpness of the surfacial bubble
borders (b). Then the Matlab program detects the bubbles on the sample surface by
finding circles in the picture (c). Scale bars 20 mm.

strongly diluted, obtaining pictures with only less than ten bubbles per image. Hence, to
have a good statistics it is easy to understand that we would need to prepare hundreds
of slides, so this method would be more accurate but not efficient. Using the rough 3D
imaging method, instead, it is possible to get more than a thousand of bubble radii from
only one picture, providing a good statistics even if the method is not so accurate.

Error on the mean bubble radius

In order to roughly estimate the maximum error committed with this Matlab treatment,
we can take a picture for which the Matlab program seems to not recognise very well
the surfacial bubbles and try to perform a different analysis.

For example, let us consider a foamed emulsion having 70% of oil fraction. As shown
in figure 2.7, by using ImageJ we crop a central square portion of the original picture
and we literally count the number of surfacial bubbles, without taking into account the
bubbles appearing from the inner layers. Then we adjust the contrast and we binarise
the picture. This way, from the number of white pixels and knowing the total number
of bubbles, we can estimate an average bubble radius using the following relations:

Aw = N · πR2 , R =

√
Aw
N · π

(2.4)

where Aw is the total number of white pixels of the picture and N is the total number
of bubbles counted on the surface. For the picture considered in figure 2.7, Aw is found
to be 255756 pixels, N is 421 and R results equal to 14 pixels, corresponding to a radius
of 0.61 mm. The radius found with the Matlab program is equal to 0.86 mm. The
difference between the two values is 0.25 mm, which is approximately the 30% of the
Matlab mean radius.
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This manual procedure provides less statistics and leads to the unavoidable problem
of the boundary bubbles: wherever you crop the picture, there will always be portions
of cropped bubbles on the boundaries which contribute to the white pixel fraction. If
one does not count the boundary bubbles, the final mean radius is over estimated, while
if one does count them the radius value will be under estimated.

We highlight that measuring the bubble size in turbid media is usually complicated
and since in our case foam dilution is not efficient, there are no other excellent techniques
to get an average bubble radius. Therefore we shall use the Matlab program to get a
rough estimation of the average bubble size from the pictures and we shall assume a mar-
gin of error equal to 30% for the so-calculated absolute values of the mean bubble radii.

(a) (b)

Figure 2.7: Mean radius error bar. Figure (a) shows a portion of 800x800 pixels of
the original picture of a 3D foamed emulsion of φ =70%. A manual counting of surfacial
bubbles gives a total number N equal to 421. Figure (b) shows the same portion but
binarised after contrast enhancing. From the latter it is possible to count the number
of white pixels, which roughly corresponds to the total area of bubbles, and to find an
average of the bubble radii. The mean radius is found to be 0.61 mm which is much
smaller than the value 0.86 mm obtained with Matlab. Scale bars 10 mm.
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2.4 2D foam set-up

To study the film permeability we need to focus on a quasi-2D foam system. Basically,
we need to follow the time evolution of the 2D bubble area, which depends on the number
of the neighbours, as stated by Von Neumann’s relations. To do that, it is necessary to
take sequences of pictures at constant time intervals, namely to carry out an imaging
experiment with a very simple set-up, which is shown in figure 2.8.

Among all the possible configurations for a 2D foam [6], we chose to use a Hele-Shaw
cell, that consists of two solid flat plates filled with a monolayer of bubbles. The cell used,
that is shown in figure 2.8 (a), has a glass surface on the bottom and a polycarbonate
one on the top and is equipped with a reservoir that can be filled with the liquid phase
to keep the capillary pressure constant. By injecting gas at a constant rate from the
bottom of the liquid chamber, it is possible to obtain a monodisperse 2D foam, with a
bubble size depending on the needle diameter. The boundary of the cell is made of a
gum junction with a constant thickness.

As shown by the diagram in figure 2.8 (b), the sample is homogeneously illuminated
from above by a square distribution of LEDs. The camera (uEye, model UI-225xSE-C),
equipped with a suitable objective (Fujinon, model HF16SA-1, 1.4/16mm), is arranged
above, orthogonally to the foam cell and allows to get pictures with a 1600x1200 pixels
resolution. During the experiment everything is covered by a black curtain to avoid
undesired light reflections. For studying 2D foamed emulsions we first generated the
foam using the mixer and then we carefully filled the cell without using the reservoir.
This way the foam was polydisperse and its liquid fraction was kept constant during the
experiment.

Figure 2.8: 2D foam set-up. On the left one can see a section of the Hele-Shaw cell
used for the 2D foam experiments (a). Air bubbles are injected through a needle on the
bottom of the reservoir. The picture on the right shows a section of the whole set-up
(b). A camera takes photographs of the 2D foam inside the cell, which is illuminated
from above through a distribution of LEDs.

27



Image treatment

Images are first treated using ImageJ. An example of the fundamental steps is reported
in figure 2.9. After enhancing the contrast, the grey pictures are binarised, namely made
only of black and white pixels. Then, the threshold is properly adjusted to get all the
bubbles well delimited and closed. After that, the pictures are inverted and, thanks to
the ImageJ function skeletonize, the skeleton of the 2D foam is obtained. The bubbles
in these images are separated from each other by closed black lines of pixels over a
white background. In order to follow the temporal evolution, skeletonized images of 2D
foams are then analysed by using a custom-made Matlab program, developed by Emilie
Forel in her PhD thesis [14]. This program recognises and follows the bubbles along the
images sequence. It also finds the nodes and the number of neighbours for each bubble.
A sequence of further Matlab programs is then used to elaborate the results.

Figure 2.9: Image pre-treatment. An example of image treatment for a 2D foam
made of Fairy solution. The original picture is first cropped and the background is
subtracted (a). Then image contrast is enhanced and the picture is binarised, adjusting
the threshold to get all the bubbles well closed (b). Finally, the picture is inverted and
skeletonized (c). Scale bars 20 mm.
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3 Results

In this chapter we shall present all the experimental results obtained from our investi-
gation. We shall start from emulsion behaviour under sweep tests. We will then present
how our foamed emulsions age, showing the time evolution of the bubble radius obtained
from diffusing-wave spectroscopy. Then we shall switch to the results of the film per-
meability obtained from 2D foam experiments. In both cases we will first compare the
results obtained for well-known standard systems with their corresponding behaviour in
literature.

3.1 Emulsion viscoelasticity

As explained in §2.1.2, we first performed rheological sweep tests to investigate emulsion
viscoelasticity. Figure 3.1 displays the results obtained for emulsions having different oil
fractions. For each emulsion, both the storage modulus G′ and the loss modulus G′′ are
reported in the graph for shear strains with increasing amplitude.

For low strain values, we are in the so-called linear regime, where the modulus G′ is
constant. Here, the graph shows a G′ greater than G′′, reflecting the elastic nature of
the emulsion. At larger strains, there is a gradual drop in the storage modulus, while
the loss modulus begins to rise. This indicates that the emulsion starts yielding and
the flow becomes plastic, as the droplet deformation can no longer take the strain and
store elastic energy. At very large strains, beyond the yield point marked by the drop in
G′, the dominance of G′′ reflects the prevalence of the viscous behaviour, which causes
energy loss during the flow.

It is easy to see how the storage modulus G′ increases with the oil fraction, meaning
that as the concentration of oil droplets rises the emulsion becomes more elastic, as
expected. In order to make visually clear its dependence on φ, in figure 3.2 we plot
the G′ values calculated in the linear regime for different emulsion oil fractions. The G′
values are also tabulated in table 3.1.

Let us consider the yield point. The most proper way to measure the yield stress σy
would be performing experiments with continuous shear. However, it is possible to get an
estimation of σy also from oscillatory strain tests and it is quite common in the literature
[19]. One first has to calculate the yield strain and then multiply by the elastic modulus
in the linear regime.
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A conventional way to quickly estimate the yield strain is to consider the point where
G′′ becomes higher than G′, namely where the two curves meet, that is properly named
flow point. Neverthless, it is more usual to consider only the curve of the storage modulus
G′ in the double logarithmic scale and draw two straight lines in the graph and take the
intersection as the yield point. By following the latter procedure, we get the values for
the yield strain γy and the yield stress σy reported in table 3.1.

Furthermore, from figure 3.1 and table 3.1 we can see that if we take into account
oil fractions above 70%, the respective storage moduli span values between 10 Pa and
100 Pa, that perfectly fall in the suitable range where we should observe foam coarsening
without drainage, as discussed in §1.5.1. Hence we shall focus on emulsions at φ higher
than 70%.

Figure 3.1: Emulsions rheology. The picture shows the results of the rheological sweep
tests. The graph compares the emulsion response to increasing strains γ at different oil
fractions φ, by showing both the storage and loss moduli recorded for each sample.
For low strains, one can see that the storage modulus G′ increases with the oil fraction,
meaning that the emulsion becomes more elastic. For higher strains, beyond the emulsion
yield point marked by the drop of the storage modulus G′, the rise of the loss modulus
G′′ represents the dominance of viscous behaviour and the emulsion flow becomes plastic.
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Figure 3.2: G′ dependence on φ. The plot shows the values of the emulsion storage
modulus G′ in the linear regime at different oil fractions φ. One can see clearly that G′
increases with the increase of the oil droplet concentration.

φ [%] G′ [Pa] γy [%] σy [Pa]

65 3.5 ± 0.2 0.8 0.04
70 18.6 ± 0.4 0.5 0.09
73 30.9 ± 0.3 0.6 0.19
75 34.0 ± 0.5 0.4 0.14
77 51.6 ± 0.9 0.5 0.26
80 89.9 ± 0.7 0.6 0.54

Table 3.1: Emulsion rheology. The table reports the values found for the storage
modulus G′ from rheological tests at different emulsion oil fractions φ. It also reports
the approximate values for the yield strain γy and the yield stress σy, found with the
conventional graphical method illustrated in the text.
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3.2 Bubble size evolution

Before presenting the outcome of our investigation about 3D foamed emulsions, we report
the results of a well-known standard foam.

Gillette foam
First of all, we studied coarsening in a commercial brand shaving foam, Gillette Series,
which easily provides reproducible and cheap foam samples. This commercial foam has
been already employed in experimental studies in the literature [12], mainly because of
its high stability due to its chemical composition. Its key ingredients (water, stearic
acid, SDS, triethanolamine and hydrocarbon gases) produce a foam with approximately
92% of gas fraction [12]. The gravitational drainage in Gillette foam is very slow and we
can even ignore it completely on the time-scale of the experiments.

We carried out a DWS experiment for a foam sample of thickness 10 mm. The sample
thickness e was chosen in order to satisfy the diffusion condition e >> l∗, where l∗ is
the photon mean free path already defined in §2.3.1. Knowing that l∗ is proportional to
the mean bubble diameter [36], that for a freshly made Gillette foam is of the order of
40 µm [12], we can see that the diffusion assumption is ensured.

The DWS set-up allows to get the transmitted light intensity over time. The software
allows to sample the intensity over time intervals ∆t of custom length. An example of
the detected intensity for one interval is reported in figure 3.3, where the intensity is
averaged over a time interval of 300 s.

By averaging the intensity over those intervals, one can rebuild the trend of the mean
intensity over time. Since we expect coarsening to have a higher rate before starting to
show the scaling behaviour, the time interval can be changed during the experiment.
We set a shorter ∆t at the beginning and a longer one at the end, so that the intensity
can be considered approximately constant in each time sample. The standard deviation
is assumed as the error of the averaged intensity, and it oscillates between the 4% and
10% of the mean value, mainly depending on the length of the time intervals but also on
the filters used for partially shielding the laser light impinging on the sample, in order
to prevent photomultiplier damage.

As seen in §2.3.1, we know that there exist a proportional relation between the
mean bubble radius and the transmitted intensity. Since we are interested in the scaling
behaviour, we can normalise the mean intensity values It, dividing them by the average
intensity I0 corresponding to the first time interval of the experiment. This way the
trend of It/I0 will give the trend of 〈Rt〉/〈R0〉, where 〈R0〉 is the mean bubble radius of
the foam sample at the beginning of the experiment.

Results for the Gillette foam sample are shown in figure 3.4. The temporal axis
indicates the time after foam creation. The intensities were averaged over time intervals
of 300 s at the beginning, 600 s in the middle and 1200 s at the end. One can see
that Gillette foam shows an asymptotic behaviour well-described by a power law. Thus,
we analysed the trend by fitting the data within the self-similar regime with a curve
y = a · tb + c. The fit parameters are reported in table 3.2. We found an exponent b
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equal to 0.43 ± 0.05, which falls slightly below the theoretical prediction 1/2 for a dry
foam. This happens because Gillette foam is not perfectly dry, having a liquid fraction of
8%. Thus, the power law shown by the mean radius growth should reasonably lie between
the 1/2 exponent predicted for a dry foam and 1/3 expected for a wet one. We highlight
that our result is perfectly according to the experimental exponent z=0.45 ± 0.05 found
in the literature [12].

Figure 3.3: Intensity over a time interval. The plot shows the transmitted light
intensity detected during the first time interval (300 s) of the DWS experiment carried
out for Gillette foam. The red line represents the average, which is equal to (23 ± 2) kHz,
where the error corresponds to the standard deviation and results about the 8% of the
mean value.

Before concluding this section, we highlight that we have reproduced results for
Gillette foam from literature. Now that we have validated our DWS set-up, we can start
investigating the system of interest, namely foamed emulsions. This system presents a
peculiarity which makes it different from a standard foam, since foamed emulsions are
characterised by the presence of two diffusing species: oil droplets and air bubbles.
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Figure 3.4: Gillette foam coarsening. The graph shows the normalised transmitted
intensity over time for the Gillette foam sample, that corresponds to the trend of the
normalised mean bubble radius growth. The dashed line has slope 0.50 as the theoretical
prediction for a dry foam. The continuous line represents the fitting curve y = a · tb + c
obtained by interpolating the data showing the self-similar behaviour. The exponent b
is found to be equal to 0.43 ± 0.05. Fit parameters are reported in table 3.2.

Fitting curve: y = a · tb + c

a 0.03 ± 0.02
b 0.43 ± 0.05
c 0.2 ± 0.3

Table 3.2: Fit parameters. The table reports the parameters for the power law inter-
polation. The exponent value found for our Gillette foam sample b=0.43 ± 0.05 results
compatible with the one found in literature, z=0.45 ± 0.05 [12]
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Foamed emulsions

In this section, we proceed with the study of 3D foamed emulsions, exploiting diffusing-
wave spectroscopy. As stated previously, foamed emulsions bear two different kinds of
scatterers: air bubbles and oil droplets. As the emulsions are stable on the timescale of
the experiments, we can assume their contribution to the total scattered intensity to be
constant in time.

We first prepared a suitable volume of emulsion, approximately 250 ml, at the desired
oil fraction. Foam was then generated with the kitchen mixer and, after 30 minutes of
mixing at maximum speed, a square cell of side 8 cm and thickness 20 mm was carefully
filled with foam with the aid of a spoon, paying attention not to include large air bubbles
while filling and closing the cell. Then the foam sample was put over the laser beam in
the DWS set-up, as shown in figure 2.5. The same procedure was repeated for emulsions
at different oil fractions, ranging from 70% to 82%.

As already done with Gillette foam, we acquired and averaged the transmitted light
intensity over proper time intervals. We report in figure 3.5 two examples of intensity
detected during different time intervals for a foamed emulsion of φ=80%. The graph on
the left shows the intensity over a shorter time range than the one on the right, since
the former corresponds to the beginning of the experiment while the latter to the end,
when we expect coarsening to have a slower rate.

(a) (b)

Figure 3.5: Intensity over different time intervals. We report an example of inten-
sity samples for a DWS experiment for a foamed emulsion having 80% of oil fraction.
Figure (a) shows the transmitted light intensity over the first 120 s long time interval.
Mean value (31 ± 1) kHz. Figure (b) shows the intensity detected during the last 1200 s
long time interval of the same experiment, which is longer since the foam coarsening is
expected to have a slower rate. Mean value (64 ± 4) kHz.
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Since the transmitted light intensity depends on many experimental factors, like
the laser power, the assorbance of the filters and the foam sample thickness, it is not
meaningful to compare the outcome intensities as they are, for different experiments in
different experimental conditions. Once again we can renormalise the mean intensity
trends for different experiments, as shown in figure 3.6.

Figure 3.6: Foamed emulsions. The plot displays the time evolution of normalised
intensity for foamed emulsions at different oil fractions φ. The Gillette foam curve is
also reported for visual comparison. For some oil fractions, we carried out two measure-
ments for two different foam samples in the same experimental conditions to check the
reproducibility of the results. One can see that after some time almost all the curves
start flattening. Although these curves reproduce the time evolution of the mean bubble
radius inside the foam sample, they do not give information about the actual size of the
radii. These curves need to be scaled.

Data in figure 3.6 show that foamed emulsions globally evolve in a very different way
than Gillette foam, whose evolution is reported as well for visual comparison. Let us
start by observing that some curves seem to flatten after few hours, while some others
keep on growing, but they are all much less smooth than the Gillette one. For example,
we can see that the curve corresponding to φ=70% rises much more than the curves at
higher oil fractions, showing a step only once the intensity almost triples its initial value.
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By contrast, the plateau is clearly evident at φ=80%, where the curve smoothly start
flattening after five hours, and at φ=82%, where the curve seems to stay constant for
very long time.

As we know there is a proportional relation between the intensity and the mean bub-
ble radius, a plateau on the intensity curve could mean that after some time the average
bubble size stops increasing or its growth is markedly slowed down. However, since the
intensity curves are normalised, they correspond to the evolution of the normalised mean
radius. If we really aim to understand what happens to our foamed emulsions as they
coarsen, we need to find a way to rescale the curves in figure 3.6 to get the dimensional
mean bubble radius growth over time.

As already explained in §2.3.2, we used the 3D foam pictures acquired at the end of
each DWS experiment, to get a rough estimate of the final bubble size. The rescaling of
the curves was achieved by employing the following relation:

〈R(t)〉 = I(t)
I(tf ) · 〈R(tf )〉 (3.1)

where I(tf ) is the final averaged intensity corresponding to the last time interval of the
experiment, while 〈R(tf )〉 is the mean bubble radius of the foam sample at the end of
the DWS experiment, obtained with the Matlab program, as already shown in figure 2.6.

The result of this procedure is shown in figure 3.7, where one can see how the curves
display a plateau at radius values between 700 µm and 900 µm. One can intuitively
expect that the more elastic the emulsion inside the foam, the more the coarsening
should be hindered, reaching a smaller saturation mean bubble size.

We can see that this time the sample thickness of 20 mm is not always much larger
than the average bubble size (the minimum value is around 20 bubbles across). However,
the diffusion limit is ensured by the presence of the emulsion oil droplets dispersed in
the Plateau borders, whose light scattering contributes to randomise the photon paths.
Hence we are still within the validity of diffusion-wave spectroscopy.

It is necessary to remember that the method used for calculating the bubble radius
from 3D foam pictures is not very accurate. This causes a large error on the absolute
values of the mean bubble radii, but not on the size evolution, whose error comes from
DWS intensities and results smaller. The maximum error from the image treatment was
roughly evaluated as explained in §2.3.2 and results approximately the 30% of the mean
bubble radius.

Thus, even if DWS provides an accurate trend for the bubble growth, the scaled
curves in figure 3.7 eventually depend on the absolute values of the bubble radii, which
have a large margin of error. As the error bar is meant only on the absolute value of the
mean radius, not on its trend over time, the real curves in figure 3.7 may probably shift
along the vertical axis, within their error bars.

Before concluding this section, let us discuss a little about these first results. What
we observed is a slowing down of foam coarsening, which seems to almost halt in foamed
emulsions having high concentrations of oil droplets.
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Figure 3.7: Foamed emulsions. The plot shows the time evolution of the mean bubble
size, obtained by rescaling the DWS curves in figure 3.6 by analysing the 3D foam
pictures at the end of each experiment, as explained in §2.3.2. Here one can see that the
curves become nearly flat at bubble radii which are all within the error bars. The large
error bars come from the image treatment and are meant only on the absolute value of
the mean radius, not on its evolution.

We know from the literature [23] that coarsening can be inhibited when the yield
stress of the continuous phase overcomes the Laplace pressure between neighbouring
bubbles. We have seen in §3.1 that our emulsions display a storage modulus which
spans values between 10 Pa and 100 Pa, but the yield stresses are much smaller, less
than 1 Pa. Knowing that the surface tension is around 29 mN/m [33], as the radii of the
bubbles increase up to values around 800 µm because of coarsening, the corresponding
Laplace pressures decrease to values around 70 Pa which can result smaller than the
emulsion G′ for some foam samples, but not smaller than the emulsion yield stress.
However, the large margin of error on the absolute values of the final mean bubble radii
does not allow us to conclude more with certainty.

Some recent results in the literature [3] suggest that the yield stress of the total foam
should be considered, instead of the yield stress of the continuous phase. Unfortunately,
we did not have the possibility to perform rheology tests on foamed emulsions, as these
results arrived once we had no more rheometers available. Then we could not measure
the yield stress of our foams.
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We also observed from our data that the coarsening rates are quite slow compared
to Gillette foam. This may be due to a reduced permeability of the thin films between
bubbles, which would impact on foam coarsening and make it slower, as seen in §1.3.3.
In order to probe the film permeability in our systems, we performed 2D foam experi-
ments, whose results are reported in §3.4. However, before switching to 2D foams, we
report in the next section some comments about the 3D foam photographs taken.

3.3 Imaging

In this section we shall report the results obtained from the monitoring of 3D foams
through imaging. In addition to qualitative information regarding the foam evolution,
we are able to get an estimate of the mean bubble radius inside the foam samples from
the image treatment, as already explained in §2.3.2.

Absence of drainage

No significant drainage has been observed during the experiments. Since we employed
foam samples with thickness 20 mm for DWS experiments, we always checked visually
both sides of 3D foam samples at the end of each experiment, in order to check if the
foam was wetter on the bottom and dryer on the top. In figure 3.8 we report an example
for one sample of foamed emulsion having oil fraction φ=80% and liquid fraction ε=10%.
The two pictures were taken at the end of a DWS experiment, namely 22 hours after
foam creation during which the foam sample remained static and was never turned
upside down. One can see on the pictures that foam appears very similar on the top and
on the bottom, without any significant liquid fraction difference after such long time.
Thus, our choice to use emulsions as the continuous medium in foams to avoid drainage
is experimentally justified.

Coarsening and negligibility of coalescence

The efficiency of the surfactant employed in our systems, should make coalescence neg-
ligible in the absence of significant drainage. As shown in the previous section, the
latter is avoided thanks to the elasticity of the emulsions that constitute the continuous
phase of our foams. In order to ensure that coalescence is actually negligible, we took
sequences of pictures at constant frame rates for each foam studied with diffusing-wave
spectroscopy. After foam generation, we filled two different samples, one of thickness
20 mm for DWS and another one of thickness 10 mm for imaging. The latter is thinner
in order to have enough transmitted light for image creation.

In tables 3.3 and 3.4 we report some pictures at different times after foam creation.
No significant coalescence is observed in the images, as this would result in a very uneven
size distribution. Therefore we can assume that the intensity evolution measured using
DWS is indeed linked to coarsening. The typical appearance of foam coarsening is
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(a) (b)

Figure 3.8: Negligible drainage. We report the pictures of the top (a) and of the
bottom (b) of the same sample filled with a foamed emulsion of φ=80% and ε=10%.
The sample thickness is equal to 20 mm and the pictures were taken 22 hours after foam
generation. As one can see, the two pictures appear very similar, without displaying any
significant difference in the liquid fraction, confirming that drainage is negligible at such
high oil fractions. Scale bars 20 mm.

observed for each foam sample: as one can see from the pictures, large bubbles slowly
grow at the expense of tiny ones which gradually disappear, leading to an increase of
the average bubble size. Let us now compare the evolution of foams having different oil
fractions in the continuous phase. Comparing the mean bubble size at the same instant
in different samples, it seems to monotonically decrease as φ increases, except for the
two samples having φ=75% and φ=77%, for which the bubbles appear slightly bigger for
the latter. After five hours, it is visually clear that the mean bubble size in the φ=70%
sample is much bigger than in the φ=82% one.

We have already explained the advantages of using spectroscopy instead of imaging
for studying foam coarsening. However, we can use these photographs to further check
the validity of DWS results. We can analyse some of the pictures with the same Matlab
program used for scaling DWS curves, to get the trend of the average bubble radius over
time also with this method.

The result of this procedure is reported in figure 3.9. We consider two experiments of
foamed emulsions at φ=80%, performed in the same experimental conditions. The same
color indicates that the same foam was used to fill two different samples, one of thickness
20 mm for DWS and one of 10 mm for imaging. This way we can follow simultaneously
the bubble size evolution inside the two samples with two different methods. We can see
that pictures confirm the plateau obtained with DWS.
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There is a vertical shift between the curves corresponding to simultaneous exper-
iments, although we used the same Matlab program for image treatment. This shift
can be due to the different confinement of bubbles inside cells of different thickness.
However, the vertical shift between the two methods is not much different from the one
between two different experiments, suggesting that this shift is all linked to the errors
of the measurements.

Figure 3.9: DWS vs imaging. The plot shows the results of two experiments for
foamed emulsions at φ=80% in the same experimental conditions. We use the same
color to follow the ageing of the same foam inside two different samples. The bubble
size evolution built directly from pictures follows the same trend found with DWS. The
shift between the curves is probably due to the different confinement of the foam inside
the two samples of different thickness and to the error linked to image treatment.
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t=10min t=1h t=2h

Table 3.3: 3D foam coarsening. The table reports a first extract of pictures of foamed
emulsions evolution. Each row shows one foam sample at different instants and one
can observe that as the time after foam creation increases, the mean bubble size grows
because of coarsening. Following a column one can compare the appearance of foams
having different oil fractions at the same instant. The bubble size seems to monotonically
decrease as φ increases. Scale bars 20 mm.
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t=3h t=4h t=5h

Table 3.4: 3D foam coarsening. Here is a second extract of pictures of 3D foamed
emulsions. Each row shows the typical growth of the mean bubble size of one foam
sample over time. Following a column one can compare the appearance of foams having
different oil fractions at the same instant. The bubble size decreases as φ increases: after
five hours, it is visually evident that bubbles in the φ=70% sample appear much bigger
on average than the bubbles in the φ=82% one. Scale bars 20 mm.
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3.4 Film permeability

We know that foam coarsening is driven by the gas diffusion through the liquid phase
between bubbles of different sizes. In quite dry foams, like the ones we are considering,
the gas will permeate mainly through the thin films between neighbouring bubbles, as
the Plateau borders are much thicker. Thus, this mechanism strongly depends on the
liquid film permeability.

In order to estimate this relevant parameter for our systems, we carried out 2D
foam experiments. We know that coarsening depends on film permeability through the
effective diffusion coefficient Deff , which appears in the Von Neumann’s relations already
discussed in §1.3.3.

We know from equation (1.9) that Deff is related to the rate of gas diffusion Df and
to several other parameters, such as the Henry coefficient, which takes into account the
solubility of the gas in the liquid, the surface tension of the gas/liquid interface, the film
thickness and the foam liquid fraction.

Once again, we first start presenting the results obtained for a standard stable foam
already studied in the literature. Then we report the results and the complications we
ran into while studying foamed emulsions in two dimensions.

Fairy foam
First of all we repeated an experiment already done in the literature with the same set-
up [32]. We studied coarsening in a pseudo-2D foam made with an aqueous solution of
Fairy Original washing-up liquid. The exact chemical composition of Fairy is unknown:
the label states only that it contains 15-30% of anionic surfactants, 5-15% of non ionic
surfactants and other additives. Fairy foam is characterised by a strong stability of thin
liquid films, which allows to verify Von Neumann’s relations in 2D without observing
coalescence.

The 2D foam was created by injecting air bubbles from the bottom of the reservoir
shown in figure 2.8. Air was injected through a needle connected to a syringe previously
filled with air, which was pushed at a constant rate by a compressor. If the gas flux
is slow enough one can get a foam which is in good approximation monodisperse. The
dimension of the bubbles can be adjusted by properly choosing the needle diameter.
The liquid fraction depends on the height of the liquid inside the reservoir, which was
mantained at atmospheric pressure by a small tube in contact with air.

Since the foam was constantly in contact with the liquid inside the reservoir, the
excess of liquid could drain during 2D foam coarsening, meaning that the liquid fraction
was not kept constant during this kind of experiment. What remained constant with
this set-up configuration is the capillary pressure.

We studied 2D foam coarsening by taking pictures at a constant frame rate. Some
of them are reported in table 3.5. The foam is in good approximation monodisperse
at the beginning, resembling an ordered crystalline structure. After the onset of coars-
ening, the polydispersity start growing and the average bubble size visually increases.
The typical behaviour predicted by Von Neumann’s laws is observed: the relevance of
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topology becomes evident after few hours. The bubbles with five neighbours or less start
decreasing over time and slowly disappear, while bubbles with seven neighbours or more
keep on growing. This leads to a decrease of the total number of bubbles and to an in-
crease of the mean area of the remaining ones, both typical features of foam coarsening.
In figure 3.6 we can see a focus on a five-sided bubble which is reducing its area while
passing its gas to the surrounding bigger bubbles, according to equation (1.8).

By analysing these pictures using the already mentioned custom made Matlab pro-
gram [14], we can recognise all the bubbles on the picture and get all the information
about their size, their position and their number of neighbours over time. First of all, we
can follow the total number of bubbles over time, that we can compare with the trend
found in [32]. The plot is reported in figure 3.10.

Figure 3.10: Total number of bubbles. The plot reports the total number of bubbles
over time. As expected Ntot decreases. The steps are a characteristic feature of a quasi-
monodisperse foam, where the five-sided bubbles of equal size disappear at the same
instant. In our case Ntot is not constant at the beginning because of a movement of
bubbles inside the 2D cell, which does not affect the next results.
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t=0s t=5h t=10h

t=15h t=20h t=25h

t=30h t=35h t=40h

Table 3.5: Fairy foam coarsening. The table reports some of the photographs taken
of the 2D foam made of Fairy liquid, which coarsens over time. The bubbles are initially
monodisperse at t=0 s and their size increases over time. After five hours one can see
that five-sided bubbles start visually decreasing, while the bubbles with more than six
neighbours become bigger. Scale bars 20 mm.
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t0 t0 + 2.5h t0 + 5h

Table 3.6: Disappearance of a bubble. The three pictures show a five-sided bubble
(painted white) at different instants. After 2.5 hours it has already passed much of its gas
to the surrounding bubbles. After 5 hours it is about to disappear. Scale bars 10 mm.

Since we started by an approximately monodisperse 2D foam, we expected the to-
tal number of bubbles to be constant at the beginning. It should not vary until the
disappearance of the first five-sided bubbles, which should occur simultaneously if the
size of the bubbles is initially homogeneous. The instant of time at which this occurs is
called catastrophic time. In our case, in figure 3.10 we observe a slightly decreasing slope
instead of a constant value of Ntot. Our 2D foam was not perfectly monodisperse, but
this slope is mainly due to the fact that we registered a little temporary shift of bubbles
towards the reservoir at the beginning of the experiment, which stabilised by itself in a
short time. However, it causes a loss of few bubbles since the beginning, because the
Matlab program does not consider bubbles on the boundaries, and as soon as the bubbles
move towards an edge of the picture, they are cut and no more taken into account. This
explains the existence of that unexpected slope, which however does not affect further
our analysis.

In fact, in order to get the diffusion coefficient, we are interested in the variation of
the mean area of the bubbles with five and seven neighbouring bubbles respectively. We
can consider the following relation for a group of n-sided bubbles:

〈An,t〉 − 〈An,0〉
〈An,0〉

= π

3Deff (n− 6)t (3.2)

where 〈An,0〉 is the mean area of the n-sided bubbles at instant t = 0, 〈An,t〉 is its value
at instant t and Deff is the effective gas diffusion coefficient. Once obtained the trend
of 〈An〉 from the pictures, it is immediate to get Deff .

The normalised mean area evolution of n-sided bubbles is reported in figure 3.11 for
n equal to 5, 6 and 7 respectively. One can easily see that the mean area of five-sided
bubbles initially decreases, while the seven-sided ones have an area which is increasing
in average from the beginning. By contrast, the mean area of bubbles with six sides is
approximately constant, as expected.
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Method of slopes

A focus on the first part of the graph is reported at the bottom of figure 3.11. Here we
can see better how the two curves corresponding to n=5 and n=7 are linear and almost
specular. By linearly fitting both of them with a curve y = an · t we can get the angular
coefficients an for n = 5 and n = 7, which will have opposite sign. The coefficient Deff

is then obtained from an by using the following relation:

Deff = 3
π

an
n− 6 · 〈An,0〉 (3.3)

Results are summarised in table 3.7. We obtain Deff=(3.2 ± 0.4) · 10−4 mm2/s from
the evolution of five-sided bubbles and Deff=(3.8 ± 0.4) · 10−4 mm2/s from the seven-
sided ones. We note that the two values obtained are very close and their compatibility
results 1.06. Moreover, they are of the same order of magnitude of the ones found in [32].

Method of slopes
an [s−1] 〈An,0〉 [mm2] Deff [mm2/s]

n=5 (−4.31± 0.03) · 10−5 7.7± 0.8 (3.2± 0.4) · 10−4

n=7 (+4.83± 0.04) · 10−5 8.3± 0.7 (3.8± 0.4) · 10−4

Table 3.7: Parameters. Effective diffusion coefficients measured through the method
of slopes from the evolution of five and seven-sided bubbles. Intermediate parameters,
namely the angular coefficient an and the initial mean area 〈An,0〉, are tabulated as well.

Method of bubble tracking

We can get the coefficient Deff in a different way, which will be useful later for studying
2D foamed emulsions. The Matlab program allows to follow the evolution of every single
bubble. Hence we can calculate the Deff by tracking the area variation of each bubble
with n sides. By linearly fitting the single area variation with a curve y = an · t + b
we can get the angular coefficient an, which is then averaged over the total number of
bubbles having n neighbours. This is done in figure 3.12, which displays the results
obtained for the coefficient an and its mean values, for bubbles having five and seven
sides. According to Von Neumann’s relation, we know that the angular coefficient an is
essentially given by:

an = dAn
dt

= π

3Deff (n− 6) (3.4)

hence we can directly get the effective diffusion coefficient Deff from the relation:

Deff = 3
π

an
n− 6 (3.5)
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Figure 3.11: Method of slopes. Picture on the top shows the time evolution of the
normalised mean area for bubbles having different number of neighbours. Zooming on
the first part, picture right below shows the two linear interpolations performed for n=5
and n=7 in order to get Deff with the method of slopes.
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Results for an andDeff are reported in table 3.8. We getDeff=(3.3 ± 0.3) · 10−4 mm2/s
by tracking single five-sided bubble evolutions and Deff=(3.7 ± 0.5) · 10−4 mm2/s by
tracking the seven-sided ones. We can note that these values are very close to the ones
obtained with the previous method. Thus, this method proves reliable and results useful
when measuring Deff in polydisperse foams, like the ones we get by foaming emulsions
with the mixer, as will be illustrated in the next section.

(a) (b)

Figure 3.12: Bubble tracking. Picture (a) shows the angular coefficients a5 found by
tracking single five-sided bubbles. The horizontal red line represents the mean value
〈a5〉 = (−3.5± 0.4) · 10−4 mm2/s. The same is done for bubbles with seven neighbours
in picture (b), where the mean value is 〈a7〉 = (+3.9± 0.5) · 10−4 mm2/s.

Method of bubble tracking
〈an〉 [mm2/s] Deff [mm2/s]

n=5 (−3.5± 0.4) · 10−4 (3.3± 0.3) · 10−4

n=7 (+3.9± 0.5) · 10−4 (3.7± 0.5) · 10−4

Table 3.8: Parameters. Effective diffusion coefficientsDeff measured by tracking single
five and seven-sided bubbles. The mean values of the angular coefficients 〈an〉 are also
reported in the first column.
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Foamed emulsions
The production of bubbles by air injection in emulsions at high oil fraction is not possible,
because of their strong elasticity. If we try to inject air from the bottom, what we get is
a single bubble which keeps on expanding until it reaches the surface and it bursts.

Therefore, we could not follow exactly the same procedure and we had to slightly
modify the set-up configuration. We first created a 3D foamed emulsion by using the
mixer, then we carefully spread it on the cell where then the joint was smaller so that the
foam was no more in contact with the reservoir, which was left empty. Doing this, the
liquid fraction, and not the capillary pressure, was kept constant during the experiment.
The liquid fraction was measured before each experiment and was approximately the
same as in the DWS experiments, namely around 10%.

Since the mixer produces a foam with very tiny bubbles, the foam in the cell was
initially 3D even if we used the thinnest joint available, which has a thickness of 1 mm.
A thinner joint would have probably allowed to get a monolayer of bubbles immediately,
but the Matlab program [14] employed for processing the pictures would not have been
able to recognise such small bubbles. Hence we always had to wait some time for the
foam to age and become 2D, discarding the first sequence of pictures where the foam was
still 3D. The time to wait for varies for each experiment, as it depends on the coarsening
rate, and it oscillates between 2 hours for the minimum oil fraction and 9 hours for the
maximum.

Once again, the evolution of the bubbles was recorded by taking photographs at
constant time intervals, equal to 180 s. We repeated the experiment for foamed emulsions
having different oil fractions, ranging from 70% to 82%. Some of the pictures are reported
in tables 3.9 and 3.10. Before describing the evolution of the different samples in detail,
we can already note that there is no clear sign of coalescence and it seems that foams
age through coarsening only. As here we are working with a constant liquid fraction,
unlike with the Fairy foam, the pseudo Plateau borders are getting thicker at the surface
as the bubble size increases.

We can easily see from the pictures that the coarsening is strongly different than what
we observed in Fairy foam. Let us start considering the foamed emulsion at φ=70%. We
can see that the disappearance of small bubbles makes the average bubble size grow over
time. However, we can see that the aspect of the bubble pattern is slightly different than
the aqueous Fairy foam. This difference is enhanced when the oil fraction is increased.
As time goes by, the bubble pattern changes until it does not even resemble a pattern
of bubbles. It looks more like a pattern of solid grains. This peculiar ageing is clearly
observed especially for foamed emulsions at φ=80% and φ=82%. The difference between
the two samples at φ=70% and φ=82% can be better compared in figure 3.13, where we
report an enlargement of two pictures after 68 hours.
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t=0s t=6h t=12h

Table 3.9: 2D foamed emulsions. The table reports a first extract of pictures of 2D
foamed emulsion evolution. Each row shows one foamed emulsion with a certain φ at
different instants of time and one can observe the growth of the mean bubble size due
to coarsening and the absence of coalescence. Following a column one can compare the
appearance of foams having different oil fractions at the same time. Scale bars 20 mm.
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t=24h t=36h t=44h

Table 3.10: 2D foamed emulsions. The table shows a second extract of image se-
quences for 2D foamed emulsions having different oil fractions φ. From the last column
one can see that when φ is increased up to 82% the bubble appearance is totally different
from the typical pattern observed for Fairy foam. The bubbles are not at all relaxed and
the pattern looks like the evolution of solid grains instead of bubbles. Scale bars 20 mm.
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(a) (b)

Figure 3.13: Comparison between φ=70% and φ=82%. The two figures show a
zoom on the 2D foamed emulsions at φ=70% (a) and φ=82% (b) after 68 hours. One can
observe that their appearance is totally different. The sample (a) still resembles a 2D
foam, as one can still recognise the typical topology. By contrast, the sample (b) at higher
oil fraction exhibits an amazing pattern where bubbles are not at all relaxed. The mate-
rial really resembles the evolution of solid domains instead of bubbles. Scale bars 10 mm.

The observed behaviour does not allow us to use Von Neumann’s relation for 2D foam
coarsening, since it is based on the topology of bubble pattern that here is completely
different. What we can do is evaluating only the order of magnitude of the coefficient
Deff in such systems, by analysing some single bubbles for the foamed emulsion at 70%
of oil, which is the only one that can be still considered as a foam.

Since we are now working with polydisperse foams, we use the method of bubble
tracking as already done for Fairy foam. Instead of an initial interval of time, we consider
an intermediate range where bubbles are a bit larger and the program can follow better
the area evolution. Once again we interpolate the data with a linear curve y = a · t+ b.
Figure 3.14 reports an example of linear fit for a single five-sided bubble. By repeating
the same procedure for ten different five-sided bubbles and taking the weighted average,
we can evaluate the mean angular coefficient 〈a〉, as displayed in figure 3.15, which results
equal to (−9.6± 0.1) · 10−5 mm2/s.

By using the equation (3.5), we can get a rough estimation of the effective diffusion
coefficient Deff , which results equal to (9.2± 0.1) · 10−5 mm2/s. We can see that Deff

in foamed emulsions is smaller than the values found for Fairy foam, whose weighted
average was (3.4± 0.2) · 10−4 mm2/s.

54



Figure 3.14: Single bubble tracking. Example of bubble tracking. The plot shows the
single bubble area over time. The fit is done on an intermediate time interval, where the
Matlab tracking is more efficient. Every jump in the graph means that the considered
five-sided bubble has disappeared and the Matlab program starts tracking a different
five-sided bubble.

In order to better understand the origin of this difference, we need to remind of
what the coefficient Deff depends on. Let us rewrite for the sake of convenience the
equation (1.9) here below:

Deff = Df
2He γ Vm

h
a(ε) (3.6)

Let us now analyse each of the possible contributions, starting from a relevant obser-
vation about the 2D foam geometry. We know that Deff depends on the liquid fraction
via the geometric factor a(ε), that takes into account the effective area of gas transfer.

With Fairy foam we have worked with a constant capillary pressure, while the liq-
uid fraction could vary during the experiment, as the liquid was free to drain into the
reservoir. This way, as seen from the pictures in table 3.5, the pseudo Plateau borders
remained quite thin and we can consider their radius rPB to be much smaller than the
spacing between the two plates e. Therefore, if rPB << e the effective height of the
thin film eeff is approximately equal to the spacing e, and the geometrical factor can be
considered equal to one, a = eeff/e ' 1.
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Figure 3.15: Angular coefficients. The plot shows the angular coefficients a5 obtained
following the area variation of 10 different five-sided bubbles. The red line represents
the weighted average equal to (−9.6± 0.1) · 10−5 mm2/s.

For foamed emulsion this is not true, since the liquid fraction was kept constant
during the experiments. We observed that the pseudo Plateau borders increase their
thickness as the foam coarsens, and they are generally thicker than the ones in Fairy
foam. The approximation done for Fairy results no longer true, as the effective sur-
face through which gas diffuses from bubble to bubble can be smaller than the spacing
between the plates, resulting in a geometrical factor smaller than one. Knowing that
the liquid fraction of our foamed emulsion of φ=70% was equal to ε=9%, if we use the
equation (1.10) we find a factor a(ε) = 0.5.

Surfactants affect the Deff directly via the surface tension γ. We know that the
surface tension of Fairy liquid is equal to 27 mN/m, while the surface tension in emulsions
with rapeseed oil and SDS results around 29 mN/m at oil fractions up to 70% [33]. The
similarity between these two values suggests that the difference in Deff should lie in the
other involved parameters.
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Let us now take into account the chemical composition of our foams. The film
permeability k, which is given by the ratio:

k = RT
DfHe

h
(3.7)

can be easily calculated from the coefficient Deff and results around 3.5 ·10−7 m/s.
The Henry constant He depends strongly on the chemical composition of both gas

and liquid phases. Even though there are no values in the literature for the Henry
constant specifically for air in rapeseed oil, the solubility of air in other vegetable oils
seems to be higher than in water. A higher He would lead to a faster coarsening,
therefore we can say that the slowing down of the coarsening process is not linked to
He, as it varies in the wrong direction. Table 3.11 shows some of the values for the
Henry constants of the main air compounds in water and in some oils.

Henry constants
Water [31] Sunflower oil [7] Corn oil [1] Cottonseed oil [1] Soybean oil [1]

N2 0.0006 - 0.0028 0.0027 0.0038
O2 0.0013 0.0057 - - -

Table 3.11: Air solubility. The table shows the values found in the literature for
the Henry constant He of nitrogen and oxygen in water and in other vegetable oils at
T=25oC. The values are all expressed in mol L−1bar−1.

It is generally assumed that the diffusion coefficient Df of the gas in the liquid film
is equal to that in the bulk liquid, and therefore independent of the film thickness h.
By contrast, it is inversely proportional to the molecular viscosity of the liquid. More
precisely it is linked to the viscosity of water and oil separately, not to the emulsion
viscosity, as the gas molecules do not feel the emulsion droplets as obstacles. As the
viscosity of oil is higher than the one of water, if there are oil droplets within the films
we expect Df to be smaller.

Finally, the effective diffusion coefficient can be influenced by either the film thickness
or a factor linked to the permeability of the interfaces. However, the latter is already
taken into account by the surface tension. The film thickness h, which is fixed by the
disjoining pressure, can play a fundamental role. A thicker film would decrease the
permeability, and from the Deff equation we can see that the thicker the films, the
slower the coarsening.

In addition to all these qualitative comments, which open up to further future in-
vestigations, we observed that coarsening is actually influenced by the viscoelasticity of
the continuous phase. What we observed is that increasing the storage modulus G′ of
the emulsion, namely increasing its elasticity, the system evolves in a way that does not
resemble the ageing of a traditional 2D foam.
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Let us now compare the foamed emulsion behaviour at different oil fractions. Since
applying Von Neumann’s laws to foamed emulsions at higher φ is not meaningful, we are
not able to get the variation of Deff with φ. Anyway, what we can do is to count the
total number of bubbles over time for different foamed emulsions and see if something
changes with φ. What we get is shown in figure 3.16, where we compare the normalised
total number of bubbles Ntot for different oil fractions φ.

Figure 3.16: Total number of bubbles. Total number of bubbles over time for foamed
emulsions having different oil fractions. Ntot is normalised over the initial number of
bubbles and the Fairy curve is reported to allow a visual comparison.

We can see that the decrease of the total number of bubbles is smooth compared
to what observed in Fairy foam. The steps observed in the Fairy curve corresponds to
the approximately simultaneous disappearance of five-sided bubbles. But in the case of
foamed emulsions, we start from a polydisperse 2D foam, hence the five-sided bubbles
have different sizes and there is no reason why they should all disappear at the same
instant. We can further observe that increasing the oil fraction the total number of
bubbles decreases more slowly.

Thanks to the Matlab program, we can also get the evolution of the mean bubble
area to see if these foamed emulsions exhibit a scaling behaviour. Once we have the
mean area trend, we can easily find how the mean bubble size evolve over time.
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It is unusual to find in the literature the evolution of the mean bubble radius over
time for 2D foams, as the bubbles are usually not very small at the beginning in such
experiments, so once they start ageing the statistics becomes poor quite soon. However,
in our case we start with a polydisperse foam having very tiny bubbles and since the
ageing results very slow, we can find out the trends of the mean bubble radii in order to
compare them with the ones found for 3D foams.

By simply using the relation 〈R〉 =
√
〈A〉 /π, we can plot the mean radius over time,

after normalising it by its initial value R0. What we find is reported in figure 3.17. Here
we can observe that after a transient regime, for every foamed emulsion the mean bubble
radius seems to exhibit an asymptotic power law evolution.

If we fit the final part of the curves with a function 〈R〉 /R0 = a · tβ we can estimate
and compare the exponents for different oil fractions, which are reported in table 3.12.

Figure 3.17: Radius scaling. Normalised mean bubble radius over time at different
oil fractions, obtained from the mean area scaling. The solid lines represent the fitting
power laws 〈R〉 /R0 = a · tβ. The exponents are reported in table 3.12.
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The exponent slightly varies for φ between 70% and 80%, while it is much smaller
at φ=82%. We know from the literature that the prediction for dry foams is β = 1/2,
whereas all the experimental exponents we obtained are smaller. They are all even
smaller than the theoretical value β = 1/3 expected for the Ostwald ripening in wet
foams. It is interesting to observe that, in contrast to 3D foams, 2D foams do not ex-
hibit a plateau in the evolution of the mean bubble radius.

Radius scaling
φ a β

70% 0.266± 0.001 0.172± 0.001
75% 0.143± 0.002 0.214± 0.001
77% 0.213± 0.002 0.172± 0.001
80% 0.138± 0.002 0.196± 0.001
82% 0.420± 0.001 0.090± 0.001

Table 3.12: Scaling parameters. The table reports the parameters found by fitting
the scaling curve of the normalised mean bubble radius for each 2D foamed emulsion.
The curve used to interpolate is a function 〈R〉 /R0 = a · tβ. The error associated to the
parameters is the one coming from the interpolation and is probably underestimated.
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Conclusions

The aim of the present thesis was to investigate how the mechanical properties of the
continuous medium impact on foam stability. More precisely, we wanted to probe the
effect of the elasticity of the liquid phase on the coarsening process, in conditions of
negligible drainage and coalescence.

For this reason, we chose to foam oil-in-water emulsions at high droplet concen-
trations, which exhibit viscoelastic properties suitable for our purposes. The choice of
employing elastic emulsions to avoid gravitational drainage revealed itself successful, as
foamed emulsions at high oil concentrations do not drain for very long periods of time.
This feature provides foam samples suitable for carrying out experiments at constant
liquid fraction, which is usually not possible on the ground because of gravity.

From the study of three dimensional foams, which were investigated through diffusing-
wave spectroscopy, we observed a slowing down of the coarsening process for foamed
emulsions having oil fractions higher than 70%. The growth of the mean bubble size has
a peculiar behaviour, very different from traditional dry aqueous foams. After a tran-
sient regime where the bubbles grow, the mean bubble size seems to reach a saturation
value, which is more evident at very high oil fractions. The photographs taken confirm
this behaviour and clearly show that the higher the oil fraction in the liquid phase, the
smaller the mean bubble size, considering the same time after foam creation.

We know from the literature that the gradual increase of elastic stresses among the
bubbles can stabilise the entire foam [37], and that coarsening can halt if the yield
stress of the continuous phase overcomes the Laplace pressure difference between bub-
bles [5] [23]. What we observed is that coarsening appears hindered when the Laplace
pressure is overcome by the storage modulus of the emulsions, even if the yield stress is
much lower.

The investigation of quasi-2D foams clearly revealed a strange evolution of the bub-
bles at such high oil fractions. We observed that gradually increasing the oil fraction
from 70% to 82%, the monolayer of bubbles exhibits a surprising pattern, where bubbles
are not at all relaxed. The material sample looks like the evolution of solid grains instead
of gas bubbles.

From the image analysis we discover that the mean bubble size keeps on growing with
an asymptotic behaviour described by a power law. This is in contrast with the plateau
found for 3D foams. All the time exponents are smaller than the theoretical prediction
of 1/2 for dry foams and even smaller than the value 1/3 expected for wet foams. Hence
even in 2D foams a viscoelastic continous phase changes coarsening considerably.
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The analysis of the film permeability revealed a low effective diffusion coefficient.
Since this coefficient depends on several parameters, many hypotesis can be made for
justifying the result obtained. However, the lack of studies in similar systems does
not allow to derive a full explanation of what we observed and further experiments are
required to pinpoint the origin of the slow diffusion.

The point of interest we can highlight is that changing the elastic properties of the
emulsions does influence the coarsening process, and this partially answers to the initial
question of this work. What we have seen is that the elastic continous phase leads to
a slower coarsening, and can even stop the process. However, we still do not have a
complete picture of how the coarsening process is modified by the presence of the oil
droplets inside the foam.

This change in coarsening mechanism gives rise to many open questions. Recent
studies [3] suggest that one should consider the yield stress of the total foam, not the
one of the continuous phase. Then, rheological tests on foamed emulsions could probably
help to understand more about the coarsening mechanism in such systems.

An in-depth analysis of the autocorrelation functions, obtained from spectroscopy,
can give relevant information about the structural rearrangements inside the foam: as
foamed emulsions contain two types of scatterers, one needs to find a way to decouple
the contributions of bubble rearrangements from the ones of droplets dispersed in the
liquid phase. However, this would allow us to probe how the bubble rearrangements
evolve during the coarsening process and whether an arrest of the coarsening is indeed
observed through an arrest in rearrangements.

Furthermore, it would be interesting to understand whether the thin films effectively
contain oil droplets at the interfaces or not, as this can also change the film permeability.

We can conclude that the results obtained in this study are quite satisfying, as they
lay the groundwork for many further experimental investigations.
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