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Abstract

This thesis presents an approach to analyzing functional Functional Magnetic
Resonance Imaging (fMRI) data by introducing a novel Spatiotemporal Model
that seamlessly integrates U-NET and 3D Convolutional Neural Network (3DCNN)
with long short-term memory (LSTM) networks. This integration marks a signif-
icant advancement in neuroimaging analysis, addressing the complex challenge
of capturing brain activity’s complex spatial and temporal dynamics.

Traditional fMRI data analysis methods are limited by their inability to si-
multaneously map the brain’s spatial structures and temporal patterns. These
restrictions limit the depth of insights into neural functions and cognitive pro-
cesses. To overcome these limitations, our Spatio-Temporal Model uses the
U-NET and 3DCNN which allows for precisely identifying brain regions. Ad-
ditionally, LSTM networks are integrated to model the temporal dependencies
within the fMRI time series. This enhances the understanding of how spatial
patterns of brain activity evolve over time.

The model provides new perspectives for exploring cognitive processes and
neural functions. The results highlight the potential of this advanced analytical
tool in understanding neurodevelopmental diseases and setting new approaches
for future research in neuroimaging.

This research addresses a critical gap in fMRI data analysis and opens the
door for significant contributions to neuroscience, potentially impacting diag-
nostic and therapeutic strategies for neurodevelopmental disorders. The thesis
represents a step forward in neuroimaging analysis, demonstrating the potential
of combining deep learning technologies to uncover the complex mechanisms
of the brain.
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1
Introduction

1.1 Brain function and Brain disease

This section provides an overview of brain functions, various disorders,
and current diagnostic tools. It then delves deeper into neurodevelopmental
disorders, which are the primary focus of this thesis. Specifically, it discusses
schizophrenia, bipolar disorder, and ADHD, offering brief explanations of each.
This segment aims to lay the foundation for understanding the complex interplay
between brain function and disorders, setting the stage for exploring the use of
machine learning in classifying these conditions based on neuroimaging data.

1.1.1 Brain function

In everyday life, outside the intricate field of neuroanatomy, our perception
of the brain tends to be quite abstract. We rarely, if ever, think of it in terms of
its physical structure. Instead, when we imagine the brain, we might picture
something like a sizable gray walnut. This simplified view underscores the
distance between our daily experiences and the complex reality of brain anatomy
[1].

Our brain is a vital organ that underpins numerous critical human survival
functions. It is composed of several parts that collaboratively oversee cognition,
motion, sensation, and emotions. This organ is categorized into three primary
sections: the forebrain, midbrain, and hindbrain. The forebrain, particularly
the cerebrum, facilitates higher-order functions such as thinking, remembering,
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1.1. BRAIN FUNCTION AND BRAIN DISEASE

language skills, and sensory interpretation. The midbrain is critical for reflexive
actions and controlling eye movements. Meanwhile, the hindbrain is essential
for managing core life-sustaining activities like breathing and heart rates, besides
aiding in movement coordination. Located within the hindbrain, the cerebellum
is instrumental in refining motor skills and ensuring equilibrium. The brainstem,
forming a bridge to the spinal cord, is crucial for transmitting signals across
the body and to the cerebral cortex. As the epicenter of intellect, the brain
orchestrates behaviors, deciphers sensory inputs, and prompts physical actions,
underscoring its indispensable role in human life and functionality[9], [12]

1.1.2 Brain disease

Brain diseases can significantly impair a person’s cognitive abilities, behav-
ior, and daily functioning. These conditions span several categories, including
autoimmune disorders like Multiple Sclerosis (MS), which attacks the nervous
system’s insulation; epilepsy, characterized by seizures; and various infections
that can lead to symptoms like confusion and headaches.

Mental health disorders are another group of brain diseases. According
to reports, mental health disorders affect one in five adults and diminish the
quality of life and functional capacity, with conditions ranging from anxiety and
depression to schizophrenia. Treatment usually includes both medication and
therapy.

Neurodegenerative diseases are a group of disorders, such as Alzheimer’s
and Parkinson’s, that result from abnormal protein accumulation, leading to
memory, thought, and movement issues. They’re mainly identified by the grad-
ual loss of structure or function of neurons, which is called neurodegeneration
[37].

Neurodevelopmental disorders are a category of brain disorders, such as
ADHD and autism, which impact brain growth and development and are often
managed by pediatric specialists.

Other brain diseases, including Strokes and traumatic brain injuries, arise
from blood supply issues or physical trauma and can cause severe brain damage,
affecting speech, movement, and cognitive functions.

Another group of brain diseases includes brain tumors, whether spreading
from elsewhere or originating in the brain, which vary in severity based on their
growth and invasiveness.
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CHAPTER 1. INTRODUCTION

The prevalence of brain diseases varies, with conditions like Alzheimer’s and
autism being more common, while others like meningitis have become rarer due
to vaccinations. Brain diseases pose significant challenges to individuals’ health
and well-being despite their varied incidence rates [10].

1.1.3 Current Means of Diagnosis

The burden of brain diseases in Europe is immense, as mentioned in the re-
search by Olesen and Leonardi, which provides a detailed evaluation [40]. Their
study utilizes disability-adjusted life years (DALYs) to gauge the overall impact,
finding that such diseases constitute about 35% of total DALYs in Europe. This
study underscores the massive portion of health-related impairments attributed
to brain diseases and advocates for a proportional investment in medical ed-
ucation, research funding, and healthcare to address the complexities of brain
conditions.

Brain disease diagnosis typically relies on clinical symptom scores and doc-
tors’ experience and subjectivity, and inefficiencies can sometimes lead to mis-
diagnoses [54].

There is a range of brain disorders, including neurodevelopmental diseases,
movement disorders, epilepsy, strokes, and neuro-oncology, causing diverse
clinical evaluations to be tailored to diagnose and treat these diseases. Early de-
tection and accurate diagnosis for effective treatment are of great importance[21].

Diagnostic tools for brain disorders include neurological exams and brain
imaging techniques like CT, MRI, and PET scans, and the analysis of fluid from
the brain and spinal cord can detect abnormalities such as bleeding or infections
[11].

Among all means of diagnosis, clinical evaluation of patients with brain dis-
eases is very important and effective in understanding and diagnosing these
conditions. Diseases are defined by symptoms and signs that affect an indi-
vidual’s normal functioning, and clinical assessment is a structured process
undertaken by healthcare providers to collect symptoms and signs, determine a
syndrome, and hypothesize about the underlying disease[21].

In [16], Jeste and Geschwind bring attention to the necessity of patient strati-
fication in neurodevelopmental disorders due to their heterogeneity, suggesting
that more refined subgroups might be needed for effective treatment. They also
point to the potential for the timing of interventions to impact effectiveness, not-
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1.1. BRAIN FUNCTION AND BRAIN DISEASE

ing that treating adults may not address neurobiological consequences already
established during development.

In recent years, there has been some research on using neuroimaging in
diagnosing mood and other brain disorders. While neuroimaging techniques,
particularly MRI and fMRI, are on the brink of transitioning from research to
clinical practice, they face significant limitations in widespread clinical applica-
tion. These tools, despite their demonstrated ability to identify structural and
functional changes related to mood disorders, primarily cater to neurological
disorders. Their application within psychiatric diagnostics is yet to be fully re-
alized due to challenges in generalizability and the subtlety of neuroanatomical
variations in psychiatric conditions. This underscores the urgent need for further
research and innovation. Integrating machine learning algorithms with neu-
roimaging data should also be considered to create individualized assessments,
potentially bridging the gap between research findings and patient-specific care.
An "ideal" neuroimaging tool would perform whole-brain analyses, accommo-
date disease heterogeneity, and offer robust validation to inform diagnostic and
prognostic assessments in a personalized medicine framework[51].

Despite the promise shown, significant work remains in developing neu-
roimaging biomarkers that can reliably inform clinical decisions for mood and
brain disorders; this involves overcoming challenges such as ensuring the speci-
ficity and sensitivity of biomarkers amidst the heterogeneity of psychiatric dis-
orders and the necessity for more rigorous and extensive validation processes.
The quest for reliable neuroimaging biomarkers is essential for enhancing the
diagnosis, treatment, and management of mood disorders [50].

1.1.4 Neurodevelopmental Diseases

Neurodevelopmental disorders (NDDs) encompass a spectrum of conditions
impacting brain functional development. These disorders can vary widely in
severity, from mild forms that permit relatively normal living to profound disor-
ders necessitating continuous care throughout life. Conditions classified under
neurodevelopmental disorders cover a range of problems, such as behavioral
conduct disorders, Attention Deficit Hyperactivity Disorder (ADHD), cerebral
palsy, and speech and language difficulties [38].

Researchers are learning more about how genetics play a crucial role in
neurodevelopmental disorders (NDDs), which include conditions like autism,
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CHAPTER 1. INTRODUCTION

attention-deficit/hyperactivity disorder (ADHD), and intellectual disabilities.
They have found that specific gene changes can significantly impact the devel-
opment and behavior of individuals with these disorders. It is important to
mention that many of these conditions might not be completely separate. In-
stead, they could be part of a larger spectrum that also includes conditions like
schizophrenia and bipolar disorder. This suggests that these different disorders
might share some common genetic factors. Thanks to advancements in genetic
testing, doctors are getting better at diagnosing these disorders early on; this
is important because the sooner a condition is diagnosed, the sooner treatment
can start, which can lead to better outcomes for the person affected [36].

People did not pay much attention to neurodevelopmental disorders until
about 50 years ago. Now, there is a shift towards not just surviving illnesses
but improving life quality, leading to a better understanding of NDDs. The
latest mental health guide has even added a new category for NDDs, showing
that these issues start early in life and are related to how the brain develops,
sometimes affected by problems during pregnancy or birth. ADHD and learning
disorders are getting more research and attention today, even though they were
not consistently recognized in the past. There is concern about overdiagnosing
ADHD, the importance of recognizing development stages in diagnosis, and the
need for a combined approach to treatment and understanding NDDs. NDDs
can be a significant burden, affecting health, society, and the economy, and
pose issues because the healthcare system is more set up for acute (short-term)
health problems rather than chronic (long-term) ones. Other health conditions
alongside NDDs can provide insights into how the brain works and stress the
importance of looking at patient care more holistically. Future research is needed
to understand better the differences and long-term effects of NDDs, calling for
a more integrated healthcare approach to tackle these issues effectively [13].

In this paper we are going to classify between 3 neurodevelopmental dis-
eases and healthy controls, these three diseases are: Schezophrenia, Bipolar and
ADHD. Here, we briefly discuss each of these conditions.

Schizophrenia is a serious psychiatric condition with an unknown cause.
Presently, there is discussion regarding a combination of genetic and environ-
mental factors contributing to the outset of this disorder. This disorder is intri-
cate, and patients may display various symptoms, varying between individuals
or even within the same individual over time [19]. Studies using animal models
have indicated that developmental hippocampal lesions can lead to disconnec-
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tions within the prefrontal cortex. Further insights from magnetic resonance
imaging and postmortem examinations have highlighted deficits within the
temporoprefrontal neuronal circuit [52].

Bipolar disorder, is known as one of the most challenging mood disorders, it
can cause considerable distress, disability, and burden not just for patients but
also for their families and caregivers [48]. Differentiating between unipolar and
bipolar depression during the early stages of the illness could aid in providing
targeted and effective treatment strategies [24]. This disorder can impact indi-
viduals from all backgrounds and genders, affecting approximately 1 in every
100 people at some stage in their lives. While the exact cause remains uncer-
tain, it’s thought to involve a combination of genetic predisposition, biological
variations in brain function, and environmental factors like intense stress or
significant life events [8].

The third class of neurodevelopmental disease that we are going to classify
in this paper is ADHD. ADHD is one of the most prevalent neurobehavioral
disorders seen in children seeking treatment [23], and can also be diagnosed in
adolescents and adults [4]. It often coexists with other psychiatric issues such
as oppositional defiant disorder (ODD), conduct disorder, mood, and anxiety
disorders, as well as cigarette and substance use disorders [7]. Throughout life,
untreated ADHD carries significant social and societal costs, including academic
and work-related underperformance, involvement in delinquent behavior, im-
paired motor vehicle safety, and challenges in interpersonal relationships [7] [5].

1.1.5 fMRI

fMRI is a relatively recent technology with the capacity to characterize and
classify brain disorders [19] It is a category of imaging techniques created to
illustrate regional, time-dependent alterations in brain metabolism [3]. These
metabolic shifts can arise from cognitive state changes induced by tasks or spon-
taneous processes in the resting brain [22]. Since its introduction in 1990, this
technique has been extensively utilized in numerous studies of cognition for
clinical purposes, including surgical planning, monitoring treatment effective-
ness, and serving as a biomarker in pharmacological and training interventions
[22]; also, there’s a lot of hope that fMRI data could be used to understand
and group brain disorders like Alzheimer’s disease, schizophrenia, mild brain
injuries, addiction, or bipolar disorder based on biological measurements [19].
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CHAPTER 1. INTRODUCTION

1.2 Methodology

The methodology section delves into the computational strategies employed
to process brain imaging data. It begins with the basics of multilayer neural
networks, followed by the principles of convolutional neural networks, which
are adapted to image data analysis. The discussion progresses to 3DCNNs,
suitable for examining volumetric brain scans, and then to Long Short-Term
Memory networks, which handle data sequences and temporal patterns. The
U-Net architecture is outlined for its application in medical image segmentation.
Finally, the integration of LSTM layers into U-Net is discussed, showcasing a
hybrid approach to analyze both spatial and temporal brain data features.

1.2.1 Multilayer Neural Network

The multilayer neural network, often referred to as a MLP, is a fundamental
type of artificial neural network (ANN). It is tailored to approximate complex,
nonlinear relationships from the input data to the corresponding outputs. The
general structure of an MLP can be described by the following expressions:

Let 𝑦 = ℰ𝑚𝑙𝑝(𝑥;𝜃𝑚𝑙𝑝) denote the MLP transformation, where ℰ𝑚𝑙𝑝 signifies
the transformation function that maps an input 𝑥 to an output 𝑦 using a set of
parameters 𝜃𝑚𝑙𝑝 . This transformation function can be decomposed into:

ℎ = 𝑊𝑇 · 𝑥 + 𝑏, (1.1)

𝑧 = 𝑉𝑇 · ℎ + 𝑢, (1.2)

𝑦 = 𝜎(𝑧), (1.3)

with 𝑊𝑇 and 𝑉𝑇 representing the weight matrices, 𝑏 and 𝑢 the bias vectors.
Here, ℎ and 𝑧 embody the hidden layer representations. The function 𝜎(·) is
a nonlinear activation function applied to 𝑧 to obtain the final output 𝑦. For a
visual depiction, refer to Figure 1.1.

As depicted in Figure 1.1, the MLP initially transforms the input data into a
hidden layer representation, applying a non-linear activation function to capture
complex patterns within the data. The ultimate output is obtained following
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1.2. METHODOLOGY

Figure 1.1: An MLP consisting of one input layer, one hidden layer, and one
output layer.

the hidden layer processing. A common activation function employed in such
networks is the Rectified Linear Unit Rectified linear unit (RelU), defined by:

𝑦 = max(0, 𝑥). (1.4)

The network is trained to emulate the intricate nonlinear mapping between
inputs and outputs by iterative adjustment of the network parameters. The
weights 𝑊 and 𝑉 , along with biases 𝑏 and 𝑢, are optimized during the training
process using the backpropagation algorithm [28].

1.2.2 Convolutional Neural Network

Convolutional Neural Networks (CNN) represent a class of ANNs that are
particularly adept at identifying patterns in visual data. Their architecture is
straightforward but effective, enabling the autonomous detection of pertinent
features within images, eliminating the need for manual feature extraction [39].
The term "convolutional" in CNNs is derived from a mathematical operation
known as convolution, a specialized linear operation applied to matrices. CNNs
are composed of several distinct layers: these include the convolutional layer,
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CHAPTER 1. INTRODUCTION

the non-linearity (activation) layer, the pooling (subsampling) layer, and the
fully-connected (dense) layer. Parameters are inherent to the convolutional
and fully-connected layers, while the pooling and non-linearity layers operate
without adjustable parameters. CNNs have demonstrated remarkable efficacy
in various machine learning applications, particularly in tasks involving image
data. They have achieved significant success in large-scale image classification
datasets like ImageNet, fields of computer vision, and even in natural language
processing (NLP), where their results have been exceptionally impressive [2].

In Convolutional Neural Networks, the convolution operation is fundamen-
tal. This process involves a function integrating point-wise multiplication and
shifting across the input data to produce a transformed output. The convolution
is mathematically defined as the integral of the product of two functions after
one is reversed and shifted, denoted as 𝑓 ∗ 𝑔 for functions 𝑓 and 𝑔.

For discrete data, the convolution is represented as a summation:

( 𝑓 ∗ 𝑔)(𝑥) =
∞∑︂

𝛼=−∞
𝑓 (𝛼)𝑔(𝑥 − 𝛼). (1.5)

Here, a specific kernel 𝑔(𝑥) is utilized to extract relevant patterns from the
original data 𝑓 (𝑥). The outcomes, or patterns, are then held in the resulting
function 𝑓 ∗ 𝑔. In a deep neural network, the kernel is initialized randomly and
refined throughout the training process to discern patterns in the input data
automatically.

The practical inputs for CNN can vary from real-world images to videos
and audio signals, as represented by 𝑓 (𝑥) in the equations. During the network
training phase, the kernel or filter is updated via the backpropagation algorithm.
A 2D convolution example is depicted in Figure 1.2, where the left matrix rep-
resents the input, the middle matrix is the kernel, and the right matrix displays
the filtered output, showing the detected patterns.

The convolutional layers of a CNN are useful at adapting to 1D, 2D, and
3D data, capturing static features in images and dynamic patterns in temporal
data. Convolutional Neural Networks in the one-dimensional form are pri-
marily applied in signal processing applications, including the classification
of Electrocardiogram (ECG) signals [15] and speech recognition [61]. Two-
dimensional Convolutional Neural Networks are utilized for tasks associated
with image processing, such as classifying images with multiple labels [59] and
categorizing medical imagery [29]. Three-dimensional Convolutional Neural
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1.2. METHODOLOGY

Figure 1.2: 2D convolution operation example. The left matrix represents the
input data, the middle matrix is a 3x3 convolutional kernel, and the right matrix
is the output data matrix, highlighting the extracted patterns.

Networks are specifically designed to analyze volumetric data. They have shown
notable success in areas such as segmenting brain lesions [27] and identifying
human actions [26].

1.2.3 3D Convolutional Neural Networks

A 3DCNN is a neural network specifically designed to process and analyze
three-dimensional data. While a 2D CNN, as depicted in Figure 1.3, is suitable
for handling matrix-like data (such as images) and can not handle 3D temporal
datasets. On the other hand, 3D CNN can interpret volumetric data where
depth, height, and width are all crucial components, as depicted in Figure 1.4.
This unique feature makes 3D CNN highly proficient at analyzing data with
three-dimensional spatial relationships, allowing them to capture patterns and
features that unfold across all three axes. These networks use 3D convolutions
to effectively learn from data represented in three dimensions, which enables
them to extract spatial hierarchies and context in a way that flat 2D filters cannot
achieve. An example of a 3D CNN architecture is C3D [55], widely used in video
analysis tasks.

3D CNNs can process various three-dimensional datasets such as medical
imaging (fMRI and CT scans), video sequences, and any data where understand-
ing the context within volume or time is crucial. Medical imaging benefits from
3D CNNs as the depth of the scan provides vital insights into anatomy or pathol-
ogy that are not apparent in 2D slices alone. Additionally, 3D CNNs are suitable
for video analysis as the added dimension captures the temporal progression.
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CHAPTER 1. INTRODUCTION

Figure 1.3: A sample of 2D CNN

Te
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Figure 1.4: A sample of 3D CNN depicts weight values of three dimensions,
where connections of the same color represent the shared weight.

It is ideal for applications like action recognition, where comprehending the se-
quence of movements is crucial for accurate classification or analysis. Similarly,
the temporal dimension is essential in fMRI datasets, and 3D CNNs can be used
to process them effectively.

The applications of 3D CNNs are significant, particularly in the context of
fMRI and brain research, showcasing the depth of analysis and insight they
provide. In neuroimaging, 3D CNNs are crucial for analyzing fMRI data, iden-
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1.2. METHODOLOGY

tifying and classifying brain activity patterns, assessing neural connectivity, and
understanding brain function in various health and disease states. They are
instrumental in advancing research in mental health, where they contribute to
studying neurological disorders, brain development, and aging. Additionally,
3D CNN facilitates interpreting complex brain imaging data, supporting ad-
vancements in neurosurgical planning and the development of new therapeutic
strategies.

The primary difference between 3D CNNs and their 2D counterparts lies in
their ability to process an additional dimension. This depth allows 3D CNNs to
capture patterns over time or through a volume, which is particularly beneficial
for datasets where the third dimension conveys crucial information. However,
this additional dimension also means that 3D CNNs are typically more compu-
tationally intensive and may require more data to train effectively. They also
require careful parameter tuning and can be sensitive to overfitting, representing
a trade-off between complexity and performance.

1.2.4 Long Short-Term Memory(LSTM)

LSTM networks, a type of Recurrent Neural Network (RNN), are specifically
designed to learn from sequences, making them an ideal choice for time-series
data or any dataset where context over time is important. In the area of fMRI and
other neuroimaging data, LSTMs provide distinct advantages in understanding
the temporal dynamics and dependencies within brain activity patterns.

LSTM networks have practical applications in the field of fMRI research.
They are useful for analyzing time-series data from brain scans, which allows
researchers to study the dynamic changes and connectivity patterns that occur
over time. For example, they can be used to track the progression of neuronal
activity across different brain regions during cognitive tasks, providing valuable
insights into how information flows and evolves through neural circuits. This
type of analysis is crucial for understanding the temporal complexity of brain
functions and can reveal how different brain regions interact over time during
various mental processes.

fMRI studies require understanding changes in brain activity over extended
periods. LSTMs are particularly advantageous because they can remember and
utilize past information. For instance, LSTMs can analyze subtle changes in
brain activity patterns over months or years and identify predictive biomarkers
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of disease progression in neurodevelopmental disorders such as Alzheimer’s.
LSTMs are being used in mental health research to analyze fMRI data and detect
patterns or anomalies related to psychiatric conditions [14]. These networks
examine the temporal sequences of brain activity, helping to identify character-
istic patterns of neural dynamics associated with specific disorders [14]. This
information can potentially aid in diagnosing and monitoring mental health
conditions. For example, LSTMs can detect subtle changes in brain activity that
correspond to fluctuations in mood or anxiety levels, providing a valuable tool
for understanding and treating mental health disorders [45].

An LSTM unit has three important gates, as depicted in Figure 1.6: the input,
output, and forget gates. These gates are responsible for deciding whether new
input should be allowed to enter the unit (input gate), discarding information
that is no longer needed (forget gate), or affecting the output of the unit at the
current time step (output gate). To summarize the mathematical operations
within an LSTM cell, we can say that:

+

Hidden State

Input

Memory

Forget
Gate

Input
Gate

output
Gate

Candidate
Memory

Figure 1.5: Architecture of a LSTM cell

• Forget Gate ( 𝑓𝑡): This gate decides what information is discarded from the
cell state. It looks at the previous output ℎ𝑡−1 and the current input 𝑥𝑡 and
applies a sigmoid function.

𝑓𝑡 = 𝜎(𝑊𝑓 · [ℎ𝑡−1, 𝑥𝑡] + 𝑏 𝑓 ) (1.6)

Here, 𝜎 is the sigmoid function, 𝑊𝑓 is the weight matrix for the forget gate,
and 𝑏 𝑓 is the bias.
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• Input Gate (𝑖𝑡) and Candidate Cell State (�̃�𝑡): The input gate decides which
values will be updated, and a tanh layer creates a vector of new candidate
values that could be added to the state.

𝑖𝑡 = 𝜎(𝑊𝑖 · [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (1.7)

�̃�𝑡 = tanh(𝑊𝐶 · [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) (1.8)

• Update Cell State (𝐶𝑡): The old cell state 𝐶𝑡−1 is updated to the new cell
state 𝐶𝑡 . The update is done by multiplying the old state by 𝑓𝑡 and adding
the product of the input gate 𝑖𝑡 and the candidate cell state �̃�𝑡 .

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ �̃�𝑡 (1.9)

• Output Gate (𝑜𝑡) and Output (ℎ𝑡): The output gate decides the next hid-
den state. The hidden state contains information on previous inputs. A
sigmoid layer filters the state, which is then output after being processed
by a tanh layer.

𝑜𝑡 = 𝜎(𝑊𝑜 · [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (1.10)

ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝐶𝑡) (1.11)

The LSTM’s ability to update, forget, or output information allows it to cap-
ture long-term dependencies in sequential data, making it particularly useful in
contexts where the temporal dimension is crucial, such as analyzing fMRI time
series data where the temporal evolution of brain activity is key for understand-
ing neural processes.

1.2.5 U-Net

The U-Net architecture was initially designed for biomedical image segmen-
tation [47] and has shown exceptional performance in this field. Its unique
U-shaped structure consists of a contracting path to capture context and an
expanding path for precise localization, as shown in Figure 1.6. This makes
it particularly effective in dealing with the high variability of medical images,
which is why it is widely used for segmenting anatomical structures or regions
of interest in various imaging modalities, including fMRI.

The U-Net architecture has a unique design that consists of two primary
paths: a contracting path and an expansive one. The contracting path, also
called the encoder, captures the context within the data using a series of con-
volutional and max pooling layers. These layers reduce the spatial dimensions
while increasing the feature depth. In contrast, the expansive path, also known
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as the decoder, aims to enable precise localization by recovering the spatial
resolution through up-convolution and concatenation operations with corre-
sponding feature maps from the contracting path. The concatenation process is
essential as it combines high-level feature information with spatial detail, facil-
itating precise segmentation. Furthermore, at the final layer, a 1x1 convolution
is applied to map the feature-rich output to the desired number of classes for
classification.

Input

Convolution

Softmax

Max Pooling

Transposed
Conv

Skip
Connection

Figure 1.6: Architecture of U-Net model

U-Net can be utilized in the analysis of fMRI data to perform tasks such as
segmenting brain regions and aiding in identifying and analyzing functional
brain networks or areas that are activated under specific conditions [18]. It
can be applied to isolate particular brain regions engaged during cognitive
tasks, emotional responses, or resting states. This precise segmentation can
facilitate the study of brain function, connectivity, and the effects of various
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neurological conditions on brain structure and activity, making it an invaluable
tool for researchers.

Furthermore, U-Net’s ability to handle three-dimensional data makes it well-
suited for analyzing volumetric fMRI scans, where capturing spatial context
is crucial. Its architecture integrates local information from downsampling
paths with global information through upsampling paths, which is critical to
its success in producing high-resolution segmentations. This is particularly
beneficial in fMRI studies, where distinguishing between closely adjacent brain
regions or detecting subtle changes in brain activity is essential.

U-Net is a powerful tool in clinical research that can aid in developing diag-
nostic tools based on fMRI. Segmenting regions affected by stroke or identifying
patterns associated with neurodevelopmental diseases such as Alzheimer’s or
Parkinson’s can provide valuable insights into disease progression and out-
comes. Automating the segmentation process with U-Net can also significantly
speed up the analysis of large fMRI datasets, giving researchers more time to
focus on higher-level interpretation and hypothesis testing.

1.2.6 Spatio-Temporal Model

Analyzing functional fMRI data is critical for understanding the complex
dynamics of the brain’s activity. Traditional methods often struggle to capture
the whole essence of the brain’s spatial structures and temporal patterns simul-
taneously. The spatio-Temporal model that merges U-NET 3DCNN with LSTM
networks, as depicted in Figure. 1.7 aims to elevate the analysis of fMRI data by
concurrently mapping the brain’s spatial and temporal dimensions.

This advanced model is designed to navigate the brain’s complex spatial
configurations and the dynamic nature of neural signals over time. The U-NET
3DCNN component, proven for its proficiency in medical image segmentation,
captures essential spatial details across multiple resolutions. This capability is
crucial for accurately identifying specific brain regions in fMRI scans. Comple-
mentarily, integrating LSTM networks allows for adept modeling of temporal
dependencies within fMRI time series, offering a deeper understanding of how
spatial patterns of brain activity evolve.

Fusing U-NET’s spatial precision with LSTM’s temporal insight creates a
powerful tool for comprehensive fMRI data analysis. This model uncovers the
dynamic interactions between different brain regions, offering new pathways

16



CHAPTER 1. INTRODUCTION

for exploring cognitive processes and neural functions and potentially revolu-
tionizing the understanding of neurodevelopmental diseases. By leveraging
the model’s detailed analysis, researchers can gain invaluable insights into the
brain’s operational mechanisms embedded in the complex spatiotemporal neu-
ral activity.

These limitations informed this model’s development of existing analytical
methods to capture the dual complexities of fMRI data. Integrating U-NET with
LSTM layers addresses these challenges head-on, significantly contributing to
neuroimaging analysis. It opens doors to novel explorations and understandings
of the brain’s functionality, setting a new standard for fMRI data analysis.

Tem
poral 3D CNN

LSTM Dense Output

Figure 1.7: Spatio-temporal Model Workflow, showing the process from sequen-
tial input through a 3D CNN and LSTM to the dense layer and output

1.2.7 Integrating LSTM Layers into U-Net

The integration of Long-Short-Term Memory (LSTM) layers into the U-Net
architecture represents a pivotal enhancement for analyzing fMRI data. This
enables the model to capture temporal dependencies alongside spatial features
effectively. This hybrid model is particularly adept at addressing dynamic pro-
cesses in the brain, such as monitoring the progression of brain tumors over
time.
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Encoder and LSTM Layers: Temporal Feature Anal-

ysis

The architecture retains the original U-Net’s encoder section for spatial infor-
mation compression, extracting feature maps from the input image. Positioned
strategically after the encoder and before the decoder, the LSTM layers introduce
a novel processing stage. They interpret the depth dimension of the encoder’s
output feature maps as a temporal sequence. This reinterpretation allows the
LSTM to analyze the progression of spatial features across time, akin to observ-
ing changes in a series of frames. By doing so, the LSTM layers can identify
and memorize patterns of change in the anatomical structures or pathology
captured in successive fMRI scans, effectively bridging the spatial and temporal
dimensions of the data.

Decoder: Enhanced Spatial-Temporal Reconstruc-

tion

The temporal feature maps, enriched with dynamic insights from the LSTM
layers, are then conveyed to the decoder. The decoder, leveraging this spatial and
temporal information composite, embarks on reconstructing the segmented out-
put with heightened accuracy. This process ensures that the segmentation not
only delineates the morphology and location of brain structures but also encap-
sulates their temporal dynamics. Such an enriched output is invaluable, offering
nuanced insights into the evolution of pathological or anatomical changes over
time, thereby significantly enhancing the utility of fMRI data in clinical and
research settings.
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2
State of the Art

In this section, we provide a selective review of recent studies on machine
learning/deep learning algorithms for fMRI data and disease classification.

Research using fMRI spans various fields; for some notable areas of study, we
can mention natural image reconstruction from fMRI data using deep learning,
as in the Roman Beliy paper [6]. Research on fMRI data and its neurophysiologi-
cal implications is explored in [32], while [20] delves into the study of the human
visual cortex using fMRI. The anatomy of language is comprehensively reviewed
in [44]. The current landscape of fMRI research in the neuroscience domain is
highlighted by [43], and [42] projects the future trajectory of fMRI in cognitive
science studies, suggesting a rich field of ongoing and future explorations.

In this work, we focus on building a classification model to classify three
neurodevelopmental disorders based on fMRI data. Many research studies
have been proposed to classify neurodevelopmental disorders based on fMRI
data. In recent years, numerous studies leveraging machine learning and deep
learning have emerged for this aim, showing a marked preference for these
techniques due to their effectiveness in classifying such disorders.

For this kind of research, we can mention studies such as [49]. This research
presents a deep learning-based methodology for recognizing Alzheimer’s dis-
ease using fMRI data. It utilizes a CNN with the LeNet-5 architecture for
classifying fMRI images of Alzheimer’s patients against controls. The study
demonstrates a high accuracy rate of 96.85% in classifying the Alzheimer’s con-
dition. It suggests that deep learning, particularly CNNs, is a powerful tool
for distinguishing clinical data from healthy data in fMRI and holds promise
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for future diagnostic tools. The research indicates a potential expansion of
this methodology to predict different stages of Alzheimer’s across various age
groups.

Deep learning models have also been applied to the study of early detection
and staging of Alzheimer’s, especially crucial for older populations. These mod-
els excel in identifying and categorizing the stages of Alzheimer’s disease, from
mild cognitive impairments to more advanced stages; for example, [46] discusses
the development of a deep learning model for diagnosing Alzheimer’s disease
through multi-class classification of its various stages, utilizing resting-state
fMRI data. The study employs a ResNet-18 architecture to distinguish between
different stages of Alzheimer’s disease, including cognitively normal (CN),
significant memory concern (SMC), early mild cognitive impairment (EMCI),
mild cognitive impairment (MCI), late mild cognitive impairment (LMCI), and
Alzheimer’s disease (AD). The model is trained from scratch and uses trans-
fer learning to improve its performance. The research demonstrates that this
approach can achieve high accuracy, suggesting its potential for assisting early
diagnosis and clinical decision-making in Alzheimer’s disease.

In schizophrenia diagnosis, there have been advancements through the FMRI
and deep learning methods. [62] improves classification effects of magnetic reso-
nance data by applying a CNN algorithm, specifically the VGG16 net, enhanced
with transfer learning. The study demonstrates an 84.3% classification accu-
racy, suggesting that deep learning can significantly aid in early schizophrenia
diagnosis and address small sample and high-dimensional data classification
challenges, thereby enhancing the generalization capability of deep learning
models in clinical settings.

In a different research, Luca Steardo Jr. et al.2020 [53] provide a compre-
hensive examination of how Support Vector Machine (SVM) techniques are
employed in the diagnosis of schizophrenia using fMRI data. They highlight
the effectiveness of SVM in distinguishing between patients with schizophre-
nia and healthy controls. Their review underscores the potential of SVM as
a non-invasive, cost-effective tool for early-stage identification of schizophre-
nia, emphasizing its superiority in accuracy compared to traditional diagnostic
methods. This approach not only aids in early detection but also contributes to
the refinement of clinical diagnostic processes, potentially saving crucial time in
patient care management.

In another study [63], where they achieved a high accuracy in schizophre-
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nia classification, they used FMRI data and applied independent component
analysis (ICA) and kernel principal component analysis (KPCA).

In [60], a multi-scale recurrent neural network (MsRNN) model is devel-
oped for accurate multi-class classification of schizophrenia, psychotic bipolar
disorder, schizoaffective disorder, and healthy controls. The framework also em-
ploys t-Distributed Stochastic Neighbor Embedding (tSNE) clustering to visu-
alize relationships between disorders and uses a leave-one-feature-out method
for biomarker identification. It achieves significant classification accuracy and
provides insights into the discriminative brain regions associated with these
disorders.

Another research that shows the potential of deep learning approaches in
enhancing diagnostic accuracy for psychiatric disorders is [30], which is focused
on first-episode psychosis (FEP), bipolar disorder (BD), and healthy controls
(HC) using structural Magnetic Resonance Imaging (sMRI) data. They introduce
two novel end-to-end CNN architectures. These CNN models outperformed
traditional classifiers in distinguishing between FEP, BD, and HC based on gray
matter volume images, demonstrating high precision, recall, F1-score, accuracy,
and Area Under the Curve (AUC) in both binary and three-way classification
tasks.

For the research that has been conducted for ADHD disorder, we can mention
[31]. This research assesses the diagnostic capability of analyzing resting-state
fMRI data for ADHD, employing functional connectivity and machine learning
techniques. The study meticulously identified significant differences in brain
regions, such as the anterior cingulate cortex and cerebellum, between ADHD
patients and healthy controls. Utilizing a linear discriminant analysis classifier,
it achieved an average classification accuracy of 80.08%, demonstrating the ef-
fectiveness of resting-state fMRI combined with machine learning in diagnosing
ADHD.

In another study by Mao et al. (2019) [35], they applied a spatio-temporal
CNN without reliance on hand-crafted features. They use granular comput-
ing for analyzing fMRI scans, resulting in a method that surpasses traditional
classification accuracies, reaching a significant 71.3 percent on the ADHD-200
dataset. This research shows the potential of deep learning models to capture
complex spatio-temporal patterns in brain activity.

In [25], a classification framework is designed to address the challenges
posed by the heterogeneity of multi-site medical datasets, specifically applied
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to the ADHD-200 collection. The study leverages decision trees within a hi-
erarchical classification scheme to improve the interpretability and diagnostic
support of computational models dealing with ADHD. This approach aims at
enhancing the diagnosis and understanding of ADHD by integrating diverse
data sources, thus reflecting on the potential of hierarchical and interpretable
models in clinical decision support systems.
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3
Datasets and models

3.1 Dataset

This segment discusses the data sources, detailing the preprocessing steps
undertaken for the fMRI data used in this thesis. It provides an overview of
the data, including how it was accessed and its general characteristics. The
section further elaborates on the data processing techniques employed to adapt
it for the spatio-temporal models explored in the research. It outlines the data
structure requirements of our models and discusses how the data was processed,
considering the limitations of resources available for training. This explanation
ensures a comprehensive understanding of the data’s journey from collection to
its final form.

3.1.1 Data Description

The data used in this thesis was obtained from the OpenfMRI database, and
its accession number is ds000030 [56]. It is titled ’UCLA Consortium for Neu-
ropsychiatric Phenomics LA5c Study’. This study is initiated by Consortium
for Neuropsychiatric Phenomics (CNP) and is done by Bilder and colleagues
[57]. CNP is funded by the National Institutes of Health (NIH) Roadmap Ini-
tiative and aims to uncover the genetic and environmental foundations behind
variations in psychological and neural system phenotypes. It seeks to under-
stand how the human genome influences complex psychological syndromes and
aims to revolutionize the development of new treatments for neuropsychiatric
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disorders.
This study has enrolled a diverse group of individuals, including 119 HC

from the community and others diagnosed with schizophrenia (SCH) (50), BD
(49), and ADHD (40), aged 21-50. These participants were selected based on spe-
cific criteria from the Los Angeles area and underwent extensive neuropsycho-
logical testing and fMRI scanning. Inclusion criteria were based on NIH racial
and ethnic designations and educational attainment, with exclusions applied to
minimize confounding in genetic research. Language for testing was determined
for bilingual individuals through a verbal fluency test, and all participants were
screened for various health conditions, substance use, and psychiatric history.
Drug use was checked via urine analysis [56]. During the course of the investiga-
tion, various methods were employed to gather data, including conducting in-
terviews, utilizing rating scales, implementing self-report assessments, and con-
ducting neurocognitive evaluations through traditional paper-and-pencil tests
as well as digital formats. Specifically, the collection of neuroimaging data com-
prised techniques such as structural Magnetic Resonance ImagingsMRI, High
Angular Resolution Diffusion Imaging (HARDI), Resting-State fMRI (RS-fMRI),
and five distinct types of task-based fMRI (T-fMRI).

The fMRI data used in this study was preprocessed according to established
protocols on the OpenFMRI platform [17]. The preprocessing pipeline included
data conversion, anonymization, motion correction, and brain extraction using
FMRIB Software Library (FSL) tools, along with cortical reconstruction utilizing
Freesurfer. Multi-level fMRI analysis was performed with FSL, incorporating
nuisance regressors for motion. Additionally, the study incorporated manual
quality control checks for brain extraction quality and the accuracy of functional
and anatomical registrations. Details and parameters for each processing step
are accessible via the OpenFMRI GitHub repository [41].

3.1.2 Selection and pre-processing

In the previous section, the distribution of samples among the groups was
detailed: 119 for HC, 50 for SCH, 49 for BD, and 40 for ADHD. While preparing
the data for the computational model, it was noted that fMRI data is considerably
large, and the aggregate volume of the dataset was significant, leading to size
limitations for uploads on the university’s data management system. To address
this, 19 samples were randomly excluded from the HC group, which had the
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largest initial sample size. This exclusion was done to maintain data integrity
and comply with the system’s constraints. The updated frequency of each group
post-exclusion is depicted in Figure 3.1.
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Figure 3.1: Number of Individuals in Each Diagnosis Group.

In this study, each participant’s original fMRI data comprised four-dimensional
images shaped (65, 77, 49, 152), in Neuroimaging Informatics Technology Initia-
tive (NIFTI) format. These dimensions correspond to the spatial (height, width,
depth) and temporal (time points) axes of brain activity.

To align the data with the input requirements of a combined CNN and LSTM
architecture, a transposition was performed to place the time points as the first
axis so the shape of each sample would be (152, 65, 77, 49).

Due to computational limits, a subset of 40 time points was extracted [3.3]
from the full 152 after discarding the initial 10 to avoid signal instability at the
start of the sequence.

The final dataset maintained the spatial resolution (65 × 77 × 49) voxels and
included 40 time points, balancing the need to analyze spatial and temporal
features for the machine learning process.

In the CNN models utilized in this thesis, the original spatial shape of fMRI
data was preserved. However, for U-Net CNN architectures employed in this
study, the preprocessing required adjustments due to the model’s structure. The
original dimensions of the fMRI scans were 65 × 77 × 49. The network archi-
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Figure 3.2: Sequential Extraction of Brain Activity over 40 Time Points

tecture incorporates sequences of down-sampling and up-sampling operations
that halve and then double the input volume size, respectively.

To accommodate these operations without dimensional inconsistencies or
data cropping, the dimensions of input images were modified to be evenly
divisible by 2𝑛 , where 𝑛 represents the number of down-sampling steps in the
network and is a power of 2.

Aiming to conserve as much information as possible, image dimensions were
resized to powers of 2, closely matching the largest original dimension (77).
Consequently, spatial dimensions were adjusted to 80 × 80 × 80, incorporating
padding to the width, height, and depth axes to maintain uniform volumes
processable by the U-Net architecture. This preparation is crucial for applying
CNNs to fMRI data, enabling the network to learn and extract spatial features
from the scans effectively.

3.2 Models

This section outlines the technical implementation of neural network models
developed for analyzing fMRI data, focusing on their structural components and
the rationale behind their design. It starts with a simple 3DCNN model without
considering the temporal aspect of fMRI data, then there is an overview of the
basic 3DCNN-LSTM model, emphasizing its dual capability to dissect spatial
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features through 3DCNN layers and temporal dynamics using LSTM layers.
Furthermore, the section transitions to elaborate on a more sophisticated

U-NET 3DCNN and LSTM model. This architecture is specifically engineered
to tackle the multifaceted spatial-temporal patterns present in fMRI data. It
adopts a U-Net structure known for its efficiency in medical image segmentation,
combining it with LSTM to analyze temporal dependencies.

Temporal

Sample 1

Temporal

Sample 2

Data Processing

Data Processing

Spatial Feature
Extraction

Spatial Feature
Extraction

LSTM
LSTM

LSTM
LSTM

Figure 3.3: Simple overview of the proposed model

3.2.1 3DCNN Model

In this study, a 3D Convolutional Neural Network (3DCNN) is utilized to
analyze functional magnetic resonance imaging (fMRI) data. This method excels
in extracting spatial information from brain images but does not account for
temporal changes or the sequence of data points over time. The decision to
implement this model stems from an interest in evaluating the classification
outcomes when temporal information is intentionally disregarded and each
time point is considered separately.

Each time point in the fMRI data is treated as independent, with no inherent
sequence among them. This involves shuffling the time points to ensure that
consecutive slices from the same category (e.g., images pertaining to the same
patient or condition) are not adjacent within the dataset. The dataset comprises
100 HC, 50 SCH, 49 BD, and 40 ADHD samples. From each sample, 40 time
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points are extracted, yielding 4000 slices for HC, 2000 for SCHZ, 1960 for BD,
and 1600 for ADHD. These slices are then shuffled and divided into training,
testing, and validation sets to be processed by the 3DCNN model.

The model starts with two convolutional layers. These layers are key to the
model’s ability to pick up on patterns. The first convolutional layer has 16 filters,
while the second one has 32 filters. Each filter uses a small, three-dimensional
kernel of size (3,3,3), which moves through the input volume to produce a
feature map. This process transforms the spatial input data into a form the
model can use to learn patterns. Following each convolutional layer, there’s a
MaxPooling layer with a pool size of (2,2,2). MaxPooling is a downsampling
technique that reduces the dimensionality of the feature maps, making the
model more efficient and helping to prevent overfitting by extracting the most
dominant features. After each MaxPooling layer, a Dropout layer is applied,
with a dropout rate of 25%. After processing through the convolutional and
pooling layers, the model employs a Flattening layer to convert the 3D feature
maps into a 1D vector. This is essential for transitioning to the next phase, which
involves two fully connected (dense) layers. The first dense layer has 64 units and
uses the ReLU activation function to introduce non-linearity, enabling the model
to learn complex patterns. The final layer adjusts its number of units to match
the number of classes using for classification, and utilizes a softmax activation
function. This function is crucial for multi-class classification, as it calculates the
probability distribution across the classes, with the model predicting the class
having the highest probability.

Despite the relatively simple structure of the 3DCNN model, the considerable
volume of data and the intricacy of handling 3D spatial dimensions present a
significant challenge for training.

3.2.2 Basic 3DCNN-LSTM model

As mentioned in previous part, 3DCNNS are used to extract spatial informa-
tion from fMRI data. To analyze temporal sequences, LSTM layers are employed.
A basic model, consisting of a set of 3DCNN layers, is used as a starting point for
analysis. Despite its simplicity, this model has a large number of parameters due
to the convolution operations that take place across the three spatial dimensions
of the data. This complexity highlights the challenges in capturing the intricate
spatial-temporal dynamics that are inherent in fMRI datasets.
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This 3DCNN is followed by LSTM layers to harness the temporal dimension
of fMRI data. The model architecture begins with TimeDistributed Conv3D
layers, employing a (3,3,3) kernel size with ’RelU’ activation and ’same’ padding
to maintain dimensionality. Sequential layers include MaxPooling3D with pool-
size of shape (2,2,2) for dimensionality reduction and dropout with rate of 0.25
to prevent overfitting. Three concolutional layesr with same Maxpooling and
dropout has been used bu with increasing filter size in each convolution, the
first convolution has 16 filters and the second and third convolutions 32 and 64
filters respectively. After convolutional layers, a Flatten layer feeds into LSTM
unit with 64 hidden nodes. After LSTM a dense layer is added with 128 nodes
and ’RelU’ activation function, fallowed by 0.5 dropout rating. Finally, a dense
layer with n nodes, where n is the number of our classes, comes with a ’softmax’
activation function.

After this layer, the models are compiled. In this part, different learning
rates were tested. An adaptive learning rate strategy was implemented utilizing
the ReduceLROnPlateau callback from TensorFlow/Keras. This method adjusts
the learning rate by reducing it when the validation loss does not improve
over specified epochs. It aims for finer model tuning by minimizing steps in
the parameter space upon encountering minimal loss improvements with a
given reduction factor. The learning rate continues to decrease to a minimum
threshold, facilitating a dynamic adjustment to the training process for improved
efficiency and performance.

3.2.3 U-NET 3DCNN and LSTM model

The architecture of the U-Net + LSTM model is designed to process the
complex spatial-temporal patterns present in four-dimensional fMRI data. The
input layer is tailored to accommodate data shaped (40, 80, 80, 80, 1), where the
dimensionality represents time points followed by the spatial volume of the
brain scans, all with a single channel.

At the outset, the first convolutional block introduces two TimeDistributed
Conv3D layers, each employing 18 filters of (3,3,3) dimensionality. These lay-
ers utilize ReLU activation functions and ’same’ padding, ensuring the spatial
dimensions are retained after the operation. This block is complemented by a
TimeDistributed MaxPooling3D layer with a (2,2,2) pool size, which serves to
reduce the spatial dimensions by half. A subsequent TimeDistributed Dropout
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layer with a dropout rate of 0.25 is incorporated to mitigate the risk of overfitting.
As the data proceeds through the model, it encounters successive convo-

lutional blocks that mirror the initial structure, doubling the number of filters
in each consecutive block. Following the first block, the subsequent TimeDis-
tributed Conv3D layers in these blocks employ 36, 72, and finally 144 filters,
respectively. Each block is interspersed with TimeDistributed MaxPooling3D to
continue the dimensionality reduction and TimeDistributed Dropout, with the
latter’s rate fixed at 0.5, deepening the network’s robustness.

The network reaches its bottleneck, the most abstracted feature representa-
tion, with a pair of TimeDistributed Conv3D layers that expand the feature set
to 288 filters. This central juncture captures the highest-level features before the
model transitions into the expansive path.

The expansive path mirrors the encoding path in a symmetrical fashion but
in reverse, utilizing TimeDistributed Conv3DTranspose layers to restore the spa-
tial dimensions progressively. Each layer in this path employs strides of (2,2,2),
effectively doubling the volume with each step. Concurrently, these upsam-
pled outputs are concatenated with their corresponding feature maps from the
downsampling path, weaving in fine-grained details for precise localization.

Flattening the multidimensional data, a TimeDistributed Flatten layer tran-
sitions the network from convolutional processing to sequential, allowing the
following LSTM layer with 128 units to interpret the temporal aspects of the
data. This LSTM layer captures the dynamics over time, a critical feature for
fMRI analysis.

Culminating the network’s layers, a Dense layer with 512 neurons applies
ReLU activation to learn complex representations from the LSTM output. Fi-
nally, the output layer, employing softmax activation, articulates the probability
distribution over the target classes, providing the classification output for each
fMRI sequence.
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4
Analysis

4.1 Performance Analysis

The base model’s results described in part 1.2.3 are shown in table 4.1 and,
the experimental results of U-NET 3DCNN and LSTM, described in 1.2.5 is
shown in table 4.2.

Table 4.1: Training performance of different group comparisons with basic
3DCNN-LSTM model

Groups Training loss Validation loss Training accuracy Validation accuracy

HC-SCH 0.6365 0.6366 0.6667 0.6667
HC-ADHD 0.5990 0.5990 0.7149 0.7150
HC-BD 0.6313 0.6367 0.6741 0.6666
SCH-ADHD 0.6872 0.6882 0.556 0.556
SCH-BD 0.7000 0.7000 0.5100 0.5000
BD-ADHD 0.6877 0.6870 0.5472 0.5556

For both the base model and U-NET-LSTM models, more or less the same
performance is monitored. The classification results in both model architectures
highlight a better accuracy between the control and disease-specific groups,
achieving a relatively higher accuracy compared to classification between dis-
eased groups.

In figures 4.1 and 4.2, you can see the training curves and how the accuracy
and loss are changing over epochs.
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Figure 4.1: Performance Analysis of Classification Model in Distinguishing
Healthy Controls from Disorder Groups.
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Figure 4.2: Performance Analysis of Classification Model in Distinguishing Dis-
order Groups
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Table 4.2: Training performance of different group comparisons with U-NET-
LSTM model

Groups Training loss Validation loss Training accuracy Validation accuracy

HC-SCH 0.6665 0.665 0.6667 0.6667
HC-ADHD 0.5983 0.5983 0.7143 0.7143
HC-BD 0.6312 0.6367 0.6742 0.6767
SCH-ADHD 0.6870 0.6870 0.5556 0.5556
SCH-BD 0.6930 0.6932 0.5010 0.5000
BD-ADHD 0.6890 0.6877 0.5470 0.5555

Fine-tuning the models involved implementing a dynamic learning rate ap-
proach. This process entailed reducing the learning rate incrementally when-
ever there was no decrease in loss after three epochs. The rationale behind
this strategy is to enhance the optimization process of the models, which could
potentially lead to more accurate predictions. In conjunction with this, a range
of optimizers—Adam, SGD, and RMSprop—were evaluated for their impact
on the convergence of the models. However, it was observed that the models
quickly reached peak performance and demonstrated limited improvement in
subsequent epochs.

Experiments were also conducted with varying filter sizes in the convolu-
tional layers. The base model underwent training sessions with two distinct sets
of filter configurations: one progressing from 8, 16, to 32, and another from 16,
32, to 64. The purpose of these experiments was to determine whether a greater
number of filters, allowing for more intricate feature extraction, would result in
improved performance of the model.

The distinctive characteristic of the U-NET architecture, where the number
of filters expands with each convolutional layer, underwent rigorous testing as
well. The number of filters was doubled at each layer, starting from a baseline of
8 in some cases and 16 in others. This method of exponentially increasing filters
was chosen to assess if a more complex hierarchy of features would enhance the
discriminative capabilities of the model.

For the LSTM layers, unit counts of 32 and 64 were trialed, investigating
the models’ performance with varying degrees of complexity. Additionally, to
pursue a more in-depth analysis within the computational constraints, models
incorporating two consecutive LSTM layers were explored, aiming to assess the
potential benefits of a deeper sequential learning architecture.
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For a valid evaluation of the model’s performance, an example of a confusion
matrix for one of the classifications is presented here. In figure 4.3, you can see
the confusion matrix for classification between Healthy control and Schizophre-
nia in the U-NET-LSTM model, and in table 4.3, you can see the metrics related
to this matrix. The accuracy is approximately 66.67%; while this may initially
suggest a moderate level of predictive ability, a deeper analysis leveraging addi-
tional performance metrics reveals a more nuanced picture. Precision stands at
44.44%. This relatively low precision indicates that, of all the instances predicted
as one group (here as HC), less than half were correct. Such a figure highlights
the models’ tendency to misclassify diseased instances as healthy.

The recall is recorded at 66.67%. This metric suggests that the model is rea-
sonably capable of detecting healthy instances when they are present; however,
as evidenced by the precision rate, this sensitivity comes at an increased cost in
the form of false alarms.

The F1 Score, which combines precision and recall, is 53.33%, reflecting the
imbalance between precision and recall. This score underscores the models’ lim-
ited efficacy in balancing the trade-off between incorrectly classifying diseased
instances and missing healthy instances.

It is important to consider that when one group is relatively larger than the
other group in classification, the accuracy metric might be inflated due to this
imbalance. This phenomenon, known as the accuracy paradox, can mislead the
evaluation of model performance if accuracy is considered in isolation.

In scenarios where healthy cases are more prevalent, a model can achieve
high accuracy simply by predicting every instance as healthy. However, such a
model would be practically deficient, as its ability to distinguish between healthy
and disease is compromised.

In conclusion, while the models achieve an accuracy rate of over 50%, this
statistic is misleading. The low precision rate confirms that the models are prone
to false positives.

The results of the 3DCNN model explained in part 3.2.1 is shown in table
4.4.

The accuracy for 3DCNN model shows slightly better results, though the
temporal information is not considered here; it has higher accuracies compared
to both the basic 3DCNN-LSTM model and the U-NET 3DCNN-LSTM model.

While this accuracy is higher, it shows an overfitting behavior. Comparing
training accuracies with test accuracies shows that even though the results are
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Metric Value

Precision 0.445
Recall 0.667
F1 Score 0.533
Accuracy 0.667

Table 4.3: Performance metrics for the classification between healthy control and
schizophrenia disorder in U-NET-LSTM model
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Figure 4.3: Confusion matrix for HC-SCH classification in U-NET-LSTM model

higher, the model does not generalize well to new data. To mitigate this problem,
a dropout with a 0.5 rate was added to the last layer before the output, but it
didn’t affect the performance much.

In figure 4.4 and 4.5, you can see the training curves of this model.
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Table 4.4: Training performance of different group comparisons with 3DCNN
model

Groups Training loss Validation loss Training accuracy Validation accuracy

HC-SCH 0.0044 3.4582 0.9975 0.6291
HC-ADHD 0.0012 5.8201 0.9994 0.7642
HC-BD 0.0018 4.1745 0.9985 0.6383
SCH-ADHD 0.0030 2.9564 0.9990 0.7500
SCH-BD 0.0063 4.9458 0.9966 0.5037
BD-ADHD 0.0043 5.7112 0.9995 0.5847

37



4.1. PERFORMANCE ANALYSIS

0 20 40 60 80 100
Epochs

0

2

4

6

8

Lo
ss

Training and Validation Loss
Training Loss
Validation Loss

0 20 40 60 80 100
Epochs

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

Training and Validation Accuracy

Training Accuracy
Validation Accuracy

(a) SCH vs. HC

0 20 40 60 80 100
Epochs

0

1

2

3

4

5

6

7

8

Lo
ss

Training and Validation Loss
Training Loss
Validation Loss

0 20 40 60 80 100
Epochs

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

Training and Validation Accuracy

Training Accuracy
Validation Accuracy

(b) ADHD vs. HC

0 20 40 60 80 100
Epochs

0

1

2

3

4

5

6

7

Lo
ss

Training and Validation Loss
Training Loss
Validation Loss

0 20 40 60 80 100
Epochs

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

Training and Validation Accuracy

Training Accuracy
Validation Accuracy

(c) BD vs. HC

Figure 4.4: Performance Analysis of Classification Model in Distinguishing
Healthy Controls from Disorder Groups.
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Figure 4.5: Performance Analysis of Classification Model in Distinguishing Dis-
order Groups.
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5
Discussion and Future Works

5.1 Discussion

In exploring the classification of neurodevelopmental disorders using fMRI
data, it is essential to consider the intrinsic complexities of the data derived
from Blood Oxygen Level Dependent (BOLD) signals. The BOLD signal, which
underpins fMRI imaging, is not a plain measurement of neural activity but rather
an indirect marker based on changes in blood flow and oxygenation levels. This
dependence introduces a layer of complexity, as BOLD signals are susceptible
to various physiological factors beyond neural activity, such as fluctuations in
heart rate, respiration, and even subtle movements by the subject [33] and the
link between the fMRI signal and the underlying neural activity is unclear [34].

These physiological factors can introduce noise into the fMRI data, poten-
tially confounding the signals associated with the neurodevelopmental condi-
tions under investigation. The complexity of disentangling these intertwined
signals presents a significant challenge for any computational model attempt-
ing to classify disorders based on fMRI data. While advanced machine learn-
ing models, such as the 3D CNN+LSTM approach adopted in this study, hold
promise for extracting meaningful patterns from complex datasets, the inher-
ent variability and noise within BOLD signals may limit the model’s ability to
achieve high classification accuracy.

According to the analysis of the models and performance metrics, both the
base model and the U-NET-LSTM model show similar performance and are not
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capable of accurately classifying the data into subsequent groups. The 3DCNN
model, which lacks temporal information but has more statistics, performs rel-
atively better in some cases.

In both main models, accuracy improves to a certain point but does not
improve further, indicating that the model falls into a local minimum and cannot
escape from it. One reason for this is the limited amount of data available for
this classification. It can be suggested that with more data and statistics, there
is the possibility to overcome this issue. This is also demonstrated by the use
of the 3DCNN model, which, even without considering temporal information,
performed slightly better because the model had access to more data, as depicted
in figure 5.1. The F1 score in this model is relatively better than that in the U-
NET-LSTM model, as shown in table 5.2.

Table 5.1: Performance Metrics Across Different Groups in 3CNN model without
temporal information

Groups Precision Recall F1 Score Accuracy

HC-SCH 0.6528 0.6816 0.5537 0.6330
HC-ADHD 0.4921 0.6330 0.6361 0.6816
HC-BD 0.6499 0.6700 0.6539 0.6700
SCH-ADHD 0.4840 0.4930 0.4860 0.4930
SCH-BD 0.4731 0.4737 0.4706 0.4737
BD-ADHD 0.2894 0.4472 0.3470 0.4472

Table 5.2: Performance Metrics Across Different Groups in U-NET-LSTM model

Groups Precision Recall F1 Score Accuracy

HC-SCH 0.6528 0.6816 0.5537 0.6330
HC-ADHD 0.5102 0.7142 0.5952 0.7142
HC-BD 0.4444 0.4444 0.5333 0.6666
SCH-ADHD 0.3086 0.5555 0.3968 0.5555
SCH-BD 0.2500 0.5000 0.3333 0.5000
BD-ADHD 0.3086 0.5555 0.3968 0.5555

Another important aspect to mention is that this data is inherently complex
for classification since different groups are highly correlated with each other, as
shown in [58] and depicted in figure 5.1.

Given this context, three primary challenges hinder the effective classifica-
tion of this dataset using the proposed models. Firstly, the limited volume of
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Figure 5.1: Comparison of mean Pearson coefficients between participant cate-
gories [58]

data and, by extension, the restricted statistical base available for training these
models pose a significant obstacle. This scarcity of data undermines the models’
ability to navigate and interpret the dataset’s complexities effectively.

Secondly, the dataset may not provide sufficient discriminative information
for classification tasks. This could stem from the data’s nature or the manner in
which it is processed and presented to the models.

Lastly, the potential inadequacy of the models themselves in addressing this
specific classification challenge should be considered. This might be due to
limitations in deep learning models when the data is limited or when the data
is highly intertwined among different groups.

Together, these issues underscore the challenges of classifying highly corre-
lated data groups and highlight the need for enhanced data volume, improved
data quality, or more sophisticated modeling approaches to achieve better per-
formance.

5.2 Future work

The analysis of brain disorder classification through neuroimaging data in
this thesis unveils significant opportunities for enhancing our understanding
and methodologies in this field. The challenge of limited dataset size stands out
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among the critical insights garnered. Achieving higher model performance is
contingent upon the expansion of these datasets. By developing collaborations
with multiple research centers, there’s potential to aggregate a richer, more
varied set of fMRI data. Such an approach could reveal patterns previously
obscured by the constraints of smaller datasets, thereby enriching our analytical
depth.

Increasing the temporal dimension of fMRI data can also help achieve bet-
ter results. The dynamic nature of brain activity, captured over time, holds
untapped potential for improving classification accuracy. Delving into sophis-
ticated temporal analysis techniques could significantly enhance our ability to
discern and classify neurological conditions more precisely.

Current models, while effective to a degree, often struggle with the complex-
ity inherent in highly correlated data groups found in neuroimaging. There’s a
burgeoning need to explore, develop, or adapt algorithms specifically designed
for neuroimaging data. Such advancements could incorporate elements of un-
supervised or semi-supervised learning, offering a more nuanced approach to
navigating the intricate patterns of brain activity.

This study also highlights the complex challenges in researching brain disor-
ders with fMRI technology. It underscores the critical need for ongoing research
into more sophisticated data preprocessing techniques and model architectures
capable of navigating the complexities of fMRI data. Future work may bene-
fit from incorporating strategies specifically designed to mitigate the impact of
physiological noise and enhance the signal-to-noise ratio, potentially improving
the model’s capacity to classify neurodevelopmental disorders accurately.

The ultimate goal of this research trajectory is clinical translation. The path
forward involves not just technical advancements but also the rigorous valida-
tion of these neuroimaging-based models in clinical settings. Assessing their
practicality, sensitivity, specificity, and predictive value in real-world environ-
ments is critical for understanding their implications for patient care and the
broader medical community.

Finally, ethical and cost considerations must be considered for fMRI data
collection. As we venture further into neuroimaging-based diagnostics, finding
cost-effective and ethically sound approaches to implement these technologies
in healthcare systems is critical. Balancing economic feasibility with ethical
standards is essential for the widespread adoption and beneficial impact of
these advancements.
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In pursuing these interconnected paths, the field can progress towards fully
harnessing the potential of neuroimaging and machine learning in diagnosing
and understanding brain disorders. This concerted effort promises to pave the
way for more personalized and effective patient care, marking significant strides
in our quest to address the complexities of brain health.
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6
Conclusion

Given the advancements in deep learning models and their increasing use in
various fields, one might assume they would yield promising results in classi-
fying conditions like healthy communication versus neurodevelopmental disor-
ders using neuroimaging data. It’s crucial to note that the results vary between
using MRI datasets and fMRI datasets, with our focus here being on fMRI.

Several studies have demonstrated relatively good outcomes in this area. For
example, research by Zheng et al.[62] reported accuracy of 71%, Liang et al.[31]
achieved an 80% accuracy rate in distinguishing ADHD, and Mao et al. [35] also
reported a 71% in classification accuracy using spatio-temporal models.

The source and collection site of the fMRI data also plays a significant role
in the variability of results, with each site potentially showing slightly different
outcomes.

Regarding the data utilized in this study, it is crucial to acknowledge the
complexity of its nature. Furthermore, there exists similarity in data across
different groups, which complicates classification. One potential solution to
this issue is to augment the dataset with additional instances, although this
approach is controversial due to the high cost associated with collecting fMRI
data. However, examining the results presented in Table 5.1 provides hope that
increasing the dataset size may yield marginally improved results, even without
accounting for the critical temporal information in fMRI. Therefore, it can be
argued that augmenting the fMRI dataset with temporal information may lead
to more robust results.
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