
UNIVERSITÀ DEGLI STUDI DI PADOVA

Dipartimento di Fisica e Astronomia “Galileo Galilei”

Corso di Laurea Magistrale in Fisica

Tesi di Laurea

Flow of a Non-Newtonian Fluid in a porous medium

Relatore Laureando

Prof. Marco Baiesi Federico Lanza

Correlatore

Dr. Alberto Rosso

Anno Accademico 2018/2019







iv



Contents

Introduction 1

1 Darcy’s law for non-Newtonian fluids 3

1.1 The Darcy’s law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Rheology of non-Newtonian fluids: the Poiseuille law of a Bingham plastic 7

1.3 Bingham plastics in a porous lattice . . . . . . . . . . . . . . . . . . . . . 8

1.4 Mapping with directed polymers in random media . . . . . . . . . . . . . 12

1.4.1 Relation between the second channel’s length and the energy gap

statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4.2 Relation between the small energy gap statistics and the non-

crossing probability . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.5 Summary of the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Directed Polymers 19

2.1 General definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Non-crossing probability: general formula . . . . . . . . . . . . . . . . . . 21

2.3 Explicit results for the free case . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.1 Check for d=1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.2 Calculation for d=2 . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Crossing probability for directed polymers in random media . . . . . . . . 30

3 Discrete Directed Polymers on a lattice 33

3.1 Free case: Matching discrete with continuous . . . . . . . . . . . . . . . . 34

3.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.1 Algorithms for the Free case . . . . . . . . . . . . . . . . . . . . . . 36

3.2.2 Algorithms for the Disordered case: Dijkstra’s algorithm . . . . . . 39

3.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

v



vi CONTENTS

3.3.1 Results for the non-crossing probability . . . . . . . . . . . . . . . 44

3.3.2 Results for the energy gap distribution . . . . . . . . . . . . . . . . 48

4 Conclusions and Perspectives 51

4.1 Statistics of the overlap . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Appendices 57

A Appendix 57

A.1 Method of images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

A.2 Laplace transform of First passage probability . . . . . . . . . . . . . . . . 59

A.3 Non-crossing probability for near-coinciding endpoints . . . . . . . . . . . 61

A.4 Statistical Tilt Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

A.5 PDF of first-crossing time . . . . . . . . . . . . . . . . . . . . . . . . . . . 64



Introduction

Most of the water used for human consumption is stored in underground porous struc-

tures, called aquifers, where it is free to flow if a pressure drop is applied. In 1855 Darcy

showed [1] that the mean debit of water is proportional to the stress drop and to the

permeability, a constant that depends on the composition of the porous structure and

can vary of many order of magnitude.

Predicting the flow of non-Newtonian fluids in similar structures is still a challenging

issue due to the interplay between the microscopic disorder and the non-linear rheology.

Flows of non-Newtonian fluids through porous medium are of interest in many prac-

tical applications in different fields, such as ground reinforcement by cement injection

in geologic engineering, hydraulics fracturation for oil extraction [2] or stabilization of

bone fractures in biomedical engineering [3]. Some of these fluids, such as mud, heavy

oil, foam or emulsions, exhibit a yield stress: they behave like liquid above a critical

stress and as solid otherwise. In the last years, experiments [4, 5] and simulations [6]

involving yield stress fluid in a porous medium suggested that this system undergoes a

continuous phase transition controlled by the applied pressure drop; more specifically,

the flow vanishes at a critical value and it is strictly zero for smaller pressure drop, while,

above threshold, the flow curve is non-linear. Recently, the geometry of the open chan-

nels in two-dimensional structures was numerically studied [7–9], showing that evolves

from a single open channel at the threshold to a two dimensional structure that enlarges

gradually until a very large pressure drop is reached, above which the Darcy law, and in

particular the linearity of the flow, is recovered.

In this thesis we investigate the universal properties at the transition point, confirming

the results already known for a two-dimensional system and trying to explore the same

system in three dimensions. In particular we’re interested in the statistical properties

of the length of the first channels that opens just above the pressure threshold. Using
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2 INTRODUCTION

a mapping between this problem and the one of directed polymer in random media, we

concentrate mainly on the study of the non-crossing probability of two directed polymer

in both two and three dimensions, deriving analytical results and confirming them with

numerical simulations. The results found for the three-dimensional system are original.

After a brief historical overview on the Darcy’s law, in Chapter 1 we present a lattice

model adopted for studying the flow of a fluid in a porous medium, and explain a

method, developed specifically for Bingham plastics, to compute the mean flow rate

and the geometry of the open channels. To make progress on the statistic of the first

channels, we prove a relation between the distribution of the second channel’s length,

the distribution of the energy gap between the first two channels, and the non-crossing

probability of two ground state polymers in disordered media.

An introduction on directed polymers in the continuum limit, both in absence (free

case) and in presence (disordered case) of a random environment, opens Chapter 2. We

introduce a formula for determining the non-crossing probability between two directed

polymers, and we perform analytical calculations explicitly in the free case both in two

dimensions, confirming the result already known thanks to the method of images, and

in three dimensions. Using a statistical symmetry we show that in two dimension the

result valid for the free case holds also in the disordered case.

Chapter 3 focuses on the study of discrete directed polymers on a lattice. We illustrate

the algorithms developed for the numerical estimation of the non-crossing probability,

both in the free case and the disordered case at zero temperature and for both the

dimensions considered, and we present our results.

Chapter 4 is dedicated to the conclusions, giving an outlook on the possible future

development of this work, in particular on the statistic of the first-crossing time of

directed polymers.



Chapter 1

Darcy’s law for non-Newtonian

fluids

1.1 The Darcy’s law

Henry Darcy (1803 - 1858) was a French engineer specialized in hydraulics that con-

tributed to the construction of bridges, roads and other public works mainly in his

hometown, Dijon. In particular, he built there an impressive pressurized water distri-

bution system (see Figure 1.1). The Darcy’s aqueduct is considered the first modern

aqueduct, and his work became useful to develop hydraulic systems in cities all around

the globe; this allowed their inhabitants to supply adequate fresh water, helping them

to fight against cholera and other infectious diseases that were widespread at that time

due to poor sanitation. After retirement, in 1855 he continued his research in Dijon

and realized hydrodynamic experiments that established what has become known as the

Darcy’s law [1]. In the original experiment (see Figure 1.2) Darcy poured some water

into a column of height L entirely filled with sand, and after having applied a pressure

P at the top by an hydraulic piston, he measured the amount of outgoing water at the

bottom. He showed that the mean debit Q, namely the volume of fluid which comes out

per unit time, is proportional to the ratio P/L.

The Darcy’s law is not restricted only to water in sands, but is commonly used for oil,

natural gas, and most Newtonian fluids embedded in porous structure, as long as the

mean flow rate is small enough so that the inertia can be neglected [10–12]. If P is the

stress drop applied to the structure and L its size, the Darcy’s law says that the mean

3



4 CHAPTER 1. DARCY’S LAW FOR NON-NEWTONIAN FLUIDS

Figure 1.1: Monument erected in honour of H. Darcy, situated just above the place where he
built the first modern sink in Dijon.

flow rate Q writes

Q =
Sκ

µ

P

L
(1.1)

where S is the cross-sectional area of the structure and µ is the viscosity of the fluid.

The proportionality constant κ is called permeability and can vary of many order of

magnitude: from the quite large values of fractured rock or gravel to the extremely

small permeability of clay. Since it is a macroscopic measure of the interplay between

the liquid and the solid at the pore scale, a theoretical prediction of its value requires

to solve the Navier-Stokes equations coupled with the no-slip condition at the complex

solid interface. The full solution of the problem is computationally costly; nevertheless,

a significant simplification is provided by the pore network model [13] shown in Fig. 1.3.

There the material is described by a lattice of large voids (the pores) connected by narrow

cylindrical tubes (the throats). In the pores the pressure is assumed homogeneous, and

the flow occurs in the throats where it can be computed for Newtonian fluids according

to the Poiseuille law. The local flow rate qij in the throat connecting the pores i and j

writes then

qij = σij∆pij (1.2)

with the local pressure drop ∆pij = pi − pj , where pi is the local pressure of the pore i,

and the local hydraulic conductivity σij ; for cylindrical throats of length l and radius r0
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Figure 1.2: Draw of the experiment realized by Darcy in order to prove the linearity between P
and Q.

Figure 1.3: Sketch of porous media. Left: realistic porous medium in which the solid structure
consists of an assembly of grains (in black) among whom the fluid is free to flow. Right: model
of a pore network, in which large voids pores are connected by straight tubes that in general
present random radius and length.
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σij ∼ r40/l. Equation 1.2 should be combined with the Kirchhoff’s conservation of the

flow at each node
∑

j∈n(i) qij = 0, where the sum runs over the set n(i) of neighbours

of the node i; this conservation holds for all the Nc nodes of our lattice except the inlet

node, where the fluid is injected at pressure P, and the outlet node, where the fluid is

evacuated at zero pressure. We define the symmetric matrix A, whose entrance Aij = σij

if the throat (ij) connecting the pores i and j is present in the lattice L and Aij = 0

otherwise:

Aij =

σij if (ij) ∈ L

0 else
(1.3)

The Kirchhoff condition combined with Eq. 1.2 writes then

Nc∑
j=i

Aij(pi − pj) = 0, (1.4)

together with the pressure imposed at the inlet p1 = P and at the outlet pNc = 0. This

system of linear equations can be recast in the matrix form

M~p = P~v, (1.5)

where

M =


∑Nc

j=1A2j −A23 . . . −A2,Nc−1

−A32
∑Nc

j=1A3j . . . −A3,Nc−1
...

...
. . .

...

−ANc−1,2 −ANc−1,3 . . .
∑Nc

j=1ANc−1,j

 , ~p =


p2

p3
...

pNc−1

 , ~v =


A21

A31

...

ANc−1,1

 ,

(1.6)

leading to the solution

pi = aiP (1.7)

where we define ~a = M−1~v. The flow rate Q becomes then

Q =
1

L

∑
i,j

qij =
P

L

∑
i,j

σij(ai − aj); (1.8)

comparing this result to Eq. 1.1 we can finally calculate the permeability of our model.
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Figure 1.4: Shear rate γ̇ as a function of the shear stress Σ for Newtonian fluids and Bingham
plastics.

1.2 Rheology of non-Newtonian fluids: the Poiseuille law

of a Bingham plastic

The Darcy’s law does not capture the behavior of many fluids currently used for various

applications. In hydraulic fracturing, for example, cracks induced by high-pressure fluid

injection allow the flow of gas and oil [2]. The fracking fluids are emulsions of water

and sand or other proppants needed to keep the paths open. Foams are used in the

enhanced oil recovery (EOR) to avoid the viscous fingering instability [14]. Complex

fluids are also employed for biomedical purposes. Different types of bone cements are

employed in orthopaedics for the stabilization of osteoporotic compression fractures and

the fixation of other weakening lesions such as tumours [3].

All the aforementioned applications involve yield stress fluids, namely liquids that are

able to flow only above a finite yield stress, τy. In this work we will consider a particular

kind of yield stress fluid called Bingham plastic [15]. In order to study the behaviour of

a fluid, we can apply a shear stress to the fluid and measure its shear rate, namely the

velocity of the shear deformation induced by the stress. While a Newtonian fluid flows

and gives a shear rate for any finite value of shear stress, a Bingham plastic does not

exhibit any shear rate (no flow and thus no velocity) until a certain stress τy is achieved,

above which linearity is recovered (see Figure 1.4).

We now revisit the pore network model introduced in the previous Section for a Bingham

plastic. The Poiseuille law for this type of fluid in the throat connecting the pores i and

j should be modified in a non-linear way

qij =


σij(∆pij − τij) if ∆pij > τij

0 if |∆pij | < τij

σij(∆pij + τij) if ∆pij < −τij

(1.9)
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Figure 1.5: Plot of Equation 1.9, setting σij = 1.

Comparing to Equation 1.2, the local pressure threshold τij is introduced now, below

which no flow occurs in the channel. In particular, for a cylindrical throat of length l and

radius r0, τij = τyl/r0. Note that while τy is constant as long as it’s a characteristic of

the fluid, the local thresholds τij vary randomly as they depends on the throat geometry.

1.3 Bingham plastics in a porous lattice

Given the total pressure drop P and the configuration of random thresholds, the set

of equations 1.9 together with Kirchhoff’s conditions are closed, but very difficult to

solve due to the non-linearity of the Poiseuille law for non-Newtonian fluids. Recent

experiments [5] and numerical simulations [6] have shown that no flow is observed below

a critical pressure drop P0, and flow occurs only above it. In this regime, the flow curve

is non linear with Q ∝ (P − P0)
β and β > 1. At higher pressure, linearity is recovered

and the flow invades homogeneously the material.

The separation from an arrested phase to a flowing one can be seen as a dynamical

continuous phase transition, P being the control parameter and Q the order parameter.

In this context, one expects to observe divergent correlation lengths and universality.

Universal behaviour can be verified by changing the model in some small-scale detail

(e.g. the structure of the network, or the distribution of the random thresholds), while

the identification of divergent correlation lengths is much less understood. However,

recent studies [7–9] tried to investigate the geometrical properties of the flowing regions

and found that close to P0 the flow is characterized by a phase separation [16] between

flowing and non-flowing regions. We discuss now an algorithm that allows to determine

the flow curve of a Bingham plastic and focus on the length of open channels close to

P0. The main result is that these lengths display a free-scale statistics giving a strong

support to the existence of divergent correlation lengths.
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The numerical method discussed here applies to any lattice type [17], but we consider

for simplicity the 2-dimensional square lattice of Figure 1.6. The fluid flows from inlet to

the outlet node, whose pressures are set respectively to P and 0. The crucial observation

is that, for a given pressure difference P , the flow occurs only in a set of open throats,

L(P ). Once L(P ) is known, the solution of the local pressure for every node can be found

performing a linear calculation analogous to the one shown in Section 1.1 for Newtonian

fluids. Recalling the definition 1.3 of the matrix A and defining also the anti-symmetric

matrix I that contains the information on the directions of the flow trough all the throats

(ij)

Iij =


σij if (ij) ∈ L(P ) and the flow is in direction i to j

−σij if (ij) ∈ L(P ) and the flow is in direction j to i

0 if (ij) /∈ L(P )

(1.10)

the Kirchhoff condition combined with Eq. 1.9 writes now

Nc∑
j=i

Aij(pi − pj) =

Nc∑
j=i

Iijτij . (1.11)

Rewriting this in the matrix form

M~p = ~u+ P~v, (1.12)

where M, ~p and ~v are the same of 1.6, while

~u =


∑Nc

j=i I2jτ2j∑Nc
j=i I3jτ3j

...∑Nc
j=i INc−1,jτNc−1,j

 , (1.13)

the solution for pi becomes

pi = aiP + bi (1.14)

where ~a = M−1~v and ~b = M−1~u. So, for a given P , the solution for the local pressure

pi of the i-th node is still linear as in the Newtonian case, and its coefficients depend on

L(P ).

In order to determine the set of open throats L(P ), we follow an iterative procedure,

starting from the minimal pressure P0 needed to open the first channel connecting the

inlet and the outlet pores, that is obtained by finding, among all the paths connecting
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Figure 1.6: The flowing path network at different applied pressures for a system of size L = 100.

the inlet and outlet nodes, the one that minimize the sum of the thresholds crossed by

it:

P0 = min
C∈Cin−out

∑
(ij)∈C

τij (1.15)

where we call Cin−out the set of paths from the inlet to the outlet node.

• If P < P0 all the channels of the network are closed, so L(P ) = ∅ and no fluid is

flowing in the medium.

• At P = P0 a first channel, corresponding to the path that realizes the minimum, is

opened and the fluid starts to flow in it; calling this channel C0 we have L(P0) = C0.

• For slightly larger values of pressure the flow remains restricted to this channel

and thus L(P & P0) = L(P0).

• Increasing even more the pressure, at a certain point the pressure needed to open

a second channel, namely P1, is reached; so L(P1) = C0 +C1 where C1 is the new

channel opened at P = P1.

• The procedure is repeated iteratively: if Pk is the pressure needed to open the

(k + 1)-th channel, we have L(Pk) = L(Pk−1) + Ck where Ck is the new channel.

Summarizing, for a given realization of the thresholds τij , the enlargements of L(P )

occur at precise pressure values P0 < P1 < P2 < · · · < Pk < . . . , as shown in Fig. 1.6.

For every change of L(P ), the coefficients ai and bi of the solution for pi (Eq. 1.14)

are modified, giving the non-linearity of the problem. When all channels are open, for

higher pressure L(P ) will remain the same and linearity is recovered (see the left plot

of Figure 1.7). In principle, the channel can be non-directed, i.e. can involve throats
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Figure 1.7: (Numerical results presented in [17]) Left: The mean flow curve Q for a given
∆P = P−P0 averaged over more than 200 realizations. The thresholds are uniformly distributed
in the interval [2 −

√
3/5, 2 +

√
3/5]. Circles and triangles correspond to L = 64 and L = 128

respectively. Right: The flow curve of a single realization for P & P0 (L = 50).

where the flow goes away from the outlet node (goes upward in the lattice of Figure 1.7),

but in practice the statistics is dominated by the directed ones [7, 18] so we restrict our

analysis to them.

To find Pk, and the corresponding L(Pk), knowing L(Pk−1), we should consider the set

Ak−1 of all pairs of active nodes belonging to L(Pk−1). For each node pair (m,n) ∈ Ak−1,
we consider the set Cm,n of all paths that connect n and m and that avoid any other

intersection with L(Pk−1) beyond the end points. The optimal path among Cm,n has a

threshold

Emn = min
C∈Cmn

∑
(ij)∈C

τij (1.16)

For a given P > Pk−1 , if, for all pairs of nodes (n,m) ∈ Ak−1, the threshold Emn is larger

than the corresponding pressure difference ∆pmn(P ), then no new channels appear and

L(Pk) = L(Pk−1). Expressing pm and pn in terms of am , bm and an , bn respectively,

the pressure Pk is then determined by

Pk = min
(m,n)∈Ak−1

Emn − (bm − bn)

am − an
; (1.17)

In particular, we can provide a deeper understanding on how the non-linearity of the

flow is approached from small values of P−P0. In the right plot of Figure 1.7, we present

the flow curve for a single realization for P & P0; we can see that the exact linearity

terminates at P = P1, when a second path opens and the permeability of the system
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changes; for P1 ≤ P < P2, Q is still linear but with a different slope. Simplifying Eq.

1.17, P1 is calculated as follows

P1 = P0 + L min
(m,n)∈L(P0)

(
δEmn
`mn

)
; (1.18)

here `mn is the distance along the flow direction between the nodes m and n, and

δEmn = Emn − E0
mn, with E0

mn the sum of the thresholds along C0 between n and m,

while Emn is given by Eq. 1.16, where the paths included in Cmn avoid any intersection

with C0, apart from the ones in m and n. The minimizations provided in Equations

1.15 and 1.18 are performed using the Dijkstra optimization algorithm; a variant of this

algorithm, developed and used in this thesis work, will be discussed in Section 3.2.2.

1.4 Mapping with directed polymers in random media

As already mentioned it is tempting to interpret the onset of the flow at P0 as a dynamical

phase transition and expect scale-free behaviour close to P0. This is actually observed

numerically in the statistics of the length of the second channel, i.e. the channel that

opens at P1. As shown in Figure 1.8 we observe that the probability distribution π` of

the length ` = `mn of this channel is a power law decaying as

π` ∝
1

`
. (1.19)

Note that the mean length of the second channel ` (here the overline has the meaning of

an average over all realizations of the disorder) diverges, and its divergence can be inter-

preted as the divergence of the correlation length at the critical point. This observation

has been performed only for the 2-dimensional square lattice, but should be confirmed

in higher dimension. In this thesis we study in detail the case of the 3-dimensional

lattice, and we will show that that divergence is even stronger. To make progress on

the statistics of `, we use the mapping between this problem and the one of directed

polymers in random media. The search of the first channel in a 2-dimensional lattice via

the minimization expressed in Equation 1.15 is equivalent to find the ground state of a

(1 + 1)-dimensional directed polymer on a lattice in a random medium, and P0 corre-

sponds to its energy. The second channel, whose minimization is provided by Equation

1.18, can be instead seen as a first excited state of the polymer, and δEmn corresponds

to the difference between its energy and the ground state one. Note that the two poly-

mers coincide except along the segment between the nodes m and n, where the avoid
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Figure 1.8: (Numerical results presented in [17]) The PDF of lengths of the second open paths π`.
Circles, squares and triangles correspond to different threshold distributions: uniform, Gaussian
and exponential, respectively

each other. This mapping from (1 + 1)-dimensional directed polymer to the Bingham

flow on a 2-dimensional lattice could be generalized to any lattice and any dimension.

The fact that we have considered only directed channel for the flow in the lattice, as we

mentioned before, is actually crucial to the mapping. In the following Section, we show

the connection between π` and the statistical properties of the first excitation on the

ground state of a directed polymer in random media.

1.4.1 Relation between the second channel’s length and the energy gap

statistics

We now show that the behaviour of π` is the same of ρ`(δEmn → 0), namely the prob-

ability distribution of the energy gap for δEmn → 0 [17]. In particular, supposing that

ρ`(δEmn → 0) scales as a power law of `

ρ`mn(δEmn → 0) ∼ 1

`α
, (1.20)

we show that equally

π` ∼
1

`α
. (1.21)

Consider all pairs of node (m,n) along the ground state with a given distance along the

directed axis lmn = l; these can be generally written as (m,m+`) with m = 1, . . . , L−`.
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Now we select the minimal energetic excitation among them

δe` = min
`mn=`

δEmn = min
`m,m+`

δEmn. (1.22)

δe` is the minimum among L−` random variables that are identically distributed but not

independent, displaying indeed strong correlations between close couple [e.g. (m,m+ `)

and (m + 1,m + ` + 1)] as their correspondent channels present large overlaps. It is

reasonable then to assume that the effective number of independent variables scales as

the number of non-overlapping blocks N` = L/` and the statistics of δe` is given by the

minimum among them. This means that the probability that δe` is higher than a certain

value x corresponds to the probability that all the N` independent variables are higher

than x:

Prob[δe` > x] =

(
1−

∫ x

0
d(δE)ρ`(δE)

)N`
' exp

(
−N`

∫ x

0
d(δE)ρ`(δE)

)
' exp (−N`ρ`(0)x)

' exp

(
−N`

`α
x

)
(1.23)

where in the first passage we consider the limit for large N`, while the approximation in

the last passage is performed using Eq. 1.20. In order to get ∆P1, we have to find the

minimum energy cost per length among all the possible lengths ` = 2, 3, . . . L

∆P1

L
= min

`

δe`
`

(1.24)

Hence, using Equation 1.23 we obtain the distribution of the gap ∆P1/L.

Prob[
∆P1

L
> x] =

L∏
`=2

Prob

[
δe`
`
> x

]

'
L∏
`=2

exp

(
− N`

`α−1
x

)

= exp

(
−
(

L∑
`=2

N`

`α−1

)
x

)
,

(1.25)
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If we introduce now the variable ω` = δe`/`, taking the derivative of Equation 1.23 we

obtain the PDF of ω`

p`(ω`) '
N`

`α−1
e−

N`
`α−1 ω` . (1.26)

Finally, the statistics of the size of the second path π` is obtained considering that

ω`′ > ω` ∀ `′ 6= `:

π` =

∫ +∞

0
dω` p`(ω`)

∏
`′ 6=`

∫ +∞

ω`

dω`′ p`′(ω`′)

=

∫ +∞

0
dω`

N`

`α−1
e−

N`
`α−1 ω`

∏
`′ 6=`

∫ +∞

ω`

dω`′
N`′

`′α−1
e
−

N`′
`′α−1 ω`′

=

∫ +∞

0
dω`

N`

`α−1
e−

N`
`α−1 ω`

∏
`′ 6=`

e
−

N`′
`′α−1 ω`

=

∫ +∞

0
dω`

N`

`α−1
e
−
(∑

`′
N`′
`′α−1

)
ω`

=

(∑
`′

N`′

`′α−1

)−1
N`

`α−1
∼ `−α.

(1.27)

The behaviour of π` is then the same of ρ`mn(δEmn → 0) and this was confirmed nu-

merically for the 2-dimensional square lattice:

ρ`mn(δEmn → 0) ∼ π` ∼
1

`
, (1.28)

setting the value of α equal to one.

1.4.2 Relation between the small energy gap statistics and the non-

crossing probability

Consider directed polymers in random media that grow from a certain point at time 0

and ends at the same point at time t, and we impose that the polymers do not cross with

the exception of the starting and the ending points. We are interested in the probability

ρt(∆E → 0) that, for a fixed t, the energy gap ∆E between the ground state and the first

excited state tends to zero. When this occurs, the ground state is two-fold degenerate,

meaning that the first excited polymer acts like a second independent ground state. A

different way to verify whether the ground state is two-fold degenerate is to construct

the ground state of two polymers that start and end in two distinct, but close to each
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0

t

x− ε· x+ ε·

x− ε· x+ ε·

0

t

x− ε· x+ ε·

x− ε· x+ ε·

Figure 1.9: Draw of two ground state polymers that starts and ends at two distinct points
separated by 2ε. Left: the two polymers present a finite overlap. Right: the two polymers have
no overlap.

other, points (see Figure 1.9). Two possibilities should be considered

1. The ground states have a finite overlap; in this case the ground state is unique and

the first non-intersecting excited state has an higher energy.

2. The two ground states have no overlap and the energy gap of the first non-

intersecting excited state is zero meaning that we have double degenerate ground

state.

The non-crossing probability p(t), namely the probability that the two ground state

polymers never cross from 0 to t, is then naturally identified with ρt(∆E → 0), and thus

with πl. In this thesis we study how p(t) scales with t both in absence and in presence

of disorder. Our results of p(t) allow us to infer the behaviour of ρt(∆E → 0) and thus

of π` for large `.

1.5 Summary of the results

In this thesis we focused on the calculation of the non crossing probability p(t) for two

different stochastic processes in (1 + 1) and (2 + 1) dimensions.

The first results are for free directed polymers, namely each polymer configuration is a

Brownian trajectory and the Brownian time coincide with the directed direction. This

problem has been studied in Chapter 2 using first passage techniques (method of images,

exact relation from Feller and Redner . . . ). In dimension (1+1) we found a simple power
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law decay, valid in the thermodynamic limit t→ +∞:

p(t) ∼ 1

t
; (1.29)

in dimension (2 + 1) the decay is instead much slower

p(t) ∼ 1

log2(t)
, (1.30)

and above this dimension we expect that the two polymers never cross with a finite

probability (this is a consequence of the celebrated Pólya’s theorem [19]). At the end of

Chapter 2 we show that for (1+1) dimension the free result is recovered, in average, also

for the second class of stochastic processes we considered, namely the directed polymers

in random media:

pη(t) = p(t) ∼ 1

t
. (1.31)

As a consequence, the first channel that open above P0 are scale free and their distribu-

tion π` ∼ 1/` in 2 dimension.

In Chapter 3 we turn to numerical simulations on discrete lattice, both for free directed

polymers as well as the ground states of directed polymers in random media. In the

disordered case the ground state are efficiently determined by a variant of the Dijkstra

algorithm. We confirmed the analytical results for the free case and the (1 + 1) disor-

dered case. In (2 + 1) dimensions we found that pη(t) displays a crossover in time: at

short time it seems to match the correspondent free case, but at longer time it decays

faster as

pη(t) ∼
1

tα
with 0.5 . α . 0.75 (1.32)

Even if the asymptotic behaviour is not precise we can conclude that for a 3-dimensional

system the non-Newtonian channel above P0 are longer then in the 2-dimensional one

as, for sure, α < 1. This implies that the mean length is still divergent, as we expect at

the critical point of a phase transition.
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Chapter 2

Directed Polymers

2.1 General definition

We can consider a polymer configuration as a trajectory of a particle moving between two

points. In this Chapter we discuss about polymers in the continuum limit, meaning that

the trajectories occur in a continuous space. A polymer is called directed if the particle

always moves from the initial towards the final point along a trajectory that does not

contain loops or overhangs. Formally, this means that the configuration of the directed

polymer in d + 1 dimensions can be parametrized by giving d transverse coordinates

~x = (x1, . . . , xd)∈ R as a function of the longitudinal coordinate τ ∈ R, which gives the

distance along the path and can be regarded as a ”time” axis (see Figure 2.1).

Here two classes of directed polymers are studied: free directed polymers and directed

polymers in disordered media [20–24].

Figure 2.1: Draw of two polymers in 2 dimensions, one of which isn’t directed (in red), while the
other is (in green).

19
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• Free directed polymers. The particle is not subjected to any external force and

is free to move in the space. If we consider a free directed polymer ~x(t) that starts

and ends at time 0 and t respectively, we can then define its energy E[~x(t)] as a

functional of ~x(t)

E[~x(t)] =

∫ t

0
dτ

1

4D

(
d~x

dτ

)2

; (2.1)

1
4D

(
d~x
dτ

)2
is the elastic energy term, which is minimized for straight paths, and D

characterizes the stiffness of the polymer.

The partition function Z(~x; ~y|t) of a free directed polymer that starts at time 0

from the point ~x(0) = ~x and ends after a time t at ~x(t) = ~y, at a fixed finite

temperature T , is thus the functional integral of the Boltzmann weight e−βE[~x(t)],

where β = 1/T (we set Boltzmann’s constant kB = 1 so that the temperature is

measured in energy units), over all the paths ~x(t) that start from ~x and end at ~y:

Z(~x; ~y|t) :=

∫ ~x(t)=~y

~x(0)=~x
D[~x] e−βE[~x(t)] =

∫ ~x(t)=~y

~x(0)=~x
D[~x] e−

∫ t
0 dτ

1
4D ( d~xdτ )

2

; (2.2)

in the last passage we set an unitary temperature. This integral is solvable, and

Z(~x; ~y|t) turns out to have the same form of the Brownian propagator GD with

diffusion constant D:

Z(~x; ~y|t) = GD(~x− ~y, t) =
e−

(~x−~y)2
4Dt

(4πDt)
d
2

. (2.3)

• Directed polymers in disordered media. In this case each point of the (d+1)-

dimensional space (~x, τ) is associated with a local potential η(~x, τ). We model a

disordered (or random) medium by taking η to be uncorrelated noise, for which:

η(~x1, t1)η(~x2, t2) = 2c δ(d)(~x1 − ~x2)δ(t1 − t2). (2.4)

where the overline denotes averages over all the realization of η, while c gives

the strength of the random potential. The energy Eη[~x(t)] related to a directed

polymer ~x(t) in a given realization of the potential η is now

Eη[~x(t)] =

∫ t

0
dτ

[
1

4D

(
d~x

dτ

)2

+ η(~x(τ), τ)

]
; (2.5)

η(~x, t) could be thought as the energy it costs the polymer to pass through the site



2.2. NON-CROSSING PROBABILITY: GENERAL FORMULA 21

(~x, t), so Eη is minimized for paths picking out the minimal energy sites.

The partition function Zη of a directed polymer in a given realization of the po-

tential η is then

Zη(~x; ~y|t) =

∫ ~x(t)=~y

~x(0)=~x
D[~x] e

−
∫ t
0 dτ

[
1

4D ( d~xdτ )
2
+ η(~x(τ),τ)

]
. (2.6)

Note that we can consider free directed polymers as a subcase of the disordered

ones, if we set η(~x, t) ≡ 0 ∀~x, t.

Now let’s consider n directed polymers starting respectively from n fixed positions ~xA1 ,

~xA2 , ..., ~xAn and, after a time t, ending at ~yA1 , ~yA2 , ..., ~yAn ; supposing they don’t interact

each other, in general the partition function of these polymers is simply the product of

the partition functions of these single polymers

Zη(~xA1 , ~xA2 , ..., ~xAn ; ~yA1 , ~yA2 , ..., ~yAn |t) =
n∏
i=1

Zη(~xAi ; ~yAi |t) (2.7)

In particular for two polymers, that we can label ’A’ and ’B’,

Zη(~xA, ~xB; ~yA, ~yB|t) = Zη(~xA; ~yA|t)Zη(~xB; ~yB|t). (2.8)

The properties 2.7 and 2.8 are valid also for polymers in a discrete space that moves

on a lattice; however, we will discuss about polymers in the discrete limit in the next

Chapter.

2.2 Non-crossing probability: general formula

Let’s consider then the case of two directed polymers in a disordered medium that

both start and end at time 0 and t respectively. We are now interested in finding the

non-crossing probability, namely the probability that these two polymers never intersect

during the time interval ]0, t[, i.e. they are never situated in the same point at any time

0 < τ < t.

In d = 1 dimension, in a given realization η of the potential, this probability could be

expressed in terms of partition functions of single polymers

pη(xA, xB; yA, yB|t) = 1− Zη(xB; yA|t)Zη(xA; yB|t)
Zη(xA; yA|t)Zη(xB; yB|t)

. (2.9)
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0

t

xA xB

yA yB

0

t

xA xB

yA yB

Figure 2.2: Left: Two directed polymers in d = 1 (one going from xA to yA, the other from xB
to yB) intersecting at least once. Right: Two directed polymer with the same statistical weight
but exchanged ends.

according to 2.8, Zη(xB; yA|t)Zη(xA; yB|t) is the partition function of two generic poly-

mers that start from xA, xB and end at yA, yB respectively; Zη(xA; yA|t)Zη(xB; yB|t)
includes instead all paths of the same kind but with yA, yB exchanged, since all paths

with at least one intersection can be obtained from paths with yA, yB exchanged [25,27].

Their ratio gives then the probability that the two polymers crosses at least once. In

the Appendix A.1 we report a proof for 2.9 based on the method of images.

If we consider the situation in which for both polymers the initial and final points are

the same, i.e. xA = yA and xB = yB and if we set η ≡ 0 (free case), using Eq. 2.3 we

have

Zη≡0(x; y|t) = GD(x− y, t) =
e−

(x−y)2
4Dt√

4Dπt
(2.10)

so the probability 2.9 becomes

p(∆x, t) := pη≡0(xA, xB;xA, xB|t) = 1− e−∆x
2

2Dt −−−−→
t>>∆x

∆x2

2Dt
, (2.11)

where ∆x := xB − xA; in the last passage it is shown that, for times much larger than

∆x, the probability goes to 0 as 1/t.

Since, as explained in the Appendix, for d ≥ 2 the method of images is not valid anymore,

we have to look for an alternative expression for the non-crossing probability. We observe

that the probability that two polymers cross at least once could be generally written as

the ratio between the partition function of two DP that cross at least once and the

partition function of two generic directed polymers, that may cross or not; in this way
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we can write

pη(xA, xB; yA, yB|t) = 1− partition function of two crossing polymers

Zη(xA; yA|t)Zη(xB; yB|t)

= 1−
∫ t
0dτ

∫
Rdd~z Z̃(~xA, ~xB;~z, ~z|τ)Z(~z, ~z; ~yA, ~yB|t− τ)

Z(~xA; ~yA|t)Z(~xB; ~yB|t)
;

(2.12)

Looking at the numerator of the last member of 2.12, we call Z̃(~xA, ~xB;~z, ~z|τ) the par-

tition function of a pair of directed polymers that never intersect before τ , when they

cross reaching both ~z; Z(~z, ~z; ~yA, ~yB|t − τ) is instead the normal partition function of

two DP that starts both from ~z at time τ , meaning that they could possibly cross other

times before reaching respectively ~yA and ~yB at time t. In order to count all pairs of

paths of this kind, we have to integrate over all points ~z in the d-dimensional space and

over all time τ in the interval ]0, t[. Note that this general formula should be valid for

any d.

While Eq. 2.6 gives an expression for Zη, Z̃η is unknown; however, it is possible to

perform calculations for the case of free directed polymers, as shown in the following

Section.

2.3 Explicit results for the free case

The partition function of two directed polymers that, starting from ~xA and ~xB respec-

tively, ends both at ~z, could be thus written as the product of two free propagators with

the same diffusion constant

Z(~xA; ~yA|t)Z(~xB; ~yB|t) = GD(~xA − ~z, τ)GD(~xB − ~z, τ). (2.13)

It is useful to introduce the coordinate of the center of mass and of the relative distance

of the polymers

~xCM =
~xA + ~xB

2
, ∆~x = ~xB − ~xA; (2.14)
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it’s easy to show that, rewriting Eq. 2.13 in the new coordinates, we still obtain a

product of two free propagators, but both with a different value of the diffusion constant

GD(~xA − ~z, τ)GD(~xB − ~z, τ) =
e−

(xA−z)
2

4Dt

(4πDt)
d
2

e−
(xB−z)

2

4Dt

(4πDt)
d
2

=
1

(4πDt)d
e−

~x2A
2 +

~x2B
2 +~xA~xB+~z2−2(~xA+~xB)~z+2~z2+

~x2A
2 +

~x2B
2 −~xA~xB

4Dt

=
e−

(
~xA+~xB

2 −~z
)2

2Dt

(2πDt)
d
2

e−
(~xB−~xA)2

8Dt

(8πDt)
d
2

= GD
2

(~xCM − ~z, τ)G2D(∆~x, τ);

(2.15)

Observe that, if we impose that these two DP never cross before meeting in ~z, we are

asking that the difference of their coordinates never go to ~0 before τ , while the average

position has no restrictions. We can then write

Z̃(~xA, ~xB;~z, ~z|τ) = GD
2

(~xCM − ~z, τ)F2D(∆~x, τ); (2.16)

where F2D(∆~x, τ) is the partition function of a free DP that diffuses with a diffusion

constant of 2D, but never goes to ~0 before t. In this way, the numerator of the ratio on

the right side of Eq. 2.12 can be written as∫ t

0
dτ

∫
Rd
d~z Z̃(~xA, ~xB;~z, ~z|τ)Z(~z, ~z; ~xA, ~xB|t− τ) =

=

∫ t

0
dτ

∫
Rd
d~z GD

2
(~xCM − ~z, τ)F2D(∆~x, τ)GD(~z − ~yA, t− τ)GD(~z − ~yB, t− τ);

(2.17)

Let’s consider for simplicity the case for which ~xA = ~yA and ~xB = ~yB. The integral in

d~z gives then a rather simple solution valid for all d∫
Rd
d~z GD

2
(~xCM − ~z.τ)GD(~z − ~xA, t− τ)GD(~z − ~xB, t− τ) = (2Dπt)−

d
2G2D(∆~x, t− τ),

(2.18)

and since GD(0, t) = (4Dπt)−
d
2 , Eq. 2.12 becomes

p(~xA, ~xB, t) = 2
3d
2 (Dπt)

d
2

∫ t

0
dτ F2D(∆~x, τ)G2D(∆~x, t−τ) = 2

3d
2 (Dπt)

d
2 I(∆~x, t). (2.19)
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where we have defined

I(∆~x, t) :=

∫ t

0
dτ F2D(∆~x, τ)G2D(∆~x, t− τ). (2.20)

In order to solve this integral, consisting in a convolution between F2D and G2D, it

is convenient to perform a Laplace transform of it1; using the fact that the Laplace

transform of a convolution of two functions is the product of the Laplace transform of

the two functions; in this way the expression is easier to manage, and after some passages

we can do the inverse Laplace transform in order to obtain an analytical solution for

2.20. Indicating with Î(∆~x, s) the Laplace transform of Eq. 2.20

Î(∆~x, s) =

∫ +∞

0
dt

∫ t

0
dτ F2D(∆~x, τ)G2D(∆~x, t− τ)e−st = F̂2D(∆~x, s)Ĝ2D(∆~x, s);

(2.23)

where F̂2D and Ĝ2D are the Laplace transform of F2D and G2D respectively. An expres-

sion of F2D as a function of G2D has been derived in the Appendix A.2, following the

method developed by Feller [28]:

F̂2D(∆~x, s) =
Ĝ2D(∆~x, s)

Ĝ2D(~0, s)
; (2.24)

in this way we directly get

Î(∆~x, s) =
Ĝ2

2D(∆~x, s)

Ĝ2D(~0, s)
; (2.25)

In generic dimension d the Laplace transform of the free propagator GD(∆~x, t) is

ĜD(∆~x, s) =

∫ +∞

0
dt

e−
∆x2

4Dt

(4πDt)
d
2

e−st =
1

(2πD)1−ν

(
∆x2

Ds

) ν
2

Kν

(
∆x

√
s

D

)
; (2.26)

1We recall the definition of the Laplace transform for a generic function f(t) defined for all real values
t ≥ 0

L {f(t)} (s) = f̂(s) =

∫ +∞

0

f(t)e−st dt (2.21)

where the complex number s is the frequency parameter. The inverse Laplace transform of f̂(s), if exists,
is the function f(t) for which L {f} (t) = f̂(s). It can be proved that if f̂(s) has an inverse transform
f(t) then f(t) is uniquely determined. An integral formulation of the inverse transform is given by the
line integral

L
−1

{
f̂(s)

}
(t) = f(t) =

1

2πi
lim

T→+∞

∫ γ+iT

γ−iT
f̂(s)est dt (2.22)

where the integration occurs along the vertical line R(s) = γ in the complex plane, with γ greater than
the real part of all the singularities of f̂ .
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where Km is the modified Bessel function of the second kind and ν = 1 − d/2. After

have inserted 2.26 in the final result of Eq. 2.23, we should perform an inverse Laplace

transform in order to get a solution for the integral I(∆~x, t), and finally an analytical

expression for p(~xA, ~xB, t). Since Eq. 2.26 relies on the dimension d of the system, we

may study separately the cases d = 1, verifying whether it gives the same results already

obtained with the method of images, and d = 2.

2.3.1 Check for d=1

If d = 1 (ν = 1/2) from Eq. 2.26 we obtain

ĜD(∆x, s) =
1√

2πD

(
∆x2

Ds

) 1
4

K 1
2

(
∆x

√
s

D

)
=
e−∆x

√
s
D

2
√
Ds

(2.27)

inserting this result in Eq. 2.25 we obtain

Î(∆x, s) =
e−2∆x

√
s

2D

2
√

2Ds
; (2.28)

and making the inverse Laplace transform

I(∆x, t) =
e−

∆x2

2Dt

2
√

2Dπt
. (2.29)

Finally, the non-crossing probability p(xA, xB|t) =: p(∆x, t) from Eq. 2.19 is

p(∆x, t) = 1− e−∆x
2

2Dt (2.30)

that is the same result obtained with the method of images shown in Eq. 2.11; in

particular it presents an asymptotic t−1 time dependence.

2.3.2 Calculation for d=2

Setting now d = 2 (ν = 0) in Eq. 2.26, we obtain

ĜD(∆~x, s) = ĜD(|∆~x|≡∆x, s) =
1

2πD
K0

(
∆x

√
s

D

)
(2.31)
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and substituting this in Eq. 2.23

Î(∆x, s) =
1

4πD

K2
0

(
∆x
√

s
2D

)
K0(0)

= 0 (2.32)

since K0(0) = +∞; this implies immediately that p(∆~x, t) = 1, meaning that two DP

in d = 2 will never exactly cross.

In order to make the intersection between polymers possible, we impose that the crossing

between the two DP occurs when their distance become less than a fixed value a: this

is equivalent to suppose that both polymers present a circular thickness with radius of

a/2. The results of Eq. 2.25 should be then modified in the following way:

1. Instead of F2D(∆x, t), we are looking now for the partition function of a free

directed polymer that, starting from the difference vector of the initial positions

∆~x, after a time t reaches for the first time the surface of a circle of radius a

centered in the origin.

2. Instead of G2D(∆x, t), we are looking now for the partition function of a free

directed polymer that, starting from any point of the circumference of radius a

centered in the origin, after a time t reaches ∆~x.

For the point 1, it is already shown by Redner [29] that, if we consider a random-walk

in d dimensions starting at ~x0, the Laplace transform of the probability of first reaching

the surface of a sphere centered at the origin of radius a, with x0 > a, in absence of

other boundaries is equal to (x0
a

)ν Kν

(
x0
√

s
D

)
Kν

(
a
√

s
D

) ; (2.33)

setting d = 2 and recalling x0 −→ ∆x, D −→ 2D, we obtain exactly the Laplace transform

of the partition function we need:

K0

(
x0
√

s
2D

)
K0

(
a
√

s
2D

) . (2.34)

The partition function described at point 2 could be instead built: taking the free

propagator from a generic point ~a of the circumference to ~x0, integrating over all the
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circumference, that we’ll call Ba(~0), and normalizing for its perimeter

1

2πa

∫
Ba(~0)

G2D(~a−∆~x, t) d~a =
1

2πa

∫
Ba(~0)

e−
(~a−∆~x)2

8Dt

8πDt
d~a

=
e−

a2+∆x2

8Dt

16π2Dt

∫ 2π

0
e

2ax cos θ
8Dt dθ

=
e−

a2+∆x2

8Dt

8πDt
I0

( xa

4Dt

)
;

(2.35)

in the second passage we change the integration variable to the argument θ of the

circumference, while, in the last member, I0 is the modified Bessel function of the first

kind. The Laplace transform of this expression is unknown, but in the limit xa
t → 0 the

approximation I0 (xa/4Dt) ' 1 is valid. In this way

1

2πa

∫
Ba(~0)

G2D(~a−∆~x, t) d~a ' e−
a2+∆x2

8Dt

8πDt
= G2D(~v, t) (2.36)

where we have defined the vector ~v = (a,∆x); its Laplace transform, according to Eq.

2.26, writes

Ĝ2D(~v, s) =
1

4πD
K0

(√
a2 +∆x2

√
s

2D

)
. (2.37)

So, considering both points 1 and 2, the Laplace transform of the integral of Eq. 2.20

becomes

Î(∆x, s) =
1

4πD

K0

(
∆x
√

s
2D

)
K0

(√
∆x2 + a2

√
s
2D

)
K0

(
a
√

s
2D

) . (2.38)

The inverse Laplace transform of 2.38 is impossible to calculate exactly, but since we’re

interested in the time asymptotic behaviour, we can study the limit s → 0, that corre-

sponds to t → +∞. The modified Bessel function K0 for small values of the argument

can be approximated to

K0(z) =
z→0
− log

(z
2

)
− γE + o(z1), (2.39)
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where γE is the Eulero-Mascheroni constant. In this way, for Î we have

4πDÎ(∆x, s) ≈
s→0
−
(
log
(
∆x
2

√
s
2D

)
+ γE

) (
log
(√

∆x2+a2

2

√
s
2D

)
+ γE

)
log
(
a
2

√
s
2D

)
+ γE

= −
(
1
2 log s+A

) (
1
2 log s+B

)
1
2 log s+ C

= − log s

2
+ C −A−B − 2(A− C)(B − C)

log s
+ o

(
log−2 s

)
;

(2.40)

where in the first passage we have introduced the space-saving notation A = log∆x −
3
2 log 2− 1

2 logD+γE , B = log
√
∆x2 + a2− 3

2 log 2− 1
2 logD+γE and C = log a− 3

2 log 2−
1
2 logD+ γE . Since, in this asymptotic limit, the inverse of the Laplace transform of the

following functions are valid [29,31]

L−1{log s}(t) ≈
s→0
−1

t
, (2.41a)

L−1
{

1

log s

}
(t) ≈

s→0

1

t log2 t
, (2.41b)

and considered also that L−1[k](t) = k δ(t), k ∈ R, the inverse Laplace transform of Î

for t→ +∞ can be written as

I(∆x, t) ≈
t→+∞

1

4Dπ

(
1

2t
− 2(A− C)(B − C)

t log2 t

)
(2.42)

and finally the non-crossing probability 2.19 becomes

p(∆x, t) ≈
t→+∞

1− 8πDt

4πD

(
1

2t
− 2(A− C)(B − C)

t log2 t

)
=

4(A− C)(B − C)

log2 t

= 2 log
∆x

a
log

√
∆x2 + a2

a
log−2 t ∝ log−2 t.

(2.43)

It comes out that the non-crossing probability in d = 2 goes for large t as log−2 t, showing

a different behaviour from the d = 1 case.
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2.4 Crossing probability for directed polymers in random

media

In the continuum limit it is useful to introduce the non-crossing probability, pη(t), in the

limit of near-coinciding endpoints. Namely

pη(t) := lim
ε→0

pη(−ε, ε;−ε, ε|t)
4ε2

(2.44)

This probability depends explicitly on the disorder realization and it in general impos-

sible to compute. However we are interested in its mean value, pη(t) averaged over all

disorder realizations.

In d = 1 we can compute pη(t) explicitly by combining two properties. First, we consider

the Statistical Tilt Symmetry (STS), valid for any dimension, which writes

logZη(~x; ~y|t) = −(~x− ~y)2

2t
+ f(t), (2.45)

where f(t) is a function that does not depend on x and y. A proof for this equality is

given in the Appendix A.4.

Second, as a consequence of the method of images, valid only in d = 1, we can express

the random variable pη(t) as a log-derivative of the partition function

pη(t) = ∂x∂y logZ(x; y|t)|x=0
y=0

, (2.46)

In the Appendix A.3 we provide a proof for Equation 2.46, that belongs to a larger

set of relations between non-crossing probabilities and logZ [25, 26]. Note that logZ

behaves as a free energy (with opposite sign and unit temperature). By matching the

two properties we get

pη(t) = ∂x∂y logZ(x; y|t)|x=0
y=0

=
1

t
(2.47)

In the free case, for which the probability is expressed by Eq. 2.10, it is easy to show

that, if we set the diffusion constant at the value2 D = 1/2, we have pη≡0(t) = t−1; so

there is a correspondence between the non-crossing probabilities in the free case and in

the disordered case averaged over all realization of the disorder

pη(t) = pη≡0(t) =
1

t
(2.48)

2A justification for the choice of this value is given in Section 3.1.
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Figure 2.3: Plot of the asymptotic behaviour of the non-crossing probability p(t) found for d = 1
in both free and disordered case (blue) and for d = 2 only in the free case (red).

In d ≥ 2, Eq. 2.46 does not hold and thus the equality 2.48 should not be valid. In

particular we do not know relations similar to 2.46 between the non-crossing probability

and logZ, that could bring to an analytical expression for pη(t). So, for d = 2 we

cannot say if the asymptotic decay in log−2 t, found for the free case, holds also for the

averaged-disordered case.

To summarize the results discussed this Chapter, in Table 2.1 we report the behaviour

of the non crossing probability found out analytically in the limit of large times for every

case, giving a brief summary of the methods used for each one.

Table 2.1: Behaviour of the non-crossing probability p(t) in all considered cases.

Case p(t) Methods

Free case, d = 1 t−1 Found with method of images (Section 2.2);
checked using Formula 2.12 (Section 2.3.1)

Free case, d = 2 log−2 t Found using Formula 2.12 adopting results
from Feller and Redner (Section 2.3.2)

Disordered case, d = 1 t−1 Equal to the free case thanks to the STS
(Section 2.4)

Disordered case, d = 2 ?
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Chapter 3

Discrete Directed Polymers on a

lattice

We now define the directed polymer on a discrete lattice. This model can be studied

numerically and, in the limit of large sizes, one should recover the analytical results

obtained in the continuum limit.

A discrete polymer configuration ~x(t) in d dimensions can be thought as a simple random

walk on the sites (x1, . . . , xd) = ~x of the d-dimensional hypercubic lattice Zd [30]; this

means that, at each step, the particle can only jump to neighboring sites of the lattice,

according to some probability distribution. A jump from a site to another among the

2d nearest neighbours is then performed in correspondence of a ”jump” forward in the

discrete time interval {0,1,2,. . . ,t}; in this way, the growth of the polymer for the (τ+1)-

th step can be generally written as

~x(τ + 1) = ~x(τ)± ej =



x1(τ)

x2(τ)
...

xj(τ)
...

xd(τ)


±



0

0
...

1
...

0


, j ∈ {1, 2, . . . , d} (3.1)

Let’s distinguish then between the free directed polymers and directed polymers in dis-

ordered media, as done in the previous Chapter.

• A free directed polymer on a lattice is equivalent to a symmetric simple random

33
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walk, for which the probabilities of the particle jumping to each one of its nearest

neighbors are the same. This means, in particular, that every polymer configura-

tion starting from a certain point ~x and ending at ~y has the same probability of

occurring.

• For a directed polymer in a disordered medium, each point of the (d+1)-dimensional

discrete space (~x, τ) is associated with a local random energy η(~x, τ) that obeys

to Eq. 2.4. Given a realization of the random energy for every site, the energy

of a directed polymer starting and ending at time 0 and t respectively is then the

sum of the energies associated with the sites crossed by the polymer in the time

interval 0 ≤ τ ≤ t.

E [~x(t)] =
t∑

τ=0

η(~x, τ) (3.2)

At finite temperature T the probability of a given configuration is proportional to

exp[−βE [~x(t)], while at zero temperature the Boltzmann measure is concentrated

on the polymer that minimizes the energy, that we call ’ground state’ of the system.

.

The boundary conditions of the problem, i.e. the starting and the final point of the

polymer, should be specified; here we are interested in the so-called droplet initial con-

ditions, for which ~x(0) = ~x(t). Let’s consider then two polymers ~xA(t) and ~xB(t), with

droplet initial conditions ~xA(0) = ~xA(t) = ~xA and ~xB(0) = ~xB(t) = ~xB. We want to

determine the probability p(~xA, ~xB, t) that they cross at least once when 0 < τ < t,and

in particular we are interested in its asymptotic behaviour for large t. In particular in the

disordered case, we are interested in the non-crossing probability between two ground

states, averaged over all realizations of the disorder.

3.1 Free case: Matching discrete with continuous

Consider the symmetric simple random walk for d = 1; for each time, the particle could

either take one step in the positive direction (increasing its position value by 1) or in

the negative direction (decreasing by 1) equivalently, with the same probability of 1/2.

We’re looking for the probability P (∆x, t) that, after t steps, the particle arrives at a

distance ∆x from the initial site. This means that m = (t + ∆x)/2 steps are taken in

the positive direction; the probability P (m, t), that among t steps m are positive (for
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instance), is given by the binomial distribution

P (m, t) =

(
1

2

)m(1

2

)t−m( t
m

)
=

1

2t
t!

m!(t−m)!
. (3.3)

If we take the logarithm, using the Stirling approximation log x! ≈ x log x − x valid

for x >> 1, neglecting the term 1/2t since it is part of the normalization that we will

calculate at the end, we have

logP (m, t) ≈ t log t− t−m logm+m− (t−m) log(t−m) + t−m
= t log t−m logm− (t−m) log(t−m)

(3.4)

Now we approximate logP (m, t) around its maximum, located at m = m∗, using a

Taylor series at the second order:

logP (m, t) ≈ logP (m∗, t) +
1

2

∂2 logP (m, t)

∂m2

∣∣∣∣
m=m∗

(m−m∗)2. (3.5)

Imposing the condition to the derivative with respect to m of logP (m, t)

∂ logP (m, t)

∂m

∣∣∣∣
m=m∗

= log

(
t−m∗
m∗

)
!

= 0, (3.6)

we find m∗ = t/2; so the second derivative of logP (m, t) at t/2 gives

∂2 logP (m, t)

∂m2

∣∣∣∣
m= t

2

=

(
− 1

m
− 1

t−m

) ∣∣∣∣
m= t

2

= −4

t
; (3.7)

we thus find the explicit form for 3.5, and then the expression for P (m, t) valid for t >> 1

logP (m, t) = A(t)− 2

n

(
m− t

2

)2

=⇒ P (m, t) = B(t) e−
2
t (m−

t
2)

2

(3.8)

where A(t) and B(t) are constant with respect to m; with the variable change ∆x =

2m− t, imposing the unitary normalization condition, we find

P (∆x, t) =
e−

∆x2

2t√
2πt

. (3.9)

For d > 1, since there is no correlation between the d components of the particle’s motion

along the d dimensions, the probability that, after t steps, the particle is situated at the
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distance ∆~x = (∆x1, . . . ,∆xd) from the initial site is

P (∆~x, t) =
e−

∆x21
2t√

2πt
. . .

e−
∆x2d
2t√

2πt
=
e−

∆x2

2t

(2πt)
d
2

, (3.10)

that is exactly equal to Eq. 2.3, the partition function of a free directed polymer in d

dimensions in the continuous limit, if we set D = 1/2. So, starting from the symmetric

simple random walk and taking t→ +∞, we find the problem of free directed polymer in

the continuous limit already illustrated in the previous Chapter. Moreover, this justifies

the choice for D made in Section 2.4.

3.2 Algorithms

In this Section we illustrate the structure of the algorithms implemented for the creation

of directed polymers with droplet boundary conditions, for both free and disordered

cases and for both d = 1 and d = 2.

3.2.1 Algorithms for the Free case

The operations performed in the algorithm for d = 1 and d = 2 are both listed in Table

3.1. Here we discuss some peculiarities of the two different dimensions.

• d = . Supposing a polymer that start at x(0) and ends at x(t), it is easy to

show that, calling ∆x = x(t)− x(0), (t+∆x)/2 steps will necessary take place in

the positive direction, while the other (t −∆x)/2 in the negative; in particular if

x(t) = x(0), the number of steps in the positive and in the negative direction are

the same, namely t/2.

• d = . Since R2 ' C, we can express the position of the polymer on the Z2 lattice as

a complex number: a jump along the real axis will cause an increase/decrease of the

position by 1, while a jump along the complex axis will cause an increase/decrease

of the position by i.

As for d = 1, if the initial and the final point are the same, the number of leaps

taken in a direction and in the opposite one, along a certain axis, must be equal;

so, if the polymer is t steps long, the number of pairs of opposite jumps is still

t/2. However now, in order to build a polymer we have to choose the number

n of pairs of opposite steps that will perform along one of the two axis, so that
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Free case, d = 

Operations Example for t = 8

• Initial conditions for Poly; Poly[0] = 0, Poly[8] = 0;

• Initialization of Step; Step = [1,−1, 1,−1, 1,−1, 1,−1];

• Random permutation of Step; Step = [−1,−1, 1, 1, 1,−1, 1,−1];

• Creation of Poly: Poly[1] = Poly[0] + Step[0] = −1;
for τ = 0, 1, . . . , t− 1: Poly[2] = Poly[1] + Step[1] = −2;

Poly[τ + 1] = Poly[τ ] + Step[τ ]; . . .

Final result for Poly: Poly = [0,−1,−2,−1, 0, 1, 0, 1, 0];

Free case, d = 

Operations Example for t = 8

• Initial conditions for Poly; Poly[0] = 0, Poly[8] = 0;

• Sampling and rounding of n; n = 2.7 −→ Round(n) = 3

• Initialization of Step; Step = [1,−1, 1,−1, 1,−1, i,−i];

• Random permutation of Step; Step = [−1,−i, 1,−1, 1, i, 1,−1];

• Creation of Poly: Poly[1] = Poly[0] + Step[0] = −1;
for τ = 0, 1, . . . , t− 1: Poly[2] = Poly[1] + Step[1] = −1− i;

Poly[τ + 1] = Poly[τ ] + Step[τ ]; . . .

Final result for Poly: Poly = [0,−1,−1− i,−i,−1− i,−1, 0, 1, 0];

Table 3.1: Schemes of the algorithms adopted for creating a Free directed polymer on a lattice
in d = 1 (top) and d = 2 (bottom). ’Poly’ is an array with t + 1 entrances representing the
polymer, for which the τ -th entrance Poly[τ ] is its position at time τ , while ’Step’ is an array
that collects the t leaps that the polymer has to perform. All the operations, listed on the left,
are accompanied by an example, illustrated on the right.
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the number of pairs along the other will be t/2 − n; The total number N(n, t)

of possible configurations of a polymer presenting n pairs along the real axis (for

instance) is given by the permutation of t elements among which n couples and

t/2− n couples are respectively identical between them

N(n, t) =
t!

(t/2− n)!2 n!2
. (3.11)

In order then to find the probability P (n, t) that a polymer presents n pairs along

the real axis in the limit t→ +∞, we perform a calculation analogous to the one

shown in Section 3.1. The natural logarithm of N(n, t) for t >> 1 could be written

as

logN(n, t) = t log t− 2

(
t

2
− n

)
log

(
t

2
− n

)
− 2n log n (3.12)

imposing that the derivative with respect to n at the maximum point n∗ is 0, gives

∂ logN(n, t)

∂n

∣∣∣∣
n=n∗

= log

(
t/2− n
n

)∣∣∣∣
n=n∗

!
= 0 =⇒ n∗ =

t

4
; (3.13)

the second derivative at n∗ = t/4 is

∂2 logN(n, t)

∂n2

∣∣∣∣
n= t

4

= − t

n
(
t
4 − n

)∣∣∣
m= t

4

= −16

t
, (3.14)

so, near n∗, logN(n, t) can be approximated to

logN(n, t) ≈ logN(n∗, t) +
1

2

∂2 logN(n, t)

∂n2

∣∣∣∣
n=n∗

(n− n∗)2

= A(t)− 8

t

(
n− t

4

)2

;

(3.15)

the probability P (n, t), with the proper normalization factor, is then

P (n, t) =

√
πt

8
e−

8(n−t/4)2
t , (3.16)

namely a Gaussian with mean and variance both equal to t/4. In order to build a

2-dimensional free directed polymer, the algorithm should then sample the number

n of pairs of leaps in the distribution N(t/4, t/4) and round it to an integer.
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3.2.2 Algorithms for the Disordered case: Dijkstra’s algorithm

In presence of disorder the polymer configurations are not equally likely, and at zero

temperature only the polymer with the minimal energy is occupied. In order to find the

ground state given the initial and final points in a system of size t, one can calculate

the energies of all the (2d)t possible configurations, summing the energies of the crossed

sites as expected from Equation 3.2, and then find the minimum among them; however,

the running time of the entire operation explodes for t sufficiently large, since the total

number of operations grows as a power of t. For this purpose, we decide instead to

implement a variant of the Dijkstra’s algorithm. In its original formulation [32] this

algorithm allows to find the path of minimal length connecting two points of a generic

graph. The Dijkstra algorithm is the basic ingredient of all the shortest path-finding

algorithms [33].

In our case the graph is the directed (d+1)-dimensional lattice, and the path of minimal

length is the ground state polymer. Hence, each site of the lattice (~x, τ) has 2d directed

edges that point on (~xn.n., τ + 1), where ~xn.n. indicates one of the 2d nearest neighbours

of ~x. The length of the edge connecting (~x, τ) to (~xn.n., τ + 1) is η(~xn.n., τ + 1), namely

the random energy assigned to (~xn.n., τ+1); so the length of a path is actually the energy

of the correspondent directed polymer.

Considered then the particular structure of our graph, we build an algorithm that allows

us, given the initial and final points of the polymer, to find the ground state of the

system, returning an array that collects its position at every time from 0 to t, and its

energy E0. The operations implemented for d = 1 are listed in Table 3.2 in the form

of pseudo-code and applied to an example, which is also graphically illustrated in the

Figures 3.1 and 3.2, while the operations for d = 2 are listed in Table 3.2; here we explain

better some of the points listed:

• Initialization of E and Dis: all the entrances of the d-dimensional array ’E’

are set to a value N sufficiently larger than the typical energy values provided

by the probability distribution that generates the disorder, except one entrance

which is set to 0; the position of the 0 entrance along the array represents the

initial x-position of the polymer at τ = 0, as shown, for d = 1, on the top left

of Figure 3.1. Moreover, a set of random values is created and stored in the ’Dis’

array, representing the energies assigned to the nodes of our graph, always shown

in Figure 3.1 for d = 1; the number of entrances of this array is then equal to

the number of sites of the lattice. For all the simulation performed, we choose to

generate the random values from a Gaussian distribution of mean 0 and variance 1.
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Disordered case, d = 

Operations Example for t = 4

• Initialization of E and Dis;
for x = −t/2− 1, −t/2, . . . , t/2 + 1:

E[x] =

{
0 if x = 0

N else
; E = [N,N,N, 0, N,N,N ];

Dis = [η1, η2, . . . ]; Dis = [−0.5, 1.6, . . . ,−1.2];

• Update of E and Step:
for τ = 1, 2, . . . , t/2 : τ = 1, x = −1 :

for x = −τ,−τ + 2, . . . , τ : E[−1] = min{E[−2], E[0]}+ Dis[1];
E[x] = min{E[x− 1], E[x+ 1]}+ Dis[j]; = 0− 0.5 = −0.5;

Step[τ ][x] =

{
+1 if min = E[x+ 1]

−1 if min = E[x− 1]
;

Step[−1][1] = −1;
τ = 1, x = 1 :

j = j + 1; E[1] = min{E[0], E[2]}+ Dis[2] = 1.6;
Step[1][1] = 1;

for τ = t/2 + 1, t/2 + 2, . . . , t : . . .
for x = τ − t, τ − t+ 2, . . . ,−τ + t :

E[x] = min{E[x− 1], E[x+ 1]}+ Dis[j];

Step[τ ][x] =

{
+1 if min = E[x+ 1]

−1 if min = E[x− 1]
;

j = j + 1;

• Set final position of Poly;
Poly[t] = 0; Poly[4] = 0;

• Creation of Poly:
for τ = 1, 2, . . . , t Poly[3] = Poly[0] + Step[4][0] = −1;

Poly[t− τ ] = Poly[t− τ + 1]+ Poly[2] = Poly[1] + Step[3][−1] = 0;
+Step[t− τ + 1][Poly[t− τ + 1]]; . . .

Final result for Poly: Poly = [0,−1, 0,−1, 0], E0 = −0.9;

Table 3.2: Scheme of the algorithm adopted for creating a directed polymer on a disordered
lattice in d = 1. ’Poly’ is an array with t+ 1 entrances representing the polymer, for which the
τ -th entrance Poly[τ ] is its position at time τ , while ’Step’ is a 2-dimensional array that collects
the leaps that the polymer has to perform.
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Disordered case, d = 

Operations

• Initialization of E and Dis;
for x = −t/2− 1, −t/2, . . . , t/2 + 1:

for y = −t/2− 1, −t/2, . . . , t/2 + 1:

E[x][y] =

{
0 if x = y = 0

N else
;

Dis = [η1, η2, . . . ];

• Update of E and Step:
for τ = 1, 2, . . . , t/2 :

for x = −τ, −τ + 1, . . . , τ :
for y = −τ + |x|, −τ + |x|+ 2, . . . , τ − |x| :
E[x][y] = min{E[x− 1][y], E[x+ 1][y], E[x][y − 1], E[x][y + 1]}+ Dis[j];

Step[x][y][τ ] =

{
(±1, 0) if min = E[x± 1][y]

(0,±1) if min = E[x][y ± 1]
;

j = j + 1;

for τ = t/2 + 1, t/2 + 2, . . . , t :
for x = τ − t, τ − t+ 1, . . . , −τ + t :

for y = τ − t+ |x|, τ − t+ |x|+ 2, . . . , t− τ − |x| :
E[x][y] = min{E[x− 1][y], E[x+ 1][y], E[x][y − 1], E[x][y + 1]}+ Dis[j];

Step[x][y][τ ] =

{
(±1, 0) if min = E[x± 1][y]

(0,±1) if min = E[x][y ± 1]
;

j = j + 1;

• Set final position of Poly;
Poly[t] = (0, 0);

• Creation of Poly:
for τ = 1, 2, . . . , t

Poly[t− τ ] = Poly[t− τ + 1] + Step[t− τ + 1][Poly[t− τ + 1]];

Table 3.3: Scheme of the algorithm adopted for creating a directed polymer on a disordered
lattice in d = 2. ’Poly’ is an array with t+ 1 entrances representing the polymer, for which the
τ -th entrance Poly[τ ] is its position at time τ , while ’Step’ is a 2-dimensional array that collects
the leaps that the polymer has to perform.
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τ = 0:
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τ = 1:

E = [N 0.1 -0.5 -0.6 1.6 3.0 N ]
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τ = 2:

E = [N 0.1 -0.3 -0.6 0.3 3.0 N ]

4 -1.2

3 0.3 0.9

2 0.6 -0.1 1.4

1 -0.5 1.6

0 0
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τ = 3:

E = [N 0.1 -0.3 -0.9 0.3 3.0 N ]

4 -1.2

3 0.3 0.9

2 0.6 -0.1 1.4

1 -0.5 1.6

0 0

-3 -2 -1 0 1 2 3

τ = 4:

Figure 3.1: Graphical representation of the update of the energy array ’E’ described in the second
point of Table 3.2. The updated entrances of ’E’ for a certain τ are evidenced in bold; everyone
of them corresponds to the sum of all the energy values, shown in the graphs, crossed by the
path that, starting from the initial site at τ = 0 and following the arrows, arrives at the site with
same x-position at that time τ . In particular, the energy value E[0] at τ = 4 corresponds to the
energy E0 of the ground state.
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τ

x

4 0 0 0 -1 0 0 0

3 0 0 1 0 -1 0 0

2 0 1 0 -1 0 -1 0

1 0 0 1 0 -1 0 0

0 0 0 0 0 0 0 0

-3 -2 -1 0 1 2 3

Step:

0

-1

0

-1

0

Poly:

Figure 3.2: Graphical representation of the update of the array Poly described in the last point of
Table 3.2. The arrows evidence the values of the Step array chosen by the ground state polymer.

Note that we are free to choose any distribution: the only condition is to generate

uncorrelated random values.

• Update of E and Step: For every j-th node of the (d+ 1)-dimensional lattice in

which the ground state may move, illustrated for d = 1 in Figure 3.1, an entrance

of ’E’ is updated and a new entrance of Step is filled with a new value, following

respectively the operation

E[x1][x2] . . . [xd] = min
i∈n.n.

{E[x1,i][x2,i] . . . [xd,i]}+ Dis[j];

Step[τ ][x1] . . . [xd] = ±ek if min = E[x1][x2] . . . [xk ± 1] . . . [xd];

where ek = (0, . . . , 1, . . . , 0), with the non-null entrance at the k-th position.

• Creation of Poly: the algorithm for the update of the ’Poly’ array is basically

the same of the free case, previously shown in Table 3.1, but now Step is a (d+ 1)-

dimensional array, and, from a graphic point of view, the entrances selected step

by step forms the path of the ground state, as shown for d = 1 in Figure 3.1.

If we analyze the running time of this algorithm, the most complex part is represented

by the updating of ’E’ and ’Step’, which is repeated for a number of times equal to the

number of nodes of our (d + 1)-dimensional graph. The total amount of sites can be

estimated summing the number of sites at a certain τ for every τ from 1 to t/2, observing

that this number increases as a power of d in this interval, and then multiplying by 2 in



44 CHAPTER 3. DISCRETE DIRECTED POLYMERS ON A LATTICE

order to count the remaining sites from t/2 + 1 to t:

# sites ' 2

t/2∑
τ=1

τd = 2H t
2
,−d ∝ td+1, (3.17)

where H t
2
,−d is the generalized harmonic number of order −d of t/2. Considering that

td+1 << (2d)t for large t, this variant of the Dijkstra’s algorithm is actually faster than

the straightforward procedure described at the beginning of this Section.

3.3 Numerical results

3.3.1 Results for the non-crossing probability

In order to generate two polymers A and B with droplet boundary conditions, that

starts (and ends) at two different positions separated by a distance ∆x, we adopt the

algorithms just explained in the previous Section, considering that:

• For the free case, we generate the Steps array for the two polymers with the same

method, but, for the creation of the Poly arrays, we set different initial and final

positions, assuring that their difference value is ∆x;

• For the disordered case, in order to update the two energy arrays related to the two

different polymers, we use the same ’Dis’ array filled with the same random values,

but the entrances used for the polymer A are shifted with respect to the ones used

for the polymer B; if we call EA and EB the energy vectors for the polymers A

and B respectively, we will have:

EA[x1][x2] . . . [xd] = mini∈n.n.{E[x1,i][x2,i] . . . [xd,i]}+ Dis[j];

EB[x1][x2] . . . [xd] = mini∈n.n.{E[x1,i][x2,i] . . . [xd,i]}+ Dis[j +∆x/2];
(3.18)

then, as for the free case, we set different initial and final positions for the two

polymers;

For every considered case, in order then to estimate the non-crossing probability p(t)

between two polymers of fixed length t

1. We generate a collection of different pairs of polymers, running the algorithm the

number of times desired; in the disordered cases, the realization of the disorder



3.3. NUMERICAL RESULTS 45

must be changed every time, meaning that the values in the ’Dis’ array must be

discarded and substituted with other random values.

2. Among the couples generated, for d = 1 we count the ones for which the two

polymers never occupy the same position at the same time, while for d = 2 we

count the ones for which the two polymers are never located at a distance less then

or equal to a fixed value a, where a < x (see Subsection 2.3.2); the ratio between the

number of couples counted in this way and the number of total couples generated

gives an estimation of p(t).

Checking whether two directed polymers cross or not is equivalent to sampling a random

variable which, for a fixed t, has a Bernoulli distribution

f(k) =

1− p(t) if k = 0

p(t) if k = 1
(3.19)

for which the variance is equal to p(t)(1 − p(t)). So, the estimation of p(t) obtained

averaging over Ns sampling of the variable has an error equal to

σp(t) =

√
p(t)(1− p(t))

Ns
'
√
p(t)

Ns
. (3.20)

The error for every estimation of p(t) performed was then calculated using Equation

3.20.

In Figure 3.3 and 3.4 we plot in a logarithmic scale the results obtained for d = 1 and

d = 2 respectively. For d = 1 the asymptotic t−1 behaviour is found for both free and

disordered case, confirming the analytical result pη≡0(t) = pη(t). For d = 2, in the free

case we found that p(t) scales as a logarithmic power law, and for large t the predicted

limit p(t) ∼ log−2 t is approached. In the disordered case, p(t) show instead a particular

behaviour, since it seems to scale as a power law which exponent is not constant but

slightly increase as t becomes larger; for the set of data collected, we can only infer that

p(t) ∼ t−α with 0.5 . α . 0.75. Hence, according to our numerical simulations, the

match between the free and the disordered case does not occur for d = 2.

In Table 3.4 we summarize the numerical results obtained, the algorithm developed to

obtain them and the order of magnitude of their computational cost.
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Figure 3.3: Plot of the non-crossing probability p(t) in d = 1 for t = 2n, n = 4, . . . , 11, distin-
guishing the free case (indicated with blue circles) from the disordered case (red squares). Every
value was obtained setting ∆x = 2 and sampling 106 couples of polymers.

Table 3.4: Behaviour of the non-crossing probability p(t).

d = 1 d = 2 Algorithms Cost

Free case t−1 log−2(t) Random permutation of
array with equal # steps in
opposite directions

O(t)

Disordered case t−1 t−α, 0.5 . α . 0.75 Variant of Dijkstra’s algo-
rithm to find the minimal
path

O(td+1)
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Figure 3.4: Plot of the non-crossing probability p(t) in d = 2 for t = 2n, n = 4, . . . , 15, distin-
guishing the free case (indicated with blue circles) from the disordered case (red squares). Upper:
Plot of (t, p(t)). Lower: Plot of (log t, p(t)). Every value was obtained setting ∆x = 4 and a = 2,
while the number of sampling for every t considered varies from ∼ 103 to 106.
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3.3.2 Results for the energy gap distribution

To confirm the estimations of the non-crossing probability in the disordered case, we

also try to estimate, for both d = 1, 2 and different values of t, the distribution ρt(δE)

of the energy gap δE for δE → 0 between a ground state and its first excited starting

and ending at the same points, verifying whether ρt(δE → 0) scales as the averaged-

disordered non-crossing probability pη(t) as explained in Section 1.4.2.

In this case, in order to calculate the energy gap of a couple of polymer:

1. We generate the ground state polymer thanks to the algorithm for the disordered

case (Table 3.2 and 3.3 respectively for d = 1 and d = 2), obtaining its energy E0.

2. We create the first excited polymer starting and ending at the same points, but

making sure that it doesn’t occupy, for every τ = 1, . . . , t − 1, the same position

occupied by the ground state at that τ . This was possible using the same algorithm

and adopting the same realization of the disorder used for building the ground

state, with the modification that, for every τ = 1, . . . , t−1, after all the updates of

the array ’E’ and ’Step’ provided for that value of τ , we set E[Poly[τ ]] = N , where

N is sufficiently larger than the typical energy values provided by the distribution

that generates the disorder. In this way the second polymer will not grow where

the first has passed before: the path corresponding to the first excited is the second

energetic minimal path. We obtain then its energy E1.

3. The energy gap is thus the difference between the energy of the first excited and

the one of the ground state, namely δE = E1 − E0.

In Figures 3.5 and 3.6 we collect in a histogram the values of energy gaps calculated

sampling several pairs of polymers, obtaining a reconstruction of ρt(δE) for different

values of t. The distributions are then rescaled for t and t0.7 respectively in the d = 1

and d = 2 case; if the rescaled distributions occur at the same height in the limit δE → 0,

it means that ρt(δE → 0) scales as pη(t). For d = 2 the exponent 0.7 was chosen since,

for the four values of t considered, the correspondent estimations of the non-crossing

probability seem fitted well by a power law with that exponent (see Figure 3.4). It

comes out that, in both dimensions, the energy gap distribution for small δE scales with

the same power law as pη(t), verifying numerically the relation discussed in Section 1.4.2.
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Figure 3.5: Plot of the rescaled distributions ρt(δE) in d = 1 for t = 2n,n = 5, 6, 7, 8, indicated
respectively by circles, squares, triangles and diamonds. For every t, 106 values of δE were
sampled.
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Figure 3.6: Plot of the rescaled distributions ρt(δE) in d = 2 for t = 2n,n = 5, 6, 7, 8, indicated
respectively by circles, squares, triangles and diamonds. 106 values of δE were sampled for t = 25

and 26, while ∼ 4 · 105 were sampled for t = 27 and ∼ 2.5 · 105 for t = 28.
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Chapter 4

Conclusions and Perspectives

In this thesis we studied both analytically and numerically the non-crossing probability

of two directed polymer in both cases of presence and absence of disorder and in both

(1+1) and (2+1) dimensions. In dimension (1+1) we found the results already predicted

in previous works [25], while in dimension (2 + 1) we calculate exactly the free case in

the limit of long polymers and found that the probability goes to 0 as 1/ log2 t with t

the size of the polymer, which appears to be an original result. In the disordered case

we performed numerical simulations adapting the Dijkstra’s algoritm to our model, and

in (2 + 1) dimension we found a power-law decay t−α slower than in dimension (1 + 1),

but faster than in the same dimension in absence of disorder. Due to time constraints

we stop our simulation at t = 212, but it would be interesting to collect data for higher

sizes of the system, in order to obtain a more precise estimation of α in the asymptotic

limit t→ +∞.

The original purpose of this thesis was to study an equivalent of the Darcy law for a

non-Newtonian fluid in a 3-dimensional porous medium. In particular, for a Bingham

plastic the flow becomes different from zero over a critical pressure value P0 following a

non-linear behaviour Q ∝ (P −P0)
β with β > 1: this corresponds to a phase transition,

for which one expects scale free behaviour, that were observed numerically in 2 dimen-

sion [17]. Our results confirm the presence of divergent length scales also in 3 dimensions.

Regarding the study of the Darcy rheology, one of the problems that remains to be solved

is to connect the behaviour of the flow curve with the geometrical properties of the open

channels. For example, it would be very worthwhile to find a scaling relation between the

exponents β and α already discussed. Another question of relevant practical importance

51
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is the interaction between a yield stress fluid and a Newtonian fluid that both flow

in a porous medium; a possible research should concentrate in studying the geometry

of the interface between the two different materials, investigating the phenomenon of

”fingerization”, for which the Newtonian fluid breaks through the non-Newtonian one

in the form of highly branched channels patterns [14].

If we look instead at the problem itself of directed polymers, it would be interesting to

study the non-crossing probability for higher dimensions, verifying if the two polymers

never cross with a finite probability as predicted for the free case by the Pólya’s theorem

[19].

4.1 Statistics of the overlap

The methods developed in this thesis allow to compute the statistical distribution of the

overlap’s lenght of two ground states starting and ending at near coinciding points.

Considering two directed polymers of lenght t in the continuum limit, in d = 1 dimension

it is possible to show that, for a fixed realization of the disorder η, the probability density

P (τ) that their first crossing occurs at time τ ∈]0, t[ writes

P (τ) =

∫ +∞
−∞ dz Z2

η(0; z|τ)Z2
η(z; 0|t− τ) ∂x∂y logZ(x; y|τ)|x=0,y=z

Zη(0; 0|t)Zη(0; 0|t) , (4.1)

where Zη is the partition function 2.6 of a single polymer. A proof for this formula is

given in the Appendix A.5. In the free case, substituting Zη≡0 with the propagator 2.3,

the integral at the numerator of 4.1 is solvable, giving

P (τ) =

√
t

2
√
π
√
t− ττ3/2 =

1

t3/2
f(q), (4.2)

where we have defined the new variable q = 1− τ
t , so that q ∈]0, 1[, and the function

f(q) =

√
t

2
√
π
√
q(1− q)3/2 =

∼ q−
1
2 if q → 0+

∼ (1− q)− 3
2 if q → 1−

. (4.3)

The limit q → 0 corresponds to two polymers that cross for the first time near the end,

while in the limit q → 1 two polymers cross at the very beginning. If we consider two

ground states in a disordered medium, qt nearly coincides with the length of the overlap

between the two ground states, since, after they cross for the first time, they start to
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Figure 4.1: Comparison between free directed polymers (on the left), that have no interaction
even after the first crossing, and ground states in disordered media (on the right), that present
overlap after the first crossing.

follow the same path until the end (see Figure 4.1).

We verify numerically the validity of Equation 4.2 for both free polymers and ground

states in disordered media. In practice, we used the same procedure for the creation

of a couple of polymer with near initial and ending points adopted for calculating the

non-crossing probability and described at Section 3.3, but instead of counting whether a

couple cross or not, we measure the time at which the first crossing occur; in particular,

if two polymers avoid each other, then q = 0. We then plot in a histogram the values of

the rescaled first-crossing times 1− q = τ/t collected, obtaining the plots shown in Fig-

ures 4.2 and 4.3. Both the asymptotic trends predicted by Equation 4.2 occur for both

free directed polymer and ground states, as well as the scale-free behaviour for q → 0,

corresponding to the same behaviour already discussed for the non-crossing probability.

Possible developments of this work should consist in finding an analytical solution for

Equation 4.1 valid in presence of disorder, and extending the study for higher dimensions.

At the moment results are known only in mean field for Caley tree geometry [34,35]. At

the thermodynamic limit t → ∞ and finite temperature T , one expects the validity of

the one step replica symmetry breaking:

P (q, T ) = (1− T )δ(q) + Tδ(1− q) (4.4)

Very recently the same quantity has been computed at finite t [36–38]. It will be then

very interesting to study the behaviour of this quantities in finite dimension.
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Figure 4.2: Plot of the functions f(1 − q) and t · f(q) in d = 1 for the free case, obtained for
t = 2n, n = 8, 9, 10, 11, indicated respectively in blue, red, green and yellow. For every t, 106

values were sampled.
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Figure 4.3: Plot of the functions f(1− q) and t · f(q) in d = 1 for the disordered case, obtained
for t = 2n, n = 8, 9, 10, 11, indicated respectively in blue, red, green and yellow. For n = 8, 9, 10,
106 values were sampled, while ∼ 5 · 105 values were sampled for n = 11.
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Appendix A

Appendix

A.1 Method of images

In this Appendix we report a proof for Eq. 2.9, valid in d = 1 dimension, using the

method of images. Choose a couple of paths, that we can call xAA(t) and xBB(t), that

present at least one intersection, and at the time of the last cross interchange the label

of the two paths (as shown in Figure A.1). In this way a new couple of paths, that we

call xAB(t) and xBA(t), is obtained, for which in particular the final endpoints yA, yB

are exchanged. In a non-rigorous way we can write the partition functions

Zη(xA, xB; yA, yB|t) =
∑
α

e−E[α] =
∑
α′

e−E[α′] +
∑
α′′

e−E[α′′] (A.1a)

Zη(xA, xB; yB, yA|t) =
∑
β

e−E[β] (A.1b)

where α labels any pair of original polymers that may presents at least one intersection

(α′) or no intersections at all (α′′), while β labels any pair of polymers with the final parts

exchanged. This interchange technique shows that there is a one-to-one correspondence

between the ensemble of the pairs of paths type α′ and the ensemble of the pairs of paths

type β.

Moreover, the energy of a pair of type α′ is the same of the pair of its correspondent of

type β. In fact the energy of a pair of kind α′, for example, is the sum of the energy of

57
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0
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xA xB

yA yB

0

t

xA xB

yA yB

Figure A.1: Left: Two directed polymers in d = 1 (one going from xA to yA, the other from xB
to yB) intersecting at least once. Right: Two directed polymer with the same statistical weight
but exchanged ends.

the two original polymers,

E[α′] = E[xAA(t)] + E[xBB(t)]

=

∫ t

0
dτ

[
1

4D

(
dxAA
dτ

)2

+ η(xAA(τ), τ) +
1

4D

(
dxBB
dτ

)2

+ η(xBB(τ), τ)

]
(A.2)

if we approximate the derivative as a ratio of discrete increments dx
dτ '

(τ+dτ)−x(τ+dτ)
dτ ,

we get

E[α′] =

∫ t

0
dτ

1

4D

(
xAA(τ + dτ)− xAA(τ)

dτ

)2

+ η(xAA(τ), τ)+

+
1

4D

(
xBB(τ + dτ)− xBB(τ)

dτ

)2

+ η(xBB(τ), τ)

(A.3)

since all the quantities in the integrals occur for both the pairs of polymers, we can

perform the label change AA, BB −→ AB, BA, so that we find the sum of the energy

of the polymers with the final parts exchanged:

E[α′] =

∫ t

0
dτ

1

4D

(
xAB(τ + dτ)− xAB(τ)

dτ

)2

+ η(xAB(τ), τ)+

+
1

4D

(
xBA(τ + dτ)− xBA(τ)

dτ

)2

+ η(xBA(τ), τ) =

= E[xAB(t)] + E[xBA(t)] = E[β];

(A.4)
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This implies that, for every α′, e−E[α′] = e−E[β], and the non-crossing probability be-

comes

pη(xA, xB; yA, yB|t) = 1−
∑

α′ e
−E[α′]∑

α e
−E[α]

= 1−
∑

β e
−E[β]∑

α e
−E[α]

= 1− Zη(xA, xB; yB, yA|t)
Zη(xA, xB; yA, yB|t)

,

(A.5)

giving exactly Eq. 2.9.

Unfortunately, the expression (2.9) is not valid for higher dimensions, e.g. d = 2, because,

once the final endpoints y1 and y2 are exchanged, the two polymers are not obliged to

cross, so there is not a one-to-one correspondence between the ensemble of pairs of

polymers with at least one intersection and the ensemble of pairs of polymers with y1

and y2 exchanged (i.e. the pairs of paths with at least one intersection are less than the

pairs of paths with y1 and y2 exchanged).

A.2 Laplace transform of First passage probability

Consider the partition function F (~x− ~x0, t) of a DP that, starting from ~x, arrives at ~x0

for the first time in [t, t+ dt]. We show we can write its Laplace transform F̂ (~x− ~x0, s)
as a function of the Laplace transform Ĝ(~x−~x0, s) of the partition function G(~x−~x0, t)
of a generic DP going from ~x to ~x0 after a time t. It is convenient to analyze first the

case ~x = ~x0, for which the DP starts and ends at the same point ~x, and then ~x 6= ~x0.

• Case ~x = ~x. The partition function G(~0, t) of a generic DP that starts and ends at

the same point ~x after a time t can be considered as a sum of different contributes:

– At t = 0 we get the Dirac delta δ(t);

– When t 6= 0 and the polymer never comes back at ~x before t, we have F (0, t)

by definition;

– If the polymer comes back once to ~x at a generic time t1 < t, the partition

function for this specific case is the integral of F (~0, t− t1)F (~0, t1) in t1;

– All the other cases for which the polymer comes back n times at ~x, with

n ∈ N, before t;
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We can thus write the partition function G(0, t) as the following sum:

G(~0, t) = δ(t) + F (~0, t) +

∫ t

0
dt1 F (~0, t− t1)F (~0, t1) +

+

∫ t

0

∫ t

0
dt1 dt2 F (~0, t− t2)F (~0, t2 − t1)F (~0, t1) + . . . ;

(A.6)

taking the Laplace transform of both members, since the Laplace transform of

a convolution of n function is the product of the Laplace transform of these n

functions, we have

Ĝ(~0, s) = 1 + F̂ (~0, s) + F̂ 2(~0, s) + F̂ 3(~0, s) + . . .

=

+∞∑
n=0

F̂ n(~0, s) =
1

1− F̂ (~0, s)

(A.7)

and finally inverting the expression

F̂ (~0, s) = 1− 1

Ĝ(~0, s)
. (A.8)

• Case ~x 6= ~x. Similarly to the previous case, we can write the partition function

of a generic DP that goes from ~x to ~x as a sum of different contributes (obviously,

the case t = 0 is not included now)

– The case for which the polymer never goes to ~x before t, that is F (~x− ~x0, t)
by definition;

– The case in which the polymer goes once to ~x at a generic time t1 < t, for

which the partition function is the integral of F (~x− ~x0, t− t1)F (~0, t1) in t1;

– All the other cases for which the polymer comes back n times, with n ∈ N,

at ~x before t;

Calling ∆~x = ~x− ~x0, we have

G(∆~x, t) = F (∆~x, t) +

∫ t

0
dt1 F (∆~x, t− t1)F (~0, t1) +

+

∫ t

0

∫ t

0
dt1 dt2 F (∆~x, t− t2)F (~0, t2 − t1)F (~0, t1) +

+ . . .

(A.9)
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taking the Laplace transform of both members

Ĝ(∆~x, s) = F̂ (∆~x, s) + F̂ (∆~x, s)F̂ (~0, s) + F̂ (∆~x, s)F̂ 2(~0, s) + . . .

= F̂ (∆~x, s)

+∞∑
n=0

F̂ n(~0, s) =
F̂ (∆~x, s)

1− F̂ (~0, s)
= F̂ (∆~x, s)Ĝ(~0, s)

(A.10)

and finally

F̂ (∆~x, s) =
Ĝ(∆~x, s)

Ĝ(~0, s)
. (A.11)

which is equivalent to Eq. 2.24 of the main text.

Summarizing these results:

F̂ (~x, s) =

1− 1
Ĝ(~0,s)

if ~x = 0

Ĝ(~x,s)

Ĝ(~0,s)
if ~x 6= 0

(A.12)

A.3 Non-crossing probability for near-coinciding endpoints

If we consider the non-crossing probability 2.9 obtained for d = 1 from the method of

images

pη(xA, xB; yA, yB|t) = 1− Zη(xB; yA|t)Zη(xA; yB|t)
Zη(xA; yA|t)Zη(xB; yB|t)

, (A.13)

from the definition of pη(t) provided by 2.44 we have

pη(t) := lim
ε→0

pη(−ε, ε;−ε, ε|t)
4ε2

= lim
ε→0

1

4ε2

(
1− Zη(ε,−ε)Zη(−ε, ε)

Zη(−ε,−ε)Zη(ε, ε)

)
. (A.14)
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On the other hand, using the definition of derivative and the properties of the logarithm:

∂x∂y logZ(x; y|t)|x=0
y=0

= ∂x lim
ε→0

1

2ε
(logZη(x, y + ε)− logZη(x, y − ε)) |x=0

y=0

= ∂x lim
ε→0+

1

2ε

logZη(x, y + ε)

Zη(x, y − ε)
|x=0
y=0

= lim
ε→0

1

4ε2

(
log

Z(x+ ε, y + ε)

Z(x+ ε, y − ε) − log
Z(x− ε, y + ε)

Z(x− ε, y − ε)

)
|x=0
y=0

= lim
ε→0

1

4ε2
log

Z(x+ ε, y + ε)Z(x− ε, y − ε)
Z(x+ ε, y − ε)Z(x− ε, y + ε)

|x=0
y=0

= lim
ε→0

1

4ε2
log

Z(ε, ε)Z(−ε,−ε)
Z(ε,−ε)Z(−ε, ε)

(A.15)

Since the argument of the log in the last member of A.15 tends to 1 from left as ε→ 0+,

using the approximation log x ≈
x→1−

1− x we obtain

∂x∂y logZ(x; y|t)|x=0
y=0

= lim
ε→0

1

4ε2

(
1− Zη(ε,−ε)Zη(−ε, ε)

Zη(−ε,−ε)Zη(ε, ε)

)
, (A.16)

so, comparing A.14 and A.16 we finally prove the equality 2.46:

lim
ε→0

pη(−ε, ε;−ε, ε|t)
4ε2

= ∂x∂y logZ(x; y|t)|x=0
y=0

. (A.17)

A.4 Statistical Tilt Symmetry

Consider the generic partition function of a directed polymer in a disordered medium

expressed in Equation 2.6, that we report here

Zη(~x; ~y|t) =

∫ ~x(t)=~y

~x(0)=~x
D[~x] e

−
∫ t
0dτ

[
1

4D (d~x
dτ )

2
+ η(~x(τ),τ)

]
. (A.18)

A path ~x(τ) goes from ~x to ~y; we can introduce the tilted path ~u(τ) that starts and ends

at the same point ~0

~u(τ) := ~x(τ)− (~y − ~x)τ

t
− ~x; (A.19)
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in this way ~u(0) = ~u(t) = ~0. Therefore, deriving both members with respect to τ

~̇u(τ) = ~̇x(τ)− ~y − ~x
t

=⇒

ẋ2(τ) = u̇2(τ) +

(
~y − ~x
t

)2

+
2~̇u(~y − ~x)

t

(A.20)

Observing then that the Jacobian of the variable change is 1, we have∫ t

0
dτ

[
ẋ2(τ)

4D
+ η(~x(τ), τ)

]
=

(~y − ~x)2

4Dt
+

∫ t

0
dτ

[
u̇2(τ)

4D
+ η̃(~u(τ), τ)

]
(A.21)

where we have the tilted disorder

η̃(~u, τ) = η(~u− (~y − ~x)τ

t
− ~x, τ); (A.22)

In this way Zη(~x; ~y|t) becomes

Zη(~x; ~y|t) = e−
(~y−~x)2
4Dt Zη̃(~0;~0|t) =⇒

logZη(~x; ~y|t) = −(~y − ~x)2

4Dt
+ logZη̃(~0;~0|t).

(A.23)

In general η and η̃ are different realizations of the disorder and a dangerous x, y depen-

dence is hidden is η̃. But if we determine the correlation of the tilted disorder landscape

we get

η̃(~u, τ)η̃(~u ′, τ ′) = η̃(~u+ τ(~y − ~x)/t+ ~x, τ)η̃(~u ′ + τ ′(~y − ~x)/t+ ~x, τ ′)

= δ(d)
(
~u− ~u ′ + ~y − ~x

t
(τ − τ ′)

)
δ(τ − τ ′)

= δ(d)(~u− ~u ′)δ(τ − τ ′);

(A.24)

namely the correlation of the original η, meaning that η̃ has the same distribution of η.

Thus averaging both members of A.23 over all realizations of the disorder, we finally get

logZη(~x; ~y|t) = −(~y − ~x)2

4Dt
+ logZη̃(~0;~0|t).

= −(~y − ~x)2

4Dt
+ logZη(~0;~0|t)︸ ︷︷ ︸

=:f(t)

.
(A.25)

with f(t) independent of x and y as in Equation 2.45.



64 APPENDIX A. APPENDIX

A.5 PDF of first-crossing time

The probability density that two directed polymers with near-coinciding endpoints cross

for the first time at τ could be written, for a fixed realization of the disorder η, as

P (τ) = lim
ε→0

∫ +∞
−∞ dz Z̃η(ε,−ε; z + ε, z − ε|τ)Zη(z + ε; ε|t− τ)Zη(z − ε;−ε|t− τ)

Zη(ε; ε|t)Zη(−ε;−ε|t)
.

(A.26)

where Zη is the single polymer partition function, while Z̃η the partition function of a

pair of directed polymers that never intersect before τ . The integrating function at the

numerator of Equation A.26 takes then into account all the couples of polymers, starting

respectively at −ε and ε and ending at the same point, that cross (more precisely, that

occur at a distance 2ε) for the first time at z; the numerator is instead the partition

function of all polymers with the same starting and ending points. Thanks to the method

of images valid in d = 1, we can write Z̃η as the partition function of all polymers minus

the one with x+ ε and x− ε exchanged:

Z̃η(ε,−ε; z + ε, z − ε|τ) = Zη(ε, x+ ε|τ)Zη(−ε, x− ε|τ)− Zη(ε, x− ε|τ)Zη(−ε, x+ ε|τ).

(A.27)

Defining the function

Z+
η (z, τ) = lim

ε→0
Z̃η(ε,−ε; z + ε, z − ε|τ), (A.28)

using the definition of derivative and the properties of logarithm we get

Z+
η (z, τ) = lim

ε→0
[Zη(ε, x+ ε|τ)Zη(−ε, x− ε|τ)− Zη(ε, x− ε|τ)Zη(−ε, x+ ε|τ)]

= ∂xZη(x, z|τ)|x=0∂yZη(x, y|τ)|y=z − Zη(x, y|τ)∂x∂yZη(x, y|τ)|x=0
y=z

= Z2
η(0, z|τ)∂x∂y logZη(x; y|τ)|x=0

y=z
.

(A.29)

Substituting into Eq. A.26 we obtain

P (τ) = lim
ε→0

∫ +∞
−∞ dz Z2

η(0; z|τ)Zη(z + ε; ε|t− τ)Zη(z − ε;−ε|t− τ) ∂x∂y logZη(x; y|τ)|x=0,y=z

Zη(ε; ε|t)Zη(−ε;−ε|t)
,

=

∫ +∞
−∞ dz Z2

η(0; z|τ)Z2
η(z; 0|t− τ) ∂x∂y logZη(x; y|τ)|x=0,y=z

Zη(0; 0|t)Zη(0; 0|t) ,

(A.30)
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returning exactly Equation 4.1.
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Resources

The programs developed for the numerical simulations in Chapter 3 and 4 are written

in C++ and Python languages. All the main codes can be found at

https://github.com/FedericoLanza/MscThesis. These codes are licensed under the

GNU General Public License version 3.0 (https://opensource.org/licenses/GPL-3.

0). The simulations have been run on the last version of the codes; the dates are

reported in the comments at the beginning of the files. All the libraries needed for the

deployment of every algorithm are currently already being integrated into the C++ and

Python Standard Libraries.

67
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