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ABSTRACT 
 

 

Duplex stainless steels (DSSs) are a particular category of stainless steels, which are 

employed in all the kinds of applications where both high strength and excellent corrosion 

resistance are required. This favourable combination of properties is provided by their 

biphasic microstructure, consisting of ferrite and austenite in almost equal volume fractions. 

Nevertheless, these materials may suffer from several microstructural transformations if 

they undergo heat treatments or welding processes. These transformations modify the 

balanced phase ratio, compromising the corrosion and mechanical properties of the 

material. In this thesis the microstructural stability as a consequence of heat treatments and 

welding processes has been investigated for different DSSs. During this work, three main 

research activities have been conducted.  

 

Firstly, the decomposition of the ferritic phase has been studied in isothermally aged SAF 

2507 SDSS using different examination methods. Samples have been heat treated at two 

different temperatures, T=800°C and T=850°C. Results show that: the decomposition of 

ferrite increases with increasing of aging time. T=850°C is the most critical temperature for 

ferrite decomposition, with an incubation time of 5 minutes for σ-phase precipitation. The σ-

phase started to precipitate at the ferrite/austenite junction, and then grew towards ferritic 

grains. The precipitation of σ-phase brought to an increase in material hardness.  

 

Secondly, the effects of laser beam welding on SAF 2507 SDSS previously cold rolled have 

been investigated. Samples have been cold rolled at different grades of reduction (ε 

=10%,20%,30%,40%,50%,60%) and then welded using the Nd:YAG laser welding process. 

OM analysis, Eddy current tests, Microhardness tests and corrosion tests have been 

performed on the welded samples to analyse the microstructure, ferrite content, hardness 

and corrosion resistance. Results show that: laser welded joints had a strongly unbalanced 

microstructure, mostly consisting of ferritic phase (~64%). Ferrite content decreased with 

increasing distances from the middle of the joint. The HAZ was almost undetectable and no 

defects or secondary phases have been observed. Both the hardness and the corrosion 

rate of the joints increased. Previous cold rolled deformation had no effects in 

microstructure, hardness or corrosion resistance of the joints, but induced an increase of 

hardness in the base material.    

 

Finally, the effect of backing gas composition on lean duplex grades LDX 2101 and LDX 

2404 have been examined. 3 mm thick samples have been welded with GMAW process 

using three different backing gases (100% Ar, 100% N2, 95% N2 + 5% H2). Results show 

that: for both materials, the use of nitrogen-containing backing gases produced in the root 

weld a slight increase in austenite content compared to the 100% argon and no-baking gas 

configurations, keeping a more balanced austenite/ferrite ratio. In LDX 2101, the presence 

of nitrogen in the baking gas showed a slight decrease in corrosion rate compared to full 

argon and no backing gas configuration. In LDX 2404 an increase in the corrosion rate was 

observed in samples welded with the three different backing gases, compared to the no 

backing gas sample, with a remarkable pitting corrosion observed in the base material.  
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INTRODUCTION 

 

 
Stainless Steels (also known as Inox steels) are defined by the European Norm EN 

10088 as ferrous alloys with a minimum of 10.5% chromium content by mass.  

The main property that makes this kind of materials irreplaceable is their excellent 

corrosion resistance in aggressive oxidizing environments, given by their high 

Chromium content.  

This corrosion resistance is due to the formation of a thin layer of Chromium oxide 

(Cr2O3) when the material is exposed to oxygen; the phenomenon is called 

“passivation”. This special film, which is about 1-10 nm thick, protects the material 

underneath from oxidation, remarkably reducing the corrosion rate. Furthermore, it 

can quickly regenerates when scratched.  

As mentioned before, the base requirements for this behaviour are a composition 

with more than 10.5% of Chromium and an oxidizing environment. In any other case 

the passivation cannot occur.  

 

Stainless steels are divided in four different categories depending on the 

microstructure:  

 

1. Ferritic stainless steels have a stable ferritic structure at room temperature, 

which is a body-centred cubic (BBC) crystal structure with Chromium content 

between 10 - 30% and low content of C and Ni. They generally have better 

mechanical properties than austenitic stainless steels but worse corrosion 

resistance, due to the low content of Cr – Ni.  

2. Austenitic stainless steels have a stable austenitic structure at room 

temperature, which is a face-centred cubic crystal structure. They have a 

minimum chromium content of 18% and Nickel of 8%, in order to keep the 

austenitic structure from the melting point until the cryogenic temperature. 

They generally present high corrosion resistance but they are expensive due 

to the high content of Ni.  

3. Martensitic stainless steels have generally a chromium content around 12 - 

15%, and high content of carbon, around 1 - 1.2%. They have the best 

mechanical properties like strength ant toughness, which can also be 

increased with heat treatments, but they have not a good corrosion 

resistance if compared with other stainless steels. 

4. Duplex Stainless Steels have a balanced austenite-ferrite microstructure with 

a ratio near 50-50%. They are characterized by a Chromium content between 

19 – 32% and Molybdenum up to 5%, with a relatively low content of Ni. This 

particular microstructure allows them to have almost twice the strength than 

an Austenitic stainless steel, improving simultaneously Pitting and Crevice 

corrosion resistance.   



The purpose of the present work is to investigate the phase transformation that 

occurs in some of the most used Duplex stainless steels due to heat treatments 

and welding processes, highlighting the effects in the microstructure, corrosion 

resistance, and mechanical strength of the selected materials. The different 

subjects are developed as follows: 

 

 Chapter 1 analyses the effect of two different heat treatments (T=800°C, 

T=850°C) on the microstructure and mechanical properties of SAF-2507 

Super Duplex grade, focusing on the eutectic decomposition of ferrite into 

sigma phase and secondary austenite. A complete magnetic analysis 

(Stäblein-Steinitz, Eddy Current, Fischer-Ferrite), Hardness test, OM 

analysis are performed; 

 Chapter 2 investigates the effects of Nd: YAG laser welding on the 

microstructure of SAF-2507 SSDS samples, putting the attention on ferrite-

austenite ratio. Knowing from earlier works that previous deformation can 

enhance ferrite decomposition, the experiment was conducted in samples 

with seven different grade of deformation (i.e. ε= 0, 10, 20, 30, 40, 50, 60%). 

Microhardness test, Eddy current test and Corrosion test are conducted in 

the welded samples; 

 Chapter 3 focuses on the Effects of Nitrogen-contaning backing gas on 

microstructure and corrosion resistance of the recently developed Lean 

Duplex grades LDX 2101 and LDX 2404. OM analysis, Fischer ferrite, Image 

analyser and Corrosion test are conducted in the root side of the welded 

samples.  

 

The choice of these topics was dictated by the growing use of these Duplex steels 

among industries, due to their high mechanical properties and resistance to 

corrosive attack. These properties make them particularly suitable and competitive 

for applications in aggressive environments, also as structural materials. However, 

there are limitations to the use of duplex steels, due to microstructural 

transformations that may arise during the exposure of the material to high 

temperatures or that may occur during welding processes, compromising these 

attractive features.  

This Master project has been carried out at the BME - Budapesti Műszaki és 

Gazdaságtudományi Egyetem – University of Budapest, Department of Science and 

Engineering Materials under the supervision of Dott. Mészáros István and PhD 

students Varbai Balázs and Bögre Bàlint. 

  



  



  



CHAPTER 1 

 

DUPLEX STAINLESS STEELS  
 

 

1.1. INTRODUCTION 

 

Dupelx Stainless steels (DSS) are a particular category of stainless steels with a 

biphasic microstructure (so-called Duplex) made by ferrite and austenite in almost 

equal volume fraction. This balanced ratio between the two phases allows reaching 

a very remarkable combination of mechanical and corrosion resistance properties, 

making these materials strongly competitive against ferritic and austenitic grades 

[1]–[3]. In particular, DSS have almost twice the strength compared to austenitic 

stainless steels and also a better pitting and stress cracking corrosion resistance. 

These properties are obtained with a lower alloy content than the equivalent 

austenitic grades, making them also cost-effective. 

In order to obtain this precise microstructure, composition and solidification 

processes are of fundamental importance.  

When a DSS solidifies from the melted state, it turns into a completely ferritic 

structure. As it cools down to room temperature, if the cooling rate is suitable, half 

of the ferritic phase transforms in austenitic phase. The result is a balanced structure 

with a ratio near to 50-50% (Fig. 1).  

 

 

 

Fig. 1 Typical microstructure of a rolled UNS 32750 SDSS  (clear phase: austenite; dark phase: ferrite) 



DSSs are high-alloyed steels. They mainly contain chromium (18-32%), nickel (1-

7%), molybdenum (5% maximum) and nitrogen (up to 0.4%), while carbon content 

is kept below 0.03% [1], [2], [4]. 

Besides the interesting properties provided by the biphasic microstructure, DSS can 

be efficiently employed only within a limited temperature range (-50–250°C). In fact, 

at lower temperatures there is a remarkable drop in toughness, whereas at higher 

temperatures the ferrite phase starts to be unstable, causing the precipitation of 

secondary phases. These precipitates hardly affect the excellent properties of the 

material, enhancing localized corrosion and decreasing hardness and strength [1], 

[2], [5], [6]. 

 

 

 

1.2. HISTORY 

 

The growth of Duplex Stainless Steels started at the beginning of the 30’s in the 

France and Scandinavian areas. Bain and Griffith [7], in 1927, mentioned for the 

first time the existence of a biphasic steel composed by austenite and ferrite, 

focusing on the corrosion benefits that could be obtained compared to the most 

common austenitic stainless steels.  

Thanks to this publication, many foundries started to test duplex materials. In 1929 

Avesta Steelworks produced the two first commercial grades: firstly the 453E (25% 

Cr, 5% Ni), used in high temperature application, e.g. for molten lead equipment 

and for pyrite kiln inserts. Then, the 453S, (25% Cr, 5% Ni, 1% Mo), used to make 

autoclaves for gunpowder production (Fig.2) and valves for sulphite pulping [7][2].  

 

 

 

Fig. 2 Autoclave in 453S for gunpowder production [2] 



In 1936, the French J. Holtzer Steelworks made a 20% Cr, 8% Ni, 2.5% Mo and 

1.5% Cu grade, named Uranus 50 [8], which was found to be insensitive to 

intergranular corrosion in various corrosive liquid, unlike austenitic stainless steels.  

This corrosion resistance, combined with the higher strength compared to the 

austenitic grades promoted the application of DSSs, particularly for use in the pulp 

and paper industry. In Sweden, numerous Steelworks started to manufacture a 26% 

Cr, 5% Ni, 1.5% Mo grade, which was included in the Swedish standard (SIS 2324) 

in 1947 and later in the American standards as AISI 329. 

In those years, despite these evident advantages, these innovative materials still 

suffered from a bad reputation regarding crack sensitivity.  

For this reason, the marketing of semi-finished duplex product started only in 50’s, 

with the introduction of Sandvik 3RE60 (18.5% Cr, 5% Ni, 2.7% Mo) and AISI 329 

(25% Cr, 5% Ni, 1.5% Mo), considered as the precursors of the modern duplex 

stainless steels.  

Development and usage of Duplex increased remarkably during the 70’s thanks to 

two main reasons. Firstly, because of a huge shortage of Nickel that increased the 

austenitic stainless steels price. Secondly thanks to the introduction of new 

innovative techniques for the production of steel as VOD (vacuum oxygen 

decarburisation) and AOD (argon oxygen decarburisation). These new techniques 

allowed to obtain an austenite-ferrite structure perfectly balanced, with low content 

of residual elements (carbon, sulphur, oxygen etc.), substantially increasing the 

corrosion resistance and the strength of this materials.  

These results, together with the introduction of continuous casting process, led to a 

significant saving in production costs.  

Late in the 70’s in Germany and Sweden was developed the well-known 2205 Grade 

(22% Cr, 5% Ni) that was a commercial breakthrough for DSSs. The diffusion of this 

steel in gas, oil and offshore industries was massive, thanks to its optimal 

mechanical properties, corrosion resistance and weldability.  

During the 80’s the need of new materials to withstand extremely aggressive 

environments led to the development of more highly alloyed duplex, the so-called 

Super Duplex stainless steel (SDSS), with a basic composition around 25% Cr, 7% 

Ni, 3% Mo.  

In recent years, a new class of low-alloyed duplex, called Lean Duplex, has been 

developed in order to replace the traditional austenite grade AISI 304 – AISI 316 for 

applications where high resistance to stress corrosion cracking and good 

mechanical properties are required. The most famous grade is the SANDVIK 2304 

[9] [10] [5].  

 

 

 

 

 

 



1.3. CLASSIFICATION 

 

As austenitic and ferritic stainless steels, DDSs can be classified according to their 

resistance to localized corrosion, which can be estimated using PREN index (Pitting 

Resistance Equivalent Number). PREN is a parameter that depends only on the 

composition of the steel, and it is commonly used to compare different grades. The 

expression of PREN is defined as follows: 

 

 

𝑃𝑅𝐸𝑁 = %𝐶𝑟 + 3.3 · %𝑀𝑜 + 𝑘 · %𝑁                                                                                   (1. 1) 

 

the constant k can assume a value between 10 and 30, but the most widely used 

for duplex is 16 [1], [2], [4].  

For DSSs that contain also tungsten, in order to take into account the increasing of 

corrosion resistance given by this alloy, the relation (1.1) changes [11] as follows: 

 

 

𝑃𝑅𝐸𝑊 = %𝐶𝑟 + 3.3 · %𝑀𝑜 + 1.65 · %𝑊 + 𝑘 · %𝑁                                                         (1. 2) 

 

The use of PREN (or PREW) is qualitative, because it considers only the nominal 

composition of the steel without taking into account the different elements 

partitioning between austenitic and ferritic phase.  

Table 1 Chemical composition and PREN index of most common DSSs 



Furthermore, PREN number does not consider the influence of nickel content, which 

is known to play a role in the corrosion-resistance properties of the stainless steels 

[2], [4], [11].  

Nevertheless, PREN (or PREW) is commonly used to classify DSS in four main 

categories:  

 

1. Lean DSSs (such as LDX 2101 and LDX 2404), have a PREN value around 

25. They are characterized by really low content of Ni and Mo, which are 

balanced by higher content of Mn and N; 

2. Standard DSSs (most common the SAF 2205), have PREN around 35; 

3. Super DSS (such as SAF 2507 and Zeron 100) have a PREN value that is 

between 40 and 42. They are high-alloyed and they offer a corrosion 

resistance equivalent to that of super austenitic grades. 

4. Hyper DSSs (like SAF 2707) have PREN around 45, they are extremely 

alloyed and expensive, but irreplaceable by other stainless steels.  

 

 

 

1.4. INFLUENCE OF ALLOYING ELEMENTS  

 

As mentioned before, the continuing development of duplex stainless steels has 

resulted in complex steel compositions (see Table 1) containing significant amounts 

of several alloying elements. These elements are introduced in the steel in order to 

obtain better mechanical properties and/or higher corrosion resistance, always 

keeping a balanced duplex microstructure. Each alloying element have a specific 

effect on the properties of the steel. Therefore, is useful to present a brief overview 

of these elements.  

 

Chromium (Cr) 
 

Chromium is the main alloying element in stainless steels. It is a strong ferrite 

stabilizer: it promotes ferritic α-phase. A minimum of 10.5% of Cr is required to 

confer to the steel the passivation property that makes it “stainless”. The localised 

corrosion resistance (pitting, crevice) increases with increasing chromium content. 

Nevertheless, there is a limit to the level of chromium that can be added to the steel, 

as the beneficial effect of higher levels is cancelled by the increasing of precipitation 

of intermetallic phases (σ phase, χ phase, chromium nitride, etc.) [1], [4], [5].  

 

Nickel (Ni) 
 

Nickel is a strong austenite stabilizer. It is added in order to maintain a balanced 

austenite-ferrite microstructure. For this reason, the level of nickel content in a 

duplex alloy will depend mostly on the chromium content (ferrite stabilizer). It also 

generally increases ductility and toughness. However, excessive Ni contents can 

promote ferrite transformation to intermetallic phases if the alloy is exposed to 



temperatures in the range 650 to 950°C. Ni does not show a direct effect on 

corrosion properties, and its main role is to control phase balance and element 

partitioning [1], [4], [5]. 

 

Molybdenum (Mo) 
 

The main effect of adding molybdenum in the steel’s composition is the increasing 

of pitting and crevice corrosion resistance. This is obtained thanks to the tendency 

of Mo to repress active sites with the formation of an oxy-hydroxide or molybdate 

ion. As seen before in relationships 1.1 and 1.2, Molybdenum is included in 

PREN/PREW index with a coefficient 3.3 higher than chromium. Furthermore, 

molybdenum enlarges the passive potential range and reduces the corrosion current 

density in the active range. An addition of at least 3% Mo is required in high 

temperature seawater to prevent crevice corrosion, while an upper limit of about 4% 

Mo is recommended to restrict σ phase precipitation in hot working temperature 

above 1000°C [1], [4], [5]. 

 

Nitrogen (N) 
 

Nitrogen is one of the strongest austenite stabilizer elements. As Mo, it has an 

important role in increasing pitting resistance and extending the passive potential 

range. The coefficient of nitrogen in the PREN/PREW relationship (1.1, 1.2) varies 

between 13 and 30, but the most widely used value for duplex alloys is 16. It has 

been found that Mo and N have a synergistic influence on pitting characteristics and 

also increases the crevice corrosion resistance by altering the crevice solution 

chemistry or by segregating to the surface. Nitrogen mainly dissolves into austenite 

phase because of the increased solubility in that phase and concentrates at the 

metal-passive film interface.  

Another fundamental effect of N is to stabilise duplex alloys against the precipitation 

of intermetallic phases (σ phase, χ phase, chromium nitride, etc.) by reducing 

chromium partitioning. Moreover, increasing the nitrogen level actually reduces the 

risk of nitride formation. This is due to an increase in austenite content and so a 

reduction in the distance between austenite islands. The addition of N is also 

suggested to strengthen both ferrite and austenite by interstitial solid solution. 

Finally, as nitrogen is a strong austenite stabiliser, its addition in shielding/backing 

gases during welding processes is recommended in order to keep the balanced 

austenite/ferrite ratio in the WZ and HAZ [1], [4], [5].  

 

Manganese (Mn) 
 

Manganese has an effect on the ferrite/austenite balance that varies with 

temperature: at low temperature, it is an austenite stabilizer, while at high 

temperatures it stabilises the ferritic phase. However, no significant effect has been 

observed with the normally used quantity. If Manganese increases the solubility of 

nitrogen, on the other hand it also extends the temperature range and formation rate 

of detrimental σ phase. Mn addition to stainless steel increases abrasion and wear 



resistance and tensile properties without loss of ductility. Further, the combined 

addition of Mn and N enhances the pitting resistance [1], [4], [5]. 

 

Copper (Cu) 
 

Copper is used in high-alloyed austenitic stainless steel to reduce the corrosion rate 

in non-oxidising environments, such as sulphuric acid. In DSSs, the addition of Cu 

is limited to about 2%, because higher levels decrease hot ductility and can lead to 

precipitation hardening. Cu is suggested to enhance machinability in low oxygen 

and sulphur materials and can lead to hardening after exposure to the 300–600°C 

temperature range [1], [4], [5]. 

 

Tungsten (W) 
 

As pointed out in relation 1.2, tungsten addition is seen to improve pitting resistance, 

by extending the passive potential range and reducing the passivation current. 

Moreover, W has been noted to increase crevice corrosion resistance in heated 

chloride solutions, because of its adsorption in the passive layer. The addition of 

tungsten is limited around 2%, in order to restrict the intermetallic formations that 

happen between 600 and 1000°C [1], [4], [5]. 

 

Carbon (C) 
 

Carbon is a strong austenite stabilizer generally used to balance the microstructure 

and increase the mechanical strength. Carbon content in DSSs is limited to 0.02-

0.03% in order to restrict chromium carbides’ precipitation, which can remarkably 

compromise the resistance to intergranular corrosion [1], [4], [5]. 

 

All the effects of alloying elements on the final microstructure of stainless steels are 

summarized in Schaeffler diagram (Fig.3). This empirical diagram was originally 

developed to predict the microstructure of welded materials knowing its chemical 

composition. Schaeffler divided the alloying elements in two categories, according 

to their tendency to promote austenitic or ferritic phase. Then he defined two 

parameters, Chromium equivalent (Ceq) and Nickel equivalent (Neq), in order to 

evaluate the contribution of each element. Ceq and Neq are calculated as follows [12]:  

 

 

𝐶𝑟 𝑒𝑞 = %𝐶𝑟 + %𝑀𝑜 + 1.5 · %𝑆𝑖 + 0.5 · %𝑁𝑏 + 2 · %𝑇𝑖                                                 (1. 3) 

 

𝑁𝑖 𝑒𝑞 = %𝑁𝑖 + 30 · (%𝐶 + %𝑁) + 0.5 · %𝑀𝑛                                                                    (1. 4) 

 

The Schaeffler diagram is an important and easy tool that allows a rough evaluation 

of the microstructure as a function of the steel composition; nevertheless, it does 

not consider the influence of the cooling rate and aging heat treatments.  



 

 

 

1.5. PHISICAL METALLURGY 

 

Duplex stainless steels have a biphasic microstructure (Fig, 1), made of ferrite (α 

phase) and austenite (γ phase) in almost the same volume fraction. This particular 

microstructure is the key of this category of stainless steels, conferring them a 

remarkable combination of corrosion resistance and mechanical properties. Each 

phase lends a specific task: α-phase provides the mechanical strength and the 

resistance to stress corrosion cracking, while γ-phase guarantees a certain ductility. 

The result is a material with high mechanical properties and better corrosion 

resistance than the other stainless steels. If the biphasic microstructure on one hand 

allows obtaining these notable features, on the other hand brings certain intrinsic 

hazardous characteristics. DSSs are subjected to significant microstructural 

modifications because of either high temperature heat treatments or high cooling 

rate. The instability of the ferrite phase at high temperature may bring to the 

precipitation of harmful secondary phases (σ phase, χ phase, chromium nitride, 

etc.), while a fast cooling rate for liquid state can bring to an unbalance 

microstructure. These changes lead to a drastic reduction in their exceptional 

properties [1]–[4], [13]. In order to avoid that, it is of fundamental importance 

knowing the physical metallurgy, the kinetics of precipitation (of secondary phases) 

and the parameters that affect  

Fig. 3 Schaeffler diagram for stainless steels [2] 



 

 

the microstructure of DSSs. Since DSSs are high-alloyed steels with 6-7 main 

alloying elements, their behaviour related to the variation of temperature cannot be  

described with the ordinary state diagrams. Therefore, simplified diagrams as the 

pseudo-binary diagrams or sections of the ternary Fe-Cr-Ni diagram (Fig.4) can be 

used for studying their physical metallurgy. 

Nevertheless, these representations are really onerous and give just a qualitative 

information, since they do not take into account all the alloying elements [14].  

In last years, thanks to the improvement in computational systems and material 

science, various software have been developed in order to easily obtain the phase 

diagram for a selected system. 

One of the most used is the Thermo-Calc software, developed by Sundman et all 

[15]. It is based on the minimization of the Gibbs free energy for the most stable 

phases, using thermodynamic functions interpolated by experimental data. The 

software allows predicting the type and the amount of phases in the DSS equilibrium 

microstructure. An example of a phase diagram obtained with the Thermo-Calc 

software is showed in Fig. 5  [6], [14]. It has been developed for a Duplex steel with 

a fixed composition of 7%Ni, 4%Mo and 0.3%N, with different chromium content. 

The dotted line inside the diagram refers to the SAF 2507 composition. As already 

mentioned, it is possible to see from the diagram that DSS solidifies from a liquid 

state in a full ferritic structure (δ) and then it turns into a duplex stable (δ + γ ) 

microstructure between 1350 and 950°C. 

Fig. 4 3D view of the Fe-Cr-Ni equilibrium diagram [2] 



 

 

1.6. SECONDARY PHASES PRECIPITATION 

 

Due to the biphasic microstructure of DSSs, several secondary phases may 

precipitate in a temperature range between 300 and 1000°C. These microstructural 

changes can occur as a result of inappropriate heat treatments or unsuitable cooling 

rates, and are a direct consequence of ferrite instability at high temperatures 

(T<950°C, as shown in Fig.5). The intermetallic phases start forming at austenite-

ferrite boundaries, which are nucleation sites characterized by lowest interface 

energy, and then grow inside ferrite grains, in which diffusion processes are 100 

times faster than in austenite. As these compounds are rich of chromium and 

molybdenum, surrounding areas result depleted of these elements, remarkably 

decreasing localized corrosion resistance. Furthermore, they have a detrimental 

effect also on ductility and toughness of duplex steels. 

It is well known that also the chemical composition have a fundamental role on the 

precipitation kinetics. Alloying elements as Cr, Mo, Cu and W promote the 

precipitation and enlarge the stability range of intermetallic compounds. Fig.6 shows 

the TTT diagram for a generic Duplex. Two main temperature ranges can be 

recognized as highly dangerous for secondary phases precipitation: 

 

1. The low-temperature range, between 300 and 600°C, which is known as 

“475°C embrittlement”. This range is mainly characterized by the spinoidal 

decomposition of ferrite in domains respectively rich and poor of Cr, with 

Fig. 5 State diagram for temperature above 800°C developed with Thermo-Calc software. Dotted line 

refers to the composition of Super Duplex SAF 2507. 



slight different lattice parameters. Another important transformation in this 

range concerns G-phase precipitation, an intermetallic compound full of Ni, 

Mo and Si. The final results is a remarkable embrittlement of the material, 

which is the reason why DSS applications are restricted to temperatures 

lower than 280°C; 

2. The high-temperature range, between 650 and 1000°C, during which occur 

the eutectic decomposition of ferrite into σ phase and secondary austenite. 

Besides these two, many other secondary phases may precipitate in this 

range: intermetallic compounds, carbides, nitrides. The precipitation kinetics 

and the incubation time are highly affected by the chemical composition of 

the steel. For this reason, high-alloyed steels like Super/Hyper Duplex are 

extremely sensitive to these precipitations. The result is a remarkable 

decreasing in both mechanical and corrosion resistance properties. 

 

 

 

 

Sigma phase (σ) 
 

Sigma phase is the most important precipitate that grows in the 650-1000°C range. 

It originates from the eutectic decomposition of ferrite, that being metastable in this 

range, turns into a more stable mixture of sigma phase and secondary austenite     

(α→σ+γ2). It precipitates preferentially at austenite/ferrite grain boundaries, and 

grows toward ferritic grains. The formation of σ is mainly favoured by Cr and Mo (Fig 

6), which enlarge its stability field and enhance both the precipitation rate and its 

volume fraction. At the peak temperature of 850°C, the incubation time for DSSs is 

estimated in just few minutes. It may precipitate in every duplex grades, and it has 

Fig. 6 Secondary phases range in DSS and influence of alloying elements on precipitation kinetics [16] 



deleterious effects on corrosion resistance and impact toughness, even if present in 

very small amounts.  

The σ-phase is a hard and brittle phase; its unit cell does not possess easy-slip 
planes, therefore it causes remarkable embrittling effects. Because of its 
composition (Tab.2), its formation causes a depletion in chromium of the 
surrounding area, whose composition drops below the passivation upper limit, 
facilitating the localized corrosion mechanisms in the area adjacent to the 
precipitated particles. [8]–[12], [22], [23] 

 . 

  
Table 2 Chemical composition of sigma phase (σ) [4] 

Cr Ni Mo W 

29-34 3-5 3-9 0-7 

 

 

 

1.7. APPLICATION 

 

DSSs are used in all that kind of applications where both high strength and excellent 

corrosion resistance are required. One of the most important employment of these 

materials is the oil and gas industry. The offshore extraction in seawater and the 

transportation of natural resources, containing high content of CO2 and H2S, 

requires corrosion-proof flowlines. Nowadays, more than 1000 km of welded duplex 

flowlines are installed globally, most of which are made in 2205, with some 

application of Super Duplex grades.  

Another important field of application regards pulp and paper industry. In this area, 

DSSs are commonly used for pulp digester, in which the hot alkaline environment 

increases risk of stress crack corrosion. They are applied also in the construction of 

hydrogen peroxide reactor (Fig 7) for bleaching process, where duplex steels are 

Fig. 7 Hydrogen peroxide reactor made in LDX 2101 (2006) [2] 



the perfect material to handle high temperature and pressure together with the high 

alkaline environment. In this particular application, the usage of the rather newly 

developed lean duplex grade LDX 2101 is increasing.  

DDSs are widely used in the construction of mobile and storage tanks (Fig 8) [18]. 

In this field they are preferred to austenitic grades because, having higher strength, 

they allow saving a large amount of weight (which is estimated to be around 25-

30%). The choice of the duplex grades is made depending on the aggressiveness 

of the storage liquid, but Lean duplex grades are frequently used for these 

applications.  

 

 

In recent years, the interest in DSS is considerably growing also among construction 

companies. These materials can guarantee low maintenance and the low life-cycle 

cost (LCC), allowing to increase lifetime and limit the repairs costs. 

Nevertheless, also if they have already been used in the construction of large 

welded bridges (Fig 9), their application is limited. This is due to lack of experimental 

data on DSS fatigue resistance, when compared to the well-established theory for 

carbon steels [1],[2],[4],[5],[13].  

  

Fig. 8 Duplex storage tanks in LDX 2101 for liquids hazardous to water [18] 

Fig. 9 Apatè bridge in Stockholm made of duplex 2205  [4] 



  



CHAPTER 2 

 

DECOMPOSITION KINETICS OF FERRITE IN 

ISOTHERMALLY AGED 2507 SDSS 
 

 

 

2.1 INTRODUCTION 

 

As mentioned in the previous chapter, due to biphasic microstructure and the high 

amount of alloying elements, SDSSs are strongly affected by precipitation of harmful 

secondary phases (σ phase, χ phase, chromium nitride, etc.) if they undergo 

inappropriate aging treatments [19]–[24]. 

These phase transformations mostly regard the ferritic phase, because the diffusion 

rate of ferrite’s elements is 100 faster than austenite one. For this reason, the 

precipitates are mainly composed by Cr and Mo and their growth results in a 

depletion of these elements in the ferritic matrix, compromising the local corrosion 

resistance and the mechanical properties of these materials [19], [24]. 

The most important precipitate is the σ phase because of its drastic impact on 

ductility and toughness of DSS. It is generated between 650 and 1000°C by the 

eutectic decomposition of ferrite, where the metastable ferritic α-phase turns into a 

more stable mixture of sigma phase and secondary austenite according to the 

following equation: α → σ + γ2.  

Even though many authors have studied the decomposition of ferrite in duplex 

stainless steels due to aging treatments, further information is still needed to provide 

a complete understanding of this complex metallurgical process.  

In the present chapter, the decomposition kinetics of ferritic phase (α) in isothermally 

aged UNS S32750 (2507) SDSS is studied in the range of 800-850°C.  

This range, in according with the time-temperature-transformation (TTT) diagram, is 

the most critical for the formation of σ phase [19].



2.2 MATERIAL AND EXPERIMENTAL PROCEDURE 

 

2.2.1 MATERIAL AND SAMPLE PREPARATION 

 

The investigated material is the UNS S32750 (SAF2507) SDSS. It was supplied by 

ARCELORMITTAL. Its chemical composition can be found in Table 3.   

 
Table 3 Chemical composition of SDSS 2507 

Element C Mn P S Si Cu Ni Cr Mo N 

% 0.021 0.822 0.0231 0.0004 0.313 0.178 6.592 24.792 3.705 0.2644 

 

 

The as-received material was a sheet of 13mm thickness, previously solution 

annealed at 1100°C and water quenched. From this sheet material, 20x20 mm 

samples were cut for the heat treatments.  

The samples were isothermally heat treated at 800 and 850°C in a pre-heated 

electric furnace. The times of treatment are reported in Table 4. The heating time 

needed by the samples to reach the aging temperature has been neglected. Thus, 

the ones reported correspond to the actual time that the samples stayed inside the 

furnace. After that, all the specimens were placed on a ceramic block and left cooling 

down at T=20°C.  

 
Table 4  Aging time for the two temperatures of treatment 

Heat treatment 
temperature (°C) 

Time of treatment (min) 

800 0 5 10 15 30 42 58 73   

850 0 5 10 15 20 25 30 35 40 45 

 

 

In order to allow a correct investigation of the cross surface, all the samples were 

grounded with SiC abrasive papers with decreasing grit size (P80, 120, 320, 600, 

1200, 2400) and then polished with clothes (3μ and 1μ) using polycrystalline 

diamond suspension. 



2.2.2 OM ANALYSIS  

 

The optical microscope technique is usually the first investigation made in the 

micrographic examination of a metallic material. It is widely used because it allows 

to recognize very easily the phases present in the material structure, the proportion 

between them and their size and distribution. It is also very useful for discovering 

the precipitate that may develop in the microstructure, and at the same time to find 

the presence of material defects as porosity, cracks and any kind of non-metallic 

inclusion. It does not give any information about the chemical composition of the 

discovered phase. Therefore, the microstructure of the material must be known 

beforehand to correctly analyse the results. The OM technique is characterized by 

a low resolving power, less than 0.2 μm. For this reason, only large precipitates like 

σ phase can be observed, while smaller one like chromium nitride are undetectable.  

After the polishing process, a chemical attack of the samples’ surface is required in 

order to analyse the microstructure. This process is necessary because, due to the 

polishing, the surface results to be completely specular and does not allow any 

metallographic analysis. Therefore, the chemical attack, called etching, must be 

done to highlight the different phases. It is of fundamental importance to select the 

appropriate chemical reagent for the etching to obtain the best results [22]. 

 

For our samples we decided to use the Beraha reagent which gives an optimal 

contrast between the phases, making the ferrite dark and the austenite clear. 

Chemical composition and etching conditions are given in Table 5.  
 

Table 5 Composition and etching conditions used for the OM analysis 

 

 

After the etching process, the analysis was executed with the OLYMPUS PMG 3 

microscope in five different magnification (25x – 100x – 200x – 500x – 1000x). 

Pictures were taken for every samples. 

Chemical reagent Chemical composition Etching contitions 

Beraha 
- 85ml H2O 
- 15ml HCl 
- 1g K2S2O5 

- Time of etching: 30s 
- Temperature: 20°C 



2.2.3 VICKERS HARDNESS TEST 

 

The Hardness is considered as the resistance that a material shows to plastic 

deformation caused by indentation. Hardness test is the most valuable and most 

used mechanical test for characterizing mechanical properties of metals or alloys. 

This test is preferred because it is simple, and relatively non-destructive, and 

because it gives an immediate evaluation of the mechanical properties of the studied 

material. At first, the sample’s surface is indented with a diamond indenter in the 

form of a square-based pyramid with an angle of 136 degrees between opposite 

faces (fig. 10).  

 

 

Through the indenter, the material is subjected to a load (F) between 1 and 100 kgf 

with an application time that usually goes from 10 to 15 seconds. After that, the two 

diagonals of the indentation left in the surface (Fig. 10) of the material are measured 

using a microscope; then their averaged value (d) is calculated. The Vickers (HV) 

number is then determined by the following equation:  

 

𝐻𝑉 = 1.854
𝐹

𝑑2
 [

𝐾𝑔𝑓

𝑚𝑚2
] 

 

When F is in N, the constant change to 0.1891. 

The hardness test was done in according with the ISO 6507-1:2005 standard using 

a KB-Prüftechnik 250 BVRZ with a load of 10 kg and an application’s time of 12s. 

For each sample, 5 hardness measurements were carried out on the polished 

surfaces, from which average and standard deviation were calculated.  

Fig. 10 Indentation geometry and shape [25] 



2.2.4 MAGNETIC TESTS 

 

Magnetic tests are a powerful instrument for studying duplex stainless steels, since 

they are highly sensitive to the amount and the structure of ferromagnetic ferrite 

phase. Therefore, they are suitable for studying the eutectic decomposition that 

occurs during the aging treatments.  

Previous studies confirmed that magnetic saturation (Bs) is proportional to ferrite 

content [19], [22] and that coercive force (Hc) increases with the amount of 

precipitations, like the σ-phase [19], [25].  

In this work, three different magnetic tests have been adopted, namely: Stäblein-

Steinitz, Fischer Ferrite and Eddy current test.  

 

2.2.4.1 Stäblein-Steinitz test 

 

Stäblein-Steinitz tester is a DC close magnetic circuit built to reach high 

magnetization field. It is used for studying the Hysteresis loops of samples with small 

ratio of length to transverse dimensions.  

As shown in Fig.11, the tester is composed by two symmetrical U-shaped Iron yokes 

(10x10 cm) placed opposite to each other, with an air gap between them that varies 

from 0 to 50 mm. In both yokes a magnetizing coil is placed at the end of each arm. 

The coil is supplied with sinusoidal (10 Hz) exciting current produced by a function 

generator and a driving amplifier. The set-up contains a so-called bridge-branch in 

the middle of the arms, which is flux less because of the symmetry of the circuit. 

Upsetting the symmetry by placing a specimen in the air gaps between the faces of 

the yokes, produces a flux in the bridge-branch’s air gap. For measuring it, two 

magnetic hall sensors are placed inside the circuit, one in the air gap situated in the 

bridge-branch, another under the sample (Fig. 11).The flux of the bridge-branch can 

be calculated by a simple concentrated parameter model of the magnetic circuit. 

After the proper simplifications, it results: 

𝜇0 𝑀𝑠𝑎𝑚𝑝𝑙𝑒 =  𝐵𝐵𝑟𝑖𝑑𝑔𝑒

𝐶1 (1 +  
𝐶2

𝑙
)

𝐴
 

 

Where L and A are respectively the length and the cross section of the sample, while 

C1 and C2 are constant determined during the calibration of the tester. This 

demonstrates that the magnetic polarization of the measured sample is linearly 

proportional with the magnetic induction detected within the bridge-branch [26]. 

 

The first step of our test was the calibration of the double yoke magnetometer. This 

step is of fundamental importance in order to obtain useful results. A correct 

calibration of the tester is reached when the system produces, without samples, a 

horizontal line.  

Once the calibration was achieved, before every measurement a demagnetization 

process was done in the samples (Fig.12).  



 

To measure correctly the hysteresis loop, we must start with a demagnetized 

sample in which H and B are simultaneously equal to zero. Demagnetization is 

accomplished by subjecting the sample to a series of alternating fields of slowly 

decreasing amplitude. In this way, the induction is forced to traverse smaller and 

smaller loops until it finally arrives at the origin [27]. 

At the end we measured the hysteresis loop (Fig. 13) for every sample, from which 

we derived the values of magnetic saturation (Bs) and Coercivity (Hc).  

The magnetometer works under full control of a personal computer; the 

measurement are accomplished by an input-output data acquisition card (DAQ). 

The data acquisition, processing and the control of the set-up were done by using 

“LabView VI”. 

 

A

B

Fig. 11 Stäblein-Steinitz set up 

Fig. 13  Hysteresis loop Fig. 12  Demagnetization process 



2.2.4.2   Fischer Ferrite test 

 

Fischer Ferrite test is one of the most widely used magnetic test for the 

measurement of ferrite content in duplex stainless steel. Its success is due to ease 

of use and directness in providing results. In fact, the measurement only consists in 

placing the instrument’s probe above the surface of the sample.  Then, the Ferrite 

content is instantaneously shown in the display of the device as ferrite content (%) 

or ferrite number (FN). 

For our measurements, we used the FERITSCOPE FMP30 produced by Fischer, 

which measures according to the magnetic induction method. A magnetic field, 

generated by a coil, begins to interact with the magnetic portions of the specimen. 

The change in magnetic field induces a voltage proportional to the ferrite content in 

a second coil, as visible in Fig. 14. This voltage is evaluated by the instrument and 

translated in ferrite content.  

Being a portable instrument powered by 4 AAA 1.5V batteries, the Feritscope cannot 

produce a magnetic field strong enough to saturate the ferromagnetic ferritic phase. 

Therefore, the measurement of the ferrite content is obtained through the 

measurement of the initial permeability (μi) of a minor hysteresis loop.  Nevertheless, 

the results of this test are highly used by scientific community and by industries.  

For our test, three measures were taken in each surface of the samples (four sides, 

two faces).  

 

 

 

Fig. 14  Operating principle of the magnetic induction measurement method  [13] 



2.3 RESULTS 

 

2.3.1. OM ANALYSIS  

 

With the optical microscope analysis we could clearly observe the eutectic 

decomposition of the ferrite phase (dark) in secondary austenite and σ-phase 

(white) for both the aging treatments (T=800°C, T=850°C).  

 

The microstructures of the samples aged at T=800°C for 0, 30, 42 and 72 minutes 

is shown in Fig. 15. Before the heat treatments the microstructure contained only 

ferritic and austenitic phase grains, in approximately equal fraction (Fig 15.a). σ-

phase started to precipitate after 30 min of treatments, exclusively on the boundaries 

of α/γ grains (Fig 15.b). As the aging time increased, the precipitates started to 

penetrate into the ferrite grains (Fig 15.c). After 72 min of treatment (Fig. 15.d) ferrite 

phase is almost completely disappeared, and the microstructure contains only 

austenite (primary and secondary) and σ-phase.  

 

 

Fig. 15   Microstructure evolution of the samples isothermally aged at T=800°C for different time: 

a) no heat treated; b) t=30 min; c) t=42 min; d) t=72 min. 



The microstructure transformation for the samples isothermally aged at T=850°C 

followed the same evolution seen for the treatments at 800°C, but with a 

precipitation time significantly shorter.  

As can be seen in Fig. 16, σ-phase started to grow on the ferrite/austenite junction 

already after 5 minutes (Fig. 16.a). Increasing the aging time, the amount of σ 

increased at the expenses of the ferritic phase (Fig. 16.b, 16.c). Some precipitates 

can be seen also inside the austenitic grains.  After an aging time of 35 minutes 

(Fig. 16.d), almost all the ferrite phase has decomposed.  

 

 

 

To appreciate better the remarkable difference in the decomposition kinetics of 

Ferrite phase between the two aging temperature, we can observe Fig. 17. It is 

evident that after 30 min at T=800°C, only few precipitates of σ-phase are grown on 

the boundaries of ferrite/austenite phases. While at T=850°C, the eutectic 

decomposition of ferrite is almost concluded.  

This results are in agreement with the TTT diagram, because the treatment at 

T=850°C, being closer to the “nose” of the precipitation curve, is more critical that 

the one at T=800°C [19]. 

Fig. 16 Microstructure evolution of the samples isothermally aged at T=850°C for different time: a) t=5 

min; b) t=15 min; c) t=25 min; d) t=35 min. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 17  Microstructure of the samples isothermally aged for t=30 min at different temperature: 

a) T=800°c; b) T=850°C. 



2.3.2. HARDNESS 

 

The results obtained in the hardness test and reported in Fig. 18, are in good 

accordance with the microstructure evolution observed during the OM analysis. For 

both the temperature of heat treatment, it can be seen that the hardness of the 

samples generally increases with increasing aging time. This tendency is due to the 

increment of σ-phase previously shown. σ-phase is a hard and brittle precipitation, 

with an hardness of 68 HCr (~940 HV). Therefore, an accretion of this phase causes 

a remarkable increment of the hardness of the samples.  

Even if the general tendency is the same, the way the hardness increases in the two 

series of samples is quite different.  

For the samples isothermally treated at T=800°C, the hardness remains close to the 

basic value (262 HV) until an aging time of 30 minutes. After this point, the samples 

experienced a remarkable hardness increase. This happens because, in 

accordance with the OM analysis, the first precipitate of σ-phase starts to appear on 

the boundary of the grains only after 30 min.  

A different behaviour can be observed in the samples isothermally treated at 

T=850°C. For those specimens the hardness starts to increase immediately, 

because of the σ-phase precipitation start already after 5 min of aging treatment. 

The increment continues until t=30min, and then it settles at a maximum value of 

370 HV. The increment stops because at this point all the ferrite phase is 

decomposed.  

 

Fig. 18  Change of the hardness as a function of aging time 



2.3.3. Stäblein-Steinitz test 

 

In Fig.19 and Fig.20 we reported the values of magnetic saturation (Bs) and 

Coercivity (Hc), acquired from the hysteresis loops of each sample. The values are 

plotted against the aging time. 

 

 

 

 

Fig. 20  The change in magnetic saturation (Bs) and coercivity (Hc) with the aging time, for T=850°C 

Fig. 19 The change in magnetic saturation (Bs) and coercivity (Hc) with the aging time, for T=800°C 



For both the heat treatments, Magnetic saturation (Bs) evidently decreases with 

increasing aging time. The saturation induction value is known to be proportional to 

the relative amount of ferromagnetic phase [19] [28].  

The tendency of the coercivity is the opposite: increasing the aging time brings to 

an increment of the coercive force. This result indicates that the dislocation density 

of α-ferrite grains increased. Therefore, the eutectic decomposition that initially 

starts on the boundaries, must necessary takes place also inside the ferrite grains 

during the rest of treatments [28]. 

Using the proportionality between Bs and the ferromagnetic phase, and knowing the 

Ferrite content of the base material from the supplier (46,9% of ferrite), we found 

the Ferrite volume fraction for both the series of samples as a function of the aging 

time (Fig. 21). The results are clearly in agreement with the one obtained from the 

OM analysis and the Vickers hardness test. The eutectic decomposition of the ferrite 

phase in the samples heat-treated at T=850°C appeared for an aging time that is 

remarkably shorter than the one needed with the lower temperature. In particular, 

considering the qualitative comparison made in Fig. 18, after 30 minutes of 

treatment the ferrite content of the sample treated at T=850°C is 12,5%, while in the 

sample treated at T=800°C is still 37,2%.  

 

The kinetics of precipitation of the σ-phase in stainless steels has been described 

in numerous studies using both analytical and experimental methods. It is well 

known that the correct quantitative evaluation of σ-phase must be done using EBDS 

or XDR measurements. During this work, unfortunately these instruments were not 

available. Nevertheless, according to several studies [19], [24] during eutectic 

decomposition we can obtain with good approximation the σ-phase fraction from the 

ferrite decomposition values. There is not a common model for illustrating the 

kinetics of σ-phase precipitation.  

Fig. 21 Dependence of the ferrite content on the aging time of the heat treatments 



In this work we decided to use the Johnson-Mehl-Avrami equation to describe this 

process. The JMA equation describes how solids transform from one phase to 

another at constant temperature. Therefore, it is suitable for our purpose.  

The JMA equation is reported below:  

 

𝑦 = 1 − 𝑒−𝑘𝑡𝑛
 

 

where y is the transformed volume fraction, t is the aging time, k and n are the 

Avrami constant. The equation has been used to fit the experimental results of ferrite 

transformation obtained from the Stäblein-Steinitz test. The fitting curves and the 

Avrami constants values are reported respectively in Fig. 22 and Table 6. It is clear 

from Fig 22 that the kinetics decomposition of ferrite phase in SDSS 2507 follows 

the JAM equation in a satisfactory way. 

 

 
Table 6  The best-fit values of JMA constants for the ferrite phase decomposition 

 

There is no clear physical interpretation of the Avrami constants k and n. The JMA 

constant n is mainly related to different types of nucleation and growth conditions, 

and it gives an indication of the kinetics responsible for the transformation [24], [29]. 

However, the obtained constants’ results are in accordance with other results found 

in literature [5], [13].  

 n k t (y=0.5)  

Avrami curve T=800°C 2,16653 1,858 x 10-4 44,53 

Avrami curve T=850°C 1,35973 1,21 x 10-2 19,63 

Fig. 22  σ-phase precipitation as a function of aging time 



2.3.4. FISCHER-FERRITE TEST 

 

The Fischer Ferrite test was done on the same samples used for the previous tests, 

so only one side for each sample was polished. Three measures were taken for 

each face of the samples (four sides and two faces) and the average was calculated. 

In Fig.23 and Fig.24, we reported the results of the Ferrite volume fraction of the 

samples obtained with the Ferrite scope against the aging time.  

 

 

Fig. 23  Dependence of the ferrite content on the aging time of the heat treatment for T=800°C 

 

Fig. 24  Dependence of the ferrite content on the aging time of the heat treatment for T=850°C 



 

Results are in good agreement with the one previously obtained with the Stäblein-

Steinitz test (Fig.21). The tendency of the ferrite content to decrease with increasing 

aging time is confirmed. 

In our measurements we did not find any difference between the values obtained in 

the polished side surface, and the ones obtained in the other not-polished sides. 

However, a difference was found between the sides and the faces. In particular, an 

increment of the ferrite content was observed from the surface towards the centre 

of the samples.  

  



  



  



CHAPTER 3 

 

EFFECTS OF LASER WELDING ON SAF-2507 

SDSS PREVIOUSLY COLD ROLLED 
 

 

3.1. INTRODUCTION 

 

As pointed out in the previous chapters, the optimum properties of super duplex 

stainless steels are achieved when nearly equal proportions of ferrite and austenite 

are present in the microstructure. This balanced ratio between the two phases is 

obtained with a suitable combination of chemical composition and solution heat 

treatment. However, during welding processes, because of material melting, the 

balanced microstructure can undergo detrimental transformations. When SDSS is 

melted, it solidifies from the liquid phase to a fully ferritic structure. Then, as the 

material cools down to room temperature, the ferrite transforms into austenite 

through solid-state transformation [30]. With an improper cooling rate, two main 

problems may arise: the achievement of an unbalanced austenite-ferrite ratio, and 

the precipitation of secondary phases in the weld zone (WZ) and heat-affected zone 

(HAZ) [31]. Both these microstructural changes are highly detrimental for the 

mechanical and corrosion properties of the SDSS. Therefore, the study of 

weldability of super duplex stainless steels is a fundamental task for their proper 

industrial application. Previous investigation demonstrated that conventional 

welding processes as submerged arc welding (SAW) [32], plasma arc welding 

(PAW) [33], Gas tungsten arc welding [34], and friction stir welding [35] destroy the 

balanced ration between the phases, promoting the precipitation of secondary 

harmful phases. For this reason, in recent years high power laser welding has seen 

a remarkable increase in research interest, due to its better precision, speed and 

versatility compared to traditional welding process [36]–[38]. While earlier 

researchers attempted to study mainly the effect of Laser beam parameters on 

microstructure and properties of DSS [30], [31], [33], [34], few studied the variation 

in ferrite-austenite ratio in SDSS welding.  

In the present chapter, the effects of Nd: YAG laser welding on microstructure and 

mechanical/corrosion properties of UNS S32750 (SAF 2507) SDSS samples with 

seven different grade of deformation (i.e. ε= 0, 10, 20, 30, 40, 50, 60%) have been 

studied. 



3.2. MATERIAL AND EXPERIMENTAL PROCEDURE 

 

3.2.1 MATERIAL AND SAMPLE PREPARATION 

 

The investigated material is the UNS S32750 (SAF2507) SDSS. It was supplied by 

ARCELORMITTAL. Its chemical composition can be found in Table 7.  

 
Table 7.  Chemical composition of SDSS 2507 

Element C Mn P S Si Cu Ni Cr Mo N 

% 0.021 0.822 0.0231 0.0004 0.313 0.178 6.592 24.792 3.705 0.2644 

 

The as-received material was a plate of 15 mm thickness, previously solution 

annealed at 1100°C and water quenched. From this plate material, 14 specimens 

were cut with the size of 100x15x10 mm for cold rolling. 

The samples were deformed in the same direction of the hot rolling, using a double-

cylinder mill with a reduction of 0,25 mm at every passage. The maximum 

deformation was chosen to be 60 %, in order to avoid problems of bending in the 

samples. The thickness reduction applied in the seven couples of specimens were 

the following: 0% - 10% - 20% - 30 % - 40% - 50% - 60% (Fig. 25). 

 

 

From the deformed samples, specimens with the size of 70 x 15 x 3 mm were 

prepared as square butt joints for the laser beam welding.  

The welding was performed using a 4KW Rofin-Sinar DY 044 Nd: YAG laser, 

assisted with a six-axis robot from ABB. The schematic arrangement of laser 

welding is shown in Fig. 26. For each weld, specimens were fixed on the worktable 

to prevent distortion during the process. The welding parameters reported in Table 

8 were obtained from bead on plate trials experiments, with fixed power and 

defocusing distance and different welding speed in order to achieve full penetration 

joints.   

Fig. 25  Couples of samples with different thickness reduction 



 
 

Table 8  Laser Welding parameters 

Parameters Value Unit 

Average Power 1400 KW 

Welding speed 450 mm/min 

Defocusing distance 0 mm 

Shielding gas/flow rate Argon/20 l/min 

 

After the welding phase, samples were sectioned transverse to the welding direction 

for the microstructure examination as well as mechanical and corrosion tests.  

The cross section were mounted into epoxy resin, grinded up to 2400 grit paper and 

polished with clothes (3μ and 1μ) using polycrystalline diamond suspension. Beraha 

etchant (85ml H2O - 15ml HCl - 1g K2S2O) was used to highlight the microstructure. 

In Fig. 27, the final result is shown.  

 

 

Fig. 26  Schematic of laser welding setup 

Fig. 27  Top and cross surfaces of the sample after the metallographic preparation 



3.2.2 OM ANALYSIS 

 

The microstructures of base material (BM), Heat affected zone (HAZ) and weld zone 

(WM) were examined in the cross and top surfaces of the welded samples (Fig. 27). 

The OM analysis was carried out with the OLYMPUS PMG 3 microscope, in five 

different magnification (25x – 100x – 200x – 500x – 1000x). Pictures were taken for 

every sample.  

 

3.2.3 MICRO HARDNESS TEST 

 

Micro hardness tests were performed in the cross surfaces of the welded samples 

following the ASTM E384 standard. For the tests, we used a BUEHLERR 

IndentaMetTM 1105, with a load of 300 grams and an application time of 11 seconds. 

The extended technical procedure of the hardness test is reported in Chapter 2.2.3. 

For each sample, four measurements were taken along the midline of the thickness, 

in the weld zone and in the base material. The measurements of the HAZ were 

taken along the fusion line because its narrow width did not allow more than one 

measure in the same quota.  

 

 

 

 

 

3.2.4 EDDY CURRENT TEST 

 

Eddy-current testing (ECT) is a non-destructive electromagnetic test method, which 

uses electromagnetic induction to detect and characterize surface and sub-surface 

flaws, as well as ferromagnetic phase content in conductive materials. 

The operating principle can be observed in Fig. 29. In an eddy current probe, a coil 

of conductive wire is excited with an alternating electrical current. This current 

produces an alternating magnetic field around the coil, which oscillates at the same 

frequency as the current. If the probe and its magnetic field are placed close to a 

conductive material, like our SDSS, a circular flow of electrons, known as an eddy 

current, will begin to move through the metal. 

That eddy current flowing through the metal will in turn generate its own magnetic 

field, which will interact with the coil and its field through mutual inductance. 

Changes in metal thickness or defects like near-surface cracking will interrupt or 

alter the amplitude and pattern of the eddy current and the resulting magnetic field. 

Fig. 28:  Schematic of Microhardness test measurement. 



This in turn affects the movement of electrons in the coil by varying its electrical 

impedance [13]. With the use of a software, changes in the impedance amplitude 

and phase angle can be plotted. These results can be used to identify changes in 

the tested sample. 

 

 

 

For our test, 13 measurements were made in the top section of each sample, 

starting from the middle of the joint. The distance between each detection point was 

1 mm. The inspection was done in 4 different frequencies: 10,0 KHz – 40,0 KHz – 

66,7 KHz – 100,0 KHz. The data acquisition, processing and the control of the set-

up were done using a personal computer with “ScanMax” software.

Fig. 29  Eddy-current operating principle 



3.2.5 CORROSION TEST 

 

Finally, a corrosion tests was performed following the ASTM G48 for evaluating the 

pitting resistance of the welded samples. The corrosion test consisted in the total 

immersion of the samples in a Ferric Chloride Solution for 72 hours at a constant 

temperature of 50 ± 2°C. The solution was obtained dissolving 100 grams of reagent 

grade ferric chloride, FeCl3·6H2O, in 900 ml of distilled water (about 6 % FeCl3 by 

weight). Before the tests, all the sections obtained during the preparation were 

deburred, washed, dipped in acetone and air-dried. After that, they were weighted 

in order to measure the material loss after the test and thus calculate the corrosion 

rate. To increase the amount of surface in contact with the solution, before the 

cleaning procedure, the samples were drilled in the base material. This allowed us 

to hang them with a wire to the top of the container. With this procedure the 

specimens were not in contact with any part of the glass jars. (Fig.30). For the 

heating, an electric furnace was used. 

 

 

 

 

 

Fig. 30  Glass container test with the 40% deformed sample totally immersed in the Ferric Chloride 

Solution 



3.3. RESULTS 

 

3.3.1. OM ANALYSIS 

 

The microstructure of the UNS S32750 (SAF 2507) SDSS base material used in the 

welding experiments is shown in Fig.31. The picture displays a biphasic structure 

with approximately equal volumes of both ferrite and austenite phases. The grains 

are strongly orientated along the direction of rolling.  

 

 

The weld bead observed in the cross section (Fig. 32.a) showed a peculiarity of 

laser beam welding, where the development of the weld is essentially symmetrical 

about the axis of the laser beam [31]. In Fig. 32.a and 32.b, the orientation of the 

grains towards the direction of the heat flux is clear. This is due to the high cooling 

rate, that in laser beam welding was estimated to be around 1000°C/s [31] [35], [36]. 

Because of this remarkable cooling rate, the HAZ (Fig. 33.b) was almost 

undetectable. The fusion line is continuous and clear, with the ferritic grains 

emanated from the base material grains. In agreement with the CCT diagram 

relative to σ -phase precipitation for a SAF 2507 [35], no precipitates were observed 

in this zone during the examination. As previously mentioned, the weld zone initially 

solidifies into a full ferritic structure, and later partially transforms into austenite 

through solid-state transformation. Because of the high cooling rate of laser welding, 

this transformation tends to be inhibited, resulting in a strongly unbalanced 

microstructure mostly consisting of ferritic phase [30-34] [36]. It is clear in Fig. 33.a 

that the weld zone is mainly composed of ferrite grains as massive particles, with a 

low percentage of austenite phase that grew both at ferrite grain boundaries and 

within the grains. No visible effects were observed due to the different plastic 

deformation of the welding samples. 

Fig. 31  Base material of the 30% deformed sample 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 32:  Cross section (a) and Top section (b) of the weld zone microstructure of the 30% deformed 

sample at 25x magnification. 

Fig. 33:  Weld zone (a) and Heat affected zone (b) of the 30% deformed sample at 100x magnification. 



3.3.2. MICROHARDNESS TEST 

 

The Microhardness test results for weld zone (WZ), heat affected zone (HAZ) and 

base material (BM) are showed in Fig. 34. Provided values are averaged from four 

readings. In agreement with other studies [37], [39], [40],  is clear from the figure 

that hardness in base material tends to increase with increasing percentage of 

plastic deformation. This behaviour is due to the interaction between the new 

dislocations created by the deformation. A different behaviour was observed in the 

joints. As can be seen from the graphic, the final hardness in the weld zone is ~ 300 

HV for all the samples. Because the material in the joint is melted during the welding, 

the previous deformation has no influence in the final hardness of this zone. 

Similary, the Hardness in the heat affected zone is not influenced by the percentage 

of reduction, with an average value ~ 290 HV.  

In the case of the non-deformed sample, from the base material (267,5 HV) to the 

weld zone, an increasing of hardness was observed. This trend is a consequence 

of the higher amount of ferritic phase discovered in the microstructure of the weld 

zone compared to the base material (Fig. 33.a). It is well known that the hardness 

of the bcc phase is higher than the fcc one. Therefore, an unbalanced microstructure 

rich of ferrite is harder than the starting microstructure.  

 

  

 

Fig. 34 Change of the hardness as function of the deformation 



3.3.3. EDDY CURRENT TEST 

 

The eddy current results for the four frequencies used in the eddy current 

measurements (10 kHz – 40 kHz – 66,7 kHz – 100 kHz) are reported in the following 

graphics.  

 



 

The graphics show the variation of ferrite content measured in the top section of 

seven different welded samples. As observed during the OM analysis, while looking 

at the results, it is clear that the previous plastic deformation do not influence the 

Fig. 35  Ferrite content as function of the distance from the weld centreline measured at four 

different frequencies 



amount of ferritic phase in both the Weld and the Heat affected zone. In accordance 

with previous studies [30]–[34], it can be seen that the amount of ferrite in the joint 

(~64%), due to the high cooling rate typical of the laser welding, is remarkably higher 

than the one in the base material (46,9%). The precise ferrite content in the HAZ 

could not be measured because the dimension of the eddy current probe was 

significantly bigger than the dimension of the zone (~50 μm). However, the tendency 

of the Ferrite content to decrease with increasing distances from the middle of the 

joint is quite clear for every frequency. During the test, we observed that the 40 kHz 

frequency was the most sensitive to the ferrite content variation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3.3.4. CORROSION TEST  

 

The results of corrosions tests done in laser butt welded joints are shown in table 9. 

 
Table 9  Mass reduction results for the welded samples  

Sample Deformation (%) Mass reduction after 72h (%)  Corrosion rate (g/cm2)  

1/2 0 5,54 0,03 

3/4 10 6,66 0,03 

5/6 20 7,11 0,03 

7/8 30 6,85 0,03 

9/10 40 6,40 0,03 

11/12 50 6,64 0,03 

13/14 60 5,99 0,03 

 

 

Results suggest that different plastic deformations did not influence the corrosion 

resistance of the welded samples. This is in agreement with the previous results, 

because no significant differences were found between samples microstructure. It 

is well known that the corrosion rate in duplex stainless steels is enhanced both by 

the presence of precipitates and by an unbalanced austenite/ferrite ratio. For this 

reason, a strong corrosion was observed in the weld zone of all the samples 

(Fig.36), where the ferrite content was found to be ~64%. The joints are highly 

damaged, and the pitting holes can be observed by the naked eye.  

 

 

 

 

 

Fig. 36  Top surface of sample with 30% of plastic deformation pre and post corrosion test 



As explained in the procedure chapter 3.2.5, the corrosion resistance evaluation  is 

based only on the weight loss measure. For this reason, because of the slight 

variations of mass measured during the test, it hit can give only qualitative indication 

about corrosion rate. For a reliable quantitative measurement of corrosion 

resistance, polarization techniques and CPT measurements must be used, in order 

to obtain detailed information on active/passive behaviour and different critical 

pitting temperatures. These tests are planned in a running project. 

  



  



 

  



CHAPTER 4 

EFFECTS OF NITROGEN-CONTANING BACKING 

GAS ON MICROSTRUCTURE AND CORROSION 

RESISTANCE OF LDX 2101 AND LDX 2404 
 

 

4.1. INTRODUCTION 

 

In the previous chapter, the detrimental effects of an unbalanced austenite/ferrite 

ratio in the weld zone have been described. The chemical composition of the weld 

metal is of fundamental importance in order to obtain a balanced structure after 

welding. It is well know that duplex stainless steels solidify as delta ferrite. The ferrite 

to austenite solid-state transformation, which happens only after solidification, is 

driven by the atomic nitrogen diffusion. Nitrogen is an interstitial element that 

strongly promotes austenite formation. From the Nickel equivalent equation, 

according with the WRC-1992 [41], Nitrogen is 20 times more effective as austenite 

stabilizer than Nickel. A high content of this element rises the ferrite to austenite 

transformation temperature and enhance the austenite growth rate [42], [43]. At the 

same time, it plays a fundamental role in the pitting corrosion resistance of the 

material. As we know from the equation of PREN (Pitting resistance equivalent 

number) [44], Nitrogen is 16 times more effective in increasing pitting resistance 

than Chromium. Nitrogen loss from the weld pool during welding process can cause 

a remarkable decrease in pitting corrosion resistance, because of the decreased 

austenite content in the weld metal. It can also bring to a precipitation of chromium 

nitrides. At the same time, too high austenite fractions can result in increased 

segregation, with detrimental effects on corrosion resistance as well. For these 

reason, keeping the chemical composition of the parent metal in the weld zone and 

in the heat affected zone is crucial. In order to obtain this, Nitrogen can be added to 

the shielding and backing gases. Various authors have investigated the effects of 

using nitrogen-content shielding gas on the microstructure and corrosion resistance 

of duplex stainless steels joints. Westin et al. [44], [45] demonstrated that a mixture 

of 97% Ar + 3% N2 as shielding gas, instead of full Argon, significantly enhance the 

austenite formation and the pitting corrosion resistance of lean duplex joint in 

process like Gas tungsten arc welding (GTAW) and  Nd: YAG laser-GTA welding. 

Zhang et al. [46] reported the same tendency also for flux-cored arc welding (FCAW) 

experiments. If the effects of Nitrogen used as shielding gas have been widely 

studied, few investigations were done about its usage as backing gas. The use of 

Nitrogen as backing gas is of great interest for industrial applications such as pipe 

welding. Nitrogen is thriftier compared to Argon. Furthermore, in pipe welding 

application, the root side is highly exposed to corrosion. Having an unbalanced 

microstructure in this zone, with both tow high or too low austenite, can bring to a 

decrease of mechanical properties and corrosion resistance of the material.  



For these reasons, the objective of this work was to determine the effect of Nitrogen 

on the root weld microstructure compared to the traditional full Argon backing gas. 

The material used in this investigation were the recently developed UNS S32101 

(LDX 2101) and UNS S82441 (LDX 2404). Lean Duplex grades like LDX 2101 have 

successfully replaced the austenite low-alloyed austenitic grades as AISI 304L and 

AISI 316L, and its industrial applications are in continuous development. Lean 

duplex grades are obtained replacing Nickel content with high amount of Nitrogen. 

Therefore, for this family of material it is of fundamental important to balance the 

Nitrogen content, as Nitrogen is the main austenite promoter and no other alloys in 

the composition can compensate its loss [41]–[43], [47]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4.2. MATERIAL AND EXPERIMENTAL PROCEDURE 

 

The investigated materials were the LDX 2101® (EN 1.4162, UNS S32101) and the 

LDX 2404® (EN 1.4662, UNS S82441). They were supplied by OUTOKUMPU. 

Their nominal composition is reported in Table 10. 

 
Table 10.  Chemical composition of LDX 2101 and LDX 2404 given by the supplier. 

Base material C Mn Cu Ni Cr Mo N 

2101 0.03 5.0 0.3 1.5 21.5 0.3 0.22 

2404 0.02 3.0 0.4 3.6 24.0 1.6 0.27 

ER 2209  <0.015 2 / 8.8 22.5 3.2 0.15 

 

The materials were received as annealed plates of 3 mm thickness. From those 

plates, samples with the size of 50x100x3 mm and 40x100x3 mm were obtained 

respectively for LDX 2101 and LDX 2404. The specimens were prepared as square 

butt joints for the welding experiment. The gas metal arc welding (GMAW) was 

performed with a REHM MegaPuls 300 fed with an Ø1.2 mm Avesta ER 2209 (22 

Cr 09 Ni 3 NL) as filler metal. Machine settings are shown in Table 11. The welding 

torch was fixed to a linear drive machine (Yamaha F1405-500), in order to perform 

run welds at a constant speed of 10 mm/s. For each weld, specimens were 

previously cleaned with acetone and then fixed on the worktable, keeping a gap of 

1 mm between them. The welding set up is shown in Fig. 37. Three different backing 

gases were used for each material: 100% Ar, 100% N2, 95% N2 + 5% H2, plus a 

weld without backing gas. As shielding gas, a mixture of 98% Ar and 2% O2 was 

employed for all the welding, which is recommended for welding duplex stainless 

steel. The presence of the Oxygen as active component is required to stabilize the 

arc. The flow rate was 9 l/min for the backing and 15 l/min for the shielding gas. The 

welding parameters registered during the experiments are reported in Table 12.   

 
Table 11  Welding machine chosen settings for the experiments.  

Parameter Value Unit 

Current  138 A 

Voltage 19,2 V 

Wire feed 4,7 m/min 

Shielding flow rate 15 l/min 

Backing gas flow rate 9 l/min 

Material thickness 3,3 mm 

Welding process Standard pulse mode  



 
Table 12  GMA Welding parameters 

Sample Material 
Backing 
gas 

Current  
[A] 

Voltage [V] 
Vwelding 
[mm/s] 

Theoretical 
Heat Imput* 
[kJ/mm] 

1/1 2101 No 144 21,9 10 0,252 

2/1 2101 100% Ar 145 22 10 0,255 

3/1 2101 100% N2 145 21,6 10 0,251 

3/2 2101 100% N2  145 21,4 10 0,248 

4/1 2101 
95% N2 + 
5% H2 

147 20,7 10 0,243 

1/1/2 2101 No 146 21,9 10 0,256 

1/2/2 2101 100% Ar 145 21,8 10 0,253 

1/3/3 2101 100% N2 143 22,6 10 0,259 

1/4/2 2101 
95% N2 + 
5% H2 

144 22,6 10 0,260 

2/1/1 2404 No 145 22,1 10 0,256 

2/2/1 2404 100% Ar 146 21,7 10 0,253 

2/3/1 2404 100% N2  144 21,8 10 0,251 

2/4/1 2404 
95% N2 + 
5% H2 

145 21,7 10 0,252 

2/1/2 2404 No 145 22,1 10 0,256 

2/2/2 2404 100% Ar 144 22 10 0,253 

2/3/2 2404 100% N2 145 22,1 10 0,256 

2/4/2 2404 
95% N2 + 
5% H2 

145 22,1 10 0,256 

*Heat input is theoretical because impulse mode was used in the experiments 

Fig. 37  Schematic of GMA welding setup 



After the welding phase, samples were sectioned transverse to the welding direction 

for the microstructure examination. The cross sections were put into epoxy resin 

and grinded up to 2400 grit paper. After they were polished with clothes (3μ and 1μ) 

using polycrystalline diamond suspension. Beraha etchant (85ml H2O - 15ml HCl - 

1g K2S2O) was used to highlight the microstructure. This reagent makes the ferrite 

dark and the austenite clear. The result is shown in Fig.38. 

 

 

The OM analysis of root weld microstructure was carried out in the cross surface of 

each sample using the OLYMPUS PMG 3 optical microscope, in five different 

magnifications (25x – 100x – 200x – 500x – 1000x). Ten Pictures of the root zone 

were taken for every sample at 200x magnification, in order to measure the ferrite 

content with JMicroVision 1.2.7 image analyser software. The ferrite content was 

measured also using a Fischer Feritscope FMP30. Ten measurements were taken 

for each sample along the root weld, with a 5 mm spacing between the detection 

points. A corrosion test was performed following the ASTM G48 for evaluating the 

effect of the different backing gases on the pitting resistance of the welded samples. 

After being cleaned and weighted, the samples were submerged into a Ferric 

Chloride Solution for 72 hours at a constant temperature of 50 ± 2°C. The samples 

were weighted again after the test to evaluate the corrosion rate (in g/cm2). The 

exposed area of each sample was calculated using a solid modelling software 

(Solidworks).  An Olympus SZX16 stereomicroscope was used to take pictures of 

the root weld before and after the test, to have a qualitative measure of the corrosion 

rate.  

 

 

 

 

Fig. 38  Sample after the metallographic preparation 



4.3. RESULTS 

 

4.3.1. OM ANALYSIS 

 

The base material microstructure of both the UNS S32101 (LDX 2101) and UNS 

S82441 (LDX 2404) is shown in Fig. 39 a) and b). Both pictures display a biphasic 

microstructure consisting of ferrite and austenite in approximately equal proportions. 

The grains are strongly orientated along the direction of rolling. 

 

The root zone microstructure of the LDX2101 and the LDX 2404 for the four different 

backing gases combination is shown in Fig. 40 and 41. 

From the microstructure analysis, in both the material a slight increasing of 

austenitic phase was observed in the sample with 100% N2 and 95% N2 + 5% H2 as 

backing gas (Fig.40.c, 40.d and Fig.41.c, 41.d). No remarkable differences were 

observed between the samples welded without backing gas and with full Argon. The 

austenitic phase was observed as both grain boundary allotriomorphic austenite and 

as Widmanstätten side plates. This austenite structure require a relatively small 

driving force and suggest a relatively slow cooling rate, typical of GMAW welding 

technique.  

 

 

Fig. 39 Microstructure of LDX 2101 (a) and LDX 2404 (b) base material 



 

 

 

 

 

 

 

 

 

Fig. 41  Root zone microstructure of LDX 2101 for the four different backing gas combination: no 

backing gas (a), 100% Ar (b), 100% N2 (c), 95% N2 + 5% H2 (d). 

Fig. 40  Root zone microstructure of LDX 2404 for the four different backing gas combination: no 

backing gas (a), 100% Ar (b), 100% N2 (c), 95% N2 + 5% H2 (d). 

 



4.3.2. FERRITE CONTENT 

 

The ferrite content measured in the root weld of both materials is reported in Fig. 

42. Provided values are averaged from ten measurements for both the inspecting 

methods (Feritscope and Image analyser software).  

 

From the results is quite clear that for samples welded without backing gas, the 

oxidation compromised a correct measurement of the ferrite content in the root weld. 

Therefore, those values have been discarded.  

The results obtained with the Feritscope are evidently lower than the one measured 

with the image analyser software. In the Feritscope test, the measurements were 

taken along the peak of the root weld. Because of the small radius of curvature of 

the root weld, the scope could not be in full contact with the detected area. The air 

in contact with the scope resulted in a low ferrite content measurements. In previous 

study [48], the Feritscope error in root weld measurements was quantify to be 

around 17%. Therefore, we can consider the results obtained with the image 

analyser software as the most accurate. 

Even if there is a remarkable difference between the two different techniques, a 

common tendency can be observed. In agreement with the qualitative evaluation 

performed during the OM analysis, the ferrite content tends to decrease using 

Nitrogen as Backing gas instead of pure Argon. Being a strong austenite stabilizer, 

Nitrogen enhances the formation of austenitic phase during solid state 

transformation. The addition of Hydrogen did not influence the microstructure in a 

substantial way, but the ferrite slightly increased compared to pure Nitrogen. 

Fig. 42  Root side ferrite content of LDX 2101 and LDX 2404 



4.3.3. CORROSION TEST 

 

The corrosion test results for LDX 2101 are shown in Tab 13. 

 
Table 13 Corrosion test results for LDX 2101 

Backing gas 
Original mass 
(g) 

Mass after 72h 
(g) 

Mass reduction 
after 72 h (%) 

Corrosion rate 
(g/cm2) 

No gas 15,98 15,13 5,32 0,05 

100% Ar 17,33 16,46 5,04 0,05 

100% N2 18,45 17,61 4,55 0,04 

100% N2-2 17,36 16,49 5,02 0,05 

95% N2 + 5% H2 17,12 16,31 4,72 0,05 

 

For the welded samples having full Nitrogen and 95% N2 + 5% H2 as backing gases, 

a slight decrease in mass reduction was observed compared to the welded sample 

without backing gas. A smaller improvement was measured for the 100% Ar 

configuration (Fig 43). These values suggest that nitrogen could have a direct 

influence in the pitting corrosion resistance also when used as backing gas. Results 

indicate also that nitrogen can be a proper alternative to the traditional full Argon 

configuration. In according with Fig. 44, the corrosion in root weld and HAZ was 

restrained, with some pitting in base material. A test was done also for the 

configuration with full Nitrogen and a halved flow rate. In this case the corrosion rate 

Fig. 43 Values of LDX 2101  mass reduction after 72h (%) relating to the different backing 

gases 



is close with the full Argon configuration. The impact of flow rate in corrosion 

resistance will be part of a future work. 

 

 

Results obtained with the LDX 2404 (Tab 14) were inconsistent. An increase in the 

mass reduction was observed in samples welded with the three different backing 

gases, compared to the no backing gas sample. A remarkable pitting corrosion was 

observed at an exact distance from all the welds, with some kind of corrosion 

product that appeared in the metal surface (Fig.46). The SEM analysis of this 

detrimental phase transformation is a part of a future work. 

 

 
Table 14 Corrosion test results for LDX 2404 

Backing gas Original mass (g) Mass after 72h (g) 
Mass reduction 
after 72h (%) 

Corrosion rate 
(g/cm2) 

No gas 18,49 17,73 4,11 0,04 

100% Ar 19,32 18,44 4,55 0,04 

100% N2 19,65 18,72 4,73 0,05 

95% N2 + 5% H2 17,66 16,89 4,36 0,04 

Fig. 44  2101 root weld after 72 hours for: a) no backing gas, b) 100% Ar, c) 100% N2, d) 95% N2 + 5% H2 



 

 

 

Fig. 46  2404 root weld after 72 hours for: a) no backing gas, b) 100% Ar, c) 100% N2, d) 95% N2 + 5% H2 

Fig. 45 Values of LDX 2404 mass reduction after 72h (%) relating to the different backing 

gases 



As explained in the procedure chapter 4.2, the corrosion resistance evaluation made 

in this work was based only on the weight loss measure. For this reason, because 

of the slight variations of mass measured during the test, it can give only qualitative 

indication about corrosion rate. For a reliable quantitative measurement of corrosion 

resistance, polarization techniques and CPT measurements must be used, in order 

to obtain detailed information on active/passive behaviour and different critical 

pitting temperatures. These tests are planned in a running project. 

  



  



 

  



 

CONCLUSIONS 
 

 
Duplex stainless steels (UNS S32750, UNS S32101 and UNS S82441) have been 

investigated in this work, with the purpose of studying the main microstructural 

transformations these materials may suffer if they undergo heat treatments or 

welding processes. The investigation has been conducted focusing on the effects 

that these microstructural transformations have on corrosion resistance and 

mechanical properties of the selected materials. The following conclusions allow for 

a better comprehension of the application limits of these particular materials, whose 

application interest is constantly increasing. 

 

In the first experiment, the decomposition kinetics of ferritic phase (α) in isothermally 

aged UNS S32750 (SAF 2507) super duplex stainless steel has been investigated 

for T=800°C and T=850°C. The eutectic decomposition of ferrite into σ-phase and 

secondary austenite has been clearly observed with OM analysis, for both aging 

temperatures. T=850°C has been found to be the most critical one, with precipitates 

of σ-phase visible on the ferrite/austenite junction already after 5 minutes. The 

amount of σ-phase increased at the expense of the ferritic phase with increasing 

aging times. For T=800°C the decomposition process followed the same 

mechanism, but it was significantly slower, with an incubation time of 30 minutes.  

Magnetic tests have been employed to quantify the amount of ferromagnetic phase 

in the different samples. Results showed the tendency of ferrite to decrease with 

increasing aging times. For both aging temperatures, the experimental data related 

to the σ-phase precipitation showed to be in accordance with the JMA model. The 

results of Vickers hardness test showed that hardness of the samples significantly 

increased with increasing aging time. From a starting value of 260 HV, a maximum 

value of 370HV has been measured after 45 minutes at T=850°C. This results 

proved that the eutectic decomposition of ferrite yields remarkable hardening and 

embrittlement of the parent material, due to the increase of σ-phase content 

generated by the transformation. 

 

In the second experiment, the effects of Nd: YAG laser welding on microstructure 

and mechanical/corrosion properties of UNS S32750 (SAF 2507) SDSS samples 

with different grades of deformation (i.e. ε=0%,10%,20%,30%,40%,50%,60%) have 

been examined. In all the joints, a strongly unbalanced microstructure mostly 

consisting of ferritic phase has been observed. The ferrite grains formed as massive 

particles, with a low percentage of austenite phase precipitated both at ferrite grain 

boundaries and within the grains. The tendency of the ferrite content to decrease 

with increasing distances from the middle of the joint has been observed. 

Because of the high cooling rate of the laser beam welding process, the HAZ was 

almost undetectable and no defects or precipitations have been observed. All the 



results highlighted that previously cold rolled deformations had no effects either on 

the microstructure of HAZ/WZ or on the mechanical/corrosion properties of the 

samples. The Vickers microhardness test conducted in all the joints showed that the 

unbalanced ferritic structure caused an increase in the hardness values of WZ and 

HAZ compared to the base metal. Lastly, a constant corrosion rate was observed in 

the weld zone of all the samples due to the unbalanced austenite/ferrite ratio. The 

joints have been found highly damaged, and pitting holes could be observed by the 

naked eye. Quantitative measurement of corrosion resistance as polarization 

techniques and CPT measurements are planned in a running project 

 

As a final study, the effect of backing gas composition (100% Ar, 100% N2 and 95% 

N2+5 % H2) on the microstructure and corrosion properties of UNS S32101 (LDX 

2101) and UNS S82441 (LDX 2404) have been investigated.  

For both materials, microstructure analysis showed that the use of nitrogen-

containing backing gases produced a slight increase in austenite content compared 

to the 100% argon and no-baking gas configurations. The austenitic phase 

precipitated as both grain boundary allotriomorphic austenite and Widmanstätten 

side plates. The increase in austenite content should bring to a better corrosion 

resistance. The corrosion test (72h of immersion in a ferric chloride solution at T= 

50 ± 2°C) showed different behaviours in the two materials. For LDX 2101, the 

presence of nitrogen in the baking gas brought to a slight decrease in mass 

reduction compared to the samples welded with full argon and no backing gas, in 

according with the increase of austenite observed in the microstructure. For LDX 

2404 the opposite tendency was observed. We can conclude that the corrosion 

resistance evaluation based only on the weight loss measure was not suitable for 

this experiment. For a reliable quantitative measurement of corrosion resistance, 

polarization techniques and CPT measurements must be used, in order to obtain 

detailed information on active/passive behaviour and different critical pitting 

temperatures. These tests are planned in a running project. 
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