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1. Introduction

The  aim of  this  thesis  is  to  investigate  the  factors  that  influence  the  relationship

between  economic  growth  and  environmental  degradation  through  empirical  studies.  In

particular, this work aims at highlighting what drives the inclination to accept or reject the

environmental Kuznets curve hypothesis, which displays an inverted U-shaped relationship

between income and pollution.

This work combines the results of existing EKC empirical studies with the statistical approach

of meta-analysis. This statistical tool allows examining systematic variation across the studies,

in  order  to  highlight  any  common  patterns  and  sources  of  agreement  and  disagreement

between them.

The issue of global warming is spreading across nowadays society and its impacts and

effects are evident and tangible. Therefore, debates about sustainable economic growth have

become central in everyday policy decisions. The EKC hypothesis has become a key topic

when discussing about economic growth and environmental policies because it describes the

change in pollution as a function of income. One of the main aims of international community

is to understand the real relationship between economic growth and environmental quality. 

The so-called environmental Kuznets curve (EKC) is a hypothesized relationship between

various indicators of environmental degradation and income per capita (Stern, 2004). It is

based on the findings of Nobel prize Simon Kuznets, who studied the relationship between

income inequality and economic growth. He found that as long as economic growth rises,

income  inequality  increases  at  first,  but  then,  after  reaching  a  turning  point,  starts  its

decreasing process, drawing an inverted U-shaped curve (Kuznets, 1955). 

The same curve can be found empirically when, instead of income inequality and economic

growth,  we  take  into  account  economic  growth  and  environmental  degradation:  the  first

variable is measured on the  x-axis, the latter on the  y-axis.  The two variables are usually

considered at  a country-level,  and data are usually collected on a time interval of several

years, depending on the analyst’s aim. With regards to economic growth, the most common

way to measure it is to capture the yearly levels of income per capita of one nation. On the

other side, the environmental degradation may be measured by the levels of a single pollutant

over time – carbon dioxide, for instance. 
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After collecting data for both income per capita and a pollution index, the graph shows the

relationship between the two variables and the pattern of the curve.

In general, when there is evidence of an inverted U-shaped relationship between income and

pollution,  researchers  agree  that  “with  further  economic  growth,  services,  improved

technology and information diffusion limit the material basis of an economy and result in

reduced  environmental  degradation”  (Panayotou,  2003).  The  EKC  theory  suggests  that

countries  experience  a  rise  of  pollution  in  the  early  stages  of  their  economic  growth;

afterwards, for several internal and external reasons, the pollution levels released by these

countries start a decreasing process even if their economies continue to grow. Consequently,

the relationship between income per capita and pollution levels draw an inverted U-shaped

curve.

In an ideal scenario, if the relationship between income and pollution always took the

form  of  a  hump-shaped  curve,  consequences  would  reveal  that  economic  growth  is

compatible with environmental improvement. Therefore, there would be no need of regulating

dirty emissions. By contrast,  if the EKC is not real, the income-pollution relationship can

draw either a monotonic increasing or an N-shaped curve. If the relationship is monotonic

increasing, economic growth negatively affects the environmental quality. In the case of an N-

shaped curve, pollution rises as a country grows, decreases when a medium economic wealth

is reached, then experiences a new increase as income per capita continues to rise.  In both

cases, in the long run, economic growth negatively affects environmental quality. This implies

that, if the government of a country aims at providing a sustainable economic growth in terms

of pollutant emissions, environmental regulations are needed. 

Furthermore, policy implications are completely different, depending on whether the EKC

hypothesis is accepted or rejected at a country level. This leads to the necessity to deeply

investigate  which  factors  drive  its  acceptance  or  rejection.  However,  Panayotou  (1993)

suggests  that  developing countries  should  strengthen their  environmental  policies  without

caring of their future income-pollution relationship. As a matter of fact, developing countries

may take several years or decades before experiencing a reduction in emissions.

The empirical studies seeking for the EKC experienced a significant rise in the last

decades, due to several reasons. Firstly, the environmental quality has become a daily issue: as

a matter of fact, climate change is showing its signs all around the Globe. Secondly, new

developing countries are growing at  extremely high rates and include the majority of the
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global population (i.e. BRIC – Brazil, Russia, India, China – countries). Therefore, we need to

assess  whether  their  economic  development  will  lead  to  a  somehow  environmental

improvement or they are just threatening the life quality of the whole world. On the other

hand,  it  is  also  important  to  understand  the  relationship  between  economic  growth  and

pollution of developed countries, in order to provide some hints for economic policies of the

governments. Thus, if the EKC does not hold, it means that post-industrial countries are still

polluting a lot. Moreover, even nowadays empirical findings are in some ways conflicting: not

all researchers agree on whether EKC holds or not, and under which circumstances. A deeper

analysis is therefore necessary in order to shed light on this phenomenon.

Furthermore, empirical EKC studies potentially analyse such a huge range of variables that it

becomes extremely difficult  to compare different studies one another.  In detail,  individual

studies may differ in the type of countries and pollutants analysed, in the additional variables

included in the model and much more. However, taking into consideration just these three

differences among studies, it  is possible to get a clear view of the problem. Indeed, EKC

studies can either analyse one single country – chosen among more than 200 potential nations

– or look for the income-pollution relationship across a group of countries. Regarding the

pollutants, many pollution indicators are possible and it is clear that it is not easy to compare

the income-pollution relationship of two studies with different pollutants analysed. Finally,

not all EKC studies include all the possible variables in the models – i.e. trade, waste taxes,

technical progress, education and more. 

For these reasons, considering the continuous accumulation of EKC empirical studies, there is

the  need  of  finding  common  patterns  across  the  studies  and  investigate  what  drives  the

inclination to accept or reject the EKC hypothesis.

In order to do that, this work gathers information from several EKC empirical studies and

exploits a meta-analysis with the aim of highlighting the differences and similarities between

them. 

Meta-analysis  is  a  statistical  procedure  used  for  combining  data  and  results  from

multiple existing empirical studies.  Indeed,  it  can be used to identify any common effect

between the surveys; in alternative, when the effects vary across the studies, meta-analysis

shall be used to identify the reasons of these variations. The purpose of applying a meta-

analysis  about  empirical  EKC studies  is  to  establish  statistical  significance  with  multiple

studies that display conflicting results.
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With regards to the aim of this thesis, meta-analysis is a useful tool to deeply investigate the

main factors that could potentially drive the inclination to accept or reject the environmental

Kuznets  curve  hypothesis  on  the  empirical  EKC-related  studies.  Furthermore,  the

inconsistency of results can be quantified and analysed.

Practically speaking,  each study represents  one observation.  The dataset  is  constructed as

follows. The dependent variable captures individual studies results. In this work, each study

can either accept or reject the environmental Kuznets curve.  Thus, the dependent variable

takes the form of a dummy variable with either 0 or 1 value, depending on the study result.

The explanatory variables, by contrast, capture the differences in the ways of analysing the

income-pollution relationship across the studies. For instance, they can be methodological and

statistical  choices,  but  also  characteristics  of  the  countries,  pollutant  indexes  and  other

variables included in the models.

The main goal  of  such a  meta-analytic  approach is  to  be able  to  state  sentences such as

“collecting data for pollutant X rather than pollutant Y provides a higher inclination to accept

the  EKC  hypothesis”.  By  contrast,  results  could  even  show  that  “there  is  no  statistical

evidence that a change in the pollutant analysed influences the inclination to either accept or

reject the EKC hypothesis”. Meta-analysis is the tool that can synthesise results of existing

studies and provide a clearer picture of the literature.

Following three former meta-analyses of Cavlovic et al. (2000), Li et al. (2007) and

Koirala et al. (2011), this investigation collects data from 116 empirical EKC studies from

1998 to 2016. The dependent variable is a dummy variable that displays whether the study

accepts or rejects the EKC hypothesis. The regressors consist of 10 independent variables,

which control for methodological choices, data and country-specific characteristics. Data are

analysed using a linear probability model and a logit  model,  both with fixed and random

effects. 

Results  of  this  thesis  are  more  or  less  in  line  with  the  prior  meta-analyses:

methodological choices and characteristics of the countries affect the acceptance or rejection

of the EKC hypothesis. In detail,  including more explanatory variables and countries with

different degrees of development positively influences the probability of finding the EKC.

Interestingly,  this  work  finds  that  the  pollution  haven  hypothesis  is  a  driver  of  the

environmental  Kuznets  curve.  This  means that  developed countries  that  export  their  dirty

activities to developing countries are more likely to exploit an inverted U-shaped relationship
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between income and pollution. Regarding anthropogenic gases, results show a small evidence

that  SO2 positively  affects  the  acceptance  of  the  EKC  hypothesis.  However,  the  study

confirms the earlier results about the fact that CO2 does not influence the EKC.

The  thesis  is  structured  as  follows.  Chapter  1  begins  with  an  introduction  to  the

environmental Kuznets curve and meta-analysis, presenting also some of the most important

contributes on both topics. Chapter 2 provides an overview of the existing theoretical and

empirical  literature  on  the  EKC.  Chapter  3  presents  the  data  and  the  way variables  are

constructed. Chapter 4 deals the methodological approach, and specifically two models for

data modelling are presented. Chapter 5 reports and discusses the results of the meta-analysis.

Finally, chapter 6 provides some hints for future analyses and policy implications. 
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2. Literature review

2.1 Theoretical literature

The environmental Kuznets curve was first empirically found (Grossman and Krueger,

1991) and then theorized. By the way, after more than two decades, there is still debate on it

and on what are the factors that affect the income-pollution relationship. 

Several authors highlighted the logics behind the EKC relationship, in order to explain

why we should expect a hump-shaped relationship between income and pollution.

Arrow et al. (1995) suggest that the shape of the curve may reflect the natural progression of a

country’s development: clean agrarian economies rapidly grow with industrial and polluting

businesses until they reach cleaner and more effective ways to produce and grow. 

Additionally, Kijima et al. (2010) state that in the early stages of industrialization, when a

country is experiencing a fast industrial growth, the demand for a clean environment is low:

pollution  grows rapidly because  people  give  higher  priority  to  increasing  material  output

rather than improving the environment. By contrast, when citizens achieve a sufficiently high

standard of economic wealth  – income per capita –, they attribute an increasing value to

environmental  negative  outcomes;  therefore,  the  willingness  to  pay for  a  cleaner  country

increases by a greater proportion than income, thus environmental quality starts improving

(Roca, 2003). 

Another possible explanation of the EKC phenomenon derives from the fact that advanced

economies  export  their  pollution-intensive  production  processes  to  developing  countries,

where there is high demand of economic growth and environmental quality is perceived as a

minor  concern.  Andreoni  and  Levinson  (2001)  warn  that  this  process  of  environmental

improvement at the expenses of poorer countries is not indefinitely replicable: the world’s

poorest countries will not have other poorer countries to which they can export their dirty

activities in order to get clean from pollution.

Technical  progress  has  another  possible  role  in  causing  the  environmental  Kuznets  curve

(Stokey,  1998).  The  reason  is  that  a  change  in  technology  that  leads  to  more  effective

production  processes  would  generally  reduce  waste  and  pollution.  Furthermore,  new

technologies – the so-called green technologies – need less carbon-related resources and are

able to exploit clean and renewable energy sources.
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Grossman  and  Krueger  (1993)  also  suggest  that  environmental  quality  tends  to  worsen

especially when the structure of economy changes from rural to industrial. On the other hand,

when  energy-intensive  industry  is  replaced  by  knowledge-based  technology-intensive

industry, the overall pollution starts decreasing. 

Moreover,  services contribute to increasing the income per capita but do not significantly

affect the pollution level (Grossman and Krueger, 1993).

Furthermore, other scholars developed economic models in order to demonstrate that

the inverted U-shaped relationship between income and pollution can be derived also from a

theoretical point of view – and not only with empirical data analysis.

Theoretical models that try to explain the EKC may be classified into static and dynamic

models. One of the main differences between them is the time dimension: static models are

time-independent, while dynamic models take into account changes among time. Moreover,

while static models can be for instance production-based or utility-based models, the dynamic

ones include also policy-based models (Kijima et al., 2010). 

Following, two static and two dynamic models will be presented. 

Regarding the static models, Lopez (1994) is one of the first scholars to consider the

EKC relationship from a theoretical point of view. In the early 1990s there was very little

agreement  on  the  nature  of  the  linkages  between  trade  policy,  economic  growth  and

environmental degradation.  One of the most important contributes of this  model is  that it

considers the environment as a factor of production.

Lopez’s paper is built on three main pillars: first, instead of focusing on interactions between

economic  growth  and  environmental  degradation,  the  study  considers  only  a  one-way

connection  that  goes  from  “growth”  to  environmental  degradation,  defining  growth  as

“increases in the factors of production and technological change”; second, in order to measure

trade  policies,  the  model  considers  only  trade  liberalization  in  a  small  open  developing

country, defining liberalization as reduction in tariffs in the manufacturing industry; third, it

aims at providing a systematic analysis of polar cases using highly simplified models. 

Lopez basically develops a static model with a macroeconomic production function, starting

from a function of capital (K), labor (L) and technology (t), f (K, L, t). In order to consider the

environment as a factor of production, he extends f(⸱) to show that industry output is also a

function of the environmental factor of production. 
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In his analysis, Lopez further distinguishes whether the natural resource analysed has stock

feedback  productive  effects  and  whether  (and  how)  producers  and  consumers  internalize

externalities. The stock feedback productive effect of a natural resource means “whether the

changes in the stock of the environmental factor play a role or not in the output” (Lopez,

1994): for example, forest resource has a stock feedback productive effect in the long run,

while air quality does not. 

This theoretical study shows that effects of economic growth on the environmental quality

depend on both the nature of the resource stock effects on production and the internalization

of  these  stock  effects  by  producers.  In  detail,  for  resources  that  have  a  stock  feedback

productive  effect,  economic  growth  and  trade  liberalization  decrease  environmental

degradation  if  producers  internalize  the  stock  effect  (for  instance,  through  government

policies). On the other side, for resources that do not have stock effects on production, the

relationship between economic growth and environmental degradation is positive and linear,

no matter whether producers internalize or not.  By the way, it  is  shown that a non-linear

relationship between growth and pollution can be found if individual preferences are non-

homothetic – meaning that economic growth increases the value that consumers attribute to

environmental quality. Therefore, Lopez claims that, under certain conditions, an inverted U-

shaped relationship between economic growth and pollution is possible and realistic. 

Andreoni  and Levinson (2001)  contribute  to  the  EKC theoretical  framework  with

another  static  model:  they  present  a  theoretical  model  that  tries  to  simplify  some  prior

assumptions that lead to existing theoretical explanations for the EKC pattern.

Their model is a “simple and straightforward static model” (Andreoni and Levinson, 2001)

that, in contrast with prior explanations, shows how the inverse U-shaped pattern does not

require  dynamics,  predetermined  patterns  of  economic  growth,  political  institutions  or

externalities:  an  environmental  Kuznets  curve  pattern  can  be  derived  just  from  the

technological link between the consumption of a good and the abatement of its by-product. 

An  important  innovation  of  this  study is  the  concept  of  scale  economies  applied  to  the

pollution abatement: “the more pollution there is before abatement, the less costly it is to

abate one unit of that pollution” (Andreoni and Levinson, 2001).

They present the model starting from the simplifying assumption of an economy with only

one person – eventually showing that the results do not change if more persons are added to

the model. They draw the utility function of one person derived by the consumption of one

private good and a bad called pollution. Also, they derive the pollution function as a positive
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function of consumption and a negative function of environmental effort.  From these two

functions,  Andreoni  and  Levinson  indicate  under  which  general  sufficient  conditions  an

inverted U-shaped pollution-income relationship is real, showing that the EKC seems to hold

under  reasonable  theoretical  assumptions  (such  as  considering  the  private  good  and  the

pollution as normal goods). 

This  model  is  a  big  contribution  to  the  theoretical  literature  of  the  EKC because  of  its

implications. In contrast with Lopez, Andreoni and Levinson argue that the EKC does not

depend on externalities.  In  general,  they suggest  that  the environmental  Kuznets curve is

reasonable  and  may  result  from  simple  features  of  the  abatement  technology,  without

depending on sophisticate models. 

Regarding the dynamic models, one of the first contributions comes from John and

Pecchenino  (1994).  It  is  an  overlapping-generations  model,  where  each  individual  takes

decisions  on  the  allocation  of  his  income  between  goods  consumption  and  pollution

abatement effort.

John and Pecchenino consider an infinite-horizon economy with perfectly competitive firms

and individuals living for two periods. Agents born at date  t  have preferences defined over

consumption in  old age (t+1)  and an index of  the quality of  the environment  when they

consume, in  t+1 as well. They also put in their model a production function described by

capital  stock and labour,  and a function for environmental quality:  according to John and

Pecchenino,  the  evolution  of  environmental  quality  depends  on  both  the  consumption  of

goods and on the actions made by agents in order to improve it (which are costly).

Considering  a  developing  economy,  it  is  reasonable  to  imagine  little  capital  available.

Therefore, each agent in early generation spends no money for the environment, leading to a

worse environmental quality. After a certain period of rime, agents in latter generation get

richer  (accumulation  of  capital  stock)  and  start  to  invest  in  efforts  to  improve  the

environmental  quality in their  country.  In this  scenario,  an inverted U-shaped relationship

between income and environmental degradation is found. John and Pecchenino (1994) show

also  that  an  environmental  Kuznets  curve  holds  even  when  considering  technological

externalities in the model.

Another  important  dynamic  model  that  analyses  the  income-pollution  relationship

comes from Brock and Taylor (2004). They present the empirical findings of the EKC with a

theoretical model, the Solow one. Their model is known as “Green Solow Model”. 
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Brock  and  Taylor  start  from  the  fact  that  the  EKC  does  exist,  and  create  a  model  to

demonstrate it and link it with the technological progress. They explain the so called rise-and-

fall of emissions (inverted U-shape) with the role of technology introduced by Solow in 1956.

The Green Solow model predicts that fast initial growth of production overwhelms progress

in abatement, causing a period of initially rising emission levels; then, aggregate emissions

continue to rise even though emissions per unit of output are falling; finally, technological

progress in abatement overwhelms the slowing growth of output (Brock-Taylor, 2004). 

The Green Solow model provides also an empirical analysis: the regression model borrows

some Solow type regressors like population growth and savings rate, but it includes also a

proxy for pollution abatement costs and for technological progress. In their work, Brock and

Taylor  demonstrate  that  their  model  predicts  an  inverted  U-shaped  relationship  between

income and environmental degradation.

One feature of the Green Solow model is that it is country specific; this is a limit for our

analysis, since we need to assess what happens in an open economy, including cross-country

variables such as trade and foreign direct investments (FDI), for instance. By the way, the

Green Solow model  is  still  an important  contribution to the EKC literature,  since it  may

explain part of the EKC empirical findings, claiming that technology has a big role in the self-

adjustment path of emissions. 
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2.2 Empirical literature

The first empirical evidence of an inverted U-shaped relationship between economic

growth and pollution emerged with Grossman and Krueger’s (1991) study of the potential

impacts of North American Free Trade Agreement (NAFTA). This was the beginning of a new

idea about economic growth: if the EKC hypothesis was true, then economic growth may lead

to some environmental improvement (Bhagwati, 1993).

In  a  couple  of  years,  two additional  working papers  confirmed Grossman  and Krueger’s

(1991)  results  of  their  pioneering  study:  using  cross-country  analyses,  Shafik  and

Bandyopadhyay (1992) and Panayotou (1993) found that the relationship between income per

capita  and some pollution  indicators  follows a  hump-shaped curve.  Moreover,  Panayotou

(1993) first used the term “Kuznets” referring to the shape of the curve that revoked Kuznets’

earlier studies (1955).

These  findings  shed  new  light  on  the  debate  about  environmental  economics.  The  first

implication was that “growth could be a powerful way for improving environmental quality in

developing countries” (Panayotou, 1993). Unfortunately, the existence of the EKC hypothesis

is not unconditional, and still nowadays the validity of EKC is controversial: too many factors

influence the shape of the curve and it is difficult to control over their effects.

As above mentioned, the environmental Kuznets curve is a phenomenon that can be

observed from an empirical and statistical analysis.

In order to study the income-pollution relationship, most analysts apply reduced-form models,

where the pollution term is a quadratic function of income per capita. However, it must be

underlined that the relationship between income and pollution can draw different shapes. In

detail,  it  may  be  either  monotonic  or  non-monotonic.  In  the  first  case,  it  is  usually  a

monotonic increasing relationship: as soon as income rises, pollution increases as well. When

it is non-monotonic, most analysts claim to find an inverted U-shaped curve, even if some

others suggest the existence of an N-shaped relationship between income and pollution.

In order to graphically present these possible relationships between income per capita and

environmental degradation, Abid (2016) proposes the following model:

yit = αi + β1xit + β2x2
it + β3x3

it + εit
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Where  y is the natural logarithm of environmental indicator,  x is the natural logarithm of

income  and ε is  the  error  term.  Additionally,  t represents  time  and  i a  geographic  area

responsible for economic and social policies – for instance, a country or region. Finally, β are

the parameters to be estimated. 

Model  2.2.1 provides  the basis  for  understanding the  various  shapes  that  the relationship

between economic growth and environmental degradation can take. Figure 2.2.1 shows the

three main income-pollution relationships that are mostly found in literature. 

Figure 2.2.1 The possible patterns of the income-pollution relationship.

 

Case 1 represents a linear function, where the parameter β1 is positive and significant, and β2

=  β3 =  0.  This  is  the  case  of  a  monotonic  increasing  relationship  between  income  and

pollution.  Case 2 is  a quadratic  function:  namely,  this  is  the graphic representation of an

inverted U-shaped relationship – that is, the so-called environmental Kuznets curve. In this

case, the parameter β2 is negative and significant, while β1 > 0 and β3 = 0. Case 3 represents a

cubic function, where β1 > 0, β2 < 0 and β3 > 0. The parameter β3 of the cubic term captures

another possible pattern of the income-pollution relationship, and in particular it draws an N-

shaped curve (Abid, 2016). 

Regarding the possible inverted U-shaped ad N-shaped patterns, it is important to highlight

that the implications of these two different relationships are completely different, especially

from the environmental policies point of view. Indeed, while the environmental Kuznets curve

suggests that at some levels of income economic growth can reduce pollution, the N-shaped

curve states that the environmental quality will experience a new decrease in the long run (De
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Bruyn  et  al.,  1998).  If  an  N-shape  between  income  and  pollution  is  found,  the  main

implication is that economic growth alone cannot provide a clean environment.

The  reduced-form  is  helpful  to  evaluate  the  potential  quadratic  and  cubic  relationships

between  income  and pollution  but  does  not  give  any help  in  understanding  which  other

variables could influence this relationship. For this reason, Kijima et al. (2010) propose the

inclusion of other variables – and parameters – that can control for factors which are different

from income and environmental indicators. These variables can be added to the model as β4Z

and so on. Each β will be estimated through the use of statistical methods. 

One milestone empirical study about the environmental Kuznets curve is Schmalensee

and Strocker’s  (1998).  They contribute  to  the  EKC theory with  an  economic  model  that

investigates  the  relationship  between  CO2 emissions  per  capita  and  per  capita  income.

Claiming that carbon dioxide – together with other so-called greenhouse gasses – are likely

responsible of Earth’s climate becoming warmer, they project CO2 emissions through 2050

using reduced-form models estimated with national-level panel data for the period 1950-2050.

In the model, while using a flexible representation of the per capita CO2-GDP relationship,

they also include time and country fixed effects, handling forecast uncertainty explicitly in

their projections. The strength of this model is that it is simple, compared with many other

structural  simulation  models.  For  instance,  the  distributional  underpinnings  of  their

projections of CO2 emissions are easy to trace. Schmalensee and Strocker also claim that their

estimates provide a benchmark for the construction of simulation models.

The approach of the two scholars is, from one side to model similarities across countries in

CO2 emissions growth with economic development; from the other side, to use fixed effects

for the levels of emissions across time and countries.  For income and population growth,

Schmalensee  and  Strocker  use  the  same  assumptions  of  the  Intergovernmental  Panel  on

Climate  Change  (IPCC),  an  intergovernmental  body  that,  among  its  activities,  generates

scenarios of future greenhouse gas emissions until the year 2100. 

Results from their econometric model are interesting for two reasons: at first, worldwide CO2

emissions are higher than the IPCC forecasts in almost all the population and income growth

scenario.  Secondly,  Schmalensee  and  Strocker  find  evidence  of  an  inverted  U-shaped

relationship between CO2 emissions per capita and per capita income. 

This empirical study is a milestone of the EKC literature mainly for two reasons: its reference

to  fixed  country  and  time  effects,  and  its  results.  Indeed,  on  the  basis  of  the  IPCC

20



assumptions,  Schmalensee  and  Strocker  claim  that  the  environmental  Kuznets  curve

hypothesis holds for CO2 emissions.

This study has thus become a point of reference for future empirical EKC-related studies.

In the late 1990s, the number of EKC studies continued to grow. As a consequence of

these new studies about this complex phenomenon, analysts began to include more variables

to the first reduced-form models – presented in equation 2.2.1 – in order to capture the effects

of  several  factors  on the income-pollution relationship.  For  instance,  trade,  foreign direct

investments,  technological  improvements,  environmental  regulations  are  all  variables  that

may influence the EKC shape and must be taken into account (Stern, 2004). In addition, the

pollutant analysed was not only CO2:  several researchers started collecting data for water

pollutants as well (NO3 in Grossman and Krueger, 1995 and in Cole et al., 1997), and also for

other air pollutants (SO2 in Jie He, 2006 and Fodha and Zaghdoud, 2010). 

The new millennium is still experiencing a continuous growth in the number of EKC

studies. Many researchers have started seeking for the EKC in all types of countries, including

developing  countries,  transition  countries,  developed  countries,  then  collecting  data  for

different time intervals, accounting for a small or big number of variables. The main reason of

this increasing number of EKC studies is that literature is still controversial on its existence:

results do not always show that the EKC is real, and some analysts warn about the difficulty

of doing good econometrics, accounting for all possible variables (Stern, 2004).

Although  it  has  been  recognised  that  an  EKC  pattern  appears  as  an  empirical

regularity, there is still debate on it, due to the fact that the income-pollution relationship can

be affected by a great number of variables, and not all the researchers include the same ones

in their regression models. In fact, sometimes it might even happen that similar studies lead to

different results  when different variables are considered in the models. For instance,  both

Halicioglu (2009) and Boluk (2015) look for an EKC relationship between income and CO2

levels for Turkey. The only differences are that Halicioglu includes in his model a variable for

trade openness, and, while Halicioglu collects data from 1960 to 2005, Boluk includes also

data  for  the  years  2005-2010.  Results  state  that  Boluk  finds  an  EKC  for  Turkey  while

Halicioglu does not.

The main issue is that it is relatively simple to collect data and create a short model to find a

relationship between income level and environmental degradation, but what is most difficult

is to attribute the real impact of the possible causes of the EKC (Stern, 2004). 
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Following, some of the most important empirical studies results are described, together with

the most common choices on what to consider when making an empirical analysis of the

environmental Kuznets curve.

The earliest  environmental  Kuznets  curves  were  simple  quadratic  functions  of  the

levels of income; but this kind of regression allows levels of indicators to be lower than zero,

therefore it is more appropriate to use a logarithmic dependent variable to avoid any negative

results. The standard EKC regression model (Stern, 2004) is then:

ln(E/P)it = αi + γt + β1ln(GDP/P)it + β2(ln(GDP/P))2
it + εit

Where E represents the emissions, GDP the gross domestic product, P the population, and ln

indicates  the natural  logarithm. The first  two terms,  instead,  are  intercept  parameters  that

capture differences across countries and years. Hence, the basic assumption is that income

elasticity is the same in all countries. 

The model can be estimated with either time series, cross sectional or panel data. Time

series data are usually used when the study is analysing one single country over a period of

time; cross sectional data are used when observing several countries at a certain point of time;

panel data, instead, is a combination of both time series and cross sectional data, and therefore

it is the most common way to estimate the model. When deciding on which data to collect,

really few researchers take cross sectional data into account. Jiang et al. (2014), for instance,

use a cross sectional dataset from the Chinese manufacturing sector in order to investigate

which factors are related to emission intensity in China. Their findings highlight an inverted

U-shaped relationship between GDP per capita and three pollutants – SO2, waste water, soot.

By the way, almost all other authors use either time series data – when analysing one single

country –  or panel data – when computing data from more than one country together. 

Many researchers try to make regressions including both the fixed and random effects

models. For the fixed effects model, αi and γt are regression parameters, for the random effects

model, αi and γt  are components of the random disturbance. The issue with the random effects

model is that αi and γt and the explanatory variables cannot be correlated, otherwise the model

will  not  be  consistent.  It  is  possible  to  compute  the  Hausman  test  in  order  to  test  the
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inconsistency of the random-effects models – testing for correlation between the error and the

regressor.  Stern (2004) warns that many studies, after running the Hausman test and finding

that the random-effects model is inconsistent, simply estimate the fixed-effects model without

being aware of the differences between the two models. In detail, the parameters of the fixed

effects model depends on the country and time effects of the sample of data (Hsiao, 1986),

therefore they cannot be used to tell the future behaviour of other samples of data.

One example of how some regressions analyses  are  developed comes from Bernauer and

Koubi (2009): they use both the fixed and random effects estimations, but since the Hausman

test  shows  that  the  differences  in  the  coefficients  between  the  fixed  and  random effects

estimations do not differ significantly, they report only the random effects estimations. 

After  having  estimated  the  model,  if  an  inverted  U-shaped  relationship  between

income and pollution is found, the turning point can be detected as:

τ = exp(-β1/(2β2))

The turning point may vary across countries, depending on many factors, like the type of

pollutant analysed, the type of country, the degree of trade openness, the number of years

analysed.

Formula 2.2.2 is a reduced-form. This is helpful for directly measuring the impact of

income on environmental degradation, but on the other side it is not possible to catch the

underlying structural functions that lead to this kind of relationship (Grossman and Krueger,

1995). For this reason, some authors contribute in adding more variables to the basic formula.

Following, some of the main variables included in the EKC analysis will be presented.

Still referring to formula 2.2.2, the term E refers to the pollution in general. Several

types of pollutants exist in nature, and not all the researchers look for the same ones in their

studies. Pollutants in general can be divided into three main categories: air, water and solid.

Among air pollutants, we can further distinguish local from global ones. In the first group we

find for example SO2, CO, suspended particles (SPM) and N2O. Lopez (1994) argues that

local air pollutants are more likely to fit the environmental Kuznets curve hypothesis. The

reason is that local impacts may be internalized by a stand-alone economy, leading to the
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institution  of  environmental  policies  to  correct  those  negative  externalities  of  economic

growth. By the way, it is possible to look for EKC also studying other indicators of local

pollution: Hilton and Levinson (1998) estimate a model for automotive lead emissions in 20

Countries. On the other side, the most common global pollutant analysed when looking for

EKC is CO2, since it is considered to be one of the major causes of the greenhouse effect. It is

still controversial whether an EKC exists for carbon dioxide, and this may be another reason

why the majority of studies are still  looking for a relationship between income and CO2.

Ansuategi and Escapa (2002) argue that CO2 emissions do not have local and recognizable

effects on the environment.

The second category is composed of water pollutants. Usually, water quality indicators data

are taken from rivers. One of the most used indicators of water pollution is NO3 (Grossman

and Krueger, 1995). Also Cole et al. (1997) estimate a model for NO3, while Hettige et al.

(2000), Managi et al.  (2009) and Orubu et al.  (2011) control for organic water pollutants,

using Biochemical Oxygen Demand (BOD) as measure for it: BOD is defined as the amount

of oxygen required by aquatic bacteria to break waste  down (Orubu et  al.,  2011).  Shafik

(1994) finds an interesting N-shaped relationship between pollution and income. This result

seems to be confirmed by Orubu et al. (2011) as well: they show empirical evidence of an N-

shaped relationship between water and income in Africa.

The third category of pollutants should consider all the solid pollution, but very few literature

exists in the branch of the environmental Kuznets curve. Instead, many studies include several

different indicators of pollution, in order to assess whether the validity of EKC hypothesis is

influenced by the different types of pollutants (Faehn and Bruvoll, 2009; Kearsley and Riddel,

2010; Jiang et al., 2014; Cheng, 2016). Asici and Acar’s study (2016) is also noteworthy:

“Ecological Footprint” is used as indicator for pollution (EF is the  biologically productive

area needed to provide for consumers use).

By the way, it must be cleared out that the equation “same pollutant analysed = same result”

does not hold: for instance, Akbostancı et al. (2008) do not find EKC for SO2 in Turkey, while

Park and Lee (2011) find an EKC for SO2 in Korea Republic.

Noteworthy is also the analysis of  Fodha and Zaghdoud (2010): it studies the relationship

between income and both SO2 and CO2 emissions in Tunisia. The results of the study show

that an EKC exists for SO2 but not for CO2. Fodha and Zaghdoud explain this fact arguing that

SO2 is a local pollutant and CO2 has to be considered as a global pollutant; therefore, only

local pollutants display an inverted U-shaped curve. However, this explanation sounds a little

bit tricky, because we still need to consider that Tunisia is a transition country, and also many
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other analysts have already found an environmental Kuznets curve for CO2 in a lot of other

countries:  for  example,  Bin  Hitam  and  Binti  Borhan  (2012)  show  an  EKC  for  CO2 in

Malaysia, and Shahbaz et al. (2015) prove the existence of an EKC for CO2 in India. 

In general, it seems that carbon dioxide is the most difficult pollutant to analyse under the

EKC pattern, since the majority of studies and results are conflicting. Cole et al. (1997) for

instance find EKC for CO2 only in high levels of income. This result is also confirmed by

Bouznit and Pablo Romero (2016), who show an EKC for Algeria with a turning point at

220% of the current income. 

Since the early 1990s, some researchers (for instance Shafik, 1994) started adding a

cubic  term  in  order  to  control  for  possible  N-shaped  relationships  between  income  and

environmental degradation.

The cubic term is interesting, since several researchers disagree about the shape of the curve

when wider time-ranges are studied (Levinson, 2000). The main idea of assessing the cubic

term is that, if an N-shaped relationship is found, it means that a country’s pollution increases

as  income grows,  decreases  after  reaching the  turning GDP point,  and then  starts  a  new

increase as income continues to grow. It is still debated whether environmental degradation

actually begins to decrease for good (inverted U-shaped relationship) or the decline is only

temporary (N-shape). Ren et al. (2014) explain the N-shaped relationship between income and

CO2 in China with the effect of the rise of foreign direct investments in the long run. Clearly,

the policy implications of an N-shaped rather than a U-shaped relationship between income

and emissions are extremely different. When an N-shaped curve is found, one cannot just

believe that the economy is able to self-protect from environmental degradation.

Many authors claim that international trade may influence the EKC pattern (Suri and

Chapman, 1998; Cole, 2004). Some researchers define trade openness as the ratio of the value

of total trade to real GDP (Baek et al., 2009), some others describe it as a function of imports

and exports of goods (Bento and Moutinho, 2016). 

International trade has an impact on pollution through four main effects: scale, composition,

technique, technological (Ben Jebli and Ben Youssef, 2015). Scale effect links production to

pollution, and measures the increase in environmental degradation that would occur if the

economy were simply scaled up, keeping all the rest unchanged (Copeland and Taylor, 2004).

Composition effect states that the production of some dirty goods may be moved to countries

with less severe environmental regulations. Technique effect captures the pollution decrease
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due to the available technologies. Technological effect posits that there is the possibility that

international  trade  encourages  R&D  investments  on  green  technologies  as  a  reaction  to

competition. For this reason, trade influences environmental degradation, in a positive (i.e.

scale effect) or negative (i.e. technological effect) way, and many researchers add to their

models the variable of trade openness in order to capture its effects when seeking for an EKC

(Tamazian and Rao, 2010; Kohler, 2013). Cole (2004) shows that trade openness in OECD

countries  is  negatively  related  with  environmental  degradation,  while  Ben  Jebli  and  Ben

Youssef (2015) find that in Tunisia trade causes CO2 emissions.

These findings are consistent with the so called pollution haven hypothesis,  which

states that when developed countries look for externalizing their production sites, they pay

attention to profits; since pollution control is costly, they externalize their production plants

where pollution control costs are low; knowing this, developing countries, in order to attract

foreign  investments,  set  their  environmental  standards  below  socially-efficient  levels

(Levinson and Taylor, 2004). The hypothesis that weak environmental protection acts as a

“pollution haven” for migrating industries is strictly related with the environmental Kuznets

curve, and may affect it with a double effect: on one side, PHH is able to describe the increase

of dirty emissions in developing countries as an inflow of waste from developed economies;

on the other side,  that transfer of waste could cause a reduction of pollution in the post-

industrial  countries, showing an inverted U-shaped relationship between income level and

pollution (Copeland and Taylor, 2004).

Weak environmental regulation in developing countries generates either an export advantage

or attracts FDI. Export advantage means that developing countries, thanks to lower abatement

costs, are able to produce and export goods at a lower price; trade can then be a good proxy to

control for this fact. Foreign direct investments are a measure of how many companies decide

to relocate their production plants in developing regions, where environmental regulations are

weaker. For this reason, not only trade but also the level of FDI is a good proxy to check

whether  pollution  haven hypothesis  can  explain  the  environmental  Kuznets  curve  or  not.

Empirical evidence of FDI affecting emission levels are found for example by Jie He (2006)

for SO2 in China,  Pao and Tsai (2011) for CO2 in BRIC – Brazil,  Russia, India, China –

countries and Atici (2012) for CO2 in ASEAN – Association of Southeast Asian Nations –

countries.

Again, this view is not universal. Tang and Tan (2015) control for FDI and do not find any

evidence of the pollution haven hypothesis for Vietnam, and also Lee and Oh (2015) find
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insignificant results for PHH in China. However, Cheng (2016) deeply investigates and states

that green technologies prevent pollution havens for China. These last findings may influence

Chinese government’s future environmental policies. 

Empirical literature shows that researchers decide to compute the EKC analysis both

on single and multiple countries, without any particular preference. Burnett et al. (2013), for

instance, analyse one country (United States); however it is possible to compute a panel data

of many countries, like in Aller et al. (2015), where 177 countries are taken into consideration.

In between, we can find studies with different numbers of countries: the most common choice

is to analyse a peer group of states with common characteristics. Cole (2004) finds EKC for

21 OECD countries, Narayan (2010) shows conflicting results when analysing 43 developing

countries. Another possible common characteristic may be geographic: Orubu (2011) collects

data  for  47  African  countries,  finding  that  EKC  holds  for  SPM  but  not  for  water.  An

interesting research has been conducted by Baek (2015): he seeks for EKC for 12 nuclear

generating countries displaced all over the world, and finds out that there is no inverted U-

shaped relationship between income and CO2 for those countries; surprisingly, the relationship

found is  not even monotonically increasing,  but monotonically decreasing.  Sinha and Sen

(2016)  instead  look for  an  EKC for  CO2 in  the  BRIC countries,  and their  results  shows

evidence of a hump-shaped relationship for Brazil and India but not for Russia and China,

ceteris paribus. 

Another important choice of what to analyse is regarding the type of country. There is

a  big difference between looking for EKC in a  developing country rather  than in  a high

income country. Theoretically speaking, studies for post-industrial countries are more likely to

find an EKC than in developing ones, due to production decentralization,  regulations and

green technologies. Iwata et al. (2010), for instance, find an EKC for CO2 in France, while

Akbostancı et al. (2009) do not find EKC for CO2 in Turkey (less economically developed

country than France). What Ben Jebli and Ben Youssef (2015) find for Tunisia is noteworthy:

they explain the results of the study (no EKC) with the fact that Tunisia may have not reached

the turning point yet; they control also for renewable and non-renewable energy consumption

and predict that “a continuous economic growth will encourage the use of renewable energy,

leading to a reduction in per capita CO2 emissions and an inverted U-shaped EKC” (Ben Jebli

and Ben Youssef, 2015). Similar conclusions are found by Nasir and Rehman (2011): EKC
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does not hold in the short-run for carbon emissions in Pakistan, but it holds in the long-run,

suggesting that EKC is a long-run phenomenon. 

The empirical  contributes  to the EKC literature are  many;  the majority of  authors

agree on the fact that, if an environmental Kuznets curve for a particular country is found, it

depends not only on what happens inside that country (Green Solow model), but also on the

interactions with the rest of the world. In particular, trade has a big impact on it. Composition

effect may lead to the pollution haven hypothesis, so that high regulation countries will lose

part  of the dirty industries and poor countries will  get  them (Dinda,  2004); technological

effect states that international trade permits the diffusion of clean technology (Reppelin-Hill,

1999). 

By the way, the EKC literature is not free of critiques. As a response to the mixed

results of the EKC-related studies, some authors have started moving critiques to the general

concepts represented by the environmental Kuznets curve. 

Many of them derive from the fact that a great number of factors that influence the EKC are

interdependent, therefore it is difficult to determine which ones may dominate and govern the

shape of EKC (Ezzati et al., 2001). 

Two main types of critiques are conceptual and methodological. Regarding the conceptual

critique,  it  looks  quite  clear  that  the  EKC cannot  be  generalized:  too  many factors  and

variables  may  influence  the  EKC  pattern.  Regarding  the  methodological  critique,  Dinda

(2004) warns  that  there  are  no  studies  that  consider  as  indicator  for  pollution  the  global

environmental degradation level instead of country’s pollution or emission levels. The use of

Environmental  Degradation  Index  (EDI)  and  an  appropriate  measure  of  economic

development  (e.g.  Human Development Index)  could allow the creation of a global  EKC

model (Jha and Bhanu Murth, 2003). Other methodological critiques point at the fact that “it

is easy to do bad econometrics” (Stern, 2004): too little effort has been put to the statistical

properties of the data used, therefore some results on the EKC models may not be reliable. He

states that when he uses appropriate techniques he finds evidence against the EKC hypothesis

(Perman  and  Stern,  2003).  Furthermore,  Stern  (2004)  warns  that,  even  if  a  relationship

between income and pollution is found, econometrics should further test whether it is valid or

it is a spurious correlation. 

Other  authors’ critiques  start  from  the  conflicting  results,  trying  to  highlight  the

reasons behind their occurrence. Regarding the mixed results when different pollutants are
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analysed,  Lee and Oh (2015) claim that local pollutants are more likely to decrease when

income rises; that is because their negative outcomes are local and citizens feel a bigger need

to clean such pollutants up. Concerning the disagreements on the shape of the curve, Levinson

(2000) suggests that for most countries and pollutants the real income-pollution relationship is

N-shaped. In his opinion, the reason why most studies find evidence of a hump-shaped curve

is  that  they do not  analyse wider  time intervals,  otherwise they would  likely find a  new

pollution increase. 

Suri and Chapman (1998) add a noteworthy intuition to the EKC empirical literature, warning

that a global pollution reduction is unlikely to occur. Indeed, they claim that if the pollution

haven hypothesis is mainly responsible of the pollution reduction in wealthy nations, during

their development, poorer countries will not be able to export their pollution abroad. For this

reason,  looking  at  the  EKC  at  the  country  level  does  not  solve  the  global  issue  of

environmental degradation (Suri and Chapman, 1998).

Considering the significant increasing number of EKC studies, and taking into account

the differences in variables considered in the models and the conflicting results, there is the

possibility to exploit a meta-analysis collecting data and results from existing EKC studies, in

order to try to deeply investigate into what is hidden behind the differences across the studies.

Meta-analysis  is  a  statistical  technique  used for  combining findings  from multiple

independent studies.

The basic idea of meta-analysis is that each individual study cannot reach the unknown truth

because  of  limited  data  and  statistical  errors.  For  this  reason,  combining  the  results  of

different empirical studies may lead to the unknown truth thanks to the use of this statistical

approach. The aim of meta-analysis is then to highlight all the hidden relationships among the

studies that are not visible when they are considered individually.

Glass (1976) defines meta-analysis as the “analysis of the analyses”. It is a useful tool when

dealing with a high number of studies that show mixed variables and results. Moreover, meta-

analysis can provide more generalised and reliable results rather than a single study (Cavlovic

et al., 2000). 
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Three notable meta-analyses about the EKC relationship have been conducted in the

past: Cavlovic et al. (2000), Li et al. (2007) and Koirala et al. (2011). 

Cavlovic  et  al.  (2000)  combine  the  results  found  in  the  1990s  by  the  first  EKC

analysts, testing the validity of the EKC hypothesis. Their contribute is significant for two

reasons:  firstly,  for  the  first  time  25  EKC-related  studies  are  statistically  summarized;

secondly, the meta-analysis results are helpful to predict new income turning points (ITP) for

eleven different pollutants. Results of this meta-analysis indicate that both methodological

choices  and  pollutant  types  affect  income  turning  points.  In  detail,  those  studies  that

investigate the empirical EKC relationship for developed countries tend to find lower ITPs.

Moreover, the Cavlovic et al. suggest that studies including trade effects as an explanatory

variable rather than income alone tend to find higher ITPs. This paper provides a deeper focus

on the ITPs rather than the methodological variables that may drive the EKC. In general,

Cavlovic  et  al.  demonstrate  that  methodological  choices  of  researchers  can  significantly

influence results.

Li et al. (2007) extend Cavlovic’s survey. In this meta-analysis, they collect data from

77 empirical EKC studies from 1992 to 2005. Li’s contribute is from one side in the data

expansion, from the other side in two new modelling approaches. This meta-analysis uses a

multinomial logit model in order to investigate the general pattern in the EKC relationships,

and then applies a tobit model in order to estimate the ITPs, especially for the greenhouse

gases. Greenhouse gases are divided into two categories: “anthropogenic activity-related” and

“chemically active”. CO2 is part of the first group, and no statistically significant evidence of

the  existence  of  an  EKC is  found  for  the  anthropogenic  activity-related  gases,  therefore

including  CO2.  Regarding  the  chemically  active  gases,  instead,  the  EKC  relationship  is

statistically significant, but the income turning point is seven times the world average GDP

per capita. With regards to the methodological choices, Li et al. find that controlling for more

variables, using longer time periods and gathering data for multiple countries all increase the

probability of accepting the environmental Kuznets curve.

The third notable contribute to the EKC meta-analysis literature comes from Koirala et

al.  (2011).  This  study  manages  to  further  enlarge  the  dataset,  collecting  data  from  103

empirical EKC studies from 1992 to 2009. Koirala uses cluster estimation techniques in order

to  correct  for  heterogeneity,  and  takes  into  consideration  twelve  different  environmental

quality indicators, including six air pollutants. Results show that the type of environmental

quality indicator affects the presence of an EKC. The inverted U-shaped relationship with

income seems to be confirmed for landscape degradation, water pollution, agricultural wastes
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and some indicators for air pollution. However, when considering CO2, this study is consistent

with Li et al. (2007): the income turning point is too high (ten times the world average GDP

per capita) and holds only for extremely high growth scenarios. On the other side, Koirala et

al. confirm that some methodological choices affect the probability of finding the EKC. In

detail,  the number of observations, the use of multiple countries, adding a control for the

country development status and a variable for trade all positively influence the inclination to

accept the EKC hypothesis.
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3. Data

3.1 Dataset description

The aim of this work is to find the reasons why there is such an important mismatch of

empirical  results  when  scholars  look  for  an  EKC  relationship  between  income  and

environmental degradation. To pursue this objective, I created a dataset collecting information

from 116 EKC-related studies which belong to 29 journals, controlling for methodological

and country-specific variables in order to highlight any possible features that may affect the

acceptance or rejection of the environmental Kuznets curve hypothesis.

This work consists of a panel dataset composed of 134 observations from 116 EKC

studies. Several studies estimate more than one model, taking into account different features –

for  instance,  different  pollutants  or  various  time  intervals.  Therefore,  each  model  with

different features and results is counted as a single observation. This is the reason why the

dataset is composed of a higher number of observations rather than studies.

Table 3.1 shows the publication years of the 116 studies. The oldest study that belongs

to this dataset was published in 1998, while the earliest one was published in 2016. 

It is important to notice that 67.24% of the studies I considered were published after 2011,

when the most recent notable EKC meta-analysis was published by Koirala et al., collecting

observations from 103 EKC-related studies.

Furthermore, the selection of data is different from the previous meta-analyses: I considered

published studies only,  while previous meta-analyses gathered data also from unpublished

papers (Koirala et al., 2011), working manuscripts (Li et al., 2007) and book chapters (Li et

al., 2007; Koirala et al., 2011).
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Table 3.1: Publication years of the EKC studies.

Publication Year Number of studies Percent Cum.

1998 2 1.72 1.72

2000 1 0.86 2.59

2001 1 0.86 3.45

2003 2 1.72 5.17

2004 1 0.86 6.03

2005 3 2.59 8.62

2006 2 1.72 10.34

2007 1 0.86 11.21

2008 5 4.31 15.52

2009 10 8.62 24.14

2010 3 2.59 26.72

2011 7 6.03 32.76

2012 8 6.90 39.66

2013 10 8.62 48.28

2014 13 11.21 59.48

2015 22 18.97 78.45

2016 25 21.55 100.00

Total 116 100.00
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3.2 Variables

The  dependent  variable  I  will  use  in  this  work  shows whether  the  environmental

Kuznets curve is found in each study. Therefore, the dependent variable named “EKC” is

defined in the dataset as a dummy variable with either 1 (if the study finds evidence of an

environmental Kuznets curve relationship between income and pollution) or 0 (if the study

does not find evidence of any EKC) values.

The following independent variables collect information from how scholars study the

EKC relationship. Variables descriptions are summed up in table 3.2.

The first independent variable in the model controls for the types of dataset used by scholars.

In particular, this variable – named PANEL – captures the choice of running a panel data

analysis rather than using time series or cross-sectional data.

Usually, in empirical EKC-related studies, panel data are suitable to evaluate information over

time from several countries – or regions within the same country, while time series are mainly

used when the study collects data over time for a single country or region.

Another  variable  measures  the  length  of  time  coverage  in  data  and  it  is  named

N_YEARS. If an environmental Kuznets curve is found in a given country, it  will clearly

show up over a  certain time span:  as  long as income per  capita  grows, pollution at  first

increases,  and  then,  after  several  years,  will  start  its  decreasing  process.  Therefore,  it  is

possible to expect that the likelihood of finding an EKC increases when a higher number of

years is taken into account.

It is normal to expect that looking for an EKC for China collecting data from 1950 to

1980 may lead to different results rather than collecting data from 1980 to 2010, even if the

data coverage period is 30 years in both cases. This is one of the reasons why it is important

to control also for the historic period considered in the study. In my dataset, the PERIOD

variable has three categories: for data collected after 1970, for data collected after 1985 and

for broader time intervals.

With  the  variable  named  N_COUNTRIES,  I  control  for  the  number  of  countries

analyzed in the EKC studies. Some researchers collect data for a single country, some others

group more countries in their models. Usually, when there are several countries analysed in

one  study,  they  have  something  in  common:  they  may  be  grouped  together  because  of

geographic or economic similarities, for example.
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The acceptance or rejection of the EKC hypothesis may also be affected by the type of

countries analysed (D_COUNTRIES). It is possible to expect that the likelihood of finding an

EKC increases when both developing and developed countries are considered in one study. In

fact, developing countries may show a positive relationship between income and pollution

(which is the rising branch of an environmental Kuznets curve), while developed countries

may draw the  falling  branch  of  the  curve,  because  the  relationship  between  income and

pollution for developed countries could be negative, due to the fact that they have access to

green technologies (Brock and Taylor, 2004) and care more about pollution (Lopez, 1994).

For my analysis, each country is attributed to a category: developing, transition, high income,

based on the World Bank List of Economies (July 2016). 

The POLLUTANTS variable captures the differences in pollutants analysed by the

studies, to check whether the choice of pollutant may affect the relationship between income

and environmental degradation. There are plenty of possible pollutant indexes, but I decided

to  control  for  the  two  most  studied  and  controversial  air  pollutants,  SO2 and  CO2.  It  is

expected that papers controlling for SO2 are more likely to find an environmental Kuznets

curve since SO2 is a local pollutant and its local impacts may be internalized by a stand-alone

economy (Lopez, 1994). On the other side, CO2 is a global pollutant and it is responsible for

the  greenhouse  effect:  hence,  it  is  extremely  important  to  assess  its  influence  on  the

environmental Kuznets curve, since global economic policies could be affected.

It is possible to expect that the more variables are added to a model (CONTROLS), the

more accurate the results on the EKC will be. The reason lays on the fact that adding more

controls could lead to a better understanding of interdependencies between the factors that

influence the income-pollution relationship, avoiding on the other side the issue of omitted

variables bias (Stern, 2004). This variable shows then the number of independent variables

included in each EKC model.

Several regression models can be used to analyse panel data in an EKC-related study.

In particular, Stern (2004) warns on the fact that the early EKC researchers preferred to run

fixed effects models in order to find an inverted U-shaped relationship between income and

pollution because random effects  models  used to  give inconsistent  results.  Therefore,  this

variable – named METHOD – aims at testing whether there is still some influence of the fixed

effects models on the probability of accepting the EKC hypothesis also in the recent studies.

The so-called  FDI  variable  controls  for  both  trade  and foreign  direct  investments.

Some theories suggest that trade affects environmental degradation, both in a positive (scale

effect)  and negative  (technological  effect)  way (Ben Jebli  and  Ben Youssef,  2015).  FDI,
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instead,  measures  a  developing  country’s  degree  of  attractiveness  to  Foreign  direct

investments. This variable shows which papers include in their models a controlling variable

for FDI or for trade.

The so-called pollution haven hypothesis tries to explain part of the EKC theoretical

framework: it suggests that developed countries get “cleaner” at the expense of developing

countries, where dirty activities and waste are sent to (Levinson and Taylor, 2004). Therefore,

the  PHH  variable  provides  information  on  which  studies  confirm  the  pollution  haven

hypothesis.

Table 3.2: Definitions and descriptions of independent variables.

Variable Definition Variable Description

PANEL Panel data indicator variable equals to 1 if the study uses panel data,

otherwise 0.

N_YEARS Data coverage period (years).

PERIOD Time period variable equals to 1 if the time interval analysed begins

after 1970, 2 if it begins after 1985, 3 if it covers a broader time period.

N_COUNTRIES Number of countries analysed in the EKC study.

D_COUNTRIES Country  indicator  variable  equals  to  1  if  the  EKC  study  includes

developing countries only; 2 if it includes transition countries only; 3 if

it includes high-income countries only; 4 if it includes countries that

belong to more than one category.

POLLUTANTS Pollutant indicator variable equals to 1 if the study analyses CO2 only;

2 if  it  analyses  SO2 only;  3  if  it  analyses  many pollutants  at  once,

otherwise 4.

CONTROLS Number of independent variables in the EKC model.

METHOD Method indicator variable equals to 0 if the EKC study uses no panel

data; 1 if it uses runs both fixed effects and random effects models; 2 if

it runs RE only; 3 if it runs FE only, otherwise 4.

FDI Trade indicator variable equals to 1 if the EKC study controls for FDI;

2 if it does not control, 3 if it controls for trade.

PHH Policy  indicator  variable  equals  to  0  if  the  EKC  study  does  not

consider the pollution haven hypothesis; 1 if its findings do not support

the PHH; 2 if there is empirical evidence of PHH.
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3.3 Descriptive statistics

This  study  estimates  the  effects  of  methodological  factors  on  the  acceptance  or

rejection of the environmental Kuznets curve in 116 empirical studies.  The dataset contains

134 observations  from 29 EKC-related  journals,  one  dependent  variable  and a  set  of  10

independent variables. Summary statistics are reported in table 3.3.

For what concerns the dependent variable named “EKC”, it is interesting to note that

73%  of  EKC-related  studies  considered  in  my  dataset  finds  empirical  evidence  of  the

environmental Kuznets curve. Even if most of the studies find empirical evidence of an EKC,

there is still a lot of debate on its nature.

Regarding the independent variables, 69.4% of the studies collected PANEL data for

their analyses.

The  average  data  coverage  period  of  the  studies  (N_YEARS) is  31  years,  with  a

standard deviation of 26.7. The smallest data coverage period is 1 year and the highest one is

173. The third quartile indicates that 75% of the studies collected data from periods that are

smaller than 39 years.

Regarding the PERIOD variable, almost half  of the EKC studies collect data from

recent  years:  46%  of  the  studies,  in  fact,  have  a  period  of  analysis  starting  after  1985

(PERIOD_1), while 36% of them have a time interval starting after 1970 (PERIOD_2). A

small portion of the studies (17% - PERIOD_3) consider broader time periods.

The average number of countries analysed is 20, with a standard deviation of 34.6. The

N_COUNTRIES variable has a wide range of values, from one single country of analysis up

to 177. It is important to note that the median is 4: compared with the average number of

countries (20), this highlights the fact that a big portion of EKC studies tends to analyse a few

– or even one – countries. In fact, the first quartile is still 1, which means that more than 25%

of the studies in my dataset run an environmental Kuznets curve analysis at a single-country

level.

EKC studies consider different types of countries in their models: 18.6% of them seek

for  the  environmental  Kuznets  curve  for  developing  countries  (D_COUNTRIES_1),  and

18.6% as well for high income countries (D_COUNTRIES_3), while the biggest portion of

the  studies  in  my  dataset  make  their  analyses  for  transition  countries  (44%  -

D_COUNTRIES_2),  maybe  because  transition  countries  are  the  most  controversial  and
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interesting to analyse in terms of economic growth and pollution. Only 17.9% of the studies

take into consideration countries belonging to different categories.

More  than  two-thirds  of  the  EKC  studies  consider  pollution  levels  of  CO2

(POLLUTANT_1), while only 11% analyse SO2 (POLLUTANT_2). Such a big difference

could be explained by the fact that researchers prefer to investigate the effects of income on

CO2 levels because it is a global pollutant and it is considered as one of the main causes of

global warming.

The number of independent variables (CONTROLS) considered in each EKC-related

study has an average of 5.37 and a standard deviation of 3.10, with a minimum value of 1 and

a maximum number of independent variables of 19. The value of the third quartile –  7 –

shows that the majority of researchers prefer to include few extra variables in their models,

which is not really wise if one wants to investigate the deep causes of EKC.

For what concerns the method used to analyse panel data, 30.5% of the studies do not

use panel data (METHOD_0), 6.7% run both fixed effects and random effects models finding

no  significant  differences  between  them  (METHOD_1),  11.9%  run  a  RE  model  only

(METHOD_2),  while 35.1% run a FE model (METHOD_3).  This suggests that the fixed

effects regression is the most used in my dataset of EKC studies. 15.7% of them used other

types of regression models (METHOD_4).

From the FDI variable, we learn that researchers tend to add few extra independent

variables  in  their  models.  In  fact,  only  26.1%  of  the  studies  control  for  foreign  direct

investments (FDI_1), and 29.9% added a trade variable (FDI_3). Almost half of the studies

(44.0%) in my dataset do not consider the idea of adding a trade variable (FDI_2).

Regarding the pollution haven hypothesis, 36.6% of the studies do not investigate it

(PHH_0),  52.2%  of  them  do  not  find  empirical  support  for  pollution  haven  hypothesis

(PHH_1),  while  19.4%  find  significant  evidence  of  the  presence  of  pollution  havens

(PHH_2). 
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Table 3.3: Summary statistics

Variable N Mean sd Min p25 p50 p75 Max

EKC 134 .7313433 .4449242 0 0 1 1 1

PANEL 134 .6940299 .4625463 0 0 1 1 1

N_YEARS 134 31.26866 26.70394 1 16 29 39 173

PERIOD_1 134 .3656716 .4834252 0 0 0 1 1

PERIOD_2 134 .4626866 .5004767 0 0 0 1 1

PERIOD_3 134 .1716418 .3784837 0 0 0 0 1

N_COUNTRIES 134 20.52985 34.60164 1 1 4 25 177

D_COUNTRIES_1 134 .1865672 .3910255 0 0 0 0 1

D_COUNTRIES_2 134 .4477612 .4991295 0 0 0 1 1

D_COUNTRIES_3 134 .1865672 .3910255 0 0 0 0 1

D_COUNTRIES_4 134 .1791045 .3848786 0 0 0 0 1

POLLUTANTS_1 134 .6865672 .4656293 0 0 1 1 1

POLLUTANTS_2 134 .1119403 .3164761 0 0 0 0 1

POLLUTANTS_3 134 .0820896 .2755311 0 0 0 0 1

POLLUTANTS_4 134 .119403 .3254789 0 0 0 0 1

CONTROLS 134 5.365672 3.096302 1 3 4 7 19

METHOD_0 134 .3059701 .4625463 0 0 0 1 1

METHOD_1 134 .0671642 .2512454 0 0 0 0 1

METHOD_2 134 .119403 .3254789 0 0 0 0 1

METHOD_3 134 .3507463 .4789943 0 0 0 1 1

METHOD_4 134 .1567164 .3648973 0 0 0 0 1

FDI_1 134 .261194 .4409338 0 0 0 1 1

FDI_2 134 .4402985 .4982857 0 0 0 1 1

FDI_3 134 .2985075 .4593204 0 0 0 1 1

PHH_0 134 .3656716 .4834252 0 0 0 1 1

PHH_1 134 .5223881 .5013728 0 0 1 1 1

PHH_2 134 .1940299 .3969359 0 0 0 0 1
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4. Methodology

4.1 Meta-analysis

Meta-analysis is the statistical approach I use to investigate which factors drive the

inclination to accept or reject the environmental Kuznets curve hypothesis in the empirical

literature.

Meta-analysis was defined by Glass in 1976 as the “analysis of the analyses”. It refers

to the statistical way of analysing a large sample of results collected from empirical studies

(Glass, 1976).

The main purpose of meta-analysis is to integrate the results of a group of studies on a

defined subject  and identify common patterns that  may be hidden if  the studies are  only

considered individually.  Sources of agreement and disagreement among the results  or any

other interesting relationships may become known in the context of multiple studies. 

Meta-analysis is a useful tool when the number of empirical studies grows at a very high rate

and the field of analysis is wide and complex (Glass, 1976). For instance, empirical studies on

the EKC hypothesis may suffer from differences in variables analysed and countless other

factors.

The main difference between a primary analysis and a meta-analysis approach is that

primary analysis  is the original analysis  of data in a research study, where the researcher

collects  primary data  and applies  a  statistical  method to study the  phenomenon.  A meta-

analysis, instead, takes into consideration several research studies together: observations are

individual  study  results,  where  one  specific  outcome  is  the  dependent  variable,  and

characteristics  of  individual  studies  compose  the  independent  variables  (Glass,  1976).

Running a meta-analysis  can therefore lead to multiple advantages: rather than relying on

individual research studies, it  can create the possibility of improving statistical inferences,

aiming at providing tangible conclusions that may be able to influence policy decisions on

multiple levels (Hunt, 1997).

On  the  other  side,  meta-analysis  is  not  that  easy  to  handle  with,  since  many

methodological  concerns  could  lead  to  misleading  results,  like  improper  comparison  of

variables,  publication  bias  due  to  wrong  selection  of  papers,  or  heterogeneity  in  data

(DeCoster, 2004; Koirala et al., 2011).
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In  this  work,  in  order  to  avoid  the  earliest  studies,  which  may contain  econometric  and

methodological mistakes that can possibly lead to biases and wrong results, my dataset is

composed of studies published during a time interval that goes from 1998 to 2016.

The first meta-analytic approach we have trace of is a paper published in 1904 by Karl

Pearson,  while  the  term “meta-analysis”  was coined by Glass  in  1976,  who applies  it  to

educational research. Lately, the use of meta-analysis spread among several different fields,

from medical research to psychology, economics, biology and more.

The  first  meta-analysis  on  EKC-related  studies  was  conducted  by Cavlovic  et  al.

(2000),  with  the  aim  of  examining  the  relationship  between  economic  growth  and

environmental degradation. Cavlovic et al. mainly control for several environmental pollution

indexes and find significant evidence of EKC for CO2, SO2 and hazardous waste. Li et al.

(2007)  implement  Cavlovic’s  study,  adding  new  observations,  new  variables  and  new

modelling approaches  for the data analysis.  With respect to  anthropogenic activity-related

gases, Li et al. find no statistical evidence of any EKC between income and environmental

degradation.  The  research  of  Koirala  et  al.  (2011)  represents  the  latest  meta-analysis

conducted  so  far  on  the  EKC-related  studies.  Koirala  et  al.  highlight  the  presence  of  an

environmental Kuznets curve for several liquid and solid local pollutants and for some air

pollutants  as  well,  but  results  for  CO2 show  an  inverted  U-shape  relationship  only  for

unrealistic scenarios.

Since then, the number of empirical EKC-related studies has continued to grow at extremely

high rates.
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4.2 Linear regression

In order to investigate what drives the inclination to accept or reject the environmental

Kuznets curve hypothesis, the first model I present is based on the following linear regression:

Yi = β0 + βj Xij + ε 

For journal  i (i=1…n)  where  Xj (j  = 1…k,  with  k  = 10) is  a  set  of ten control variables

presented in chapter 3.  The dependent variable  Y takes the form of a dummy variable, with

either 0 or 1 value. 

The above approach is also called Linear Probability Model (Soderbom, 2009). If we

take expectations on both sides of the equation 4.2.1, we get: 

E (Y | Xj; βj) =  β0 + βj Xj

Then, we can conclude that, just like under unconditional probabilities E (Y) = Pr (Y = 1), the

conditional probability that Y equals one is equal to the conditional expected value of Y:

Pr (Y = 1 | X) = E (Y | Xj; βj)

Pr (Y = 1 | X) =  β0 + βj Xj

 

Equation 4.2.3 is a binary response model. Here, the probability of success (Y = 1) is a linear

function of the explanatory variables in the vector X (Soderbom, 2009). 

The main reasons why it is common to run a linear probability model lay on the fact

that it is based on the well-known and widely used linear and multiple regression models,

which are straightforward to estimate.

The LPM is also easy to interpret. As shown above, the predicted value  of  Y is the

probability that the dependent variable equals one, given  X. Furthermore, the parameter  βj

indicates the change in the “success probability” Y = 1, resulting from a one-unit change of

the independent variable, holding everything else fixed. 

ΔPr (Y = 1 | X) = βjΔXj
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On the  other  side,  the  use  of  a  linear  probability  model  for  a  dummy dependent

variable has to deal with some important drawbacks.

First of all, the LPM does not bound the predicted probability in a 0-1 unit interval. As

shown in figure 4.2.1, the linear probability model may produce estimates which are either

less than 0 or greater  than 1.  Since estimates are  probabilities,  it  is  hard to  give them a

meaning if they do not fall within a 0-1 range.

A related problem is that it does not make sense to state that a probability is “linearly related”

to a continuous explanatory variable: if it were, the independent variable would inevitably

lead P (Y = 1 | X) outside the unit interval. For this reason, since the relationship between the

predictors and the dependent variable is likely to be non-linear, a regression line does not fit

the data so accurately, as shown in figure 4.2.1.

Another  shortcoming  of  the  likear  probability  model  is  that  error  terms  are

heteroskedastic by definition (Soderbom, 2009). Indeed, if Y takes the value of 1 or 0, then the

variance of the errors will be:

var (ε) = P (1 – P)

var (ε) = (β0 + βj Xj) (1 - β0 - βj Xj)

Which varies with the independent variables Xj. One way of overcoming this issue is to obtain

estimates of the standard errors that are robust to heteroskedasticity.
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An additional issue with the LPM has to deal with the distribution of the error term.

Since the error term can only take two values, it  has a binomial distribution instead of a

normal one.  Because of that, hypothesis testing in this model may be inaccurate (Maddala,

1983).

In  the  linear  probability  model  of  this  work,  in  order  to  solve  the  problem  of

heteroskedasticity, I use heteroskedasticity-consistent robust standard error estimates.

Two different statistical models have been developed for inference from a collection of

studies, the fixed effects and the random effects models (Konstantopoulos, 2006). In order to

assess whether the most appropriate model is the fixed or the random effects one, it is not

possible  to  simply  run  the  common  Hausman  test  (1978)  when  dealing  with

heteroskedasticity-consistent robust standard errors.

A test of fixed vs random effects can also be seen as a test of overidentifying restrictions

(Sargan, 1975; Hansen, 1982). This test is known as Sargan-Hansen test. The fixed effects

estimator  uses  the  orthogonality  conditions  that  the  regressors  are  uncorrelated  with  the

idiosyncratic  error;  the  random  effects  estimator  uses  other  additional  orthogonality

conditions that the regressors are uncorrelated with the group-specific error. These additional

orthogonality conditions are the so-called overidentifying restrictions (Baum et al., 2006).

This  overidentification  test  uses  the  artificial  regression  approach  described  by  Arellano

(1993), where a random effects equation is re-estimated, increased with additional variables

consisting of the original regressors transformed into deviations-from-mean form. The test

statistic is a Wald test of the significance of these additional regressors.

Under homoskedasticity, this test statistic is asymptotically equivalent to the above-mentioned

Hausman test; but in addition to that, the Sargan-Hansen test can extend to heteroskedastic

robust versions (Baum et al., 2006).

The null hypothesis of the Sargan-Hansen test is that the random effects model is consistent. A

high p-value of the statistic would mean a failure in rejecting the null hypothesis. By contrast,

a small p-value would lead to a rejection of the null hypothesis that the random effects is

consistent, switching the preference to the fixed effects model.
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4.3 Logistic regression

In this work I also estimate a logit model in order to analyze which factors influence

the acceptance or rejection of the environmental Kuznets curve hypothesis. The logit model of

the probability is given by the following equation:

Pr(Y i=1 |X i)=
exp(β0+β j X ij )

1+exp (β0+ β j X ij)
(4.3.1)

Where the dependent variable Y takes the form of a dummy variable, with either 0 or 1 value.

Pr(Yi=1|Xi) is the probability that the EKC category Y falls in alternative 1 (empirical evidence

of the environmental Kuznets curve) for journal i. 

Xj (j = 1…k, with k = 10) is a set of ten control variables presented in chapter 3, and β0 and βj

are vectors of the parameters.

As  can  be  observed  from equation  4.3.1,  the  logit  model  does  not  show a  linear

relationship between the regressors and the dependent variable. Indeed, the above formula

derives from a cumulative distribution function (Soderbom, 2009).

In order to highlight the differences between a linear probability model and the logit model,

we first consider the following equation:

Pr (Y = 1 | X) = G (β0 + βj Xj)

Where G is a function that takes values between zero and one: 0 < G (β0 + βj  Xj) < 1, for all

real values of  X. G is the so-called cumulative density function, monotonically increasing,

with these characteristics:

Pr (Y = 1 | X) → 1 as (β0 + βj Xj) → + ∞

Pr (Y = 1 | X) → 0 as (β0 + βj Xj) → - ∞

(4.3.2)
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Therefore, G cannot be a linear function. In literature, the most common non-linear function

used for the logit model is the logistic distribution:

G=
exp (β0+β j X j)

1+exp (β0+β j X j )
(4.3.3)

Which ranges between zero and one for all values of X. 

Thus, the first formal difference between the linear probability model and the logit one

is  that  the  LPM  assumes  that  the  probability  P is  a  linear  function  of  the  independent

variables, while the logistic model assumes that the natural logarithm of the odds P/(1 – P) -

probability of an event occurring divided by the probability that it will not occur – is a linear

function of the independent variables:

ln [
P(Y∣X)

1−P(Y∣X )
]= β0+β jX j (4.3.4)

The logit model comes in response to the main issues of the linear probability model

presented in chapter 4.2.

One of the most important concerns related to the linear probability model is boundedness:

probabilities have to fit within a 0-1 range, while the LPM can predict values outside it. As

previously shown, the logit model is able to bound the predicted probabilities within a 0-1

interval thanks to a transformation of a linear model, β0 + βj Xij, which can draw values of the

dependent variable from −∞ to +∞, into a model that can only range between 0 and 1 (figure

4.3.1).

When looking at figure 4.3.1, it is evident that the regression line is non-linear, giving

a more realistic  description of the data,  with little  change in  the response variable at  the

extreme  values  that  the  independent  variable  can  take.  This  is  due  to  the  fact  that  the

relationship between the regressors and the dummy dependent variable is likely to be non-

linear, and the logistic regression does not assume a linear relationship between the variables.

The LPM assumes that the probability  P is a linear function of the explanatory variables,

while the logistic model assumes that the natural log of the odds P/(1  - P) is a linear function

of the regressors. 
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Other advantages of the logit model lay on the fact that binary logistic regressions, by design,

overcome many of the restrictive assumptions of linear regressions.  For instance, the error

terms do not need to be normally distributed and homogeneity of variance does not need to be

satisfied.  The condition of homoskedasticity is  then not  assumed in the model  (Maddala,

1983).

On the other side, the logit model has its own drawbacks as well. Even if it better fits

the data rather than the linear probability model, it is clear that it is not straightforward to

interpret. This job would be much easier if the results of the logit model look like those from

the LPM: the marginal effect of changing X, the probability of getting Y = 1. Instead, since the

regressors are a linear function of the natural logarithm of the odds P/(1 – P) - equation 4.3.4

-,  there  is  not  an intuitive link  between the marginal  effect  and probability  P,  because it

depends on the values of X.

The  estimation  of  the  logistic  regression  is  made  with  the  so-called  maximum

likelihood function.

Unlike  with  the  linear  probability  model,  with  the  logistic  regression  the  use  of

heteroskedasticity-consistent robust standard error estimates is not needed, since the logistic

model does not need to assume homoskedasticity.
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Hausman (1978) shows a specification test in order to determine the best estimator

between fixed and random effects.

Hausman’s specification error test is a common tool used for testing whether the predictor

variables are uncorrelated with the error term. H0 is the hull hypothesis under which there is

no misspecification; H1 is the alternative hypothesis under which there is misspecification. 

Let  β̂ RE be the estimator for the random-effects model and  β̂ FE the estimator for the

fixed-effects model.  Under the null  hypothesis  H0 they are both consistent estimators, but

under the alternative H1  β̂ RE is inconsistent (O’Brien and Patacchini, 2003). If there is no

correlation between the explanatory variables, there is no systematic difference between the

two estimators β̂ FE and β̂ RE. 

The Hausman test statistic H is a measure of the difference between the two estimates: 

H = ( β̂ RE –  β̂ FE)’ [Var( β̂ FE) − Var( β̂ RE]-1 ( β̂ RE –  β̂ FE)

Under the null  hypothesis,  H is  distributed as a  χ2 with  k degrees of freedom, that is  the

number of independent variables in the model. 

If the p-value of the statistic is not significant (p > 0.05), the null hypothesis holds. On the

other side, if the p-value of the statistic is significant (p < 0.05), it means that the random and

fixed-effects  models are different enough to reject the null  hypothesis  and prefer a fixed-

effects model. 
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5. Results

This  chapter  presents  the  results  of  the  data  analysis  estimated  using  a  linear

probability and a logit model. 

Table 5.2 shows the outcomes of the two models that are used to compute the meta-analysis of

the studies: the first two columns are dedicated to the linear regression, displaying results of

the fixed effects and the random effects models,  respectively.  The last two columns show

results of the logistic regression, with both fixed and random effects outcomes as well.

The linear probability model is run with estimates of the standard errors that are robust to

heteroskedasticity, in order to overcome the structural issue of heteroskedasticity in the linear

probability model.

The logit model with fixed effects shows results of 115 observations and 12 journals only, due

to the fact that 17 groups (and 19 observations) have been dropped because of all positive or

all negative outcomes.

R-squared  and  pseudo  r-squared  are  displayed  for  linear  probability  and  logit  models,

respectively.

In order to analyse and discuss the outcomes, two tests – one for the linear probability

model and one for the logit model – are run.

Referring to the linear probability model with robust standard errors, to understand

which of the two estimation techniques – fixed or random effects – is the most appropriate, a

test  for  overidentifying  restrictions  is  run  (Sargan,  1975  and  Hansen,  1982).  The  null

hypothesis of the Sargan-Hansen test is that the difference in coefficients is not systematic and

RE is consistent. Results indicate a χ2 (10) =  32.158 and a p-value = 0.0004. This large value

of  the test  statistic  –  and small  p-value – means that  the null  hypothesis  is  rejected and

therefore the random effects model is inconsistent, leading to a preference for the fixed effects

model.

With regards to the logit model, the choice between the fixed and the random effects is

helped by the Hausman test. The null hypothesis is that the random effects is the consistent

and efficient estimator.  The Hausman test on the logistic regression indicates a significant

difference between the fixed and random effects estimators (χ2 (19) = 35.57 and p-value =

0.0119). Therefore, I reject the null hypothesis and state that the results of the fixed effects

model are more consistent on the logistic regression.
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Furthermore,  it  is  possible  that  results  are  misleading  because  of  the  correlation

between the explanatory variables.  For this reason, I propose a correlation analysis of the

variables (table 5.1). Three notable correlations come to light: N_YEARS and PERIOD have

a pairwise correlation coefficient of 0.67, PANEL and METHOD have a pairwise correlation

coefficient  of  0.88,  and  N_COUNTRIES  and  D_COUNTRIES’  pairwise  correlation

coefficient is 0.62.

Table 5.1: Pairwise correlation coefficients of the variables.

EKC N_
YEARS

N_COU
NTRIES

CON-
TROLS

PANEL PERIOD ME-
THOD

FDI D_COU
NTRIES

POLLU-
TANTS

PHH

EKC 1.0000 

N_YEARS -0.0268 1.0000 

N_COUN-
TRIES

-0.0024 -0.1427 1.0000 

CONTRO
LS

0.1701* -0.2715* 0.1181   1.0000 

PANEL -0.0005 -0.4042* 0.2987* 0.2677* 1.0000 

PERIOD -0.0949 0.6714* -0.0999 -0.2618* -0.4801* 1.0000 

METHOD -0.0284 -0.3268* 0.2176* 0.2068* 0.8751* -0.3252* 1.0000 

FDI -0.0148 0.0543 0.0198  0.0783 -0.1836* 0.1974* -0.2183* 1.0000 

D_COUN-
TRIES

0.1012 0.0538 0.6151* 0.2108* 0.2261* 0.1326 0.1653 0.2772* 1.0000 

POLLU-
TANTS

0.0133 -0.2321* 0.1658  0.2223* 0.2458* -0.2553* 0.0482 0.2351* 0.1844* 1.0000 

PHH 0.1665 -0.0376 0.1337  0.0261 0.1259 -0.1283 0.0638 -0.3141* 0.0477 0.1405 1.0000 

The correlation between N_YEARS and PERIOD is expectable. The way the PERIOD

categorical variable is constructed – one category for time interval starting after 1970, one for

time  interval  beginning after  1985,  one  for  broader  time periods  –  correlates  it  with  the

number of years almost “by definition”. Regarding PANEL and METHOD variables, the high

correlation means that the way dataset is constructed (PANEL variable) is linked to the way

panel data are analysed (METHOD variable). When the study does not use panel data, both

variables are 100% correlated. Therefore, a high correlation when considering all the studies
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is  still  expectable.  Finally,  correlation  between  the  two  variables  N_COUNTRIES  and

D_COUNTRIES  suggests  that  the  choices  of  the  number  and  types  of  countries  to  be

analysed in one study are in some ways correlated.

One  way  to  check  whether  a  high  correlation  between  the  variables  is  responsible  for

misleading results is to drop the two variables individually and compute the regressions again.

After the estimation of the models with all the variables and the results discussion, the last

part  of  this  chapter  deals  with  the  analysis  of  the  potential  effects  of  these  variables

correlation. 
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Table 5.2: Regression results of the linear probability model and logit model.

Variables Linear Probability Model Logit model

FE RE   FE RE

N_YEARS 0.001
(0.001)

0.001
(0.002)

-0.002
(0.015)

0.005
(0.014)

N_COUNTRIES -0.005***
(0.002)

-0.002
(0.002)

-0.061**
(0.025)

-0.011
(0.013)

CONTROLS 0.038**
(0.015)

0.013
(0.014)

0.551**
(0.229)

0.103
(0.100)

PANEL -0.125
(0.101)

-0.184*
(0.102)

-0.775
(0.897)

-0.995
(0.728)

PERIOD_2 -0.175*
(0.096)

-0.149
(0.095)

-0.883
(0.895)

-0.883
(0.697)

PERIOD_3 -0.252
(0.167)

-0.251
(0.186)

-1.350
(1.238)

-1.323
(1.014)

METHOD_1 0.140
(0.243)

0.116
(0.183)

1.550
(1.991)

0.450
(1.203)

METHOD_2 -0.021
(0.185)

0.013
(0.176)

0.900
(1.488)

-0.057
(0.957)

METHOD_3 0.018
(0.133)

0.107
(0.117)

-0.091
(0.980)

0.531
(0.704)

FDI_2 -0.183
(0.166)

-0.159
(0.143)

-0.987
(1.421)

-0.827
(0.947)

FDI_3 0.074
(0.182)

-0.013
(0.147)

0.431
(1.127)

-0.118
(0.791)

D_COUNTRIES_2 -0.061
(0.113)

-0.031
(0.088)

-0.187
(0.865)

-0.242
(0.621)

D_COUNTRIES_3 0.089
(0.132)

0.171
(0.114)

0.889
(1.158)

0.929
(0.787)

D_COUNTRIES_4 0.353**
(0.172)

0.186
(0.161)

5.548**
(2.776)

1.073
(1.244)

POLLUTANTS_2 0.138*
(0.074)

0.164**
(0.078)

1.589
(1.342)

1.522
(1.143)

POLLUTANTS_3 -0.149
(0.141)

-0.170
(0.117)

-1.941
(1.472)

-0.952
(1.011)

POLLUTANTS_4 -0.023
(0.106)

-0.082
(0.105)

-0.370
(0.911)

-0.403
(0.737)

PHH_1 0.308
(0.207)

0.138
(0.203)

1.991
(1.546)

0.756
(1.026)

PHH_2 0.326**
(0.130)

0.244***
(0.094)

2.159*
(1.145)

1.812**
(0.907)

CONS 0.582**
(0.225)

0.776***
(0.188)

-
-

1.262
(1.177)

Id (no. of journals) 29 29 12 29

Number of obs. 134 134 115 134

R2 / pseudo-R2 0.208 0.172 0.299 0.151

Note: Standard errors in parenthesis (robust s.e. for LPM), *p < 0.1; **p < 0.05; ***p < 0.01
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The following discussion refers to the results  of the linear and logistic regressions

presented in table 5.2. Coefficients of the linear regression can be read as a change in the

probability of finding empirical evidence of an EKC, due to the linear relationship between

the  regressors  and  the  dummy  dependent  variable.  On  the  other  hand,  a  quantitative

interpretation of the logistic regression results is not so intuitive. Therefore, it is only possible

to make a qualitative analysis of these outcomes. 

The estimated coefficient of the N_COUNTRIES variable is negative and significant

at the 1% level in the linear probability model with fixed effects and negative and significant

at  the  5% level  in  the  logit  model  with  fixed  effects.  This  suggests  that  the  number  of

countries analysed in the EKC-related studies negatively affects the probability of accepting

the environmental Kuznets curve hypothesis. In other words, according to the coefficient of

the LPM, adding one additional country of analysis  into an EKC study would lead to an

increase in the probability of rejecting the EKC hypothesis by 0.5%. This result is in contrast

with the earlier  meta-analyses  of  Li  et  al.  (2007) and Koirala  et  al.  (2011):  they show a

positive relationship between the coverage of multiple countries and the acceptance of the

EKC hypothesis.

The estimated coefficient of the CONTROLS variable is positive and significant at the

5% level both in the linear probability and logit models with fixed effects estimates. It means

that  those  studies  that  add  more  control  variables  in  their  datasets  –  and  not  only  one

environmental indicator and the country’s GDP level, for instance – are the ones where an

EKC pattern shows up more likely. More technically speaking, for each extra control variable

added in the model – that means, controlling for an additional factor – the probability of

accepting the EKC hypothesis would increase by 3.8%, according to the LPM estimates. This

finding could be seen from the perspective of the hypothesis that the EKC subject is way

more complex than just a few variables; more precisely, a high number of factors influence

the shape of the curve (Ezzati et al., 2001; Dinda, 2004). Also, this is in line with the earlier

meta-analysis results (Li et al., 2007; Koirala et al., 2011): the number of observations in each

study positively influences the probability of accepting the EKC hypothesis.

There is small  evidence of significance on the estimated coefficient of the PANEL

variable, and only in the linear probability model with RE. For this reason, I will not take it

into account as a reliable result.
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The estimated coefficient of PERIOD_2 is negative and significant at the 10% level in

the linear probability model with FE. It suggests that collecting data starting after the year

1985  instead  of  collecting  data  starting  after  1970  (base  category)  would  increase  the

probability  of  rejecting  the  EKC  hypothesis  of  17.5%.  However,  there  is  no  statistical

evidence in the logit model.

The estimated coefficient of D_COUNTRIES_4 is positive and significant at the 5%

level both in the linear probability and logit models with FE. The base category of this factor

variable is “developing countries only” (chapter 3, table 3.2). Results indicate that collecting

data from different types of countries (D_COUNTRIES_4) instead of developing countries

only would lead to an increase in the probability of finding empirical evidence of EKC of

35.3%, according to the LPM coefficient. This finding is particularly interesting because it

shows  that,  testing  against  the  base  category  of  developing  countries,  the  categories  of

transition countries (D_COUNTRIES_2) and high-income countries  (D_COUNTRIES_3) do

not show any statistical significance, and only including countries from different categories in

the model would increase of the probability of accepting the EKC hypothesis by 35.3%. A

first  hypothesis  is  that  the  EKC is  a  phenomenon  that  comes  to  light  more  likely when

different types of countries are considered.

The estimated coefficient of POLLUTANTS_2 (SO2) is positive and significant both

in the two linear probability models, with FE and RE, at the 10% and 5% level respectively.

Therefore, there is evidence – but only in the linear regression – that studies that collect data

for SO2 instead of CO2 (base category) would more likely tend to accept the EKC hypothesis.

With respect to the earlier meta-analyses (Cavlovic et al., 2000; Li et al., 2007; Koirala et al.,

2011),  this  could  be  something  new.  The  earlier  findings,  indeed,  suggest  that  all

anthropogenic gases do not show a U-shaped relationship with economic growth and, if they

do, their income turning point is far beyond the realistic values. By contrast, this work shows

some  evidence  in  support  of  a  positive  relationship  between  SO2 and  the  inclination  of

accepting the EKC hypothesis. SO2 is a local pollutant, therefore its local impacts may be

internalized by a stand-alone economy (Lopez, 1994). By the way, the statistical significance

is found only in the linear probability model and not in the logit model. Therefore, future

analyses will be needed to get a better understanding of this phenomenon.

On the other side, the fact that CO2 is not a driver of the environmental Kuznets curve is

highlighted by all meta-analyses conducted so far, including this work.
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Regarding  the  pollution  haven  hypothesis,  the  estimated  coefficient  of  PHH_2  is

positive and significant in all the four models. In particular, it is significant at the 5% level in

the LPM with fixed effects, at the 1% level in the LPM with random effects, at the 10% level

in the logit model with FE and at the 5% level in the logit model with RE. These results

indicate that the pollution haven hypothesis is a driver of the environmental Kuznets curve. In

details, when there is evidence of pollution haven hypothesis (PHH_2) in one study – tested

against the base category of “PHH not analysed in the study” - the probability of accepting the

EKC hypothesis increases by 32.6%, according to the LPM coefficient. Again, these findings

draw a link between two different categories of countries when speaking about EKC: the

pollution  haven  hypothesis,  indeed,  states  that  developed  countries  get  “cleaner”  at  the

expense of the developing ones. 

It  is  noteworthy that  variables  N_YEARS,  METHOD  and  FDI  do  not  show any

statistical significance in all the models. Therefore, for the sample of studies analysed in this

work, the number of years that each study considers for its EKC research does not influence

the inclination to accept or reject the environmental Kuznets curve hypothesis, and that is in

contrast with the findings of Li et al. (2007). The statistical methodology of analysing data is

also not significant, and, finally, the inclusion of a trade or FDI variable in the studies does

not influence the acceptance or rejection of the EKC hypothesis. This last result is in line with

the meta-analysis of Koirala et al. (2011) but not with Li et al. (2007). 

In the following part, the potential consequences of the variables correlation showed in

table 5.1 will be analysed. Regarding the three pairs of variables with high correlation, for

each pair, the two variables are dropped individually from the model. In this way, the new

regressions without each variable highlight any noteworthy difference in significance of the

other variables coefficients.

First of all, N_YEARS is dropped. The two models show no significant differences in the

other variables coefficients and, in particular, coefficients and significance of the PERIOD

variable  remain  overall  unchanged.  Then,  PERIOD  variable  is  dropped.  Again,  no  big

changes in the overall significance are detected. The N_YEARS variable was not statistically

significant in the full model, and it does not gain any significance even without the PERIOD

variable.
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The same procedure is applied to the PANEL and METHOD variables. When each of the two

variables is individually dropped, nothing notable happens to the other variables.

Finally, N_COUNTRIES and D_COUNTRIES variables are individually dropped, keeping all

the other explanatory variables in the model. They both have significant coefficients, thus it is

interesting to check what happens when one of the two variables is dropped.

Table  5.3  shows  the  regression  results  of  the  linear  probability  and  logit  models  when

N_COUNTRIES is dropped. What is notable is that D_COUNTRIES_4 loses significance in

the  coefficient  and,  more  generally,  there  is  no  statistical  significance  in  all  the

D_COUNTRIES categories. 

Table  5.4  shows  the  regression  results  of  the  linear  probability  and  logit  models  when

D_COUNTRIES  is  dropped.  It  is  possible  to  notice  that  the  estimated  coefficient  of

N_COUNTRIES is not significant for all the four estimated models. 

The conclusion of this variables correlation analysis is that the number of countries and the

type of countries are both important for the models, even if there is some correlation between

them.  Indeed,  N_COUNTRIES variable  is  statistically  significant  only if  the  information

about  the  type  of  countries  is  also  considered  in  the  models;  on  the  other  side,

D_COUNTRIES_4 is significant only if the number of countries is included in the models as

well.
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Table 5.3: Regression results of LPM and logit model after dropping N_COUNTRIES.

Variables Linear Probability Model Logit Model

FE RE FE RE

N_YEARS 0.001 0.001   0.005 0.006   

(0.001) (0.002)   (0.015) (0.014)   

CONTROLS 0.037** 0.015   0.348** 0.115   

(0.016) (0.014)   (0.162) (0.098)   

PANEL -0.152 -0.193*  -0.858 -1.039   

(0.102) (0.103)   (0.833) (0.723)   

PERIOD_2 -0.156 -0.119   -0.923 -0.768   

(0.109) (0.098)   (0.825) (0.677)   

PERIOD_3 -0.276 -0.236   -1.493 -1.306   

(0.193) (0.192)   (1.170) (1.001)   

METHOD_1 0.102 0.110   0.380 0.355   

(0.259) (0.183)   (1.602) (1.171)   

METHOD_2 0.009 0.023   -0.024 -0.080   

(0.172) (0.174)   (1.233) (0.950)   

METHOD_3 0.004 0.095   0.090 0.493   

(0.128) (0.116)   (0.882) (0.700)   

FDI_2 -0.223 -0.169   -1.237 -0.879   

(0.165) (0.141)   (1.324) (0.944)   

FDI_3 0.070 -0.007   0.419 -0.077   

(0.192) (0.149)   (1.015) (0.787)   

D_COUNTRIES_2 -0.005 -0.008   -0.003 -0.097   

(0.112) (0.082)   (0.787) (0.595)   

D_COUNTRIES_3 0.097 0.174   0.471 0.935   

(0.140) (0.113)   (1.004) (0.783)   

D_COUNTRIES_4 0.021 0.060   0.494 0.356   

(0.225) (0.128)   (1.277) (0.853)   

POLLUTANTS_2 0.172** 0.191*** 1.492 1.647   

(0.079) (0.072)   (1.220) (1.131)   

POLLUTANTS_3 -0.233** -0.183   -1.756 -1.015   

(0.110) (0.112)   (1.331) (0.990)   

POLLUTANTS_4 -0.075 -0.085   -0.373 -0.395   

(0.104) (0.101)   (0.908) (0.734)   

PHH_1 0.321 0.146   2.045 0.817   

(0.222) (0.204)   (1.463) (1.024)   

PHH_2 0.318** 0.239** 2.086** 1.805** 

(0.137) (0.096)   (1.061) (0.908)   

CONS 0.548** 0.727*** - 0.978   

(0.229) (0.184)   - (1.120)   

Id (no. of journals) 29 29 12 29

Number of obs. 134 134 115 134

R2 / pseudo-R2 0.174 0.151 0.218 0.147

Note: Standard errors in parenthesis (robust s.e. for LPM), *p < 0.1; **p < 0.05; ***p < 0.01
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Table 5.4: Regression results of LPM and logit model after dropping D_COUNTRIES.

Variables Linear Probability Model Logit Model

FE RE FE RE

N_YEARS 0.001 0.002   0.003 0.009   

(0.001) (0.002)   (0.014) (0.013)   

N_COUNTRIES -0.002 -0.000   -0.015 -0.002   

(0.002) (0.001)   (0.011) (0.008)   

CONTROLS 0.038** 0.016   0.365** 0.110   

(0.016) (0.015)   (0.165) (0.097)   

PANEL -0.107 -0.143   -0.491 -0.734   

(0.093) (0.097)   (0.839) (0.699)   

PERIOD_2 -0.156 -0.104   -0.947 -0.646   

(0.114) (0.099)   (0.805) (0.647)   

PERIOD_3 -0.250 -0.210   -1.341 -1.113   

(0.155) (0.168)   (1.172) (0.964)   

METHOD_1 0.120 0.108   1.043 0.393   

(0.239) (0.185)   (1.812) (1.152)   

METHOD_2 -0.010 0.027   -0.055 -0.038   

(0.166) (0.168)   (1.217) (0.942)   

METHOD_3 0.008 0.111   -0.070 0.562   

(0.130) (0.124)   (0.878) (0.687)   

FDI_2 -0.201 -0.164   -1.203 -0.880   

(0.167) (0.146)   (1.349) (0.952)   

FDI_3 0.128 0.063   0.881 0.314   

(0.163) (0.134)   (1.084) (0.750)   

POLLUTANTS_2 0.141 0.166** 1.378 1.482   

(0.088) (0.072)   (1.199) (1.118)   

POLLUTANTS_3 -0.209* -0.177   -1.688 -0.994   

(0.118) (0.117)   (1.402) (0.977)   

POLLUTANTS_4 -0.068 -0.065   -0.534 -0.290   

(0.087) (0.098)   (0.916) (0.722)   

PHH_1 0.366* 0.201   2.549* 1.150   

(0.203) (0.189)   (1.502) (1.001)   

PHH_2 0.370*** 0.277*** 2.607** 1.989** 

(0.117) (0.083)   (1.145) (0.907)   

CONS 0.508*** 0.633*** - 0.437   

(0.183) (0.152)   - (0.964)   

Id (no. of journals) 29 29 12 29

Number of obs. 134 134 115 134

R2 / pseudo-R2 0.182 0.153 0.233 0.131

Note: Standard errors in parenthesis (robust s.e. for LPM), *p < 0.1; **p < 0.05; ***p < 0.01
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6. Conclusion

The goal of this work is to investigate which factors influence the inclination to accept

or reject the environmental Kuznets curve hypothesis in the empirical EKC-related studies.

With  regards  to  the  environmental  Kuznets  curve  –  a  hypothesized  inverted  U-shaped

relationship between income and environmental degradation –, the empirical literature shows

mixed results among the studies. A part of it tends to find statistically significant evidence of a

hump-shaped  relationship  between  income  and  pollution:  at  a  country  level,  as  soon  as

income grows, at some point environmental degradation starts a decreasing process. Another

part  of  literature  finds  a  linear  and  positive  relationship  between  income  and  pollution.

Therefore, it is necessary to investigate which other factors drive the environmental Kuznets

curve.

This work applies a meta-analysis of 116 empirical studies in order to highlight any

possible systematic patterns across them. One of the main advantages of the meta-analysis is

that its results are more reliable than those of a single study (Cavlovic et al., 2000). 

In the regression models, the dependent variable takes the form of a dummy variable with

either 0 or 1 values, depending on whether the study accepts or rejects the environmental

Kuznets curve hypothesis. The 10 explanatory variables included in the model control for

methodological choices, environmental quality and country-specific characteristics. Most of

them derive from existing literature,  while some others are brand new – for instance,  the

inclusion of factor variables for the type of countries and the pollution haven hypothesis.

Following the three prior meta-analyses (Cavlovic et al, 2000; Li et al., 2007; Koirala et al.,

2011), this work uses a larger sample of studies and a particular focus on methodological

variables, allowing a smaller focus on all the different types of pollutants analysed. Indeed,

this study mainly controls for CO2 and SO2, which are the two most important anthropogenic

gases.

For the data processing, this thesis uses a linear probability and a logit model, both with fixed

and random effects. 
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Results  of  the  meta-analysis  indicate  that  several  methodological  choices  and

characteristics of the countries analysed have significant effects on finding evidence of the

environmental Kuznets curve.

In detail, this study confirms the findings of the earlier meta-analyses, particularly on the fact

that there is a positive relationship between the number of explanatory variables in each study

and the probability of accepting the EKC hypothesis. This could suggest that some research

analysts do not find the EKC because they do not control for enough variables. Therefore,

EKC literature may be affected by methodological biases, as claimed by Stern (2004).

Data results also show that the number and type of countries analysed in the studies influence

the EKC. In contrast with Li et al. (2007) and Koirala et al. (2011), this study finds a small

and negative relationship between the number of countries and the probability of finding the

EKC. On the other side, this work contributes in highlighting that also the type of countries is

relevant:  including both developing and developed countries in the same dataset  provides

statistically significant evidence of increasing the probability of finding the EKC. 

However, one of the most interesting results regards the pollution haven hypothesis.

For  the  first  time,  a  meta-analysis  on  the  EKC-related  studies  includes  a  variable  for  it,

showing  that  the  pollution  haven  hypothesis  is  one  of  the  drivers  of  the  environmental

Kuznets curve. More technically speaking, there is statistical significance that accepting the

pollution haven hypothesis increases the probability of accepting the EKC hypothesis. This

relationship suggests that  part  of  the EKC could be explained by the fact  that  developed

countries decrease their emissions exporting dirty activities to developing countries. This is

clearly not  the  best  situation,  since  the  issue  of  pollution  simply moves  from developed

countries to developing ones, where regulations are less strict and demand for environmental

quality is low.

In general, what appears from this meta-analysis is that the environmental Kuznets

curve  shows  up  more  likely  when  more  variables  are  taken  into  account  and  different

countries interact with each other.  These interdependencies highlight the fact that,  even if

measured at a country-level, the EKC phenomenon cannot be seen as just part of a closed

economy. For this reason, future EKC studies should control for a high number of variables,

in order to catch other potential factors that are able to influence the EKC, like technical

progress and environmental policies changes, for instance.
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Regarding  the  category  of  anthropogenic  gases, there  is  some  evidence  that  SO2

positively affects the acceptance of the EKC hypothesis on the studies – but only in the linear

probability model. A better understanding of the real role of SO2 in the EKC pattern is crucial.

If SO2 really drives the EKC, it means that this local pollutant can positively influence the

presence  of  an  inverted  U-shaped  relationship  between  income  and  environmental

degradation.  Therefore,  a  stand-alone  economy  could  be  able  to  overcome  the  negative

environmental outcomes of economic growth. By contrast, if SO2 is not significant – as shown

in the logit model –, local environmental regulations would be needed to provide sustainable

economic development. Unfortunately, due to the mixed results between the linear probability

and  logit  models  on  the  SO2,  it  is  not  possible  to  properly  assess  the  role  of  SO2 as  a

significant driver of the EKC hypothesis. However,  this  could be an interesting focus for

future and more specific analyses.

With regards to the main global anthropogenic gas (CO2), this study is consistent with the

results of the prior meta-analyses (Cavlovic et al., 2000; Li et al., 2007; Koirala et al., 2011).

Indeed, results confirm that CO2 does not significantly influence the EKC; for this reason,

considering the importance of CO2 on the greenhouse effect and global warming, we can state

that countries’ CO2 emissions will not “adjust” with economic growth alone. National and

international  policy actions,  together  with technological  improvements,  will  likely be two

cardinal  tools  for  providing  a  sustainable  economic  growth  in  terms  of  carbon  dioxide

emissions for the future.
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