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Abstract

Il Natural Language Processing (NLP), o Elaborazione del Linguaggio Naturale, è un campo

dell’Intelligenza Artificiale (AI) che negli ultimi anni sta progredendo molto rapidamente.

Basti pensare ai recenti sviluppi in ambito dei software per la generazione di testi, come

ChatGPT di OpenAI, rilasciato nel novembre 2022.

Lo scopo di questo lavoro è spiegare cos'è il Natural Language Processing, quali sono le sue

applicazioni più utilizzate e fornire una panoramica dei principali modelli di apprendimento

automatico utilizzati per risolvere compiti di elaborazione del linguaggio naturale. In

particolare, si vuole approfondire il funzionamento di modelli quali le Reti Neurali

Convoluzionali (CNN), le Reti Neurali Ricorrenti (RNN), tra cui le reti Long-Short Term

Memory (LSTM), e i più recenti Transformers, come BERT e GPT. Inoltre, verrà illustrato

anche un esempio dell’utilizzo di BERT in un progetto aziendale, svolto durante il mio

tirocinio formativo presso Ixly B.V., ad Utrecht, in Olanda. Insieme al team di Data Science

di Ixly, ho implementato la loro “Interview App”, ovvero un software che registra la

conversazione durante un colloquio di lavoro e restituisce un report con le seguenti

caratteristiche: i principali argomenti che sono stati toccati, in termini di parole chiave

riguardo competenze, motivatori e fattori di personalità; le parole più utilizzate; il numero e il

tipo di domande che sono state poste e la corrispondenza di stile linguistico tra il candidato e

l'intervistatore. Al momento la “Interview App” è disponibile solo in olandese, quindi è stato

mio compito renderla adatta alla lingua italiana. Ciò significa che è stato necessario trovare

un corpus italiano di testo parlato, normalizzarlo e addestrare il mio modello con questa

nuova raccolta di dati. In seguito sono stati applicati alla lingua italiana tutti i filtri sopra

menzionati e infine è stato creato l’algoritmo in grado di analizzare le conversazioni in lingua

italiana. Questo algoritmo utilizza BERT per trovare le diverse tipologie di domande

all'interno di una conversazione.

Per raccogliere le informazioni per questo lavoro, è stata effettuata una ricerca accurata su

Google Scholar. Sono stati consultati anche alcuni dei principali siti web utilizzati in ambito

di machine learning e intelligenza artificiale, come GitHub e Hugging Face, per ottenere i

codici per eseguire BERT sul mio computer, il codice API di Azure per trascrivere il

linguaggio parlato e il sito ufficiale di OpenAI, per ottenere informazioni sui loro prodotti

GPT. È stato utilizzato Python come principale linguaggio di programmazione nell’ambiente
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di sviluppo di Visual Studio Code. Come dataset principale per la lingua italiana è stato

adottato il corpus italiano KIParla, raccolto nel 2019 da una collaborazione tra l’Università di

Bologna e quella di Torino.
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Preface

This work is aimed to discuss the broad domain of Natural Language Processing (NLP) and

the effort that has been made within the field of Artificial Intelligence in order to solve NLP

problems.

The first two chapters will come in the form of a meta-analysis of the AI models that have

been created so far to solve NLP problems. The third chapter, instead, will talk about a

company project which concerns the practical application of an AI model, that is called

BERT, which I have been working on during my internship at Ixly B.V.
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Chapter 1

Natural Language Processing (NLP)

Natural Language Processing (NLP) emerged in the 1950s as a discipline within Artificial

Intelligence (AI), since its goal is to perform language-related tasks like a human. It is not

casual if the word ‘processing’ was chosen [14]. In fact, it would be inappropriate to talk

about language understanding. Machines do not understand language, instead, they can only

learn how to process all its components to extract relevant information from some given text.

Even though there is a strong AI component, NLP has been influenced by several other

disciplines. The most relevant ones are: Linguistics, which helps to explain language

structure; Computer Science, which develops efficient models for machine learning to

process data; Cognitive Psychology, which provides a link between human and machine

performance.

Furthermore, NLP is divided into two different categories: Natural Language Processing and

Natural Language Generation. Language processing tasks can be compared with the function

of a reader or a listener, whereas language generation tasks aim to perform as a writer or a

speaker.

1.1 Levels of language in Linguistics

NLP programs work with different levels of spoken and written language, in order to derive

the most complete meaning from it. In [14] Liddy offers an overview of these levels and a

brief explanation of the different meanings they convey.

Phonetics focuses on decoding the variations of sound waves in spoken language. It is used to

detect fluctuations in intonation, stressed syllables, and pronunciation.
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Morphology deals with the components of words, which are the smallest units of meaning,

so-called morphemes. Taking as an example the word ‘replacing’, three morphemes can be

found, that is, re-, -place-, and -ing. Words differ in meaning based on the morphemes they

are composed of. In the previous example, the prefix re- conveys the idea that an action was

taken more than once.

Lexical concerns the meaning of each word or a group of words, that is, the vocabulary of a

language. ‘Dog’, ‘traffic jam’, and ‘look forward to’ are all examples of lexical features that

have a specific meaning.

The syntactic level is used to analyze the grammar and dependency relationships between

words within a sentence. In fact, the order of words can affect the meaning of a sentence. For

example, ‘The lion eats the zebra.’ and ‘The zebra eats the lion.’ contain the same words, so

they have the same lexicon; they only differ in their syntactic structure, which is the one

conveying a different meaning.

Thanks to semantics, disambiguation of polysemous words is possible, since at this level the

meaning of the entire sentence is processed. The word ‘mouse’, for example, means both the

animal or a part of a computer, and its meaning can only be disambiguated by considering the

meaning of the full sentence.

Discourse, instead, deals with the meaning of the whole text as a concatenation of its

sentences.

Finally, pragmatics focuses on analyzing the context in which the speech is pronounced, in

order to recognize hidden meanings that are not explicitly encoded in the sentence. This level

requires some extra information, such as the aims and intentions of the speaker.

1.2 Introduction to machine learning

The ultimate goal of NLP is to derive meaning from a given text, in terms of its semantics.

Basic NLP tasks consist of decoding verbs, conjunctions, or nouns, and the grammatical

relationships between different words and clauses within a sentence. Although, the more

accurate we want the model to be, the more rules we have to add, with the risk of them

becoming unmanageable and interacting in an unstable way. It was at this point that

machine-learning models started to be broadly used, as they are based on probability. These
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algorithms are trained with wide corpora of text in many different languages, in order to be

able to generalize and make predictions about new data in the future.

In general, there are two main methods to train algorithms, that is, supervised and

unsupervised learning. In supervised learning the training data is labeled, so the model is

already given the correct answers, while in unsupervised learning the model has to discern

the correct patterns by itself. An issue that can occur in both learning strategies is called

over-fitting and happens when the model becomes perfect at extracting patterns from the

training dataset, but cannot make accurate predictions with unseen data. This happens

because it also learns to recognize random noise inside the training dataset. In fact, instead of

grasping the essential features, it goes into too much detail that is not relevant. Techniques

such as cross-validation can be used to reduce the risk of over-fitting. Through

cross-validation, training data are randomly split into training and test sets, to verify the

model’s prediction while the model is still learning. The sequence of training, test, and

validation sets is then reiterated several times until all the dataset has been learned.

Machine learning models can be classified into discriminative or generative models.

Discriminative models are used for classification problems, in which they have to assign a

certain category to the input data. Differently, generative models are used to create new data

based on the patterns they have learned in the training phase.

The branch of NLP that uses the machine learning methods explained above is known as

statistical NLP [18]. In the past few years, this field has been substantially growing due to:

the large amount of text that is now available on the Internet, which can be used to train

models; great progress in the electronic engineering of computers’ components, which lead to

more capacious memory and faster CPU. Moreover, statistical approaches perform better than

rule-based models, because the training is based on copious data from real life, so it is easier

to identify the patterns when actual cases are involved.

1.2.1 NLP tasks

Machine learning models allow us to decode human language by means of a variety of tasks,

each with different goals. A brief overview of the main NLP tasks is presented below.
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Word Segmentation. Word segmentation [23] is the first phase for most of the advanced

NLP tasks, because it enables the detection of single words from a string. The detected words

are called tokens.

Named Entity Recognition (NER). The aim of NER [32] is to recognize and categorize

proper names within a sentence. It is very useful for machine translation, because it avoids

literal translations of proper nouns.

Part Of Speech (POS) Tagging. Parts Of Speech (POS) Tagging consists of labeling each

word based on its grammatical role in the sentence. Some grammatical categories are verbs,

conjunctions, nouns, determiners, adjectives, and pronouns.

Parsing. Parsing tasks [12] consist of analyzing the syntactic structure of a sentence by

building a parse tree, which highlights the syntactic role and relations of each word (Fig.1).

Word Sense Disambiguation (WSD). A large number of words are polysemous, which

means that they have more than one unique meaning. Models that perform Word Sense

Disambiguation [1] are able to give the most appropriate meaning to a word based on the

context of the sentence.

Speech Recognition. The goal of Speech Recognition [15] is to convert an audio speech into

a written transcripted text. It is the first step for a machine to analyze a spoken message.

Machine Translation (MT). Machine Translation tasks [19] require a machine-learning

model to translate some text from a given language to another.

Sentence Completion. Sentence Completion refers to the ability of completing an unfinished

sentence by choosing the word that has the highest probability of being the next one (1.2.2).

Information Retrieval (IR). Information Retrieval consists of collecting information from

one or more texts and retrieving those information later on. It is usually part of the Question

Answering process.
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Question Answering. A model that performs Question Answering is able to retrieve

information from some previous text in order to answer specific questions about it.

1.2.2 N-grams

A popular approach to natural language processing is n-grams based techniques, which are

widely used for text analysis and sentence completion tasks.

N-grams are groups of ‘n’ words within a sentence and can be gathered by the syntactic

relations they have between each other, instead of by the original sequence in the sentence.

This type of n-grams are called syntactic n-grams (sn-grams) and are represented with

syntactic trees that show the dependency between words. Sidorov et al. in [24] provide an

example in which a sentence from the novel “Dracula” by Bram Stoker is analyzed: “I can

even now remember the hour from which I dedicated myself to this great enterprise.”. The

analysis is made by using the Stanford parser that takes the sentence as an input and returns a

dependency tree and the syntactic relations between words as an output.

Figure 1.1: Syntactic tree with tags of syntactic relations (Sidorov et al., 2014, Expert Systems

with Applications)

Thus, the sentence is fragmented into groups, that is, n-grams, which can contain single or

multiple words.
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As mentioned above, n-grams can be used to predict word probabilities in sentence

completion tasks. For example, in the sentence “I really appreciate your” the majority of

people would agree that “help” has a high probability to be the next word. To reach this

performance, the model has been trained with a wide corpus of sentences, so it could

calculate the number of occurrences of every word inside that database. Once it has been

trained, the model is able to calculate the probability of each word to be the next one in the

given sentence, so it can subsequently choose the word with the highest probability. The word

probability is calculated as it follows [24].

𝑃 = 𝑐𝑜𝑢𝑛𝑡 (𝑤₂𝑤₁)𝑐𝑜𝑢𝑛𝑡 (𝑤₂)  (1.1)

This formula can be transferred to the example above.

𝑃(ℎ𝑒𝑙𝑝) = 𝑐𝑜𝑢𝑛𝑡 (𝑦𝑜𝑢𝑟 ℎ𝑒𝑙𝑝)𝑐𝑜𝑢𝑛𝑡 (𝑦𝑜𝑢𝑟)  (1.2)

In 1.2 the probability that the word “help” follows “your” is the result of the occurrences of

“your help” divided by the occurrences of “your” in the training corpus.

In this way the model is capable of predicting sequential words in incomplete texts. Sentence

completion is one of the main tasks for text generation models in machine learning.
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Chapter 2

Solving NLP problems using Artificial Intelligence: main

models

The recent success of Deep Learning largely contributed to developing advanced NLP

techniques. This success is due to two main factors: the access to big datasets providing a

large quantity of labeled data; the use of GPUs (Graphic Processing Units), which are video

cards initially used for gaming. They are an affordable and accessible tool to supply parallel

elaboration of information that is faster and more powerful. In fact, instead of calculating the

synaptic weights for each neuron of a Deep Neural Network (DNN), GPUs allow

machine-learning models to make calculations in parallel. Thus, elaboration times are

shortened and the network is able to more easily process large quantities of data.

In this chapter an overview of the most well known deep learning models is provided.

2.1 Convolutional Neural Networks (CNN)

Convolutional Neural Networks (CNN) are an example of supervised deep learning networks.

As explained in chapter 1.2, this means they receive labeled data as an input during the

training phase. Nevertheless, they are trained with a particular method, which is called

end-to-end learning. In fact, in the classic supervised learning it is necessary to preprocess the

original raw data in order to extract the relevant features that the network has to learn to

extract. Differently, with end-to-end learning raw data can be already given to the network,

because it is the model itself that extracts the main features to produce the correct output.

CNNs make use of hierarchical information processing, as happens in the human brain. For

example, in the visual cortex there are various layers of neurons with receptive fields that

become more and more complex (Fig. 2.2).
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Figure 2.1: Hierarchical organization of

the visual cortex (Felleman & Van Essen,

1991, Cerebral Cortex)

Figure 2.2: Increasing level of complexity

within visual receptive fields

(Riesenhuber & Poggio, 1999, Nature

Neuroscience)

Because of the similarity between the visual cortex and the architecture of CNNs, these

networks were first used to process images for machine vision tasks. Later on, they were

applied to a variety of other problems, including NLP. However, image examples will be used

to explain CNNs’ architecture.

In [3] Bhatt et al. provide a clear explanation of CNN’s architecture.

Figure 2.3: CNN components (Bhatt et al., 2021, Electronics)
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Convolutional layer

CNNs are deep networks with at least one convolutional layer, where the hidden neurons are

not fully connected with the previous layer, but with a limited number of previous neurons.

This means that each neuron has a local receptive field that decodes one specific feature,

which is called filter or kernel. The amount of neurons defines how many features will be

represented in each layer. Each filter is applied to the entire image by means of a

convolutional operation, which is the operation between the input matrix and the filter matrix.

Different filters generate different maps, so called feature maps, of the same image by

emphasizing a particular feature.

In CNNs the following hyper parameters can be set. The number of hidden neurons indicates

how many filters need to be used in each layer. The kernel dimension specifies the dimension

of the receptive field, whereas the stride is the dimension of the filter’s moving pace over the

image. Padding is used to maintain a stable dimension of the image. In fact, the filters come

in the form of a matrix and the target pixel is scanned by the central value of the matrix. In

this way, the pixels that are located at the borders of the image can not be processed,

otherwise the external values of the filter’s matrix would exceed the image size. To

overcome the problem, a canvas with additional pixels with a value of 0 is set around the

image, so the filter can go over the borders too (Fig. 2.4).

Figure 2.4: Padding (Bhatt et al., 2021, Electronics)

Pooling layer

Following the convolutional layer there is a pooling layer (Fig. 2.3) that reduces the image

dimensionality and emphasizes the salient features. Thus, the amount of parameters are

diminished and the risk of overfitting can be controlled. To do so, in the pooling layer the
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max pooling operation is utilized as activation function, which only keeps the highest value,

so the strongest feature.

Figure 2.5: Max pooling (Bhatt et al., 2021, Electronics)

A similar process happens in the human brain, where neurons compete with each other and

the one with the highest activation wins.

There can be more than one convolutional and pooling layer based on how complex the

network is (Fig. 2.6).

Fully connected layer

The last layer of the network is fully connected to the output (Fig. 2.3). Here the softmax

function is utilized, which returns values that already represent the probability rate. For

example, for a value of 0.6 there is a 60% probability that the correspondent output is correct.

Figure 2.6: CNN typical structure (Musaev et al., 2019, Proceedings of the 2019 3rd

International Symposium on Computer Science and Intelligent Control)
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2.1.1 CNN for Natural Language Processing

It has been demonstrated that CNNs perform well in NLP tasks when the external noise is

low. In fact, speech varies substantially based on the speaker’s intonation, dialect, tone of

voice, and pronunciation. CNNs performance has been studied in several NLP tasks, with a

major success in speech recognition (1.2.1).

Ahmadi et al. in [2] have proposed an innovative way to process phonemes by using speech

images. In order to give an audio track as an input to the CNN (Fig. 2.8), the speech signal is

first filtered to reduce noise and interruptions, and then converted into a spectrogram, which

is the graphic representation of the sound intensity over time. The spectrogram is split into

multiple sections to give to the model separately (Fig. 2.7).

The CNN is then ready to extract the relevant features from the spectrogram images.

Figure 2.7: Speech spectrograms

(Musaev et al., 2019, Proceedings of the

2019 3rd International Symposium on

Computer Science and Intelligent

Control)

Figure 2.8: Speech recognition process

(Musaev et al., 2019, Proceedings of the

2019 3rd International Symposium on

Computer Science and Intelligent Control)
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2.2 Word2Vec

Machine learning models for natural language processing take words as input, but can not

process them in their raw form of letters, therefore they have to be preprocessed first. There

are different ways in which words can be translated into suitable inputs for a neural network,

however the most common technique is called word embedding, which refers to transforming

words into spatial numeric vectors by means of special algorithms. The algorithm is trained

with wide language corpora that allow the algorithm to create a space full of vectors that

decode different words. The vectors that are closer to each other refer to words with similar

meanings. Since vectors are numerical, operations between word vectors are possible. An

example of proportions is provided in [16] and displayed below.

𝑚𝑎𝑛𝑤𝑜𝑚𝑎𝑛  =  𝑘𝑖𝑛𝑔𝑥𝑥 =  𝑘𝑖𝑛𝑔 · 𝑤𝑜𝑚𝑎𝑛𝑚𝑎𝑛
(2.1)

The result of the equation will be a vector that is very close to the one of the word “queen”

(2.2)

𝑚𝑎𝑛𝑤𝑜𝑚𝑎𝑛  =  𝑘𝑖𝑛𝑔𝑞𝑢𝑒𝑒𝑛 (2.2)

One of the most successful vector algorithms is called Word2Vec, which has been

implemented by Mikolov in [16] and is used in a variety of neural networks that perform

NLP tasks.
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2.3 Recurrent Networks

Recurrent Networks are Deep Learning networks that have a temporal structure. This means

that the input arrives sequentially and the output depends both on the current and the previous

inputs. Some examples of recurrent network tasks on NLP are provided. For speech

recognition these networks can convert a spectrogram into a sequence of phonemes and

words that are subsequently processed. Sentence completion is performed by predicting the

next word based on the previous ones, which underlies text generation tasks. An interesting

example is NETtalk developed by Sejnowski and Rosenberg in [22]. It performs text to

speech tasks, so it has been trained to read English words. To read each letter, NETtalk takes

seven letters as an input: the previous three, the target letter, and the subsequent three (Fig.

2.9). Eventually, it returns the phoneme of the target letter as an output.

Figure 2.9: NETtalk structure (Sejnowski & Rosenberg, 1987, Complex systems)

In this chapter the most well known recurrent networks will be illustrated, together with their

specific applications in NLP tasks.
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2.3.1 Simple Recurrent Networks (SRN)

Simple Recurrent Networks (SRN) have an internal state, or short memory, which makes

them applicable to sequential problems, such as speech prediction, classification, and

generation.

Figure 2.10: SRN architecture (Elman, 1991,

Machine learning)

These networks have a partially recurrent

architecture that is presented in Fig. 2.10. The

base is a classic feedforward structure, which connects the input layer with the hidden and the

output layers. What makes the difference is that a context layer, identified as C, is added at

the same level of the input layer. At the beginning, each context unit (c₁, c₂, c₃, …) has value

0, because there is no history yet. As soon as the network is activated, they take the value of

the correspondent hidden neuron. In this way, the following state will be not only influenced

by the inputs, but also by the context, which represents the value of the previous interaction.

The most famous example of a SRN is Elman’s network, described in [7]. This network was

trained with a corpus of English words and it was designed to perform word predicting tasks,

receiving a letter as input and predicting the next one until a word was formed. This

particular instance is called self-supervised learning, because the input and target are of the

same character, in fact they are both letters.
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2.3.2 Long-Short Term Memory (LSTM) Networks

RNNs can be considered as short term memory networks, because they can not learn long

term dependencies. An effective solution for analyzing data with long-range dependencies is

to use Long-Short Term Memory (LSTM) networks, since they can keep information in their

memory.

LSTM networks have the standard input and output layer and one or more hidden layers,

which are made of LSTM units with a more complex structure. In fact, they include gates,

which define if the information has to be maintained in the temporary memory cells and for

how long it has to be propagated. Memory cells are the structures that keep the information

over time. They are organized into blocks, which contain one or more memory cells. The

memory cells of the same block share an input and an output gate.

Figure 2.11: LSTM memory cell (Huang et al., 2015, arXiv preprint arXiv)

Input gates let the input enter the memory cell. The current value contained in the memory

cell can exit from the output gate. Moreover, there is an additional gate, so called forget gate,

which can reset the current value of the memory cell. Each gate has its own set of synaptic

weights. Throughout the training phase the network learns itself which information enters the

gates.
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Figure 2.12: Example of a LSTM network with 8 input units, 4 output units, and 2 memory

blocks of size 2. There are 2 input gates and 2 output gates. (Hochreiter & Schmidhuber,

1997, Neural computation)

An extension of LSTM networks is the bidirectional LSTM (bi-LSTM) networks [9]. This

means that the input sequence is read twice, once forwards from left to right and once

backwards from right to left. By doing so, the network has access both to past inputs, via the

forward states, and to future inputs, via the backwards states. This extension comes out to be

very useful in NLP tasks, such as speech recognition, transcription, and POS tagging.

2.3.2.1 LSTM Networks for Natural Language Processing

Speech Recognition and Transcription

Natural Speech Recognizer is a model presented by Soltau, Liao and Sak in [28] and it is

designed to solve transcription tasks. It takes acoustic data as input and returns a written

transcription of it. This model has a deep LSTM architecture with multiple LSTM layers,

using bi-LSTM, and a training corpus that contains both acoustic and written words.
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POS Tagging

In [20] a bi-LSTM model has been used to perform POS tagging tasks. The model takes word

embeddings as input and returns the appropriate POS tags as output (Fig. 2.13).

Figure 2.13: Example of a bi-LSTM model assigning

tags to the sentence “Juli loves cats” (Plank et al., 2016,

arXiv preprint arXiv)

2.3.4 Transformers

The Transformer model that has been implemented in [29] and is a sequential model that has

shown great efficacy in NLP tasks over recent years, since it can decode long-range

dependencies between words. LSTM Networks (Ch. 2.3.2) are also utilized to deal with

long-range relations, but even if their memory is longer than a simple recurrent network, it is

not enough to compute calculations within extended texts that contain more than a few

sentences.

As explained above (Ch. 2.3), RNNs make references by the position of words. For example,

there are models that look at the word before to predict the next one in a text. Differently,

transformers make references by context, which is closer to what humans do as well. For

example, transformer based models can produce some text and cite what they have already

generated a few lines before. Referencing by context is possible thanks to Self-Attention

functions, where the model makes a query (Q) of vectors and looks for similar ones in the
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past, retrieving the most similar keys (K) and the related values (V) and finally produces the

output. In this process, queries, keys, values and outputs are all in the form of vectors. Thus,

Self-Attention can be defined as a similarity measure, which retrieves the most similar word

from a set of words in the past, which means that it doesn’t consider the original order of the

words. However, in human language the order of words plays an important role and should

not be neglected. Multi-Head Attention overcomes this limit by performing multiple attention

functions while considering the position of words as well.

Transformers’ architecture can be shown as it follows.

Figure 2.14: Transformer architecture. On the left side there is the encoders block and on the

right side there is the decoders block. (Vaswani et al., 2017, Advances in neural information

processing systems)

The input is first transformed into a vector by using a word embedding algorithm, e.g.

Word2Vec (Ch. 2.2). A positional encoding is given, which provides information about the

position of the word taken as an input in the text. The input subsequently moves through 𝑁 ×
blocks of encoders and decoders, which utilize attention functions to process the incoming

data. Ecoders process all the inputs at the same time and give information to the decoders,

which produce sequential outputs.
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The initialization of transformers models is divided in two parts: pre-training and fine tuning.

First the model is pre-trained with wide corpora of text that can be found online, for example

from Wikipedia, newspapers, articles, blogs, and websites. Once the model has learnt general

sequences of words from the corpora, it is fine tuned to perform a specific task.

Transformers are suitable models for unsupervised learning, since they can process such big

amounts of data during the training phase.

Transformers are the state-of-the-art approach to perform a variety of NLP tasks, such as

machine translation, text generation, question answering, and sentiment analysis. Two

examples of transformers are presented below, which are currently widely used by companies

that make use of artificial intelligence.

2.3.4.1 BERT

BERT refers to Bidirectional Encoder Representations from Transformers and has been

implemented at Google AI Language in 2018 [6]. Before this point, an individual model had

to be implemented to solve one single task, but BERT revolutionized the NLP world with its

ability to solve more than 11 language tasks, such as sentiment analysis, text generation, text

prediction, question answering, and summarization. BERT is at the base of many online

services, such as Google Translate, voice assistants like Alexa or Siri, and Google Search.

For example, since November 2020 it helps Google Search to detect what the user is looking

for by using context elaboration and not only keywords anymore. In this way, the results of a

research on Google are more accurate and relevant. BERT’s success is mainly due to its

training dataset of 3.3 billion words taken from Wikipedia and Google’s BooksCorpus. These

data are unlabeled, in fact BERT is trained with the unsupervised learning method. It’s

architecture is a multi-layer bidirectional Transformer and is released in the

tensor2tensor library1. The only difference between BERT and a classic Transformer is

that BERT doesn’t need to use a decoder.

1 https://github.com/tensorflow/tensor2tensor
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Figure 2.15: BERTbase architecture (Muller, 2022, Hugging Face)

BERT’s performances in many NLP tasks are incredibly high, outdoing even human

performance. For example, the ranking on question answering tasks that has been made in

2018 places BERT at the first place, with a score of 93.16, and the human performance at the

second place, with a score of 91.221. In general language understanding tasks BERT obtained

an average score of 82.1, whereas OpenAI GPT obtained 75.1.

The biggest advantage that BERT offers is that it is open-source. This means that developers

in companies can easily get the code for free on GitHub2 to build their own BERT model and

train it for their specific tasks. Nevertheless, there are thousands of already pre-trained BERT

models for different specific tasks, in case companies don’t want to fine-tune it.

2.3.4.2 GPT

The GPT (Generative Pre-Training) model was released for the first time in 2018 by OpenAI

to solve language generation tasks. Differently from BERT, it is not open-source, since its

performance is so high that there is an elevated risk of malicious use. In fact, the output texts

are considered credible by humans.

For GPT the OpenAI developers used a multi-layer Transformer decoder, which has been

trained by using the unsupervised learning method with the BooksCorpus dataset.

2 https://github.com/google-research/bert

25



In 2019 GPT-2 was released to create coherent paragraphs of text. It can support in prose,

with tasks like grammar assistance and autocompletion-assisted writing, in poem, with tasks

like literary art and poetry generation, and in programming, with code autocompletion tasks.

GPT-2 has been trained with the WebText dataset containing 40GB of text, which has not

been publicly released.

OpenAI’s work proceeds with the release of GPT-3 in 2020, ChatGPT in November 2022,

and the latest version GPT-4 in March 2023. ChatGPT has been trained with Reinforcement

Learning from Human Feedback (RLHF). Now GPT-4 provides more accurate help than

ChatGPT, thanks to more advanced general knowledge and problem solving skills.
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Chapter 3

Applying BERT for a company product: the Ixly example

In this chapter an example of a BERT application in a company project will be provided. In

the summer of 2022 I had the chance to do my internship at Ixly B.V., in Utrecht,

Netherlands. Together with Ixly’s Data Science team, I had to work on “In2dialog”3, which is

an interview app that records any job interview and returns a report with an objective analysis

of some specific features of the speech.

3.1 Ixly B.V.

Ixly B.V. was founded in 2005 by Diddo van Zand4 and provides an e-assessment platform

for personnel selection inside organizations. The “Assessment Platform” offers a test toolkit5

with a variety of personality and intelligence tests that can be used to recruit new employees.

In the past two years they have been working on “In2dialog”, which is a software that records

any job interview and returns a report with the following features: the main topics that have

been touched, in terms of competencies, motivators and personality keywords, a wordcloud

of the most used words, the number and type of questions that have been asked, and the

language style matching between the candidate and the interviewer.

5 https://www.ixly.com/test-toolkit-tests
4 https://nl.linkedin.com/in/diddovanzand
3 https://in2dialog.com/
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3.2 Project overview: goals and procedure

Since the “In2dialog” app is currently available in Dutch and English, my job was to make it

suitable for the Italian language. This meant that I had to find an Italian corpus of spoken

text, normalize it and train my model with this new dataset. Then I had to apply all the filters

mentioned above to the Italian language and finally create the pipeline that computes the

language analysis for Italian conversations. This pipeline utilizes a modification of BERT to

find question types within a conversation.

Python has been used as the main programming language with Visual Studio Code as its

development environment. Microsoft Azure API6 has been utilized to transcribe the input

conversation from speech into text. We adopted the Italian corpus KIParla [4] as the main

dataset for the Italian language, which has been collected and released in 2019 together by the

University of Bologna and Turin. I downloaded the html file containing all the

conversations7, created a python data frame that connected each speaker with the utterances

they pronounced, and finally stored the data frame into a csv file, called

‘KIParla_Corpus.csv’. Through this csv file I could work separately on each feature of

the speech that I had to analyze.

3.3 Question Type Analysis

One of the task that the “In2dialog” app does is Question Type Analysis: when the app

recognizes a question in the speech, it marks it with a type label. In particular, we wanted to

detect if the questions were ‘who’, ‘what’, ‘how’, or ‘why’ questions.

7

http://130.136.148.2/bonito/run.cgi/wordlist?corpname=KIP;usesubcorp=;wlattr=doc.full_conversation;wlminfr
eq=1;wlmaxfreq=0;wlpat=.%2A;wlmaxitems=1000;wlsort=;ref_corpname=;ref_usesubcorp=;wlcache=;simple_
n=1.0;wltype=simple;wlnums=docf;include_nonwords=1;blcache=;wlpage=1;usengrams=0;ngrams_n=2;ngram
s_max_n=2;nest_ngrams=0;complement_subc=0

6 https://azure.microsoft.com/en-gb/products/cognitive-services/
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The company already collected sample questions from Dutch interviews, matched them with

a question type label, and stored them into a csv file. Thus, I used googletrans8, which is

the python library used for the Google Translate API, to automatically translate it into Italian

and store the data into another csv file, named ‘question_types_ita.csv’. Then I

used Sentence-BERT [21], which is an adaptation of the traditional BERT network that

calculates cosine similarity not between words, but between sentences. I imported the

Sentence Transformer9 library and used the

‘distiluse-base-multilingual-cased-v1’10 model, which is a multilingual

model for cosine similarity trained on 15 different languages. To install it and run it on any

Python environment it is sufficient to write the following lines of code.

import sentence_transformers

from sentence_transformers import SentenceTransformer, util

model=SentenceTransformer('distiluse-base-multilingual-cased-v1')

Given an input question, the Transformer calculates the similarity between the input question

and all the other questions from the ‘question_types_ita.csv’ file, and finds the

question within the csv file with the highest similarity score. Then, it takes the corresponding

question type of that question and it labels the input question with that type.

10 https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v1
9 https://www.sbert.net/docs/pretrained_models.html
8 https://py-googletrans.readthedocs.io/en/latest/
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Chapter 4

Conclusions

The aim of this paper was to highlight the advancement of Natural Language Processing

techniques in recent years and to summarize the main machine learning algorithms that have

been implemented to solve such tasks up to the ‘state-of-the-art’ models increasingly used by

companies for different purposes. Natural Language Processing is a field that a lot of

companies in the technology sector have interest in developing and investing in, thus the pace

of progress is rapid. It is likely that in a few years most advanced technologies mentioned in

this paper will already be outdated. Within the Hype Cycle of Artificial Intelligence,

nowadays we collocate ourselves in a ‘hype’ peak, with OpenAI’s ChatGPT and GPT-4,

which can perform in a way that nobody could ever imagine.
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