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Abstract

Worldwide, 537 million people aged between 20 and 79 were living with diabetes in 2021

and this number is predicted to rise to 643 million by 2030 and 783 million by 2045. Dia-

betes is responsible for 6.7 million deaths in 2021 - 1 every 5 seconds. In order to contain

the growth of these numbers and improve the life quality of patients, it is important to

screen categories at risk, diagnosing diabetes at its early stage. To do so, one of the most

popular tests is the glycated hemoglobin (HbA1C) test, that measures the percentage of

blood sugar attached to hemoglobin and shows the average blood sugar level for the past

2 to 3 months.

This test requires a blood sample acquisition, which is an invasive procedure. For this

reason, predicting HbA1c from a fundus camera image can be useful, and it also provides

other retinal biomarkers. In this work, it has been tested whether this can be done with

enough accuracy using convolutional neural networks. To do so, a dataset made of 100153

images coming from 16799 subjects has been split in training, validation and test set to

train and test an EfficientNet B2 convolutional neural network. For each subject, many

different images were taken over time for both eyes together with an HbA1c measure-

ment.

Two different experiments have been performed: the first one trying to predict the latest

HbA1c measurement using the first image collected for each subject and the second one

trying to predict the HbA1c value corresponding to each image. After having found that

the first experiment was unfeasible, due to the misconception of predicting future infor-

mation from a tissue carrying information about the past history, the focus shifted to the

second experiment. In this case, even if the results were not excellent, they have shown

more promising perspectives and coherence of the predictions over time. An analysis of
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the effect of sex and age on the cumulative HbA1c value as been performed, confirming

that these variables do not affect it. Afterwards, an analysis of the time trend of the predic-

tions has been performed, fitting them with a linear model and extracting its parameters,

for each subject. Depending on the position of the predicted fit with the respect to the

actual fit, the subjects have been given three categories. A χ2 test has been performed

to inspect whether there was an association or not between these categories and the death

outcome. The same has been done for a risk-class category, build on whether the predicted

slope was greater or smaller than the actual one.

Since this work is strongly experimental and one of the first of his kind, it has the aim to

pave the path in this specific field and has big room for improvement. Most of the limita-

tions of this work come from the cumulative nature of the data, but some suggestions on

how to improve already exist and are presented in the dedicated chapter.
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1. Introduction

1.1 Work motivation

The motivation for this work is strictly related to the high rate at which diabetes is spread-

ing worldwide, as it will be explained in the dedicated following section 1.2. In order to

slow down this spreading and hopefully stop it, it is crucial to detect patients from this con-

dition at the early stages of the disease. To do so, it is of critical importance to have a reli-

able and accurate test. One of the most popular ones is the glycated haemoglobin (HbA1c)

measurement, able to reveal the percentage of blood sugar attached to haemoglobin and

showing the average blood sugar level of the past 2 to 3 months.

Since it requires the acquisition and the analysis of a blood sample from the patient, this

procedure is slightly invasive. The importance of HBA1c in detecting diabetes patients

and the invasiveness of this test explain the motivation of this work, in which it has been

attempted to use a convolutional neural network to predict the cumulative value of the

blood concentration of this molecule from fundus camera images, obtained from a simple

and non-invasive procedure. The aim is to stratify patients depending on their exposure,

which is measured as the integral under the curve of HbA1c measures taken over time.

This chapter aims to provide an introduction to the context in which this work has been

conducted, starting from the description of diabetes and glycated haemoglobin, going

through the anatomical structure of the eye and the retina, with the explanation of the

main imaging techniques and their applications, arriving at the description of the dataset

used. A brief summary of the work conducted and an overview of how the document is

structured will be provided as well before moving on to the next chapter.
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The most common form is type 2 and during the past 3 decades its prevalence has risen

dramatically in countries of all income levels. For people living with diabetes, access to

affordable treatment, including insulin, is critical to their survival. There is a globally

agreed target to halt the rise in diabetes and obesity by 2025 [8]. In 2021, about 537 mil-

lion people worldwide had diabetes and 6.7 million died because of it. Both the number

of cases and the prevalence of diabetes have been steadily increasing over the past few

decades [14]. Concerning the UK, one in ten people over 40 has been diagnosed with

diabetes, with a total of 3.8 million people, 90% of those were type 2. Moreover, almost

1 million more people with type 2 diabetes do not know they have it because they have

not been diagnosed, bringing the total number up to 4.7 million. By 2030 the number of

diabetic people is predicted to rise to 5.5 million.

Glucose metabolism is a fundamental process in a living organism, since from the physi-

ological point of view it provides the energy necessary for the different vital functions of

cells and organs, while from the pathological point of view its malfunctioning may cause

glucose intolerance and diabetes. The endocrine system is the most important in glucose

regulation, since it produces two hormones: insulin (in pancreatic β-cells) and glucagon

(in pancreatic α-cells). These two hormones are continuously secreted and act with op-

posing actions to maintain the glucose concentration into a specific range.

The liver has a crucial role in glucose metabolism as a glucose-sensor organ: it can detect

its concentration and react with an appropriate secretory response. It can both store glu-

cose when its concentration is high and produce and release it in the bloodstream when

the organism is in deficiency. For the subject’s health, it is essential that the blood glucose

concentration is maintained inside a precise interval: the average values of fasting glu-

cose concentration are between 60mg/dL and 110mg/dL, and they may rise to 140mg/dL

two hours after an Oral Glucose Tolerance Test (OGTT) [1]. When the glycaemia goes

under 60mg/dl, the subject experiences a hypoglycaemia episode that is perceived with

weakness, headache, sweat and/or trepidation due to the suffering of the central nervous

system. In the most severe cases, it may bring hypoglycaemic coma [3]. Hyperglycaemia,

on the contrary, happens when the glycaemia is too high. If this condition is maintained for

an extended period, it may cause diabetic ketoacidosis and coma caused by dehydration

due to a blood accumulation of ketone bodies.
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Patients with type 2 diabetes suffer from insulin-resistance, which consists in cells’ inca-

pability of using insulin: they have fewer insulin receptors, making glucose not enter them

and accumulate in the bloodstream. As the first reaction, the organism produces more

insulin to maintain a low glucose concentration (hyperinsulinism). However, in the next

stage, the increased insulin production does not maintain glycaemia to normal values, and

hyperglycaemia happens.

The main stimulus for insulin release is glucose itself: when plasma glucose concentra-

tion exceeds 100mg/dL, it is absorbed from the small intestine and reaches β-cells, that can

detect it with GLUT-2 transporters and release insulin in response. Glucose and insulin

act through a closed-loop system: if plasma glucose concentration rises, β-cells secrete a

larger amount of insulin, promoting its consumption in order to restore the basal level of

glycaemia.

1.3 Glycated haemoglobin (HbA1c)

HbA1c refers to glycated haemoglobin, which is a molecule of haemoglobin bounded

with glucose in the blood, thus becoming glycated. The measure of its concentration in

the blood gives an overall picture of the average blood sugar levels in the last couple of

months. For diabetic patients, this measure is very important since a high value of HbA1c

is related to a greater risk of developing diabetes-related complications, like eye and kid-

ney damage, dementia and cardiovascular problems [2].

Haemoglobin is a protein within red blood cells that carries oxygen throughout the body.

When the body processes sugar, glucose in the bloodstream naturally attaches to the

haemoglobin. The attached amount is directly proportional to the total amount of sugar in

the organism.

Figure 1.2: Glycated haemoglobin
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Since the lifespan of red blood cells is around three months before renewal, HbA1c mea-

surement reflects the average glucose concentration over that duration, providing a proper

long-term gauge of blood glucose control. On the contrary, fasting glucose and oral glu-

cose tolerance tests only indicate the current concentration and may be biased by the day-

to-day variability. Moreover, they need the person to fast and have preceding dietary

preparations.

Measuring HbA1c has many advantages. It can be measured at any time of the day and

taken from just a finger, and it does not require any special preparation such as fasting.

Furthermore, it is an important instrument for the early identification and treatment of

diabetes. For these reasons, it has become an interesting diagnostic test for people with

diabetes and a screening test for people at high risk of diabetes. However, it is crucial to

consider that HbA1c levels may be affected by some genetic, haematologic and illness-

related factors. Some of them are haemoglobinopathies, certain anaemia and disorders

associated with accelerated red cell turnover, such as malaria [15]. Healthy people have

HbA1c level below or equal to 5.6%, a prediabetic condition is identified within the range

from 5.7% to 6.4%, and diabetic people have levels higher than 6.5%. The target for di-

abetic people is 6.5%, which corresponds to 48 mmol/mol [mmol of HbA1c per mol of

haemoglobin].

1.4 Retina and retinal imaging

1.4.1 The anatomy of the eye

The protective bony socket where the eye is located is called orbit. Here, six muscles are

attached to the eye, allowing all its movements. Other extraocular muscles are attached to

the sclera, a strong layer of tissue that covers almost the entire surface of the eyeball. The

membrane covering the eye surface and the inner surface of the eyelids is called conjunc-

tiva. The surface of the eye is lubricated by three layers of tears that together compose

the tear film: the mucous layer, made by the conjunctiva, the watery layer, secreted by the

lacrimal gland, and the oily layer, secreted by the meibomian gland.

The frontal part of the eye, through which the light is focused, is called the cornea. Behind

it, a space called anterior chamber is filled with a fluid called aqueous humor. A system

of production and draining of this fluid is always active in order to keep a constant eye
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pressure. Behind the anterior chamber there is the eye iris, with a dark hole in its mid-

dle, called pupil. The muscles contained in the iris allow changing the pupil size in order

to control the amount of light reaching the back of the eye. Behind it, there is the lens,

responsible for focusing the light passing through the pupil toward the back of the eye

by changing shape depending on the distance of the object the eye is focusing on. The

lens is surrounded by the lens capsule, and some fibers called zonules are attached to it,

suspending it from the eye wall. By helping to focus light as it enters the eye, the cornea

and the lens both play important roles in giving us clear vision. In fact, 70% of the eye’s

focusing power comes from the cornea and 30% from the lens.

The space between the lens and the back of the eye is called vitreous cavity and is filled

with a fluid called vitreous humor. After passing through the pupil, being focused by the

lens and passing through the vitreous humor, the light reaches the retina, the light sen-

sitive tissue covering the inside of the back of the eye. A tiny but very specialized area

of the retina, called macula, is responsible for giving us detailed central vision, while the

peripheral retina provides us with side vision. The retina has photoreceptors, special cells

converting light into an electric signal and transmitting it through the optic nerve to the

visual cortex, the part of the brain responsible for sight. There are two types of photore-

ceptors: rods, perceiving black and white and enabling night vision, and cones, perceiving

color and providing detailed central vision.

1.4.2 Inside the retina

With a deeper insight into the retina, we can see the optic nerve, a circular/oval white area

containing the ganglion cells’ axons running to the brain and, incoming blood vessels that

open into the retina to vascularize its layers and neurons. Approximately two and a half

disc diameters to the left of the disc there is an oval-shaped reddish spot free from blood

vessels, the fovea, which is at the center of an area known as macula. A circular area of

approximately 6 mm around the fovea is called central retina while the area beyond this is

called peripheral retina, stretching to the ora serrata, 21 mm from the center of the retina.

The total retina is a circular disc with a diameter varying between 30 and 40 millimeters.

This concentric structure is shown in figure 1.3.
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Figure 1.3: Fundus camera image of the retinal, with details about its components

The center of the fovea is known as the foveal pit, a highly specialized region of the retina

different from the central and peripheral areas. It is a spot where rods are absent while

cones are present at their maximum concentration density, achieved thanks to the hexago-

nal mosaic, their most efficient packing system. Up the foveal pit, along the foveal slope,

there is the parafovea, and around it the perifovea. The whole foveal area - including

foveal pit, foveal slope, parafovea and perifovea - is the macula. In the macula lutea, yel-

low screening pigments give rise to the yellow pigmentation. The macula lutea is thought

to act as a short wavelength filter, additional to that provided by the lens. As the fovea is

the most essential part of the retina for human vision, protective mechanisms for avoiding

bright light and especially ultraviolet irradiation damage are essential. Indeed, the conse-

quence of foveal cones being destroyed is blindness.

The retina is approximately 0.5 mm thick and lines the back of the eye. Its radial section

reveals that the ganglion cells (the output neurons) lie innermost, closest to the lens and

front of the eye, while rods and cones lie outermost, against the pigment epithelium and

choroid. Therefore, light has to travel through the thickness of the retina before striking

and activating the photoreceptors. After they absorb photons through the visual pigment,
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light is translated into a biochemical message first and into an electrical one afters, able to

stimulate all the succeeding neurons of the retina. The retinal message is finally transmit-

ted to the brain from the spiking discharge pattern of the ganglion cells.

All vertebrate retinas are composed of three layers of nerve cell bodies and two layers

of synapses (Fig. 5). The three nerve cell bodies are the outer nuclear layer, containing

cell bodies of rods and cones, the inner nuclear layer, containing cell bodies of bipolar,

horizontal and amacrine cells and the ganglion cell layer, containing cell bodies of gan-

glion cells and displaced amacrine cells. Dividing these nerve cell layers are two neuropils

where synaptic contacts occur: the outer plexiform layer (OPL) and the inner plexiform

layer (IPL). Concerning blood supply, there are two sources in the mammalian retina: the

central retinal artery, receiving 20-30% of the flow and nourishing the inner retinal layers,

and the choroidal blood vessels, receiving 65-85% of the flow and nourishing the outer

layers.

1.4.3 Retinal imaging techniques

During the last century, retinal imaging underwent a rapid and consistent development.

It is now a mainstay of the clinical care and management of patients with retinal as well

as systemic diseases. The main retina imaging techniques and their applications are the

following:

• Fluorescein Angiography (FA): is a diagnostic procedure that uses a special camera

to record the blood flow in the retina without involving any direct contact with the

eyes. Fluorescein dye is injected into a vein in the arm/hand, and it will fluoresce in

the blood vessels and be recorded as gray or white light in the image. Photographs

are taken as dye passes through the blood vessels of the eye, allowing abnormal

blood vessels (displaying hypofluorescence or hyperfluorescence) or damage to the

lining beneath the retina to be revealed. Fluorescein angiograms are often recom-

mended to follow the progression of a disease and to monitor treatment results. It is

particularly useful in the management of diabetic retinopathy and macular degener-

ation.

• Autofluorescence Imaging (FAF): is the concept of using naturally occurring fluo-

rescence from the retina to provide an indicator of the retinal pigment epithelium
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health. Illuminating the retina with blue light causes certain cellular components to

ªglowº without injecting any dye. The fluorescence returning from the retina can

be used to create a black-and-white image which can be interpreted by recognizing

characteristic patterns. Potential applications of FAF imaging have been explored

in a variety of retinal diseases including: age-related macular degeneration, retinitis

pigmentosa, central serous chorioretinopathy and macular dystrophies.

• Optical Coherence Tomography: is a noninvasive imaging technology used to obtain

high resolution cross-sectional images of the retina. The layers within the retina can

be differentiated and retinal thickness can be measured to aid in the early detection

and diagnosis of retinal diseases and conditions. It uses rays of light to measure

retinal thickness and since no radiation or X-rays are used in this test, it does not

hurt, and it is not uncomfortable. Some applications are monitoring the progress of

your disease, verifying or discounting suspected swelling of the retina, or checking

OCT results against other results. This is done to determine the effectiveness of the

current medication regime.

• Color Fundus Photography: is the technique that has been used to collect retina

images in the GoDARTS dataset used for this work. It uses a fundus camera to

record color images of the condition of the interior surface of the eye. This is done

in order to document the presence of disorders and monitor their evolution over time.

A fundus camera or retinal camera is a specialized low power microscope with an

attached camera designed to photograph the interior surface of the eye, including the

retina, retinal vasculature, optic disc, macula, and posterior pole (i.e. the fundus).

The retina is imaged to document conditions such as diabetic retinopathy, age related

macular degeneration, macular edema and retinal detachment. Fundus photography is

also used to help interpret fluorescein angiography, as certain retinal landmarks visible

in fundus photography are not visible on a fluorescein angiogram. Your eyes will be

dilated before the procedure. Widening (dilating) a patient’s pupil increases the angle of

observation. This allows the technicians to image a much wider area and have a clearer

view of the back of the eye [13].
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1.5 Dataset description

The DARTS - Diabetes Audit and Research in Tayside Scotland - study started in 1996 as

a collaboration between the University of Dundee, the three Tayside Health Care Trusts:

the Ninewells Hospital and Medical School, the Perth Royal Infirmary, the Stracathro Hos-

pital and a group of Tayside general practitioners to identify all diabetic patients within

the Tayside region and to improve health care [10]. The collected data includes hospital

diabetes clinics, diabetes prescription database and all diabetes-related records. It is con-

tinually updated and forms an extremely valuable longitudinal dataset of clinical data.

In 1998 genetic data started to be collected through a blood sample for DNA extraction

while phenotypic data was collected through lifestyle questionnaires and clinical exami-

nation. This more comprehensive study, called GoDARTS ± Genetic of DARTS ± aims

to study and identify if there are correlations between specific genetic and environmental

factors and the disease onset, progression and response to treatment.

GoDARTS was created in three phases. The first was the pilot phase, GoDARTS1, to test

the recruitment processes and the ability to anonymously link patient clinical data from

electronic records to the study. In this phase, when the patient was recruited, only blood

samples were taken and no baseline data were recorded. In the second phase, GoDARTS2,

two groups of patients were enrolled, a type 2 diabetes patients group and a control group.

On average, there was one control per case of diabetes. Baseline clinical and lifestyle

measurements were recorded for all patients. This included the smoking history, level of

physical activity and menopause history for women, as well as height, weight, blood pres-

sure and heart rate. During the third phase, GoDARTS3, other patients were recruited, and

urine and blood samples for RNA extraction were collected. Some of them also partici-

pated in phase one or two, where baseline data was missed or the quality of the extracted

DNA was poor. Only 1451 patients involved exclusively in the GoDARTS1 trial do not

have these data.
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Figure 1.4: Diagram of the overlap in patient recruitment in the three phases.

GoDARTS dataset contains a total of 18306 participants, 10149 with type 2 diabetes and

8157 healthy controls at baseline. All participants are asked to provide informed consent

for their data to be used for research purposes and explicit consent of use in collaboration

with the industry. This opens the possibility to access longitudinal data related to routine

diabetes management, such as the glycated haemoglobin data. The linkage between dif-

ferent databases is made possible thanks to the community health index (CHI), a 10-digit

unique numerical identifier issued to each patient on the first registration with a GP or on

the first admission to a Scotland hospital. The index is then converted to a study pro-CHI

so that patient identities are protected, but multiple datasets can still be linked.

Case Control Overall

Gender (% male) 56.38 50.08 53.33

Age 67 60 64

HbA1c (%) 7.1 5.5 6.0

Table 1.1: Median value

The main strengths of GoDARTS are its large size, the availability of genetic and

phenotypic data, the ability to link patients’ data to routine electronic medical records

and the consent to use these data for research purposes and to contact for possible future

research participation. However, there are some weaknesses, like the missing baseline data
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for some GoDARTS1 patients and the lifestyle questionnaires that, being self-completed,

may have some bias. In the following table, we can see the median value of the variables

gender, age and glycated haemoglobin of the GoDARTS patients.

1.6 Summary of the work

The initial phase of the work consisted in feature selection from a GoDARTS dataset of

retinal and clinical features, using a LASSO technique applied in a bootstrap resampling

procedure. The aim is to familiarize with the GoDARTS data and machine learning tech-

niques on big medical data and to confirm the results obtained in previous similar studies.

After this introductory work on feature selection, the two core experiments of the work

have been conducted with the aim to discover whether it is possible or not to use tem-

poral information present in retina images to predict the trend of cumulative glycated

haemoglobin (HbA1c) in the future. The first experiment consists in predicting the last

HbA1c measurement using the baseline image, while the second one in predicting the

HbA1c measurement relative to each image.

Afterwards, an analysis of the effects of age and sex on cumulative glycated haemoglobin

has been conducted, showing that in this data set of cumulative measures, they seem to

have no particular effect, since the distribution is the same in males and females, and it

does not have any trend with age.

The following part of the work dealt with the time trend of the actual and predicted data,

fitting them with a linear model and extracting the parameters (slope and intercept) for

each subject. On the base of the relative position of the two fits they have been classified

as "Above", "Below" or "Interception" and on the base of the magnitude of the predicted

slope with respect to the actual slope they have been given a "risk" score of 0 or 1. Statis-

tical χ2 test has been performed in order to establish whether a relationship between these

2 variables and the death outcome existed or not.
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1.7 Structure of the document

In this introductory chapter, the most significant aspects of the context of the following

work have been explained. The description started from the general understanding of di-

abetes and the relevance of HbA1c as a tool to detect it at its early stages. Then it moved

to the general anatomy of the eye, digging into detail about what concerns the retina and

describing the most popular imaging techniques of this tissue. In the end, an insight into

the dataset used was also provided. The rest of the document is structured as follows: in

the related work chapter, a series of analyses conducted for this work and others in the

same field will be presented; in the methodology theory, a description of the mathematical

and computational tools applied in this work will be explained in detail. Afterwards, in

the fourth chapter, a more technical insight into the work will be provided, describing the

work environment and some details about the algorithms used. The following chapter de-

scribes the experiments as well as how the data were manipulated to ask relevant questions

and how the collected results were analyzed. To conclude, limitations will be discussed

together with the possible ways to overcome them in the final chapter. In this section, a

prospect about the future work on this topic will also be provided.
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2. Related work

2.1 Introduction

The previous chapter provided a thorough introduction to the biological context of the

work. In particular, it began diving into the description of diabetes, explaining its causes

and effects, as well as the difference between type one and type two and the glucose-

insulin system. Afterwards, it moved to glycated hemoglobin (HbA1c), explaining why

this molecule is important in the context of diabetes and what kind of information it can

provide. Then the anatomy of the eye, of the retina and the main imaging techniques

to inspect them have been presented, with a quick overview of fluorescein angiography,

autofluorescence, optical coherence tomography and color fundus photography. A de-

scription of the GoDARTS dataset followed, and a summary of the work and a description

of the document’s structure were provided to conclude.

As a follow-up to the introduction, this second chapter will provide a more technical de-

scription of the work’s context, presenting some machine and deep learning applications

to medical data and retinal imaging. In particular, the first section is about the work

conducted on LASSO feature selection from a GoDARTS dataset of retinal and routine

features. This was done in order to familiarize with GoDARTS data and features and to

confirm the results previously obtained in other studies. In the following section, a Dundee

CVIP’s study using deep learning to predict age from fundus camera images will be de-

scribed, since it played a crucial role for our work. Then, a brief summary of a series of

studies about deep learning applied to retinal images, will be presented, since they have

been useful to have a better understanding of the state of the art in this field.

27



2.2 LASSO features selection

Before dealing with deep learning and retinal images, the beginning of the work focused

on establishing the usefulness of a machine learning algorithm for patient stratification and

selecting the most relevant features to predict the presence or absence of MACE. Major

Adverse Cardiovascular Events (MACE) are defined as nonfatal stroke, nonfatal myocar-

dial infarction and cardiovascular death. The task has been carried out using the LASSO

regression in a bootstrap resampling method and evaluating the performance using the

area under the ROC curve (AUC). A GoDARTS dataset, made of 4711 subjects and 184

retinal and clinical features has been used. At the end, the results were compared with

those obtained by L. Boyle in his dissertation [4].

LASSO stands for Least Absolute Shrinkage and Selection Operator and is a regulariza-

tion method that encourages simple, sparse models by introducing some bias in the coef-

ficient estimates but reducing their variance. This is done by adding the L1 norm of the

coefficients as a penalty term to the residual sum of squares, weighted by the shrinkage

parameter λ:
n∑

i=1

(yi −
∑

j

xijβj)
2 + λ

p∑

j=1

|βj|, (2.1)

where yi is the outcome of the i-th subject, xij is the j-th feature of the i-th subject, βj is

the regression coefficient of the j-th feature. Data has been preprocessed before starting

the bootstrap loop. Of all the features, some were removed since they were not informa-

tive (like image size, resolution or others having the same value for each subject). Others

were removed because they were highly correlated (like the date of birth and age) so only

one of each couple was kept. The feature cvd_fail, stating whether the subject had a car-

diovascular disease or not, has been used as outcome. Then the data have been imputed

using the nearest neighbor method and z-scored, subtracting the mean and dividing by the

standard deviation.

Within each bootstrap loop, an internal training set of the same size as the original training

set (made of 3533 subjects) has been sampled with repetition from it, and the out-of-bag

subjects have been used as the test set. This internal dataset has been sampled with strat-

ification, ensuring that the percentage of subjects with each outcome was the same as the

original dataset. A number of features were selected at each iteration, corresponding to
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Figure 2.2: Binomial deviance trend for different values of λ.

The results are in line with the ones previously obtained in other studies, with the only

exception that a Retinal feature has been selected 500 times over 500 iterations. Indeed,

Retinal features usually contribute more modestly to the prediction, especially when com-

bined with many other types of features.

2.3 Age prediction

Accelerate aging can be detected from the vascular systems using molecular and cellu-

lar biomarkers and functional and structural ones. An important biomarker in the human

body is the brain, a highly vascular organ whose images contain recognized shreds of evi-

dence of age-related tissue health, such as manifestations of white matter disease and other

age-related structural changes. The retina has the same embryonic origin as the brain, the

neural plate, and is a highly vascularized neurological tissue, but, unlike the brain, it can

be imaged quickly and inexpensively with digital photography.

Deep learning applied to retinal images has recently been shown to accurately predict a

subject’s age. Moreover, the difference between the chronological age and the predicted

one can be exploited and used as an important biomarker of the subject’s health. We can

think that an individual with a predicted age greater than their chronological age has a

more significant risk of all-cause death.
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In a previous study [16], DL was used to predict biological vascular age from retinal im-

ages to investigate how the difference between chronological and retinal vascular predicted

age (Predicted Age Difference, PAD) was associated with major adverse cardiovascular

events (MACE) and all-cause death in a large population of individuals with Type 2 Di-

abetes. GoDARTS dataset was used, selecting patients with a MACE at the date of the

earliest available image but no history of hospitalization. Images were pre-processed to

reduce the effect of image variations, such as brightness, colour and focus, and they were

resized to the standard size of 260x260 pixels, which is the one recommended improving

accuracy in the used neural network [17].

Ghouse et al. used the EfficientNet-B2 network since it achieves excellent performance

in imaging tasks. They modified the fully connected layer and replaced it with a global

average pooling layer followed by a single output node with linear activation. Moreover,

Grad-CAM heatmaps, applied to the last convolutional layer, showed that the network

identified the macula and the optic disc as the most important features to predict age.

Results are encouraging because the MAE in predicting age was 3.96 years for the whole

cohort, with an R2 equal to 0.798. Despite the limitations of the work, they can be consid-

ered an important achievement in understanding how retinal images can be used in deep

learning to predict a biological outcome.

2.4 Other work

The usage of deep learning algorithms to extract clinical information from medical images

and signals began to spread widely along with the development of this new technology.

For this aim, the usage of retinal images, fundus camera in particular, has become ex-

tremely popular. In the following, a brief summary of some studies that turned out useful

for this work will be presented.

In a study by Gerrits et al. (2020) [9], the MobileNet-V2 architecture has been used to

investigate whether fundus camera retinal images can predict cardiometabolic risk factors.

The study stated that age and sex can be predicted with high performance, while systolic

blood pressure, diastolic blood pressure, Haemoglobin A1c, relative fat mass and testos-

terone can be predicted with lower but still acceptable performance. In order to discover

what areas of the image the network was paying attention to, they used the Grad-CAM
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technique. It revealed that the network was focusing on the vasculature and on the optic

disk when predicting age and sex, as well as when predicting the other features mentioned

earlier.

Figure 2.3: GradCAM applied in the study by Kim et al. (2020) [11].

Similarly, in a study by Y. D. Kim et al. (2020) [11], ResNet-152 has been used as a

backbone network to predict age and sex and understand how hypertension, diabetes and

smoking affect these predictions. They trained the network with fundus images coming

from healthy patients and tested it on 4 different datasets: healthy set, hypertension set, di-

abetes set and smoking set. Briefly, they found that the healthy set reported the most accu-

rate age prediction and that prediction accuracy decreases significantly with the increasing

of the patient age. On the contrary, no relevant changes in accuracy were recorded when

predicting sex, showing that vascular conditions only affect age prediction.

Another study by J. H. Cole et al. (2018) [6] investigated biomarker prediction using MRI

brain images and machine learning. In particular, T1-weighted MRI scans were used to

train a Gaussian process regressor to predict chronological age. The authors were able to

show that this marker of brain aging is associated with a greater risk of death and poorer

physical and cognitive fitness.
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2.5 Conclusions

The field of biomarkers prediction using neural networks has been widely explored through-

out this chapter. These studies revealed to be useful to understand the potential of neural

network in this field, proving that they are a tool able to estimate many biomarkers reli-

ably. The results of the work on feature selection with LASSO and bootstrap resampling

method were presented as well, showing that clinical features still prevail over retinal ones

in predicting cardiovascular events. After having provided some insight on this topic, the

next chapter will move on to give a more technical and mathematical explanation of artifi-

cial intelligence. In particular, it will provide details about neural networks in general and

on the architecture used in this work, EfficientNet.
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3. Methodology

3.1 Introduction

After the summary of the main work in this field reported in the last chapter, this third

chapter will introduce from a computational point of view the deep learning methods used.

The first section will provide a general introduction about machine learning, explaining

how it works and introducing its main frameworks. Then a quick overview of neural

networks will cover from the basic neuron to the most popular architectures. To conclude

the chapter, the final section will describe how the family of networks used for this work,

EfficientNet, was conceived and its structure.

3.2 Machine learning fundamentals

Machine learning is a branch of artificial intelligence that consists in leveraging data to

improve the performance of an algorithm carrying out a certain task. From the point of

view of learning from data, there are four types of machine learning algorithms: super-

vised, semi-supervised, unsupervised and reinforcement.

In supervised learning, labelled data coming from a training set is used to learn the pa-

rameters of a model that is able to map certain input variables, called features, into some

output/target variable (outcome). To assess the performance of the model during the train-

ing process, a loss function is used to measure how far the predictions of the model are

from the true values. In order to improve the performance of the model, its parameters are

updated in such a way that minimizes the loss function calculated over the training set. In

general, based on the feature vector x ∈ R
n, the classifier has to predict the variable or
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the correct class y, which is estimated by a function ŷ = f(x,θ) that directly results in

the classification or regression output ŷ. The classifier’s parameter vector θ is determined

during the training phase and later evaluated on an independent test data set.

Unsupervised learning, on the other hand, makes use of unlabeled data to discover hid-

den patterns and data groupings without the need of human intervention. This makes it a

useful technique to discover differences and similarities in information. The most popular

algorithm is clustering, coming in many different variants (K-means, hierarchical, fuzzy

and many others), but there are many more, like dimensionality reduction (PCA, SVD)

and autoencoders.

Semi-supervised learning is instead an approach that performs the training process with

a small amount of labeled data and a large amount of unlabeled data. It is an instance of

weak-supervision used in cases where data labeling can be expensive. The use of a small

amount of labelled data can improve the prediction accuracy considerably.

To conclude, reinforcement learning refers to a set of algorithms involving a learning agent

that interacts with the environment to achieve a goal, typically the maximization of a re-

ward provided by the environment. The learning agent must be able to detect the state

of the environment and to take actions that affect the state of the environment. While in

the other learning frameworks the model learns from datasets, in reinforcement learning

the agent learns from its experience. No training data are provided to the system, since

it generates the examples with its own activity. RL algorithms are based on the trial and

error approach: to improve their ability to get rewards, agents must continuously test the

effect of their actions to learn the action that maximizes the reward for each state of the

environment (policy).

3.3 Deep learning

Deep learning is a branch of machine learning that tackles the problem of teaching a ma-

chine a typically human learning framework, learning by examples. It is based on artificial

neural networks with representation learning, a set of techniques that allows a system to

automatically discover the representations needed for feature detection or classification.

Neural networks gained an important role in many computer science fields, ranging from

computer vision to reinforcement learning. The fundamental unit of a neural network is a
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Figure 3.1: Fully connected neural network with 2 hidden layers.

neuron, that takes a bias w0 and some weights w = (w1, . . . , wn) to linearly combine the

input x it receives as w⊺
x + w0, squeeze it into a non-linear activation function h(·) and

output its own activation level. Different kinds of activation functions exist, and some of

the most popular ones are the sigmoid and the hyperbolic tangent. A fully connected neu-

ral network is made up of many layers including many neurons each, in such a way that

the inputs of the neuron in a layer are the outputs of the neurons in the previous layer and

its output, together with the output of all the neurons in the same layer, are the inputs of

all the neurons in the following layer. This architecture can be better understood looking

at figure 3.3.

The parameters of the network comprise the connections between the neurons and the

biases, and are learned with a gradient descent procedure performed on a function mea-

suring the quality of the network parameters: the lower its value, the better the network

performance. This function is known as loss function, since it’s calculated as the average

over the training set of the difference between the true and the predicted value or class

probability. Depending on the application, this function can have different formulations.

The gradient of the loss function with respect to each weight is calculated via the chain

rule with a procedure called back-propagation, consisting in propagating the error made

by the network on the training examples back from the output to the input.
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To perform gradient descent, the parameters are initialized at a certain value. The initial-

ization is crucial, since it can lead to problems like vanishing gradients or poor learning

if not taken care of carefully. After initialization, the weights are iteratively updated with

the following formula:

W[t+1] = W[t] − α∇LW(W) (3.1)

where W is the network’s weights vector, α is the learning rate and ∇LW(W) is the

gradient of the loss function. The rationale behind it is that the parameters should be

updated in a direction which is opposite to the gradient of the loss function, since it is

the vector indicating its maximum growth direction in the parameters space. In the ideal

scenario, the loss function is convex and has only a single absolute minima point. In

practical applications, this is never the case, and the algorithm will hopefully reach a local

minima point and converge, since there the gradient is close to zero and the weights update

would not change much the result. This method has two main limitations:

• the choice of the learning rate (a too large one con lead to overshoot the local minima

while a too small one would take too long for the algorithm to converge)

• the calculation of the gradient of the loss function over the entire training set can be

computationally expensive, making the algorithm inefficient.

In order to solve the computation time issue, minibatch stochastic gradient descent (SGD)

performs an update of the parameters for every mini-batch of m training examples, over

which the gradient is calculated. The minibatch gradient at each step is calculated as

g[t] =
1

m

im∑

j=i1

∇LW(xj, yj,W) (3.2)

and the weights update formula becomes: W[t+1] = W[t] − αg[t]. If this technique allows

faster computation of the gradient, it may still take too long to converge since it uses just an

approximation of the true gradient. Indeed, the steps moved are towards the local minima

only on average, and the true "path" is highly oscillating. In order to reduce this source

of noise, many methods have been developed, mainly based on the so-called momentum

parameter. The most popular, among all, is called ADAM and updates the parameters with

a normalized momentum:

W[t+1] = W[t] − α
p[t]

√
s[t]

(3.3)
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where:

• p[t] = β1p
[t−1] + (1− β1)g

[t] is the momentum update rule,

• s[t] = β2s
[t−1] + (1 − β2)(g

[t])2 is the root-mean-square propagation (RMSprop)

update rule.

To deal with the learning rate α, the most common and easy way is to set a decaying

learning rate in order to speed up the descent with a large value at the early stages, when

the algorithm is still far from the target, and a progressive smaller one when the local

minima is being approached.

Figure 3.2: Difference between gradient descent methods.

3.4 Main neural networks architectures

The one described earlier is the simplest neural network architecture, connecting together

basic layers of the same type. But it is also possible to connect layers of different types

and give birth to more complex architectures suited for particular applications.

In the field of computer vision, where image processing is a routine task to perform, convo-

lutional neural networks (CNN) dominate the scene thanks to their capability of extracting

information from image data. The two main building blocks of this architecture are the

convolutional layer and the max pooling layer. Each neuron in a convolutional layer is a

filter that is convolved with the image to extract different features from it; the deeper the

layer in the network, the more complex the information extracted. The convolution con-

sists in an elementwise multiplication between the image and a filter strode along it. After

the convolution with each filter in a layer, a bias is added to each feature map obtained

and a non-linear function is applied to each element. The number of learnable parameters
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in a convolutional layer is the product between the number of weights in each filter and

the number of filters in the layer. Then the outputs are stacked one after the other and sent

into a pooling layer, where a kernel is once again strode along the image, extracting typi-

cally the maximum value from the corresponding image area. This layer has no learnable

parameters. A deep CNN is made of many convolutional and pooling layers stacked one

after the other, connecting the last pooling one to a fully connected one.

Figure 3.3: Simple representation of a convolutional neural network.

Recurrent neural networks are instead widespread in all the applications involving infor-

mation persisting over time, like time series analysis, speech recognition and synthesis

and many others. The temporal dynamic behaviour is achieved by allowing a neuron to

take information not only from the former layer, but also from even prior ones [12]. There

are different types of recurrent neural networks: one to one, one to many, many to one and

many to many, depending on the size of the input and the output. Some of the most pop-

ular architectures are Bidirectional recurrent neural networks (BRNN), Long short-term

memory (LSTM) and Gated recurrent units (GRUs).
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4. Work description and implementation

4.1 Introduction

The last chapter dived into detail about neural networks and about the specific family that

has been used in this work, EfficientNet. In addition, it gave a general understanding of

the reason why such technologies are so groundbreaking. This fourth chapter will instead

move on to provide some details about the implementation, in particular about the deep

learning framework that has been used. First, the environment in which the research was

carried out will be presented. Then a description of how the data has been handled will

follow, along with an explanation of how the images were pre-processed. To conclude the

chapter, a description of the learning framework and the rationale behind the experiments

will be provided.

4.2 Safe Haven: our work environment

Safe Haven is a web-accessible Virtual Desktop Environment that provides secure remote

access to research data provided by the Health Informatics Centre (HIC) service, and it is

based on the VMware View Horizon VDI technology.

Some restrictions are imposed to ensure the safe use of research data. Internet access and

application installation are disabled in the Safe Haven environment, so only the applica-

tions installed by HIC service are accessible. Copying research data supplied by HIC out

of this environment is not permitted either. After approval from the HIC Data Analyst,

analysis results such as reports, summaries, and graphs with no patient-level data can be

removed or exported.
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To be granted access to the Safe Haven environment, it is required to attend the ªGood

research practice: principles and guidelinesº course held by the Medical Research Coun-

cil (MRC) [7] and pass the related exam. The MRC is dedicated to improving human

health through excellent medical research and expects that all MRC-funded research is

conducted according to the highest possible standards of research practice to ensure the

integrity, clarity and efficient management of the research and outputs. Achieving these

ethical and quality standards depends on the integrity, honesty and professionalism of all

individuals involved in the research process. Thus, promoting and delivering high-quality

research practice is fundamental and fostering a culture that supports it and aims to prevent

research misconduct is a duty for research organizations.

Good research practice provides strong foundations for a research career, supporting high-

quality education and training, it delivers assurance to those whose work builds on the

findings of others, and it also helps to increase public confidence and trust in the research

process and its outputs.

The guidelines for the conduct of research are the following:

• research excellence and integrity: the MRC is dedicated to excellence and high eth-

ical standards in the design, conduct, reporting and exploitation of publicly-funded

research,

• respect, ethics and professional standards: all research must respect and maintain

the dignity, rights, safety and wellbeing of all involved. Moreover, all researchers

should be familiar with the relevant legal and ethical requirements. They should

also take appropriate steps to manage data appropriately, maintain confidentiality

and minimize any adverse impact their work may have on people, animals and the

natural environment.

• honesty and transparency: all those involved should be honest in respect of their

actions and their responses to the actions of others, and this applies to the whole

range of research activity,

• openness and accountability: MRC-funded researchers are expected to foster the

exchange of ideas and to be as open as possible in discussing their work with other

scientists and the public, furthermore the findings must be made available to the

research community and the public and a complete and accurate account of scien-

tific evidence must be presented to support the appropriate and effective use of this

knowledge,
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4.4 Description of the experiments

At the beginning of this study, the main goal was to focus on cumulative HbA1c as a

time series and to use fundus images chronologically to learn whether changes in the vas-

culature could help forecast its trend evolution in the future. Before trying to do so, we

conceived a preliminary experiment to understand if the first image in time was already

carrying the information of the last cumulative HbA1c measurement available. To do so, a

dataset where the first image (baseline) of each subject was associated with its last HbA1c

measurement has been built. The results and discussion are reported in section 5.2.

Then, we moved on to a different experiment, in which the aim was to predict the cumu-

lative HbA1c level taken at the time of imaging using the respective fundus photograph.

The results and the discussion are in section 5.2. Since in this case actual values and

predictions were both available over time for each subject, it has been investigated if the

predictions over time were growing coherently with the actual values. To do so, both of

them have been plotted against the time in days, calculated as the difference between im-

age dates and taking the first image as 0. The analysis of the results and the discussion can

be found in section 5.4.

4.5 Learning framework

All the code, from model development to results analysis, was written in Python 3.6. In

particular, the libraries OpenCV and Scikit-learn were used for image processing, while

Keras 2.2.2 and TensorFlow 1.9.0 for building, training and testing DL models. The Scikit-

learn package has also been used to build linear models to fit values and predictions over

time.

As mentioned earlier, the EfficientNetB2 network has been used to predict the cumulative

HbA1c values in both the experiments from the retinal images. The fully connected layer

was replaced with a global average pooling layer, followed by a single output node with

linear activation. The convolutional layers were unchanged, and their weights were ini-

tialized with weights pre-trained on ImageNet.

Since whenever images were collected from a patient they were taken from both eyes, the

total dataset has been split into right and left eye datasets. The training process and the

48



predictions were made independently for each eye and then averaged, according to previ-

ous literature. To train each network, the datasets have been split into a training set (70%),

a validation set (10%) and a test set (20%). It is relevant to underline that the split was

made on individuals and not on images, in order to avoid information leakage: images of

the same individuals were used either for training or testing, never for both. The compo-

sition of the datasets in the second experiment are reported in table 4.1, while the size of

the datasets used in the first one are equal to the number of subjects present in the second,

since only the baseline image of each subject has been used.

Dataset Eye Images Males Females Subjects

Training Left 36195 3412 2638 6050

Training Right 36191 3413 2637 6050

Validation Left 3854 378 288 666

Validation Right 3857 378 290 668

Test Left 10030 926 755 1681

Test Right 10026 928 756 1684

Total 100153 9435 7364 16799

Table 4.1: Composition of the datasets used in the learning framework.

Mean squared error was used as loss function, while Adam optimization with Nesterov

accelerated gradient momentum was used as gradient descent algorithm. The initial learn-

ing rate was set to 0.001, reduced by a factor 0.1 if the validation loss did not improve

within 5 consecutive epochs. The minimum learning rate was set to 10−5. The model was

trained for 50 epochs, with batch size 32. The training set has also been augmented with

random horizontal flips and random rotations. In the validation phase, the model training

was stopped if there was no improvement in the validation loss for 20 consecutive epochs.

The weight set associated with the best validation performance was saved for testing.
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4.6 Conclusions

This chapter was strongly implementation oriented, with the aim of providing details about

many aspects of this work. As mentioned earlier, in order to respect patients’ privacy, the

work has been conducted inside the Safe Haven. Then, it has been described how the data

were obtained from the measurements and how the images were pre-processed. Afters,

the aim of the work has been stated in detail, along with the description of the experi-

ments performed in order to pursue it. Lastly, a description of the learning framework

has been provided, with details about both the training of the network and its optimization

algorithm. The next chapter will give an insight into the results of these experiments and

discuss them critically.
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5. Results and discussion

5.1 Introduction

After having explained the goal of the work and the experiments set up to achieve it in

the previous chapter, this one will move on to the description and the discussion of the

results. In particular, the first section will describe the general results, comparing the

actual cumulative Hba1C values to the predicted ones, as well as analyzing the prediction

error. Then, an analysis of the time trend will be provided, along with the linear fit of the

measures. Slope and intercept of this fit will then be analyzed in the following section,

before diving into the discussion of the limitations of this work.

5.2 General results

This section will illustrate and discuss the predictions obtained on glycated hemoglobin

from fundus camera images. For both of the experiments conducted, the results have been

analyzed qualitatively with the scatter plots of the predicted against actual cumulative

HbA1c and of the absolute prediction error (actual value - predicted value) against the

actual value, as well as with the comparison between the histograms of the actual and the

predicted HbA1c values. On the other hand, by a quantitative point of view, the goodness

of the predictions has been evaluated with the Pearson correlation coefficient, the mean

absolute prediction error (MAE) and the median relative prediction error (RE). In the

following, both plots and results’ tables are reported.
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Position # dead # alive

Above 155 583

Below 109 301

Interception 45 198

Table 5.3: Contingency table for death status

and position.

Risk # dead # alive

0 257 890

1 56 192

Table 5.4: Contingency table for death status

and risk.

χ2 p-value Significant

5.88 0.052 NO

Table 5.5: χ2 test results for position.

χ2 p-value Significant

0.0036 0.95 NO

Table 5.6: χ2 test results for risk.

Concerning the analysis of the position, looking at the bar plot in figure 5.14, the fre-

quency of the death outcome classes appear to be very similar among the three fit relative

position classes. For this reason, the hypothesis that a predicted cumulative HbA1c always

greater than the actual one could be a risk indicator seemed not to hold. In order to confirm

this, a Chi-squared test (χ2) was conducted, using the contingency table 5.3 and obtaining

the results in table 5.5. A threshold of 0.05 was used for the p-value in order to decide

whether to discard or not the null hypothesis that no relationship exists between the cate-

gorical variables. This led to state that there is no dependence between the two variables,

since the obtained value is greater than the threshold. This outcome also means that the

hypothesized explanation for the all-above or all-below prediction does not hold. For this

reason, the situations just mentioned do not mean a greater or lower risk respectively.

Very similar considerations can be made for the risk variable, with value 1 when the pre-

dicted slope was grater than the actual one, and with value 0 otherwise. Also in this case

the hypothesis that having this feature with value 1 could be associated with a higher death

risk seems not to hold. Indeed, it emerges from the bar plot in figure 5.15 that the frequen-

cies of death and survival are the same in the two class’ values. Once again, the χ2 test

turned out useful to test the relationship between these 2 categorical variables and provide

a quantitative result. Since the p-value is greater than threshold also in this situation, the

hypothesis of the 2 variables not being related cannot be discarded.
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5.6 Limitations of this work

As the results may suggest, this study comes with some limitations. First to mention is

the nature of the data. As it has already been mentioned, the samples and the images were

not taken at regular intervals and, more importantly, the intervals across subjects are not

regular either. Also, the age at baseline is different basically for every patient. All this fac-

tors increase the data heterogeneity remarkably, increasing the difficulty for the network

to predict the values accurately.

Another big limitation is the cumulative nature of the data. In previous studies, mentioned

in section 2.4, the efforts always focused on the prediction of non-cumulative HbA1c, ex-

pressed in percentage value in respect to the total haemoglobin. In this case, instead, it

was expressed in mmol/mol and it was cumulative: for this reason, values associated to

an image were carrying information about former images as well. The network probably

could not learn this, since it had no means to know whether an image was the first col-

lected for a subject or not. In section 6.4 a brief discussion about how to overcome these

limitations will take place.

5.7 Conclusions

This chapter presented, analyzed and discussed the results obtained from the experiment

described in chapter 4. The first section presented the general results about cumulative

HbA1c prediction, using scatter plots and histograms as visualization tools and Pearson

correlation, mean absolute error and relative error as analytical tools. The following sec-

tion quickly studied if sex and age had any effect on cumulative HbA1c with qualitative

scatter plots, suggesting that in this dataset there is none. In the third section, the predic-

tions and the actual values have been studied over time and fitted with a linear model. Two

categorical variables have been created with the parameters of these fits, the "position" and

the "risk" class. In the following section, the relationship between these classes and the

death outcome has been studied with bar plots and χ2 test. To conclude, the limitations

of this study, mainly related to the nature and format of the data, have been presented. In

the next and last chapter, final considerations about this work will be made and the future

work and implementations will be described.
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6. Conclusions and future work

6.1 Introduction

The previous chapter presented the results obtained with the 2 experiments and the analysis

carried out on them. It analyzed the effect of age and sex on this variable, confirming

they have no influence on it. Then it presented the time trend analysis, in which the

predicted and the actual data have been fitted and the parameters extracted. Exploiting

these parameters, two categorical variables have been created. The hypothesis of their

association with the death outcome of the patients has been tested with a χ2 test, that led

to discard this hypothesis.

This chapter, being the last, will summarize the work and its main findings. It will then

present the main limitations of this work, that are mainly related to the cumulative nature

of the data and to their big range of variation. To conclude, it will provide an overview on

how to overcome some of these limitations, in order to make further progress on this topic

and other possible approaches to solve tackle this problem.

6.2 Work summary

To summarize, this work started with the aim to discover whether it is possible to use

temporal information present in retina images to predict the trend of cumulative glycated

haemoglobin (HbA1c) in the future. In order to do so, two experiments have been de-

signed: the first one trying to predict the last HbA1c measurement using the baseline

image and the second trying to predict the HbA1c measurement relative to each image.

The results showed in section 5.2 revealed that the first experiment is not feasible, likely
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because the baseline image does not possess any information of the future progression of

cumulative HbA1c that the network can learn. The second experiment has shown more

promising results, but there is still large room for improvement, for the many reasons con-

cerning the data discussed in section 5.6.

Afterwards, an analysis of the effects of age and sex on cumulative glycated haemoglobin

has been conducted. It has shown that in this data set of cumulative measure, they seem

to have no particular effect, since the distribution is the same in males and female, and it

does not have any trend with age.

The following part of the work dealt with the time trend of the actual and predicted data.

Both the data points have been fitted with a linear model and the parameters (slope and

intercept) have been extracted for each subject. On the base of the relative position of the

two fits they have been classified as "Above", "Below" or "Interception" and on the base

of the magnitude of the predicted slope with respect to the actual slope they have been

given a "risk" score of 0 or 1. Statistical χ2 test has been performed in order to establish

whether a relationship between these 2 variables and the death outcome existed or not.

6.3 Main findings

The first experiment allowed confirming that the network is unable to predict the future

cumulative HbA1c value from the baseline image. This is likely because the retina does

not have enough information about it yet, and because the time gap between each baseline

image and respective last HbA1c measurement is different in each subject. This is also in

agreement with eye physiology and anatomy, since a single retinal image holds informa-

tion about the past medical history rather than future outcome progression.

The second experiment showed that the prediction of glycated haemoglobin is a difficult

task to perform, at least using EfficientNetB2. But the results are way more encouraging

than the first experiment, since there is coherence in the time trend of the predictions.

The statistical test and the bar plot proved that there is no relationship between the death

outcome and the classes created using the parameters of the fits. This suggests that the

"all-above" and "all-below" predictions with respect to actual values cannot be related to

a capability of the network to discover a higher or lower risk. The same consideration can

be made for the risk factor.
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6.4 Improvements and future work

Being one of the first studies using retinal images to predict cumulative HbA1c, the ways

to bring improvement to this work are many. The first way could be to use different net-

works instead of EfficientNetB2 and see whether this can lead to better predictions or not.

But the mean absolute error and the relative error magnitude can suggest that the way

to bring the most consistent improvement is in the data. Since cumulative haemoglobin

can be calculated using the values of the non-cumulative one, integrating them over time,

predicting non-cumulative HbA1c and calculating cumulative one using the predictions,

could lead to more accurate results. Indeed, in previous studies reported in section 2.4,

non-cumulative HbA1c has been predicted in percentage value with high performances.

Concerning instead the way to exploit longitudinal information, being in this case HbA1c

measurements over time, an interesting source of possible solution could be the method

purposed by J. Bridge et al. [5] (2020). In this study, the team developed a tool to prog-

nosticate age-related macular degeneration using longitudinal images with a framework

made up of three stages. In the first one, a convolutional neural network (Inception V3) is

used to automatically perform feature extraction from the retinal images. Afterwards, each

vector is scaled by a factor which is inversely proportional to the time distance between

the image time point and the time point at which the prediction is wanted. In this way,

images closer to the prediction time point are given more importance than the ones further

in time. In the final stage, the feature vectors are concatenated in a matrix and fed into a

recurrent neural network, a gated recurrent unit (GRU), that predicts whether the macular

degeneration is progressing or not. This method could be adapted to predict a continuous

variable such as HbA1c, but it has the limitation that the number of time points for each

subject has to be the same.
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