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”Now we that are strong ought to bear the infirmities of the weak,

and not to please ourselves.”

Romans 15:1



The mathematical models in science and engineering mainly take the form of differ-

ential or integral equations. The rapid development of high speed computers, that

nowadays appears to be unstoppable, has paved the way to the simulation of com-

plicated systems, not otherwise possible. The basic idea in any numerical method

for a differential equation is to discretize the given continuous problem with only

finitely many unknowns, that can be solved using a computer. The Finite Ele-

ment Method is currently the most popular and widely used method in structural

engineering. The method is robust, well developed, and has lead an enormous

impact on the scientific community. Nevertheless, in some problems it can suffer

from the drawbacks associated with the use of meshes consisting of geometrically

adjacent elements. Indeed, the problem of the mesh generation has become even

more acute in recent years. Increased computational power has enabled scientists

to tackle problems of increasing size and complexity. While computers have seen

great advances, mesh generation has lagged behind. Many generation procedures

often lack automation, requiring many man-hours, which are becoming far more

expensive than computer hardware. In addition, they are are less reliable for

complex geometry with sharp corners, concavity, or otherwise complex features.

Since the application of computational methods to real world problems appears to

be paced by mesh generation, alleviating this bottleneck can potentially impact

several problems. To this aim, Meshless methods open a relatively new area of

research, designed to help alleviate the burden of mesh generation. Despite their

recent inception, there exists no shortage of formulations in the literature. Among

the others, a Meshless scheme that attempts to entirely bypass the use of a con-

ventional mesh, both for the interpolation of the unknown approximant and for

the integration of the energy, is, for instance, the Meshless Local Petrov Galerkin

method. The governing partial differential equations are discretized on scattered

clouds of points, thus avoiding the need for any topologically connected data set.

The price to pay is, however, the greater computational cost which reduces the

range of practical applicability. While the relatively new Meshless procedures

carry many other drawbacks, the Finite Element Method had gained, in the past,

an impeccable reputation and it is therefore well trusted by practitioners. Eventu-

ally, a Meshless approach, which has however caught high academic consideration,

has failed to replace the Finite Element Method as a general purpose tool for the

solution of the differential equations in Elastostatics.

With an aim towards alleviating the need for remeshing, while still retaining the

computational performance of the Finite Element Method, several authors have



already proposed to use a mixed Finite Elements and meshless interpolation. The

goal is to emphasize the merit of each method: the Finite Element Method pro-

vides the bulk of the computational burden, while the particles, added a posteriori,

enhance the solution, where it is deemed necessary. That is, as many particles as

needed can be freely added in the computational domain, independently of the

adjacent Finite Element mesh. Indeed, the proposed approach appears to be well

suited for the following procedure:

• compute a solution by the use of the Finite Element Method,

• estimate the error a posteriori

• improve the solution by adding particles without any remeshing process.

Meshless methods, coupled with Finite Element Method, are ideal for such a pro-

cedure. Further, if the enriched region does not extend until the boundary of

the computational domain, the impositions of the essential boundary conditions,

which is otherwise not so straightforward, would be greatly simplified. In the

present work, two types of enrichments, applied to an elastostatics problem, have

been investigated. The first type, called Fully Coupled Enrichment, starts from a

variational formulation of the elastostatics problem. The final discretized system

of equations can be easily obtained as soon as both functional spaces, for FEM

and MLPG trial functions, respectively, are considered together. It is quite in-

tuitive that, by repeatedly increasing the dimension of the functional space, the

solution can be greatly enhanced. In practice, the enrichment of the functional

space is carried out without changing the underlying Finite Element mesh. Also,

the two bases interact to provide a better solution, hence it is possible to think of

the fully coupled enrichment as a two-way enrichment. A second, more versatile

and less costly approach can be readily obtained by neglecting some terms in the

final system of equations, hence obtaining the so called Uncoupled Enrichment. It

will be shown that this is equivalent to having the elastostatics problem solved

first and independently by, for instance, the Finite Element Method; and, at a

second time, an a posteriori enrichment is carried out by solving a second prob-

lem, as small as the number of particles added. However, in the latter approach,

the contribution of the Finite Element Method is not backwardly influenced and

therefore the uncoupled enrichment may be considered as a one-way enrichment.
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Gerry, dapprima mio collega, poi divenuto il coinquilino ”svanevole” che, da vero

uomo di business, scese con la ”ventiquattrore”. Entrato a fare parte del mio

mondo in un momento complesso, sei riuscito a svolgere un lavoro encomiabile. I

consigli di una persona dotata di una cos̀ı rara intelligenza umana illuminano e

supportano in continuazione le mie decisioni, e sono per me fonte di stabilizzante

certezza.

Queste tre persone sono entrate nella mia vita in occasioni allegre, in seguito

hanno aggiunto molto con la loro profondità. Si sono sapute fare carico di situ-
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Chapter 1

A Theoretical Introduction

1.1 Elliptic PDE

This section outlines some theoretical results of the mathematical theory of nu-

merical methods applied to an Elliptic PDE. The details, as well as the proofs,

can be found in a mathematical text about Partial Differential Equations [14], [13].

Let V be a Hilbert space equipped with a scalar product1 (., .)V and the corre-

sponding euclidean norm2 || · ||V . Let a(., .) be a bilinear form on V x V and Lf a

linear form on V such that:

• a(., .) is continuous, i.e. ∃γ > 0 such that ∀v, w ∈ V

|a(v, w)| ≤ γ ||v||V ||u||V

• a(., .) is V-elliptic, i.e. ∃α > 0 such that ∀v ∈ V

|a(v, w)| ≥ α ||v||2V

• Lf (v) is continuous, i.e. ∃β > 0 such that ∀v ∈ V

|Lf (v)| ≤ β ||v||V
1(f, g) =

∫
Ω
f(x)g(x)dx

2||f || = (f, f) =
∫

Ω
f2(x)dx

1
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It is possible to prove [14] that the general variational problem (V ): Find v ∈ V
such that

a(u, v) = Lf (v)

has a unique solution vsol ∈ V .

It is also possible to prove [14] that when a(., .) is symmetric there exists an as-

sociated minimization problem. In the present Thesis, which relies on the Petrov-

Galerkin procedure, a(., .) is non symmetric; hence a weighted residual variational

formulation is used, with no associated minimization problem.

Let Vh be a finite-dimensional subspace of V of size n and let (φ1, . . . , φn) be a

basis for Vh so that any v ∈ Vh ⊂ V has the unique representation

v =
∑
i

φiui

where ui ∈ R.

It is possible to formulate the discrete analog for the variational problem (V),

namely: Find uh ∈ Vh such that

a(uh, v) = Lf (v), ∀v ∈ V

Further restricting the test function space to Vht leads to:

a(uh, vi) = Lf (vi), ∀vi ∈ Vht

It can be proved [14] that this is equivalent to set:

a(uh, vi) = Lf (vi), ∀vi ∈ {v1, . . . , vn}

where {v1, . . . , vn} is a basis of Vht . Substitution of v =
∑

i φiûi leads to:

∑
j

a
(
φj, vi

)
ûj = Lf (vi)

which can conveniently be expressed in matrix form

K · û = b (1.1)

If the problem is well posed, system 1.1 has a unique solution [14]. It is also possible
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to prove [14] that the matrix K is symmetric and positive definite if vi ≡ φi, ∀i,
that is, test and shape function are chosen to be the same for each node. This is

usually the case for the Finite Element Method, but not that of Meshless Local

Petrov Galerkin method.

1.2 The Theoretical Formulation

of the Enrichment

This section provides a theoretical variational formulation of the enrichment of

the Finite Element Method by the use of a Meshless technique. The formulation

will later be developed for solving an elastostatics problem. It is noted that the

only difference with respect to the standard Galerkin formulation, presented in

the foregoing section, is that a distinction here is operated between the two func-

tional spaces, while writing both the variational problem and the analog discrete

problem.

Further, the idea of the uncoupled enrichment is introduced, with the aim at an

even simpler and less costly alternative to enhance the solution. Moreover, if the

enrichment is done in the interior of the computational domain, the prescription

of the essential and the natural boundary conditions would be greatly simplified,

as they have to be enforced only on FE in a strong way. A fictitious zero value

is imposed at the boundary of the enriched region in this case to ensure compati-

bility. Further, as many particles as needed can be added where they are deemed

necessary thus avoiding the burden of remeshing. The situation is more complex,

if the enriched region crosses the boundary, as it is not easy to prescribe the es-

sential boundary conditions in non-interpolating schemes. This will be addressed

in the relevant section of the Thesis.

Now it will be outlined how it is possible to enhance the solution, either after the

Finite Element Method problem has been solved, or at the same time, by enrich-

ing the functional space. Both methods will be fully developed throughout this

Thesis, showing how the former approach can be easily obtained by neglecting

some terms of the general equations.

Let V(Ω) be an Hilbert space as before. The variational problem (V ):

a(u, v) = L(v), ∀v ∈ V
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can be written in the analog discrete form, i.e., by restricting the problem to the

finite space Vh. Now let VhFE be the finite element space for the trial function, and

VhML that of the Meshless trial function; let

{φFE1 , . . . , φFEnFE
} be a basis of VhFE

{φML
1 , . . . , φML

nML
} be a basis of VhML

If VhFE ∩ VhML = {∅} then it is easily seen that

{φFE1 , . . . , φFEnFE
, φML

1 , . . . , φML
nML
} is a basis of Vh = VhFE ∪ VhML

Hence,

∀uh ∈ Vh, uh =
n∑
i

φhui =

nFE∑
i

φFEi uFEi +

nML∑
i

φML
i uML

i

where

Vh = VhFE + VhML

and also

uML
i , uFEi ∈ R

are uniquely determined by uh. According to a standard nomenclature, uh will be

called the unknown approximant.

The fictitious values uFE and uML can be obtained by solving the discrete analog

of the variational formulation by the convenient use of the basis of the functional

space:

a(uh, v) = L(v), ∀v ∈ V , uh ∈ Vh

that is, by selecting appropriate test functions. For the Finite Element Method,

they are such that

V testFE = VhFE

The MLPG test functions will belong to a different space that will be defined later

< vi >= V testML 6= VhML

Now let

{v1ML
, . . . , vnML

} be a basis for V testML
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Assuming that V trialFE ∩ V trialML = {∅} we restrict the space V for the test function:

V test = V testFE + V testML

Finally the final system of discretized equations can be obtained:
∑nFE

j a(φFEj , vFEi )uFEj +
∑nFE

j a(φML
j , vFEi )uML

j = LFE(vFEi ) ∀i = 1, . . . , nFE∑nML

j a(φFEj , vML
i )uFEj +

∑nML

j a(φML
j , vML

i )uML
j = LML(vML

i ) ∀i = 1, . . . , nML

Note that the test functions originate from both the sets in standard FEM and

MLPG. The finite element test functions are set to be the same as the respective

shape functions, that is the traditional Ritz-Galerkin approach. On the contrary

Meshless methods instead use a different space; other choices are of course possible

but will not be investigated in the present Thesis. In a more compact notation it

is possible to write the discretized problem as a system of equations:KFEuFE + KMFuML = bFE

KFMuFE + KMLuML = bML

(1.2)

or equivalently: [
KFE KMF

KFM KML

]
·

[
uFE

uML

]
=

[
bFE

bML

]

where KFE and KML are the FE and MLPG stiffness matrices, respectively, KFM

and KMF the two coupling blocks; bFE and bML are the forcing vectors, if any.

Note that the integration domain can be restricted to a domain where both the

trial and the test function are non vanishing.

In the most general formulations, both KFE and KML blocks needs to be com-

puted. However, KMF or3 KFM blocks can be neglected. Indeed, neglecting the

KMF block or KFM gives rise to the so called uncoupled enrichment. The system

of equations now reads, in the first case:

[
KFE 0

KFM KML

]
·

[
uFE

uML

]
=

[
bFE

bML

]
3this depends on the actual way in which boundary conditions are enforced, i.e., the size of

the enriched region
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or equivalently:

KFEuFE = bFE

KFMuFE + KMLuML = bML

(1.3)

which can be seen as a two-step problem in which the FEM problem

KFEuFE = bFE

is solved first, and the MLPG, at second step, solves

KMLuML = bML −KMFuFE

where

KMFuFE =

nML∑
j

a(φFEj , vML
i )uFEj

is the discrete analogs of

a(uFE, v), ∀v ∈ V

Compared to the fully coupled enrichment, this approach has the following advan-

tages:

• the computational overhead is less than that of a fully coupled procedure,

since the problem is solved via a multistep algorithm

• the solver can take advantage of the symmetric positive definiteness of KFE

• a further refinement on the MLPG can be quickly accomplished, since only

a small linear system KMLuML = bML −KMFuFE has to be solved, while

KFEuFE = bFE, that can be huge, is solved once and for all

Conversely, the method can be expected to suffer from the following disadvantages:

• the derived quantities are poorly represented
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• the accuracy of the method is generally lower then that of the fully coupled

enrichment

The last chapter will deal with numerical result and should give reason of the

previous statements.

1.3 The Meshless Local Petrov Galerkin

Discrete Functional Space VhML for

the Trial Functions

The Meshless shape functions, as used in the Meshless Local Petrov Galerkin

formulation, typically exhibit quite a complex behavior, hence this section aims

at showing how MLPG shape functions can be obtained. This section briefly

introduces the Least Squares Approximation (LS), which is at the basis of fur-

ther generalizations. This can be extended in order to obtain the Weighted Least

Squares Approximation (WLSA) and hence the Moving Least Squares Approxima-

tion (MLS) methods used in MLPG. The basic linear systems of equations will be

obtained for the global least squares, and the weighted, local least squares approx-

imation of function values from scattered data. Bt scattered data we mean any

arbitrary set of points in Rn which carring scalar quantities (i.e. a scalar field in n

dimensional space), although this can be easily extended to the vector quantities

actually used in the case of elastostatics. In contrast to the global nature of the

least-squares fit, the weighted, local approximation is computed either at discrete

points, or continuously over the parameter domain, resulting in the global WLS

or in the local MLS approximation, respectively.

1.3.1 The Least Square

The moving least square approximation is the most basic non interpolating scheme

and will be introduced in this Thesis only because it is the founding idea for the

MLS method.

Consider N points located at positions xi in Rn. The aim is to obtain a function

f(x) that approximates the given scalar values fi at points xi in the least-squares
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sense, that is, minimizing the functional

JLS =
∑
||f(xi)− fi||2

where f is an arbitrary function that depends on some parameters. Those param-

eters are the values that minimize the functional written above. In this Thesis, f

will be taken from the space of m-degree polynomials.

The generic polynomial can be written as f(x) = b(x)Ta, where b(x) = [b1(x), ..., bn(x)]T

is the polynomial basis vector and a = [a1, ..., an]T ∈ Rn is the vector of coefficients

that minimize the functional. It is anticipated that only a linear4 basis will be

employed in the MLPG formulation of the present Thesis, that is b = [1, x, y]T ,

yielding to three unknowns a = [a0, ax, ay].

The functional can be minimized by setting the partial derivatives JLS to zero,

∇JLS = 0 where ∇ = [∂/∂a1, ..., ∂/∂an]T .

This simple idea serves as the basis for the more refined MLS method. By tak-

ing partial derivatives with respect to the unknown coefficients a1, ..., an, a linear

system of equations is obtained. In matrix-vector notation, this can be written as

∑
i

2b(xi)[b(xi)
Ta− fi] =

2
∑
i

[b(xi)b(xi)
Ta− b(xi)fi] = 0.

Dividing by 2 and rearranging we have

∑
i

b(xi)b(xi)
Ta =

∑
i

b(xi)fi

which is solved as

a =
∑
i

(
[b(xi)b(xi)

T ]
)−1∑

i

b(xi)fi.

If the square matrix ∑
i

[b(xi)b(xi)
T ]

is nonsingular, the last equation provides the desired solution.

4for each direction, the problem being two-dimensional, i.e., x ∈ R2
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1.3.2 The Weighted Least Square

Now consider the weighted least squares formulation, of which the LS approach is

a particular case. Consider the error functional

JWLS =
∑
i

w
(
||x− xi||

)
||f(xi)− fi||2

for a fixed point x ∈ Rn. This functional is similar to LS, only that now the

error is weighted by w(di) where di are the Euclidiean distances between x and

the positions of data points xi. Here it is remarked again that the minimization is

done with respect to a point x fixed in the space, and thus different choices of such

a point will generally result in different minimizing parameters. The minimization

process is nearly the same as the one shown before for LS, that is, by taking the

partial derivatives with respect to the unknown coefficients:

∑
i

2w(di)b(xi)[b(xi)
Ta− fi] =

2
∑
i

[w(di)b(xi)b(xi)
Ta− w(di)b(xi)fi] = 0.

Dividing by 2 and rearranging we obtain:

∑
i

w(di)b(xi)b(xi)
Ta =

∑
i

w(di)b(xi)fi

which is solved as

a =
∑
i

(
[w(di)b(xi)b(xi)

T ]
)−1∑

i

w(di)b(xi)fi.

The only difference with respect to LS is the presence of the weighting terms. Also,

note that, for a fixed x, the coefficients are constant when evaluating f throughout

the domain. Hence, if b(x) is a polynomial of degree m, f is still a polynomial

of degree at most m. Note also, that the coefficients a in WLS are local, as they

have to be recomputed for every x.
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1.3.3 The Moving Least Square

Originally advanced for smoothing and interpolating data, the Moving Least Square

method is recognized as a stable and accurate method for approximating scattered

data [2]. The idea is to start with a weighted least squares formulation for an ar-

bitrary fixed point x ∈ Rn, and then move this point over the entire domain

where the function f is evaluated. In other words, a weighted least squares fit is

computed and evaluated for each point x = x where f(x) is computed individu-

ally. It can be shown that the global function f(x), is continuously differentiable

if and only if the weighting functions are continuously differentiable. So instead

of constructing the global approximation, a local polynomial fit is performed and

evaluated continuously over the entire domain Ω, resulting in the MLS fit function.

Note that, in contrast to the functions f obtained before, now f is (generally) no

longer a polynomial if b(x) is a polynomial. It is intuitive that varying the weight

function can directly influence the approximating nature of the MLS fit function,

so attention must be paid to its accurate selection. Since MLPG relies on this

approximating technique, it is easy to envision that the proper selection of the

shape and size5 of the weighting functions is far from being straightforward, and

can significantly affect the results. This can be seen as a slight loss in generality

of the approximation method as compared to LS, because the user has to make

a wise choice of such weighting functions. Therefore, this can be an advantage,

since the behaviour of MLS can be tweaked for the particular application, but, on

the other side, a wrong choice may lead to poor results.

One might expect that also MLPG, which relies on this technique, and hence the

coupling approach between FEM and MLPG, will share this feature.

Now the MLS approximation will be obtained in a suitable form for MLPG. In a

similar fashion as LS and WLS, the purpose is to minimize some norm. However,

it is possible to deliberately let the unknown coefficients a of the unknown trial

function

uh(x) = a(x)Tb(x)

vary as x is moved through the domain. In other words, when trying to compute

f(x) = a(x)T b(x), a minimization is done in the WLS fashion with respect to x,

i.e., by setting x = x, if one wants to retain the previous typeset. Again, when

computing f(x̃) with x̃ 6= x the MLS scheme requests that the unknown minimiz-

ing coefficients be recalculated again by minimizing the norm at x̃. This is a much

5size here refers to the size of the domain where wi(x) does not vanish
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more expensive approach, as the final system of equations for the approximation

must be solved for each point x ∈ Ω. It might be expected that this adds a con-

siderable overhead to the calculation of the shape functions in MLPG, and indeed

this is very much what happens.

After this introduction, consider, with a notation that will be used later in MLPG,

a sub-domain Ωi, which is defined as the neighborhood of a point xi. This is de-

noted as the domain of definition of the MLS approximation for the trial function

at x, and is located in the problem domain Ω.

Figure 1.1: The MLPG approximation.

To approximate the distribution of the function u, over a number of randomly

located nodes {xi| xi ∈ Ω} , i = 1, 2, ..., N the moving least squares approximant

uh(x) of u, ∀x ∈ Ω, can be calculated, by minimizing

JMLS =
∑
i

w (||x− xi||) ·
(
uhx (x)− uficti

)2

with x = x, that is:

JMLS =
∑
i

w (||x− xi||) ·
(
b (x)T a (x)− uficti

)2

=

which, in matrix form reads:

=
[
P · a (x)− ufict

]T ·W ·
[
P · a (x)− ufict

]
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where,

P =


bT1 (x)

bT2 (x)

...

bTn (x)


n x m

W =


w1 (x) ... 0

... ... ...

0 ... wn (x)


n x m

and,

ufict =
[
ufict1 , ufict2 , ..., ufictn

]
Here it should be noted that uficti are the fictitious nodal values, and not the nodal

values of the unknown trial function uh(x).

The stationarity of JMLS with respect to the function a(x) leads to the following

linear relation:

∂JMLS

∂a
= 2 ·

[
P · a (x)− ufict

]T ·W = 0

or equivalently,

2 ·
∑
i

wi (||x− xi||) · p (x)
(
b (x)T a (x)− ui

)
= 0

Rearranging:

∑
i

(
wi (||x− xi||) · b (xi) b (xi)

T
)

︸ ︷︷ ︸
A(x)

a (x) =
∑
i

wi (||x− xi||) b (xi) uficti︸ ︷︷ ︸
B(x)·ufict

(1.4)

with:

A(x) =
∑
i

(
wi (||x− xi||) · b (xi) b (xi)

T
)

= PTWP

B(x) =
∑
i

wi (||x− xi||) b (xi) uficti = PTW
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The system 1.4 can be easily solved by inverting A(x), i.e.:

a(x) = A−1(x)B(x)ufict

More explicitly:

a (x) =
∑
i

(
wi (||x− xi||) · b (xi) b (xi)

T
)−1

︸ ︷︷ ︸
A(x)−1

∑
i

wi (||x− xi||) b (xi) uficti︸ ︷︷ ︸
B(x)·ufict

Note that this expression is very similar to the WS obtained before, with the only

difference that the weight function is chosen to be different for each interpolating

node and its value varies as x moves in the domain. Hence A−1(x) and B(x) will

depend on x and ultimately a = a(x).

Substitution of a into the original form of the unknown approximant a(x)Tb(x)

yields to:

uh(x) = b(x)Ta(x) =

= bT (x) ·
(∑

i

(
wi (||x− xi||) · p (xi) p (xi)

T
)−1∑

i

wi (||x− xi||) p (xi) uficti

)
︸ ︷︷ ︸

a(x)

or alternatively:

uh(x) = b(x)Ta(x) = b(x)A(x)−1B(x)ufict

that gives a relation which may be written in the form of a linear combination of

basis fucntions

uh(x) = Φ(x)Tufict =
∑
i

φi(x)uficti

where ΦT reads:
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ΦT = b(x)A(x)−1B(x)

For a single node, the basis function ΦI reads

φI = bT (x) ·
(∑

J

(
wJ (||x− xJ ||) · p (xJ) p (xJ)T

)−1

wI (||x− xI ||) p (xI)
)

Note that the computation of φI for each sample point leads to the inversion of the

matrix A(x). Thus, the MLS approximation is well defined only when the matrix

A(x), which is a 3 x 3 matrix in this case, is non-singular. It can be seen that this

is the case if and only if at least 3 non aligned nodes with non vanishing weight

functions are non-zero at the point x under consideration. However, should the

value of some of the respective weight functions be numerically small, the resulting

matrix would be numerically close to being singular. Indeed, three conditions must

be satisfied at the same time for at least three nodes:

• they have to be non-aligned

• their weight function has to be non vanishing

• their weight function has to be non numerically small

The last condition in fact implies the second, and should be interpreted with

common sense. Note, that in general it is not required to perform any of these

checks, as the weight functions have their radius big enough in order for the MLPG

to deliver accurate results. In practice, checking that the three conditions above

are satisfied is hardly ever requested. Also, it is seen that A(x) is ill-conditioned

when the points are ”clustered” together far from the origin; thus it is convenient

to work in a local coordinate system normalized with respect to a significant size

parameter; this can indeed be the size of the support of the nodal point, i.e., where

wI is non vanishing, as described below.

The support of each nodal point is usually taken to be a circle, centered at the node

under consideration. The fact that the weight function is zero for any point not in

the support of the nodal point I preserves the local character of the Moving Least

Squares approximation, and ultimately will make the MLPG efficient, sparsifying
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the resulting stiffness matrix. The smoothness of the shape functions is determined

by that of the basis functions and of the weight functions. Here the basis functions

are ∈ C∞(Ω), but the gaussian weight functions, which are the common and

recommended choice, are, in general, not even ∈ C1(Ω). The Gaussian weight

function reads:

wI(x) =


e
−( d

c )
2

−e−( r
c )2

1−e−( r
c )2 d < r

0 d > r

where d is the usual euclidean distance, r is the user specified radius and c another

user specified parameter to control the shape of the weight function. It can be seen

that the derivative of the weight function is discontinuous where the analytical law

changes, that is, at d = r. Note that this is a radial function, w = w(d), and can

be obtained by shifting the standard gaussian e−x
2

by e−( r
c)

2

and normalizing it

by 1− e−( r
c)

2

. Then, when d > r simply set w(x) = w(r) = 0 and this choice

explains why w is non differentiable at ||x|| = r . In practice, however, to obtain

a higher order of continuity a ratio of r
c

= 4 is employed and, as a result, the

function in Figure 1.2 is close to being differentiable6. Lower values of this ratio

will not be able to attain the desired level of continuity, and, conversely, higher

values will pose a major problem when integrating the shape function because it

too rapidly vanishes inside its domain of definition. As a matter of fact, a ratio of
r
c

= 4 for the weight function in the shape function and r
c

= 1 for the test function,

which is chosen to be the weight function, is advised in MLPG, and are implicitly

assumed in the numerical results. Changing these values even slightly can cause

the accuracy of the method to deteriorate in some specific situations. This clearly

points to a limitation of MLPG.

It is anticipated that the finite space of the trial function for MLPG, VhML will be

chosen such that:

VhML =< φ1, . . . , φn >

which is another way of saying uh(x) =
∑

i φi(x)uficti .

It is seen that φI are linearly independent and thus form a basis of VhML.

6meaning that the a directional derivative of w at x = r approaches 10−6 when r = 1
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Figure 1.2: A Shape Function of the space VhML



Chapter 2

Enrichment Applied to the

Elastostatic Problem

This chapter provides the bulk of the theory for a successful enrichment of the

Finite Element Method with MLPG. The general framework developed in the

present Thesis will be specified for FE and MLPG. The equations needed for

coupling the two methods stems directly from the general approach, as soon as

both functional spaces VFE, VML for FEM and MLPG, respectively, are considered

together.

2.1 A Local Approach

In a conventional Galerkin Finite Element formulation, the global weak form is

used to solve the boundary value problem numerically. However, the MLPG

method starts from a local weak form.

In order to retain a common working approach while coupling both methods, the

present development starts, as done by Atluri in MLPG [16], [8], from a local

sub-domain, or a patch, {ΩI
test} inside the global domain Ω. The final form of the

equations will be developed sharing this starting point, and the differences between

FEM and MLPG will be pointed out as they arise. Moreover, the final system

of equations, encompassing the so called coupling blocks, will arise naturally from

the calculations.

17
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2.1.1 Global Domain Decomposition

Let {ΩI
test} be a set of overlapping patches, which cover the global domain Ω,

where I(= 1, 2, . . . , N) indicates any node, and N is the total number of nodes

of both MLPG and FE. The concept of nodes with local domains is implicitly

introduced, which is at the basis of the MLPG formulation; the FE local domain

is then nothing but a particular choice of ΩI
test. The sub-domain ΩI

test is thus called

the local domain of node I. In the present Thesis, the sub-domain ΩI
test is taken

to be a circle in the MLPG formulation and a polygon1 surrounding node I in the

FE, but, in its full generality, it can be a rectangle, a polygonal shape or an ellipse

in two dimensions, and it can be extended to any kind of geometry ??

Figure 2.1: Some possible domains for the trial function along with some
shape functions.

2.2 The Differential Problem of Elastostatics

The aim of this Thesis is to solve the well known differential problem (D) of

elastostatics, in two dimensions:~∇ · σ +~b = ~0, ~x ∈ Ω

~u = ~u ~x ∈ ∂Ω

1which is in turn partitioned in each of the (non degenerate) triangles that share node I. This
arises naturally in the creation of the mesh
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where σ is the stress tensor, ~u the prescribed boundary conditions, and ~b the

distributed load, namely:

σ =

[
σxx σxy

σyx σyy

]
, ~b =

[
bx

by

]

and ~∇ the usual differential operator. Note that σxy = σyx will be requested in

the formulation; this follows theoretically by imposing angular momentum equi-

librium, at the differential level. The solution ~u, in terms of displacement, belongs

to a generic (functional) space V , that will be specified later. In repeated index

notation, the differential problem above reads2:

σij + bi i = 1, 2

where the summation is carried out over j.

Figure 2.2: The Global and the Local Domain.

2.3 The Variational Formulation

It is possible to write a variational formulation (V ) of the differential problem (D)

written above, for the local subdomain, which, in matrix form reads:

2Note that i and j here do not represent the nodes I and J



Chapter 2. Enrichment Applied to the Elastostatic Problem 20

∫
Ωtest

(~∇ · σ +~b) V dΩ− α
∫

ΓDir

(~u− ~u) V dΓ = 0

where ΓIDir is the intersection of the physical boundary ΓDir and the boundary

∂ΩI
test; ~u is the prescribed displacement, if any3, α is a penalty parameter to impose

the essential boundary conditions discussed later, and V is the test function matrix

that reads V =

[
V1 V2

V3 V4

]
.

Note that the equation written above is in vector form, i.e., it comprises two

scalar equations. Thus, two sets of independent test functions have to be chosen.

Since the test functions can be chosen arbitrarily, the simplest selection would be

V =

[
v 0

0 v

]
. This choice simplifies the final form of the equations.

If the sub-domain ΩI
test is located entirely within the global domain Ω, and there

is no intersection between the local boundary ∂ΩI
test and the global boundary Γ,

the boundary integral over Γ vanishes.

Applying the following vector calculus identity (viσij),j = vi,jσij + viσij,j to each

of the two scalar equations yields:

∫
ΩI

test

(σijvi),j dΩ−
∫

ΩI
test

(σijvi,j − bivi)dΩ− α
∫

ΓI
Dir

(ui − ui)vidΓ = 0

Using the divergence theorem, the following weak form of the variational problem

is obtained:

∫
∂ΩI

test

(σijnjvi)dΩ−
∫

ΩI
test

(σijvi,j − bivi)dΩ− α
∫

ΓI
Dir

(ui − ui)vidΓ = 0 (2.1)

where [n1, n2]T is the outward unit normal to the boundary ∂ΩI
test. This will be

referred to as the variational problem in any part of this Thesis. Note, indeed,

that any solution of the differential problem (D), from which (V ) originates, is

also a solution of the last variational formulation (V ); the converse, in general, is

not true, as some more regularity requirements must be carried out in order to

3generally speaking, I can be an interior node so no boundary conditions are specified on its
domain
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satisfy (D).

It is noted that the use of the foregoing expression for one node (and hence for one

local domain) will yield two linear equations of u, i.e., for ux and uy separately.

2.3.1 The Petrov-Galerkin Method

In the following development, the Petrov-Galerkin method is used. The Petrov-

Galerkin Method is used whenever a selection of similar functional space for test

function and solution function is not possible. In the original MLPG as proposed

by Atluri [16], [8], the test function and the solution function approximations can-

not be identical, hence they must be approximated separately. Since the problem

loses symmetry, the final coefficient matrix is also not symmetric. This somehow

complicates the underlying mathematical theory [9] to show existence and unique-

ness of the solution, and from a numerical viewpoint, the solver selection must be

made carefully, as the computational cost for solving the final system of equations

increases due to the missing symmetry. In view of this consideration, the FEM

approximation can be considered as a particular selection of the two functional

spaces, which are in fact the same. This has many advantages, but since the pro-

posed methodology involves a combination of both FEM and MLPG variational

formulations, only the more general Petrov-Galerkin method will be considered in

the present elastostatics problem.

2.3.2 A theoretical constraint on the set of subdomains

{ΩI
trial}

It is worth noting that the test functions need not vanish on the boundary of the

domain Ω where the essential boundary conditions are specified. In particular, all

the points of the boundaries need to be covered by at least one local subdomain

ΩI
test, in order to prescribe the essential or natural boundary conditions. Again,

this stems from the more general demand that any point in the whole domain

should be covered by at least one local subdomain ΩI
test. Theoretically, as long as

the union of all local domains covers the global domain, the equilibrium equation

and the boundary conditions will be satisfied in the global domain Ω and over its

boundary Γ, respectively. This somewhat natural request is automatically satisfied

in finite elements, as the domain is partitioned during the creation of the mesh.
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The meshless local domains, conversely, do not form any domain partition. In case

that the local subdomains are not big enough as to leave no points uncovered, error

in the solution process are to be expected. It is not difficult to envision some of

the situations where an ordinary selection of the local subdomain dimensions (e.g.,

a circle with a radius equal to the closest node) does not create a patch ΩI
test such

that Ω ⊇
⋃
I ΩI

test ⊆ Ω. This is a drawback of the MLPG scheme, which leaves

to the user the crucial task of ensuring that ΩI
test is such that Ω ⊇

⋃
I ΩI

test ⊆ Ω

which is rather difficult to check during runtime, and can easily go unnoticed by

the user.

2.3.3 Simplification of the above equations and Functional

Space V

The functional space V from which the test and trial functions can be chosen,

before discretization, has not been specified yet.

In order to simplify equation 2.1, a selection is operated on the test functions

v such that they vanish over ∂ΩI
test, except when they intersect with the global

boundary Γ, that is, ∂ΩI
test ∩ Ω 6= {∅}. This can be easily accomplished in both

the MLPG and FE methods by using the test function whose value at the local

boundary is zero, as long as ∂ΩI
test does not intersect with Γ. Outside ΩI

test their

value is zero, to preserve the locality of the method. Separating each contribution

at the boundary yields to:

∫
∂ΓI

Dir

(σijnjvi)dΩ +

∫
∂ΓI

Neu

(σijnjvi)dΩ −
∫

ΩI
test

(σijvi,j−bivi)dΩ − α

∫
ΓI
Dir

(ui−ui)vidΓ = 0

since now ∫
∂ΩI

(σijnjvi)dΩ = 0

was requested.

Rearranging:

∫
ΩI

test

σijvi,jdΩ + α

∫
ΓI
Dir

uividΓ +

∫
∂ΓI

Dir

(σijnjvi)dΩ =
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= α

∫
ΓI
Dir

uividΓ +

∫
∂ΓI

Neu

(σijnjvi)dΩ +

∫
ΩI

test

bividΩ

What is left unsaid from before is the space4 V , where the test and trial functions

originate. This is beyond the scope of this Thesis. However, it is mentioned

that the space must allow at the very least to ”write down” these equations.

Therefore, one should require that the derivatives of functions in this space are

square integrable. Now, there is actually a Hilbert space H1
0 (Ω) of functions with

weak derivatives in L2(Ω), with appropriate boundary conditions, which fulfills

this purpose. Hence, it is possible to routinely verify the hypothesis presented in

the more theoretical introduction of this Thesis, to show existence and uniqueness

of the solution [14].

The vector notation in now exploited with the application of the two independent

test functions vx = vy = v for each node I, to obtain:

∫
Ωs

εvσ dΩ+ α

∫
ΓDir

Vu dΓ −
∫

ΓDir

Vt dΓ = α

∫
ΓDir

Vu dΓ +

∫
ΓNeu

Vt dΓ+

∫
Ωs

Vb dΩ

(2.2)

where

σ = [σxx, σyy, σxy]
T ,

εv =

[
vx,x 0 vy,x

0 vy,y vx,y

]
=

[
v,x 0 v,x

0 v,y v,y

]

V =

[
vx 0

0 vy

]
=

[
v 0

0 v

]

which can be verified to be nothing but the previous expression, written conve-

niently for a generic node I in matrix form.

2.4 Discretization and Constitutive Law

Now consider the final form of the equation 2.2 and restrict the functional space

of the solution V to it subset Vh. The space of the test function is restricted, too.

4before discretization
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The forms the trial and test functions, respectively, can be written as, for both

FEM and MLPG:

uh(x) =
∑
J

φJ(x)ûJ

vh(x) =
∑
I

ψI(x)v̂I

where

ψI(x) ∈ V test

φJ(x) ∈ V trial

Further consider that φJ , ψI are zero everywhere but in their domain of definition

and this ”allows” one to call φJ , ψI the nodal shape functions for trial and test

functions centered at nodes J and I. In general, ûJ , v̂I ∈ R2 consist of two

fictitious nodal values, in 2D, that is, one for each dimension. Substitution of

this equation into the last form of the variational principle leads to the following

discretized system of linear equation:

N∑
J

∫
Ωs

εI (x) DBJ ûJ dΩ + α
N∑
J

∫
ΓDir

VI (x) SΦJ ûJ dΓ −
N∑
J

∫
ΓDir

VI (x) NDSBJ ûJ dΓ

=

∫
ΓNeu

VI (x) t dΓ + α

∫
ΓDir

VI (x) Su dΓ +

∫
Ωs

VI (x) b dΩ (2.3)

where

N =

[
n1 0 n2

0 n2 n1

]

BJ =


φJ,1 0

0 φJ,2

φj,2 φJ,1



D =
E

1− ν2


1 ν 0

ν 1 0

0 0 (1−ν)
2


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V =

[
v1 0

0 v2

]
=

[
v 0

0 v

]

E =

E for plane stress

E
1−ν2 for plane strain

ν =

ν for plane stress

ν
1−ν for plane strain

S =

[
S1 0

0 S2

]

Si =

1 if ui is prescribed on Γ

0 if ui is not prescribed on Γ

In the above equations, [n1, n2]T is the normal vector at the boundary, and E and ν

are the Young modulus and Poisson’s ratio, respectively. The local symmetric weak

form makes the ”stiffness” entries KIJ , which is the local stiffness 2x2 matrix, in

the entry corresponding to the node I, and to the nodes J, in the multidimensional

matrix K; the global stiffness matrix K is such that KIJ = [KIJ ], that is, each

entry in the global stiffness matrix is a 2 x 2 local stiffness matrix. The pattern

of the non zero entries in K depends on the non-zero values of the integrands in

the weak form, where ∂ΩI
test ∩ ∂ΩJ

trial ) {∅}.
The locality of the methods ensure that K is sparse, and in general its sparsity

will be largely affected by the radii of the shape and trial functions in MLPG, and

on the respective sizes of triangles and meshless local subdomains and domains of

definition, in the coupling blocks described later, which form the global stiffness

matrix. Conversely, FEM does not come with such “user selectable” parameters

that affect the sparsity of the global stiffness matrix.

Now, the global equation can be written as:

∑
I

KIJ ·û = fI , I = 1, . . . , N

which is a multidimensional matrix that comprises 2·I number of equations, where
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KIJ =

∫
Ωs

εI (x) DBJ dΩ + α

∫
ΓDir

VI (x) SΦJ dΓ −
∫

ΓDir

VI (x) NDSBJ dΓ

fI =

∫
ΓNeu

VI (x) t dΓ + α

∫
ΓDir

VI (x) Su dΓ +

∫
Ωs

VI (x) b dΩ

Finally

K·û = f

can be rewritten as a conventional 2N x 2N linear system to solve.

2.4.1 The choice of the sizes of the domain ΩI
test and ΩI

trial

Before making the final selection of the finite functional spaces VhFE, VhML, a con-

sideration about the local domains for the respective bases, and their nature,

should be beneficial. The generation of the global stiffness matrix shares some

similarities with the well known Galerkin FEM, and also some differences. The

Petrov-Galerkin formulation enables us to use different interpolations for trial and

test functions. Hence, the sizes and shapes of the sub-domains, i.e., the supports

ΩI
test and ΩI

trial where the test and trial functions, respectively, are nonzero, need

not be the same, both in size or in shape. Indeed this is the most frequent case

in MLPG, where ΩI
test ⊂ ΩI

trial to achieve proper results. Therefore, this approach

encompasses the standard FEM as a particular case, where ΩI
test = ΩI

trial.

Now a selection of the actual domain shape must be performed. Following the

approach done by Atluri [16], [8], the domains of definition for both the test and

trial function will be chosen as circles for MLPG; Finite Element Method shall

adopt the set of all the elements which share the node in question, which form a

polygon in 2D. Note that the value of the trial function u(x) at each point x inside

ΩI
test is influenced by a set of fictitious values (Figure ??), since, in both methods,

u(x) =
∑

i φi(x)ui. This is determined, in FE, by the nodes of the triangle where

x lies. Indeed u(x) is obtained by a linear interpolation, if the bases are linear,

which considerably simplifies the reconstruction of the solution. Indeed the dis-

placements of the nodal points are already contained in the solution vector that
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stems from the solver, when Finite Elements are considered separately, as the pre-

vious equations simplifies to u(xI) = 1 · uI . However in a meshless approach even

the reconstruction of the solution at the nodal points involves some calculations,

as u(x) =
∑

i φi(x)ui does not simplify altogether. Indeed, the shape function of

a node, which is not vanishing at a point x, is determined, for instance, by the

radius of the weight functions in the MLS approximation, i.e., ΩI
trial of the nodes

in the immediate vicinity (Figure 2.3)

Figure 2.3: MLPG shape functions ”covering” a node in a local subdomain.

In its full generality, when both bases are considered together, the local symmetric

weak form leads, for each ΩI
test to the I-th system of equations in the final stiffness

matrix, involving all the J nodes, whose sub-domains ΩJ
trial intersect with ΩI

test

such that the integrand in the equation is non-zero, irrespective of their nature5.

It is seen that if the sizes6 of ΩI
test and ΩJ

trial are the same (Figure ??) for each

I and J , the resulting stiffness matrix shall be structurally symmetric, in other

words, the topology of the possible non-zero entries is symmetric.

Indeed, the (I, J) entry, in the final stiffness matrix, can be non zero as soon as

ΩI
test∩ΩJ

trial 6= {∅}, which in turn implies ΩJ
trial∩ΩI

test = ΩJ
test∩ΩI

trial 6= {∅}, that is a

necessary conditions for the (J, I) entry to be non-zero. Note that this selection of

subdomain is natural in the Finite Element Method framework, but unfortunately

will lead to poor solution accuracy if employed in the MLPG scheme.

Further, if the trial and test functions centered at node I and J are the same

for each I and J , the global stiffness matrix will be symmetric according to the

5here no distinction is operated between FEM and MLPG
6the shape being the very same
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Figure 2.4: A selection of the domain for the trial and test function that leads
to a structurally symmetric matrix

usual definition KT = K; otherwise not. Note again, this is somewhat natural

with Finite Elements (Figure ??), and gives rise to the well known Ritz - Galerkin

approach.

Figure 2.5: A selection of the domain for the trial and test function, that
leads to a symmetric matrix, as commonly done in FEM

This choice, that has many interesting properties, also greatly simplifies the solu-

tion of the linear system of equation, but may never be used by MLPG as proposed

by Atluri in its original form [16], as the test and trial function are always chosen

to be different. Hence the coupling blocks KFM and KMF will also be not mutu-

ally symmetric, and not even (mutually) structurally symmetric. Having the full

system of equations, with both FE and MLPG, with a non symmetry due to the

use of MLPG, will demand for a unsymmetric algorithm for the solution of the

linear system; should a partially coupled approach be employed as discussed later,
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a multistep algorithm may be used, and the FEM and MLPG problems can be

solved sequentially, hence, in independent phases.

2.4.2 Final selection of the Functional Spaces VhFE, VhML

Now the final selection of the finite functional space VhFE, VhML is operated. By

taking full advantage of the topology, the choice that leads to the well known

Finite Element Method is operated, i.e., choosing

uhFE(x) =

nFE∑
J=1

φFEJ (x)ûFEJ

such that φFE is piecewise linear, i.e., linear over each element, with the additional

constraint that, for each of the nFE nodes:

φFEJ (xJ) = 1

φFEJ (xM) = 0, ∀M 6= J

Further, for the FEM test function

ψFEI = φFEI

and hence V testFE = V trialML . This approach is well renowned in literature and further

considerations are not deemed necessary.

Conversely, for MLPG, as done by Atluri in [16], [8],

uhML(x) =
∑
J

φML
J (x)ûML

J

where φML
J (x) stems from the minimization of the functional

JMLS =
∑
i

w (||x− xi||) ·
(
uhx (x)− ui

)2

already discussed in detail, and for the test functions:
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v1 = v2 = wi(x) =


e(

d
c )2−e−( rc )2

1−e−( r
c )2 d < r

0 d > r

by imposing r/c = 1 as already discussed, resulting in V testML 6= V trialML .

Here it is noted that the shape functions, for FE and MLPG, when considered

separately, form a basis of V trialML and V trialFE , respectively. When considered together,

V trialFE + V trialML = Vh

but in general

V trialFE ⊕ V trialML = Vh

is not true. That the global space Vh cannot be a direct sum [12] of V trialFE and

V trialML is equivalent to saying

{φFE1 , . . . , φFEnFE
, φML

1 , . . . , φML
nML
}

does not form a basis for Vh, in the most general case. Indeed it may be shown

that a linear field may not be represented uniquely by the use of the above set

of shape functions, which however span Vh. Hence the consideration done in

the more theoretical introduction regarding the uniqueness of the solution of the

system of equations here no longer applies, and the final linear system may admit

infinitely many solutions; while in fact the solution in Vh is unique. In general, it

may be necessary to suppress as many shape functions as required to recover the

uniqueness of the representability of a generic element in the vector space, in order

to have a non singular final matrix. However, other methods are also possible and

are addressed in the relevant section of this Thesis.

2.5 Discretized Block Matrices

In view of the distinction made between the test and trial basis functions, it is

possible to re-write the final discretized form of the equations as done in the
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theoretical introduction:[
KFE KMF

KFM KML

]
·

[
uFE

uML

]
=

[
fFE

fML

]

where the global stiffness matrix is

K =

[
KFE KMF

KFM KML

]

and the forcing vector:

f =

[
fFE

fML

]

where now, the local stiffness matrix reads:

KFE
IJ =

N∑
J

∫
ΩFE

I

εFEI (x) DBFE
J dΩ + α

N∑
J

∫
ΓDir

VFE
I (x) SΦFE

J dΓ +

−
N∑
J

∫
ΓDir

VFE
I (x) NDSBFE

J dΓ

KMF
IJ =

N∑
J

∫
ΩFE

I

εFEI (x) DBML
J dΩ + α

N∑
J

∫
ΓDir

VFE
I (x) SΦML

J dΓ +

−
N∑
J

∫
ΓDir

VFE
I (x) NDSBML

J dΓ

KFM
IJ =

N∑
J

∫
ΩML

I

εML
I (x) DBFE

J dΩ + α

N∑
J

∫
ΓDir

VML
I (x) SΦFE

J dΓ +

−
N∑
J

∫
ΓDir

VML
I (x) NDSBFE

J dΓ

KML
IJ =

N∑
J

∫
ΩML

I

εML
I (x) DBML

J dΩ + α
N∑
J

∫
ΓDir

VML
I (x) SΦML

J dΓ +
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−
N∑
J

∫
ΓDir

VML
I (x) NDSBML

J dΓ

fFEI =

∫
ΓNeu

VFE
I (x) t dΓ + α

∫
ΓDir

VFE
I (x) SuFE dΓ +

∫
ΩFE

I

VFE
I (x) b dΩ

fML
I =

∫
ΓNeu

VML
I (x) t dΓ + α

∫
ΓDir

VML
I (x) SuML dΓ +

∫
ΩML

I

VFE
I (x) b dΩ

If no distinction is operated between the functional bases, the local stiffness matrix

for the generic node I can be written as:

KIJ =
N∑
J

∫
Ωs

εI (x) DBJ dΩ︸ ︷︷ ︸
KΩ

IJ

+ α
N∑
J

∫
ΓDir

VI (x) SΦJ dΓ︸ ︷︷ ︸
KDir

IJ

+

−
N∑
J

∫
ΓDir

VI (x) NDSBJ dΓ︸ ︷︷ ︸
K

tDir
IJ

and the left hand side as:

fI =

∫
ΓNeu

VI (x) t dΓ︸ ︷︷ ︸
fNeu
I

+ α

∫
ΓDir

VI (x) Su dΓ︸ ︷︷ ︸
fDir
I

+

∫
Ωs

VI (x) b dΩ︸ ︷︷ ︸
fdistI

It is seen that each local matrix KFE
IJ ,K

FM
IJ ,KMF

IJ ,KML
IJ in its full generality con-

sists of three terms:

• KΩ
IJ =

∑N
J

∫
Ωs
εI (x) DBJ dΩ , that accounts for the stiffness inside Ω and

should require no longer explanation; it is the usual stiffness matrix that also

arise in FEM, before the imposition of the essential boundary conditions

• KDir
IJ = α

∑N
J

∫
ΓDir

VI (x) SΦJ dΓ , that stems from the imposition of the

boundary conditions in ΓDir in a weak way, with the penalty formulation.
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The entries of this matrix are generally ∼ α times a regular entry in KΩ. If

the prescribed value for the displacement of node I u is constant, then the

vector equations, to enforce the essential BC, reduces to

N∑
J

∫
ΓDir

VI (x) ΦJ ûJ dΓ =

∫
ΓDir

VI (x) u dΓ

which can be thought of as starting from

∑
I

ΦIuI = u

for a generic point, and then integrating by the use of the weight VI , since

without the kronecker delta property the foregoing expression cannot be

further simplified.

• KtDir
IJ = −

∑N
J

∫
ΓDir

VI (x) NDSBJ dΓ , that is the stress on the outer

boundary where the essential boundary conditions are specified; indeed it

is possible to write

−
N∑
J

∫
ΓDir

VI (x) NDSBJ ûJ dΓ = −
N∑
J

∫
ΓDir

VI (x) t

where t is the (still unknown) stress due to the presence of the essential

boundary conditions. It is noted that this term is equivalent to
∫

ΓNeu
VI (x) t dΓ =

fNeuI , only that in this case t is expressed as a function of the unknown fic-

titious values.

At the same time, the forcing vector allows for a straightforward interpretation:

• fNeuI =
∫

ΓNeu
VFE
I (x) t dΓ , which is the prescribed stress at the boundary.

It is noted that the natural boundary conditions will, in general, not be

satisfied after the discretized system have been solved. This is a limitation

of the variational formulation used.

• fDirI = α
∫

ΓDir
VI (x) Su dΓ that represents the prescribed essential bound-

ary conditions, and complements the corresponding integral seen before.

• fdistI =
∫

Ωs
VI (x) b dΩ , that represent the distributed load, if any.



Chapter 3. A Critical Assessment of the Method 34

The local contribution to the local stiffness matrix and the local forcing vector

allow to write, for the global stiffness matrix:


(

KΩ
FE + KDir

FE + KtDir
FE

)
uFE +

(
KΩ
MF + KDir

MF + KtDir
MF

)
uML = fdistFE + fDirFE + fNeuFE(

KΩ
FM + KDir

FM + KtDir
FM

)
uFE +

(
KΩ
ML + KDir

ML + KtDir
ML

)
uML = fdistML + fDirML + fNeuML

(2.4)

The foregoing expression contains, in its full generality, all the terms for the so

called fully coupled enrichment.

It is seen that regions of complex shape arise when evaluating the integrals in the

coupling blocks, because the integrand is, in general, not smooth enough.

It is also possible to neglect, as outlined in the introduction, the coupling block

KMF or KFM to give rise to the so called uncoupled enrichment. Finally, it is

noted that at least one between FEM domain and MLPG domain must extend

untill the boundary where the boundary conditions are prescribed.



Chapter 3

A Critical Assessment of the

Method

This chapter provides an insight to the proposed methodology, leaving the numer-

ical results to the next chapter.

3.1 Boundary Conditions

In non-interpolating schemes, such as MLS, it is not easy to impose the essen-

tial boundary conditions, as the interpolation scheme does not have the property

that φI(xI)u
I = uI(xI), where φI is the shape function of node I of coordinates

xI . This considerably complicates the imposition of the essential boundary con-

ditions. A methodology that could be used is, for instance, a Lagrange multiplier

technique, as recently proposed by Atluri [17]. Here however a penalty method as

originally proposed by Atluri in MLPG [16], [8] is extended to the general case,

hence, encompassing the traditional FEM approach; the final enriched solution

calculated on FE nodes, indeed, does not have the Kronecker property any longer.

The penalty coefficient α, used to enforce the prescribed essential boundary con-

ditions, must be commensurate to the order of magnitude of the integrands that

form the entries in the final stiffness matrix. Thus, α is best chosen as some order

of magnitude higher than the elastic modulus E, rather than as a fixed parameter.

The value of α can be thought as an equivalent stiffness of the constraints; hence,

its value should be high enough to properly approximate the boundary conditions,

but low enough as to avoid ill-conditioning of the matrix. In the present Thesis,

35
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a value of α = 108 has been found1 to be the minimum value for the which there

is no sensitive variation of the solution.

Here it is noted that the boundary conditions are satisfied with an accuracy that

depends on α, if the trial function uh(x) is able to represent them exactly. The

form of the unknown approximant of uh(x) can otherwise be the ultimate limiting

factor for the satisfaction of the essential boundary conditions, all along ΓDir. It

is worth noting that, as commonly done by practitioners, in FEM the essential

boundary conditions are imposed in a strong way, i.e, by imposing the correct

value of the displacement at the so called “Dirichlet Nodes”. However, this way of

imposing boundary conditions in FEM (by prescribing the exact solution on the

nodes) is by no means any more correct than imposing the boundary conditions

by the use of the present penalty approach. Indeed, in FEM, the displacement

is imposed correctly on these Dirichlet Nodes and the essential boundary condi-

tions are satisfied, a posteriori, exactly on these nodes. Note, however, that the

essential boundary condition are generally violated along ΓDir, that is made up

of element edges, apart from the already discussed Dirichlet Nodes, which satisfy

them exactly. Imposing the boundary conditions in a weak form, as done in this

Thesis, requires that the boundary conditions be satisfied on average all along

ΓDir. Thus one might expect that the displacement field, when evaluated on the

nodes on ∈ ΓDir, slightly violates the essential boundary conditions. This is not

a flaw of the weak form or either related to the choice of the penalty coefficient

α; conversely, it is a feature of the different aim of the two methods to impose the

essential boundary conditions. It is also possible to expect a slightly superior per-

formance of FEM, in general, when the essential boundary conditions are imposed

in a weak way, as the boundary conditions are, on average, better prescribed.

However, the greater effort for the prescription of the boundary conditions does

not justify the small gain in accuracy obtained, and it is therefore best avoided if

at all possible2.

Finally, it is noted that the concept of a “Dirichlet Node” or that of “Neumann

Node” lose their meaning in a Meshless context, as it is not possible to establish,

a priori, which nodes have some boundary conditions prescribed. In FEM there is

a mesh, and the boundaries of the discretized domain coincides with the physical

boundary ∂Ω. In fact, the mesh provides the boundary nodes with a test function

1with E = 1
2and whenever this is possible, it will be highlighted in this Thesis
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that reflects that v 6= 0 when ∂ΩI intersect with ΓDir. Conversely, a Meshless ap-

proach retains its higher flexibility regarding the geometry; particles can be added

freely in the domain, and in particular, they need not be placed on the boundary

of the physical domain. In particular, as already mentioned, their test functions

need not vanish where the essential boundary conditions are prescribed. This is

a necessary condition for imposing the essential boundary condition3; in MLPG

this operation is done during runtime, and depends upon the selection of the radii

of the test functions. This, in turn, does not require that the nodes be located on

the boundary ΓDir where the boundary conditions are prescribed, as long as their

test function4 intersects with the boundary. Hence, a so called “Dirichlet Node”

need not be placed on ΓDir, and, conversely, not every node that has boundary

conditions prescribed is a node on the boundary. Further, a “Dirichlet Node” can

also be a “Neumann Node”, if its test function intersects with two edges with

different physical representation, which is also quite common. Finally, a meshless

node on the interior of the computational domain can by no restriction intersect

with several edges, where different analytical law are prescribed as Neumann and

Dirichlet boundary conditions. In short, as the Meshless nodes are not bound

to any topological or geometrical constrains, they can be freely placed inside the

domain, as long as their test functions cover the whole domain; the price, how-

ever, is the added programming effort which is, in general, much higher for the

prescription of the boundary conditions than for the rest of the computation of

the local stiffness matrix; in fact, for each node, the multiple intersections, which

may also be disjoint, have to be identified and the outer normal calculated, before

seeking for all of the non vanishing shape functions, of each of the two bases; only

at that point can the quadrature be performed on each segment. Moreover, the

geometry of the domain has to be supplied separately.

Doing a MLPG enrichment only in the interior of the computational domain clearly

saves a lot of programming effort, as it avoids the prescription of the boundary

conditions in a weak way.

3and quite obvioulsy, also for imposing the Neumann boundary conditions
4they can, for any reason, even be outside the computational domain
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3.2 Numerical Quadrature

Numerical integration plays a crucial role in the convergence of the numerical

solution of FE - MLPG coupled approach. In classical Finite Element Method,

numerical integration generally isn’t a problem, as the integrals may be accurately

evaluated. If the element, say in two dimension, is a triangle, the element-nodal

shape functions for trial as well as test functions are linear (Figure: 3.1); hence

their derivatives arising in the weak form, are constant over each element.

Figure 3.1: Intersection between a Finite Element Shape Function and Finite
Element Test Function, with resulting non zero entries in the local stiffness

matrix.

Conversely, it is more difficult to evaluate the energy for the stiffness matrix of

MLPG and that of the coupling blocks between FE and MLPG, due to the com-

plexities of:

• the integrand

• the domain of integrations where the integrand is sufficiently regular

Throughout this section the difficulties of the numerical integrations will be briefly

outlined, along with their effect and a suggestion for a solution.

3.2.1 The Shape of the Trial Functions

This subsection outlines how the shape of the trial function can affect negatively

the numerical accuracy in the integral calculations. The shape functions with
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meshless techniques have a different form in each small region Ωtrial
I ; the gaussian

weight function, used in both the test and trial function, produces irregular forms

of the shape function 3.2, 2.1.

Figure 3.2: An MLPG shape functions.

Further, the use of the weak form worsen the situation, as the derivatives have,

in general, an oscillatory behavior, with indentations and peaks ??. Also note

Figure 3.3: An MLPG shape function derivative along one direction.

that shape functions have a much wider domain of definition, in general, than the

test function. As a result, when the integration is performed for evaluating the

entries in the KML matrix, Ωtest
I is advised (see also Atluri [16], [8] [17]) as a

domain of integration instead5 of Ωtrial
I . Also, multiplication by FEM test func-

tions will make discontinuities arise across element edges; conversely, inside the

elements the integrand is not overly complicated, as FEM have a constant repre-

sentation of their derivatives. There is not much to do to fix such an issue but to

use an appropriate quadrature rule, and wherever possible, address the integrand

5integration over Ωtrial
I , unless other methods are used to enhance the accuracy, will lead to

very poor results, due to its higher size. Thus, the practice is discouraged
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discontinuity problem by a convenient domain subdivision. This transforms the

integration problem to a proper domain decomposition. In this case, coupling FE

and MLPG does not lead to any newer difficulty for the integration of the energy,

once that the domain for quadrature has been carefully selected.

3.2.2 The Loss of Consistency due to non Smooth Inte-

grand

Consider a simple numerical quadrature problem in one dimension,∫ b

a

f(x)dx '
∑
i

wif(xi)

It is possible, in principle, to freely choose the points where to compute the func-

tion values, and then to make the formula exact for polynomials up to some degree.

The next step is to use the positions of the sample points xi as additional param-

eters to make the formula exact for higher polynomial degrees.The refined Gauss

quadrature rule has been obtained, with an order of consistency 2n − 1, where

2n− 1 is the order of the polynomial the formula is able to integrate exactly with

n sample points. Intuitively, the closer in shape to a polynomial up to this degree,

the more accurate the quadrature should be.

However the situation is different when dealing with functions that are substan-

tially different from polynomials. Suppose, for example, that one needs to integrate

a discontinuous function. The evaluation of the entries in the stiffness matrix re-

lies on discontinuous functions, if, for instance, Ωtrial
IFE
∩ Ωtest

IML
6= {∅} is not further

restricted.

In order to fully understand what happens with a discontinuous function, let, at

first, f be a continuous function such that:

f : [a, b] 7−→ Rn

x 7−→ f(x)
(3.1)

with a < x1 < · · · < xn < b a set of n sampling points, and Ih the approximate

value of the integral,
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I =

∫ b

a

f(x)dx '
∑
i

wif(xi) = Ih

Consider any extension of f outside its domain of definition, such that

f̃ : [ã, b] 7−→ Rn

x 7−→ f̃(x)
(3.2)

where ã < a and f(x) = f̃(x), ∀x ∈ [a, b],

and consider the numerical integration problem on the same domain [a, b]

Ĩh =
∑
i

wif̃(xi) =
∑
i

wif(xi) = Ih

however clearly the integration performed on [ã, b]

Ĩ =

∫ b

ã

f(x)dx =

∫ a

ã

f(x)dx+

∫ b

a

f(x)dx =

∫ a

ã

f(x)dx+ I 6= I

In other worlds, since the domain for the numerical quadrature is unchanged, the

additional part has not been accounted for.

Now think to restrict the domain [a, b] slightly, such that

f̂ : [â, b] 7−→ Rn

x 7−→ f̂(x) = f(x)
(3.3)

where a < â < x1, and x1 is the first sample point for quadrature in [a, b], and

f(x) = f̂(x), ∀x ∈ [â, b].

If one considers the numerical integration problem on the same domain [a, b],

Îh =
∑
i

wif̂(xi) =
∑
i

wif(xi) = Ih
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because in this example still ∀xi ∈ [â, b] and in particular x1 ∈ [â, b] hence f̂(x1)

is well defined; but now again the integration performed on [â, b]

Î =

∫ b

â

f̂(x)dx =

∫ b

â

f(x)dx 6=
∫ b

a

f(x)dx = I

In other words, if the small reduction in the domain is such that none of the

quadrature points has to be ”disregarded”, simply there will be no difference in

the numbers to put into the formula, and the result will still be the same. Now,

however, there is a portion less of domain, namely [a, â] to account for.

Now let f(x) = 1 everywhere in its domain of definition; clearly

I = Ih

because the formula is able to reproduce exactly the constant solution but, when

f̂(x) = 1

Î 6= Îh

which means that not accounting for the (even slight) reduction in the domain shall

make the formula lose any consistency. In other words, the extremely elaborated

and sophisticated quadrature rule, usually referred to as Gauss quadrature rule,

has failed even to represent the constant solution, if the actual quadrature domain

has not been changed accordingly: the order of consistency is not even zero in this

case. It should be now clear that there is something wrong with this approach.

Now further, consider the more general:

f : [a, b] 7−→ Rn

x 7−→ f(x)
(3.4)

and let a be anywhere in [a, b] such that:

f(x) =

f(x) x > a

0 x < a

Eventually f is discontinuous at x = a.
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It should now be not difficult to realize that

I
h

=
∑
i

wif(xi)

is still not consistent with

I =

∫ b

a

f(x)dx

when f(x) is a polynomial. Note that the foregoing approach is, in practice,

very easily implementable; indeed it requires only disregarding those quadrature

points outside the domain where f(x) 6= 0, i.e. by setting wi = 0, ∀i ≤ m where

xm = max{xi < a}.
Note again, ∀a such that xm < a < xm + 1 will produce identical outputs on

I
h

=
∑
i>m

wif(xi)

because one is putting the very same numbers into the formula, that is ∀a ∈
[xm, xm + 1] delivers identical numerical outputs in the numerical approximation

of the integral, while in fact

I =

∫ b

a

f(x)dx

does change as a is moved between the two sample points.

It should be now clear that this approach is totally different from starting from

the ”true” problem

f : [a, b] 7−→ R

x 7−→ f(x)
(3.5)

and defining f 1, f 2 such that, in our case,

f 1 : [a, a] 7−→ R

x 7−→ f 1(x) = 0
(3.6)

f 2 : [a, b] 7−→ R

x 7−→ f 2(x) = f(x)
(3.7)
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which are continuos in their respective domain and calculate individually

∫ b

a

f(x)dx =

∫ a

a

f 1(x)dx+

∫ b

a

f 2(x)dx

=
∑
i

wif 1(xi) +
∑
i

wif 2(xi)
(3.8)

that is, mapping the position of the n1+n2 = n sample points such that [−1, 1] 7−→
[a, b] and [−1, 1] 7−→ [a, a], which retains consistency up to some order (say 2·ni−1,

if ni is the number of gauss point at an interval).

Hence neglecting or disregarding the integrand regularity can be dangerous as far

as the accuracy of integration is concerned. There is no doubt that increasing the

number of quadrature points ultimately will achieve convergence, but normally

consistency is a desired feature that assess the method’s quality. As a matter of

fact, adding more quadrature points will simply increase the computational cost

with no tangible improvement. Further, it is the number of quadrature points that

dictates the running time almost entirely, as shape function needs to be calculated

at each sample point.

3.2.3 The Use of Background Cells

Background cells6 have already been used in other Meshless methods, and pro-

posed before MLPG [10]. They required a background mesh for the integration

of the energy. However, MLPG as proposed by Atluri [16], [8], [17] avoids such

background meshes, as MLPG aims at being a truly meshless method.

However, this appears not to be a problem in the proposed coupling between

FEM and MLPG, because here an enrichment of FEM is done with MLPG. Finite

Elements do provide a background mesh; however the mesh used for integration

cannot be chosen arbitrarily, but should be carefully designed as to provide a truly

working method, with sufficient accuracy. In fact, the mesh bound to the Finite

Element may not provide the best solution. For example, when the number of

particles is increased, that is, MLPG alone is refined, the background FE mesh

stays unchanged, and does not reflect the need for the higher density of quadra-

ture points. Moreover, there is no ”embedded” information into the mesh about

6of any shape
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where should a higher quadrature point density be placed, as FEM mesh is totally

independent from the MLPG refinement. As a matter of fact, the FEM mesh do

not lead to an effective partition of Ω for the integration of the energy.

3.2.4 The Use of the Meshless Local Subdomain

As far as MLPG alone is concerned, a local subdomain Ωtrial
I or Ωtest

I might be the

natural choice for integration. As a consequence, the choice of either Ωtrial
I or Ωtest

I

for the integration as done by Atluri [16], [8], seems quite reasonable.

Figure 3.4: Intersection between ML test and shape functions.

Figure 3.5: Integration for the KFM entries
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Figure 3.6: Integration for the KFM entries

The value of the integrand is non zero as soon as Ωtrial
IFE
∩ Ωtest

IML
6= {∅}, but φFEJ

is not differentiable over its local subdomain Ωtrial
IFE

Numerical integration scheme

with discontinuous functions should be used with caution, as explained before.

In region of mutual intersection between φJFE, vIML and ψIFE, φJML the natural

choice for the domain for the integration of the energy is not so straightforward.

However, the theoretical rate of convergence of the proposed methodology can be

obtained only if the integrals are computed exactly. When dealing with meshless,

and, consequently, when coupling MLPG with FEM, it is important to gain an in-

sight on the numerical integration errors, because MLPG shape and test functions

have a complex shape, exacerbated by the discontinuities of FEM basis functions.

An inaccurate integration can lead to a deterioration of the solution or even to

catastrophic results. This is somewhat worsened if the domain for the integration

of the energy is ”hardwired” to one method alone in the coupling matrices. For

instance, an integration over a triangle, when φIML intersects ψJFE, may deliver

almost exact results as soon as the nodal density and pattern is fairly the same

for both FE and MLPG 7. Conversely, the integration over ΩI
ML will not yield to

satisfactory results, because the integrand is not smooth enough in this domain.

But, as MLPG is refined, an integration over a (now single) element will not reflect

the higher density of particles. The shape function can indeed be so small that

not even a gauss point is located inside its domain of definitions. Clearly, the

integration of the energy over Ωtrial
IML

is now a much more natural choice, and will

7Recall that the radius of ML shape function is, in general, at least four time the distance
to the closest node, and any directional derivative that far is nearly zero, hence its derivative is
continuous
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now lead to very satisfactory results. As a result, a transition from the integration

over triangles to the integration over Ωtrial
I must occur smoothly when MLPG is

refined; and this has to be carefully designed.

3.2.5 A Proposed Domain for Quadrature

In view of the previous considerations, the actual shape of the domain will be

accounted for. One might reasonably consider that, in a proper domain, the inte-

grand shall at least be continuos8, and this will be the criteria for the integration in

the present Thesis. Obviously, this approach will necessarily create a patch {Ωint}
such that the entries of KFM ,KMF are evaluated as integrals in the intersections

of Finite Elements and Ωtrial
IML

or Ωtest
IML

:

⋃
ΩIJ
int

ΩJ
int = (∪Ω

IelemFE
test ) ∩ ΩJML

trial for KMF entries

ΩI
int = ΩIML

test ∩ (∪Ω
Jelem
FE
trial ) for KFM entries

Furthermore, it requires the definition of a bijection between the standard integra-

tion domain [−1; 1]2 and the domain for integration D. The map will vary at each

integration, so a common methodology must be employed9. All of the possible

intersections Ωtriangle ∩ ΩI
ML = Ωint between a circle and a triangle give rise to

a lot of different possibilities. However, a closer look will soon reveal they can

mostly be thought as a quadrilateral figure with curved edges.

More specifically, the quadrilateral can be obtained by connecting two non nec-

essarily not degenerate simple10 curves with two non necessarily non degenerate

segments.

Consider two curves that have, no point of intersections11. Now consider they are

connected by two segments, each of which can degenerate to a single point (in this

case the curves are in fact connected, but it is useful to think of them as if they

were connected by a degenerate segment). Those four entities are placed such that

they form a figure that is topologically equivalent to a quadrilateral. Moreover, if

an edge is a curve the opposite edge shall be a curve and likewise with the seg-

ments. A curve can also be a segment, or even degenerate to a point. With this

8always recall that the weak form is being used
9This is has to be done mathematically first, but the implementation has to follow that level

of abstraction, or it’ll be of no use
10in a mathematical sense
11with one another as well as with themselves
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Figure 3.7: Some possible intersection between a triangle and a local sub-
domain, or, equivalently, a domain of definitions. Note that the integration
with three edges soon disappears as MLPG nodal density is increased, for the
Meshless test function. The Meshless shape function derivative, conversely, is
continuos on the boundary of its domain of definition and leads to less problem

for the integration of the energy

abstraction, any boundary of the intersection +∂
(

Ωtriangle ∩ ΩML

)
= +∂ Ωint

can be represented. Additionally, the definition of a proper orientation for these

curves must be carried out.

Now, the following map is defined. Consider a curve

C1 : [−1, 1] −→ D1 ⊂ R2

t 7−→ ~x1(t)
(3.9)

and equivalently,

C2 : [−1, 1] −→ D2 ⊂ R2

t 7−→ ~x2(t)
(3.10)

Since they are connected by straight lines, it is somewhat natural to define
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T : [−1, 1]2 −→ D ⊂ R2

(α, t) 7−→ ~x(t)
(3.11)

and more explicitly

(α, t) 7−→ ~x(t) = (1− α)~x1(t) + (1− α)~x2(t)

Note that the straight segments and the curves C1, C2 themselves are α-curves and

t-curves, respectively. The quadrature points will be placed all along the α-curve

and t-curve, where α and t are the (linear) coordinates of sample points in [−1, 1]

for quadrature. In short, this is a linear combinations of the two curves.

Figure 3.8: Quadrature points placed all along α-curves and t-curves in the
actual quadrature domain, the boundary of the which is a straight line and an

arch

It’s necessary that, once the closed path is considered, the two curve be oriented

in opposite directions, for instance, one counterclockwise and the other clockwise,

or the map won’t be onto12 the closed path, therefore not bijective. In addition,

it can be seen that the map is non degenerate almost everywhere13. Also note

that, when a curve degenerates to a point, the Jacobian of the map is singular at

12in a mathematical sense (also surjective)
13in a mathematical sense
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that point, but still it is not singular almost everywhere. Clearly the curves are

arches, but the approach was kept in its most generality. The presentation of the

algorithmic implementation, which is rather sophisticated in nature, is here not

deemed necessary, as it does not add anything to the reader’s comprehension.

3.3 Fully Coupled Enrichment

The fully coupled enrichment involves all of the final equations obtained before,

namely:


KΩ
FE + KDir

FE + KtDir
FE KΩ

MF + KDir
MF + KtDir

MF

KΩ
FM + KDir

FM + KtDir
FM KΩ

ML + KDir
ML + KtDir

ML

·


uFE

uML

 =


fdistFE + fDirFE + fNeuFE

fdistML + fDirML + fNeuML



However, if none of the meshless local subdomain ΩI
s intersect with ∂Ω, the terms

over ∂Ω, involving V, namely:

KDir
MF + KtDir

MF = α
N∑
J

∫
ΓDir

VML
I (x) SΦFE

J dΓ −
N∑
J

∫
ΓDir

VML
I (x) NDSBFE

J dΓ

KDir
ML + KtDir

ML = α

N∑
J

∫
ΓDir

VML
I (x) SΦML

J dΓ −
N∑
J

∫
ΓDir

VML
I (x) NDSBML

J dΓ

and

fDirML + fNeuML =

∫
ΓNeu

VML
I (x) t dΓ + α

∫
ΓDir

VML
I (x) Su dΓ

vanish. The final expression simplifies to:


KΩ
FE + KDir

FE + KtDir
FE KΩ

MF + KDir
MF + KtDir

MF

KΩ
FM KΩ

ML

·


uFE

uML

 =


fdistFE + fDirFE + fNeuFE

fdistML


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If, additionally, the domain of definition of each node Ωtrial does not intersect with

∂Ω either, that is, none of the meshless shape function is non vanishing on ∂Ω,

the final stiffness matrix simplifies even further to:


KΩ
FE + KDir

FE + KtDir
FE KΩ

MF

KΩ
FM KΩ

ML

 ·


uFE

uML

 =


fdistFE + fDirFE + fNeuFE

fdistML


It is noted that only the FEM contribution represents the entire solution on ∂Ω,

hence, on ΓDir ⊂ ∂Ω:

uh(x) =
∑
I

φFEI (x)uFEI

that implies, as just explained, that only FEM now have the essential or natural

boundary conditions enforced; thus the kronecker delta property now holds again

and ∑
I

ΦI(x)uI = uI

can be further simplified, when evaluated at xI , as

uI = uI

which allows for a straightforward implementation of the boundary conditions in

a strong way; hence, it is possible to neglect KDir
FE + KtDir

FE and calculate directly:


KΩ
FE KΩ

MF

KΩ
FM KΩ

ML

 ·


uFE

uML

 =


fdistFE + fNeuFE

fdistML


which is singular and deserves a strong imposition of the essential boundary condi-

tions, in the usual way. This ultimately greatly simplifies a meshless enrichment,

especially if thought as an “add on” to an existing FEM solver for PDEs.

However, in this last case, one has to exercise extreme caution to ensure that

the enriched region, made of all the domains of definition of the meshless shape

functions never intersects with the boundary14 ∂Ω, at runtime.

14this in turn implies that even the test function, that are centered at the same points, never
intersects with the boundary, as their radius is generally much smaller than that of the shape
functions.
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3.3.1 Representability of a Linear Solution

The following section discusses the uniqueness of the solution of the final linear

system of equations of a fully coupled, global enrichment with boundary conditions

applied on both FE and MLPG contribution blocks and coupling blocks. Some

preliminary considerations are mandatory.

Finite Element and Linear Solution Finite Elements made up of triangles

with linear basis functions 15 are able to represent a linear solution exactly. That

is to say, the displacement complies with the linear map:

TΩ :

[
x

y

]
7→

[
a11 a12

a21 a22

]
·

[
x

y

]
+

[
b1

b2

]

for any value of the coefficients. Note that there are six coefficients that define

the linear map written above. Thus the linear displacement request that all six

degrees of freedom of a triangle be used for the satisfaction of the displacement

law. This can be repeated for any element and, eventually, for any element both

d.o.f of exactly three nodes have to be specified to comply with the specified

displacement TΩ. Hence, vFE(x) is such that vFE(x) = TΩ(x), ∀x ∈ Ω that

implies TΩ ∈ VhFE ⊂ VFE, that is, the linear map is exactly represented by the

finite element space.

MLPG and Linear Solution As opposed to FEM, MLPG does not allow for a

”node-wise” approach, but re-examining the functional, which originated the shape

functions, will reveal that also MLPG is able to reproduce a linear displacement,

when a linear basis is employed. Indeed, from basic geometry it is known that a

plane, that is, a linear map in the form z = ao + axx + ayy is well defined16

as soon as three non aligned17 different points are specified. Since independent

basis functions are used for x and y displacement, a linear displacement field of

the form:

15independently in each direction
16the solution exists and is unique
17in the FE framework not aligned is equivalent to non degenerate element, which, of course,

may never happen for many other reasons
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TΩ :

[
x

y

]
7→

[
a11 a12

a21 a22

]
·

[
x

y

]
+

[
b1

b2

]

can be specified and will be represented exactly by MLPG. With the same ar-

gument as before, vML(x) is such that vML(x) = TΩ(x), ∀x ∈ Ω, which implies

TΩ ∈ VhML ⊂ VML, that is, the linear map is exactly representable by MLPG.

Finally, here it is noted that the order of consistency, that is one in this case for

both discrete functional spaces, is a feature that should reflect the maximum order

of derivative of the (weak) form of the equations, i.e., exactly one in the case of

elastostatics, to achieve convergence.

3.3.2 Theoretical Estimate of the Number of Zero Eigen-

values

The final stiffness matrix, obtained with a fully coupled enrichment is singular. In

view of the foregoing considerations it is now possible to understand why.

The variational problem (V ) has a solution utrue(x) that cannot be exactly rep-

resented by any of the two discrete functional spaces, nor their union. However a

unique solution to the variational problem (V ) in the functional space VhFE ∪ VhML

exits. Let uh (x) = uhFE (x) + uhML (x) be that solution, where uhML (x) , uhFE (x)

are the contributions to the final solution from ML and FE, respectively. It is easy

to realize that:

uhFE = uhFE + uL

uhML = uhML − uL
(3.12)

are also contributions to the unique solution of the variational problem (V ) in

VhFE ∪ VhML. Here uL is any linear map of the form:

TΩ :

[
x

y

]
7→

[
a11 a12

a21 a22

]
·

[
x

y

]
+

[
b1

b2

]
(3.13)
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defined by six parameters. Note that expression 3.12 is equivalent to saying that

both FE and MLPG are able to represent one of the elements of their own func-

tional space plus a linear superimposition of a linear function, since a linear func-

tion also belongs to the space. Indeed, for either MLPG or FE separately:

uh(x) = uh(x) + uL(x)

= ΣiΦi (x) · ui + ΣiΦi (x) · uLi
= ΣiΦi (x) ·

(
ui + uLi

)
= ΣiΦi (x) · ui

(3.14)

Alternatively, one could just think that uh(x) ∈ Vh, uL(x) ∈ Vh, and hence

(uh(x) + uL(x)) ∈ Vh, that is equivalent to saying uh(x) ∈ Vh.
These considerations apply to both x and y directions, and to both FE and MLPG.

Now:

uh = uhFE + uhML = uh

is still the18 solution in VhFE ∪ VhML to the discretized variational problem, because

uh(x) = uhFE(x) + uhML(x)

=
(
uhFE(x) + uL(x)

)
+
(
uhML(x)− uL(x)

)
= uhFE(x) + uhML(x)

= uh(x) ∈
(
VhFE ∪ VhML

)
(3.15)

Hence, the determination of uh can be done after specifying six parameters that

define the linear map.

Here it is remarked again that the solution in the discrete variational space

Vh = VhFE + VhML

is unique. However, since the discretization is not done by expressing the trial

function uh as a function of the vectors of a basis of Vh,

uh(x) =
∑
I

φFEI (x) ûFEI +
∑
I

φML
I (x) ûML

I

18the solution to the discretized variational problem can be proven to be unique
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does not admit unique representation of ûFEI , ûML
I ∈ R2, because

< φFE1 , . . . , φFEnFE
, φML

1 , . . . , φML
nML

> = Vh

without, however, being a basis of Vh.

If N is the total number of nodes (FE and MLPG), one obtains

2N = dim(Vh) + 6

because

VhFE ∩ VhML = { T λΩ | λ ∈ R6} ⇒ dim(VhFE ∩ VhML) = 6

Finally, it is noted that the present arguments hold if the enrichment is fully

coupled, that is, comprising all of the terms presented in the theory, and ”fully

global”, that is, extending over all the computational domain Ω.

3.3.3 Numerical Verification of the number of zero Eigen-

values

It is highly difficult to numerically detect the zero eigenvalues, as predicted by the

theory, which should reflect those number of degrees of freedom left floating. This

is due to numerical (in)accuracy, more specifically:

• when evaluating the entries of the stiffness matrix for interior nodes

• when evaluating the entries of the stiffness matrix that stems from the im-

position of the essential boundary conditions

• when imposing such boundary conditions with a penalty formulations

• when accounting for
∫

Ωs
εMLσFEdΩ, and

∫
Ωs
εFEσMLdΩ

This poses a major concern when it comes to distinguishing the zero eigenvalues

from the actual small eigenvalues. Indeed they can be just two or three order of

magnitude apart. A complete knowledge of the performance of integration and of
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all the aforementioned points is required in this context to verify they are in the

right number19. Moreover, accounting for the terms:∫
ΓDir

εFEσFEdΩ

∫
ΓDir

εFEσMLdΩ∫
ΓDir

εMLσFEdΩ∫
ΓDir

εMLσMLdΩ

makes the final stiffness matrix no more than close to being singular. However, one

has to be careful and realize that increasing the penalty coefficient would increase

the order of magnitude of:

α
N∑
J

∫
ΓDir

VFE
I (x) SΦFE

J ûJ dΓ

α
N∑
J

∫
ΓDir

VFE
I (x) SΦML

J ûJ dΓ

α
N∑
J

∫
ΓDir

VML
I (x) SΦFE

J ûJ dΓ

α

N∑
J

∫
ΓDir

VML
I (x) SΦML

J ûJ dΓ

while∫
ΓDir

εFEσFEdΩ,

∫
ΓDir

εFEσMLdΩ,

∫
ΓDir

εMLσFEdΩ,

∫
ΓDir

εMLσMLdΩ

stays unchanged and soon will add nothing20 to the relevant matrix entries. That

is to say:

KDir
FE + KtDir

FE ≈ KDir
FE

19 It is mentioned that increasing the number of quadrature points to approach machine
precision with the integration accuracy is more of an hindrance than of an help, as it will
exceed any computational power with just few nodes and start to highlight the computer’s finite
representability of real numbers

20to machine precision
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KDir
MF + KtDir

MF ≈ KDir
MF

KDir
FM + KtDir

FM ≈ KDir
FM

KDir
ML + KtDir

ML ≈ KDir
ML

as α grows large.

Thus, either neglecting these terms or increasing the penalty coefficient, the nu-

merical integration being accurate to machine precision, ultimately reveals that

exactly as many eigenvalues as predicted by the theory are in fact zeros, for a fully

coupled, global enrichment.

3.3.4 Compatibility Conditions in the Fully Coupled Global

Enrichment

Mathematically speaking, one has to suppress as many shape functions as needed

to obtain a basis for Vh, thus, as many as six in a global fully coupled enrichment.

Practically, a different approach that could be used involves the imposition of com-

patibility conditions on some points, that one might reasonably call ”compatibility

points”. By requesting uhFE(x) = βuhML(x) for three non aligned points yields to:

FE∑
I

φI(x) ûFE = β
ML∑
I

φML
I (x) ûML, x = x1,x2,x3 (3.16)

where β ∈ R− {0} is an arbitrary scalar value.

Conditions 3.16 can be regarded as the request that the planes encompassing(
xk,u

FE(xk)
)

and
(
xk,u

ML(xk)
)

are the same plane. It will be possible to develop

a variational formulation, prescribing

uhFE(x) = uhML(x), x = x1,x2,x3

using, Dirac distributions.

The approach above gives rise to one more idea of reducing the degrees of free-

dom in excess, by ”hardwiring” a solution contribution, that is, either uhFE(x) or

uhML(x). In other words, instead of requesting:
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uhFE(xk) = βuhML(xk), k = 1, 2, 3

the following can be requested:

uhFE(xk) = ucompk , k = 1, 2, 3

for some ucompk ∈ R2 k = 1, 2, 3.

Instead of requesting coincidence between osculating planes, one of the two planes

is fixed. This can be easily accomplished by prescribing a displacement21, on

exactly three non aligned nodes, for instance, over a whole finite element. Here

it is noted that as many points as desired by the user can be hardwired, in a

region where the enrichment is effective. This operation suppresses some shape

function coefficients by fixing the values of the fictitious solution, hence leaving to

the remaining basis the duty of ”compensating” it.

However, the problem can be solved, by directly avoiding any possible ”creation”

of zero eigenvalues in the final matrix. Indeed, it is possible to neglect some terms

in the final system of equations, to obtain:


KΩ
FE + KDir

FE + KtDir
FE KΩ

MF

KΩ
FM KΩ

ML + K̂Dir
ML + K̂tDir

ML

·


uFE

uML

 =


fdistFE + fDirFE + fNeuFE

fdistML



where K̂Dir
ML+K̂tDir

ML are obtained by prescribing zero displacement at the boundary

of the enriched region ∂Ωenr = ∂Ω = Γ̂Dir, as can be seen in (Figure 3.9)

In this case, however, the meshless contribution is no longer effective for the sat-

isfaction of the boundary conditions, and this can be, in the most general case,

a limiting factor for convergence. In general, it is possible to opt for a partially

coupled enrichment at the boundary of the computational domain, while retaining

a fully coupled enrichment in the interior; this, however, depends upon the geom-

etry and the position of the essential boundary conditions, and should be done

with caution.

21similarly to imposing Dirichlet boundary conditions
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Figure 3.9: Displacement due to MLPG contribution, in one direction, where
a zero displacement is enforced at the boundary of a plate

3.4 Uncoupled Enrichment

As seen in the introduction, the so called uncoupled enrichment aims at an even

less costly and more versatile alternative to the fully coupled enrichment. The

purpose here is to have the FEM problem solved first and independently, as if

there were no enrichment; then, at a second step, the added particles provide a

refinement to enhance the solution.

To this aim, it is possible to deliberately neglect the whole KMF matrix, obtaining:
KΩ
FE + KDir

FE + KtDir
FE 0

KΩ
FM + KDir

FM + KtDir
FM KΩ

ML + KDir
ML + KtDir

ML

·


uFE

uML

 =


fdistFE + fDirFE + fNeuFE

fdistML + fDirML + fNeuML


Hence uFE can be obtained independently by solving first the FEM problem:(

KΩ
FE + KDir

FE + KtDir
FE

)
· uFE = fdistFE + fDirFE + fNeuFE

which, as said before, can be further simplified to

(
KΩ
FE

)
· uFE = fdistFE + fNeuFE

that admits infinitely many solutions before the imposition of the essential bound-

ary conditions.

This first step involves the solution of the classical FEM problem.
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Once the first solution has been obtained, it can routinely be refined by the use

of the particles, that is, the problem(
KΩ
FM +KDir

FM +KtDir
FM

)
·uFE +

(
KΩ
ML+KDir

ML+KtDir
ML

)
·uML = fdistML + fDirML + fNeuML

is then solved at a second step. However, now uFE is known, and thus the expres-

sion can be conveniently rewritten as:(
KΩ
ML+KDir

ML+KtDir
ML

)
·uML = fdistML + fDirML + fNeuML −

(
KΩ
FM +KDir

FM +KtDir
FM

)
·uFE

where the right hand side is straightforward.

It is noted that, in this second step, a different problem is solved, as it can be

seen by looking at the forcing vector. Indeed the solution uML to the variational

problem of this second step22, will be the one that, superimposed to uFE, delivers

the correct displacement field that satisfies, a posteriori, the equilibrium equation.

This is different from the fully coupled enrichment, which tries to solve the elas-

tostatics problem directly.

Further, uFE can describe any continuous function.

Deliberately neglecting a whole coupling block and still obtaining the correct so-

lution seems a bit magic, so now it will be shown how the foregoing expression can

be obtained starting from the variational formulation (V), for the generic node I:

∫
Ωs

εvσ dΩ+ α

∫
ΓDir

Vu dΓ−
∫

ΓDir

Vt dΓ = α

∫
ΓDir

Vu dΓ+

∫
ΓNeu

Vt dΓ+

∫
Ωs

Vb dΩ

by writing the solution as

u = uML + ũFE

only that now ũFE = ũhFE is known, and coincides with the discrete solution

obtained by FEM, at the first of the two steps algorithm.

Similarly, the discretization leads to:

22hence before discretization
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uh =
∑
I

φML
I (x)ûML

I + ũFE(x)

and since ũFE = ũhFE =
∑

I φ
FE
I (x)ũFEI it is possible to write

uh =
∑
I

φML
I (x)ûML

I +
∑
I

φFEI (x)ũFEI

where ũFEI are the fictitious nodal values, that are also nodal values, already

obtained by the solution of the FEM problem. Further substitution leads to:

NML∑
J

∫
Ωs

εML
I (x) DBJ û

ML
J dΩ + α

NML∑
J

∫
ΓDir

VML
I (x) SΦML

J ûML
J dΓ +

−
NML∑
J

∫
ΓDir

VML
I (x) NDSBJ û

ML
J dΓ = −

(
NFE∑
J

∫
Ωs

εML
I (x) DBJ ũ

FE
J dΩ

+ α

NFE∑
J

∫
ΓDir

VML
I (x) SΦFE

J ũFEJ dΓ −
NFE∑
J

∫
ΓDir

VML
I (x) NDSBJ ũ

FE
J dΓ

)
+

+

∫
ΓNeu

VML
I (x) t dΓ + α

∫
ΓDir

VML
I (x) Su dΓ +

∫
Ωs

VML
I (x) b dΩ

that is exactly, in matrix form,

(
KΩ
ML+KDir

ML+KtDir
ML

)
·uML = fdistML + fDirML + fNeuML −

(
KΩ
FM +KDir

FM +KtDir
FM

)
· ũFE

as obtained before.

In practice, one is looking for uhML such that, when added to ũFE, the displacement

field u = uML + ũFE ”better” satisfies the elastostatics problem.
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Note that this is a one way refinement, meaning that the first procedure, which

is well consolidated in literature, is applied first and independently. At a second

time, the meshless problem is solved, and this is also a procedure well detailed

in literature. The idea of uncoupled enrichment, hence, transfer the displacement

field, as calculated by FEM, to one equivalent forcing term that generated that

displacement field. More specifically, the coupling term KΩ
FM , evaluated in the

interior of the computational domain Ω, can be rewritten as:

KΩ
FM ũFE =

NFE∑
J

∫
Ωs

εML
I (x) DBJ ũ

FE
J dΩ =

NFE∑
J

∫
Ωs

εML
I σFEdΩ ∀IML

where σFE is exactly the stress field associated with uFE. In other words, the

variational formulation of the coupling block σFE reads, before discretization:

∫
Ωs

εvσ
FE dΩ =

NFE∑
J

∫
Ωs

εI (x) DBJ ũ
FE
J dΩ

since

σFE =

NFE∑
J

DBJ ũ
FE
J

is exaclty as calculated by FEM at the first step. This is important to understand,

since discretization errors only occur in the solution of the Meshless problem, and

repeatedly refining the meshless part does not have the previous discretization

of the FEM solution, which is constant, as an ultimate limiting factor for conver-

gence. Finally, it is noted that a prescription of a ”worse” solution ũFE only affects

the current solution accuracy uh, but not the ability of the method to converge

to the right solution, as the method aims at satisfying the elastostatics problem

with the discrete solution uh = uhFE + uhML. An analog reasoning can be done in

the coupling blocks regarding the boundary conditions.

In the test case of Figures 3.10, 3.11, 3.12,3.13, a plate is constrained at its bound-

ary with zero displacement. The exact solution is u(x) = 0∀x ∈ Ω. A very coarse

FE mesh is adopted. A ”wrong” displacement is prescribed, as fictitious value, to

the FE node in the middle, resulting in a uFE that has the stress field of Figure
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3.10. This FE stress field is then computed, as an equivalent forcing vector, to

MLPG (Figure 3.11), resulting in the MLPG stress field contribution of Figure

3.12. The final stress field is then shown in Figure 3.13.

Moreover, it is possible reduce the computational cost of the coupling block. It is

possible to write the following term, of the variational formulation (V ):

∫
Ωs

εIσ
FEdΩ

by addictivity, element-wise, (i.e., over each FE element of domain ΩElem) as the

elements are in equilibrium with the forces applied on their edges, and hence,

doing one step back by the use of Green’s Theorem:∫
ΩElem

εIσ
FEdΩ = −

∫
∂ΩElem

VIσ
FE · n dΩ +

∫
ΩElem

VI

(
∇ · σFE

)
dΩ

and recalling that the stress is constant inside each finite element, if the basis is

linear, further simplifies to

∫
ΩElem

εIσ
FEdΩ = −

∫
∂ΩElem

VIσ
FE · n dΩ

In short, before discretization, for the I-th meshless test function, the following

holds true:

NFE∑
J

∫
ΩJ

Elem

εML
I (x) DBJ ũ

FE
J dΩ = −

NFE∑
J

∫
∂ΩJ

Elem

VML
I (x) NDBJ ũ

FE
J dΩ

(3.17)

where the right hand side is less costly. Indeed only mono-dimensional integrals

have now to be evaluated, which can result in much less quadrature points used

to obtain the same level of accuracy. In other words 3.17 provides a way to reduce

the computational cost of the uncoupled enrichment even further. Moreover, if

the particles density is high, most of their test functions do not intersect with

the triangles, and therefore most of the computations can be directly avoided at

runtime. It is noted that, in the last form, the calculation involves the computation
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Figure 3.10: Stress σ · [1; 0]T and σ · [0; 1]T obtained by deliberately imposing
an horizontal displacement on the node (of FEM) in the center of the compu-
tatinal domain (the solution field should be everywhere zero). The resulting
stress field, affecting the neighbouring four elements, can be seen in the picture
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Figure 3.11: Equivalent forcing that stems form the coupling block. Note
that the arrows plotted are not forces or stress, but

∫
ΩElem

εIσ
FEdΩ for any

meshless node. Here the density of meshless node is much higher than that of
FEM. Also note that only the variation of σ affects the forcing vector

of the normal N to each (intersected) edge of each triangle, which has however to

be calculated also in the integration23 in ΩElem, if the integration is done wisely.

Further, once the enriched solution has been computed, an additional refinement

comes at a little cost. It is possible to routinely refine the solution by simply adding

more particles, without solving again the full system of equations. Indeed the

solution provided by Finite Elements has already been calculated; the computation

of the meshless stiffness matrix KML is straightforward, and not too expensive, if

few particles are added, and the coupling block KFM is the less costly, however

fine is the FE mesh. As the enrichment is local, KFM is be sparse, and the

computation of either the meshless shape functions or their derivatives is not

involved. Even further, the computation of the integrals can be simplified by the

use of line integrals, as detailed above, which can be easily calculated. Finally,

23along with much more; the idea will be briefly outlined in the relevant chapter, without,
however, digging into too much detail
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Figure 3.12: Stress σ · [1; 0]T and σ · [0; 1]T obtained by MLPG by solving the
second of the two steps algorithm, due to the equivalent load seen before
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Figure 3.13: Final stress field σ · [1; 0]T and σ · [0; 1]T obtained by superimpos-
ing the MLPG and FE contributions. Note that the stress due to FEM cannot
be fully compensated by finitely many MLPG nodes. Also note that, since a
finite number of MLPG nodes cannot reproduce a discontinuous solution, the

stress has an oscillatory behavior across element edges.
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only a small linear system (as small as the number of particles added) needs to be

solved at the final step.

3.5 Compatibility at the Boundary of the En-

riched Region for a Local Enrichment

This section discusses, in the case of a local enrichment, the compatibility be-

tween the FE and MLPG solutions, such that they ensure the continuity of uh.

The Meshless solution uhML =
∑

I ΦML
I (x)uML

I to the discrete variational problem

is continuous by construction. Moreover, at the boundary of the enriched region,

considered as the union of all the domains of definition of the meshless shape

functions, the shape functions, by construction, in general are different from zero.

Hence, in order to recover the desired level of continuity, some compatibility con-

ditions should be imposed. Indeed, when approaching a point x on ∂ΩEnr from

ΩEnr:

uh =
∑
I

ΦFE
I (x)uFEI +

∑
I

ΦML
I (x)uML

I

while approaching from Ω \ΩEnr, that is, from outside the enriched region, the

solution has the form:

uh =
∑
I

ΦFE
I (x)uFEI

By continuity the value of uh needs to be the same, thus:

∑
I

ΦML
I (x)uML

I = 0

which has uI = 0 as a solution ∀I-th nodes the which domain of definition covers

the point x ∈ ∂ΩEnr

Hence, it is necessary to impose fictitious boundary conditions, that is, boundary

conditions on the fictitious values by enforcing:

uI = 0

for all the nodes that have a shape function such that

Ωtrial
I ∩ ∂Ωenr 6= {∅}
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Note that this can be easily enforced in a strong way, as done in FEM, if the

enrichment is local.

3.6 Patch Test

The patch test is a criterion for verifying finite element convergence. Initially pro-

posed by engineers, it consists of several elements equipped with proper boundary

conditions, so that the exact solution is known. In this case, the prescribed exact

solution is linear. The method passes the patch test if it is able to reproduce the

exact solution 24. Although originally conceived for Finite Element, it was proved

numerically that MLPG satisfies the patch test25. The patch test is commonly re-

ferred to as verification process. This should not to be confused with checking that

a model properly describes the observed phenomena, known as validation, which

is a far more difficult task. It will be shown in the next subsection that passing the

patch test is not sufficient for achieving convergence in this case. In FE-MLPG

enrichment, indeed, passing the patch test is not even sufficient to assess that the

model was implemented correctly.

3.6.1 A Patch Test for an Uncoupled Enrichment

Consider a rectangular plate where elements have no intersection with the bound-

aries. It is well known that triangular Finite Elements are able to represent a

linear displacement to machine precision. The essential boundary conditions are

enforced by the use of a penalty method, to retain the same approach used in

MLPG. Finite Elements pass the patch test with an accuracy of the same order

of magnitude as the inverse of the penalty coefficient 26. Now consider again the

final system of linear equations, after discretization:

KFEuFE + KMFuFE = bF

KFMuFE + KMLuML = bM

24to machine precision, in case of the finite element, or let me say that, to integration accuracy
for MLPG

25Atluri
26with E = 1
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The uncoupled enrichment, i.e. by setting KMF = 0 is equivalent to the two-step

algorithm :

KFEuFE = bF

KMLuML = bM −KFMuFE

and the final solution is obtained, as usual, by:

ulinear(x) = uhFE(x) + uhML(x)

Since FE is able to reproduce it exactly, and it is also solved first and indepen-

dently, i.e.

ulinear(x) = uFE(x)

one must obtain

uML(x) = 0, ∀x ∈ Ωpatch

irrespective of the dimension of the enriched region.

Note that this equations holds ∀x ∈ Ωpatch, hence it is possible to prove that

ûIML = 0, ∀I

that is, all the fictitious values must be zero, or equivalently, ûML = 0 in the final

system of equations. Indeed, JMLS =
∑

iw
(
||x − xi||

)
||u(xi) − ui||2 is satisfied

exactly with, in each direction, ui = u(xi) = 0, ∀i. Since the solution to the linear

system is unique because KML is non singular, the trivial solution is obtained if

and only if

KMLuML = bM −KFMuFE = 0

Note that the patch test requires that both bF ,bM be the null vector (in their

relative vector space), hence one can finally write



Chapter 3. A Critical Assessment of the Method 71

KFMuFE = 0

that means uFE ∈ Ker(KFM) However, ∃KFM 6= f such that uFE ∈ Ker(KFM)
27, so the patch test may get a ”passed” even if the implementation is wrong. The

patch test has to check out even when the mesh is refined, which is not so obvious,

given all the quadrature problems of the procedure, which, in general, arise even

at the boundary of the physical domain, under a different nature. Generally, one

might expect to see the patch test being satisfied with slightly less accuracy as the

nodal density is refined, and this is indeed what happens.

Despite these arguments that make the patch test less useful, the uncoupled enrich-

ment(s) and the fully coupled one, both in the form of a local or global enrichment,

did satisfy the patch test correctly.

3.7 A Local versus a Global Enrichment

A local refinement is, in principle, very attractive, as it aims at improving the

solution only where it’s needed. However, the improvement cannot be effective if

also the global solution field is well resolved.

Let Ω be, as usual, the domain of a Dirichlet problem:

∇ · σ + b = 0 in Ω

u = u at + ∂Ω

and let u be the exact solution in Ω.

Now let Ωenr  Ω be the enriched region where consider the following problem is

considered:

∇ · σ + b = 0 in Ωenr

u = u at + ∂Ωenr

27Take, for instance, the null matrix between those vector spaces
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with u restricted to Ωenr as a solution.

This problem shares some similarities with a local enrichment, in which the cou-

pling block KMF is neglected. In this case, the problem above in Ωenr has the

prescribed solution, at the boundary of the enriched region, uFE, that is, the so-

lution field given by the Finite Element. Indeed, the Finite Element Method has

already solved the analog discrete problem, and the solution field is not modified

outside Ωenr, after the enhancement. Hence, uFE, is the known28 displacement

from FE, at the boundary of Ωenr where compatibility conditions are implicitly

enforced, and in general uFE 6= u. These are the prescribed essential boundary

conditions of the second step of the problem, with a local uncoupled enrichment.

In order to understand the effect of a different boundary conditions prescribed at

the boundary of the enriched region, consider a slightly different problem, on the

same domain: ∇ · σ + b = 0 in Ωenr

u = u +α at + ∂Ωenr

with α ∈ R2. Note that both the domain and the differential equations are the

same; only the boundary conditions have changed.

Now, it is known that the boundary conditions the solution is completely deter-

mined by the prescription of the boundary conditions. The foregoing differential

problem has ũ = u + α as a solution. By using repeated index notation, the

constitutive law reads:

σij(u) = λ∇ · u + µεij(u)

where

µ =
E

1 + ν
, λ =

νE

(1 + ν)(1− 2ν)
, εij =

1

2
(ui,j + uj,i)

and it is straightforward to note that

σij(u +α) = λ∇ · (u +α) + µεij(u +α)

= λ∇ · (u) + µεij(u)
(3.18)

since α does not depend on x, hence any partial derivative of α with respect to

x is zero. Now if one calls σ̃ = σ̃(u +α), σ = σ(u), σα = σα(α); by linearity29,

σ̃ = σ + σα and at the same time σα = 02x2 since only the derivatives of the

displacement appears in the computation of σα. Now immediately ∇ · σα =

28to realize it is known, just think of the two steps algorithm to solve it
29also referred to as superposition principle in elastostatics
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∇ · 02x2 = 0, hence

∇ · σ̃ + b = ∇ · (σ + σα) + b = ∇ · σ + b = 0

and ũ = u+α at the boundary of the enriched region almost by definition. Thus,

the problem is exactly satisfied by ũ = u +α.

It should now be clear enough that repeatedly ing the enriched region will make the

numerical solution converge towards ũ = u +α, which obviously isn’t the correct

solution. This happens because one is prescribing a solution, at the boundary of

the enriched region, as calculated by FE, that is different from the actual one.

Therefore, when a particular part of the domain is enriched, the error associated

with an erroneous solution of the displacement field, as supplied from FE, would

be transferred, as boundary conditions, to the enriched area. When only the

enriched area is refined, its solution would converge to the problem which has that

slightly wrong BCs prescribed. This is not an inherent limitation of the proposed

methodology; rather it is a limitation of doing only a local ”one way” refinement.

In practice the situation is more complex as α is not constant all along ∂Ωenr; but

the basic idea is simple, it might be a little more difficulty to fully comprehend

what happens in the more general case, but the underlying limitation should now

be understood.

Conversely, one might expect a superior performance when the two method are

fully coupled, i.e., when none of the four blocks are neglected. In this case, indeed,

MLPG and FE trial solutions interact to give a better result. That means uFE

at the boundary cannot be thought to be constant any longer. This resembles a

refinement using only FEM, but locally: the solution field outside the enriched

region would be ”interactively” influenced by the rest of the solution field, as the

final discretized system of equations is solved simultaneously. As a result, one

might expect the behavior of a fully coupled FE-MLPG to be superior to that of

an uncoupled enrichment. However, even in this case, convergence may not be

achieved by simply adding particles locally, as generally it is necessary to reduce

some mesh parameter hmesh that measures the coarseness of the global mesh30.

In other words, it is generally necessary to increase uniformly and simultaneously

the nodal density31 to achieve convergence.

30here the term mesh should be thought in a broader sense, comprising the particles as well
31computed over the union of FE nodes and MLPG nodes
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It is mentioned that the foregoing considerations do not apply so strictly in a

variety of other situations, such as the one with source term or with different

types of PDEs.



Chapter 4

Numerical Results

The previous chapters introduced two approaches suited for enriching the FEM

by the use of MLPG, in Elastostatics, and discussed some of their properties from

a theoretical viewpoint. This chapter assesses numerically the effectiveness of

the proposed methodologies, providing evidence of the features discussed in the

”Critical Assessment” chapter.

4.1 The Benchmark Test Case

To numerically evaluate the potential improvement of the accuracy in the solution

field1, provided by the MLPG enrichment, a well known test case has been chosen

as a benchmark. The benchmark consist of an infinite plate with a hole (Figure

4.1), subject to uniform stress σ, at the farfield, in the x direction. The analytical

solution, of both the displacement field and of the stress field, respectively, is

known analytically, for the plain strain case:ux = 1+ν

E σ
(

1
1+ν

r cos θ + 2
1+ν

a2

r
cos θ + 1

2
a2

r
cos 3θ − 1

2
a4

r3 cos 3θ
)

uy = 1+ν

E σ
(
−ν
1+ν

r sin θ − 1−ν
1+ν

a2

r
sin θ + 1

2
a2

r
sin 3θ − 1

2
a4

r3 sin 3θ
)

1broadly speaking: the stress field, displacement field, or the peak stress

75
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Figure 4.1: Computational domain for the test case and peak stress

and: 
σxx = σ

[
1− a2

r2

(
3
2

cos 2θ + cos 4θ
)

+ 3a4

2r4 cos 4θ
]

σyy = σ
[
−a2

r2

(
1
2

cos 2θ − cos 4θ
)
− 3a4

2r4 cos 4θ
]

σxy = σ
[
−a2

r2

(
1
2

sin 2θ + sin 4θ
)

+ 3a4

2r4 sin 4θ
]

where (r, θ) are the polar coordinates (Figure 4.2) of a point P, ux, uy the x and

y displacement, respectively, and σxx, σyy, σxy the components of the symmetric

stress tensor σ.

Figure 4.2: Polar coordinate system (the center O of the frame of reference is
at the center of the hole)

The peak stress is at θ = ±π/2, r = 1 with σxx = 3.

For the sake of simplicity, the numerical experiments are performed with E = 1,

σxx = 1 at the farfield, a radius a = 1 and an edge length (of the plate of the

computational domain) of l = 8. In contrast to FEM, MLPG does not exhibit any

volumetric locking [8]. However, a value of ν = 0.25 has been chosen to avoid any

locking phenomenon.
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Since the above equations holds for an infinite plate, the discretized model takes

it into account by either:

• extending the computational domain such that the boundary effect is negligi-

ble, i.e., the solution is nearly uniform at the boundary of the computational

domain

• using a finite domain, and imposing the analytical displacement as boundary

condition.

The first approach generally involves a large number of nodes. Hence, the sec-

ond approach has been selected. In this case, it is possible to arbitrarily reduce

the computational domain Ω with no accuracy loss. Then the solution field is

prescribed on ∂Ω, either as:

• displacement, or

• stress

that is, Dirichlet or Neumann boundary conditions, respectively. The two condi-

tions are equivalent2 from a theoretical viewpoint3.

4.2 FEM and MLPG Performance

This section shows the convergence of linear Finite Elements and of the Mesh-

less Local Petrov Galerkin method. Though the results are expected, this gives a

”background acquaintance” with the two methodologies. The accuracy obtained

with the proposed enrichments can then be compared with the two native ap-

proaches. By the way, it is to be emphasized that the purpose of the enrichment

is improving, when needed, a FE solution, with no remeshing cost. In general,

the accuracy of a numerical solution by the use of the Finite Element Method or

the Meshless Local Petrov Galerkin Method ultimately depends on the number of

2except that, when imposing Neumann BC, also essential boundary conditions have to be
imposed somewhere, to avoid infinitely many solutions resulting in a final singular stiffness
matrix

3there may actually be a smaller, subtler difference regarding the ability of the discretized
solution to represent the two different boundary conditions, but this is a secondary effect.
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nodes in the discretization, when uniform mesh are used. Hence, a ”fair” compar-

ison4 takes this into account. In the present numerical experiments, the triangular

Figure 4.3: Nodal pattern for FEM and MLPG. Only the firs two meshes are
used for the FEM. Note how the discretized geometry differs from the actual

one, highlighted in the first image in grey

FE meshes consisting of 34, 96, 346, 1209 nodes, respectively, shown in Figure 4.3

were generated, with a mesh size of h v 2, 1, 0.5, 0.25, respectively. The element

vertices are then used for MLPG. The number of nodes of a pattern is used as an

”independent variable”, to assess the method’s quality, since the nodal patterns

are nearly uniform.

Throughout all the chapter, a radius rv = 1 · c for the local subdomains and

ru = 4 · c for the domains of definition in the MLPG scheme are assumed, where

4how ”fair” may be defined is an open question; the computational cost may, for instance, be
the another term for comparison. However, this is not the object of the present Thesis.
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c is taken to be the distance to the closest (MLPG) node. The relative error eur ,

that measures the numerical accuracy of the approximation (Figure 4.4 and Table

?? ), is defined as:

eur =

(∑N
i ||uh(xi)− u(xi)||22∑N

i ||u(xi)||22

)1/2

where xi are the coordinates of the N nodes. uh(xi) and u(xi) the computed and

analytical displacement at xi, respectively.

Figure 4.4: FEM and MLPG convergence for displacement u

n nodes eur - FEM eur - MLPG
34 8.02 ·10−2 3.57 ·10−2

96 5.01 ·10−2 2.53 ·10−2

346 1.70 ·10−2 5.06 ·10−3

1209 5.65 ·10−3 1.63 ·10−3

Table 4.1: Relative error eur for FEM and MLPG
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Similarly, the relative error on the stress field has been defined, over the finest

mesh of Figure 4.3 5 as:

eσr =

(∑N
i ||σh(xi)− σ(xi)||22∑N

i ||σ(xi)||22

)1/2

where σ = [σxx, σyy, σxy]
T . The results are reported in Figure 4.5 and Table ??

Figure 4.5: FEM and MLPG convergence for the stress σ

n nodes eσr - FEM eσr - MLPG
34 2.41 ·10−1 2.41 ·10−1

96 1.83 ·10−1 1.47 ·10−1

346 1.07 ·10−1 5.43 ·10−2

1209 7.19 ·10−2 2.53 ·10−2

Table 4.2: Relative error eσr for FEM and MLPG

It can be easily seen in Figure 4.4 that MLPG can be far more accurate than the

Finite Element Method, when using the same number of nodes.

As compared to linear FE, the stress field is better represented as well. As we’ll

5to avoid problems connected with discontinuities, as outlined later
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see in detail later on, in Figure 4.11, the largest contribution to eσr stems from

the region close to the hole. Here the gradients of the stress are higher, and both

FEM and MLPG do not satisfy exactly the natural boundary conditions implicitly

enforced.

The peak stress σxx can be easily calculated, and approaches 3 as the mesh is

refined. The MLPG scheme gives better prediction of the peak stress, then FE, as

can be seen form Figure 4.6 and Table ?? . Note that, the local MLPG subdomains

near the hole do account for the actual geometry of Ω. In the FEM, on the contrary,

it is the discretized geometry that approximates6 the ”shape” of the hole for the

integration of the energy. Note also that, there is a number of ”user selectable”

parameters in the MLPG scheme that can lead to different results, if changed. In

general, the optimal choice of these parameters for the displacement field may be

different from that for the stress prediction.

n nodes eσr - FEM eσr - MLPG
34 1.48 ·10−1 2.21 ·10−1

96 2.24 ·10−1 2.59 ·10−1

346 2.81 ·10−1 2.97 ·10−2

1209 2.99 ·10−2 3.01 ·10−2

Table 4.3: Comparison of FEM and MLPG computed peak stress σ

6actually, curved edges may be adopted, but this has not been considered in the present
Thesis
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Figure 4.6: Comparison of FEM and MLPG computed peak stress σ
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4.3 Uncoupled Enrichment

The uncoupled global enrichment here is evaluated numerically.

As previously outlined, we recall that the FEM solves the problem first and inde-

pendently, thus providing an initial solution field uhFE, that should be improved

by MLPG. Hence, the added particles try to account for the difference between

the exact solution field u, and the one supplied by the FEM uhFE.

The effect of this type of uncoupled enrichment is an improvement in the solu-

tion field, as can be seen from the Figure 4.7 and Tables ??, ??, with just a

few nodes added, using the pattern reported in Figure 4.3. Figure 4.7 shows the

FEM relative error for two meshes in dashes lines, while the relative error eur of

the enrichment is plotted in solid lines.

Figure 4.7: Convergence graph for displacement u

Note that the position of the particles, in the coarser FEM mesh, has initially

taken to be the node pattern as provided by the FE mesh. As a consequence, an

initial refinement process, when operated by the user, is simplified. This pattern,

which can however be far from the optimal (see table ??, ??, and Figure 4.7),
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MLPG nodes eur - on FE-MLPG nodes eur - on FE nodes eur - on MLPG nodes
0 8.02 ·10−2 8.02 ·10−2 -
34 2.69 ·10−2 2.69 ·10−2 2.69 ·10−2

96 2.09 ·10−2 1.68 ·10−2 2.22 ·10−2

346 7.81 ·10−3 5.04 ·10−3 8.06 ·10−3

1209 2.62 ·10−3 3.81 ·10−3 2.57 ·10−3

Table 4.4: Relative error er in the uncoupeld enrichment, for the coarser FE
mesh (34 FE nodes). Note that the 34 MLPG verteces coincides with the 34

vertices of the FE

MLPG nodes eur - on FE-MLPG nodes eur - on FE nodes eur - on MLPG nodes
0 5.01 ·10−2 5.01 ·10−2 -
34 2.00 ·10−2 2.18 ·10−2 1.43 ·10−2

96 2.29 ·10−2 2.29 ·10−2 2.29 ·10−2

346 8.04 ·10−3 6.58 ·10−3 8.42 ·10−3

1209 3.11 ·10−3 2.98 ·10−3 3.12 ·10−3

Table 4.5: Relative error er in the uncoupeld enrichment, for the finer FE
mesh (96 FE nodes). Note that the 96 MLPG verteces coincides with the 96

vertices of the FE

may be used, for instance, to rapidly assess the accuracy of the initial solution

field, as calculated by the FEM, without any further work from the user.

Additionally, even the stress is, on average, more accurate, except across element

edges, as we’ll see later in Figure 4.12, because of the discontinuities initially

introduced by the FEM.

MLPG nodes eσr - FEM 34 eσr - FEM 96
0 2.41 ·10−1 1.15 ·10−1

34 2.23 ·10−1 1.83 ·10−1

96 1.59 ·10−1 1.64 ·10−1

346 7.69 ·10−2 8.90 ·10−2

1209 4.85 ·10−2 5.93 ·10−2

Table 4.6: Relative error eσr in the uncoupled enrichment

As a consequence, the peak stress, which is located on a FEM node in this example,

carries some uncertainty regarding its value of σ. The stress tensor σ, as supplied

by the FE, is constant over an element, but discontinuous across element edges.

Hence, when computing the stress on a node, this node has to be associated
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Figure 4.8: Convergence graph for stress σ

with a triangle, and ”inherits” its stress tensor. This arbitrary choice depends

on the particular match in force during runtime. Since FEM is not backwardly

influenced by the particles, the singularity is not reduced, as the density of particles

is increased. The stress field may be better compensated elsewhere, but across the

edges it cannot be improved. This is an inherent limitation of the uncoupled

enrichment.

This is why the accuracy of the peak stress is somewhat less then expected, but

still good, as seen in Figure 4.9 and Table

MLPG nodes σpeakxx - FEM 34 σpeakxx - FEM 96
0 1.48 2.24
34 2.03 2.66
96 2.64 2.61
346 3.05 2.80
1209 3.16 3.15

Table 4.7: Peak stress σpeakxx in the uncoupled enrichment
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Figure 4.9: Peak stress σpeakxx

Figure 4.10: σ · [1; 0]T as calculated by the FEM in the coarser mesh. The
discontinuity across the triangles are clearly visible.
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Figure 4.11: The error in the stress field σ · [1; 0]T − σsolution · [1; 0]T , as
calculated by the FEM, is shown above. Note that the largest contribution is
close to the hole. The picture below shows the stress field resulting from MLPG
contribution, which is expected to compensate the FEM error. Here the coarser

FEM mesh and the finest nodal pattern for MLPG is used
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Figure 4.12: The final error in the stress field σ · [1; 0]T − σsolution · [1; 0]T as
calculated by the uncoupled enrichment, is shown above. The error has greatly
been compensated by the particles. The picture below still gives the error field,
with the arrows are magnified 5 times. Here it is much clearer how the biggest
error in the stress field stems from the element edges, where the stress field is
discontinuous. Here the coarser FEM mesh and the finest nodal pattern for

MLPG is used
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4.4 Fully Coupled Enrichment

In this section, some numerical results are presented to illustrate the behavior of

the global fully coupled enrichment, as introduced and discussed in the previous

sections. It has been shown that the final system of equations is nearly singular,

if no action is taken to eliminate the zero eigenvalues.

Different approaches may be used to eliminate the zero eigenvalues, as already

explained. In particular, it is possible to impose two different types of boundary

conditions, separately on FEM and on MLPG, that is:

• the actual boundary conditions at ∂Ω on FEM

• zero displacement at ∂Ω on MLPG

without any coupling7 on the boundary conditions, as outlined before. In the

interior of the computational domain, conversely, both contributions interact to

form the solution field. The drawback of this approach is that the quality of the

boundary conditions is limited by that of the basis being enriched, i.e., FE. Since

the displacement field at the boundary may have a non linear feature, it cannot

be represented by triangular FE, hence this type of enrichment ultimately may

not converge to the analytical solution if only the number of particles is increased.

However, in this example, the boundary conditions are prescribed at a distance of

four times the dimension of the hole, and this effect is not initially8 sensitive.

The actual shape of the computational domain allows for another approach, as

implemented in the present numerical experiment, that is, the system:
KΩ
FE + KDir

FE + KtDir
FE KΩ

MF + KDir
MF + KtDir

MF

KΩ
FM KΩ

ML + KDir
ML + KtDir

ML

·


uFE

uML

 =


fdistFE + fDirFE + fNeuFE

fdistML + fDirML + fNeuML



is not singular, and admits unique solution. In this case, an uncoupled enrich-

ment ”on the boundary conditions” is implemented. That is, MLPG is required

to satisfy the boundary conditions independently, all around the plate. As a re-

sult, the MLPG solution is fixed, at the boundary of the computational domain,

7KDir and KtDir are not computed in the coupling blocks.
8as long as the nodal density of the enriching basis is not too high
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where FEM improves the satisfaction of the essential boundary conditions, hence

obtaining a quasi -fully coupled enrichment. It is recommended that MLPG satisfy

the essential boundary conditions independently. In this case, as we’ll see later

on in Figure 4.17 the contribution to the solution field uh is mainly due to uhML.

This effect is beneficial, because it keeps the FEM contribution uhFE low. This

is important for a better stress prediction when MLPG alone is refined. A more

theoretical proof of this fact will not be given in the present Thesis, but it is noted

that the present numerical experiment seems to support this conjecture, which is

also a necessary condition for a proper representability of the actual peak stress.

The numerical results are reported in Figures 4.13, 4.14, 4.15, and Tables 4.8,

4.9, 4.10, 4.11, when the number of MLPG nodes is increased.

Figure 4.13: Convergence for the displacement u of the fully coupled enrich-
ment
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Figure 4.14: Convergence graph for stress σ

Figure 4.15: Peak stress σpeakxx
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Figure 4.16: Stress field contribution σ · [1; 0]T as calculated by the FEM
(first image) and by MLPG (second image). The coarser FEM mesh and the
finest MLPG pattern are used. It is seen that the FEM contribution to the final
stress field is much lower, in value, then the unenriched one. The majority of
the solution field, and that of the stress, is mainly due to MLPG. The resulting
effect is that the discontinuities introduced by FEM are kept low, allowing for

a much more uniform stress field.
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Figure 4.17: Stress field error σ · [1; 0]T − σsolution · [1; 0]T as calculated by
the fully coupled enrichment. The coarser FEM mesh and the finest MLPG
pattern are used. The discontinuities seen in the uncoupled enrichment have
been partially reduced in the present approach. Note also, in the second picture,
where the arrows are magnified 5 times, that the greatest error in the stress field
happens to be near the hole, with a similar error field as if the MLPG solution

was calculated separately.
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MLPG nodes eur - on FE-MLPG nodes eur - on FE nodes eur - on MLPG nodes
0 8.02 ·10−2 8.02 ·10−2 -
34 2.69 ·10−2 4.02 ·10−2 2.69 ·10−2

96 2.09 ·10−2 2.16 ·10−2 2.22 ·10−2

346 7.81 ·10−3 3.94 ·10−3 8.06 ·10−3

1209 2.62 ·10−3 1.91 ·10−3 2.57 ·10−3

Table 4.8: Relative error er in the fully coupled enrichment, for the coarser
FE mesh (34 FE nodes). Note that the 34 MLPG verteces coincides with the

34 vertices of the FE

MLPG nodes eur - on FE-MLPG nodes eur - on FE nodes eur - on MLPG nodes
0 5.01 ·10−2 5.01 ·10−2 -
34 2.39 ·10−2 2.37 ·10−2 2.45 ·10−2

96 2.59 ·10−2 2.59 ·10−2 2.59 ·10−2

346 5.09 ·10−3 5.16 ·10−3 5.07 ·10−3

1209 1.79 ·10−3 1.61 ·10−3 1.80 ·10−3

Table 4.9: Relative error er in the fully coupled enrichment, for the finer FE
mesh (96 FE nodes). Note that the 96 MLPG verteces coincides with the 96

vertices of the FE

MLPG nodes eσr - FEM 34 eσr - FEM 96
0 2.41 ·10−1 1.15 ·10−1

34 2.29 ·10−1 2.08 ·10−1

96 1.50 ·10−1 1.53 ·10−1

346 5.50 ·10−2 5.50 ·10−2

1209 4.26 ·10−2 2.86 ·10−2

Table 4.10: Relative error eσr in the fully coupled enrichment

MLPG nodes σpeakxx - FEM 34 σpeakxx - FEM 96
0 1.48 2.24
34 2.52 2.46
96 2.65 2.58
346 3.03 2.97
1209 3.03 3.01

Table 4.11: Peak stress σpeakxx in the fully coupled enrichment
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4.5 Inverted Uncoupled Enrichment

It is worth noting that only in a global enrichment the meshless problem can also

be solved first and independently, i.e., the following system can be solved:

KFEuFE + KMFuML = bFE

KMLuML = bML

(4.1)

This is very similar to the proposed uncoupled enrichment, only that now KFM

is neglected instead of KMF . The advantage of such an approach lies in the

superior ability of the procedure to better reproduce the stress field, compared

to the previous uncoupled enrichment already detailed. In this case, the ”larger

part” of the solution field uh is calculated by MLPG, irrespective of the nodal

density, while FEM enhances the solution. The discontinuities in the stress field

are expected to be smaller. Apart from this remarkable difference, all of the

previous considerations for the uncoupled enrichment apply here, too.

However, in this approach, both equations have to be solved again, if the density of

MLPG nodes is repeatedly increased. In addition, the computation of the matrix

KMF is markedly more expensive than that of KFM , as the MLPG shape functions

are involved in the computation. Further, if the enriched region does not extend

until the boundary of the computational domain9, this approach can no longer be

used. For these reasons, this type of uncoupled enrichment, although capable of a

stable improvement, is reported in this section and not elsewhere discussed in this

Thesis.

MLPG nodes eur - FEM 34 eur - FEM 96
0 8.02 ·10−2 5.01 ·10−2

34 4.08 ·10−2 2.52 ·10−2

96 2.16 ·10−2 2.16 ·10−2

346 4.43 ·10−3 4.27 ·10−3

1209 3.12 ·10−3 1.08 ·10−3

Table 4.12: Relative error er in the inverted uncoupled enrichment

9actually the local subdomains need to cover the whole computational area, as detailed before
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Figure 4.18: Convergence graph for displacement u

Figure 4.19: Convergence graph for stress σ
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Figure 4.20: Peak stress σpeakxx

MLPG nodes eσr - FEM 34 eσr - FEM 96
0 2.41 ·10−1 1.15 ·10−1

34 2.23 ·10−1 1.18 ·10−1

96 1.47 ·10−1 1.47 ·10−1

346 5.42 ·10−2 5.42 ·10−2

1209 2.68 ·10−2 2.53 ·10−2

Table 4.13: Relative error eσr in the inverted uncoupled enrichment

MLPG nodes σpeakxx - FEM 34 σpeakxx - FEM 96
0 1.48 2.24
34 2.27 2.45
96 2.60 2.66
346 2.98 2.95
1209 3.03 3.03

Table 4.14: Peak stress σpeakxx in the inverted uncoupled enrichment



Chapter 4. Numerical Results 98

4.6 Influence of the Quadrature Scheme

The need for a proper quadrature scheme, in the computation of the stiffness ma-

trix, which is ultimately reflected in a proper domain decomposition, has already

been discussed. This section shows numerically the effect of quadrature schemes

that does not meet the required accuracy.

The performance of the enrichment depends on the accuracy of the computation

of the KML block. This Thesis will not deal with this aspect, which is well known

in literature ( [17]). This subsection only deals with the results of a simple inte-

gration scheme, to form the entries of the coupling blocks KFM and KMF . This

scheme maps 12 x 12 sample points from [−1; 1]2 ⊂ R2 to the circle Ωtest or Ωtrial,

by the use of a polar coordinate transformation. As a result, the integrand is a

discontinuous function. The quadrature scheme implemented in the rest of the

Thesis, conversely, is highly accurate. Further increase in the number of quadra-

ture points does not lead to any meaningful variation of the solution; hence, it

will be used as a benchmark. The convergence graph gives numerical evidence to

what was previously outlined in the ”Critical Assessment”. An integration over

Ωtest and Ωtrial is far from being optimal. However, as the density of particles

is increased, the limitation due to an inaccurate quadrature scheme seems to be-

come less dramatic, in the uncoupled enrichment. Indeed, as the nodal density

for MLPG is increased, Ωtest hardly ever intersects with element edges, and the

integrand is no longer discontinuous. As a result, the integration is carried out

with increasing numerical accuracy, as can be seen in Figure ??. The low den-

sity of particles may be compensated, to some extent, by increasing the number of

quadrature points, at the price of a slightly10 higher computational cost. However,

the situation is more problematic if the the density of MLPG is lower than that of

FEM. In practice, anyway, the user should never be requested to take into account

all these aspects to select the ”proper” number of quadrature points; such a choice

is, in general, problem-dependent.

Finally, it is noted that the radius of the ΩML
trial which is bigger than that of ΩML

test

, and the already detailed complex feature of ΦML, do not lead to any acceptable

results in the fully coupled enrichment, when the numerical errors associated with

such a simpler quadrature scheme are overlooked, as can be seen in Figure 4.21

10recall that MLPG’s shape functions are not involved in KFM
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Figure 4.21: Comparison of the convergence graph for displacement u for the
coarser FE mesh. The simpler quadrature rule uses 12x12 sample points
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4.7 Local Enrichment

The idea of performing a local enrichment, to improve the solution where it is

needed, has already been discussed. This section reports some numerical results

of a local enrichment in the selected test case. The purpose, in this case, is to

better reproduce the solution near the hole. To this aim, different nodal patterns

are used, as shown in Figure 4.22.

Figure 4.22: Nodal pattern for MLPG in the local enrichment. The red nodes
have been imposed fictitious zero displacement, hence they do not take part in

the computation. Note also that the enriched area is the greatest possible

Compatibility conditions are enforced at the boundaries of the enriched region,

that may be defined as the greatest region for the which the MLS approximation

is well defined. To tacitly avoid the geometrical difficulties due to this definition,
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the outer nodes have been enforced to have fictitious zero displacement, thus ensur-

ing the compatibility conditions between the two solution field, i.e., uhML = uhFE.

Note also, the enriched region, in this numerical experiment, extends as close as

possible to the boundaries. It is seen that while the computation of the solution u

suffers from the locality of the enrichment (see Table 4.15, 4.16 and Figure 4.23

), the improvement in the stress field, and in the prediction of the peak stress, has

proven to be more effective (see Table 4.18, 4.19 and Figures 4.24, 4.25 ). This

happens because the greatest contribution to the error in the stress field stems

from a region in the immediate vicinity of the hole, and hence it is a local effect.

However, despite this improvement, it is necessary to extend the enriched region

until the boundaries, to achieve full convergence of any value of interest. This is

not a limitation of the method, rather, it appears to be a limitation of doing a

local enrichment only.

As a concluding remark, an inexpensive way to enhance the prediction of the local

stress field, by the use of an uncoupled enrichment, in a stable way, may be that

of ”nesting” the local MLPG problem in the FEM parent, global domain. The

solution uhFE, as calculated by the FEM, would serve as a boundary condition to

the MLPG problem. In this case, since MLPG scheme solves ”ex-novo” the elasto-

statics problem in the small area of interest, it is not difficult to envision that the

discontinuities associated with the FEM solution are entirely avoided. Moreover,

this approach will also avoid all of the integration problems associated with the

computation of the coupling block; such an approach was, however, outside the

scope of the present Thesis.

MLPG nodes eur - on FE-MLPG nodes eur - on FE nodes eur - on MLPG nodes
0 8.02 ·10−2 8.02 ·10−2 -
57 7.95 ·10−2 3.88 ·10−2 1.11 ·10−1

152 9.44 ·10−2 3.99 ·10−2 1.11 ·10−1

389 9.19 ·10−2 3.68 ·10−2 9.88 ·10−2

906 6.94 ·10−2 2.82 ·10−2 7.16 ·10−2

Table 4.15: Relative errors er in the uncoupled local enrichment.
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Figure 4.23: Convergence graph for displacement of a local fully coupled and
uncoupled enrichment on the coarser FEM mesh.

Figure 4.24: Convergence graph for stress of a local fully coupled and uncou-
pled enrichment on the coarser FEM mesh, here intentionally cal- culated on

the finest nodal pattern of MLPG, as used in this local enrichment
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Figure 4.25: Peak stress for the local fully coupled and uncoupled enrichment
on the coarser FEM mesh.

MLPG nodes eur - on FE-MLPG nodes eur - on FE nodes eur - on MLPG nodes
0 8.02 ·10−2 8.02 ·10−2 -
57 6.45 ·10−2 2.99 ·10−2 9.13 ·10−1

152 5.33 ·10−2 2.17 ·10−2 6.28 ·10−1

389 5.15 ·10−2 1.95 ·10−2 5.55 ·10−2

906 3.82 ·10−2 1.35 ·10−2 3.95 ·10−2

Table 4.16: Relative errors er in the fully coupled local enrichment. Since the
MLPG nodes backwardly influence the FEM solution, the improvement is more

effective than that of the uncoupled enrichment

MLPG nodes eur - uncoupled eur - fully coupled
0 8.02 ·10−2 8.02 ·10−2

57 7.95 ·10−2 6.45 ·10−2

152 9.44 ·10−2 5.33 ·10−2

389 9.19 ·10−2 5.15 ·10−2

906 6.94 ·10−2 3.82 ·10−2

Table 4.17: Comparison of relative errors er in the local enrichment, calculated
on FE and MLPG nodes.
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MLPG nodes eσr - uncoupled eσr - fully coupled
0 6.16 ·10−1 6.16 ·10−1

34 1.97 ·10−1 1.72 ·10−1

96 1.60 ·10−1 1.45 ·10−1

346 1.29 ·10−1 1.11 ·10−1

1209 1.12 ·10−1 9.23 ·10−2

Table 4.18: Relative error eσr in the local enrichment, here intentionally cal-
culated on the finest nodal pattern of MLPG, as used in this local enrichment

MLPG nodes σpeakxx - uncoupled σpeakxx - fully coupled
0 1.48 2.24
34 2.81 2.80
96 2.91 2.97
346 3.10 3.03
1209 2.93 2.99

Table 4.19: Peak stress comparison σpeakxx in the local enrichment
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4.8 Actual Geometry versus Discretized Geom-

etry

The Finite Element Method introduces a mesh that provides a partition of the

computational domain Ωcomp, which is generally different from the domain Ω, as

can be seen form Figure 4.26. In the present test case, the geometry of the hole is

approximated by the use of triangles, used when computing the entries for the KFE

block. Hence, the discretization error occurs also in creation of the computational

domain, and is reflected in the FEM test functions. Other approaches are also

possible, such as using triangles with curved edges, but they are not considered

in the present Thesis. As the functional space for FEM alone is increased, the

geometry of the hole can be represented with increasing accuracy, by the use

of a higher number of triangles that describes its geometry. This is different

from refining only the initial computational domain Ωcomp, without changing the

discretized geometry. In this latter case, convergence would be achieved towards

a different problem, that has that different geometry as an actual domain Ω.

This suggest the need to account for the actual geometry of the computational

domain, when the enrichment is carried out. Consider, for instance, the uncoupled

enrichment. The FEM solution is calculated first on the computational domain

provided by the FEM mesh. At a second stage, the MLPG problem is solved; in

this case it is required that the integration for the computation of the KFM block

(and that of KML in the fully coupled enrichment) be done with respect to the

actual domain Ω. That is, the second solution field has to be solved over a domain

that accurately11 represents the actual geometry. Indeed, as already highlighted

in the ”Critical Assessment”, the solution field uFE, as provided by FEM, can be

any continuous function. It will affect the accuracy obtained with a given number

of particles, but not the ultimate ability of the method to converge to the right

solution field.

A convergence graph is here reported to give numerical evidence; here KML and

KFM are calculated on the FEM geometry and on the actual geometry, for com-

parison, for the coarser FEM mesh.

11with respect to the number of nodes used
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Figure 4.26: Note how the computational domain Ωcomp, for FEM, differs
from the actual domain Ω (here in the local enrichment)
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Figure 4.27: Comparison of the convergence graph for displacement u for the
coarser FE mesh
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4.9 Future Development

The topic discussed in the present Thesis appears to have a number of promising

points that are to be analyzed in future works. Among them, we can mention:

• a performance analysis that take into account the actual computational cost

of the enrichment

• the definition of some criterion regarding the selection of the shape functions

and test functions radii in the enrichment

• the usefulness and performance of the enrichment with locking phenomena

• a detailed analysis of the quadrature rules for good results with the proposed

strategy

• the performance of the enrichment where a singularity (e.g. a notch) exists

• the feasibility of a simpler quadrature scheme in the coupling block for a

wider variety of situations.

• the accuracy and performance of a one way ”nested” uncoupled enrichment,

which should retain the MLPG full potential in the prediction of the stress,

at a fraction of the cost of a fully coupled enrichment.



Chapter 5

Conclusion

The previous chapter has assessed numerically the quality of the proposed enrich-

ment, in Elastostatics.

While it is well know that the performance of the MLPG scheme is highly depen-

dent on some user specified parameters, in this Thesis such a ”fine-tuning” of the

model has been avoided, focusing on the potential of the enrichment. Rather, the

aim here was to discuss a working method, that requires the minimum level of

intervention by the user.

Both the uncoupled and the fully coupled enrichment have been investigated in

a numerical experiment, which may also represent a case of interest, and their

results are summarized in Figures 5.1, 5.2, 5.3.

109
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Figure 5.1: Comparison of the convergence graph for displacement u for the
coarser and finer FE mesh
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Figure 5.2: Comparison of the convergence graph for stress σ for the coarser
and finer FE mesh
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Figure 5.3: Comparison of the predicted peak stress σpeakxx for the coarser and
finer FE mesh
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The uncoupled enrichment is found to be a relatively inexpensive way to improve

the accuracy of the displacement field uh when needed. The MLPG nodes need

not be placed on any particular way; on the contrary, even when the same pattern

of nodes of the FEM is adopted, the enhancement is substantial. The uncoupled

enrichment is capable of delivering an improvement comparable to that of a fully

coupled approach, but at a fraction of the cost. Additionally, the computation of

the entries in the coupling block KML was found to be not too sensitive to the

integration scheme.

The stress field σh can suffer from the initial, non-smooth solution field, as sup-

plied by linear FEM. Hence, this approach may deliver spurious stress peaks across

element edges, that may only be partially compensated by adding more particles.

If the stress σ is of main concern, the use of a fully coupled approach is recom-

mended.

The fully coupled enrichment has proven to be a more robust approach for a gen-

eral improvement of both the solution field along with its derived quantities, in

Elastostatics. Moreover, the peak stress is accurately predicted.

The poor discretization of the actual domain, as operated by the FEM, which is

reflected in the entries of the FEM stiffness matrix, need not be modified when

adding particles. This ultimately simplifies the implementation of an enriching

procedure, when the actual geometry is not well represented by the FEM dis-

cretized domain. Further, a quadrature rule that simply disregard those sample

points outside the actual domain Ω, when making the entries for KMF and KFM ,

is found to deliver satisfactory results. Despite these approximations, the enrich-

ment appears not to be affected by such limitations.

On the contrary, the effect of a simpler integration scheme should be avoided if

at all possible, since a working strategy has already been presented in this Thesis.

This is especially true in the case of a fully coupled enrichment, which involves

the computation of the KMF matrix.

A second type of uncoupled enrichment, which solves the meshless problem first,

has been investigated. Such a method enhances both the displacement field and

the stress field. However, the need for a global enriched area Ωenr = Ω limits the

range of its practical applicability.

Finally, the effect of a local enrichment has been investigated. It has been shown

how a local enrichment may not converge to the right solution. However, a local

effect, such as a steep gradient of stress, may be accurately resolved by such a

local refinement. A simpler approach for a local, uncoupled enrichment is left as
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a future work.

In short, the uncoupled enrichment appears to be well suited for those situations

that need to have the displacement field enhanced quickly and inexpensively. The

fully coupled enrichment, conversely, is a more reliable technique for improving

the prediction of the derived quantities, i.e., stress. A local enrichment, whichever

its nature, may fail to improve the displacement field everywhere, because of the

nature of the elliptic PDEs of Elastostatics. On the contrary, very satisfactory

results have been obtained by a local enrichment in the prediction of the local

stress field and of the peak stress.

In essence, the present method appears to possess a great potential for improving

an existing FE solution, with no remeshing cost, especially in those problems with

a local, steep gradient of stress.
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