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Chapter 1
Introduction

High harmonic generation uses a quirk of nonlinear physics to gener-
ate frequencies much higher than the second, third, or fourth harmonics
produced by conventional nonlinear optics. Directing an ultrashort laser
pulse into a suitable gas a burst of coherent light at odd harmonics of the
pump-light frequency spanning many octaves is produced. The energy
in each harmonic drops at low frequencies, then levels out in a plateau
of successive harmonics that have similar energy before eventually drop-
ping to zero at even higher levels, as illustrated in Fig. 1.1.
First demonstrated in the late 1980s, high harmonic generation has be-
come a hot field because it can produce coherent light in the extreme
ultraviolet (EUV) and soft X-ray region without the need for a costly and
cumbersome accelerator.
Now it’s pushing the frontier in ultrafast physics, where researchers are
seeking to move from attoseconds to zeptoseconds. And in a new exper-
iment, researchers have used high harmonic techniques to produce EUV
femtosecond frequency combs powerful enough to perform previously
impossible spectroscopic measurements.
Extremely short and intense laser pulses produce high-order harmonics
when they interact with a noble gas. The strong electric field near the
peak of the pulse pulls an electron from the atom’s outer shell, but the
direction of the electric field changes before it ionizes the atom. The
electron then drops back to a lower-energy state in the atom, releasing
it’s extra energy in a series of odd harmonics of the pump laser frequency.
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2 Introduction

Figure 1.1: High harmonic generation in a noble gas generates
peaks at odd harmonics. Power drops at higher har-
monic numbers up to a point, then levels out in a
plateau before dropping at much higher harmon-
ics. Actual measurements of harmonic power may
include more features, such as a low-intensity zone
between the lowest harmonics and the plateau.

When the pump intensity is above 1013 W/cm2, intensity of the emitted
light stays nearly constant across a number of harmonics before drop-
ping sharply at higher harmonics.
Features such as what harmonics are generated, the harmonic power,
and the cutoff wavelength depend on the gas used, and on characteris-
tics of the pump light including wavelength, pulse duration, and pulse
repetition rate. [1]
It has been demonstrated that longer pump wavelengths can produce
higher harmonics despite their lower photon energy. This happens be-
cause electric fields change more slowly at longer pump wavelengths,
giving the fields more time to accelerate electrons, so they have more
energy to emit when they recombine with the atom. For example, the
cutoff wavelength for argon excited by an 800 nm Ti:sapphire laser is
about 25 nm (50 eV), but pumping at 1.4 µm yielded wavelengths as
short as 12 nm (100 eV). [2]
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Although high harmonic power is low, it is adequate for many research
applications in the EUV and soft X-ray region, where conventional lasers
are not available, and synchrotron sources are costly, and complex. Early
high harmonic systems were built around modelocked Ti:sapphire lasers
with repetition rates of a few hertz to several thousand hertz, followed
by regenerative amplifiers to boost their output power. Developers are
now fine-tuning their systems for other specific applications.
Driving high harmonic generation with femtosecond lasers modelocked
at high repetition rates produces rather different results-frequency combs
in the EUV. When the driver pulses are repeated steadily at high rates the
high harmonic waves they generate interfere with each other to produce
frequency combs. The result is not a single frequency comb spanning
the entire EUV, but a series of shorter combs; each one a series of closely
spaced teeth in a different harmonic band, as shown in Fig. 1.2.

Figure 1.2: Each high harmonic peak contains frequency comb
lines, with their frequency separated by the repeti-
tion rate of the femtosecond laser driving the high
harmonic generator. Typically 10·000 to 1 million
comb lines fall within one harmonic peak.
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A simple modelocked femtosecond laser does not emit powerful enough
pulses for ordinary high harmonic generation. A recent experiment has
shown that amplification and pulse compression of pulses from a Yb:KGW
laser modelocked at 20.8 MHz can produce high harmonics when fo-
cused into a xenon jet, but so far powers are limited to nanowatts. How-
ever, the power can be stepped up by coupling the laser pulses into a
femtosecond enhancement cavity and moving the harmonic generation
into the cavity, as shown in Fig. 1.3. Stabilizing the cavity and adjusting
it so its cavity round-trip time matches that of the laser produces a reso-
nance that enhanced intracavity pulse energy by nearly a factor of 1000.
Placing a high harmonic generation cell inside the cavity took advantage
of those higher-energy drive pulses, yielding a train of high harmonic
pulses at the same repetition rate as the driver.

Figure 1.3: Pulse train from an external modelocked femtosec-
ond laser is coupled into an enhancement cavity
for high harmonic generation. Matching the cavity
to the pulse train resonantly enhances the power
of the circulating single pulse, which is focused
onto xenon gas to generate high harmonics that are
phase coherent with the drive laser.
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The resulting EUV frequency comb offers a powerful spectroscopic probe.
However, the output power in each harmonic is divided among 104 to
106 teeth, so each tooth has little power. At visible wavelengths, fre-
quency combs can calibrate more powerful lasers for spectroscopic mea-
surements.
Spectroscopic applications of High-order laser harmonics (HHs) often re-
quire the spectral selection of a single harmonic in a narrow XUV band,
especially for experiments aimed to understand the electronic structures
of materials, where multiple orders of HHs have to be filtered out. Al-
though multilayer mirrors are the simplest optical elements for the spec-
tral selection of one harmonic order and are successfully employed for
HHs and synchrotron beam lines, they they lack of broad-band tunability
and may give a poor contrast ratio between adjacent harmonics. [3]
A grating monochromator, although more complex than a single multi-
layer mirror, gives both tunability in a broad range of harmonics and high
spectral selectivity. Unfortunately, it introduces a stretch of the pulse du-
ration because of the pulse-front tilt, compromising the ultrafast dura-
tion of HHs, as schematically shown in Fig. 1.4.

Figure 1.4: Pulse front-tilt given by a diffraction grating. The
tilt of the output wavefront is Nmλ, where N is the
number of illuminated grooves, m is the diffraction
order, λ is the wavelength.

This effect, although almost negligible in the picosecond or longer time
scale, may completely alter the temporal duration of the XUV pulse in
the femtosecond regime. Nevertheless, it is possible to design grating
monochromators that do not alter the temporal duration of ultrafast
pulses by using two gratings in a time-delay compensated configuration,
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where the second grating compensates for the front tilt and for the spec-
tral spread introduced by the first one [4, 5]. Pulses as short as 8–10 fs
have been measured at the output of double-grating monochromators in
the 20–45 nm spectral region. [6, 7] The main drawback of these con-
figurations is the use of two gratings that increase the complexity of the
instrument and reduce the efficiency.
The choice between the two options has to be performed as a trade-off
between efficiency, that are maximized in the single-grating design, and
temporal resolution, that is maximized in the two-grating design.
Two different grating configurations can be adopted for grazing-incidence
diffraction from a single grating: the classical diffraction mount (CDM)
and the off-plane mount (OPM). We discuss the advantages and draw-
backs of both mountings for application to the spectral selection of ul-
trafast pulses.
The OPM stage gives fast temporal response and low resolution,
while the CDM stage gives slower response and higher resolution.
The OPM stage is used to select the whole bandwidth of a single harmonic for
ultrafast pump-probe experiments, while the CDM stage is used to increase
the spectral purity of the source beyond the limit given by the bandwidth of
the single harmonic, at the price of lower photon flux and longer temporal
response.



Chapter 2
HHg: High Harmonic Generation

High-order harmonic generation (HHG) is a coherent, highly nonlinear
optical process describing the nonlinear interaction between an intense
laser pulse and a medium (usually a gas) that results in the generation
of harmonics of the driving laser field. This effect can be understood
in terms of a nonlinear dependence of the polarization vector of the
medium on the incident laser electric field and so the generation of new
frequencies, integer multiples of the incident laser frequency, occurs.
Atoms and molecules exposed to a strong laser field emit a light bursts
with a sub-femtosecond duration whose spectra has a universal charac-
teristic shape. Coherence, instead, is due to the fact that the HHG signal
is a coherent superposition of radiation emission from all the medium
points. [8]
There are three significant characteristics that are unique to HHG spec-
tra:

• Intense low-order harmonics where the intensity follows perturba-
tion theory (i.e. the harmonic intensity is proportional to Iq where
I is the driving laser intensity and q is the harmonic order).

• A long plateau of harmonics whose intensities are approximately
equal.

• A very sharp cutoff where the HHG signal drops rapidly.

The new generated frequencies are in the spectral region between ex-
treme ultraviolet (XUV) and soft X-ray and only odd multiples of the

7
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laser frequency ω appear.
The spectrum that is observed from the high harmonic generation pro-
cess is the result of two separate processes: generation of harmonic light
from a single atom and the subsequent propagation in the medium. The
single atom response is accurately predicted by a semi-classical model
while the propagation effects are predicted by classical electrodynamics.

2.1 The semi-classical Three-Step Model

We call this approach semi-classical since it uses both quantum and clas-
sical mechanics: the ionization by laser field is a quantum phenomenon
and the electron motion in the continuum is described classically. The
model divide the process in three step, hence is called Three-Step model
(Fig. 2.1- 2.2).

Figure 2.1: An intense femtosecond near-infrared or visible
pulse (yellow) extracts an electron wave packet
from an atom or molecule. First, the electron is
pulled away from the atom near the peak of opti-
cal field (a) and accelerated (b). When the optical
field reverses, the electron is driven back (c) where
it can "recollide" during a small fraction of the laser
oscillation cycle (d).

1 Tunnel ionization: electron extraction occurs through tunnel ef-
fect which is in competition with other phenomena.

2 Propagation: once ionized, the electron propagates in the con-
tinuum following the electric field trend; it is characterized by a
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nearly-plane wave function and the more it travels in the contin-
uum the more its wave function broadens.

3 Recombination: when the electron is in the continuum it has a
certain probability to collide with its parent ion and recombine with
it. When it returns in a bound state, owing to energy conservation,
the kinetic energy acquired during propagation is converted into
one emitted photon; this emission is classically seen as an emission
of radiation for Bremsstrahlung after the recollision with the ion.

Figure 2.2: a) Sketch of the harmonic generation process. A
pulsed laser with high peak power is focused on
a gas jet. The harmonics propagate collinearly to
the incident beam with a smaller divergence. b)
Three steps model of the High Harmonic Genera-
tion: atomic ionization, electron acceleration and
electron recombination generating the XUV pho-
ton.

2.1.1 Tunnel ionization

There are three ways in which an atom can be ionized: multiphoton
ionization, tunnel ionization, and above-barrier ionization (Fig. 2.3).
The Keldysh parameter in Eq. (2.1) is defined as the ratio of the laser
frequency to the tunneling frequency and determines which mechanism
is dominant.

γ=
ωlaser

ωtunnel
=

√

√

√

Ip

2Up
(2.1)
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where Ip is the ionization potential of the atom/ion being ionized and Up

is the ponderomotive energy. The ponderomotive energy is the classical
kinetic energy gained by an electron in an oscillating field and is given
by Eq. (2.2):

Up =
e2E2

0

4meω
2
0

=
e2cµ0I
2meω

2
0

(2.2)

where e is the electron charge, E0 is the electric field strength, me is the
electron mass, ω0 is the laser angular frequency, c is the speed of light
in a vacuum, µ0 is the permeability of free space, and I is the laser inten-
sity.
In terms of the laser intensity and wavelength, the ponderomotive en-
ergy, in electronvolts, is given by Up ≈ 9.33 · 10−14Iλ2, with intensity in
W/cm2 and wavelength in µm.

We distinguish two cases:

a) γ >> 1: it can be used a perturbative approach, LOPT (Lower
Order Perturbative Theory).

b) γ << 1: a non perturbative approach is necessary.

An atom exposed to an intense laser field experiences two processes com-
peting with each other: multi-photon ionization, which predominate if γ
>> 1, and tunnel ionization, which predominate if γ << 1.
Since Up depends on the square of the electric field amplitude, the higher
is the intensity the lower is the γ parameter, so with relative low intensity
the problem can be treated with the perturbation theory at the first order
(photon energy much lower than ionization potential), instead for high
intensity (1013 − 1014 W/cm2) the perturbative approach can’t be used.

In multi-photon ionization the electron can reach the continuum absorb-
ing an integer number n of photon such that:

nħhω0 > Ip. (2.3)

In this regime, the effective potential is only slightly modified from the
Coulomb potential by the laser field (Fig. 2.3(a)).
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In this case the ionization rate (ionization probability per unit of time,
so the number of emitted electron per unit of time) is Γn = σnI n, where I
is the laser intensity and σn the cross section of the process. If the elec-
tron absorbs more photons than necessary, the exceeding photons give a
contribution to the increasing of the electron kinetic energy; this process
is known as above threshold ionization (ATI). [9]

At larger laser intensities, γ< 1, and tunnel ionization becomes the dom-
inant mechanism (Fig. 2.3(b)). In this regime, the effective potential is
severely distorted by the laser field.
In the tunnel ionization, which occurs if the perturbative approach isn’t
applicable, the laser electric field distorts the Coulombian field and the
atomic potential is deformed. The electron will thus find a potential
barrier which it can pass through thanks to tunnel effect. In this case
the tunneling ionization rate can be calculated with the ADK (Ammosov,
Delone, Krainov) theory [10] in which the tunneling time t t , the time
necessary to the electron for crossing the barrier, is much lower than the
oscillation period of the electric field T0. It can be demonstrated that:

γ=
t t

T0/2
(2.4)

For very short and very intense optical pulses (γ� 1), that is the condi-
tion for which the tunnel effect predominates on other ionization forms,
is also t t� T0 [11]; t t is the time that spends the electron to pass through
the barrier.
This condition allows to consider the electric field quasi-static and thus
the barrier, generated by the field, keep on unmodified for a time long
enough to make tunneling process completed.
The hypothesis for which the frequency ω0 is much lower than ωt =
1/t t , so that we can neglect the change of the field during the passage
of the electron through the barrier, is called adiabatic approximation.
For laser in the spectral region of infrared and visible, like the lasers used
for HHG experiments, the approximation is valid.
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Finally we obtain the following dependence for the ionization rate:

W ≈ ex p

�

−
p

me2(2Ip)
3
2

3ħheE

�

(2.5)

Indeed W depends on the probability density that there is immediately
after the barrier, at the end of crossing, and this leads to estimate a de-
pendence from ex p

�

− Ip

E

�

, where
Ip

E is closely connected to the width of
the barrier (through γ). For these calculations the electric field isn’t con-
stant during the electron passage, but it have a rising edge.

(a) multiphoton ionization (γ > 1) (b) tunnel ionization (γ < 1)

(c) above-barrier ionization (γ << 1)

Figure 2.3: Plots of the Coulomb potential (dotted line) and
Coulomb potential modified by the laser field (solid
line).

The Coulomb barrier may be suppressed below the ionization poten-
tial while there still exists a large population in the ground state (Fig.
2.3(c)). This is called above-barrier ionization and occurs for field strengths
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in excess of the critical field strength:

Ecri t ical =
πε0I2

p

Ze3
(2.6)

where Z is the charge after ionization.
In this case, we can still use the adiabatic approximation, and so the ADK
model, to calculate the ionization rate by averaging it over an optical
period of laser.

2.1.2 Propagation

Once the electron is ionized, it passes from a condition in which it could
occupy only a certain quantized energy state to one in which it can as-
sume a continuum of energies, as if it was free. The condition in which
electron can take every energy value with continuity is called continuum.
In the continuum the electron can be treated classically and we can ap-
ply the classical mechanics to describe the electron motion and find its
trajectories. Its motion can be thought as that of a charge in oscillating
electric field.
We consider electron subjected only to the force produced by the inci-
dent laser electric field; in fact in the Lorentz force the magnetic field
is weighted by v/c hence this contribution become important only for
relativistic electrons.
It is worth mentioning that, in the strong-field approximation, the Coulomb
field of the ion can be neglected with respect to the laser field.
So we consider an electric field of the form:

E(t) = E0cos(ω0 t) (2.7)

We choose a reference system where electric field has one component in
a specific direction, supposed the x-direction. The electron is accelerated
in the direction of the electric field oscillation.
The Newton equation for the motion of a charge in electric field can be
written as:

ẍ(t) =
q

mq
E0cos(ω0 t) (2.8)
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where q=-e is the charge and mq its mass. We call ti the ionization instant
and t r the recombination instant. Integrating the Eq. (2.10) using the
initial condition (t i) = 0, x(t i) = 0, we obtain:

ẋ(t) =
qE0

mqω0

(sin(ω0 t)− sin(ω0 t i)) (2.9)

and we finally obtain:

x(t) =
eE0me

ω2
0

(cos(ω0 t)− cos(ω0 t i) + sin(ω0 t i)(t − t i)ω0) (2.10)

At different ionization instants t i correspond different trajectories which
depend also on laser frequency and electric field amplitude (it’s only a
scale factor).

2.1.3 Recombination

The electron oscillating with the electric field has a certain probability
to collide with the parent ion in a specific time. The more it rests in the
continuum, the more its wave function broads, the more the superposi-
tion with the wave function of the bound state decreases and lower is
the probability to collide with the ion.
We can find the instant t = t r in which the electron recombine with his
parent ion solving the equation:

cos(ω0 t)− cos(ω0 t i) + sin(ω0 t i)(t − t i)ω0 = 0 (2.11)

All couples (t i, t r) solutions of this equation individuates a specific tra-
jectory of the electron.

The Eq. (2.11) is a transcendental equation that can be solved graphi-
cally or numerically. Whenω0 t i = 0◦+kπ, k ∈ N the electron recombines
infinite times, but with zero velocity and so zero energy. The recombi-
nation is possible only for linearly polarized pulses.
For the conservation of energy the recombination of electron is followed
by the radiation emission that can be seen as a photon emission when
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Figure 2.4: Possible paths for the electron during rescattering
as a function of laser phase, and several selected
values of the phase of the laser at ionization. Inter-
section with the x-axis indicates the possibility of
recombination.

electron returns in its fundamental state:

Ehhg = Ip + K = Ip +
1
2

me ẋ2 (2.12)

Putting the Eq. (2.9) into the Eq. (2.11):

Ehhg = ħhωhhg = Ip + 2Up[sin(ω0 t r)− sin(ω0 t i)]
2 (2.13)

The maximum energy achieved by electron in the continuum is obtained
for ω0 t i = 0.09π+ kπ, k ∈ N and ω0 t r = 1.4π+ kπ, k ∈ N :

Ehhg,MAX = ħhωcut = Ip + 3.17Up (2.14)

ωcut =
I p+ 3.17U p
ħh

(2.15)

The (2.15) is defined as energy cut-off.
The spectrum irradiated for Bremsstrahlung, due to the sharp deceler-
ation of the electron, is continuous and it’s characterized by a plateau
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followed by a cut-off.
The absence of even harmonics can be understood thinking to the medium
non linear susceptibility, due to the anharmonicity introduced by electron
recollisions.
If we consider a pulse of finite duration the harmonic line width is pro-
portional to the inverse of the pulse duration. The more the pulse is short
the more the spectrum is similar to a continuum.
The limit is a pulse with one optical cycle for which the spectrum is con-
tinuous. The presence of pulsed radiation causes that:

a) the number of optical cycles is finite and so the spectrum is charac-
terized by broader peaks for shorter driving pulses;

b) the peaks in the cutoff region of the XUV spectrum are found to be
shifted with respect to the expected harmonic frequencies owing to
the phase shift between spectra emitted from consecutive recolli-
sion events, which occur at different laser intensities. [12]

This three-step process will repeat itself for every half cycle (λ/2) of the
driving field, therefore generating odd harmonics of the driving field.
This is due to symmetry considerations in the nonlinear optical process
in fact the generation of even harmonics requires a medium without in-
version symmetry, which does not exist in a gas.
If the symmetry is broken by introducing a second pulse of a different
wavelength, it is possible to generate even and odd harmonics of the
driving field.



Chapter 3
Optical elements characterization

3.1 Monochromator time broadening

The monochromator demanded for the spectral selection of ultrashort
pulses has to preserve the temporal duration as short as in the genera-
tion process (32 fs by the project requirements).
A modest time broadening can be tolerated if the pulse duration at the
output of the monochromator is anyway shorter than the temporal res-
olution required by the experiment.
The monochromator can be modeled as a filter with a complex frequency
response that includes both the nonuniform spectral transmission and
the distortion in the spectral phase. [13] Because the XUV pulse at the
generation may be produced to be close to its transform limit, any modi-
fication of its complex spectrum results in a time broadening as described
by its Fourier transform. For a Gaussian profile with no modulation of
either phase or frequency, the duration at half-height ∆τ has a lower
limit expressed by the relation:

∆τ=
2ln(2)
πc

λ2

∆λ
=

0.44
c
λ2

∆λ
(3.1)

where λ is the pulse central wavelength,∆λ is the spectral width at half-
height, and c is the speed of light in a vacuum.
In order to preserve the duration of the pulse at the output of the monochro-
mator, the selected bandwidth has to be larger than the spectral width of

17
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the pulse ∆λ; moreover, the transfer function has to be almost constant
within the bandwidth.
The first condition is verified if the monochromator selects the whole
spectral band of the pulse, so no modifications in the Fourier spectrum
are induced. The second condition is almost always verified if the monochro-
mator is realized by the reflecting optics, because the reflectivity varia-
tions within the bandwidth∆λ are usually negligible, so that the transfer
function can be considered almost constant, although lower than unity.
The use of a single grating inside the monochromator inevitably gives
a distortion of the temporal profile of the ultrashort pulse because of
diffraction. In fact, each ray that is diffracted by two adjacent grooves is
delayed by mλ, where m is the diffraction order and λ is the wavelength.
The total difference in the optical paths of the diffracted beam from the
source to the image is given by |m|λN , where N is the number of the
illuminated grooves. For example, let us consider a 200 grooves/mm
grating illuminated by radiation at 30 nm over a surface of 20 mm. The
number of grooves that is involved in diffraction is 4000, giving a total
delay of 120 µm, i.e., 400 fs.
This effect is negligible in the picosecond or longer time scale, but it is
dramatic in the case of a femtosecond pulse because it reduces both the
time resolution capability and the intensity at the exit of the monochro-
mator.
We want to analyze the single-grating configuration to identify the con-
dition to have the minimum temporal broadening from a grating.
Once the achievable resolution R= λ/∆λ at the output of the monochro-
mator has been defined, the minimum number of grooves Nmin that have
to be involved in the diffraction to support such a resolution is given by
the relation |m|Nmin = λ/∆λ [14]. The corresponding total variation of
the optical paths at the grating output is ∆OPTOT = |m|λNmin = λ2/∆λ,
and its half-width is calculated as ∆OPmin ≈

1
2
λ2

∆λ . It follows that the
diffraction from a single grating gives a lower limit for the duration at
half-width ∆τG,min

at the output of the monochromator for a pulse with
bandwidth ∆λ that is calculated as:

∆τG,min
≈

1
2c
λ2

∆λ
(3.2)
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This is close to the Fourier limit given by Eq. (3.1).
The single-grating design can be adopted for ultrashort pulses with-
out altering in a significant way the pulse duration, provided that the
product of the number of illuminated grooves times the diffracted
order is equal to the actual resolution. So the pulse temporal half-
width after the diffraction is:

∆τG ≈
1
2c

mλN (3.3)

3.2 Monochromator geometries

Grazing-incidence diffraction gratings may be used in two different ge-
ometries: the classical diffraction mount (CDM) and the off-plane
mount (OPM). The latter differs from the classical one in that the in-
cident and diffracted wave vectors are almost parallel to the grating
grooves.

3.2.1 CDM and OPM configurations

The CDM and OPM layouts are shown in Fig. 3.1.
Let us define the incidence angle α and the diffraction angle β , respec-
tively, as the angles between the direction of the input beam and the
normal to the grating and the direction of the diffracted beam and the
normal to the grating. Both α and β are taken with positive signs.
When the grating is used as a monochromator, the subtended angle K =
α + β is constant and the grating equation is normally expressed as [see
App. D - Eq. (D.20)]:

α=
K
2
+ arcsin

�

mλσcd

2cos (K/2)

�

(3.4)

The number of illuminated grooves is N = Sσcd/cosα, where S is the
beam section measured on the grating center in the direction normal to
the light propagation. The illuminated area on the grating is smaller if
the latter is used at order m = -1. This is the normal choice to maintain
the number of illuminated grooves as small as possible.
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Figure 3.1: Layout of a plane-grating monochromator in (a)
CDM and (b) OPM geometry.

The geometry and blaze condition for which the diffraction efficiency is
maximized are illustrated for the CDM in Fig. 3.2.

(a) Geometry of the CDM. (b) Blaze condition of maximum efficiency.

Figure 3.2: CDM mount.

The condition is fulfilled when the diffracted light leaves the grating in
such a way to perform a specular reflection on the groove surface, i.e.,
when δ = (α− β)/2, where δ is the blaze angle of the grating.
In this case, the incident and diffracted wave vectors are almost parallel
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to the grating grooves [15]. The direction of the incoming rays is de-
scribed by two parameters: the altitude and the azimuth. The altitude γ
is defined as the angle between the direction of the incoming rays and
the direction of the grooves.
The azimuth µ of the incoming rays is defined to be zero if they lie in the
plane perpendicular to the grating surface and parallel to the rulings. Let
ν define the azimuth of the diffracted light at wavelength λ and order
m.
The grating equation for the OPM is sinγ(sinµ+ sinν) = mλσop, where
σop is the groove density.
When used as a monochromator, the grating is operated in the condition
µ = ν and the grating equation is:

µ= arcsin

�

mλσop

2sinγ

�

(3.5)

The number of illuminated grooves is Nop = Sσop = cosµ. The grating
can be used indifferently at the orders m = ±1 because it does not affect
the size of the optics.
The geometry and blaze condition for which the diffraction efficiency is
maximized are illustrated for the OPM in Fig. 3.3.

(a) Geometry of the OPM. (b) Blaze condition of maxi-
mum efficiency.

Figure 3.3: OPM mount.
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For the maximum diffraction efficiency the light has to leave the grating
in such a way that it performs a specular reflection on the groove surface,
that is δop = µ = ν, where δop is the blaze angle of the grating.
The OPM gives higher throughput than the classical mount, because it
has been theoretically demonstrated [16] and experimentally measured
[17, 18] that the peak diffraction efficiency is close to the reflectivity of
the coating at the altitude angle.
The OPM geometry is then a good candidate for the design of XUV monochro-
mators with high efficiency.
Schematics of the two configurations with plane gratings operated in
parallel light are shown in Fig. 3.4.

Figure 3.4: Schematics of the monochromator configuration
with plane gratings: (a) CDM and (b) OPM.
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A spectrally dispersed image of the source is created on the exit plane,
where the slit carries out the spectral selection. The three optical ele-
ments are indicated as M1, G, and M2, where the letters M and G indi-
cate, respectively, the mirrors and grating.
The first mirror (M1) acts as the collimator; the second mirror (M2) acts
as the condenser. The two mirrors are operated at an equal grazing an-
gle and unity magnification to minimize the aberrations, i.e., the length
input arm of the collimator, p, i.e., the distance between the entrance
source and the center of M1, is equal to the output arm of the condenser,
q, i.e., the distance between the center of M2 and the exit slit: they are
both equal to 600 mm in this project to reduce the risk of damaging or
contaminating the optics with some debris that could propagate from
the gas cell when the intense laser is focused on it. In the case of using
toroidal optics, it has been shown that the best optical performances are
obtained in the case of equal mirrors, because this minimizes the coma
aberration (App. B). [19]
Let us suppose that the exit slit width, ∆S, is equal to or wider than the
size of the XUV source at the input of the monochromator.
The monochromator can be operated either with or without an entrance
slit. The latter is the normal case for analysis and utilization of HHs [20].
The number of illuminated grooves in the two geometries is indicated,
respectively, as Ncd = 2pσcd/cosα and Nop = 2pσop/cosµ (S= 2p, where
p is the half-width beam divergence at the input). The wavelength selec-
tion is performed by rotating the grating around an axis that is tangent
to the surface, passes through the grating center, and is parallel to the
grooves.
The half-width output bandwidth is:

∆λcd =
cosβ
σcd

∆S
mq
=

cos(K −α)
σ

∆S
mq

(3.6)

∆λop =
cosµ
σop

∆S
mq
≈

1
σop

∆S
mq

(3.7)

where ∆λcd refers to the CDM and ∆λop to the OPM, and the width of
the exit slit is supposed to be the same in both cases. The approximation
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in Eq. (3.7) is assumed for low-resolution designs when µ≤ 10◦, because
cos µ ' 1.

3.2.2 CDM and OPM pulse width after diffraction

From Eq. (3.3) the pulse temporal half-width after the diffraction is∆τG

' 1
2c mλN , that is:

∆τG,cd = mλp
σcd

cosα
, (3.8)

for the CDM and

∆τG,op = mλp
σop

cosµ
≈ mλpσop; (3.9)

for the OPM, where the approximation cosµ ' 1 is assumed in case of
low-resolution configurations.
For a given beam section, the two configurations have the same temporal
response if σcd

cosα =
σop

cosµ ' σop. Therefore, the groove density to be used
is to have the same resolution, and the same temporal response is lower
in the CDM than in the OPM, σcd < σop, because α is in the range of
≈ 75◦−85◦ for grazing-incidence configurations and µ is typically lower
than 10◦.
The condition to preserve the temporal duration of the pulse with half-
width duration ∆τ after the diffraction from N grooves is finally

mλp
σcd

cosα
≤ c∆τ, (3.10)

for the CDM and

mλp
σop

cosµ
≈ mλpσop ≤ c∆τ; (3.11)

for the OPM. If the conditions stated by equations (3.10) and (3.11) are
satisfied, the monochromator called to make the spectral selection is de-
fined to be time preserving, because the pulse duration at the output is
preserved.
The shorter the pulse whose duration has to be preserved after the monochrom-
atization, the lower the requested spectral resolution.
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3.2.3 CDM and OPM main advantages and drawbacks

The main advantage of the OPM when compared with the CDM is the
higher diffraction efficiency, which has been measured to be actually
close to the coating reflectivity at the same altitude [21, 22]; on the
other hand, the main drawback is the distortion and the rotation of the
image after the diffraction, which is due to the highly nonspecular re-
flection from the grating, especially for the large azimuth angles, which
are required to achieve high spectral resolution (see App. D). [23]
This makes the OPM much more complex to be adopted than the CDM
for high resolution designs. Indeed, for low-resolution designs, as those
required for ultrafast pulses, the distortion and rotation are almost neg-
ligible, since the azimuth angle is low.
Assumeing that the grating is operated in the first diffracted order, as is
typical in most cases and the half-width beam section on the grating is
assumed to be 1 mm. We analyze two different temporal regimes: 100 or
20 fs half-width pulse front tilt at 30 nm (41 eV). The corresponding max-
imum number of illuminated grooves to support such a time response is
2000 for 100 fs and 400 for 20 fs.
Observing Fig. 3.5 CDM and OPM are compared at two wavelengths in
terms of grating characteristics for front tilts in the 10-200 fs range.
In the case of the CDM, as the subtended angle increases, the correspond-
ing groove density decreases. In the case of the OPM, the groove density
is almost independent from the choice of the altitude angle.
The blaze angle that maximizes the grating efficiency in the CDM is def-
initely lower than that in the OPM.
In addiction CDM monochromators with front tilts in the range of hun-
dreds of femtoseconds require the use of gratings with blaze angles around
1◦, which are well within the present capabilities of manufacturers.
Instead, front tilts in the range of a few tens of femtoseconds require
an extremely low groove density in the CDM and a blaze angle that is
practically unfeasible, so that laminar profiles have to be adopted with
extremely low efficiency. In contrast, the blaze angles required in the
OPM configurations are less extreme than in the CDM.
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For front tilts below 100 fs, the blaze angles required for gratings in
the CDM are beyond the present capabilities of manufacturers, while the
CDM requires groove densities and blaze angles that are feasible and give
high efficiency. For front tilts longer than 100 fs, the OPM requires high
azimuth angles especially for short wavelengths; this is not a suitable
configuration, since it introduces a large anamorphic deformation. As a
general claim, the CDM should be preferred for monochromators when
relatively large front tilts, i.e., 100–200 fs, are accepted and medium-
high spectral resolution is required, while the OPM has to be adopted
for ultrafast responses in the 10–50 fs range and low spectral resolution.

Figure 3.5: Ultrafast monochromator in CDM and OPM for 1
mm half-width beam section on the grating. (a)
and (b) Groove density as a function of the pulse
front tilt at (a) 30 nm and (b) 10 nm. (c) Cor-
responding blaze angle for the OPM at three alti-
tudes. (d) Corresponding blaze angle for the CDM
at two subtended angles.



Chapter 4
Experimental setup

This chapter aims to present the laboratory setup and the instruments
used to carry out the experiments in this thesis work.
The first section will provide a description of the XUV sources that are
usually adopted for the generation of the XUV beamline in absence of a
source for HHg generation. They are the hollow-cathode XUV lamp and
the Manson X-ray source. Then we will describe the apparatus used to
perform experiments in vacuum, in order to avoid the strong absorbtion
of XUV and soft X-ray radiation in air. Finally we will describe the align-
ment activity, and we will present the characterization of the instrument
in the XUV and in the soft-X-ray regimes.

4.1 Sources

There are many processes that lead to an emission in the soft X-ray or
XUV region, and they have an involved energy, release by a radiative
process, of about 102−104 eV. There are two types of emission processes:

• Natural processes almost always happen by spontaneous emis-
sion with an isotropic and not synchronized emission.

• Stimulated processes, where the emission isn’t isotropic but directed
and time-synchronized.

27
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Considering natural processes, we can’t realize a spontaneous emission
source by heating because of the very high temperature required for the
energies emission of thousands of eV. Considering that, for example the
average kinetics energy of a gas mulecules is Ek =

3
2 KT , with K = 8.6 ·

10−5 eV/◦K is the Boltzmann constant; in order to have an energy of
1 keV we need a temperature of ' 8 · 106 ◦K . Emission by heating,
instead, is possible for the visible light, as demonstrated by black body
experiment. Therefore, spontaneous emission is realized in two ways:

(a) Bremmstrahlung. (b) Fluorescence X.

Figure 4.1: a)Bremmstrahlung radiation; b)X-Fluorescence ra-
diation representations.

• Bremsstrahlung: From classic physics theory a charge particle (elec-
tron) submitted to a negative acceleration, caused by impacting a
metal material, looses energy, which can be emitted in a radiative
form or by a crystalline lattice vibration (impact material heating).
The energy lost will be hν=∆E = E f in−Ein. This emission happens
in a large interval of frequencies (Fig. 4.1(a)).

• Fluorescence X: From semi-classic Bohr atomic model electrons in
an atom rotate in discrete orbits, without loosing energy. The only
way to loose energy by an electron is the orbit transition. When a
particle creates a hole, caused by impacting an electron in a par-
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ticular shell of the atom, this one can be filled by an electron in an
outer shell with the consequent emission of an energy with a spe-
cific wavelength equal to the energy gap between two shells. This
process produces a characteristic emission spectrum of XUV and
X-rays at a few discrete frequencies, sometimes referred to as the
spectral lines. The spectral lines generated depend on the target
(anode) element (Fig. 4.1(b)).

For sources that we will describe we have the combination of the previous
two different emissions (Fig. 4.2). Furthermore a vacuum system is
necessary in order to avoid the traveling particle (electron) immediate
recombination in air.

Figure 4.2: Combination of Bremmstrahlung and Fluorescence
radiations spectrum.

4.1.1 The Microfocus Manson soft X-ray source

Manson X-ray Source (Fig. 4.3) was developed for use in the radiomet-
ric calibration of grazing incidence spectrometers, and its design features
have made it useful in other applications as well. A special feature is that
two equivalent output beams are provided, from two views of the single
emitting spot (cathode) where the electron beam from the hairpin tung-
sten filament collides with the replaceable anode cap usually made of
carbon, copper, silicon, alluminium and magnesium, see Fig. 4.4.
This spot is between 0.2 and 2 mm in diameter, depending on the voltage
and current applied between anode and cathode. This geometry is in-
tended to allow monitoring of one beam by an absolute photon counter
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while the other beam is used to calibrate the instrument or provide a
known flux for some other purpose.
These electrons impact on the anode’s atoms exciting them; when they
decay to lower states, they will emit Bremmstrahlung Fluorescence soft
X-ray radiation.
This source is completely open in the atomic bombardment, so the entire
source is in vacuum. The source emits in the 5-30 nm region.
A power source is used to establish the currents and potentials needed
to run the X-ray Manson source.

(a) Layout of the source. (b) Power source.

Figure 4.3: a)Layout of the source; b)Power source.

Figure 4.4: Manson source spectra obtained with different an-
ode materials.
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4.1.2 The hollow-cathode lamp

An Hollow-cathode lamp (Fig. 4.5 and 4.6) is made of a glass tube con-
taining a cathode, an anode, and a buffer gas (usually a noble gas i.e.
He, Ne).
A large voltage across the anode and cathode will cause the buffer gas
to ionize, creating a plasma.
The buffer gas positive ions will then be accelerated into the cathode,
sputtering off atoms from the cathode. Both the buffer gas and the
sputtered cathode atoms will in turn be excited by collisions with other
atoms/particles in the plasma.
As these excited atoms decay to lower states, they will emit photons,
which can then be detected and a spectrum can be determined. Either
the spectrum from the buffer gas or the sputtered cathode material itself,
or both, may be of interest, see Fig. 4.7).

Figure 4.5: Schematics of a hollow-cathode lamp.

Figure 4.6: Hollow-cathode lamp used for the facility. The pur-
ple color of plasma stays for using helium gas as
buffer.
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Figure 4.7: Spectrum emitted by an hollow-cathode lamp filled
with helium. The range is 10-40 nm.

4.2 Monochromator design

A schematic view of the monochromator system is shown in Fig. 4.8. It
consists of an entrance vertical slit; three interchangeable plane gratings
between two toroidal mirrors in the first chamber, the exit vertical slit
and a second photodiode chamber, from wich comes out the pico-current
signal associated to the photon flux intensity, that can be measured by
a Picoammeter and further analyzed by means of an acquisition system.
The gratings are used in the classical diffraction mount (CDM).

Figure 4.8: Schematic of the monochromator.
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• Vertical entrance slit: Since we are working with tens of nm wave-
lengths, the predominant phenomenon to take into account are
aberrations (see App. D), a slit can limit the beam aperture of
hollow-cathode or Manson sources having negligible diffraction ef-
fects on the transmitted beam shape. However, the result of closing
the slit is an incresing of central maximum beam diffraction width.
Therefore even the spectra resolution increases, making it possible
to distinguish nearby spectral lines emitted by the source with the
drawback of having a decrease of beam intensity.

• Two toroidal mirrors: (see Fig. 4.9) This components allow the
compensation of the astigmatism aberration [App. B] and produces
a stigmatic beam by focusing the radiation also in the direction
perpendicular to the grating dispersion plane (sagittal plane) [App.
C].

Figure 4.9: Toroidal gold coated mirror in the monochromator
chamber.

The equations to consider are:

tangential plane
1
p
+

1
q
=

2
Rcosα

(4.1)

sagi t tal plane
1
p
+

1
q′
=

2cosα
ρ

(4.2)
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Where R and ρ are, respectively the tangential and sagittal curva-
ture radiuses, and α is the incidence angle respect to the normal of
the mirror. Considering the first toroidal mirror, p (entrance arm)
is the tangential and even sagittal distance between the entrance
slit and first mirror, q and q’ are the tangential and sagittal focuses
(exit arms) towards the selected plane grating.
In our case, considering p = 600 mm; both q and q’ equal to ∞,
in order to have collimation; α is equal to 3◦; the equations (4.1)-
(4.2) become:

tangential plane
1
p
=

2
Rcosα

⇒ R=
2p

cosα
= 22900mm (4.3)

sagi t tal plane
1
p
=

2cosα
ρ
⇒ ρ = 2pcosα= 62.80mm (4.4)

For the second mirror (condenser) we have the same considera-
tions, but in this case p =∞ and both q and q’ equal to 600 mm
for the focusing (tangential and sagittal) of the collimated beam
outgoing from the second toroidal mirror on the exit slit, having
finally the same results.

• Three motorized grazing incidence plane gratings: (see Fig.
4.10) They allow to disperse the radiation spectral components (see
App. D).

In order to realize the selection and rotation of each one of three
diffraction gratings with different groove densities σ, we used a
motorized two axis motor: a slit supports the three gratings in se-
quence, which in turn can rotate on a support with a precision of
0.01◦.

• Exit vertical slit: Its purpose (Fig. 4.11(a)) is blocking all the un-
desired radiation, having the selection of a single diffraction order
of a wavelength present in the source polychromatic light. As for
the entrance slit, the exit beam resolution can be increased by clos-
ing the slit, having, as counterpart a lower intensity.
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Figure 4.10: Two axis motor with the slit supporting each
diffraction grating.

• Photodiode, Picoammeter and remote control: The detection
of photon flux is performed by a photodiode in a second vacuum
chamber (Fig. 4.11(b)), which rotate on its axis for the correct al-
lignment with the beam. The picocurrent emitted by the p-n junc-
tion of the photodiode (powered with a 60 V voltage) is then mea-
sured by a picoammeter, which can perform a remote control with
a PC (via GPIB connection) for consecutive (at ≈ms intervals) cur-
rent readings during a grating rotation.

(a) Exit vertical slit. (b) Photodiode
chamber.

Figure 4.11: The exit slit a) and the detector chamber b) of the
monochromator system.
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4.3 Gratings efficiency and output bandwidth

The efficiency of the different gratings employed in the monochromator
(reported in Tab. 4) has been simulated computing the electromagnetic
propagation and the grating efficiency. The simulated efficiencies of the
gratings are reported in Fig. 4.12 for three different subtended angles.

Tab. 4 Main features of the three gratings.
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The simulated output bandwidth, calculated as the FWHM bandwidth
on a 100-um exit slit, and the pulse front-tilt, calculated as the FWHM
front-tilt with a 3 mrad beam divergence, are shown in Fig. 4.13.
The FWHM beam divergence has been assumed to be 1.5 mrad, accord-
ing to what has been measured on the CITIUS beamline in Nova Gorica
(Slovenia), that is using similar laser parameters to generate HHs.
As a matter of comparison, three different subtended angles have been
supposed, 150◦ − 155◦ − 160◦. The lower angle gives wider bandwidth
and shorter front-tilt, on the contrary the higher angle gives narrower
bandwidth and longer front-tilt.
Clearly, the front-tilt depends on the horizontal accepted aperture be-
cause this changes the illuminated area on the grating.
A limitator that is manually actuated may be placed just in front of the
first toroidal mirror to limit the beam aperture. To achieve the temporal
response shown in Fig. 4.13, the XUV beam horizontal aperture in front
of the first toroidal mirror has to be limited to 1.8 mm. If the beam is
limited to 1.5-mrad full aperture, i.e. 0.9-mm slit aperture, the front-tilt
is reduced by a factor two.

The choice of the actual subtended angle has to take into account the
spectral region of operation of the three gratings. It is recommended a
choice of ≈ 160◦, that gives a rather high efficiency for all the gratings
in the whole operational interval.
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Figure 4.12: Grating efficiencies for three different subtended
angles: a) 600 gr/mm grating; b) 246 gr/mm
grating; c) 150 gr/mm grating, for K = 150◦-
155◦-160◦.

Figure 4.13: Simulations of FWHM bandwidth on 100-um slit,
50-um XUV source size and FWHM pulse front-tilt
with 3-mrad full divergence: a) 600 gr/mm grat-
ing; b) 246 gr/mm grating; c) 150 gr/mm grat-
ing, for K = 150◦-155◦-160◦.
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4.4 Optical allignment

The optical allignment is accomplished using a low-intensity visible red
laser (He-Ne with λ= 630 nm) to perform a correct disposal of all optics
inside the monochromator.
The optical design of the alignment and the project design of the monochro-
mator are represented in Fig. 4.14(a) and 4.14(b).

(a) Top-view of the optical design adopted for the alignment of the monochromator.

(b) Project design of the monochromator.

Figure 4.14: Optical alignment.
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We realized the optical path of the laser beam by means of two plane
mirrors in order to simulate source with an infinite distance from the pin-
hole, with the purpose of having the propagation of plane wave-fronts
(similar as much as possible to the real source beam) before the pin-hole
slit, necessary to have a point-like source at 600 mm from the centre of
the first toroidal mirror and two iris diaphragms to limit the effects of
diffraction near the entrance of the monochromator. In a second mo-
ment, when the source (i.e. the hollow-cathode one) will be mounted,
a vertical slit will replace the pin-hole, to limit the beam only in the tan-
gential plane.
The next step is having an accurate precision adjustments about rotation
and position of the optics, with the centering of the laser beam in the
middle of the two toroidal mirrors and gratings (Fig. 4.15 and 4.16).

Figure 4.15: Beam footprint on the center of the first toroidal
mirror.
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Figure 4.16: Beam footprint on the center of a plane grating.

We have choosen an anti-blaze (incidence angle α< diffraction angle β)
arrangement of the three gratings to minimize the pulse-front tilt.
After the first toroidal mirror grazing incidence, the laser beam angle re-
ferred to the entry port of the monochromator must be deviated of about
6◦, taking in account that the subtended angle K of the gratings is con-
stant of about 158◦.
Finally, the beam will be deviated again of 6◦ by a second toroidal mirror
and will go through the exit port of the monochromator chamber.
At the end, we performed the verification of the exit spot profile through
a beam-profiler; the acquisition is reported Fig. 4.17.
In each grating we have to check carefully the perpendicular incidence of
the beam on the facet because a little up or down angle deviation leads
to a conical diffraction.
The next step is the positioning of the vertical slit at the right distance of
600 mm from the second toroidal mirror to have the tangential focusing.
When the alignment phase has been finished, the source has been mounted
immediately before the entrance slit (positioned in place of the pin-hole)
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and all the system has been enclosed by vacuum tubes and bellows (Fig.
4.18).

(a) Exit horizontal line profile. (b) Exit vertical line profile.

(c) Exit spot intensity after
allignment phase.

Figure 4.17: BeamStar software analysis of the beam shape
and intensity profile at the exit of the monochro-
mator chamber.

Figure 4.18: Final vacuum system composed by the hollow-
cathod source, entrance slit, monochomator
chamber, exit slit, and photodiode chamber.
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4.5 XUV tests and characterization of the instrument

When the allignment has been finished, we dealt with the positioning of
the entrance slit of the XUV source instead of the pin-hole, used in the
visible (at 600 mm from the center of the entrance toroidal mirror). We
had particular attention with the source setting in order to avoid mis-
alignment in this spectral region.
The system has been sent in high-vacuum (with a pressure of 10−6 mbar)
by means of a pump system correctly dimensioned.
Afterwards we had re-correct the three gratings position (traslation and
rotation) in order to maximize the photons flux in reflection (0 order)
collected by the photodiode.
Therefore, after several attempts we proceeded with making angular
scannings of gratings by rotating them in prearranged intervals; this has
been done with the use of Labview software by the for-cycle that I have
implemented (see Ch. 5).
We have obtained the following spectra (Fig. 4.20, 4.21,4.22, 4.23, 4.24,
4.25) with an hollow-cathode source filled with He and Ne. In the ta-
bles 4.1, 4.2, 4.3 are reported the theoretical and measured values of
gratings rotation (referred to 0 order) concerning a specific wavelength
diffracted at the order -1 and the associated spectral lines current values
(pA). The theoretical values of gratings rotation are in agreement with
the measured values. This results has been obtained with entry and exit
diaphgrams positioned immediately before and after, the entrance and
exit toroidal mirrors (see Fig. 4.19) in order to avoid undesired reflec-
tions in the monochromator chamber.

Figure 4.19: Diaphragm before the first toroidal mirror.
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Table 4.1: Groove Density σ = 150 gr/mm

i.w. λ (nm) Diffraction order Th. Grating rotation (◦) Meas. Grating rotation (◦) Meas. current (pA)

0 0 0 1.62
46 [Ne] -1 -1.10 -1.00 1.10

74.4 [Ne] -1 -1.68 -1.65 4.25
0 0 0 1.50

30.4 [He] -1 -0.69 -0.63 0.20
51.2-52.2 [He] -1 -1.16 -1.10 0.35

58.4 [He] -1 -1.32 -1.22 7.10

Figure 4.20: Ne measured current spectrum for the 150 gr/mm
grating for negative diffraction orders.

Figure 4.21: He measured current spectrum for the 150 gr/mm
grating for negative diffraction orders.
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Table 4.2: Groove Density σ = 246 gr/mm

i.w. λ (nm) Diffraction order Th. Grating rotation (◦) Meas. Grating rotation (◦) Meas. current (pA)

0 0 0 12.40
35.3 [Ne] -1 -1.31 -1.33 0.10
40.6 [Ne] -1 -1.50 -1.40 0.17
46 [Ne] -1 -1.70 -1.60 3.75

74.4 [Ne] -1 -2.75 -2.70 6.23
0 0 0 1.50

25.6 [He] -1 -0.95 -0.95 0.05
30.4 [He] -1 -1.13 -1.05 1.18
53.7 [He] -1 -1.99 -1.85 0.78
58.4 [He] -1 -2.16 -2.04 10.83

Figure 4.22: Ne measured current spectrum for the 246 gr/mm
grating for negative diffraction orders.

Figure 4.23: He measured current spectrum for the 246 gr/mm
grating for negative diffraction orders.
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Table 4.3: Groove Density σ = 600 gr/mm

i.w. λ (nm) Diffraction order Th. Grating rotation (◦) Meas. Grating rotation (◦) Meas. current (pA)

0 0 0 3.82
46 [Ne] -1 -4.15 -4.05 1.11

74.4 [Ne] -1 -6.72 -6.24 0.55
0 0 0 21.2

30.4 [He] -1 -2.74 -2.52 1.22
58.4 [He] -1 -5.27 -4.95 2.32

Figure 4.24: Ne measured current spectrum for the 600 gr/mm
grating for negative diffraction orders.

Figure 4.25: He measured current spectrum for the 600 gr/mm
grating for negative diffraction orders.
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4.6 Time response

In Fig. 4.26, 4.27 and 4.28 are reported the pulse temporal half-widths
after diffraction for the three different gratings, in their spectral region;
considering a 4 mrad beam aperture source.
The 600 gr/mm grating has a higher slope at wavelength increasing than
150 and 246 gr/mm gratings, and it’s more susceptible to a time broad-
ening of the pulse.

Figure 4.26: FWHM pulse front-tilt with 4-mrad full diver-
gence, for 150 gr/mm grating, in the 15-30 eV
(41.33-82.66 nm) spectral range.
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Figure 4.27: FWHM pulse front-tilt with 4-mrad full diver-
gence, for 246 gr/mm grating, in the 25-45 eV
(27.5-49.6 nm) spectral range.

Figure 4.28: FWHM pulse front-tilt with 4-mrad full diver-
gence, for 600 gr/mm grating, in the 30-90 eV
(13.77-41.33 nm) spectral range.



Chapter 5
Labview software for remote

control

Remote control for the two-axis motor rotation and gratings selection,
has been done using Labview: a visual programming language from Na-
tional Instruments (NI).
On the program running, a timed loop control with fractions of ms re-
ports the slit support for gratings rotation and position. The setting-up
of two limit switches is necessary to avoid the slit impact on the two
toroidal mirrors. Only with a dedicate key "expert users" can change the
values of the two limit switches.
We have the possibility to move (by rotation and translation of the grat-
ings) in a specific position (with an error in rotation and translation of
about 0.1◦ and 100 µm, respectively); or shift from the initial position
of a specific value (in mm or degrees).
With Labview is even possible to perform a remote control of the Pi-
coammeter (from Keithley) with the VISA interface control for Labview
(always given by NI), through the GPIB (General Purpose Interfce Bus)
standard.
I have implemented the possibillity of measuring the current with a pre-
selected time interval of acquisition, for a fixed position (see Fig. 5.1):
this function is adopted when we want to maximize the photon flux: for
example, in the case of the optimization of the alignment in the XUV us-
ing the 0 order diffraction.
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The second function which implemented is an automatic scanning (see
Fig. 5.2) of an interval of grating’s rotation angles with a pre set-up of
the:

• Scan starting and ending angles;

• Interval of time in wich the grating has to stay in every scanning
angle;

• Slit rotation (in degrees) for every step.

Figure 5.1: Continue measuring of current with a little time de-
lay between two consecutive aquisitions.

Figure 5.2: Measuring of current during a scan between two
defined angles, with pre-selected time delay (in
ms) and step value (in degrees) of the grating ro-
tation.
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The structure of the for loop implemented for the scanning function is
reported in Fig. 5.3.

Figure 5.3: Structure of the for loop in the Labview block di-
agram window, which is the core of the scanning
function.
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Appendix A
Generic optical system design

UV spectrum is the region of the electromagnetic spectrum which ex-
tends from about 400 nm to about 10 nm.
More specifically: Near UltraViolet (NUV) comprises wavelength from
400 nm to 300 nm, Middle UltraViolet (MUV) from 300 to 200 nm,
Far UltraViolet (FUV) from 200 nm to 120 nm and eXtreme UltraVio-
let (XUV) comprises wavelength from 120 nm to 10 nm. Due to high
absorption of air below to 200 nm the region from 200 nm to 10 nm is
also called Vacuum UltraViolet because radiation can propagate only in
vacuum.
X-ray region is the region of the electromagnetic spectrum which extends
from about 10 nm to 0.01 nm. X-rays from about 10 nm to 0.1 nm are
classified as soft X-rays, and from about 0.1 nm to 0.01 nm as hard X-
rays, due to their penetrating abilities (See Fig. A.1).

Figure A.1: UV and X-ray electromagnetic spectrum. XUV and
Soft X-ray region are observable.
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Spectroscopy in any spectral region requires the use of optical compo-
nents that disperse the radiation into a spectrum, detect and focus light
to form images.
In visible and IR spectroscopy both prisms an gratings can be used for
this purpose but at wavelengths ranging from XUV to X-ray only reflective
gratings are available because it is impossible to work in transmission.
For the same reason, it is not possible to use lenses in this spectral do-
main.
XUV and soft X-ray are particular regions of the spectrum because no
refractive materials transmit radiation of this wavelengths and it results
also necessary working at grazing incidence because of the low reflection
efficiency in normal incicence (very low under 30 nm). In Fig. A.2 the
platinum reflectivity at normal and grazing incidence for these regions
is reported.

(a) Normal incidence. (b) Grazing incidence.

Figure A.2: Platinum mirror reflectivity.

Most used materials as coatings for mirrors in grazing incidence are: Au,
Pt, s-C, Ni, their reflectivity are reported in Fig. A.3.
An XUV source (with a shutter) emits radiation in a large emission cone;
a slit that define a preferential direction of acceptance of radiation is usu-
ally placed after the source: it limits the beam propagation angle towards
the next element; then a monochromator select a specific wavelength in
the XUV domain; finally a grazing incidence mirrors system focuses light
in the sample (for absorption measurements etc.) - see Fig. A.4.
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Figure A.3: Reflectivity for different materials in grazing inci-
dence.

Figure A.4: Generic optical system in the XUV domain.
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Appendix B
Aberrations

Aberrations are deformations and distortions of the shape of the image
(focus) produced by an optical system which cause a decay of image
quality after an optical system.
The main purpose of an optical system is create a no aberration image.
A spherical surface (mirror or lens) focuses all rays in a point without
aberrations only for little angles of propagation (relying on paraxial the-
ory), indeed for angles θ ≤ 30◦ we can linearize and approximate sin
function having:

sinθ ' θ −
θ 3

3!
+
θ 5

5!
−
θ 7

7!
+ . . .' θ (B.1)

If we aren’t in paraxial conditions and we use spherical mirrors (less
expensive and easily to realize), we have aberrations presence.
There are three main types of aberrations:

• Astigmatism: Considering a lens, and instead light it normally
(where we don’t have aberrations), we illuminate it with an angle
ϕ respect to normal; we can see two different curvature radiuses
in the sagittal and tangential directions (and we see an ellipse), so
we can see two different spheres in the two directions, and spheres
with different radiuses focus in different points.
So a point will not be focalize in another point, but we see a vertical
or horizontal line, if we observe, respectively in the tangential or
sagittal focus, and a circumference for the other points (Fig. B.1).
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If we want to correct astigmatism we have to use cylindrical lenses,
for moving only one of the two focuses.

Figure B.1: Astigmatism. Two focal lengths are observable,
one for the tangential rays (T) and one for the sagit-
tal rays (S), in which the cone of rays focuses in two
orthogonal segments.

• Spherical aberration: While paraxial rays propagate and focus in
a single point, for rays with larger angles we can’t approximate sin
function with it’s angle, and they focus in different points.

Figure B.2: Spherical aberration. It is observable the depen-
dence of the focal length on aperture for non parax-
ial rays. Rays striking the surface at greater dis-
tance from the axis are focused nearer the vertex.

When we look at a ray beam passing through a lens, it is easy to
understand that its focal plan depends on the distance from the op-
tical axis. With a spherical surface, lens or mirror, incoming rays
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from differents heigths from the axis do not bend at the same po-
sition and focus at slightly different distance along the axis.
So, if the center of the image stay in focus an bright, the edges of
the field appear blurry and dimmer as in Fig. B.2.

• Coma aberration. It arises from the fact that the transverse magni-
fication differs for rays striking off-axis regions of the mirrors. The
net result is that an off-axis object point is imaged in a geometri-
cal figure which somewhat resembles the shape of a comet, a coma
(see Fig. B.3). The figure of aberration is observable if the object is
not at infinite, but the aperture of the bundle of rays must prevail
over its inclination.

Figure B.3: Coma. An off-axis object point is imaged in a
geometrical figure which somewhat resembles the
shape of a coma.

Figure B.4: Spherical and coma aberraions.
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Appendix C
Spherical and toroidal mirrors

We have to consider two equations for a mirror (Fig. C.1), considering
that we have two planes: tangential and sagittal.

tangential plane
1
p
+

1
q
=

2
Rcosα

(C.1)

tangential plane
1
p
+

1
q′
=

2cosα
ρ

(C.2)

where, α is the beam incidence angle respect to the normal of the mir-
ror, p is the source-mirror distance; q and q’ are, respectively, the mirror-
image distance in the tangential and sagittal plane; and R and ρ are,
respectively, the two tangential and sagittal curvature radius.

Figure C.1: Tangential plane of a mirror.
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For a spherical mirror R = ρ, and in this case we have always astigma-
tism when α 6= 0 (the case α is insignificant for the beam propagation).
Considering a spherical mirror in grazing incidence, in the horizontal
(tangential) plane we see the curvature radius of the sphere, having a
point focus after the mirror; but in the sagittal plane we see a vertical
plane mirror and we cannot have a focus; the result after the mirror is a
line in the vertical (sagittal) plane. So, rays in the sagittal plane prop-
agate as if we have a plane mirror. A point is focus in a line.

Alternatively, for a toroidal mirror (Fig. C.2), we have R 6= ρ and we
can put q = q’, obtaining a stigmatic mirror. From the equations (C.1)
and (C.2) we obtain the equation:

ρ

R
= cos2α (C.3)

We can use a toroidal mirror in grazing incidence with p = q = q’ =
Rcosα (Rowland mounting). in this case, as demonstrated by Rowland
we don’t have coma aberration, and the magnification M= p/q is unitary.

Figure C.2: Platinum toroidal mirror.



Appendix D
Grazing incidence diffraction

gratings

D.1 Diffraction

Geometrical treatment for rays propagation is valid for the aberrations
compensation, but we cannot consider the diffraction pheneomenon.
If we wanto to consider diffraction we can’t consider light propagation
with it’s k wave vector obeying to Snell laws at every interface change,
but we have to consider light for it’s ondulatory nature.
For example, if we consider a slit, when the aperture of a slit become nar-
row (comparable with the beam wavelength), light spreads: this because
of the presence of diffraction and we have to consider light propagation,
not in a straight way, but as a wave.
Two are the main types of diffraction:

• Fraunhofer: The source that causes diffraction is put at infinite
distance.

• Fresnel: The source that causes diffraction is put at finite distance.

When a beam of light is partly blocked by an obstacle, some of the light
is scattered around the object, and light and dark bands are often seen
at the edge of the shadow; this effect is known as diffraction. These ef-
fects can be modelled using the Huygens–Fresnel principle. Huygens
postulated that every point on a primary wavefront acts as a source of
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spherical secondary wavelets and the sum of these secondary waves de-
termines the form of the wave at any subsequent time. Fresnel developed
an equation using the Huygens wavelets together with the principle of
superposition of waves, which models these diffraction effects quite well.
It is not a straightforward matter to calculate the displacement given by
the sum of the secondary wavelets, each of which has its own amplitude
and phase, since this involves addition of many waves of varying phase
and amplitude. When two waves are added together, the total displace-
ment depends on both the amplitude and the phase of the individual
waves: two waves of equal amplitude which are in phase give a dis-
placement whose amplitude is double the individual wave amplitudes,
while two waves which are in opposite phases give a zero displacement.
Generally, a two-dimensional integral over complex variables has to be
solved and in many cases, an analytic solution is not available.

D.1.1 Fraunhofer diffraction

The Fraunhofer diffraction equation is a simplified version of the Kirch-
hoff’s diffraction formula and it can be used to model the light diffracted
when both the light source and the viewing plane are effectively at infin-
ity with respect to the diffracting aperture. In this case, the incident light
is a plane wave so that the phase of the light at each point in the aperture
is the same. The phase of the contributions of the individual wavelets
in the aperture varies linearly with position in the aperture, making the
calculation of the sum of the contributions relatively straightforward in
many cases. Strictly speaking, the Fraunhofer approximation only ap-
plies when the diffracted pattern is viewed at infinity, but in practice it
can be applied in the far field (L� W 2

λ , where L is the distance of the of
the target and W is the aperture or slit size), and also in the focal plane
of a positive lens.

• Rectangular slit with infinite width: Every point of the slit can be
considered as a secondary source of a spherical wave, so in the dif-
ferent points of the target we have light or dark fringes depending
on a superposition of in-phase waves or not, as in Fig. D.1.
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Figure D.1: Fraunhofer diffraction from a single rectangular
slit of infinite depth. The first lens (i.e. parabolic)
creates the condition of an infinite distance source
from the slit, and the second lens focus the
diffracted rays in a target. The result on the target
is an alternation of light and dark fringes, which
indicate the presence of constructive or destructive
interference.

Figure D.2: Emission by all the secondary spherical sources at
angle θ .

Considering a mathematical treatment (Fig. D.2), for every single
secondary spherical wave emitted by the slit we have the electric
field in a point P:

dEp =
�

dE0

r

�

ei(kr−ωt) (D.1)
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and, for every interval ds at distance s from the slit center:

dEp =
�

dE0

r0 +∆

�

ei[k(r0+∆)−ωt] ∼=
�

dE0

r0

�

ei[k(r0+∆)−ωt]

=
�

ELds
r0

�

ei[kr0+kssinθ−ωt]
(D.2)

In the first approximation of the Eq. (D.1) we can neglect the am-
plitude term ∆ at denominator, but we can’t neglect it in phase be-
cause we are treating with nm wavelengths, and finally we obtain
for the irradiance a sinc (see Fig. D.3) function:

Ip = I0sinc2β = I0
sin2β

β2
(D.3)

Where I0 =
ε0c
2 and β = 1

2 kbsinθ .

Figure D.3: Irradiance (red) and electric field (blue) from a sin-
gle rectangular slit with infinite width. We have ir-
radiance maximum when β = 0 and zeros when β
=mπ (with m relative integer different from zero).

The width of the central maximum is (see Fig. D.4):

∆θ =
2λ
b
⇒W =

2Lλ
b

(D.4)

so, more b is small and Lλ is big, and more W increases.
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Figure D.4: Angular and linear width of the central maximum
diffraction.

• Rectangular fenditure: Appling again Huygens-Fresnel principle
for horizontal and vertical directions we obtain (see Fig. D.5):

I = I0sinc2αsinc2β (D.5)

with α = 1
2 kasinθ and β = 1

2 kbsinθ .

(a) Rectangular slit with finite horizontal and vertical
dimensions.

(b) Image obtained in a
screen by a finite di-
mensions rectangu-
lar slit

Figure D.5: Rectangular slit with finite dimensions.
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• Pin-hole: A pin-hole is a circular slit; in this case we have to inte-
grate the electric field considering every rectangular slit inside the
pin-hole, obtaining an irradiance:

I = I0

�

2J1 (γ)
γ

�2

(D.6)

where, J1(γ), with γ = K
2 Dsinθ (D = pin-hole diameter) is the first

order Bessel function (see Fig. D.6).

(a) First order Besssel function J1(γ). (b) Pin-hole
diffraction on a
screen.

(c) Pin-hole irradiance.

Figure D.6: Pin-hole functions.

In this case the width of the central maximum is:

∆θ =
1.22λ

D
⇒W =

1.22λL
D

(D.7)
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Working in the XUV and soft X-ray region with small wave-
lengths (tens of nm), seeing equations our image is not blurry
by diffraction effect but, most commonly by aberrations effect,
so we have to correct them.

• Double slit and multiple slits: In this case (Fig. D.7 - D.8) we
have to envelope (product) two electric field functions: the one
associated to the two slit contribute and the other one to a single
slit:

I = 4I0

�

sinβ
β

�2

cos2α (D.8)

where, β = 1
2 kbsinθ and α = 1

2 kasinθ

(a) Envelope of the two functions associated to a
single and two slits.

(b) Double slit schematic.

Figure D.7: Double slit functions.

Similarly, for multiple slits, we have:

I = I0

�

sinβ
β

�2�sinNα
sinα

�2

(D.9)
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and, we have a maximum when:

asinθ = mλ (D.10)

Figure D.8: Multiple slits diffraction irradiance, envelope of
the two functions associated to a single and multi-
ple slits.

• Grating: If we have a very large number N of periodic slits (thou-
sands), each one with width b and spaced a; we can consider two
adjacent slits, and we have an optical path difference that is:

∆=∆1 +∆2 = asinθi + asinθm (D.11)

having θi and θm, respectively the incidence and diffraction angles.
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In this case, if we want to have constructive interference the contri-
bution given by two adjacent slits have to be a 2πmultiple in phase,
or a wavelength multiple in the optical path (Fig. D.9). Then we
have the grating equation:

a (sinθi + sinθm) = mλ (D.12)

with m relative integer number.

Figure D.9: Diffraction grating optical path difference between
two adjacent slits.
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D.2 Diffraction gratings equations

Instead of a transmission grating, we can make a reflection grating, when
in a surface we produce a sequence of periodic grooves; and is still valid
the grating Eq. (D.12):

sinα+ sinβ = mλσ (D.13)

when α and β are, respectively the incidence and diffraction angles re-
ferred to the normal of the grating; and σ = 1

d (where d is the groove
spacing) is the number of lines (grooves)/mm - we can have from hun-
dreds to thousands grooves/mm.
If the entrance beam is a polychromatic light; its different wavelengths
will be diffracted at different diffraction angles.
Diffraction by a grating can be visualized from the geometry in Fig. D.10,
which shows a light ray incident at an angle a and diffracted by a grating
along at set of angles βm. These angles are measured from the grating
normal, which is shown as the dashed line perpendicular to the grating
surface at its center.
The sign convention for these angles depends on whether the light is
diffracted on the same side or the opposite side of the grating as the in-
cident light. Angles α > 0 and β1 > 0 (since they are measured counter-
clockwise from the grating normal) while the angles β0 < 0 and β−1 < 0
(since they are measured clockwise from the grating normal).

Figure D.10: A reflection grating. Sign convention and inci-
dence and diffracted beams.
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Another illustration of grating diffraction, using wavefronts (surfaces of
constant phase), is shown in Fig. D.11.

Figure D.11: Geometry of diffraction, for planar wavefronts.
Two parallel rays, labeled 1 and 2, are incident
on the grating one groove spacing d apart and
are in phase with each other at wavefront A.
Upon diffraction, the principle of constructive in-
terference implies that these rays are in phase at
diffracted wavefront B if the difference in their
path lengths, dsinα + dsinβ , is an integral num-
ber of wavelengths; this in turn leads to the grat-
ing equation.

Eq. (D.13) is the common forms of the grating equation, but its validity
is restricted to cases in which the incident and diffracted rays lie in a
plane which is perpendicular to the grooves (at the center of the grat-
ing). The majority of grating systems fall within this category, which
is called classical (or in-plane) diffraction. If the incident light beam is
not perpendicular to the grooves, though, the grating equation must be
modified:

σmλ= cosε (sinα+ sinβ) (D.14)

Here ε is the angle between the incident light path and the plane per-
pendicular to the grooves at the grating center (the plane of the page in
Fig. D.11). If the incident light lies in this plane, ε = 0 and Eq. (D.14)
reduces to the more familiar Eq. (D.13). In geometries for which ε 6= 0,
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the diffracted spectra lie on a cone rather than in a plane, so such cases
are termed conical diffraction.
For a grating of groove spacing d, there is a purely mathematical relation-
ship between the wavelength and the angles of incidence and diffraction.
In a given spectral order m, the different wavelengths of polychromatic
wavefronts incident at angle α are separated in angle:

β(λ) = sin−1
�

mλ
d
− sinα

�

(D.15)

When m = 0, the grating acts as a mirror, and the wavelengths are not
separated (β = −α for all λ); this is called specular reflection or simply
the zero order.
A special but common case is that in which the light is diffracted back
toward the direction from which it came (i.e., α = β); this is called the
Littrow configuration, for which the grating equation becomes:

mλ= 2dsinα (D.16)

In many applications a constant-deviation monochromator mount is used,
in which the wavelength λ is changed by rotating the grating about the
axis coincident with its central ruling, with the directions of incident and
diffracted light remaining unchanged. The deviation angle 2ζ between
the incidence and diffraction directions (also called the angular devia-
tion) is:

2ζ= α− β = constant (D.17)

while the scan angle φ, which varies with λ and is measured from the
grating normal to the bisector of the beams, is:

2φ = α+ β (D.18)

Note that φ changes with λ (as do α and β). In this case, the grating
equation can be expressed in terms of φ and the half deviation angle ζ
as:

mλ= 2dcosζsinφ (D.19)
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This version of the grating equation is useful for monochromator mounts.
For the constant-deviation monochromator mount, the incidence and
diffraction angles can be expressed simply in terms of the scan angle
φ and the half-deviation angle ζ via:

α(λ) = φ(λ) + ζ (D.20)

and
β(λ) = φ(λ)− ζ (D.21)

where we show explicitly that α, β and φ depend on the wavelength λ.
For a particular groove spacing d, wavelength λ and incidence angle α,
the grating Eq. (D.13) is generally satisfied by more than one diffraction
angle β . In fact, subject to restrictions discussed below, there will be sev-
eral discrete angles at which the condition for constructive interference
is satisfied. The physical significance of this, is that the constructive re-
inforcement of wavelets diffracted by successive grooves merely requires
that each ray be retarded (or advanced) in phase with every other; this
phase difference must therefore correspond to a real distance (path dif-
ference) which equals an integral multiple of the wavelength. This hap-
pens, for example, when the path difference is one wavelength, in which
case we speak of the positive first diffraction order (m = 1) or the nega-
tive first diffraction order (m = –1), depending on whether the rays are
advanced or retarded as we move from groove to groove. Similarly, the
second order (m = 2) and negative second order (m = –2) are those for
which the path difference between rays diffracted from adjacent grooves
equals two wavelengths.
The grating equation reveals that only those spectral orders for which
|mλ/d| < 2 can exist; otherwise, |sinα + sinβ| > 2, which is physi-
cally meaningless. This restriction prevents light of wavelength λ from
being diffracted in more than a finite number of orders. Specular reflec-
tion (m = 0) is always possible; that is, the zero order always exists (it
simply requires β =−α). In most cases, the grating equation allows light
of wavelength λ to be diffracted into both negative and positive orders
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as well. Explicitly, spectra of all orders m exist for which:

−2d < mλ < 2d, m integer. (D.22)

For λd � 1, a large number of diffracted orders will exist.
As seen from Eq. (D.13), the distinction between negative and positive
spectral orders is that (see Fig. D.12):

• β > −α for positive orders (m > 0),

• β < −α for negative orders (m < 0),

• β = −α for specular reflection (m = 0).

Figure D.12: Sign convention for the spectral order m.

The most troublesome aspect of multiple order behavior is that succes-
sive spectra overlap, as shown in Fig. D.13. It is evident from the grating
equation that light of wavelength λ diffracted by a grating along direc-
tion b will be accompanied by integral fractions λ2 , λ3 , etc.; that is, for any
grating instrument configuration, the light of wavelength λ diffracted in
the m = 1 order will coincide with the light of wavelength λ

2 diffracted
in the m = 2 order, etc. This superposition of wavelengths, which would
lead to ambiguous spectroscopic data, is inherent in the grating equation
itself and must be prevented by suitable filtering (called order sorting),
since the detector cannot generally distinguish between light of different
wavelengths incident on it (within its range of sensitivity).
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Figure D.13: Overlapping of spectral orders. The light for
wavelengths 100, 200 and 300 nm in the sec-
ond order is diffracted in the same direction as
the light for wavelengths 200, 400 and 600 nm
in the first order.

Features of diffraction gratings

The angular spread ∆β of a spectrum of order m between the wave-
length λ and +∆λ can be obtained by differentiating the grating equa-
tion, assuming the incidence angle α to be constant. The change ∆β in
diffraction angle per unit wavelength is called angular dispersion and
is, therefore:

∆β =
dβ
dλ
=

mσ
cosβ

(D.23)

The resolving power R of a grating is a measure of its ability to separate
adjacent spectral lines of average wavelength λ. It is usually expressed
as the dimensionless quantity:

R=
λ

∆λ
(D.24)

where∆λ is the limit of resolution, the difference in wavelength between
two lines of equal intensity that can be distinguished.
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The theoretical resolving power of a planar diffraction grating is given
by the equation:

R= mN (D.25)

where N is the total number of grooves illuminated on the surface of the
grating.
While resolving power can be considered a characteristic of the grat-
ing and the angles at which it is used, the ability to resolve two wave-
lengths λ1 and λ2 = λ1 +∆λ, generally depends not only on the grating
but on the dimensions and locations of the entrance and exit slits (or
detector elements), the aberrations in the images, and the magnifica-
tion of the images. The minimum wavelength difference ∆λ between
two wavelengths that can be resolved unambiguously, a quantity called
resolution, can be determined by convoluting the image of the entrance
aperture (at the image plane) with the exit aperture (or detector ele-
ment). This measure of the ability of a grating system to resolve nearby
wavelengths is arguably more relevant than is resolving power, since
it takes into account the image effects of the system. While resolving
power is a dimensionless quantity, resolution has spectral units (usually
nanometers).
The distribution of power of a given wavelength diffracted by a grating
into the various spectral order depends on many parameters, including
the power and polarization of the incident light, the angles of incidence
and diffraction, the (complex) index of refraction of the materials at the
surface of the grating, and the groove spacing. A complete treatment
of grating effciency requires the vector formu- lation of electromagnetic
theory (i.e., Maxwell’s equations) applied to corrugated surfaces, which
has been studied in detail over the past few decades. While the theory
does not yield conclusions easily, certain rules of thumb can be useful
in making approximate predictions. The simplest and most widely used
rule of thumb regarding grating effciency (for reflection gratings) is the
blaze condition:

mλblazeσ = 2sinθB (D.26)

where θB (called the blaze angle of the grating) is the angle between the
face of the groove and the plane of the grating (see Fig. D.14).
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When the blaze condition is satisfied, effciency is enhanced [24].

Figure D.14: Blaze condition. The angles of incidence α and
diffraction β are shown in relation to the facet
angle θB for the blaze condition. GN is the grat-
ing normal and FN is the facet normal. When the
facet normal bisects the angle between the inci-
dent and diffracted rays, the blaze condition is
satisfied.

Eq. (D.26) generally leads to the highest efficiency when the following
condition is also satisfied:

2ζ= α− β = 0 (D.27)

Equations (D.26) and (D.27) collectively define the Littrow blaze condi-
tion. When Eq. (D.27) is not satisfied (i.e., α 6= β and therefore the grat-
ing is not used in the Littrow configuration), efficiency is generally seen
to decrease as one moves further off Littrow (i.e., as |2ζ| increases).
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