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Thesis

1 Abstract

This thesis is based on the works of Arthur Sherman and Gerda De Vries. Their simplified

model for pancreatic �-cells was used under various circumstances. The primary objective

of the thesis is to investigate, comprehend and explain the dynamics of the model under

various circumstances. The analysis will go from the simplest case with two identical cells

with the same initial conditions to the heterologous cells with diverse initial states. The

secondary objective is to provide a geometrical perspective to the analysis, to help a better

understanding of the system’s dynamics.
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2 Introduction

Pancreatic �-cells are a specialized type of cells located in the pancreas, organized in clusters

called Islet of Langerhans. The cells are electrically coupled via gap junctions, and the

oscillations are almost synchronous among the cells in an islet. When oscillating, these

cells are able to secrete and produce the insulin hormone, which helps to regulate blood

sugar levels. This happens thanks to the electrical activity that governs oscillations in the

intracellular calcium concentration, which works as a trigger for the release of the hormone

insulin. Insulin acts by stimulating the uptake of glucose by liver, muscles, and fat cells.

It also inhibits the production of glucose by the liver, providing an essential tool that helps

maintain healthy glucose levels in the body. When the glucose isn’t in the physiological range,

a pathological condition appears and is known as diabetes. There are two types of diabetes,

type 1 that occurs when the immune system attacks and destroys the �-cells, resulting into

inability to create insulin and consequently high level of glucose in the bloodstream emerge.

Type 2 diabetes occurs when the pancreas isn’t able to produce enough insulin or when

the body becomes resistant to its effects, leading again to high levels of glucose. Glucose

imbalances can lead into a range of health problems that can degenerate into blindness,

kidney disease and vascular diseases.

From a mathematical standpoint, a simplified model for pancreatic �-cells has been used,

with particular focus on the case of bursting. Bursting is a phenomenon that comes from

a particular state of the system in which a fast subsystem and a slow subsystem interact,

generating an alternation between an active phase with fast oscillations (called spikes) and

a silent one. Bursting has an important physiological meaning, since it is the mechanism

that is responsible for insulin secretion in response to blood glucose. In particular, the shape

of bursting seen in �-cells is referred to as "square-wave" bursting, due to the wave form.

Model dynamics have been examined through bifurcation analysis for various cases: single

cell, coupled cells, coupled identical cells with different initial conditions, and coupling forces.

The analysis has been performed using XppAUT and Matlab, in particular in XppAUT

bifurcation diagrams were analyzed with the aim to explain the behavior of the model in

the various cases through an analysis of the system dynamics. The main focus of the thesis

was to better understand the behavior of the system under various circumstances, and to

give a geometrical explanation of the model behavior. Parameters were chosen to expose key

features of the system, not to achieve biophysical fidelity.
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3 BIOLOGICAL BACKGROUND Thesis

3 Biological background

In this section will be presented the biological background needed to give a context to the

models and techniques used in this thesis. The description will start from the diabetes, going

through the pancreas and its composition, ending with the dynamics of insulin secretion. An

overview on the ionic channels and the junctions is needed too, since these are these mecha-

nisms at the base for all the interactions that happen in the pancreas. A brief presentation

of the Hodgking-Huxley work is done, since the beta cells model used in further sections is

based on the one they invented.

3.1 Diabetes

Diabetes is a chronic disease characterized by elevated levels of blood glucose, and that

occurs when the pancreas is not able to produce enough insulin or the body is not able to

use the insulin it produces [1][2]. High level of glucose in the blood is a common effect of

uncontrolled diabetes, and it may lead to serious damages to hearth, blood vessels, eyes,

kidneys, and nerves over time. It has been estimated that more than 400 million people

in the world live with diabetes [1]. There are two primary types of diabetes: type 1 and

type 2, which are of significant interest to researchers, healthcare providers allover the world.

Despite the similarities in the symptoms, the triggering causes of the two are very different.

3.1.1 Type 1 diabetes

The exact causes of this kind of diabetes are unknown, it’s believed that the causes for type 1

diabetes are genetic and environmental, and currently it’s not preventable. The majority of

cases occur in children and adolescents. This disease is characterized by a lack of production

of insulin from the body, so people with type 1 diabetes require controls and infusions of

insulin daily. Without access to insulin, the patients could not survive. Symptoms include

excessive urination and thirst, constant hunger, weight loss, vision changes and fatigue [1].

3.1.2 Type 2 diabetes

The causes for this kind of diabetes are related to an interlay between genetic and metabolic

factors. Genetic factors combined to unhealthy lifestyles increase the risk. It was present

only in adults, but recently it has begun to occur in children too. It is characterized by the

inability of the body to use insulin. Type 2 diabetes accounts for the majority of diabetes

cases in the world [2]. Symptoms are very similar to those of type 1 but often are less marked,

making this kind of diabetes harder to detect, leading to complications [1].

Valerio Hoxha 9









3 BIOLOGICAL BACKGROUND Thesis

that regulate the energy metabolism. Type 1 diabetes results from autoimmune mediated

destruction of islet beta cells, this has been observed through autopsy performed on patients

with the disease. The observations found out that 50-90% of islets had no beta cells, while

having the other islet endocrine cells present with the expected number [6]. A reduced size

of the pancreas has been observed in both individuals with type 1 and type 2 diabetes, being

a predominant characteristic in the first case. The loss of the beta cells has been proposed

as a mechanism for the size reduction, but it is not known if people with type 1 diabetes are

born with a smaller pancreas, or it shrinks during the process [6]. Beta cells are capable of

adapting to metabolic demand, trained athletes could secrete three times less insulin than

untrained individuals, at the same time non-diabetic obese people can secrete up to five times

more insulin in response to a glucose change. When the adaption of beta cells fails, type 2

diabetes emerges [6]. Another factor that has been observed in the beta cells of individuals

with type 2 diabetes is that the size is about 60% of normal beta cell mass. This, as in the

case of shrinkage of the pancreas, is not known if it is a genetic predisposition so the people

born with smaller beta cells are more likely to develop type 2 diabetes, or it depends on the

lifestyle choices made by individuals.

3.3 Insulin

In the previous subsections, insulin has been discussed, here it will be described in more

detail. Insulin is secreted by pancreatic beta cells in response to plasma level of glucose

and additional signals like metabolic factors, neurotransmitters and hormone modulate in-

sulin secretion [9]. "Glucose is the major factor controlling beta cell function and survival.

Glucose entering the beta cell via glucose transporters is rapidly phosphorylated to glucose-

6-phosphate by glucokinase and undergoes oxidation in mitochondria, leading to production

of adenosine triphosphate (ATP). The rise of ATP/adenosine diphosphate ratio in the beta

cell leads to subsequent closure of the KATP channel, which elicits cell membrane depolariza-

tion and allows the entry of Ca2+ through the opening of L-type voltage-dependent calcium

channels. Raised levels of intracellular Ca2+ induce exocytosis of secretory granules con-

taining insulin/proinsulin from pancreatic beta cell. The pharmacologic half-life of insulin is

estimated to be between 5 and 8 minutes, and is mainly cleared by insulinase activity within

the liver, kidneys, and some other tissues" [9]. Calcium is a key component in the insulin

secretion mechanisms. The secretion of insulin occurs in two distinct phases: the first phase,

a rapid early peak that peaks around 30 to 45 minutes after the meal, and the second phase,

a slower and gradually rising peak that is also called basal insulin secretion, figure 4. Insulin’s

basic function, working together with glucagon, is to finely tune hepatic glucose production

and modulate peripheral glucose utilization [10].

Valerio Hoxha 13
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3.5 Ion channels

The cell membrane is a thin, flexible barrier that surrounds and separates the interior of a

cell from its external environment. It is a semipermeable barrier made up of a phospholipid

bilayer with embedded proteins and other molecules that perform various functions. Ion

channels are specialized proteins that play a crucial role in the electrical signaling of living

organisms. These channels allow the flow of specific ions such as sodium, potassium, calcium,

and chloride across the cell membrane. They are essential for a wide range of physiological

processes, including muscle contraction, hormone secretion, and neural communication. In

recent years, there has been an increasing interest in the research field of ion channels, in part

driven by the development of new techniques for studying these proteins at the molecular

and cellular levels. These channels can be sorted into various groups based on ion type,

ion selectivity, and gating. Voltage-gated ion channels are among the most studied and were

modeled by Hodgkin and Huxley. Their groundbreaking work transformed our understanding

of electrical signaling in neurons, and their findings were ultimately recognized with the award

of a Nobel Prize. There are four different types of voltage-gated ion channels: potassium,

sodium, calcium, and chloride [12].

Voltage-Gated Potassium Channels Voltage-gated potassium channels play a signifi-

cant role in various physiological processes such as the repolarization of neural and cardiac

action potentials, the regulation of Ca2+ signaling, control of cell volumes, as well as the fa-

cilitation of cellular proliferation and migration. These channels are formed by four separate

polypeptide subunits, they are gated by neurotransmitters and membrane potentials, making

them essential for excitatory inputs and electrical conduction. Action potentials changes in

the membrane cause channel openings or closings, consenting a passive flow of potassium

ions (K+) from the cell to restore the membrane potential [12]. The potassium channel is

depicted in green in Figure 6.

Voltage-Gated Sodium Channels Voltage-gated sodium channels play a significant role

in initiation and propagation of action potentials in various cells including nerve, muscle,

and other excitable ones. They are formed by a single large polypeptide chain containing

four homologous domains. The channel consist of one ↵ subunit and a smaller accessory �

subunit [12]. The sodium channel is depicted in light blue in Figure 6.

Voltage-Gated Calcium Channels Calcium channels are vital for brain functionalities

and in case of dysfunctions disorder as pain, epilepsy, ataxia, and migraine could emerge [13].

A calcium channel is depicted in yellow in Figure 6.

Valerio Hoxha 16
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3.6.2 Nernst potential

The Nernst potential, is the equilibrium potential for a single ion across a cell membrane.

When an ion is at equilibrium across a membrane, the concentration gradient and electrical

gradient are balanced, resulting in no flow of ions across the membrane. The Nernst potential

is the voltage at which this equilibrium is achieved for a particular ion. The Nernst potential

has an important role for the HH model, as it provides an instrument useful for calculating

the driving force of each ion that contributes to membrane potential. The driving force

is calculated as the difference between the Nernst potential of a single ion and the actual

membrane potential. From there, the net flow of ions through the membrane could be

calculated.

VNernst =
61.5

z
log10

[ion]out
[ion]in

So, summing up, the Nernst potential represents the resting potential for each ion, and is 61

mV for sodium and -90 mV for potassium.

3.6.3 Equivalent circuit

Cell membrane could be modeled with an equivalent circuit, which is a simplified electrical

circuit that represent the behavior of the membrane in response to electrical stimuli. The

model includes:

1. Capacitance: This represents the cell membrane, since it acts as a capacitor storing

charges across its surfaces.

2. Resistance: This represents the lipid bilayer, since it acts as a resistor to the flow of

electrical current. The ion channels also conduct currents with a resistance R.

3. Ionic batteries: They create voltage difference across the membrane V = Vin − Vout.

This circuit could be resolved easily using the Kirchoff’s law:

0 = ICap + INa + IK + Ileak − Iapp

That replacing them with the formulas of the capacitive current and the Ohm’s law, the

sequent equation is obtained:

Cm

dV

dt
= −gNa(V − VNa)− gk(V − VK)− gL(V − VL) + Iapp

Valerio Hoxha 19
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3.6.4 The model

Thanks to the voltage clamp technique, the potassium conductance, the sodium conductance

and the leak current are described as:

gK = gKmaxn
4

gNa = gNamaxm
3h

gL = gLmax

gKmax,gNamax, and gLmax denote the maximum values of potassium, sodium, and leak conduc-

tances and are parameters equal to 36, 120, and 0.3 Ohm−1cm−2 respectively [16]. In these

formulas are present m, n, and h that express the gate controlled variables of ion channels,

they have their own dynamics:

dm

dt
=

m∞(V )−m(V )

⌧m
dn

dt
=

n∞(V )− n(V )

⌧n
dh

dt
=

h∞(V )− h(V )

⌧h

The time constants ⌧x change with m, n, and h, accordingly. ↵ is the transition rate that

characterizes the ion channels that change from closed to open, � the channels that go from

open to closed. m∞, n∞, and h∞, are the steady state values of the gate variables m, n, and

h, accordingly. They are all functions of membrane potential [16].

x∞ = ↵x/(↵x + �x), x = m,n, h

⌧x = 1/(↵x + �x), x = m,n, h

Now that every part has been explained, the full HH working model is summarized by:

ICap = INa + IK + Ileak + Iapp

Cm

dV

dt
= −gNam

3h(V − VNa)− gkn
4(V − VK)− gL(V − VL) + Iapp

dm

dt
=

m∞(V )−m(V )

⌧m
dn

dt
=

n∞(V )− n(V )

⌧n
dh

dt
=

h∞(V )− h(V )

⌧h
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4 Mathematical models

The mathematical model used is based on a simplified version of a biophysically based model

for bursting in pancreatic �-cells [19][20], tuned for the various cases studied. The models

were computed in XPPAUT, the bifurcation diagrams were obtained in AUTO and imported

in Matlab for aesthetic purposes.

4.1 Single cell model

The initial scenario examined involves a mathematical model with a single cell, it is the

simplest case study and acts as a base for the models with multiple cells. The single cell

is able to burst under certain conditions and parameters. The model equations are (1)-(3),

below are presented some support equations, all with their own biological meaning. The

parameters are selected to emphasize the critical characteristics of the system, rather than

to achieve biophysical accuracy.

⌧
dV

dt
= −ICa(V )− Ik(V, n)− gsS(V − Vk) (1)

⌧
dn

dt
= �(n∞(V )− n) (2)

⌧S
dS

dt
= S∞(V )− S + � (3)

The model uses these support equations:

ICa(V ) = gCam∞(V )(V − VCa)

IK(V ) = gKn(V − VK)

x∞(V ) =
1

1 + exp((Vx − V )/Θx

x = m,n, S

Parameters are presented in Table 1.

gCa=3.6 VCa=25 mV Vm=-20 mV ✓m=12 mV ⌧=20 msec
gK=10 VK=-75 mV Vn=-16 mV ✓n=5.6 mV ⌧S=35 msec
gS=4 VS=-45 mV ✓S=10 mV �=0.8

Table 1

Equation (1) refers to the current balance equation discovered by Hodgkin-Huxley. V repre-

sents the membrane potential, and t the time. The model includes all the features needed for

Valerio Hoxha 23
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a biophysical model of square-wave bursting: a fast inward current (ICa), a slower outward

current (Ik) and a slow variable (S) that switches the active spiking phase with the silent

one. ICa and IK represents the voltage-activated calcium and potassium currents, the cal-

cium current is assumed to respond instantaneously to a change in membrane potential while

the potassium dynamics are governed by the gating variable n via equation (2). These two

currents are responsible for generating action potentials during the active phase of bursting.

S is an abstraction of a mechanism in which an inhibitory K+ current is present due to Ca2+

or ADP. Notably, the Ik is governed by the dynamics of the activation variable n via equation

(2). Since ⌧ << ⌧S we can decompose the system into a fast subsystem composed by the

(1) and (2) equations and a slow subsystem with the (3) equation, from there a slow-fast

analysis could be performed, using S as a bifurcation parameter. To enable cell heterogeneity

the � parameter is added, and it will be changed to achieve it. This model summarizes the

behavior of a single cell, the most interesting cases use at least two coupled cells using the

same equations for every cell. The equations and the parameters will be indexed with i for

the first cell and j for the second one.

4.2 Couple of cells model

To simulate the behavior of 2 cells coupled, only a coupling resistance (gc) is needed and the

variables V, n and S are indexed by cell number (i, j). The coupling term (gc) is added to

the V equation as shown in equation (4). Altering this parameter has an important role in

the dynamics between the two cells [20].

⌧
dVi

dt
= −ICa(Vi)− Ik(Vi, ni)− gSSi(Vi − Vk − gc(Vi − Vj), i, j = 1, 2 (4)

�-cells are connected by gap junctions, so it makes sense that there is not coupling on the

auxiliary variables n or S. Note that � is also indexed with i-j as for the cells, in this work the

�i is never changed, and instead the parameter �j is the one that will be modified, usually.
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5 Model analysis and results

As already said, the analysis were performed using xppAUT, the graphs were then imported

into Matlab for aesthetic purposes. The method employed is commonly referred to as slow-

fast analysis.

5.1 Slow-fast analysis

Components that interact in different timescales is a frequently occurring situation in biologi-

cal systems. For example, there is a huge gap in timelines between neuronal electrical activity

and circadian rhythms coordinated through the suprachiasmatic nucleus of the hypothalamus

and involving rhythms in gene expression [18]. These examples are especially problematic

for computer simulations of mathematical models, because they are very expensive from a

computational point of view. A system that evolves i two timescales could be written as:

dx

dt
= F (x, y)

dy

dt
= ✏G(x, y)

where ✏ > 0 is very small. In this model, x evolves faster than y. We can refer to the x

equation as the fast subsystem, while the y will be the slow subsystem [18].

The general approach of fast-slow analysis is to treat the two subsystems separately. The

idea is that for general initial conditions, the system will be governed by fast subsystems, and

it will settle to a fast subsystem attractor, where F=0, that is parameterized by y. In this

neighborhood, the system will follow the slow subsystem, until a boundary of the attractor

is reached, and the fast subsystem takes over again.

John Rinzel adapted the fast-slow analysis technique to understand the dynamics underlying

bursting in neurons and pancreatic beta cells. It has been shown that it is more effective in

evoking neurotransmitter and hormone secretion than continuous trains of action potentials.

Fast-slow analysis is now regularly used in analysis of bursting oscillations [18], and is the

technique used in this thesis for obtaining and commenting results.
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5.2 Single cell

The first analysis was performed with the model for a single cell. The initial conditions were

v=-65, n=0, s=0.15.

To obtain the bifurcation diagrams the model is plotted using (5), there is a parameter

called autoc which changes between 0 and 1, so it allows switching between the original model

or one where the dynamics of s are simplified.

ds/dt = autoc ∗ (cknot− s) + (1− autoc) ∗ (sinf − s+ betaj)/taus (5)

This trick allows plotting the bifurcation diagrams in xppAUT. The parameter cknot is used

to simplify the model, in particular is the parameter used by AUTO to obtain the bifurcation

diagrams. The bifurcation diagram obtained is presented in Figure 9.

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

S

-80

-70

-60

-50

-40

-30

-20

-10

V

Bifurcation diagram 1 cell

Figure 9: The red branch represents the stable points, the black one represents the unstable
ones. The green C shaped curve represents the limit cycles. The blue circle represents the
Hopf Bifurcation.

As already said, since the time scales of s are much slower than the one of V and n, S

can be used as a bifurcation parameter. The red branches are the steady state solutions,

those branches attract the dynamic of the system into a stable solution. The black branch

represents the unstable solutions, and there we have the saddle points from which the model

tends to escape. In green are represented the maximum and minimums of the Limit Cycles,
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there the model oscillates until is able to "escape" from there. These dynamics of attraction

and repulsion could be seen easily from Figure 10.

0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23

S

-65

-60

-55

-50

-45

-40

-35

-30

-25

V
(m

V
)

Dynamics of the model

Figure 10: This graph represents one bursting cycle. The blue line is the model evolution
over time, the model follows/escapes from the bifurcation diagram as expected and jumps
from Max to min of the Limit Cycles.

For the steady solutions the system stabilizes himself to a fixed point, for the unstable

solutions the cell starts to spike continuously. This shows that one cell alone is capable of

spiking or being silent using the proper parameters, figure 9.

A Hopf bifurcation (HB) is present for cknot = -0.009744 (blue circle in figure (9)), from

there the limits cycle (LC) emerge. In figure 9, the C shaped curve represents the branch

of limit cycles. The upper part represents the maximums of V during the oscillations, the

lower part represents the minimums. During bursting, the spikes are contained between

those two branches until the dynamics are able to escape to the stable solutions, it can be

observed from figure 10. For cknot = 0.1745 a saddle-node bifurcation is present. The key

for understanding bursting is represented by the bistability that the model could achieve

between the low voltage steady state represented by the lower red curve and the silent phase

of bursting and the stable limit cycle oscillations, representing the active phase of bursting,
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0 500 1000 1500 2000 2500 3000 3500 4000

S

-65

-60

-55

-50

-45

-40

-35

-30

-25

-20

V
(m

V
)

Different cells behaviors

Figure 11: The red line represents the cell spiking. The blue line represents the cell resting.
Those dynamics were obtained changing lambda to 0.8 for both cases and using betaj=0 for
the red dynamic, and betaj=0.1 for the blue dynamic.

this is depicted in figure 10.
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5.3 Pair of identical cells

The analysis for a pair of identical cells is performed using the model with formula (4)

providing the coupling parameter gc and without changing the � parameters for the two cells.

For gc=0 the figure 12 was obtained, showing that the two cells are not in the same state

for the parameter selected. Changing this parameter leads to different dynamics between the

two cells.

0 2 4 6 8 10 12 14

T (s)

-65

-60

-55

-50

-45

-40

-35

-30

-25

-20

V
 (

m
V

)

2 identical cells wit gc=0

Figure 12: The blue line represents the i-cell, the red line represents the j-cell. In this case,
gc=0.

The initial parameters are chosen identical apart from V, Vi = −34, and Vj = −45, this

was done because with identical cells the graphics would be overlaying and would be hard to

distinguish the cells, in this way only a shift in the timescale is expected to happen. Without

coupling, the dynamics of the cells are disconnected one from the other, but they have the

same pattern, as expected from the initial conditions difference they are identical but shifted

in time, this can be observed easily from the figure 12.

Introducing a coupling between the cells, a different behavior could be observed. For gc=0.04

the two cells have the same period, but the bursting spikes are in antiphase. The initial
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conditions are identical to the ones for gc=0.

0 2 4 6 8 10 12 14

T

-70

-65

-60

-55

-50

-45

-40

-35

-30

-25

-20

V
2 cells dynamics

Figure 13: The blue line represents the i-cell, the red line represents the j-cell. In this case,
gc=0.04.

In this scenario the two cells synchronize in period, to a further look an antiphase between

the spikes could be noted. For other values of gc the behavior of the model with identical

cells is similar to the one obtained in figure 13, so for practical reasons further graphs are

not shown.
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6 Discussion

Now that the simplest cases have been analyzed and described, in this section cases with

heterogeneity will be explored and discussed, trying to understand and explain the behavior

of 2 different cells in totally different initial situations are coupled by different coupling

strengths.

6.1 Coupling between heterologous cells

�j was set to 0.1 to simulate two different cells. The first case analyzed was with gc=0,

the j-cell doesn’t present any bursting, it stays in a resting state as shown in figure 14, as

expected from what seen with the single cell behavior. So, with the absence of coupling, the

two cells are disconnected one from the other, and their dynamics remain unaffected by each

other.
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2 identical cells wit gc=0

Figure 14: The blue line represents the i-cell, the red line represents the j-cell. With the
introduction of �j, the j-cell is not able to spike and is in a state of rest as seen for the single
cell.
The cells are identical, in every parameter apart for �j, which makes the red cell unable to
burst by herself.
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With gc=0.04 a more interesting behavior appears. The j-cell isn’t quiescent anymore, some

new kind of bursting patterns appear, depicted in figure 15. The j-cell undergoes a state in
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Figure 15: The blue line represents the i-cell, the red line represents the j-cell. It can be
easily seen that the j-cell bursts follow the i-cell in period, but it isn’t able to burst as it used
when the cells were identical. Amplitude raises after every burst until it reaches a point in
which it burst as the i-cell, then after that it goes down and starts rising again.

which the burstings are very different over time. It starts with a smaller burst than the i-cell

in both amplitude and period. The burst increases with time until it becomes similar to the

burst observed for the single cell. After the big burst appears, the systems restarts allover

into a pattern that is pseudo-periodic. To explain this particular behavior, a particular type

of analysis is performed. Bifurcation diagrams are calculated for the 1 cell model with gc

for fixed values of Vj. The diagrams obtained are different for different values of Vj, they

appear to shift, and the knees become more gentle as Vj grows. The diagrams were imported

in Matlab to obtain the figure 16, for V-S plane, in which can be observed that the random

oscillations are contained between the two bifurcation diagrams for Vj=-44 and Vj=-63.

The dynamic is very interesting since the cell oscillates between two states of stability in

accord to what happens to the i-cell. It is able to fully burst when the system surpasses the
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Bifurcations and 2 cells

Figure 16: The blue line is the dynamic of the j-cell. The lower bifurcation diagram refers to
the 1 cell model with Vj=-44, the upper refers to Vj=-63.

stable points of the upper bifurcation diagram. It can be imagined as the upper bifurcation

diagram is attracting the model every time a small oscillation is present, then when the

upper branch is not stable anymore the system fires a proper burst, finding himself trapped

in the limit cycles until it eventually escapes from there as in the case for single cells, returning

trapped between the two stable branches depending on the state of the i-cell. Similar analysis

were performed for other values of gc. The results for lower gc were not appreciable, while

for higher ones the small burst tend to get bigger, making it harder to recognize the pattern,

so were not reported as they were considered less interesting or redundant. The interesting

range is present for gc=0.03-0.1. A new idea to better explain this behavior emerges, the

dynamics of the model should move into a "bifurcation surface", obtained by an interpolation

of bifurcation surfaces calculated varying Vj.
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6.2 Bifurcation surface

To obtain the bifurcation surface, an interpolation of the bifurcation diagrams is needed, and

it is obtained by plotting the bifurcation diagrams for Vj in the range -26-64 mV. Limit cycles

are also depicted in the figure 17 to help the comprehension of the model from comparisons

between 2D and 3D diagrams. In this case has been used a gc=0.05.

Figure 17: In blue is presented the bifurcation surface. The black stars represent the Hopf
Bifurcation points. In green stars are presented the Limit Cycles.

After obtaining the bifurcation surface, the dynamics of the model were added in red, it

can be observed that it travels near the surface, going from small spikes to the bigger ones,

as depicted in both graphics in figure 18. It can be observed that the model displays big

burst oscillations for higher values of V, and those bigger oscillations follow the limit cycles

until eventually the model is able to escape from there. Another interesting observation is

that while bursting in the V-S plane, the dynamic of Vj is present, causing the model to

"surf" the bifurcation surface. In particular, this is observed for values of S around 0.207.

Going further, after the big burst the model shoots down the dynamics line and reaches the

bifurcation surface, that is known to present stables solutions for low values of V and high

values of s (from the 2D analysis).

At this point, the model starts to go slowly backwards in the S scale, following the stable

solutions. Here it can be observed that the small burst began to fire in the V-S plan, this can
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Figure 18: Blue, green and black points have the same meaning as in the 17 figure. In red
is presented the evolution of the cells dynamics. Two points of view are presented so the
dynamic could be observed under and over the surface.

easily be explained looking at the 3D graphic. The dynamics of Vj takes over, and horizontal

oscillations are visible in the surface, it can be observed in the V-Vj plane. Bursts get bigger

and bigger over time, following the curvature of the surface. At some point the model goes
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Figure 19: Blue, green and black points have the same meaning as in the figure 17. In red
is presented the evolution of the cell dynamics. Two points of view are presented, so the
dynamic could be observed under and over the surface.

off the stables solutions and at then fires a new big burst. This happens when the model

goes through the s nullcline. To show this, in figure 19 is added the "nullcline surface" in

magenta for s=0 and Vj in the range -26-64 mV, the limits of S from where the big burst are

born are defined more clearly.
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7 Conclusions

The primary objective of the thesis was to discover and discuss particular dynamics between

two coupled cells. This was successfully obtained in the case of two heterologous cells with

coupling, having one cell bursting while the other was in a resting state. The interesting

patterns appeared for gc in the range 0.03-0.1, but it is worth noting that while the value

increased, the quality of the pattern deteriorated. In the analysis, the best parameters to

show the system behavior were 0.04 and 0.05, since for those two the pattern was very stable

and clear. The secondary objective was to give a geometric explanation to the phenomenon

observed, and again this was successfully obtained. Specifically, the idea of utilizing a 3D

graphic facilitated the visualization and validation of the explanations offered for the 2D

version. Research for interesting patterns was tried for three coupled cells in both linear and

triangular configurations, but no interesting dynamics emerged. This kind of analysis with

more than 2 cells is an intriguing point from which further investigations could be done,

maybe going to the macroscopic cases, considering the dynamics of the single cell in the

cluster.
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