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Abstract

Optomechanics studies the interaction between light and a mechanical resonator,
enabled via radiation pressure. Employing a high finesse cavity it is possible to
enhance this interaction, enabling the possibility of bringing macroscopic objects
in a quantum superposition of states and possibly opening the way to the experi-
mental study of quantum decoherence. The work carried out in this thesis consists
in the developement and improvement of an experimental setup used to perform
optomechanics experiment, that in the future will allow to experimentally investi-
gate the foundations of quantum mechanics.
The first part of this thesis deals with the developement of an optical system for
cryogenic applications that matches the Gaussian mode of a SM optical fiber into
a high Finesse optical cavity. We will discuss how a prototype has been designed
and experimentally tested.
In the second section will be investigated a technical problem encountered in the
Pound-Drever-Hall (PDH) frequency stabilization setup implemented using optical
fibers instead of free space optics. The presence of some wiggles in the PDH error
signal, and a time dependent shift of its baseline makes difficult to lock the laser
to the cavity for a sufficient amount of time to perform experiments. Numerical
simulations and experiments will be performed in order to understand the origin
of the problem, and to solve it.
The last part of this work consists in the experimental study of the decay of a ther-
momechanical squeezed state, a phenomenon that to the knowledge of the author
has never been investigated yet. In particular we will create a thermal squeezed
state by parametric modulation of the spring constant, and we will study its time
evolution after we switch off this parametric modulation.
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1. FIBER TO CAVITY COUPLER FOR CRYOGENIC APPLICATIONS

1 Fiber to cavity coupler for Cryogenic applica-

tions

Around the world there are different research groups involved in optomechanical
experiments, each one of them using a different configuration (different type of
mechanical resonator and cavity). A review of the state of the art can be found in
[1]. The Bouwmesteer group is focusing on a system in which a high Q mechanical
resonator ( a SiN membrane with dimensions of 3mm × 3mm × 25nm) is placed
in the middle of high finesse Fabry-Perot cavity, which is made of high reflectivity
spherical mirrors (radius of 50mm) placed at a distance L=94 mm with respect to
each other. The cavity is suited for a wavelength λ = 1064nm and has a Finesse
F=19000. With this setup it is possible to investigate optomechanical effects in
the quantum regime, by placing the cavity inside a dilution refrigerator. This
cryostat doesn’ t have any window that connect it with the outside, and therefore
light is sent into the cavity through optical fibers. For this reasons, the optical
elements that perform the mode matching between the SM optical fiber and the
cavity are also placed inside the cryostat, and are cooled down during the process.
The change in temperature affects dramatically the properties of these optical
components, and as a result if one doesn’t counteract the effect, the coupling
between the optical fiber and the cavity at low temperature will be very low or
not present at all, even when starting with a high value at room temperature. In
the past the Bouwmesteer group has already performed experiments at cryogenic
temperatures, relying on a fiber to cavity coupling system that included piezos
and motors to move the optical components during the cooling down, in order
to be able to compensate for the change in the optical and mechanical properties
of the components. This design has some drawbacks, for example the setup was
mechanically not rigid enough, and in the cryostat it was shaking so much that
the PDH lock couldn’ t be established. The other main disadvantage is that this
scheme requires an operator that controls the active elements to re-adjust the
positions of the optical components during the cool down of the system, which
normally takes few days and has to be constantly and closely monitored.
At the moment I joined the research group, this old cryogenic setup had already
been dismanteled, in order to move towards a new design for the fiber to cavity
coupler that doesn’t have the previously mentioned problems. I have been asked to
conceptually design (and test) such a system, with the constraint of not employing
any active elements to control the optical components: once everything is in place
at room temperature, no adjustment should be required to mantain the same
coupling (or at least a high value) also at cryogenic temperatures. In order to
achieve this purpose one should carefully choose the materials of the setup and its
symmetry. The only constraints that we have are the dimensions of the optical
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1. FIBER TO CAVITY COUPLER FOR CRYOGENIC APPLICATIONS

cavity and the radius of curvature of the mirrors, already mentioned before. With
this constraint, the design of the optical setup has been chosen according to the
following criteria:

• All the optical components will lie on the central axis of a cylinder, in order
to minimize the effects of thermal contraction/expansion along the radial
direction.

• The material of this cylindrical structure is Invar (a metal alloy composed
of 64% of Fe and 36% of Ni), which has a very low coefficient of thermal
expansion: the integral coefficient of expansion from 300K to 4K is

∆L

L0

= −4.0× 10−4 ,

where  L0 is the length at 300K and ∆L is the difference between the length
at 4K and the length at 300K.

• The distance between the tip of the optical fiber and the cavity has to be
kept as small as possible, in order to minimize the effects of misalignment
on the optical components

• The number of lenses used to couple light from the fiber to the cavity has to
be kept as low as possible, in order to have the simplest design.

In order to find an optical configuration that couples light into the cavity satisfying
these conditions, a Matlab program based on ray transfer matrix for Gaussian
beams has been implemented

1.1 The ray transfer matrix method for Gaussian beams

Before describing the propagation of a Gaussian beam through optical components,
we need to introduce it. A Gaussian beam is a beam of monochromatic electro-
magnetic radiation whose transverse magnetic and electric field amplitude profiles
are given by the Gaussian function. Moreover it is true that this mode belongs to
the so called Hermite-Gaussian modes, a set of modes of the electromagnetic field
that can be used to describe an arbitraty field distribution and in particular the
field distribution of an electromagnetic wave inside an optical resonator. If we set
a reference system in which z is the direction of propagation of light and the x-y
plane is the plane orthogonal to the z axis, we can write the electric field of the

5



1. FIBER TO CAVITY COUPLER FOR CRYOGENIC APPLICATIONS

Hermite-Gaussian modes as:

Em,n (x, y, z) = E0
W0

W (z)
Hm

( √
2x

W (z)

)
Hn

( √
2y

W (z)

)
×

exp

[
−(x2 + y2)

W 2 (z)
− ik (x2 + y2)

2R (z)
− ikz + i (m+ n+ 1) arctan

(
z

z0

)] (1)

where m and n indicates the order of the mode, and H are the hermite polynomials.
The Gaussian beam is obtained for m=n=0:

E0,0 (x, y, z) = E0
W0

W (z)
×

exp

[
−(x2 + y2)

W 2 (z)
− ik (x2 + y2)

2R (z)
− ikz + iarctan

(
z

z0

)] (2)

In this case the parameter R gives the radius of curvature of the wavefront of the
beam, at the coordinate z:

R (z) = z

[
1 +

(z0

z

)2
]
. (3)

W gives the radius of the beam at the coordinate z (i.e it is the distance in the
x-y plane for which the intensity of the beam is 1/e2 the intensity at the origin of
the plane):

W (z) = W0

√
1 +

(
z

z0

)2

(4)

W0 is the radius at z=0, and z0 is the Rayleigh range defined as

z0 =
πW 2

0 n

λ
,

being λ the wavelength and n the refractive index of the medium in which the beam
is propagating. The Beam Waist and the Radius of curvature at a particular point
contain all the informations on the characteristics of the beam. Therefore by
knowing these 2 parameters, we can determine the characteristics of a Gaussian
beam after any optical element. For this we need to introduce the complex beam
parameter q(z):

q (z) = z + iz0 ⇐⇒
1

q (z)
=

1

R (z)
− i λ

nπW 2 (z)
. (5)
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1. FIBER TO CAVITY COUPLER FOR CRYOGENIC APPLICATIONS

From the ray transfer matrix method we know that every optical element can be
described by a matrix: (

A B
C D

)
It can be demonstrated that if qin is the complex beam parameter of the gaussian
beam before the optical element, after the optical element the complex beam
parameter is given by the following equation:

qout =
Aqin +B

Cqin +D
(6)

Moreover if several optical elements are cascaded one after another, they can be
described by a single matrix which is the product of the single matrices (the order
of the multiplication of the matrices is from the last element to the first one). The
reader who wants to know more about Gaussian beams and Matricial Optics, can
find a more detailed explanation in any Optics book, such as [2]

1.2 Finding the optimal lenses configuration

Using the ray transfer matrix method introduced above, it has been implemented
a Matlab routine that given an arbitrary number of lenses, calculates the optimal
positions and focal lengths in order to have the maximum amount of light coupled
from the optical fiber into the cavity. The fixed parameters in the simulation
are the Mode field diameter of the optical fiber, the length of the cavity and the
characteristics of the mirrors of the cavity. In particular the spherical mirrors
(Rmirror =50mm) and the length of the cavity (L=94mm) impose a condition on
the beam that resonates inside the cavity: the Gaussian beam in correspondance
of the mirror needs to have the same radius of curvature of the mirror. From this
condition and using equation 3, one can calculate the waist of the beam inside the
cavity that in our case is:

R

(
L

2

)
=
L

2

[
1 +

(
2z0

L

)2
]

= Rmirror → W target
0 = 63.4µm .

In order to couple the maximum amount of light into the cavity, we need that after
the beam propagates through all the optics and enters the cavity, it has the waist
in the middle of the cavity and it needs to match W target

0 . Keeping that in mind,
the Matlab software works as follow: you select an arbitrary number of lenses
(which are initially considered as thin lenses), and the parameters that you want
to keep fixed (focal length and position of each lens). You insert values for the
fixed parameters and consider all the other parameters as free. Then you build the
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1. FIBER TO CAVITY COUPLER FOR CRYOGENIC APPLICATIONS

transfer matrix for each optical component (NB that also the propagation of the
beam through air has to be considered, and therefore is represented by a matrix),
and multiply them together in order to obtain the total transfer matrix of the
system. We completely know the complex beam parameter in input of this matrix,
since it is solely dependent on the characteristics of the optical fiber (MFD). The
complex beam parameter in output of the system (qout) is then calculated using
equation 6, and it will be a function of the free parameters. About the target
complex beam parameter (i.e the complex beam parameter that I expect in the
centre of the cavity in order to have perfect coupling between optical fiber and
cavity), we know by equation 5 that its real part has to be 0 since it is the
reciprocal of the radius of curvature and for the simmetry of the cavity, the radius
of curvature of a resonating beam is infinity at the waist’s position. Therefore we
can build an error function given by:

E = [Re (qout)]
2 +

[
ztarget0 − Im (qout)

]2
. (7)

Minimizing this function by means of the matlab routine fminsearch, we can find
the values for the optimal values of the free parameters in order to have light
resonating inside the cavity. Up to now, the Matlab software was modelling all
the lenses as thin ones, which is not the case in reality. For this reason, once a
thin lenses configuration is found, it is necessary to look for the availability of
lenses that has the same (or close) focal length. After choosing the model of the
lens, the Matlab routine reiterates the minimization process considering the lenses
as real ones (therefore considering their thickness and radius of curvature of the
surfaces). In this case, the radius of curvatures of the lenses and their thickness
are kept as fixed parameters, and the parameters to be minimized are only their
positions. This real configuration may not be as optimal as the ideal one: we
need a way to theoretically calculate how much light is coupled into the cavity,
also to check the correctness of the solution provided by the simulation. Since the
Hermite-Gaussian modes form a base for the modes inside the cavity, the coupling
can be calculated by decomposing the Gaussian beam entering the cavity into the
Gaussian-Hermite modes supported by the cavity. The coupling will be given by
the square modulus of the overlap integral between the normalized electric field of
the incoming Gaussian beam an the complex conjugate of the normalized electric
field of the TEM00 mode supported by the cavity:

η =

∣∣∣∣∫∫ Ebeam
00 Ẽcavity

00 dx dy

∣∣∣∣2 (8)

where E00 are given by equation 1 at the order m=n=0, apart from a normalization
coefficient.
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1. FIBER TO CAVITY COUPLER FOR CRYOGENIC APPLICATIONS

1.3 Behaviour of the system at cryogenic temperatures

Now that we know a configuration of lenses that couples light into the cavity, we
want to know how the coupling will change when the system is cooled down at cryo-
genic temperatures. To do that we have to analyze the temperature dependence
of the materials used in the simulation. For the metal structure that holds all the
optical components it has been chosen Invar, because of its low coefficient of ther-
mal expansion. For the lenses it has initially been chosen UV fused silica, because
it also has a very low coefficient of thermal expansion, and it is well suited to work
at cryogenic temperatures. In figure 1 is reported the linear thermal expansion
of invar at different temperatures, as measured in [3]. In figure 2 is reported the
linear thermal expansion of UV fused silica at different temperatures, as measured
in [4] and in table 1 is reported the dependence of the index of refraction on the
temperature for λ = 1064nm, as measured in [5].

T [K] 30 50 80 120 160 200 240 295
n [ ] 1.44947 1.44950 1.44957 1.44970 1.44989 1.45012 1.45039 1.45082

Table 1: Refractive index as a function of temperature, for Fused Silica (λ = 1064nm).
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Figure 1: Linear thermal expansion for Invar as a function of temperature. L293 is the
length at room temperature, and L is the length at the temperature considered. Note
that this function is a fitting function of the data measured in [3].
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Figure 2: Linear thermal expansion for UV fused silica as a function of temperature.
L293 is the length at room temperature, and L is the length at the temperature consid-
ered.

The thermal contraction/expansion of the materials causes a change in the position
of the optical elements, and combined with the change in the refractive index
causes also a change in the focal length of the lenses. To take these effects into
account, a Matlab simulation has been implemented: once an optimal solution
for the positions of the lenses is found using the previous simulation routine, the
values are inserted in this other Matlab routine that taking into account of all the
effects described, compute how much the coupling changes when going from room
temperature to mK temperatures. Note that below 30 K we don’ t have data
about the refractive index for fused silica, since it couldn’t be found in literature.
Nevertheless at that temperature the big changes in the properties of the material
have already happened, and therefore it is possible to assume that the system
doesn’ t change much from 30 K to mK temperatures.

1.4 Results of the simulations

Using the simulations previously described, it has been found a configuration of
2 lenses that theoretically couples 100% of the light form the optical fiber to the
cavity. Note that this theoretical value of 100% is not realistic but just means good
coupling, since the simulation didn’ t consider effects of aberration, absorptions
and reflections of the lenses (which in the implementation of the setup will be
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1. FIBER TO CAVITY COUPLER FOR CRYOGENIC APPLICATIONS

reduced by using aspherical lenses with anti-anti reflection coating) and considered
the optical fiber, lenses and cavity to be perfectly centered along the z axis. Then
the parameters of the 2 lenses were given in input to the software that calculates
the change in coupling when going from room temperature to mK temperatures.
In order to find the temperature-sensitive parameter that affects the coupling
the most, the simulation has been run many times every time fixing a different
parameter (so that it cannot change with the temperature) and calculating the
final coupling at cryogenic temperature. By doing this it has been found out
that the thermal expansion/contraction doesn’ t play an important role (distances
and radiuses of curvature of the lenses doesn’ t change significantly to affect the
coupling). What has been found to be the main contribution in the loss of coupling
is the variation in the index of refraction of the first lens (the one closer to the tip
of the optical fiber), that for UV fused silica is (normalized by the refractive index
at room temperature):

n30 − n295

n295

= −9.0× 10−4

Using again the simulation, it has been noticed that the change in the refractive
index doesn’ t play a big role if the first lens has a short focal length (roughly
4mm) and it is placed at a small distance from the optical fiber. However after a
search we didn’ t found any manufacturer that produces such a short focal length
lens made out of fused silica, therefore we considered different materials for the
lenses. A good solution has been found in N-BK7 which has a lower variation in
the index of refraction, as measured in [6]. The normalized change in the refractive
index when going from room temperature to 60K is:

n60 − n295

n295

= 8.6× 10−5

which is roughly one order of magnitude lower than the one for fused silica at
the same temperature range. The only drawback is the higher linear thermal
expansion, compared to fused Silica. As measured in [7], the normalized linear
thermal expansion from 300K to 30K is

L30 − L300

L300

= −6.0× 10−4

This could tilt the lens during the cool down, therefore particular attention should
be paid in the design of the mountings for the lenses. In order to attenuate any
abberration, we want the lenses to be aspherical: however we didn’t find andy
manufacturer that produced aspherical lenses with relative short focal length in
N-BK7. One of the common materials for aspherical lens with short focal length
is dense Crown glass D-ZK3, which also happen to have similar thermal properties
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1. FIBER TO CAVITY COUPLER FOR CRYOGENIC APPLICATIONS

to N-BK7, therefore this material has been selected for the lenses. The final
configuration is made of 2 lenses: the first one has a focal length f=4.5mm and it
is positioned with its centre at z1=4.93mm from the end of the optical fiber, the
second lens has a focal length f=75mm and its center lies at z2=27.12 mm from
the optical fiber. The distance fiber to first mirror is 50mm. When cooling down
the system, the coupling at Tf=40 K has been simulated to be 98% of the coupling
at Ti=300K. In figure 3 is shown the beam diameter along the optical line for this
configuration.
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Figure 3: Beam diameter as a function of the position along the z axis for the final
configuration of lenses: the coupling at 40K will be 98% of the coupling at 300K.

As a final remark, it is worth noticing that at room temperature, the precision
with which the first lens is placed is critical to couple the light into the cavity, as
shown in figure 4.

1.5 Experiment: testing the concept of the design

Up to now everything was simulated and in order to check if the axial symmetric
design proposed is suitable for cryogenic applications, the next step is to test it
experimentally. Given the complexity of the system, a lot of things can go wrong
when cooling it down: therefore as a first experimental test we want to keep the
system as simple as possible. Considering that the part that mostly affect the
loss in coupling at cryogenic temperature is the first lens (and in particular its
initial relative position with respect to the optical fiber as shown in figure 4),
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Figure 4: In figure is shown how the coupling is affected by a radial displacement of
the lens on the xy plane (picture on the left), and by a displacement on the z axis with
respect to the optimal position of the lens zoptimal (picture on the right).

initially only this part will be tested. This part has been manifactured by the fine
mechanics department of Leiden University. It consist of a hollow invar cylinder
with a fiber holder on one side, embedded in a differential screw that allows to move
the position of the fiber along the axis of the cylinder with micrometric precision.
Right after the fiber holder there is the lens support that allows to move the lens
along the x-y plane (the plane perpendicular to the axis of the cylinder). At the
other end of the cylinder there is a clamp mechanism that allows to connect the
piece with other modules (in the future it will be the second lens and the cavity
itself). The optical fiber used in the experiment is just PC (not angled), and it is
kept in place inside the differential screw by a mechanism that clamp it on the end
of the tip of the ferrule (in such a way that the thermal expansion of the ceramic
ferrule doesn’ t play any role in the experiment). Also the lens is clamped against
the invar and kept in place by a spring loaded mechanism. No cryogenic glue
has been used to fix the fiber or the lens, in order to avoid tilting of the optical
components, as reported in [8]. For the purpose of the experiment, a part identical
to the first one has been produced but without the differential screw, the fiber and
the lens. On the side of this second part in which there should be the differential
screw, a plane dielectric mirror has been glued using a very thin and uniform layer
of STYCAST 2850FT (for cryogenic applications) as recommended in [8]. Then
the 2 parts have been clamped together with screws. In figure 5 is shown a picture
of the setup: on the right side of part A is visible the differential screw with the
optical fiber plugged in. On the left side of part B is visible the mirror. In the two
holes of part A can be inserted micrometric screw for the X-Y alignment of the
lens (there are other 2 holes on the opposite sides of the visible ones, for a total of
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1. FIBER TO CAVITY COUPLER FOR CRYOGENIC APPLICATIONS

4 micrometric screws in part A). It is also visible the temperature sensor Pt1000
used to monitor the temperature. The setup is mounted on a plate of a dilution
refrigerator.

MIRROR

PART B PART A

DIFFERENTIAL SCREW

X-Y SCREWS FIBER

Figure 5: Fiber coupler used in the experiment with the name of the components.
Notice that the X-Y screws are 4 (there are 2 more on the hidden side of part A).

The experiment consists in measuring the light that after being reflected by the
mirror, is coupled back into the optical fiber, and monitor it at different temper-
atures. At room temperature the light coupled back in the optical fiber is ' 90%
of the light sent with the laser. It is important to start with a very high value be-
cause that means we are close to the optimal configuration. In figure 6 is shown the
schematic of the optical line used in the experiment: the laser light goes through
a Faraday isolator (to prevent reflected light to go back into the laser), and then
it is coupled into a SM fiber. This fiber is connected to port 1 of an in-fiber beam
splitter that separate the light beam into 2: one goes to the fiber coupler device
(port 3), and the other goes into a photodiode (port 4) in order to monitor the
power of the laser over time. The light that goes into the fiber coupler is back
reflected by the mirror, coupled again into the fiber and exiting through port 2,
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after which is placed a photodiode that monitor the power over time. Finally the
fiber coupler device is placed into a Cryostat: a dilution refrigerator, that allows
to cool down the system at cryogenic temperatures in a slow and controlled way
(starting from room temperature, it takes about 5 days).

Fiber Coupler

CRYOSTAT

Port 1

Port 2

Port 3

Port 4

PD 1 PD 2

Laser Faraday

Isolator

PC

SM �ber SM �berBS 

50:50

Figure 6: Optical scheme of the experiment

To monitor the temperature, 2 thermometers have been used: a Pt1000 attached
directly on the fiber coupler structure (see part B in figure 5) which gives reliable
measurements up to ∼ 20K, and another custom-made resistive thermometer of
Ruthenium Oxide, which is mounted on another plate in the same cryostat and
it is suitable for a range of temperature from few K to mK. Notice that the cryo-
stat has different cooling plates, stacked on top of each other: our experiment is
mounted on the second-last of these plates, which reach as a lowest temperature
4K. The last plate of the cryostat reaches mK temperature, and it is where the
other thermometer (Ruthenium oxide) is mounted. We are not interested in going
to mK temperatures because the mechanical and optical properties of the material
don’ t change anymore. We just mentioned that the 2 thermometers are mounted
on different plates because as it is visible in figure 7, the readings of the 2 ther-
mometers don’ t overlap in any range of temperature (they should at around 20 to
15 K). Indeed they are mounted on different plates, and it takes some time for the
heat to propagate along different plates, leading to different temperatures between
the plates.
In the same figure it is also visible that at the beginning of the experiment, the
cryostat has been cooled to ∼ 250 K, then heated up again and then the complete
cooling down to 4 K started. This happened because of some technical problem
with another experiment running in the same cryostat, but it provided us with
useful information about our setup. Indeed We noticed that during this short
cooling phase the coupling of the system decreased, but it went back to the initial
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Figure 7: The plot shows the the temperature measured with the 2 thermometers as
a function of time. In the highlighted region it is visible the point at which the Pt1000
stops working.

value once the system was brought back at room temperature. This means that
nothing bad (i. e. irreversible processes) happened in our prototype, and it can
be cooled down several time without the need of realigning the system every time.
We will now quantitatively analyze the collected data shown in figure 8, in which
we considered only the ”real” cool down process, therefore neglecting the initial
phase in which the system was cooled down and heated up again. Because of
what said previously about the thermometers, the red line in the plot (placed at
about 16 K) indicates the region over which the measured temperature is the real
temperature of the system. This is not a big problem because not much happens
below 16K for the purpose of our experiment.
The data have been filtered by means of a movable mean filter, in order to remove
some noise. They show the back reflected light measured by photodetector (PD1
in the schematics of the optical line). The data have been normalized by the
power of the laser (monitored separatedly by another photodiode as shown in
the optical scheme in figure 6) in order to eliminate the effect of any change in
the laser’s power. The data have also been normalized by the measured back
reflected light at room temperature, in such a way that at room temperature the
measured intensity (power) is 1. Looking at the data it is immediately noticeable
the presence of some oscillations: these are due to interference between the light
promptly reflected by the mirror, and the light reflected by the tip of the optical
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Figure 8: The blue signal is the back reflected intensity (power) as a function of
temperature. It has been normalized in such a way that at room temperature its value
is 1. The red line represents the point after which the temperature measured with the
thermometer can not be trusted anymore.

fiber, which in this setup doesn’ t have any antireflection coating. Indeed when the
temperature changes, the invar structure shrinks changing in this way the optical
path of only the promptly reflected beam. Moreover we are sure that the stray
reflection happens at the tip of the optical fiber because the only other element
that could reflect some light is the lens, but the light back reflected by the lens is
not mode matched with the optical fiber and therefore can not propagate inside
it.
As an evidence that this effect is indeed interference, at some point we changed
the frequency of the laser, and the effect of this process can be seen as a change in
the phase of the oscilllations in a zoomed in picture of the plot, shown in figure 9.
At around 60K in figure 8 is also visible an inversion in the direction of changing
of the phase of the oscillation: we think what is happening here is that at this
temperature the coefficient of thermal expansion of invar becomes positive. In the
plot of the linear thermal expansion of Invar (figure 1) this happens at around
80K (even though it is a minimal effect, and it is barely visible). The discrepancy
between the 2 temperatures could be caused by a slight variation in the percentage
of Nickel contained in the two alloys. Let’s then move forward to the analysis of
the data: in order to know what is the effective change in the coupling at different
temperatures, we can not simply calculate the ratio between the backreflected
intensities at the two temperatures, but we have to fit the data using the formula
for total intensity of two interfering beams:

Itot = I1 + I2 + 2
√
I1I2cos (∆φ) , (9)
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Figure 9: In figure is shown the change in the phase of the oscillations of the signal
when we changed the frequency of the laser.

where I1 and I2 are the intensities of the 2 beams, and ∆φ is the difference in
the phase of the 2 beams. In the experiment the physical quantity measured is
not the intensity but the power, which is the intensity integrated over the area of
the photodetector hit by the laser beam. Since power and intensity differ just by
a proportional coefficient, nothing changes in the analysis. During half a period
of the oscillation the total intensity goes from a maximum (when ∆φ = 0) to a
minimum (∆φ = π). Equation 9 can therefore be rewritten as{

Imax = I1 + I2 + 2
√
I1I2

Imin = I1 + I2 − 2
√
I1I2

(10)

We measured the maxima and minima of the oscillations at room temperature
(T=288K) and at 4K, and by inverting equation 10 we retrieved I1 and I2 that
will be respectively the light reflected from the mirror, and the one reflected by
the optical fiber. The change in I1 tells us how much the coupling changes. The
results are shown in table 2, in which the intensities are unitless because of the
normalization explained previously.

Temperature I1 [ ] I2 [ ]
288 K 0.89 ± 0.01 0.016 ±0.002
4 K 0.22 ± 0.02 0.025 ± 0.002

Table 2: Measured normalized intensities of the interfering light beams, at room tem-
perature and at cryogenic temperature.
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From these values we can calculate the couping efficiency between room tempera-
ture (T=288K) and cryogenic temperature (T=4K), obtaining the following value:

η =
I288K

1

I4K
1

' 25%

which means that of the light coupled back into the fiber at room temperature,
roughly 25% will still be coupled after the system is cooled down. Looking at I2,
it can be noticed that its values increase at low temperatures. Calculating the
correspondent reflectance using the formula

R =
I2

I1 + I2

,

we find that:
R288K = (1.8± 0.2) %

R4K = (10± 1) %

These values are not in agreement with the reflectance that we expect for the
interface glass-air at the tip of the optical fiber, which is calculated using the
Fresnel equations at normal incidence:

Rinterface =

∣∣∣∣nglass − nairnglass + nair

∣∣∣∣2
and gives the following value:

R288K
interface ' 3.4%

R30K
interface ' 3.3%

where we used the index of refraction of Fused silica given in table 1. We computed
the reflectance at 30K instead of 4K because we didn’t find the index of refraction
of fused silica at that temperature in literature, anyway this doesn’ t change in a
significative way to explain the discrepancy with the effective reflectance measured.
No explanation has been found for this discrepancy, but this is not a real problem
because in this experiment we just wanted to test how the coupling of the fiber
coupler changes going to cryogenic temperatures.

1.6 Conclusions and future developements

It has been measured that at 4K the coupling is η ' 25% of the value it has at
288K: this doesn’t agree with the simulation (which predicted a much higher value
around 98%), but is still a very good result. We have some ideas about the factors
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that could have caused this decrease in the coupling: first of all in the simulation
we didn’ t consider aberrations, and even though the collimating lens is aspherical
in order to correct for this effect, it doesn’ t completely eliminate it. That said,
the main contribution in the loss of coupling has been identified in the differential
screw: while aligning the system at room temperature we noticed that this part
(on which is also mounted the ferrule of the optical fiber) is not very stable and
whilst it is supposed to move only in the z direction (along which the light beam
propagates), it slightly moved also along the x-y direction. This is a crucial part
of the setup, because as shown in figure 4 , a displacement (or a tilt) of the optical
fiber of few tens of µm in the x-y plane, drastically affects the coupling, and we
think that this is what happened during the cool down.
The final setup for the fiber to cavity coupler that does the mode-matching between
the light coming out of the optical fiber and optical mode supported by the cavity,
will consist of the fiber coupler (the system composed by fiber and first lens), a
second lens and the high finesse cavity. As previously said the simulations predicted
that at cryogenic temperature the most critical part was the fiber coupler. Since
the very first test on the component showed that at cryogenic temperature there is
still a decent amount of coupling, we can build the final setup following this path.
In the future developements there will be an improvement of the differential screw
in the fiber coupler, allowing an even higher coupling coefficient. After that the
other two modules (second lens holder and optical cavity) can be manufactured
and connected to the first module. This setup will allow the Bouwmeester group
to perform cavity optomechanics experiment in the quantum regime.
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2 Pound-Drever-Hall laser frequency stabiliza-

tion

The frequency of lasers fluctuates due to many factors, such as thermal expansion
of the active medium and/or of the laser cavity. In optomechanical experiments
it is mandatory to have a source of light with a high frequency stability, and a
way to keep the frequency stable is the Pound-Drever-Hall technique, developed
in 1983. The idea is simple: the laser’ s frequency is measured with a Fabry-
Perot cavity, and the measurement is fed back to the laser to suppress frequency
fluctuations. Generally implemented using free space optics, in our experimental
setup this technique is implemented using optical fiber connections, and in-fiber
optics. Maybe due to this reason, the error signal used to keep the frequency stable
presents some instability like wiggles or a time dependent shift of its baseline level,
as shown in figure 10.
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Figure 10: In figure is shown the PDH error signal of our setup. Here are visible the
mentioned problems: the presence of wiggles in the signal, and a shift of the baseline
level. Both of them fluctuates over time.

Because of this problem the frequency of the laser can not be kept stable for a
sufficient amount of time to allow long measurements. In the first part of this
chapter we will introduce the PDH frequency stabilization technique, and in the
second part we will investigate and solve the abovementioned problems.
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2.1 The general idea

The idea behind frequency stabilization techniques is to use a Fabry-Perot cavity
to measure the frequency of the laser. A cavity acts as a filter: light can pass
through a cavity only if the frequency is an integer multiple of the cavity’s free
spectral range ∆νFSR = c/2L (L is the length of the cavity). The resonances (or
transmission lines) are evenly spaced in frequency every free spectral range. If we
operate near these resonances, such that some light is transmitted, then a small
change in the frequency would produce a proportional change in the transmitted
intensity. If we measured the transmitted intensity of the light, then we could
feed this signal back to the laser in order to hold this intensity (and therefore the
laser frequency) constant. This is how lasers were stabilized in frequency before
the development of the PDH technique. It is straightforward to see that there are
a few flaws in this technique, for example the system can not distinguish between
fluctuations in frequency (that translates in fluctuations of the transmitted inten-
sity) and fluctuations of the laser’s intensity itself. A solution could be measuring
the reflected intensity and holding that to zero: in this way frequency noise is
decoupled by intensity noise. The problem with this solution is that the intensity
of the reflected beam is symmetric about the resonance: if the frequency drifts out
of resonance, we can’ t tell just by looking at the reflected intensity, wether the
frequency increased or decreased. However the derivative of the reflected intensity
is antysimmetric about resonance, therefore we can vary the frequency a little bit
and see how the reflected beam responds. The frequency is varied sinusoidally
over a small range, and the reflected intensity varies sinusoidally in phase with the
variation in frequency. By comparing the variation in intensity with the frequency
variation, we are able to tell which side of the resonance we are on. Once we
measure the derivative of the reflected intensity with respect to the frequency, we
can feed this signal back to the laser to hold it on resonance.

2.2 Quantitative explanation

2.2.1 Reflection of a monochromatic beam from a Fabry-Perot cavity

To describe the behavior of the reflected beam, we consider the electic field at a
fixed point outside the cavity. The magnitude of the incident beam is:

Ein = Eoe
iωt

The reflected beam is made up of two contributions: the beam promptly reflected
by the cavity, and the leakage beam which is the part of the standing wave inside
the cavity that leaks back through the input mirror. In order to calculate this
field, one can consider that the light inside the cavity bounces back and forth for
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an infinite amount of time. At every bounce the amount of light that leaks out
of the first mirror is calculated, and all these contributions are summed up: the
summation gives the reflected electric field. The reflection coefficient is defined as
the ratio between the reflected and incident electric field:

F (ω) =
Eref
Einc

=
r
(
exp

(
i ω

∆νFSR

)
− 1
)

1− r2exp
(
i ω

∆νFSR

) (11)

where, r is the amplitude reflection coefficient of the mirror and ∆νFSR is the free
spectral range of the cavity. In figure 11 are shown the intensity and the square
modulus and the phase of the reflection coefficient F (ω).

Figure 11: Phase and square modulus of the reflection coefficient of a Fabry-Perot
cavity. It is visible a discontinuity in the phase for resonant frequencies.

From the plot of the phase of the reflection coefficient, it is immediate to under-
stand that the phase of the light reflected from the cavity tells us which side of the
resonance we are. The PDH technique provides us a way to indirectly measure the
phase of the reflected electric field. As said previously, varying the frequency of
the laser is enough to tell us which side of the resonance we are on: modulating the
laser’ s frequency (or phase) will generate sidebands with a definite phase relation.
Interfering these sidebands with the reflected beam, will create a beat pattern at
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the modulation frequency and the phase of this beat pattern will tell us the phase
of the reflected beam.

2.2.2 Beam modulation: sidebands

Varying the frequency of the beam produces the same results as varying its phase.
The latter approach however is simpler. Phase modulation can be achieved by
passing the beam trhough an EOM that is set to work as a phase modulator only
(EOM in fact can work as a phase or amplitude modulator). If E = E0e

iωt is the
electric field entering the EOM, the electric field after the modulator is described
by:

Einc = E0e
i(ωt+βsin(Ωt)),

where Ω is the modualation angular frequency, and β is the modulation depth.
We can expand this expression as a power series (a more formal way is to expand
it usingn Bessel’ s functions, but the result is the same).

Einc ' E0 (1 + iβsin (Ωt)) eiωt = E0

(
eiωt +

β

2
ei(ω+Ω)t − β

2
ei(ω−Ω)t

)
. (12)

Written in this way, it is easy to see that the modulated beam is made of three
separate beams at different frequencies: a carrier at angular frequency ω and two
sidebands at angular frequencies ω ± Ω.

2.2.3 The error signal

The total electric field reflected by the cavity is given by the sum of the 3 beams
at different frequencies, multiplied by the reflection coefficient at the frequency of
the beams:

Eref = E0

[
F (ω) eiωt +

β

2
F (ω + Ω) ei(ω+Ω)t − β

2
F (ω − Ω) ei(ω−Ω)t

]
The physical quantity we are interested in is the power of the reflected beam,
since that is what the photodetector measures: Pref = |Eref |2. Performing the
calculations:

Pref = P0 |F (ω)|2 +
β2

4
P0

{
|F (ω + Ω)|2 + F (ω − Ω)

∣∣2}
+ P0β{Re [γ (ω,Ω)] cos (Ωt)

+ Im [γ (ω,Ω)] sin (Ωt)}+ (2Ωterms) .

(13)

where
γ (ω,Ω) = F (ω)F ∗ (ω + Ω)− F ∗ (ω)F (ω − Ω) .
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In this expression the terms oscillating at frequency Ω are the result of the in-
terference between the carrier and the sidebands, whilst the 2Ω terms are due
to the interference between the sidebands. The 2Ω terms are not calculated ex-
plicitly since we are only interested in the Ω terms, for they sample the phase of
the reflected carrier. The signal outputed from the photodiode is then demodu-
lated using a mixer and a low pass filter. The mixer simply multiply the signal
for an oscillating function at the same demodulation frequency Ω. Using some
trigonometric formulas, it is straightforward to see that:

sin (Ωt) sin (Ωt) =
1

2
{cos [(Ω− Ω) t]− cos [(Ω + Ω) t]} =

1

2
{1− cos (2Ω) t}.

and

sin (Ωt) cos (Ωt) =
1

2
{sin [(Ω− Ω) t]− sin [(Ω + Ω) t]} = −1

2
sin (2Ωt) .

From this identities we can see that mixing a sine and cosine signal instead of 2
sines, the DC term vanishes. The PDH error signal is given by the imaginary part
of the γ (ω,Ω) function, and therefore multiplying eq (13) by sin(Ωt), and low pass
filering the result, we obtain the desired signal.
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Figure 12: In figure are shown the PDH error signal as well as its orthogonal quadra-
ture. These plots are made considering a cavity with Finesse 30000.
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In practice the signal outputed from the photodiode is also phase shifted, because
there are always unequal delays in the 2 signal paths (photodiode to mixer and
oscillator to mixer). So in the end the signal is multiplied by sin(Ωt+ φ). By
changing this phase shift, we can go from a situation in which the error signal is
purely made of the real part of the function γ (ω,Ω)to a situation in which the
error signal is purely made of the imaginary part of the same function. In figure
12 are shown both the PDH error signal (imaginary part of γ) and the orthogonal
quadrautre (real part of γ). Notice that the name orthogonal quadrature comes
to the fact that we are demodulating with a phase shift of π/2. If the phase is
chosen in between these 2 extrema values, then the error signal will have an odd
looking shape, since it is made by a linear combination of the real and imaginary
parts of γ (ω,Ω).
To complete the frequency stabilization setup, the PDH signal is fed into a PID,
that produces a control signal for the laser. The PID is set to work in the linear
region of the error signal (the one at f − fres ' 0 in figure 12): once the lock
is established, if the frequency drifts the PID generates a signal that contains
information on the amount and direction of drifting, and send it to the laser in
order to correct for this drift.

2.3 The role of reflection

The experimental setup used to perform the measurements present a problem in
the locking system for the lock is lost after a certain period of time, due to a shift in
the level of the error signal that changed over time. Moreover the signal presented
some wiggles. Therefore an extensive investigation has been carried out in order to
understand the origin of the problem and to solve it. The main difference between
this setup and the PDH setups described in literature ([9], [10], [11] ) is that we
are not just using free space optics, but also optical fibers and in-fiber optical
components, as shown in figure 13 . Therefore the first hypotesis was that there is
some reflection happening at the interface between air and the optical fiber, that
messes up with the Pound-Drever-Hall signal.
The first attempt to tackle the problem, consisted in considering the effect of a
single reflection in the laser beam that is sent to the cavity. Referring to fig.
13 we considered reflection from the tip of the optical fiber in the path 2 of the
circulator. The situation can be outlined as in fig. 14: calling r and t the reflection
and transmission coefficient for the fiber to air interface, we can write the total
electric field at the points indicated by 1, 2 and 3, considering that at the starting
point (indicated by the origin of the arrows in the picture), the electric field is Ein.

E1 = Einte
ik∆xn2
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Figure 13: PDH setup used in the laboratory

E2 = E1F (ω) e2ikdn1

E3 = E2te
ik∆xn2 + Einre

2ik∆xn2

where F (ω) is the reflection coefficient of the cavity given by eq. 11. The electric
field E3 is the sum of the electric field promptly reflected by the interface fiber-air
and the one that is transmitted by the interface, reflected by the cavity and then
transmitted again through the interface. The total electric field that goes to the
photodetector is given by E3 and it is:

Etot = Eine
2ik∆xn2

[
t2e2ikdn1F (ω) + r

]
, (14)

where the term outside the bracket is just a phase term dependent on the origin
chosen and doesn’ t play any role since we are interested in the intensity (square
modulus of the electric field).
At this point we can proceed with the same calculations done for the PDH error
signal without reflections, with the only difference that now we won’ t consider
juts the reflectivity of the cavity, but the reflectivity of the system fiber + cavity,
given by equation 15:
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Figure 14: Reflection from the tip of the optical fiber in the PDH scheme

R (ω) = t2e2ikdn1F (ω) + r (15)

The reflected power measured by the detector (neglecting the DC term that will
be filtered out by the electronics after the photodetector) is :

PAC = 2
√
PcPs{Re [γ (ω)] cos (Ωt) + Im [γ (ω)] sin (Ωt)} , (16)

where
γ (ω) = R (ω)R∗ (ω + Ω)−R∗ (ω)R (ω − Ω) .

The role of the mixer is to multiply the signal read by the photodetector by an
oscillating signal at frequency Ω and phase shift it by φ. The resulting signal will
be:

ε = PACcos (Ωt+ φ) =
√
PcPs{Re [γ (ω)] (cos (2Ωt+ φ) + cos (φ))

+Im [γ (ω)] (sin (2Ωt+ φ)− sin (φ))}
(17)

Finally after the low pass filter, the remaining term is given by

ε =
√
PcPs{Re [γ (ω)] cos (φ)− Im [γ (ω)] sin (φ)} (18)

Again the out signal is a linear combination of the 2 quadratures (real and imagi-
nary part of the function γ (ω) in this case), and by properly selecting the phase
we can isolate just the real part which corrsponds to the PDH signal in presence
of a reflection.

2.4 Simulations

From the calculations carried out in the previous section, we obtained an analytical
(but very complicated) formula for the PDH error signal. In order to check if the
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reflection could recreate the problem that we observed experimentally in the PDH
signal, a simulation has been implemented using Matlab. In particular in this
simulation we don’ t just simulate the error signal obtained in equation 18, but
starting from an input electric field at the photodetector in the presence of a
reflection, given by equation 14, we simulate the whole electronic chain in order to
obtain an error signal that more realistically represents the one obtained in the real
experimental setup. We also take into account the different index of refraction for
the sidebands and for the carrier waves, since they have different frequencies. The
dependence of the refractive index on the wavelength has been computed using
Sellmeier equation:

n (λ) =

√
1 +

∑
i

Biλ2

λ2 − Ci
, (19)

where as Bi and Ci coefficient have been used the ones for fused silica. Another
important thing is that while equation 11 assumes the ideal case in which there
is no absorption in the mirrors of the cavity (r2 + t2 = 1), in reality there is a
small absorption, and we are going to take it into account. In particular in case of
absorption the reflectivity and transmittivity of the electric field are given by

|r|2 + |t|2 + A = 1

and for our mirrors A = 75×10−6, |t|2 = 25×10−6 and |r|2 = 0.9999. As an effect,
the depth of the reflectivity is reduced and the dip of the reflected coefficient of
equation 11 doesn’ t go all the way to zero at the resonance frequency of the cavity,
but stops at a positive value.
With these considerations, equation 14 has been given in input to the Simulation.
The software modulates the input electric field in order to create the 2 sidebands,
and the power measured by the photodetector is calculated as the squared module
of the sum of the electric fields of the carrier and of the sidebands. The resulting
signal is multiplied by cos (Ωt+ φ), where Ω is the modulation frequency, and
φ is an adjustable phase term that allows to choose the quadrature of the PDH
signal. Finally the singal is filtered using a low pass filter in the frequency space.
The filter has been chosen with the same parameters of the electronic filter in
the experimental apparatus, which is a low pass filter with a cut-off frequency
at 200kHz, and a slope of -20 db/dec. In order to retrieve the mathematical
expression of this filter, we considered the transfer function of an passive RC low
pass filter: writing down the transfer function of this circuit, we obtain:

H =
ZC

ZC +R
= ... =

1

1 + jωτ
(20)

being the impedance of the capacitor ZC = 1/jωC and τ = RC the time constant.
Considering that τ is also the reciprocal of the cut-off frequency, in the frequency
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space the low pass filter is represented by the following mathematical expression:

H (f) =
1

1 + j f
f3dB

, (21)

where in our case f3dB = 200kHz. In order to apply the filter, right after we
multiplied the signal for cos (Ωt+ φ), we Fourier-transformed it, mutliplied it by
H (f) and finally antiTransformed it. The resulting signal is the PDH signal. In
figure 15 is shown the resulting PDH error signal obtained considering an optical
path difference OPL=3m, between the beam reflected from the cavity and the
spurious reflection from the optical fiber tip. As reflection coefficient has been used
the one for the interface glass-air given by Fresnel equation for normal incidence:

r =
nglass − nair
nglass + nair

' 0.034
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Figure 15: Simulated PDH signal in presence of a reflection. The appearence of the
wiggles is visible.

The signal obtained from the simulation has the same characteristics of the signal
we have in the real PDH setup. In the real experimental apparatus the wiggles
are not stable in time: fluctuations in the temperature of the environment cause a
change in the optical path difference (between the spurious reflection and the beam
directly reflected from the mirror). As a result the oscillation visible in figure 15
shifts in frequency, making the central peak in the PDH signal shift up or down,
depending on the point on which is situated on the wiggle. In the reality this
effectively change the setpoint of the locking system, and the lock is lost.
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2.5 Experimental verification

In order to check experimentally the model, we want to see if we are able to create
the wiggles observed in the PDH error signal, by introducing a reflection in a con-
trolled way. For this purpose another PDH setup has been implemented, using just
free-space optics, as shown in figure 16. In this case instead of using the circulator,
we are using a combination of a polarizing beam splitter and a quarter waveplate:
after passing through the polarizing beam splitter and the quarter waveplate, the
light will have circular polarization (let’ s say right circularly polarized). After the
reflection from the mirror of the cavity the light will be circularly polarized but in
the other direction (let’s say left), and going back through the quarter waveplate
it will have a linear polarization perpendicular to the one coming out of the PBS,
and therefore will be sent to the photodetector that measures the reflected signal.
Note that there is also another linear polarizer between the detector and the PBS
to get rid of the light with the wrong polarization that hasn’ t been filtered out
by the PBS (which is not ideal).
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Figure 16: Setup used to investigate the role of reflections in PDH system, and to test
the results of the simulations

By placing a reflective membrane in between the quarter waveplate and the cavity,
we were able to observe the following: if the membrane was tilted so that the light
reflected back from it didn’ t go back and impinged on the photodetector, we could
observe a nice PDH signal. But carefully aligning the membrane so that the light
back reflected from it impinged on the photodetector, we instantly noticed the
appearence of the wiggles in the PDH error signal, monitored with an oscilloscope.
By our theoretical model,and confirmed by calculating it in the simulation, the
period of the wiggles is given by:

Tfrequency =
c

2dn1

(22)

where d is the distance between the first mirror of the cavity and the reflector.
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We placed the reflector at different positions, and we experimentally measured
the period of the wiggles observing a very good agreement between the measured
period and the one predicted by the model.
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Figure 17: In blue the PDH error signal, in red the reflection signal. The data have
been acquired with the reflector placed at d=0.3 m from the firs mirror of the cavity. The
presence of the wiggles can be seen looking at the reflection signal, and also looking at
the shape of the PDH error signal: the peak corresponding to the carrier is not simmetric
with respect to the x axis, a feature that emerges due to the wiggles.

In figure 17 is shown an example of the PDH error signal and reflection signal for
this experiment. Notice that in this case the wiggles are not clearly visible in the
PDH signal because it is not sharp enough (the cavity used for this experiment
has a Finesse of about 2000, which lowers the sharpness of the signal). In order
to measure the period of the wiggles we shifted the frequency of the laser far from
the resonance frequency of the cavity, in order to observe just the baseline of the
PDH signal without the peaks due to the carrier and sidebands. Note that in some
situation the period of the wiggles cannot be directly seen in the oscilloscope, since
the frequency range scanned by the laser is not broad enough to cover one period
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of the wiggle. In this case on the oscilloscope the baseline level of the PDH error
signal is shifted from 0, and in order to measure the period of the wiggles we
manually changed the frequency of the laser (this allowed to cover a broader range
of frequencies): in this way the baseline level of the PDH signal will shift, and the
period of the wiggles is given by the frequency difference between 2 maxima of this
baseline level.
Now that we are sure that the model works, we can consider again the original
experimental setup sketched in figure 13. As mentioned before in this setup we
observe the presence of wiggles and of a time dependent shift of the baseline level
of the PDH error signal. Now we understood that this shift is just another wiggle
in the signal, with a very long period. In particular we measured the periods of
these 2 kind of wiggles, obtaining the following result:

T frequency1 ' 45MHz → d ' 3.3m

T frequency2 ' 1.5GHz → d ' 10cm

Both of these values are inconsistent with the hyopotesis that the reflection hap-
pens at the interface between fiber optic and air. Checking the optical line, we
notice that the optical circulator is placed at a distance of 2.5 m from the first
mirror. Since light after the circulator travels through a 2m long optical fiber
(n'1.5) and then through 0.5m of air, the total optical path length (OPL) is

OPL = 0.5m+ 2m× 1.5 = 3.5m

This suggests that the problem is in the circulator. To be sure of this, we changed
the OPL by increasing the length of the optical fiber in the path 2 of the circulator
(see figure 13), measured the corresponding period of the wiggles and compared
this value with the Theoretical period predicted by the single reflection model.
The results are summarized in table 3

OPL [m] Tmeasured [MHz] Ttheoretical [MHz]
3.5 45 43
8 19 18.8
12 14 12.5

Table 3: In the table are shown the measured and predicted period of the wiggles, at
different values of optical length after the port 2 of the optical circulator.

The measured and predicted values of the period are consistent with each other.
The conclusion is that to cause this wiggle is not a reflection, but some stray light
that goes directly from port 1 to port 3 of the optical circulator. We measured the
power of this light, and it corresponds to an effective reflection coefficient for the
electric field of

reff = 1.6× 10−3 .
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2.6 Conclusions

During this section we showed how the simulations and experiments allowed us
to understand the causes of the problem encountered in our PDH setup, which
turned out to be interference either due to a non ideal optical circulator, or to
some stray reflections in the optical line. In order to get rid of this problem, we
inserted another polarizing pedals in path 2 and 3 of the circulator (see figure 13),
and by carefully adjusting the polarization of the polarizing pedals, we formed an
optical isolator that blocks the stray light that goes from path 1 to path 3.
As far as concern the wiggles with a period of 1.5 GHz, we checked in the optical
table all the optics that could cause an optical path difference of 10cm between
the main beam and the reflected one. We moved and tilted a little bit these optics
(to make sure that possible reflected beams don’ t go to the photodiode) in order
to find the point in which the reflection was happening. The source has been
identified in a double reflection inside the EOM: after carefully realigning it the
problem was solved and now we are able to keep the laser locked for indefinite
time (for sure days). This allows us to perform experiments that require a long
time of data acquisition, such as the one described in the next section.
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3 Decay of a thermomechanical squeezed state

To introduce the concept of thermomechanical squeezed state, let’ s have a look
at the motion of a 1D mechanical oscillator:

x (t) = X (t) sin (Ωmt) + Y (t) cos (Ωmt) .

X (t) and Y (t) are called quadratures, and are the time dependent coefficients of
the sine and cosine components of the motion of the oscillator. In normal condi-
tions X and Y have the same variance at fixed temperature. A thermomechanical
squeezed state is defined to be the state of a mechanical oscillator in which the vari-
ances of the 2 quadratures are not equal: in particular there is a squeezed quadra-
ture (in which the value of the variance is reduced) and an amplified quadrature (in
which the variance is increased). The reduction and amplification in the variances
is with respect to the variance that the mechanical oscillator normally has at the
same temperature. This thermomechanical squeezing has already been achieved
in the Bouwmeester group [12] by parametric modulation of the spring constant.
In this chapter we will explore what happens when this parametric modulation is
turned off: in particular we want to find out how the squeezed state goes back
to the non-squeezed one, and how much time it takes for this process to happen.
This study is performed in the classical regime, nevertheless it is useful because it
can be trivially extended to the quantum regime once the cryogenic optical cav-
ity will be completed. Moreover studying this process will help us answering the
question wether it is possible to swap a squeezed thermomecanical state between
two different mechanical modes.

3.1 Mathematical description of squeezing

In order to create a squeezed state, it is necessary to parametrically modulate the
spring constant. One way to do that is by using the radiation pressure force. Let’
s consider one mechanical mode of the membrane with angular frequency Ωm. For
this particular mode, the equation of motion can be written as

ẍ+
Ωm

Q
ẋ+ Ω2

mx = fth (t) , (23)

where Q is the quality factor of the membrane and fth is the thermal force per
unit mass that is driving the oscillator. Assuming that Q >> 1, the solution of
the equation of motion can be written as:

x (t) = X (t) sin (Ωmt) + Y (t) cos (Ωmt) . (24)

Here X (t) and Y (t) are the two quadratures, and are slowly varying compared to
the mechanical (angular) frequency Ωm (Ẋ, Ẏ << Ωm). Now we add a parametric
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modulation of the spring constant in equation 23 and see how this affects the
two quadratures in the solution of the equation. In order to squeeze one of the
quadratures, the modulation of the spring constant has to be done at twice the
mechanical frequency of the mechanical mode Ωm we are considering, as it will
be clear at the end of the demonstration. The equation of motion for this case
becomes:

ẍ+
Ωm

Q
ẋ+ Ω2

m [1− βsin (2Ωmt+ φ)]x = Fth (t) . (25)

Here β is the spring constant modulation depth, and φ is just a phase term. As
pointed out in [13], we can write the driving thermal force in a similar way of
equation 24, since the resonator will respond to this force only in the proximity of
its resonance frequency Ωm:

Fth (t) = Fs (t) sin (Ωmt) + Fc (t) cos (Ωmt) , (26)

also here the sine and cosine components (Fs, Fc) are slowly varying. By substi-
tuting equations 24 and 26 into equation 25, performing some calculations and by
neglecting 2Ωm and 3Ωm terms, we can decouple the equation for the X quadrature
from the equation for the Y quadrature, obtaining (for φ)=0:{

Ẋ + Ωm

2Q

(
1 + βQ

2

)
X = Fc

2Ωm

Ẏ + Ωm

2Q

(
1− βQ

2

)
Y = − Fs

2Ωm

(27)

We can see that this set of equation is Quadrature sensitive: the effective inverse
Q factors for the X and Y quadratures are different from the one in the unpumped
case:

Xquadrature :
1

Q
→ 1

Q
+
β

2

Y quadrature :
1

Q
→ 1

Q
− β

2

From this it is straightforward that the response to a since force fs is amplified,
being the effective Q factor of the Y quadrature higher. Whereas the response
to a cosine force fc is deamplified (X quadrature has a Q factor lower than the
unpumped case).
Notice also that when the modulation depth β is equal to βcr = 2

Q
, the effective

Q factor becomes zero and the amplified quadrature Y becomes unstable. This
phenomenon is called parametric instability, and it manifests for β ≥ βcr. It is
useful to introduce a normalized gain parameter g, defined as:

g =
β

βcr
=
βQ

2
, (28)
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in such a way that g=1 leads to the parametric instability of the amplified quadra-
ture. In order to solve the set of equations 27, we will go into the frequency domain.
The power spectral density for the thermal forces fs and fc is given by [13] :

Sfs = Sfc =
2kBTeffΩ

3
m

kQ
, (29)

being k the spring constant of the mechanical oscillator. Teff is the effective
temperature, which takes into account the optical damping (see the next sections).
Therefore in the frequency domain we have:

∣∣∣iωX [ω] + Ωm

2Q

(
1 + βQ

2

)
X [ω]

∣∣∣2 =
2kBTeffΩ3

m

kQ

∣∣∣iωY [ω] + Ωm

2Q

(
1− βQ

2

)
Y [ω]

∣∣∣2 =
2kBTeffΩ3

m

kQ

(30)

and rearranging the terms, we obtain the Lorentzian power spectral densities for
the two quadratures: 

SXX (ω) =
kBTeffΩm

2kQ
1

ω2+Ω2
m

(1+g)2

4Q2

SY Y (ω) =
kBTeffΩm

2kQ
1

ω2+Ω2
m

(1−g)2

4Q2

(31)

In order to calculte the variances of the X and Y quadrature, we use the relation〈
X2
〉

=
1

2π

∫ ∞
−∞

SXX (ω) dω ,

obtaining: {
〈X2〉 =

kBTeff
2k

1
1+g

〈Y 2〉 =
kBTeff

2k
1

1−g
(32)

It is straightfward to see that the variances in the two quadratures are scaled by
a factor 1/(1+g) and 1/(1-g) with respect to the unpumped case, obtained by
setting g=0. In this case equation 32 reduce to the classical equipartition result,
for the variances of the 2 quadratures are equal. If one measures the X and Y
quadrature in the unpumped case, what he will observe is a circle in the quadrature
space (plotting the Y quadrature as a function of the X quadrature). This circle
corresponds to a bidimensional gaussian distribution, with equal variances along
the X and Y quadratures, as predicted by equation 32 for g=0.
On the other side if we apply the parametric modulation of the spring constant, one
observes that the circle in the quadrature space becomes an ellipse that correspond
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to a bidimensional Gaussian distribution having different variances along the X and
Y quadratures, as shown in figure.
When we approach the instability point (g → 1), the maximum achievable squeez-
ing of the X quadrature is a factor 2, or equivalently 3dB. This is known as the
3dB limit, and cannot be surpassed in this simple scheme for the generation of
a squeezed state unless applying some clever technique that forbid the amplified
quadrature Y to diverge. As a final remark we notice that the set of equations 32
is valid only in the case g<1. For g>1 the resonator is driven in the Y quadrature,
and this causes the thermal distribution to shift from the origin in the quadratures
space.
Up to now we showed how parametrically modulating the spring constant of the
mechanical resonator, it is possible to generate a thermomechanical squeezed state.
We didn’ t say anything about how to generate this modulation of the spring
constant. One way to do it (and the way we will use) is to exploit the radiation
pressure force of light. In the next paragraphs we will show the characteristics of
the mechanical resonator we are using, and the main optomechanical effects that
allow us to achieve squeezing.

3.2 The Membrane

The mechanical oscillator we are using is a Silicon Nitride membrane, which di-
mensions of a 3mm × 3mm × 25nm. Due to the geometry of the membrane (it is a
square with a thickness that approaches to zero), the frequencies of the transversal
vibrational modes can be expressed by:

Ωm (i, j) = Ωm (1, 1)

√
i2 + j2

2
(33)

where Ωm (1, 1) is the fundamental frequency and i and j are integers number that
denote the index of the mode: in particular i+1 and j+1 are the number of nodes
of the oscillations along the x and y axis (in a reference frame in which the 2 sides
of the membrane corresponds to the x and y axis). From this equation it appears
that for every mechanical mode Ωm, there is a higher order mode with double
frequency 2Ωm. If we want to modulate the spring constant at twice the mechanical
frequency, we are going to excite the modes whose frequency is a multiple of
2Ωm. In the reality this doesn’ t happen because the membrane presents some
anharmonicity, and the higher order modes deviate slightly from the theoretical
values given by 33. The membrane is manufactured at University of California
Santa Barbara, by other members of the same research group, and it is special
because it has an embedded phononic crystal obtained by pinching some holes
with specific size and position along all the surface of the membrane, leaving just
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a flat spot in the centre which is where the laser will shine. In figure 18 is shown
an image of the membrane in which is visible the phononic crystal.

Figure 18: Electron microscope image of the membrane used in the experiment. It
is visible the phononic crystal as a pattern of holes. The central area which is non-
patterned, is the point on which will shine the waist of the laser beam inside the cavity.

This phononic crystal allows to obtain higher Q values for the different modes of
the membrane. In this experiment we want to squeeze one quadrature of the (3,3)
mode whose frequency is Ωm (3, 3) = 217kHz. Another important parameter is
the effective mass of the mode, which is equivalent to the mass that the mode
would have if the membrane was an infinitesimal point. In order to calculate it
let’s define a 3D reference frame with the x and y axes aligned along the sides of
the membrane, and with the z axis perpendicular to the membrane. The effective
mass can be obtained by comparing the potential energy of a point like system
that is oscillating along the z direction with maximum amplitude zmax, and the
potential energy of the membrane when a stationary wave is present:

39



3. DECAY OF A THERMOMECHANICAL SQUEEZED STATE

Ω2
m

2

∫
Σ

ρ (~x) z2 (~x) d~x =
meffΩ

2
mz

2
max

2
(34)

where the integral is performed over the surface of the membrane, ρ is the density of
the membrane and z is the displacement of the membrane due to the standing wave,
as a function of the position along the x and y axes. By performing this calculation
in COMSOL multiphysics, we obtain that for the (3,3) mode the effective mass is
meff = 73 pg.

3.3 Basics of the Optomechanical interaction

In this section we will introduce the basic concepts that describe the interaction
between light and a mechanical resonator (inside a cavity). We are not going to
go too much into details but the reader who wants to know more about it can use
[1] and [14] as a reference.

3.3.1 Mechanical resonators

The mechanical resonator is an harmonic oscillator which is viscously damped and
driven by a thermal force. The equation of motion is given by equation 23, but we
are going to rewrite it expliciting the damping rate Γm:

meff
d2x (t)

dt2
+meffΓm

dx (t)

dt
+meffΩ

2
mx (t) = Fth (t) (35)

here Fth is given by the thermal Langevin force. Γm = Ωm/Qm, where Qm is the
quality factor of the mode considered: having a higher Qm means a lower coupling
to the environment, which allows to the oscillator to be cooled at lower tempera-
tures, as we will see in the following.
By defining the Fourier transform as x (ω) =

∫∞
−∞ x (t) eiωt , dt, and the suscepti-

bility χ [ω] = x [ω] /Fth [ω], we can solve equation 35 in the frequency domain:

χ [ω] =
[
meff

(
Ω2
m − ω2

)
− imeffΓmω

]−1
. (36)

In case Γm is small, the above equation can be approximated by a Lorentzian:
χ [ω] = (meffΩm [2 (Ωm − ω)− iΓm])−1.
Using the Fluctuation-Dissipation theorem, we can write the power spectral den-
sity of the mechanical oscillator:

Sxx [ω] = 2
kBT

ω
Im (χ [ω]) . (37)

By substituting the imaginary part of the mechanical susceptibility (equation 36)
into equation 37, we obtain
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Sxx [ω] =
kBT

meffΩ2
m

Γm/2

(Ωm − ω)2 + Γ2
m/4

(38)

which has a Lorentzian shape centered at Ωm and a linewidth Γm. Using the
Wiener-Kinchin theorem we can relate the Power spectrum to the variance of the
mechanical displacement:〈

x2
〉

=

∫ ∞
−∞

Sxx ,
dω

2π
=

kBT

meffΩ2
m

. (39)

3.3.2 Light inside the cavity

One approach for describing the optical field inside a cavity is to describe the
dynamics of the circulating intensity inside the cavity. To this purpose we can
describe the field inside the cavity in terms of a complex mode amplitude α(t)
such that |α (t)|2 is the photon number, or the stored energy:

dα (t)

dt
= −κ

2
α (t)− iωcavα (t) +

√
κexσin (t) (40)

where κ is the optical decay rate, ωcav is the cavity frequency, κex is the external
optical coupling rate and σin is the input power. This classical equation has been
derived by averaging its quantum version (see [1] for more details). A convenient
way to solve equation 40 is to choose a coordinate frame rotating with the laser
frequency ωL, by defining:

α (t) = a (t) e−iωLt

σin (t) = sin (t) e−iωLt

This yeld to:
da (t)

dt
=
(
i∆− κ

2

)
a (t) +

√
κexsin (t) , (41)

where it has been introduced the laser detuning ∆ = ωL−ωcav. We are interested
in a steady state solution of equation 41, which can be obtained by setting a
constant input mode amplitude sin(t) = sin and da(t)/dt = 0. This results in the
mean mode amplitude

ā =

√
κexsin

−i∆ + κ/2
(42)

3.3.3 Coupling of light with the mechanical oscillator

Now that we have provided a separate description of the mechanical oscillator and
of the light field inside the cavity, we are going to see how the interaction between
the two modifies their response. The following description is done for the case of

41



3. DECAY OF A THERMOMECHANICAL SQUEEZED STATE

a mechanical resonator as one mirror of the cavity, but it holds also for membrane
in the middle systems, like the one we are using. The coupling of the mechanical
motion to the cavity mode, modulates the cavity resonance frequency:

ωcav (x) = ωcav + x
∂ωcav
∂x

. (43)

This linear approximation is valid only in case of small mechanical motion. We
define the optical frequency displacement G = −∂ωcav/∂x. The displacement of
the membrane causes the cavity resonance frequency to change as Gx(t). Equation
41 therefore becomes

da (t)

dt
=
(
i (∆ +Gx (t))− κ

2

)
a (t) +

√
κexsin (t) (44)

We can now write the radiation force arising from the momentum transferred by
the photons to the membrane. The momentum transferred by a single photon
is 2h̄k, and the cavity round trip is c/2L. Being the total number of circulating
photons n̄cav = |a (t)|2, the radiation pressure force reads:

Frad =
∆p

∆t
= |a (t)|2 c

2L
2h̄k = h̄G |a (t)|2 , (45)

where G = ωcav/L. This allow us to write the modified equation of motion for the
mechanical resonator, which now will be driven not only by the thermal force, but
also by the radiation pressure force:

meff
d2x (t)

dt2
+meffΓm

dx (t)

dt
+meffΩ

2
mx (t) = Fth + h̄G |a|2 (t) . (46)

Equations 44 and 46 are coupled non linear equations that describe the optome-
chanical interaction.In general they are difficult to solve, but we can find analytic
solutions by making some assumptions: in the following we will assume that the
motion of the mechanical oscillator is small, and that can be treated as a small
perturbation around a mean displacement: x (t) = x̄+ δx (t), and similarly for the
cavity field: a (t) = ā+ δa (t).
The steady state solutions for equations 44 and 46 are:

ā =

√
κex

i (∆ +Gx̄)− κ
2

sin (47)

x̄ =
h̄G

meffΩ2
m

|ā|2 . (48)
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Using the perturbation assumption, and substituting equations 47 and 48 into 44
and 46, we obtain (after neglecting second order terms):

dδa (t)

dt
=
[
−κ

2
+ i∆ + iGx̄

]
δa (t) + iGāδx (t) (49)

Using the same approach as for the uncoupled equations, we are going to solve it
in the frequency domain, therefore by taking the Fourier transform, we obtain:

δa [ω] =
iGāδx [ω]

κ
2
− i (∆ +Gx̄+ ω)

(50)

Now we can calculate the radiation pressure force:

δFrad (ω) = h̄ (δa (ω) + δa∗ (ω))

= −h̄G2ā2

(
∆ +Gx̄+ ω

κ2

4
+ (∆ +Gx̄+ ω)2 +

∆ +Gx̄− ω
κ2

4
+ (∆ +Gx̄− ω)2

)
δx (ω)

+ih̄G2ā2

(
κ/2

κ2

4
+ (∆ +Gx̄+ ω)2 +

κ/2
κ2

4
+ (∆ +Gx̄− ω)2

)
δx (ω)

(51)

The radiation force perturbes the mechanical susceptibility defined in equation 36
according to the following expression:

χ−1
eff (ω) = χ−1 (ω) + χ−1

opt (ω) .

We define:
χ−1
opt ≡ meffω (2δΩm (ω)− iΓopt (ω)) (52)

in such a way that the perturbed susceptibility has the same form of the mechanical
susceptibility:

χ−1
eff (ω) = meff

(
Ω2
m + 2ωδΩm (ω)− ω2 − iω [Γm + Γopt (ω)]

)
. (53)

By definition of susceptibility χ (ω) = δx (ω) /δF (ω), we can now compare equa-
tion 51 and 52, to obtain:

δΩm (ω) = g2 Ωm

ω

[
∆ + ω

κ2

4
+ (∆ + ω)2 +

∆ + ω
κ2

4
+ (∆− ω)2

]
(54)

Γopt (ω) = g2 Ωm

ω

[
κ

κ2

4
+ (∆ + ω)2 −

κ
κ2

4
+ (∆− ω)2

]
(55)

where we have neglected Gx̄ since it is much smaller than ∆, and we have intro-
duced the relation h̄G2ā2 = 2meffΩmg

2. For a high Q mechanical oscillator, it is

43



3. DECAY OF A THERMOMECHANICAL SQUEEZED STATE

possible to evaluate δΩm (ω) and Γopt (ω) at the unperturbed oscillation frequency
ω = Ωm, yelding to:

δΩm = g2

[
∆ + Ωm

κ2

4
+ (∆ + Ωm)2 +

∆ + Ωm

κ2

4
+ (∆− Ωm)2

]
(56)

δΩm = g2

[
κ

κ2

4
+ (∆ + Ωm)2 +

κ
κ2

4
+ (∆− Ωm)2

]
(57)

The response of the intracavity field to the change in the mechanical oscillator’s
position is not instantaneous but it takes to the field approximately the cavity
decay time to respond to that change: this is the dynamical back action effect,
which changes the mechanical frequency and the mechanical damping, depending
on the laser detuning ∆ (and as well on the power of the laser). The effective
damping is just the sum of the mechanical (unperturbed)damping, and the optical
damping:

Γeff = Γm + Γopt .

Γm is the damping rate, and it effectively couples the oscillator to the environment
(thermal bath). In the same way Γopt couples the oscillator to the optical field. It
can be demonstrated that at the thermal equilibrium the effective temperature of
the mechanical oscillator is given by:

Teff =
Γm

Γm + Γopt
Tenv (58)

The effective temperature is therefore a function of the laser detuning ∆ and can
be changed by changing this value. This is known as optomechanical cooling.
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3.4 Optical setup

Now that we have given an explanation about how to generate a thermally squeezed
state, we will deal with the actual experiment. In figure 19 is shown the optical
line used in this experiment.
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Figure 19: Setup used to study the decay of a squeezed state

It consists of 2 lasers, that we will call probe and pump. The probe laser beam is
divided into 2 by the beam splitter placed right after the optical isolator (BS1):
one path goes to the cavity and is used to lock the laser’ s frequency to the cavity
with the PDH technique, and the other path goes to another Beam splitter (BS2),
where it is mixed with the laser beam coming from the Pump laser. Notice that
the PDH method is used for 2 purposes in this experiment: keeping the frequency
of the laser locked to the cavity, and for the read-out of the mechanical motion
(which will be explained in the following). The Pump laser is used to generate
the optical force that allows us to squeeze one of the 2 quadratures. This laser
operates 2 free spectral range (2FSR≈ 3.14GHZ) away from the first laser, in
order to avoid unwanted interference. The frequency of this laser is also locked
to the cavity by a phase-locked loop that locks its frequency to the frequency of
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the Probe laser. The Pump and Probe laser are mixed in the beam splitter BS2,
and the corresponding beating signal is read by a fast photodiode and mixed with
an electrical local oscillator operating at 2FSR≈ 3.14GHZ. The output of the
mixer has a linear region when the frequency of the Pump laser is very close to the
frequency of the Probe laser-2FSR: this output signal will be used as an error signal
to keep the laser locked by means of a PID controller. The detuning of the Pump
laser from the cavity resonance is monitored using the reflection and transmission
signal: while scanning the frequency of the lasers we change the frequency of the
Pump laser until the dip of the reflected signal lies in the middle of the beating
signal. In this condition the Pump laser is separated exactly by 2FSR from the
frequency of the Probe, and as a result we observe that the transmission peak goes
at its maximum value. At this point if we want the Pump laser to be detuned
with respect to the cavity resonance, we just change the local oscillator frequency.
In order to create a squeezed state, we have to parametric modulate the spring
constant: this is done using the dynamical backaction effect. The modulation of
the frequency of the laser induces a modulation of the frequency shift δΩm, and
of the effective damping Γeff . The modulation of δΩm means modulation of the
spring constant, which gives rise to non-zero β in equation 25. We modulated the
laser’s frequency at 2Ωm in a region that is red detuned at −1.43×Ωm with respect
to the cavity frequency: this region has been found to be good for squeezing in a
previous work carried out in the same research group [12]. Indeed here the slope
of Γeff (ω) is 2.7 times smaller than that of δΩm, and the effective damping can be
treated as a constant: this means that while modulating the laser’ s frequency we
are going to cool down the membrane in a negligible way, and the cooling doesn’ t
depend much on the frequency. The modulation of the frequency of the Pump laser
is performed with the aid of an electrical local oscillator. For the read-out of the 2
quadratures we have to demodulate the PDH signal at the mechanical frequency of
the mechanical mode we want to squeeze (217 kHz). Since the PDH is obtained by
demodulating the reflected signal at 9.88MHz, instead of demodulating again the
signal we can demodulate it just one time at a frequency 9.88 MHz+217kHz: in this
way we obtain one quadrature. The other quadrature is obtained by introducing a
phase shift of π/2 to the local oscillator before mixing it with the reflected signal
read by the photodiode (see the bottom left part of figure 19). Once again we
note that the membrane is placed in the middle of the optical cavity. The optical
cavity itself is placed inside a vacuum chamber that increase the Q factor of the
oscillator (there is no damping due to the air) and isolate the system from noise
due to acoustic waves. To this last purpose, the optical cavity is also strongly
tightened to the optical table which has a compressed air damping system.
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3.5 Experiment and data analysis

In order to measure the decay of a squeezed state, we send a train of pulses to
activate the 434 kHz local oscillator that modulates the laser’s frequency. Each
pulse has a duration of about 10 seconds (during which the frequency is modu-
lated, therefore generating a squeezed state), followed by 3 seconds in which the
modulation is switched off. Since the frequency of the (3, 3) mode itself undergoes
a drift, every 5 pulses the frequency of the membrane is measured and the local os-
cillator that modulate the frequency of the laser is adjusted consequently. All the
procedure has been automatized, and the whole measurement took few hours. In
figure 20 is shown the pulse signal and the two quadratures, acquired as explained
in the previous section.
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Figure 20: Set of data recorded udring the experiment: in black the pulse signal
(height has been rescaled to fit in the plot), in blue the X quadrature and in red the Y
quadrature. The signal of the two quadratures is given in voltage, and not yet converted
into a unit of length (displacement).

We have to make a selection of all the acquired data, because since we were per-
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forming squeezing at the boundaries of the parametric ocillation, for some of the
measurements we were driving the membrane. On the other hand in some mea-
surement the squeezing was either not achieved or less strong, due to the drift in
the mechanical frequency of the (3, 3) mode: even though every 5 acquisitions we
readjusted the modulation frequency to follow the one of the mechanical mode,
sometimes the drift was too fast. A squeezed state corresponds to a centered el-
lipse in the X-Y quadrature plane (see figure 21), but these ellipses are generally
not aligned along the X-Y axes because the phase in the demodulation is not set
accordingly. Moreover since the frequency of the mechanical mode changes during
time, these ellipses rotate at an angular frequency given by the difference between
the frequency of the (3, 3) mode and the frequency of the demodulation. Therefore
we first adjusted the rotation angle of every measurement, by selecting (for every
pulse) just the data lying in the squeezing pulse (roughly the first 10 seconds in
figure 20), and fitting the direction of the ellipse. At this point we need to perform
the actual selection, to keep only the data squeezed with the same normalized gain
parameter g (a compromise has to be done between having states squeezed with
the same strength and having a decent number of datasets that allow us to perform
a statistical analysis of the data). For this purpose, defining ∆X = Xmax −Xmin

and ∆Y = Ymax − Ymin, after a preliminar look at the data we noticed that the
squeezed states had ∆X ≤ 1.2mV and ∆Y ≥ 1.7mV . Therefore we applied this
condition to keep only data consistent with each other. In order to neglect the
driven states (in which the ellipse is not centered in the origin of the X-Y plane),
we also applied the condition R ≤ 2mV , where R =

〈√
X2 + Y 2

〉
and the average

is done over all the point in a single dataset (pulse). After this selection we are
left with 70 datasets of 700 initial ones.
Since we want to study the decay of the squeezed state, we have to divide the last
3 seconds of each acquisition into smaller time steps, and averaging them over all
the different datasets. We don’ t know what is going to happen, and it can be that
the time step required to observe the decay is so small that even if we average over
all the different runs, we can’ t see it. We therefore want to be sure that dividing
the data into this timestep, we are able to see the squeezed state if it is there. To
this purpose, once again we consider the first 10 seconds of each run since we are
sure that there is squeezing here. Mediating over all the datasets, we calculated
the variances of the X and Y quadrature, obtaining the following values:〈

X2
〉
total

= (2.5± 0.3)× 10−8V〈
Y 2
〉
total

= (4.9± 0.8)× 10−7V

In order to check if we can see a squeezed state considering a time step smaller
than the 10 seconds, we divided the total run time into increasingly smaller time
bins, calculating for each one the variances and checking if the distribution (after
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mediating over all the datasets) was still Gaussian. As a criterium to decide wether
we can still see the squeezed state, we checked if the variances were lying in the
following intervals: 〈

X2
〉
small

∈
[〈
X2
〉
total
± kσ〈X2〉

]
〈
Y 2
〉
small

∈
[〈
Y 2
〉
total
± kσ〈Y 2〉

]
where k is a cover factor arbitrarily set to 3, and σ〈X2〉, σ〈Y 2〉 are the standard
uncertainties on 〈X2〉total and 〈Y 〉total. The minimum time bin found such that
these criteria are satisfied is ∆t ≈ 70µs, and we are sure that dividing the data
into time steps of this length (and averaging over all the datasets), we are able to
see the squeezed state, if it is present.

Figure 21: In figure is shown the ellipse corresponding to the squeezed quadrature.
The histograms of the quadratures show how the Gaussian distribution has a different
variance along the 2 quadratures.

In figure 21 is shown the squeezed state in the X-Y quadrature plane, and the
histograms corresponding to the X and Y quadratures. The variances of the 2
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quadratures are 〈X2〉total and 〈Y 2〉total given before, and according to equations 32
this corresponds to a normalized gain parameter g=0.90.
Now we can analyze the data: by dividing every dataset into time-steps of ∆t ≈
16ms, and merging the data from the different datasets that correspond to the
same time bin, we are able to calculate the variance of the X and Y quadrature as
a function of time. The result is shown in figure 22.
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Figure 22: In red and blue are shown the Variances of the Y and X quadratures,
normalized by the variance of the thermal distribution (i.e without squeezing). The
black line is the pulse signal: when high the modulation of the spring constant is on,
when low the spring constant is not modulated.

Notice that right after the frequency modulation was stopped (see the black pulse
signal in the figure), the ellipse in the quadratures plane started rotating over
time and therefore in order to obtain the plot of figure 22, this rotation has been
corrected. Looking at the picture we can infer few things: first of all if we consider
the first 9.8 seconds (during which parametric modulation of the optical spring
is on), the variance of the Y quadrature is much more unstable that the one of
the X quadrature. This is due because we are operating at the boundary of the
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3dB limit: near this area the normalized gain parameter approaches to 1, which
is a discontinuity point for the Y variance, while it isn’ t for the X variance (see
equations 32). As a consequence, the sensitivity of 〈Y 2〉 over a small change of
g is much higher than for the X quadrature: δ 〈Y 2〉 /δg � δ 〈X2〉 /δg. Another
reason that affect the instability of the variances is the number of datasets over
which we are performing the measurements: the higher number of data we have
in the bidimensional Gaussian distribution (the ellipse), the lower the error on its
variance. As explained before while discussing how the data were filtered, these 2
factors are in competition: if we want g to be the same for all the acquisitions, then
we have to discard a lot of measurements and we will be left with few datasets.
Now we focus the analysis on what happens after we switch off the modulation. As
it can be seen in figure 22, the variance of the Y quadrature decays to a baseline
level. On the other hand, by looking at the squeezed quadrature we see that its
value increases, but we can not really see a clear decay since the data are very
noisy. Notice that in this case the noise is only due to the statistical error due to
low number of dataset used (the noise due to variation in g is not present here since
we are not modulating the spring constant). By fitting 〈Y 2〉 with an exponential
function 〈Y 2〉 = Y0 + Ae−t/τ , we obtain the following time constant for the decay
of the heated quadrature:

τdecay = (0.39± 0.01) s .

In figure 23 are shown the variances of the quadratures after the modulation of the
spring constant is switched off. In black there is the fitting equation for 〈Y 2〉. As
mentioned before, the ellipses in the quadrature plane not only started to decay
to the thermal distribution, but also started rotating. In figure 23 are also shown
the ellipses at different point in time. Notice that for the calculation of the X, Y
variances the rotation has been corrected.
Unfortunately the decay of the X quadrature can not be seen, since the statistical
error is too high and the variance of the squeezed quadrature is just about 2 times
smaller than in case of non-squeezing. In figure 22 can be seen that the final
baseline value for 〈X2〉 in the non-squeezed area is higher than the baseline value
it has during the squeezing. But due to the statistical error in the calculation of
the variance, we are not able to clearly see a decay.
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Figure 23: The plot shows the time evolution of the the X and Y quadratures from
a squeezed state to a non squeezed one. The blue and red lines are the normalized
variances respectively of the X and Y quadratures (i.e variance of the quadrature divided
the variance of the non-squeezed state). The black line is the fitting function for the
Y quadrature:

〈
Y 2
〉

= Y0 + Ae−t/τ , with a fitted decay time τdecay = (0.39± 0.01) s.
In the same figure are also shown the distributions of the quadratures in the XY plane,
at different times (t1 = 0s, t2 = 0.16s, t3 = 0.32s, t4 = 0.64s, t5 = 0.96s). In this
distributions is visible a rotation, that has been corrected to create the plot of the
variances over time.

3.6 Conclusions and future developements

During this thesis work there wasn’ t enough time to perform further measure-
ments, but here we give some indications (for future measurements) on how to
solve the problems encountered. The simplest thing to do is to increase the num-
ber of data acquisitions, in order to increase the statistics and have a lower statis-
tical error on the measurement: this should allow to see the decay also for the X
quadrature. However the number of dataset can be increased only to some extent,
since the amount of data per dataset is really high, and already for the number
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of datasets used in this experiments the software for the data analysis takes a
lot of time to perfom the calculations. A more clever solution to apply together
with the previous one is to surpass the 3dB squeezing limit. This can be done
by applying a feedback mechanism that cools the heated quadrature (Y) in such
a way that it doesn’ t diverge. This has two big advantages: first of all the sen-
sitivity δ 〈Y 2〉 /δg is reduced (for the same squeezing strength), allowing to have
more states squeezed with the same strength, and reducing the number of dataset
to be discarded. The second important advantage is that we can squeeze the X
quadrature more and in such a way we are going to make it easier to distinguish
the decay from the noise in the data, since we effectively increased the gap be-
tween the variance of the squeezed state, and the variance of the non-squeezed one.
We started this investigation with the purpose to find out how a squeezed state
goes back to a non-squeezed one, and to see if in the future it will be possible to
transfer a thermally squeezed state between two different modes of the mechanical
oscillator. To our knowledge, this is the first time that the measurement of the
decay of a thermally squeezed state is performed, and even though we couldn’ t
measure it for both the quadratures, we got a time decay constant for one of them.
The methods previously suggested to measure also the decay of the X quadrature,
could deal to interesting results and to the definitive answer to the questions that
arised and motivated this investigation.
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