

To my family

and friends.

Abstract

Computer vision is an interdisciplinary field of study that studies algorithms

and techniques to enable computers to recognise subjects and extract useful

information within an image or other visual input. In other words, it aims to

make machines capable of reconstructing a context around an image, giving

it real meaning. Among the most important tasks in this area is the 6 degree

of freedom pose estimation, i.e. the detection of the pose (translation and

rotation) of an object given an input image. This thesis employs PVNet, one of

the newest and best-known methods in the literature, to perform several tests:

the effectiveness of introducing the DSAC module, the influence of the Pnp

type on performance, the validity of using synthetic datasets and the search for

an effective strategy for generating them, the dependence of the network on a

quantity of real images in the dataset during the training set, and the search

for optimal parameters for the score and loss functions. PVNet variants were

trained using the LINEMOD dataset. The experiments showed that:

• the best configuration turns out to be the one with DSAC and with EPnP;

• the more the synthetic dataset generation strategy produces varied data
close to reality, the more effective it is;

• the network turns out to be very dependent on real data in the training
phase;

• the right calibration of the parameters of the DSAC module and the loss
function can make the network achieve very good results.

Sommario

La Computer Vision è un campo di studi interdisciplinare che studia algoritmi e

tecniche per permettere ai computer di riconoscere i soggetti e di estrarre infor-

mazioni utili allinterno di unimmagine o di altri input visivi. In altre parole, essa

mira a rendere le macchine capaci di ricostruire un contesto intorno allimmag-

ine, dandole un vero e proprio significato. Tra i compiti più importanti in questo

ambito troviamo la stima della posa a 6 gradi di libertà, ovvero lindividuazione

della posa (traslazione e rotazione) di un oggetto data unimmagine in input.

Questa tesi impiega PVNet, uno tra i metodi più recenti e noti in letteratura, per

eseguire diversi test: lefficacia dellintroduzione del modulo DSAC, linfluenza

della tipologia del Pnp nelle performances, la validità dellutilizzo di dataset

sintetici e la ricerca di una strategia efficacie per la loro generazione, la dipen-

denza della rete a una quantità di immagini reali nel dataset durante il training

set e la ricerca dei parametri ottimali per le funzioni di score e di perdita. Le

varianti di PVNet sono state addestrate utilizzando il dataset LINEMOD. Dalle

sperimentazioni è emerso che:

• la configurazione migliore risulta essere quella con DSAC e con EPnP;

• più la strategia di generazione di dataset sintetici realizza dati vari e vicini
alla realtà più risulta essere efficace;

• la rete risulta essere molto dipendente dai dati reali in fase di training;

• la giusta taratura dei parametri del modulo DSAC e della loss function può
far raggiungere alla rete dei risultati molto buoni.

Contents

List of Figures xi

List of Tables xiii

List of Acronyms xix

1 Introduction 1

2 Basic Notions 3

2.1 Image formation background . 3

2.1.1 The pinhole camera model 4

2.1.2 Projective geometry . 5

2.1.3 Pinhole camera matrix . 6

2.1.4 Pose . 7

2.2 Deep learning background . 9

2.2.1 Artificial neural network . 9

2.2.2 Convolutional neural network 11

2.2.3 Residual network . 12

2.2.4 Transformer . 14

2.3 Estimation background . 15

2.3.1 Perspective-n-Point problem 15

2.3.2 RANSAC . 17

3 Survey on image-based 6DoF pose estimation 19

3.1 Problem definition and methods classification 20

3.2 Features-based methods . 21

3.3 Template-based methods . 23

3.4 Direct prediction or Learning-based methods 25

3.4.1 Bounding box prediction and PnP algorithm-based methods 27

ix

CONTENTS

3.4.2 Classification-based methods 29

3.4.3 Regression-based methods 30

4 Methods and Implementations 33

4.1 PVNet Architecture . 33

4.1.1 Keypoints Selection . 34

4.1.2 First Step: Keypoints Localization 34

4.1.3 Second Step: Uncertainty-Driven Pnp 36

4.2 DSAC Module . 36

4.3 Implementations and Code Changes 39

5 Experiments and results 41

5.1 LINEMOD Dataset and Generation of Synthetic Datasets 41

5.2 Procedure for Creating the Trained PVNet Model 45

5.2.1 Preparation Phase and Dataset Partitioning 45

5.2.2 Training Phase and Parameters 45

5.2.3 Evaluation Phase . 46

5.3 Description of Metrics Used . 47

5.4 Overall Table of Experiments . 48

5.5 Discussion of Results . 52

5.5.1 Experiment 1: DSAC or Standard PVNet? 52

5.5.2 Experiment 2: Best Scoring Function Parameters 54

5.5.3 Experiment 3: Uncertainty PnP or EPnP? 56

5.5.4 Experiment 4: There is a Dependence of Real Data in

Training? . 58

5.5.5 Experiment 5: More Effective Synthetic Data Generation

Strategy . 59

5.5.6 Experiment 6: Variation in Loss Function Weights 61

6 Conclusions 63

References 65

x

List of Figures

2.1 Schematisation of a camera obscura. Source at this LINK. 4

2.2 Illustration of the pinhole camera model and its nomenclature. Source paper [5]. . . 6

2.3 Basic architecture of an Artificial Neural Network (ANN) with = hidden layers. Source

paper [7]. 11

2.4 Basic architecture of an Convolutional Neural Network (CNN). Source paper [9]. . . 12

2.5 The left shows the structure of a normal CNN, while the right shows that of Residual

Network (ResNet) with skip connections. Source paper [10]. 13

2.6 On the left there is the Encoder-Decoder architecture, in which the input sequence is

first encoded into a state vector, which is then used to decode the output sequence. On

the right, there is shown the transformer layer, the encoding and decoding modules

were constructed using stacks of transformer layers. Source at this LINK. 15

3.1 Outline on the general functioning of the Feature-based methods. 22

3.2 Outline on the general functioning of the Template-based methods. 24

3.3 Difference in operation between one-stage and two-stage methods. 26

3.4 Outline on the general functioning of the Learning-based methods. 27

5.1 Examples of Red, Green and Blue (RGB) images of real dataset. The first line shows

examples of RGB images for the "cat" object and the second for the "duck" object. . . 42

5.2 Examples of RGB images of synthetic dataset generated by the authors of Pixel-wise

Voting Network (PVNet). The first line shows examples of RGB images for the render

images and the second for the fuse images of "cat" object. 43

5.3 Examples of RGB images of synthetic dataset generated with the command. The first

line shows examples of RGB images for the "cat" object and the second for the "duck"

object. 44

5.4 Output of the evaluation phase: in the first line we have the object "cat" with an

example of good estimate and one of bad; in the second line we have the same thing but

referring to "duck." . 47

xi

LIST OF FIGURES

5.5 Example of prediction of keypoint number 4 in the test set image with ID = 99: on

the top we have the case of the Standard PVNet model while on the bottom we have the

model with the DSAC module. The yellow "X" corresponds to the predicted keypoint,

while the white "Diamond" for ground truth. 53

5.6 Graph containing the scoring functions used in experiment 2. 55

xii

List of Tables

5.1 Overall table with the results of the experiments carried out on the "cat" object. . . 51

5.2 Overall table with the results of the experiments carried out on the "duck" object. . 52

5.3 Comparison table of the best model obtained with the DSAC module and the best

standard PVNet model for the "cat" object. 53

5.4 Comparison table of the best model obtained with the DSAC module and the best

standard PVNet model for the "duck" object. 54

5.5 Summary table of the first part of the search for the best parameters for the DSAC

module with PVNet synthetic dataset ("fuse" and "render") and a small amount of

real images. 55

5.6 Summary table of the second part of the search for the best parameters for the DSAC

module with PVNet synthetic dataset (only "render") and a small amount of real

images. 56

5.7 Comparative table for the "cat" object showing the difference in system performance

in relation to the type of PnP used. 57

5.8 Comparative table for the "duck" object showing the difference in system performance

in relation to the type of PnP used. 57

5.9 Table showing the dependence of the system on the real data in the training phase for

the "cat" object. 58

5.10 Table showing the dependence of the system on the real data in the training phase for

the "duck" object. 59

5.11 Comparative table of strategies for generating synthetic datasets and showing the

effectiveness of using the "Cut and Paste" strategy for generating synthetic data. . . 61

5.12 Table highlighting the importance of the 10000 "fused" images of the "Cut and Paste"

strategy, thanks to its cluttered scenes and occlusions. 61

5.13 Comparative table of the same models trained with a different loss function in the case

of the "cat" object. 62

xiii

LIST OF TABLES

5.14 Comparative table of the same models trained with a different loss function in the case

of the "duck" object. 62

xiv

List of Acronyms

6DoF Six Degree of freedom

AI Artificial Intelligence

ANN Artificial Neural Network

BoB Bags of Boundaries

CNN Convolutional Neural Network

CFT Cascade Forest Template

CV Computer Vision

DL Deep Learning

DRN Dilated Residual Network

DPOD Dense Pose Object Detector

DR Domain Randomization

DSAC Differentiable Random Sample Consensus

EPnP Efficient Perspective-n-Point problem

FC Fully Connected Layer

FPS Farthest Point Sampling Algorithm

HTP Hierarchical Pose Trees

HSL Hue, Saturation and Lightness

KPD Keypoint Detector

xix

LIST OF TABLES

KVN Keypoints Voting Network

LIDAR Laser Imaging Detection and Ranging

LMA Levenberg-Marquardt Algorithm

MCC Loss Mask Coordinate-Confidence Loss

ML Machine Learning

NN Neural Network

OK-POSE Object Keypoint-based Pose Estimation

P3P Perspective-3-Point problem

PCOF Perspectively Cumulated Orientation Feature

PnP Perspective-n-Point problem

PVNet Pixel-wise Voting Network

RANSAC Random Sample Consensus

ReLu Rectified Linear Unit

ResNet Residual Network

RGB Red, Green and Blue

RGB-D Red, Green and Blue with Depth

RMSE Root-Mean-Square Error

RoI Region of Interest

RPN Region Proposal Network

SITE Scale-Invariant Translation Estimation

YOLO You Only Look Once

xx

1
Introduction

Computer Vision (CV) is a field of artificial intelligence that allows computers

and systems to be able to extract information from images, videos and other

visual input and react by performing actions or formulating signals based on

this information. If Artificial Intelligence (AI) allows computers to "think",

computer vision allows them to "see", observe and understand: in fact, it allows

machines to be able to distinguish objects, their distance, whether they are

moving and whether there is something wrong with an image. One of the

main tasks in computer vision is object pose estimation, i.e. the detection and

estimation of the position and orientation of an object: this task is fundamental

in the fields of robotics, autonomous driving and augmented reality. It is a

task that is particularly challenging due to the loss of depth when projecting a

real-world 3D scene onto a 2D plane (this will be explained in detail in one of

the following chapters). In recent years, thanks to the use of neural networks

in pose estimation approaches, considerable progress has been made and very

good results have been obtained even when using RGB images as input. This

work considers PVNet [1], one of the most important pose estimation methods

in the literature, and aims to carry out experiments in order to verify:

• if the addition of Differentiable Random Sample Consensus (DSAC) mod-
ule [2] can improve the system;

• whether changing the Perspective-n-Point problem (PnP) [3] type affects
performance and how much;

• how good the strategies for creating synthetic datasets can be;

1

• how much does a small amount of real images in the training dataset affect
the performance;

• what are the most correct parameters for the loss and scoring functions of
the system.

The tests described above were evaluated on the LINEMOD dataset [4],

which is regarded as one of the standard benchmarks for estimating the 6D pose

of an object. It is a dataset consisting of 15 different 3D objects without textures,

but only the "cat" and "duck" objects were used in these experiments. To the

real images of each object, synthetic images were placed side by side in order to

have a good amount of data during training. The entire work is structured into

chapters as follows:

• chapter 2: all the basics useful for understanding the tools used during
the experiments are presented. From an initial overview of the theory
of Image Formation, we then move on to an overview of the architecture
of neural networks and finally the main estimation algorithms useful for
solving the pose estimation problem;

• chapter 3: an overview of the methods used for pose estimation similar
to PVNet, the network used in these experiments, is given; furthermore,
they are categorised according to the approach used to solve the problem;

• chapter 4: the structure of the Neural Network (NN) used and the module
added are explained in detail; finally, the modifications made to the code
in order to be able to carry out the experiments are set out;

• chapter 5: the datasets and metrics used in the experiments are described,
followed by a discussion of the results;

• chapter 6: conclusions and ideas on how to structure possible future
experiments.

2

2
Basic Notions

Before getting to the heart of this thesis and the experiments carried out, it

is necessary to recall some theoretical concepts of computer vision and neural

networks. In this chapter, they will be set out:

• concepts and mathematical models of projective geometry underlying the
representation of object poses in images

• basic concepts on the architectures and functioning of neural networks
that have been used in experiments;

• estimation algorithms and their parameter evaluation process from model
definition and input data.

2.1 Image formation background

The process of image formation consists of projecting, both geometrically

and optically, points from the three-dimensional (3D) world into positions in the

plane of a two-dimensional (2D) image. This process is divided into two parts:

1. in the first stage, depending on the camera model used in the imaging
process, the geometry of the image is constructed; the projections of the
points of the imaged scene in the image plane are then determined

2. in the second stage, the radiometry of the image is constructed: for each
point projected onto the image, the brightness is measured as a function
of illumination and surface properties.

The following paragraphs will recall concepts related to image geometry.

3

2.1. IMAGE FORMATION BACKGROUND

2.1.1 The pinhole camera model

When humans observe what is around them, the eye projects the 3D world

onto a flat photosensitive surface inside the eye called the retina. Luminance,

on the other hand, is measured by the rods and cones, which are photosensitive

cells on the surface of the retina. Together, the two measurements constitute the

human vision of the real world. In computer vision, the camera is a fundamen-

tally important tool: it is the mechanism by which it is possible to "record" the

world around us through photographs. The human eye and the camera are both

based on the same optical principle: the pinhole camera model.

Figure 2.1: Schematisation of a camera obscura. Source at this LINK.

This model, also known as the camera obscura, is the simplest but at the same

time the most accurate, allowing objects at any distance to be in focus. The idea

behind the realisation of the model is very simple: place a barrier with a small

aperture between the real object and a photosensitive surface, which can be a

photographic film or a sensor; each point of the 3D object reflects numerous rays

of light, the purpose of the infinite aperture is to select only one (or a few) of

them so that a one-to-one mapping can be established between the points of the

3D object and the surface. The formal notation of the model is:

• the surface is called the image or retinal plane;

• the aperture is referred to as pinhole or camera center ($);

• the distance between image and pinhole is the focal distance (5);

4

https://www.fotografareindigitale.com/la-camera-obscura/27078

CHAPTER 2. BASIC NOTIONS

• virtual image or virtual retinal plane is when the surface on which the
image is generated is between the real object and the pinhole; The image
and the virtual image of the object are to scale.

It can be seen that the projected space on the retinal plane:

• neither angles nor lengths are preserved;

• points that belong to lines in the real world are projected onto lines in the
image (collinearity invariance);

• parallel lines in reality are projected as lines meeting at the horizon (math-
ematically they will never meet; they are said to meet at a point at infinity).

Euclidean geometry cannot handle points and lines at infinity, so projective

geometry is used, which treats them as all other points and lines in space.

2.1.2 Projective geometry

The task of projective geometry is to preserve the collinearity of the points:

given three points belonging to a line, although the line is changed, the trans-

formed points still know that they are collinear. This operation is not linear so in

output we will not have =-dimensional output, but rather =+1. The idea behind

the transformation is to obtain an = + 1-dimensional vector from one with =,

where the last value of the vector contains the factor that multiplies all the other

= coordinates. For example, take a 2D point G = [G1, G2] , its corresponding vec-

tors in homogeneous coordinates will be G̃ = [BG1, BG2, B], ∀B ≠ 0. Given a vector

G̃ in homogeneous coordinates, it is immediate to derive the corresponding 2D

vector x:

G̃ = [BG1, BG2, B] ⇒ G =

[BG1

B
,
BG2

B

]
(2.1)

s is called the scale factor in the case where the two homogeneous vectors

represent the same 2D vector only at different scales, in notation:

G̃ ∼ H̃ ⇐⇒ ∃B ≠ 0 : BG̃ = H̃

the more B → 0, the more we have to deal with a point that has a distance

closer and closer to infinity.

5

2.1. IMAGE FORMATION BACKGROUND

2.1.3 Pinhole camera matrix

At this point, projective geometry allows us to construct the matrix underlying

the pinhole model. Consider the camera obscura model, defined earlier, and

assume that the retinal plane is to the left of the aperture ($) at a distance 5 (focal

distance). The center of the reference system of the model will be $. The /-axis

of the reference system will be perpendicular to the wall with the aperture, while

the - and . axes will locate the plane of the wall.

Figure 2.2: Illustration of the pinhole camera model and its nomenclature. Source paper [5].

Consequently, the center of the generated image will be at distance − 5 along

the /-axis. If the real coordinates of a point % = [-,., /] are known, the coor-

dinates of the point %′ projected onto the plane of the image I can be calculated

by means of the rule of similar triangles:

G = − 5

(
-

/

)
, H = − 5

(
.

/

)
(2.2)

the minus sign in front of the coordinates indicates that the image generated

by the camera obscura is upside down. In order to simplify the model, we use

a virtual pinhole camera that generates a virtual plane placed on the /-axis at

distance f from the aperture. As a result, the coordinates will always be positive

and free of the reflection effect:

G = 5

(
-

/

)
, H = 5

(
.

/

)
(2.3)

Integrating the notions of geometry seen above, we can define the ideal

6

CHAPTER 2. BASIC NOTIONS

pinhole camera model:

G

H

1

∼

5 0 0 0

0 5 0 0

0 0 1 0

-

.

/

1

(2.4)

The model just constructed is a geometric model: all coordinates and focal

distance are calculated in meters. An additional transformation must be applied

in order to transform the coordinates of the image plane from continuous to

discrete. In fact, modern cameras use discrete sensors in order to capture images,

and these images are measured in pixels. The mapping from continuous to

discrete coordinates is as follows:

D = D2 +
G

F?
, E = E2 +

H

ℎ?
(2.5)

where:

• D2 and E2 are the parameters that determine the difference between the
coordinates of the center of the pinhole plane and those at the upper left
corner of the image, which, by convention, is the center of the system in
pixel coordinates;

• ℎ? andF? are the height and width of the discrete sensor cells, respectively;

• G and H are the previously defined coordinates.

The parameters D =
5
F?

and E =
5
ℎ?

allow direct conversion with a single

matrix multiplication from 3D scene point coordinates to pixel coordinates.

Plugging the above into the ideal pinhole camera model, we obtain:

G

H

1

∼

5G 0 D0 0

0 5H E0 0

0 0 1 0

-

.

/

1

(2.6)

This gives the internal matrix of the camera.

2.1.4 Pose

In the context of Computer Vision, it is of fundamental importance to be able

to identify the pose, that is, the translation and rotation of a rigid object with

7

2.1. IMAGE FORMATION BACKGROUND

respect to another. In order to be able to explain the concept more precisely,

suppose we want to describe the pose of a rigid body with respect to a fixed

world surrounding it: we must then define an object reference system ($) and

one referring to the fixed world (,). The translation component (C) is a translation

vector of dimension 3x1 that represents the translation along the 3 axes of one

reference system with respect to the other.

C =

-

.

/

Instead, depending on the domains in which it can be used, there are different

representations for the rotation component:

• Rotation matrix: this is a matrix of size 3x3 that expresses the orientation
of one frame of an object with respect to another;

' =

[A11 A12 A13
A21 A22 A23
A31 A32 A33

]

• Roll-Pitch-Yaw: since a rigid body has at most 3 degrees of freedom,
it is possible to describe the arbitrary orientation of an object by three
independent quantities: roll ()), pitch (�) and yaw (#).

'
(
), �,#

)

This type of notation is widely used in robotics because it is geometrically
very easy to understand and only three values are needed; unfortunately,
this simplicity prevents it from representing continuous values, and the
final orientation depends on both the order in which the rotations are
applied and whether they are applied on moving axes (intrinsic rotations)
or fixed axes (extrinsic rotations);

• Axis-Angle or Rotation Vector: this type of representation uses a unit
vector (u) that indicates the direction of the axis of rotation and an angle
(�) that reports how much the object is rotated with respect to its axis. If
the vector and angle are multiplied with each other, the rotation vector (A)
is obtained.

A =
[
AG , AH , AI

]
=

[
DG�, DH�, DI�

]

The disadvantages of the previous representation are overcome and trans-
formed into strengths, however, it is difficult to match the physical orien-
tation with the numerical values of the rotation vector. In addition, one
must convert to another representation whenever one wants to apply a
rotation directly to a 3D point;

• Unit Quaternion: this representation takes advantage of Axis-Angle en-
coding with 4 parameters; it is a very simple, stable and robust method;
therefore, it is considered the best method to represent the orientation of

8

CHAPTER 2. BASIC NOTIONS

a rigid body.

A =
[
@F , @G , @H , @I

]

Unit Quaternion does not require conversions in order to apply rotations
directly to 3D points, they are more efficient than rotation matrices and
do not suffer from the inability to uniquely define orientation as in Roll-
Pitch-Yaw.

2.2 Deep learning background

Deep Learning (DL) is one of the most advanced branches of Machine Learn-

ing. It consists of a set of techniques based on Artificial Neural Network organ-

ised in several layers: each layer calculates values for the next one, in order to

process the information more and more completely. With a sufficient amount

of data, the system is able to learn the correct representation and solve ma-

chine learning problems without the need for data pre-processing, as is the case

with traditional Machine Learning techniques. Although "technologically new",

Deep Learning techniques have their roots in the past, it is only in the last ten

years, thanks to their computational capacity and the use of large amounts of

data, that their usefulness has been demonstrated in a wide range of applica-

tions, for example:

• image classification;

• language recognition and processing;

• autonomous driving;

• media and entertainment;

• security;

• medical diagnosis.

This section will explain the architectures and operations of the most com-

monly used neural networks.

2.2.1 Artificial neural network

An Artificial Neural Network (ANN) [6] is a Machine Learning algorithm that

allows a computer to imitate the functioning of the human brain by learning

9

2.2. DEEP LEARNING BACKGROUND

from experience and being able to predict an outcome from certain initial situa-

tions. This allows a machine to perform, in complete autonomy, tasks that were

previously intended only for humans, such as driving a vehicle, answering a

telephone or diagnosing a disease. The structure of an ANN can be represented

by means of a directed graph, where the nodes are called neurons, while the arcs

are the connections that link the neurons together and divide them into layers.

The basic architecture of an Artificial Neural Network is called a feed-forward

network and consists of three main layers:

1. input level: receives unprocessed input data, which can be any form of
structured data such as images, text or numerical values;

2. hidden levels: are located between the input and output levels and are
responsible for processing input data; to transform "stimuli" into a reaction,
each neuron applies a function, called an activation function, to the weighted
sum of input values in the neuron and its product becomes input to the
following. The connection weights play a crucial role: they tell the neuron
which signals are relevant and which are not. To function properly, none
of the input signals must overwhelm the others: therefore normalising or
standardising the dataset is used.

3. output level: produces the final results of the Neural Network’s process-
ing, such as classifications or numerical predictions.

Artificial Neural Network are a popular choice for various Machine Learning

tasks because they offer numerous advantages, including:

• versatility in application, e.g., image and speech recognition, natural lan-
guage processing, games, recommender systems, and many others;

• adaptability and learning to new information and/or changing environ-
ments;

• non-linearity in computation between input and output that allows ANNs
to handle tasks impossible for linear models;

• generalisation of the data they have been trained on, which allows them to
make predictions on cases never seen before, which is crucial for real-world
applications;

• transfer of learning, i.e. reducing the amount of data required and calcu-
lations required for training by reusing pre-trained networks as a starting
point for new tasks.

Despite having many advantages, researchers and engineers are constantly

working to overcome certain limitations of this model such as requiring a large

amount of data for training, computational complexity and overfitting (inability

to generalise if the network is exposed to new data).

10

CHAPTER 2. BASIC NOTIONS

Figure 2.3: Basic architecture of an ANN with = hidden layers. Source paper [7].

2.2.2 Convolutional neural network

A Convolutional Neural Network (CNN) [8] is a particular feed-forward NN that

is inspired by the organisation of the visual cortex: it is a network consisting

of several stages specialised in different tasks, such as the extraction of shapes

or other image features. In general, the functioning of a Convolutional Neural

Network (CNN) is no different from any other feed-forward network, but the

difference between the two types of network lies in the fact that within the CNNs

are the convolutional layers. The latter extract features or characteristics of the

images whose content is to be analysed through the use of filters: depending on

the type used and the number, it is possible to identify features ranging from

the simplest (contours, lines, colours) to entire objects. Therefore, a CNN works

and classifies the image based on intrinsic elements of the image, not stopping

at "the general information of the image" as is the case in classic feed-forward.

The basic structure of a CNN is very simple: after an initial input layer, there

is a sequence of convolutional layer, Rectified Linear Unit (ReLu) and pooling

layer, up to the fully connected layer. The main blocks of this network will be

analysed below:

• the input layer consists of a sequence of neurons capable of receiving the
image information. At this level, the matrix of pixels representing the
image to be processed will be passed. This means that the input will have
three dimensions: a height, a width and a depth, which correspond to the
three colours of the image in RGB format.

• the convolutional layer aims to detect features depicted in an image with
high accuracy. It requires data collected from the input layer, a filter (or
mask) and a feature map. During the convolution operation, the filter

11

CHAPTER 2. BASIC NOTIONS

more layers, then it will progressively learn more and more complex features.

[11] Therefore, more and more convolutional blocks began to be stacked, in

the hope of getting better and better results; but, as the study by He et al. [10]

showed, empirically there is a maximum threshold for depth with the traditional

CNN: it has been shown that the best networks using convolutional layers and

fully connected layers typically contain between 16 and 30 layers. in the same

paper the authors conducted another experiment which compared the values

of training and testing errors between a CNN with 20 layers and one with 56

are compared and it emerges that it is not overfitting, but rather the vanishing

gradient problem. During training by backpropagation, the gradient assumes

a value of 0 or is asymptotic to 0, thus preventing the network from updating:

the weights of the layers near the input remain constant or update very slowly

in contrast to the layers near the output. The ReLu activation module partly

solved this problem, but the major breakthrough came with the introduction of

skip connections. They make it possible to realise networks with multiple layers

that perform at least as well as a shallow model [12]. Their structure is shown

in the following figure:

Figure 2.5: The left shows the structure of a normal CNN, while the right shows that of ResNet with
skip connections. Source paper [10].

From what can be seen, the aim of the skip connection is to create an alter-

native path for the gradient to pass through during the back-propagation phase

of the error: the input (-) is added to the result of the non-linear transformations

(�) performed on X by the intermediate layers, producing the output:

� (-) = � (-,,) + - (2.7)

Then a ReLu activation function will be applied to�(-). The skip connection,

also known as the residual block, is the fundamental element of the architecture

13

2.2. DEEP LEARNING BACKGROUND

of residual networks. The name residual is due to the single block learning

technique:

� (-,,) = � (-) − - (2.8)

In general, it can be said that the residual block makes two considerations:

• W = 0 "If I don’t learn anything new, at least I remember the past", i.e. if the
kernels of the block levels do not highlight any features on the input X and
produce feature maps with pixels of value 0, the residual block allows the
output not to be cancelled and to move forward. In this case, the residual
block tries to map its input (the identity) so as not to lose information, or
rather, learns the residual:

� (-,,) = � (-) − - = - − - = 0 (2.9)

• W ≠ 0 "If I learn something, the past helps me anyway", i.e. when the layers
manage to extract non-empty feature maps, the input is "perturbed" with
what is extracted from the layers of the block, so as to increase its accuracy;
in this case the residual block learns to map the perturbation, or rather, its
residual.

2.2.4 Transformer

Transformer neural networks [13] are one of the most promising and innova-

tive technologies in the field of Machine Learning (ML). Initially developed

to improve machine translation, in recent years they have found applications in

many other fields, including realistic image generation [14], natural language

understanding [15] and medical diagnosis. The ability to handle large amounts

of data and to learn autonomously have determined their success. The oper-

ation of this particular Neural Network is based on a building block called a

transformer, which enables it to process and understand data more efficiently

than traditional methods. It consists of two main components:

• the attention module allows the NN to "focus" only on the data needed to
solve a given problem, ignoring superfluous data. This makes it possible
to handle large amounts of data more efficiently and to obtain more precise
results;

• the encoding module is responsible for transforming the data into a for-
mat that the Neural Network can understand and use to make decisions.
For example, in the case of machine translation, the encoding module
transforms the words of one language into a format that the NN can use
to generate the translation into the other language.

14

2.3. ESTIMATION BACKGROUND

image taken by the camera itself. PnP is a fundamental problem not only for

computer vision but also in robotics: in fact, it is fundamental for visual odom-

etry, i.e. the process of determining the position and orientation of a robot by

analysing the images from its associated camera. As seen in the section 2.1.4,

the camera pose has Six Degree of freedom (6DoF), given by the 3D rotation

and 3D translation of the camera with respect to the world reference system;

therefore, in order to solve a PnP problem, information from at least 3 pairs of

corresponding points is required. There are many algorithms that solve this

type of problem and can be divided into two categories based on how many

point pairs are needed as input:

• Perspective-3-Point problem (P3P) [16] is the algorithm for solving the
PnP problem with only 3 point correspondences and returns up to four
geometrically possible solutions. Its first formulation of the algorithm
dates back to 1841, to date the most recent variant by Gao et al. can be
found within OpenCV in thecalib3dmodule under the functionSolvePnP.
Let be:

– % the projection center of the camera;

– �, � and � the selected points of the 3D world;

– D, E and F the points in the image corresponding to the real

– let also be - = |%�|, . = |%�|, / = |%� |, = ∠�%�, � = ∠�%�,
� = ∠�%�, ? = 2 cos , @ = 2 cos �, A = 2 cos �, 0′ = |��|, 1′ = |�� |,
2′ = |�� |

According to the definitions just given, three triangles %��, %�� and %��
are generated from which we obtain the system of equations sufficient for
P3P to work out the solutions:

{
.2 + /2 − ./? − 1′2 = 0

/2 + -2 − -/@ − 2′2 = 0

-2 + .2 − -.A − 0′2 = 0

(2.10)

Solving the system yields four possible solutions to determine the rotation
and translation of the camera.

• Efficient Perspective-n-Point problem (EPnP) [17] is the algorithm that
solves the = > 3 case of the PnP problem. It was developed in 2008 by
Lepetit et al. and its code is available in the camera calibration and 3D
reconstruction module at the SolvePnP function of OpenCV. The method is
based on the idea that each of the = points can be expressed as a weighted
average of 4 virtual control points: the coordinates of these 4 points will
be the unknowns of the problem and that will determine the camera pose.
Let us proceed with the formal definition of the method: first, the n points
referring to the 3D world ?F

8
and those corresponding to the image ?2

8
must

be defined in homogeneous form as the weighted average of the 4 control

16

CHAPTER 2. BASIC NOTIONS

points, respectively 2F
9

and 22
9
:

?F8 =

4∑

9=1

8 92
F
9 , ?

2
8 =

4∑

9=1

8 92
F
2 (2.11)

4∑

9=1

8 9 = 1

From the above considerations, we can write the derivation of the image
reference points as:

B8?
8<6

8
=

4∑

9=1

8 92
2
9 (2.12)

?
8<6

8
=

[
D 8 , E 8 , 1

]
are the vectors that represent the image reference points

in pixel coordinates; while 22
9
=

[
G2
9
, H2

9
, I2

9

]
are the vectors that homoge-

neously represent the image control points. For each reference point we
will then have these two equations obtained from the previous one:

4∑

9=1

8 9 5GG
2
9 + 8 9(D0 − D8)I

2
9 = 0 (2.13)

4∑

9=1

8 9 5HH
2
9 + 8 9(E0 − E8)I

2
9 = 0 (2.14)

By setting all the equations obtained in an "-matrix we obtain the system
"G = 0, to find the solution vector G containing the four control points we
simply calculate the kernel of the "-matrix like this:

G =

#∑

8=1

�8E8 (2.15)

is the number of null singular values in " and has a range from 0 to
4, vi corresponds to the right singular vector of ". bi are the calculated
coefficients that are then refined with the Gauss-Newton algorithm. Fi-
nally, the rotation and translation that minimises the projection error of
the real points ?F

8
in the corresponding image points ?2

8
are calculated.

The solution has a computational complexity of $(=).

2.3.2 RANSAC

Random Sample Consensus (RANSAC) [3] is a non-deterministic algorithm

developed by Fischler and Bolles and published in SRI International in 1981.

17

2.3. ESTIMATION BACKGROUND

It is based on the random selection of the generating elements of the iterative

model for estimating the parameters of a model where the data set is strongly

biased by the presence of many outliers, i.e. values that are distant from other

available observations. Iteratively, the RANSAC algorithm alternates between

an initial hypothesis-generating phase and a hypothesis-estimating phase; in order to

better understand what has just been said, the pseudocode of the algorithm is

given below:

1. it randomly selects a subset of points (hypothetical inliers) that can determine
the parameters of the model;

2. the model parameters are calculated to fit the hypothetical inliers found
previously;

3. all other data are tested on the calculated model, the points that fit within
a tolerance defined by the loss function are included in the consensus set;

4. if the ratio of the number of points in the newly found set to the total
points in the dataset is greater than the threshold to be reached, the model
is found to be good and the parameters are recalculated using the entire
consensus set and the algorithm terminates;

5. otherwise, the previous four points are repeated a maximum of # times.

For the probability ? that at least one of the hypothetical inliers does not

include an outlier to be high, the number of iterations # must be high. The

relationship between these two values is as follows:

1 − ? = (1 − D<)# (2.16)

Where:

• D represents the probability that the selected point is an inlier;

• E = 1 − D represents the probability of selecting an outlier;

• < is the minimum number of points required to solve the problem.

The formula determining the relationship between # and ? will then be:

=
;>6(1 − ?)

;>6(1 − (1 − E)<)
(2.17)

18

3
Survey on image-based 6DoF pose

estimation

In this chapter, the problem of calculating the pose of an object with 6DoF

will be analysed. Next, the most recent and important papers concerning this

topic will be reported, which have been chosen with the following criteria:

• publication date after 2016;

• number of citations greater than 5;

• modernity of the technologies used;

• input with only a single RGB image and possibly a 3D model of the object
to be identified, as methods requiring multiple input images, Red, Green
and Blue with Depth (RGB-D) images or requiring data from sensors (e.g.
Laser Imaging Detection and Ranging (LIDAR)) are more complex to train
and calibrate as well as being space-intensive models that are difficult to
use;

• results obtained.

During the overview, the methods will be classified and analysed, highlight-

ing their strengths and disadvantages, and an attempt will be made to answer

questions such as: "Does the method need a pose refinement phase?", "How large does

the dataset need to be for it to produce interesting results?", "Is synthetically generated

data needed for training?", "Can it work in real-time?" and "Is the accuracy appropriate

for its specific application domain?"

19

3.1. PROBLEM DEFINITION AND METHODS CLASSIFICATION

3.1 Problem definition and methods classification

The 6DoF pose estimation can be considered as one of the most important tasks

in many computer vision applications, such as robotics, autonomous driving,

and virtual/augmented reality applications. It consists in determining the 3D

rotation and translation of an object, whose shape is known a priori, with respect

to the camera, through the details observable from the input image. The pose

identified in the process must be expressed in one of the notations described in

section 2.1.4. The problem of pose estimation is not complex to explain, but it is

complicated to obtain satisfactory solutions because one can find self-occlusions

or symmetries of the object that do not allow it to be unambiguously identified,

unfavourable image illumination conditions and occlusions with other objects

in the scene. Introducing a phase in which the portion of the image containing

the object is recognised particularly helps in the estimation of its position. Early

methods of pose estimation are based on geometric approaches that utilise

manually annotated local features to calculate correspondences between 3D

models and objects in the 2D image. Geometric methods are more time-consuming,

with inaccurate results and may even fail when objects are geometrically complex

or lack texture because local features are not easily identified. As an alternative

to these, template-based methods exploit a dataset with 2D representations of the

object from different viewpoints to search for that single representation that

matches the object in the input image. The latter methods are very susceptible

to occlusions and variations in illumination and, in addition, the recognition

time for objects without textures increases considerably due to the large number

of comparisons. With the renaissance of deep learning, brought about by the

increase in computing power and the availability of handling large amounts of

data, traditional methods have been revamped and made more efficient and

performant: the idea behind this "renewal" is to employ convolutional neural

networks for learning a mapping function between the 3D and 2D coordinates

of the position of the object to be detected. This category of methods can be

divided into:

• Bounding box prediction and PnP algorithm-based models, which uses
a CNN that has the task of estimating the 2D projections of the corners
of the 3D bounding box and then the PnP has the task of determining the
position from the correspondences of the 2D features of the image and the
3D points of the CAD model;

• Classification-based models, consisting of a CNN that performs the clas-

20

CHAPTER 3. SURVEY ON IMAGE-BASED 6DOF POSE ESTIMATION

sification in a single step;

• Regression-based models, consisting of a CNN that performs regression
in a single step.

The last two categories mentioned can achieve high levels of accuracy in

real cases, following training with large amounts of data. There is no single

methodology to solve the problem of 6DoF pose estimation and the approach

to be used varies greatly depending on the field in which one is working. Even

now, many researchers apply themselves in order to find more accurate and

faster solutions.

3.2 Features-based methods

Feature-based method is based on the extraction of local features from Region

of Interest (RoI) or from all image pixels. The most commonly used features

are, for example, keypoints, contours, line intersections or grey values. By

subsequently comparing the features found in the image with those obtained

from the 3D model of the object, 2D-3D correspondences are obtained. The

entire process can be divided into two steps: the first one extracts the local features

from the image and compares them with the keypoints extracted from the 3D

model, then the second step calculates the 6D position by geometrically solving

the correspondence problem between the 2D and 3D values obtained from the

previous step. These techniques mix traditional computer vision strategies with

the latest neural networks: CNNs are employed at different points in the pipeline

in order to improve the performance and accuracy of the system. The main

advantage of these techniques is speed and robustness to occlusions between

objects and cluttered scenes, while the disadvantages are:

• symmetrical objects or lacking well-defined textures for feature calcula-
tion;

• the accuracy of the calculated position depends on the quality of the ex-
tracted keypoints;

• the 6D position identified by this type of technique requires an additional
operation to be refined to obtain the final position.

This type of methods can be a good solution when the object to be identified

has an easily recognisable silhouette and accurate keypoints. Although the

two-stage procedure with position refinement is very time-consuming, some

21

3.2. FEATURES-BASED METHODS

methods can be performed in real-time or near real-time. In order to train and

test the performance of strategies of this type, datasets provided by the literature

(LINEMOD, PASCAL 3D+, KITTI) or created ad hoc are used.

Figure 3.1: Outline on the general functioning of the Feature-based methods.

In the literature we can find several solutions belonging to this category, the

most important of which include:

• those that implement CNNs to extract features and a shape fitting al-
gorithm to calculate the final position. In [18] the authors construct a
network with a pipeline consisting of object detection, keypoint location
and finally pose refinement. Peng et al. [1] construct a particular CNN,
called PVNet, which was very successful. Pixel-wise Voting Network
succeeds in calculating 2D-3D correspondences with excellent results by
regressing pixel-wise vectors to keypoints. For each keypoint, a spatial dis-
tribution is thus obtained, which will be the input for the PnP; at the end
of the process, we will have the final position identified. Its performance
is very good and robust even in the event of occlusions, and the network
can also operate in real-time. Several studies have focused on improving
this network: Zhu et al. [19] added Atrous Spatial Pyramid Pooling and
Distance-Filtered PVNet to improve occlusion cases, while You et al. [20]
improved performance by including a system on PVNet of projection loss
and a discriminative refinement network;

• those based on multi-stage pipelines. Zaoh et al.’s network [21] exploits
YOLOv3 to identify the object; after selecting keypoints in the object, a
ResNet101-based Keypoint Detector (KPD) is trained. Finally, PnP finds
the position of the object thanks to the matches of the previously found
points;

22

CHAPTER 3. SURVEY ON IMAGE-BASED 6DOF POSE ESTIMATION

• those that maintain a pipeline similar to the previous cases exploit a
CNN for both object detection and key point estimation and subse-
quently use geometric algorithms to refine the final result. Zhao et
al. [22] implemented an end-to-end ResNet-based network trained to
recognise viewpoints consistent with the geometry and semantics of the
image. Also by the same authors, Object Keypoint-based Pose Estima-
tion (OK-POSE) is introduced in [23], which recognises 3D keypoints due
to relative transformations between image pairs compared to classical la-
belling and CAD models;

• those that exploit synthetic data for training. A two-stage pipeline con-
sisting of 2 CNNs was proposed by Nath Kundu et al. [24]. After learning
how to extract the invariant position of local descriptors from the image,
the first CNN takes care of extracting the keypoints; the second provides
the final position, after reworking the information from various correspon-
dence maps;

• those dealing with complex objects. Chen et al. [25] propose a method
consisting of three steps: object detection, feature detection and pose
estimation. This method is effective with metallic, shiny and untextured
objects.

3.3 Template-based methods

This type of method is organised in such a way as to have an offline stage and an

online stage: in the former, the aim is to construct a dataset consisting of various

templates obtained from the 3D model of the object to be identified, while in

the latter, the actual procedure for establishing the 6D position takes place. The

construction of the dataset is fundamental in order to obtain good results; it is

composed of a series of synthetic renderings, obtained by changing position and

orientation, so as to have different points of view distributed on an imaginary

sphere having the 3D object model as its centre. In the position estimation phase,

the input image is compared with each synthetic image contained in the dataset

thanks to a sliding window algorithm. A similarity value will determine the

best match, which will be returned as the output of the process. The strengths

of this category are:

• very good handling in the case of objects without textures;

• very good accuracy in the case of an exhaustively generated dataset.

On the other hand, its weaknesses are:

23

3.3. TEMPLATE-BASED METHODS

• the high sensitivity to variations in brightness and occlusions between
objects;

• the need to strike a balance between execution speed and accuracy, both
of which depend on the number of templates in the dataset; speed is
inversely proportional to the number of elements in the dataset, while
accuracy is directly proportional. Many CNN-based approaches modify
the cost functions in order to solve this problem efficiently.

As mentioned earlier, this category of methods can achieve high accuracy

if it has a large dataset at the expense of execution time, which is why it is rare

for these methods to work in real-time. Due to the use of customised datasets,

pose refinement is not necessary, however, the methodology employed may

sometimes require it. In some cases, CNNs have been used to solve the problem.

Figure 3.2: Outline on the general functioning of the Template-based methods.

In the literature we can find several solutions belonging to this category, the

most important of which include:

• older ones that implement geometric approaches. The method presented
in paper [26] exploits colour transformation and vectorisation to achieve
more compact representations and a better calculation of correspondence.
Instead of proposing a method based on the computation of poses given
known instances, the authors of [27] introduce Bags of Boundaries (BoB),
which only allows the identification of matches on a summary of edges and
can therefore estimate the poses of unknown instances. Exploiting edges,
Ulrich et al. [28] also estimate a discrete pose that is then refined by a 2D
match with edge features; instead, the Levenberg-Marquardt Algorithm
(LMA) [29] allows the calculation of 3D camera matches;

24

CHAPTER 3. SURVEY ON IMAGE-BASED 6DOF POSE ESTIMATION

• those that focus on reducing execution time. In the paper [30] by Konishi
et al., the Perspectively Cumulated Orientation Feature (PCOF) is proposed
to handle a specific range of object poses; while Hierarchical Pose Trees
(HTP) are based on grouping the poses of 3D objects and reducing the
resolution of the models;

• those that handle cases where objects are textureless. Munoz et al. [31]
exploit the coarse position information coming from a detector and make
matches with the object edges. The same authors in [32] use the Cascade
Forest Template (CFT): it allows the mismatch between the initial layout
and the current layout to be learnt through the use of regression forests
for each template;

• those used in tracking: These strategies are used for tracking initialisation
and pose restoration following occlusions or exit from the camera view-
point. The paper [33] presents a new segmentation strategy based on a
local colour histogram;

• those that focus on providing the exact position of symmetrical objects:
Corona et al. [34] realise a special loss function to handle this particular
case;

• those that implement neural networks to improve performance: the net-
work (usually a CNN) is given as input an RGB image and a depth map
for each viewpoint and outputs the 6D position. In the paper [35], the
auto-encoder denoising, a special type of NN that learns the representa-
tions of rendered 3D objects, is implemented. A cross-domain adaptation
approach, using CaffeNet for both the off-line and on-line stages, was used
by the authors of the paper [36].

3.4 Direct prediction or Learning-based methods

DL-based method is based on convolutional neural networks. Although it

requires a large amount of labelled data in the training phase, it achieves very

good results for estimating the 3D position and rotation of the target object. This

type of methods can be divided into one-stage or two-stage depending on whether

or not they require a "refinement" phase of the pose parameters using the PnP

algorithm. It is precisely because of this last stage that two-stage CNNs perform

better than one-stage CNNs in the case of small objects and multiple objects.

However, PnP suffers from cases where point correspondences are affected by

occlusions.

We do not always have enough real data to complete the network training

phase, so we often resort to the Domain Randomization technique: this strategy con-

sists of printing different positions of the 3D object model on a real background

25

3.4. DIRECT PREDICTION OR LEARNING-BASED METHODS

Figure 3.3: Difference in operation between one-stage and two-stage methods.

and then applying different augmentation techniques, e.g. variable illumina-

tion, contrast, blurring and occlusion using small monochrome patches. This

technique is very useful for increasing accuracy, however the synthetic genera-

tion of occlusions does not help the system much in this main challenge of pose

calculation. The advantages of these strategies are:

• powerful and excellent results;

• excellent performance even with rich backgrounds and partially occluded
objects.

On the other hand, the problems that plague these methodologies are:

• the training time of the method is long;

• in the case of many large occlusions in the input images, they are not very
robust;

• in some situations they are plagued by overfitting, i.e. the inability to
generalise the problem when faced with new input data.

In recent years, this category has become very popular due to the increase in

computing power and the possibility of processing and handling large amounts

of data for system training. It can be divided into three main categories of

methods:

• Bounding box prediction and PnP algorithm-based methods (see section
3.4.1);

26

CHAPTER 3. SURVEY ON IMAGE-BASED 6DOF POSE ESTIMATION

Figure 3.4: Outline on the general functioning of the Learning-based methods.

• Classification-based methods (see section 3.4.2);

• Regression-based methods (see section 3.4.3).

In the sections indicated above, their operation and the main recent examples

that can be found in the literature will be explained.

3.4.1 Bounding box prediction and PnP algorithm-based meth-

ods

The general structure of the methods belonging to this subcategory has two-

stages: in the first phase we have the use of a CNN to recognise the object and

the regression of the projections of the identified 3D keypoints on the image

takes place; in the second phase, thanks to the PnP algorithm, the actual pose of

the object is calculated. In order to achieve good accuracy in the coordinates of

the bounding boxes, additional pre-processing with long manual annotations is

required. Although the pipeline is multi-stage and long, some strategies can be

executed in real-time. The most recent strategies found in the literature differ

only in step one, i.e. how the correspondences between 3D and 2D points are

calculated to be "fed" to the PnP algorithm. Some of the most important methods

include:

27

3.4. DIRECT PREDICTION OR LEARNING-BASED METHODS

• the method proposed by Rad and Lepetit in [37] is called BB8. It consists of
a series of CNNs: the first deals with semantic segmentation, the second
estimates the eight vertices of the bounding box projections and finally
the third, following the PnP algorithm, performs a refinement on the pose
of the identified object. This method has been so successful that it has
been the subject of further studies to make it more robust in cases where
the occlusions are very opaque [38] and to improve its performance by
replacing the use of the PnP with the Collinear Equation Layer [39] or the
Bounding Box Equation [40];

• those based on the ideas of the You Only Look Once (YOLO) [41] and
BB8 networks. YOLO6D is a fully convolutional network developed by
Tekin et al. [42]: it performs a regression on the bounding box projections
in the image, like BB8; it also provides precise and accurate results without
refinement and without suffering from pose discretization like the SSD-6D
method [43];

• those that, in order to provide more robust results in the case of occlu-
sions, do not consider the object as a global entity and do not calculate
a unique pose. An innovative 6D pose estimation framework was intro-
duced by Hu et al. [44]: it is based on the segmentation of the visible parts
of the object and these influence the local pose predictor in the 2D key-
point estimation process. In the paper by Li et al. [45], it is explained how
CDPN can provide robust and accurate results of occluded objects or ob-
jects without textures, by calculating translation and rotation separately:
the former is estimated by means of Scale-Invariant Translation Estima-
tion (SITE), the latter by means of object-level coordinate estimation and
a Mask Coordinate-Confidence Loss (MCC Loss). Pix2Pose, proposed by
Park et al. [46], is an auto-encoder network that predicts the 3D coordinates
of the object for each of its pixels and its error; the values obtained were
used at several stages of the process to estimate 2D-3D correspondences
and the final pose. To handle cases of occlusion and object symmetries,
the method uses a new loss function called transformer loss. Dense Pose
Object Detector (DPOD) is an encoder-decoder network, devised by Za-
kharov et al. [47], which performs a regression of the mask and 2D-3D
correspondences. The results of the network are refined through the use
of a CNN;

• those that address both occlusion cases and the lack of real labelled
images. In their paper, by exploiting the Domain Randomization (DR)
strategy, Li et al. [48] implement a robust 6DoF pose estimation approach:
a first network identifies the pixels belonging to the target object and, sub-
sequently, a Self-supervised Siamese Pose Network returns the coordinates
and segmentation information;

• those that can be performed in real-time. In the paper [49], an end-to-end
method is proposed, which is optimal in cases of occlusion between objects
and where the object is devoid of textures, and which exploits a CNN
for the estimation of 2D-3D correspondences. The authors of the paper
[50] focused on robotics and implemented a client-server architecture for

28

CHAPTER 3. SURVEY ON IMAGE-BASED 6DOF POSE ESTIMATION

keypoint recognition and pose estimation, basing it on YOLOv3. TQ-
NET, developed by Liu et al. [51], is a network that receives the object
location and its bounding box, previously identified by an algorithm, and
predicts a translation vector T and quaternion Q, which will be converted
into a rotation matrix R. TQ-NET may be a very simple network, but its
strengths lie in the fact that it provides accurate, real-time results. Finally,
DSC-PoseNet by Yang et al. [52] is the most recent method that exploits
2D bounding boxes to estimate pose: it works well with both real and
synthetic data and, through differential rendering, calculates the pose of
objects.

Studies are evaluated on custom datasets generated specifically for the case

or datasets that are made available in the literature can be used to measure

the accuracy of the estimation process, the most common of which include:

LINEMOD, Occluded LINEMOD, T-LESS, YCB-Video and ACCV.

3.4.2 Classification-based methods

This sub-category of methods treats the 6D position estimation problem as

a single-stage, discrete-pose classification problem: a CNN calculates the probability

distribution in the pose space and subsequently, analysing it with the infor-

mation from the 3D model, derives the position and 3D rotation of the target

object. Despite being single-stage and despite the fact that they rarely require

pre-processing and/or pose refinement steps, it is difficult for these strategies

to work in real-time. The most important methods include:

• SSD-6D is a method in which the authors of the paper [43] modified
the SSD detection framework [53] so that it can recognise detections and
rotations in three dimensions. After a NN has detected the target object
in an RGB photo and returned its 2D bounding box, each instance of
the output is associated with a set of the most probable 6D poses; the
3D rotation is decomposed into discrete views and plane rotations and
treated as a classical classification problem by the network. Two datasets
were used to train the network: a real one for bounding box detection and
a synthetic one for rotations;

• those that are only trained on synthetic datasets. The NN, designed
by Su et al. [54], was trained with synthetic 3D renderings of objects
superimposed on real images and is also able to work in real situations
with real objects. The method proposed by the paper [55] has a modular
architecture consisting of a detector and a viewpoint estimator. It is robust
because it combines a CNN with a 3D pose estimator based on high-
resolution instances. The output provided is not a 6DoF pose, it needs
PnP and refinement steps;

29

3.4. DIRECT PREDICTION OR LEARNING-BASED METHODS

• those that are only trained on real datasets. In the paper [56] GS3D
demonstrates that the pose estimation problem can also be solved using
only real data: it consists of a Faster R-CNN detector which, starting from
the input image and the 2D bounding box parameters and classifies the
rotation; a basic cuboid, called guidance, is created and then projected onto
the image plane thanks to the newly obtained rotation combined with the
2D bounding box and other knowledge of the scenario. 3D Subnet exploits
the idea of guidance by refining it. 6D-VNet by Zou et al. [57] is a network
that is used in the context of autonomous driving;

• those that do not separate the object detection and pose estimation
phases on two different networks. Poirson et al. [58] devised a very
fast single shot detector method that does not use image resampling and
uses convolutions to identify the object and estimate its position. In the
paper by Mousavian et al. [59], a method consisting of an extended de-
tector that, by training a CNN, performs a regression of the object’s size
and orientation is presented. This data is then combined with geometric
constraints in order to estimate the translation and 3D bounding box. The
network proposed by Xu et al. [60] consists of two parts: the first, thanks
to the Region Proposal Network (RPN), allows the 2D region proposal to
be generated, while the second deals with the simultaneous prediction of
the position, orientation and size of the object and finally returns the 3D
pose.

Normally, studies of this type are mainly evaluated on these datasets: PAS-

CAL 3D+ and KITTI.

3.4.3 Regression-based methods

In this subcategory of methods, 6D pose estimation is considered as a regres-

sion problem: they use a CNN to determine a position estimate and then regress

the object’s 6D pose parameters directly from the input image. These strategies

produce the output in a single-stage, but often require the introduction of a

preliminary object detection stage to facilitate and speed up the process. They

are among the best-known and best-performing systems, requiring neither pre-

processing nor post-processing of data because they derive the 6D pose through

a single-stage pipeline. They are proposed as end-to-end networks that can be

trained and executed in real-time to overcome the problem that they are time

and computationally intensive methods. Some of the most important methods

include:

• PoseCNN, designed by Xiang et al. [61], appears to be among the best per-
forming methods for solving the pose estimation problem using only RGB
images as input. It consists of a CNN that performs object segmentation,
rotation and camera distance estimation in two steps. At this point, feature

30

CHAPTER 3. SURVEY ON IMAGE-BASED 6DOF POSE ESTIMATION

maps of different resolutions are obtained from the input image, which
the network reprocesses in 3D translation and 3D rotation. The limitations
of this method are the need for a refinement step and the impossibility
of analysing images in which the target object is present several times. In
[62], a method that focuses on the rotation between the objects and the
camera is presented, exploiting a modified version of VGG-M Network
that consists of a feature network and a pose network;

• Deep-6DPose, presented in paper [63] by Do et al., is an end-to-end net-
work consisting of RPNs (to identify regions of interest) and Mask-RCNs;

• those being developed in the context of autonomous driving. Hara et
al. [64] propose three variants of approaches that consider the rotation of
objects viewed from the side to the centre of the input image. The first is
based on a discretized process, while the other two are similar and differ
only in the loss function. In contrast, MonoPSR is a method, implemented
by Ku et al. [65], that estimates the 6D position of the object using hints
and shape reconstruction. Rambach et al. [66] modified the architecture of
PoseNet [67] and added a new loss function to facilitate training. This new
network is able to derive the 6D pose of an object by means of a synthetic
image with enhanced object edges from its 3D rendering;

• those that are first trained on synthetic datasets and then validated on
real data. In the paper [68], the authors implemented a network consisting
of two cascading components: a Dilated Residual Network (DRN) that
generates the segmentation mask and a pose interpreter network that takes
the results of the first component as input and analyses them together with
the image;

• those that turn out to be the most recent and still little known. As-
suming that the objects were rigid and that their 3D model was available,
Hu et al. [69] constructed a network that, starting from the 2D-3D cor-
respondences of each keypoint, performs a direct position regression. It
consists of a local feature extractor, a feature aggregation module and a
global inference module. The system described by the paper [70] consists
of two CNN networks: one for segmentation and one for pose estimation;
it is designed to calculate both mask and pose even when training data is
scarce. The paper by Liu et al. [71] focuses on the use of triplets: after
generating them from binary images in the training phase, they are given
to a triplet network that identifies features, instead, the poses are reference
information. Finally, a regression network estimates the final position.
Modifying the bease structure of PoseCNN [61], Capellen et al. [72] im-
plemented ConvPoseCNN; this network starts with feature extraction by
means of a convolutional backbone VGG16, then two fully convolutional
branches calculate an initial pixel-wise semantic segmentation and then
the central direction and depth. The results are fed into a third branch
that estimates the quaternions for each pixel. Geometry Guided Direct
Regression Network (GDR-Net), set out in the paper by Wang et al. [73],
is based on both direct and indirect geometric methods: after identifying
the objects of interest, it selects the RoI for each detection. The RoIs are

31

3.4. DIRECT PREDICTION OR LEARNING-BASED METHODS

given as input to a network that will compute the intermediate geometric
feature maps; finally, in order to obtain the 6D position of the object, the
Dense Correspondences and Surface Region Attention must be provided
to a Patch-PnP algorithm. Trabelsi et al. [74] constructed an end-to-end
network for estimating the 6D pose of an object consisting of two mod-
ules: the first, the pose proposal module, is responsible for classifying the
object and then giving an initial pose estimate; while the second, called
the pose refinement module, combines a differentiable render with an it-
erative refiner (MARN). The objective of the paper by Hu et al. [75] is
to perform regressions of 6D pose estimates at multiple scales of spatial
objects and to achieve this they used a Feature Pyramid Network. Su et al.
[76] implemented SynPo-Net, a CNN whose pooling layers were replaced
by convolutional ones to improve the accuracy of the output.

32

4
Methods and Implementations

This chapter will detail the architecture of PVNet and how it works, the

module that has been added to the network (DSAC) and some modifications

made to the code in order to be able to carry out the experiments.

4.1 PVNet Architecture

The network used in this work is Pixel-wise Voting Network, also known as

PVNet [1]. As already mentioned in the section 3.2, PVNet is a recent two-steps

pose estimation method based on the prediction of the position of the 2D keypoints

of the object in the input image and their correlation with the keypoints of the

3D model using the PnP algorithm. The particularity of this method lies in the

fact that the prediction of the 2D keypoints is given by each pixel of the image

belonging to the object: each of them provides unit vectors, i.e. the directions of

the lines that connect the pixel to each keypoint of the object; subsequently, for

each keypoint of the object, all the unit vectors associated with it are considered

and are aggregated by RANSAC to find the final position. Once all final 2D

coordinates have been identified, PnP calculates the correspondences between

the keypoints of the image and those of the model; to improve this last step,

it was decided to provide not only the position of the keypoints but also their

probability distribution in order to give PnP more freedom and stability in

identifying 2D-3D point correspondences and to give more weight to those with

a lower distribution.

33

4.1. PVNET ARCHITECTURE

4.1.1 Keypoints Selection

This method for calculating the 2D-3D correspondence of keypoints requires

a 3D CAD model of the object to be located and its 3D keypoints. Many of the

more recent methods [77]–[79], which adopt a strategy similar to PVNet, use the

eight vertices of the 3D bounding box of the object as keypoints. However, the

authors of PVNet have shown that taking points belonging to the surface of the

object as keypoints results in less variance in their localisation. The points on the

surface were calculated using the Farthest Point Sampling Algorithm (FPS) [80]:

this is a greedy algorithm that, starting from a single random sample of points

(in this case from the object’s centroid alone), at each iteration selects the point

furthest from the selected set and adds it to the group; the process ends as soon

as the desired number of points is reached. The authors of PVNet conducted an

experiment to find out which number of keypoints taken on the surface of the

object produces the best results between 4, 8 and 12 and it turned out that it is 8

that is the best value. Therefore the value of adopted will be 9, where the first

eight are keypoints on the surface and the ninth is the centroid of the object.

4.1.2 First Step: Keypoints Localization

The architecture of PVNet is based on a "pre-trained" ResNet-18 [10] to which

modifications were made so that it takes as input a single RGB image and returns

as output two elements: the mask in which the object identification is reported

and the unit vectors of each pixel to each keypoint. Then, thanks to the RANSAC-

based voting of all unit vectors referring to the same keypoint, confidence scores

are obtained, which in turn determine the assumptions of the 2D positions of

the keypoints. Based on these, the mean and covariance of the spatial probability

distribution for each is estimated. This method yields better results than the

direct regression of the keypoint positions in cases of cluttered scenes, in cases

where a keypoint is occluded or where it is out of the image. In this phase

PVNet performs semantic segmentation and vector-field prediction: each pixel

p of the input image is associated with a semantic label that defines whether or

not it belongs to the object and a unit vector v:(p) that represents the direction

from the pixel to the 2D keypoint x: of the object. A unit vector v:(p) is defined

34

CHAPTER 4. METHODS AND IMPLEMENTATIONS

as:

v:(p) =
x: − p

∥x: − p∥2

(4.1)

First, all pixels belonging to the mask must be identified by looking at their

semantic label. Then two pixels of the mask are randomly selected and the

intersection of their unit vectors is entered as the possible position of the keypoint

x: in the set of hypotheses {h:,8 |8 = 1, 2, ..., #} and this is repeated until #

hypotheses are obtained. At the end all pixels in the mask can vote on which is

the best hypothesis according to the following formula:

F:,8 =

∑

p∈O

I

(
(h:,8 − p))
h:,8 − p

2

v:(p) ≥ �

)
(4.2)

Where:

• F:,8 is the voting score for a hypothesis h:,8 ;

• I is the indicator of the function;

• ? ∈ $, pixel that belongs to the object;

• � is the threshold, set to 0.99.

The hypotheses selected will be those with a higher voting score because

they will turn out to be the most likely keypoint positions. Finally, for keypoint

x: we calculate the mean �: and the covariance Σ: defined as:

�: =

∑#
8=1 F:,8h:,8
∑#
8=1 F:,8

(4.3)

Σ: =

∑#
8=1 F:,8

(
h:,8 − �:

) (
h:,8 − �:

))
∑#
8=1 F:,8

(4.4)

For the learning of the unit vectors in the training phase, it was chosen to use

the smooth ;1 loss function, defined as:

;(w) =

 ∑

:=1

∑

p∈$

;1(∆v:(p; w|G) + ;1(∆v:(p; w|H) (4.5)

∆v:(p; w) = ṽ:(p; w) − v:(p) (4.6)

Where:

35

4.2. DSAC MODULE

• w are the network parameters:

• ṽ: is the predicted vector;

• v: is the ground truth of the vector;

• ∆v: |G and ∆v: |H are two elements of ∆v: .

On the other hand, a softmax cross-entropy loss was used for training semantic

labels.

4.1.3 Second Step: Uncertainty-Driven Pnp

At this stage given the mean�: and the covariance Σ: of each keypoint , the pose

(', C) of the object is calculated, defined as a Mahalanobis distance-minimisation

problem:

arg min
',C

 ∑

:=1

(
x:̃ − �:

))
Σ−1
:

(
x:̃ − �:

)
(4.7)

x:̃ = � ('X: + t) (4.8)

where:

• x:̃ is the 2D projection of the coordinates of keypoint :;

• X: are the coordinates of keypoint :;

• � is the perspective projection function.

EPnP initialises the parameters of translation C and rotation' of the object pose

based on the four keypoints that have the covariance matrices with the lowest

values. Finally, taking into account the minimisation of reprojection errors, the

formula 4.7 is solved using the Levenberg-Marquardt algorithm [29].

4.2 DSAC Module

Taking the general ideas contained in the papers [81], [82], Donadi and Pretto

created Keypoints Voting Network (KVN) [2], a "stereo" version of PVNet to which

a new module was added that performs the RANSAC algorithm in a differential

manner, called DSAC. This differential approach proved to be very effective and

provided good results; therefore, in this work, it was decided to include DSAC in

36

CHAPTER 4. METHODS AND IMPLEMENTATIONS

a "mono" version of PVNet in order to assess any benefits to the pose estimation

task. The differences between the standard PVNet approach and the proposed

DSAC module will be analysed next. Following the RANSAC procedure, a set

of hypotheses is realised for each keypoint by means of minimum set sampling:

in this case, two non-parallel unit vectors (EA , EB) taken from distinct pixels (?A , ?B)

belonging to the object mask are selected, obtaining that all #ℎ hypotheses of the

set (ℎ 9,; with ; = 0, ..., #ℎ − 1) respect the following equality:

ℎ 9 ,; = ?A + 0EA = ?B + 1EB (4.9)

where 0 and 1 belong toR. Now, we must introduce the scalar product between

two vectors (⊥) defined as: D ⊥ F = DGFH − DHFG = |D | |F | sin(�), where � means

the angle between the vectors D and E. This operation is differential in the case

that the two vectors are not parallel. Since by hypothesis the two unit vectors are

not parallel, the scalar product can be used to solve formula 4.9 in the following

way:

0 =
(?B − ?A) ⊥ EB

EA ⊥ EB
(4.10)

In the case of parallel vectors, the assumptions are considered invalid because

the gradient cannot be calculated. Next comes the stage of calculating the

inliers for the hypotheses just found: it considers a pixel to be an inlier if the

predicted unit vector turns out to be very "close" to that of the ground truth. This

"closeness" is calculated thanks to the cosine similarity and if the latter turns out

to be equal to or greater than a threshold (C) equal to 0.99 then pixel ? is considered

an inlier (see formula 4.2). As this is not a differentiable step, the authors decided

to replace the procedure of counting inliers with a sum of the scores of individual

pixels, defined as:

(�(ℎ 9,;) =
∑

?∈Σ

"(?) 5 ((�(+9(?), ℎ 9,; − ?)) (4.11)

where:

• 5 is a differentiable or sub-differentiable function in the interval [−1; 1];

• (� is the cosine similarity operator.

Whereas the probability distribution for all valid hypotheses is given by the

37

4.2. DSAC MODULE

softmax operator:

%(ℎ 9 ,;) =
exp ((�(ℎ 9 ,;))

∑#ℎ

;′=0
ℎ 9 ,;′E0;83

exp ((�(ℎ 9,;′))
(4.12)

While in the hypothesis calculation only some pixels of the object are inter-

polated, it is important to note that in this formula all pixels of the object make

their contribution to the calculation of the probability distribution and this will

be important for the minimisation of the loss function of the model. In the

formula 4.11, the function 5 serves to remap the cosine similarity into an inlier

score: whereas in PVNet it corresponds to a Heaviside function centred in C, in

this case it corresponds to a sub-differentiable leaky-ReLu similar to a piece-wise

linear function. Specifically, the new function 5 in the DSAC module is:

5 (B; C , E) =

1−E
1−C (B − 1) + 1 B ≥ C ∧ B ≤ 1

E
C+1(B + 1) B ≥ −1 ∧ B ≤ C

(4.13)

The formula 4.13 is governed by the parameters inlier threshold (C) and soft-

inlier value (E). Due to the use of equation 4.11 as a scoring function, a uniform

optimisation is achieved: since each pixel will express a non-zero rating for each

hypothesis, there will be no null values in the case of presumed outliers. The

loss function of the model has also changed and is given by the minimisation of

the following equation:

; +# = ;<0B: + ;�(�� (4.14)

where:

• ;<0B: is the cross-entropy loss function of the mask segmentation

• ;�(�� is a loss function of the predicted keypoints which considers the
mean square error of the keypoint on the hypothesis distribution:

;�(�� =

#∑

9=0

#ℎ∑

;′=0
ℎ 9 ,;′E0;83

%(ℎ 9 ,;) ·
ℎ8 ,; − :∗9

2

(4.15)

this loss function allows backward propagation of probability gradients
to each individual pixel of the object. To have a controlled amplitude of

the hypothesis distribution a softmax temperature of 1
 is used, where is

trained with a loss ;1 on the entropy of the distribution. This strategy aims

38

CHAPTER 4. METHODS AND IMPLEMENTATIONS

to stabilise the training by eliminating all hypothesis distributions that
would not bring any advantage to the model.

4.3 Implementations and Code Changes

The main changes made to the code to carry out the experiments are:

• the architecture of PVNet was modified so that it could be adapted to
the DSAC module. The module was taken from the open source code
made available by Donadi et al. in their paper [2]. Since the module
was implemented on a "stereo" network, i.e. a network that has as input
two images of the same scene from two different points of view, a clean-
up of the code was necessary in order to make the code all "mono". In
addition, the module parameters were entered as variables in the YAML
configuration file, so that they could be easily modified;

• the deprecated libraries of the PnP module were updated. The original
header and source files written in C++ were modified, the python file that
starts the C++ source code was updated to the modified files, and finally
the old method was also replaced in the evaluator;

• the addition of a new method for reading the custom synthetic dataset
(see section 5.1 for details) and other improvements for handling datasets by
object and for terminal display of the progress of the dataset preparation
operation;

• the inclusion of the 3D keypoints Root-Mean-Square Error (RMSE) met-
ric in the list of model evaluation metrics (see section 5.3 for details);

• the addition of the visualise_hue_votesmethod that allows the orienta-
tion of the versors to be displayed as a Hue channel in the Hue, Saturation
and Lightness (HSL) representation of the selected image colours during
evaluation;

• other improvements to the code including the elimination of hard-coded
values and the insertion of editable variables from the YAML configuration
file.

At the end of all these modifications, we obtain a network that is easily

modified thanks to the YAML configuration file: it contains parameters defining

the directories of the model and dataset files, network training parameters,

DSAC-related parameters and finally test parameters (use of the PnP type). In

this way, it is easy to carry out the experiments of interest on the four different

versions of PVNet and be able to identify the effectiveness of the modules,

establishing which is the best variant of the network. The variants examined

are:

39

4.3. IMPLEMENTATIONS AND CODE CHANGES

• PVNet with DSAC and Uncertainty PnP;

• PVNet with DSAC and EPnP;

• PVNet with Uncertainty PnP;

• PVNet with EPnP.

40

5
Experiments and results

In this chapter, the technical details of the various experiments conducted

are described: the strategies for generating synthetic datasets in the training

phase, the network parameters used, the breakdown of the dataset used during

training and the evaluation of the best network model found, and the metrics

implemented in the evaluation phase. Finally, an overall table with all the results

obtained will be discussed.

5.1 LINEMOD Dataset and Generation of Synthetic

Datasets

In the paper [4] Stefan Hinterstoisser et al. introduce a new dataset consist-

ing of 15 different 3D objects without textures called LINEMOD and a new

framework that utilises a Kinect for modelling, sensing (focusing on a template-

based approach, also called LINEMOD) and tracking 3D objects. Due to the

fact that the dataset features cluttered scenes, objects without textures and variations

in lighting conditions, it has been very successful and has become a standard for

benchmarking methods that aim to solve the problem of object pose estimation.

Since PVNet requires a large labelled dataset in order to be able to learn how to

detect the pose of an object, the authors of PVNet decided to use it. In order to

prevent overfitting of the network during training, the authors of PVNet decided

to combine synthetically generated images with real data (an example can be seen

in figure 5.1) taken from the LINEMOD dataset.

41

CHAPTER 5. EXPERIMENTS AND RESULTS

5.2 Procedure for Creating the Trained PVNet Model

Next, the steps necessary to build a trained PVNet model capable of pose

estimation of the object concerned are explained. The main steps are: the dataset

preparation phase, the training phase and the phase in which the performance

of the model is evaluated.

5.2.1 Preparation Phase and Dataset Partitioning

Launching the command prepare_linemod_dataset.py from the terminal

followed by the path to the folder containing the LINEMOD dataset and the

object on which the training is to be performed starts the procedure for preparing

the dataset for PVNet. The images of the real dataset and the synthetic dataset are

divided between those which will be useful for the training phase, the validation

phase and the test phase. At the end we will obtain three JSON files useful for

the next steps:

• train.json, containing for each individual image in the dataset useful for
training the network, all the information about the image and its ground
truth, all the paths useful for finding the masks and the image itself. In the
case of the "cat" object there are initially 177 real images to which synthetic
ones are added (custom or "fuse" and "render"), while for "duck" there
are initially 189 real images to which synthetic images are added (custom
only);

• val.json, containing for each individual image in the dataset useful for the
validation phase of the model, all the information about the image and
its ground truth, all the paths useful for finding the masks and the image
itself. In the case of the "cat" object, there are 501 real images, while for
"duck" there are 532;

• test.json, containing for each individual image in the dataset useful for the
testing phase of the best model, all information about the image and its
ground truth, all paths useful for finding the masks and the image itself.
In the case of the "cat" object there are 1002 real images, while for "duck"
there are 1065;

5.2.2 Training Phase and Parameters

Once the files containing the dataset annotations are ready, you can run

the training command pvnet_train.py from the terminal, with the following

information:

45

5.2. PROCEDURE FOR CREATING THE TRAINED PVNET MODEL

• the path to the folder containing the object dataset;

• the path to the folder where the trained models will be saved;

• the number of training examples in a forward/backward step; this batch
parameter depends on the system specification on which the network is
trained, by default 2 is chosen;

• the number of epochs in which training is to take place, set at 150;

• the number of epochs after which an evaluation is to be carried out on the
validation dataset, in this case 10;

• the number of epochs after which the model is to be saved in the training
folder, in this case 10;

• the configuration file, containing not only the parameters of the network
during training and testing and of the added modules, but also parameters
that regulate the behaviour of the network: for example, the Boolean value
resume if set to true allows the network to recover the training at the point
where it was left (useful to activate in the event of a crash).

At the end of the training procedure, in the folder dedicated to the trained

model you will have all the saved checkpoints of the network (from which the

best model will be selected) and a "record" folder in which losses and evaluation

metrics are recorded so that they can be monitored in a local tensorboard session.

All training was performed on the DEI Cluster platform, for more information on

the hardware and the use of Slurm Workload Manager please refer to the guide

at this link: https://clusterdeiguide.readthedocs.io/en/latest/index.

html.

5.2.3 Evaluation Phase

Once the network has finished training, the best model will be saved in a

"best_model" subfolder within the training files folder. Launching the command

pvnet_eval.py from the terminal followed by the path to the folder containing

the object dataset, the path to thebest_model folder and the YAML configuration

file (used to enable/disable the modules added to the network) performs an

evaluation of the model on the test set. In addition, images of the test set can be

displayed with the 3D bounding boxes identified in blue and the ground truth

in green.

46

https://clusterdeiguide.readthedocs.io/en/latest/index.html
https://clusterdeiguide.readthedocs.io/en/latest/index.html

5.4. OVERALL TABLE OF EXPERIMENTS

• 3D keypoints RMSE: the root square mean errors of the 3D keypoints
returns the percentage of how many samples have the square root of the
mean square difference between the vectors of the predicted 3D keypoints
and those of the ground truth below a certain threshold, in this case 5
pixels. The formula for calculating the RMSE is:

'("� =

√
∑

(y8 − y8˜)
2

#
(5.1)

Where:

– y8˜ is the expected value for the 8-Cℎ observation;

– y8 is the observed value for the 8-Cℎ observation;

– # is the sample size.

5.4 Overall Table of Experiments

This section contains general tables of the experiments conducted according

to the object considered, so that the reader can compare the performance of

network variants for each experiment. The following tables show:

• the network type (Net. type) to indicate whether the DSAC module is
present or not;

• the scoring function and loss parameters if DSAC is present. For the
scoring function, both the type of function used and the two parameters
dsac_beta and dsac_threshold are reported, which go to define the Sig-
moid function or vary the "elbow" point of the Piece-Wise function. For
the loss function, on the other hand, the weight to be given to the loss
components of the mask and DSAC is indicated;

• whether Uncertainty PnP or EPnP is present;

• how the model’s training dataset is constituted, whether real data is
present and the type of synthetic data used;

• the metrics obtained from the configuration.

48

CHAPTER 5. EXPERIMENTS AND RESULTS

Overall Results Table for "CAT" Object

Net. Parameters Un. Dataset Metrics

Type Score Loss PnP Real Synthetic 2D ADD 5cm Mask 3D Kps

f. f. R F C Proj. 5◦ ap70 RSME

Piece-Wise 1 ∗ ;"0B:

DSAC dsac_� = 0.3 1 ∗ ;�(�� X X X 99.41 79.44 95.31 99.70 91.52

dsac_C = 0.1

Piece-Wise 1 ∗ ;"0B:

DSAC dsac_� = 0.1 1 ∗ ;�(�� X X X 99.10 82.14 95.31 99.40 92.02

dsac_C = 0.1

Piece-Wise 1 ∗ ;"0B:

DSAC dsac_� = 0.5 1 ∗ ;�(�� X X X 99.10 77.55 93.81 99.60 90.22

dsac_C = 0.1

Piece-Wise 1 ∗ ;"0B:

DSAC dsac_� = 0.3 1 ∗ ;�(�� X X X 99.10 78.74 92.62 99.30 89.82

dsac_C = 0.2

Sigmoid 1 ∗ ;"0B:

DSAC dsac_� = 1.7 1 ∗ ;�(�� X X X 99.10 76.75 93.01 99.60 87.65

dsac_C = 0.001

Piece-Wise 1 ∗ ;"0B:

DSAC dsac_� = 0.3 1 ∗ ;�(�� X X 99.40 73.25 92.42 99.70 88.12

dsac_C = 0.1

Piece-Wise 1 ∗ ;"0B:

DSAC dsac_� = 0.1 1 ∗ ;�(�� X X 99.00 71.26 88.82 99.60 82.74

dsac_C = 0.1

Piece-Wise 1 ∗ ;"0B:

DSAC dsac_� = 0.5 1 ∗ ;�(�� X X 99.20 62.08 87.43 99.60 79.74

dsac_C = 0.1

Piece-Wise 1 ∗ ;"0B:

DSAC dsac_� = 0.3 1 ∗ ;�(�� X X 99.10 64.77 84.63 99.70 80.44

dsac_C = 0.2

Piece-Wise 1 ∗ ;"0B:

DSAC dsac_� = 0.3 1 ∗ ;�(�� X X X X 98.60 75.85 95.51 99.60 88.82

dsac_C = 0.1

Piece-Wise 1 ∗ ;"0B:

DSAC dsac_� = 0.3 1 ∗ ;�(�� X X X 97.51 55.09 72.66 94.11 71.46

dsac_C = 0.1

Piece-Wise 1 ∗ ;"0B:

DSAC dsac_� = 0.1 1 ∗ ;�(�� X X X 0.97305 64.77 80.74 95.21 79.04

dsac_C = 0.1

Piece-Wise 1 ∗ ;"0B:

DSAC dsac_� = 0.3 1 ∗ ;�(�� X X 97.51 59.98 78.94 95.41 75.45

dsac_C = 0.1

Piece-Wise 1 ∗ ;"0B:

DSAC dsac_� = 0.1 1 ∗ ;�(�� X X 98.00 65.37 81.34 98.30 79.04

dsac_C = 0.1

Piece-Wise 1 ∗ ;"0B:

DSAC dsac_� = 0.3 1 ∗ ;�(�� X X X X 99.20 74.45 94.01 99.50 87.82

dsac_C = 0.1

Piece-Wise 1 ∗ ;"0B:

DSAC dsac_� = 0.1 1 ∗ ;�(�� X X X X 99.10 72.26 90.92 99.40 85.03

(Continued on next page)

49

5.4. OVERALL TABLE OF EXPERIMENTS

(Continued on previous page)
dsac_C = 0.1

Piece-Wise 1 ∗ ;"0B:

DSAC dsac_� = 0.3 1 ∗ ;�(�� X X X 99.30 76.95 93.81 99.60 90.02

dsac_C = 0.1

Piece-Wise 1 ∗ ;"0B:

DSAC dsac_� = 0.1 1 ∗ ;�(�� X X X 98.80 76.95 92.22 99.60 87.43

dsac_C = 0.1

Piece-Wise 1 ∗ ;"0B:

DSAC dsac_� = 0.1 1 ∗ ;�(�� X X X 98.30 44.81 83.13 96.41 61.88

dsac_C = 0.1

Piece-Wise 1 ∗ ;"0B:

DSAC dsac_� = 0.1 1 ∗ ;�(�� X X 98.70 63.17 86.03 98.70 80.94

dsac_C = 0.1

Piece-Wise 1 ∗ ;"0B:

DSAC dsac_� = 0.1 1 ∗ ;�(�� X X 57.49 15.47 19.56 45.41 25.45

dsac_C = 0.1

Piece-Wise 1 ∗ ;"0B:

DSAC dsac_� = 0.1 1 ∗ ;�(�� X 62.38 24.15 28.04 42.62 34.23

dsac_C = 0.1

Piece-Wise 1 ∗ ;"0B:

DSAC dsac_� = 0.1 1 ∗ ;�(�� X X 59.18 21.16 27.05 52.99 30.84

dsac_C = 0.1

Piece-Wise 1 ∗ ;"0B:

DSAC dsac_� = 0.1 1 ∗ ;�(�� X 71.36 28.54 32.04 68.56 39.42

dsac_C = 0.1

Piece-Wise 1.2 ∗ ;"0B:

DSAC dsac_� = 0.1 0.8 ∗ ;�(�� X X X 98.40 47.51 82.24 99.50 66.27

dsac_C = 0.1

Piece-Wise 1.2 ∗ ;"0B:

DSAC dsac_� = 0.1 0.8 ∗ ;�(�� X X 98.70 52.40 88.92 99.30 69.56

dsac_C = 0.1

Standard

PVNet X X X X 99.60 70.06 97.61 99.90 84.13

Standard

PVNet X X X 99.70 75.36 97.41 99.80 88.42

Standard

PVNet X X 99.40 67.17 92.81 99.80 82.04

Standard

PVNet X X X 98.60 68.36 88.72 98.60 80.35

Standard

PVNet X X 98.80 68.46 88.12 99.00 81.84

Standard

PVNet X X X X 98.80 73.65 96.01 98.20 86.83

Standard

PVNet X X X 99.40 71.76 96.31 99.70 86.13

(Continued on next page)

50

CHAPTER 5. EXPERIMENTS AND RESULTS

(Continued on previous page)
Standard

PVNet X X X 98.70 56.29 93.01 99.40 71.46

Standard

PVNet X X 98.70 53.79 79.94 99.50 69.26

Standard

PVNet X X 42.52 19.76 24.45 33.03 27.94

Standard

PVNet X 44.11 23.45 19.46 36.53 31.84

Standard

PVNet X X 63.37 24.85 24.85 64.87 33.93

Standard

PVNet X 60.88 22.95 23.35 62.68 32.93

Table 5.1: Overall table with the results of the experiments carried out on the "cat" object.

Overall Results Table for "DUCK" Object

Net. Parameters Un. Dataset Metrics

Type Score Loss PnP Real Synthetic 2D ADD 5cm Mask 3D Kps

f. f. Custom Proj. 5◦ ap70 RSME

Piece-Wise 1 ∗ ;"0B:

DSAC dsac_� = 0.3 1 ∗ ;�(�� X X X 92.39 37.84 56.34 94.09 67.70

dsac_C = 0.1

Piece-Wise 1 ∗ ;"0B:

DSAC dsac_� = 0.1 1 ∗ ;�(�� X X X 93.05 33.62 47.42 93.71 62.07

dsac_C = 0.1

Piece-Wise 1 ∗ ;"0B:

DSAC dsac_� = 0.3 1 ∗ ;�(�� X X 85.73 30.80 51.55 93.33 58.87

dsac_C = 0.1

Piece-Wise 1 ∗ ;"0B:

DSAC dsac_� = 0.1 1 ∗ ;�(�� X X 89.67 34.37 49.86 93.15 64.04

dsac_C = 0.1

Piece-Wise 1 ∗ ;"0B:

DSAC dsac_� = 0.1 1 ∗ ;�(�� X X 08.45 04.51 25.73 61.60 22.16

dsac_C = 0.1

Piece-Wise 1 ∗ ;"0B:

DSAC dsac_� = 0.1 1 ∗ ;�(�� X 13.15 08.36 26.39 54.27 34.84

dsac_C = 0.1

Piece-Wise 1.2 ∗ ;"0B:

DSAC dsac_� = 0.1 0.8 ∗ ;�(�� X X 11.46 05.45 30.99 62.82 24.13

dsac_C = 0.1

Piece-Wise 1.2 ∗ ;"0B:

DSAC dsac_� = 0.1 0.8 ∗ ;�(�� X 06.76 04.88 26.29 55.87 24.41

dsac_C = 0.1

(Continued on next page)

51

5.5. DISCUSSION OF RESULTS

(Continued on previous page)

Standard

PVNet X X X 94.27 36.24 64.98 97.09 63.19

Standard

PVNet X X 95.78 36.81 64.88 98.22 67.51

Standard

PVNet X X 05.73 03.29 14.46 62.91 24.98

Standard

PVNet X 07.32 03.01 18.78 54.65 19.62

Table 5.2: Overall table with the results of the experiments carried out on the "duck" object.

5.5 Discussion of Results

The discussion of the results obtained is subdivided by type of experiment

and partial tables are given showing significant examples to confirm the thinking

expressed. It is recommended to also compare with the general tables 5.1 and

5.2 to get a more complete view of the results. Further possible verifications

are proposed at the end of each experiment in order to analyse the case in more

detail.

5.5.1 Experiment 1: DSAC or Standard PVNet?

In tables 5.3 and 5.4, one can see the difference between the values of the

best DSAC model and the best standard PVNet model, for "cat" and "duck"

respectively. Except in the case with real and synthetic custom datasets, DSAC

proved to bring a good increase in ADD, slightly penalising the other metrics.

Therefore, it can be said that the use of DSAC was very effective in the case

of both the "cat" and "duck" object; in fact, it raised the percentage of accurate

object pose prediction (ADD), proving to be more efficient and effective than

the standard PVNet version. This is due to the fact that DSAC is a differential

approach: the votes of the pixels in the mask no longer contain null values, and

therefore all actively participate in both the voting phase for the best location

hypothesis for the keypoint and the error backpropagation phase. For more

details on the difference between the presence of DSAC in the network and

standard PVNet, see section 4.2. The following images are intended to show

52

5.5. DISCUSSION OF RESULTS

Experiment 1 for "DUCK" Object

Net. Parameters Un. Dataset Metrics

Type Score Loss PnP Real Synthetic 2D ADD 5cm Mask 3D Kps

f. f. Custom Proj. 5◦ ap70 RSME

Piece-Wise 1 ∗ ;"0B:

DSAC dsac_� = 0.3 1 ∗ ;�(�� X X X 92.39 37.84 56.34 94.09 67.70

dsac_C = 0.1

Standard

PVNet X X X 94.27 36.24 64.98 97.09 63.19

Table 5.4: Comparison table of the best model obtained with the DSAC module and the best standard
PVNet model for the "duck" object.

5.5.2 Experiment 2: Best Scoring Function Parameters

Once it was established that the DSAC module improved system perfor-

mance, it was decided to test which combination of scoring function parameters

would maximise the results on average. A first series of tests (see table 5.5) was

performed with the entire synthetic dataset provided by the authors of PVNet

with the following parameters for the scoring function:

1. Piece-Wise function type with dsac_beta = 0.3 and dsac_threshold = 0.1
which corresponds to the blue function in the image 5.6;

2. Piece-Wise function type with dsac_beta = 0.1 and dsac_threshold = 0.1
which corresponds to the purple function in the image 5.6;

3. Piece-Wise function type with dsac_beta = 0.5 and dsac_threshold = 0.1
which corresponds to the green function in the image 5.6;

4. Piece-Wise function type with dsac_beta = 0.3 and dsac_threshold = 0.2
which corresponds to the red function in the image 5.6;

5. Sigmoid function type with dsac_beta = 1.7 and dsac_threshold = 0.001
which corresponds to the yellow function in the image 5.6;

54

5.5. DISCUSSION OF RESULTS

The Sigmoid function type was abandoned in subsequent tests because it was

found to be less performing and more complicated to train. It was decided to

retry the first four configurations using only half of the dataset (only the 10000

"render" images with the real ones) in order to be able to assess on average which

combination was better, see table 5.6 for details; it turned out that combinations

1 and 2 were good variants on which to run the next experiments.

Experiment 2 - part 2 for "CAT" Object

Net. Parameters Un. Dataset Metrics

Type Score Loss PnP Real Synthetic 2D ADD 5cm Mask 3D Kps

f. f. R F C Proj. 5◦ ap70 RSME

Piece-Wise 1 ∗ ;"0B:

DSAC dsac_� = 0.3 1 ∗ ;�(�� X X 99.40 73.25 92.42 99.70 88.12

dsac_C = 0.1

Piece-Wise 1 ∗ ;"0B:

DSAC dsac_� = 0.1 1 ∗ ;�(�� X X 99.00 71.26 88.82 99.60 82.74

dsac_C = 0.1

Piece-Wise 1 ∗ ;"0B:

DSAC dsac_� = 0.5 1 ∗ ;�(�� X X 99.20 62.08 87.43 99.60 79.74

dsac_C = 0.1

Piece-Wise 1 ∗ ;"0B:

DSAC dsac_� = 0.3 1 ∗ ;�(�� X X 99.10 64.77 84.63 99.70 80.44

dsac_C = 0.2

Table 5.6: Summary table of the second part of the search for the best parameters for the DSAC module
with PVNet synthetic dataset (only "render") and a small amount of real images.

5.5.3 Experiment 3: Uncertainty PnP or EPnP?

After having identified the two best combinations for the scoring function,

it was decided to carry out the subsequent experiments considering the four

possible network variants presented at the end of the section 4.3. In this way, the

difference in behaviour between Uncertainty PnP and EPnP could be verified in

more detail. This test showed that, overall, for the "cat" object 5.7, the perfor-

mance of the network drops if both the DSAC module and Uncertainty PnP are

present; in the case of standard PVNet and Uncertainty PnP, on the other hand,

on average, the metrics are slightly better. For the "duck" object 5.8, what was

said earlier is also confirmed, only it is less evident due to the smaller number

of tests performed.

56

CHAPTER 5. EXPERIMENTS AND RESULTS

Experiment 3 for "CAT" Object

Net. Parameters Un. Dataset Metrics

Type Score Loss PnP Real Synthetic 2D ADD 5cm Mask 3D Kps

f. f. R F C Proj. 5◦ ap70 RSME

Piece-Wise 1 ∗ ;"0B:

DSAC dsac_� = 0.3 1 ∗ ;�(�� X X X X 98.60 75.85 95.51 99.60 88.82

dsac_C = 0.1

Standard

PVNet X X X X 99.60 70.06 97.61 99.90 84.13

Piece-Wise 1 ∗ ;"0B:

DSAC dsac_� = 0.3 1 ∗ ;�(�� X X X 99.41 79.44 95.31 99.70 91.52

dsac_C = 0.1

Standard

PVNet X X X 99.70 75.36 97.41 99.80 88.42

Table 5.7: Comparative table for the "cat" object showing the difference in system performance in
relation to the type of PnP used.

Experiment 3 for "DUCK" Object

Net. Parameters Un. Dataset Metrics

Type Score Loss PnP Real Synthetic 2D ADD 5cm Mask 3D Kps

f. f. Custom Proj. 5◦ ap70 RSME

Piece-Wise 1 ∗ ;"0B:

DSAC dsac_� = 0.1 1 ∗ ;�(�� X X X 93.05 33.62 47.42 93.71 62.07

dsac_C = 0.1

Standard

PVNet X X X 94.27 36.24 64.98 97.09 63.19

Piece-Wise 1 ∗ ;"0B:

DSAC dsac_� = 0.1 1 ∗ ;�(�� X X 89.67 34.37 49.86 93.15 64.04

dsac_C = 0.1

Standard

PVNet X X 95.78 36.81 64.88 98.22 67.51

Table 5.8: Comparative table for the "duck" object showing the difference in system performance in
relation to the type of PnP used.

57

5.5. DISCUSSION OF RESULTS

5.5.4 Experiment 4: There is a Dependence of Real Data in

Training?

This experiment aims to test whether or not the system has a certain depen-

dency on the real images in the dataset being trained. From the "cat" object 5.9,

a certain dependency emerges, although it is from the "duck" object 5.10 that

it is most evident: all metrics are significantly lower in the case of completely

synthetic images. This experiment mainly highlights two important aspects:

• how real data are an excellent learning resource for neural networks, but
they are very expensive and time-consuming to implement;

• The importance of having a good synthetic dataset generation strategy
that produces robust, consistent and well-structured data. A synthetic
dataset must have statistically well-diversified and distributed data that
maintains sufficient realism to make the model suitable for real scenarios.
In addition, customisation and parameterisation must be maximised in the
generation phase, so that developers can adapt the synthetic dataset as
much as possible to the specific needs of the neural network. This point
will be analysed specifically in the next experiment.

Experiment 4 for "CAT" Object

Net. Parameters Un. Dataset Metrics

Type Score Loss PnP Real Synthetic 2D ADD 5cm Mask 3D Kps

f. f. R F C Proj. 5◦ ap70 RSME

Piece-Wise 1 ∗ ;"0B:

DSAC dsac_� = 0.1 1 ∗ ;�(�� X X X 99.10 82.14 95.31 99.40 92.02

dsac_C = 0.1

Standard

PVNet X X X 99.70 75.36 97.41 99.80 88.42

Piece-Wise 1 ∗ ;"0B:

DSAC dsac_� = 0.1 1 ∗ ;�(�� X X 98.70 63.17 86.03 98.70 80.94

dsac_C = 0.1

Standard

PVNet X X 98.70 53.79 79.94 99.50 69.26

Table 5.9: Table showing the dependence of the system on the real data in the training phase for the
"cat" object.

58

CHAPTER 5. EXPERIMENTS AND RESULTS

Experiment 4 for "DUCK" Object

Net. Parameters Un. Dataset Metrics

Type Score Loss PnP Real Synthetic 2D ADD 5cm Mask 3D Kps

f. f. Custom Proj. 5◦ ap70 RSME

Piece-Wise 1 ∗ ;"0B:

DSAC dsac_� = 0.3 1 ∗ ;�(�� X X 85.73 30.80 51.55 93.33 58.87

dsac_C = 0.1

Standard

PVNet X X 95.78 36.81 64.88 98.22 67.51

Piece-Wise 1 ∗ ;"0B:

DSAC dsac_� = 0.1 1 ∗ ;�(�� X 13.15 08.36 26.39 54.27 34.84

dsac_C = 0.1

Standard

PVNet X 07.32 03.01 18.78 54.65 19.62

Table 5.10: Table showing the dependence of the system on the real data in the training phase for the
"duck" object.

5.5.5 Experiment 5: More Effective Synthetic Data Generation

Strategy

This experiment aims to compare different strategies for generating synthetic

datasets and identify the perfect mix of data for the training dataset. The

question arises: "if real data allows the network to achieve excellent results, why such

an effort to generate synthetic data?" The main advantages of this approach are:

• COSTS. Real data are very expensive to collect and require a lot of time
and resources to optimise. Datasets are often inaccurate, distorted and
require an extremely expensive labelling process. Synthetic data, for the
same quality, reduces the overall cost and thus allows developers to create
more models, which benefits research and development;

• TIMING. Training requires huge amounts of data. Retrieving real datasets
of this size is time-consuming and making these datasets usable can be
an even more arduous task. Synthesised data is scalable, helps to develop
robust datasets quickly and complements real data by allowing better
training that guarantees more accurate predictions;

• QUANTITY. Real datasets have physical limits to their size. Synthetic
data can be generated in large quantities without any particular difficulty.
This results in more robust decision-making neural networks and thus
greater reliability;

59

5.5. DISCUSSION OF RESULTS

• PRIVACY. Collecting data has many privacy implications for the people
who interact with the monitored systems. While synthetic data have no
privacy regulations.

As already mentioned in the previous experiment, it is important to adopt a

synthetic data generation strategy that produces data as close to the real thing as

possible: Table 5.11 shows that the "generate_pvnet_dataset" application pro-

vided by the PVNet authors (which enabled the creation of the custom synthetic

dataset) is not as efficient as the Cut and Paste strategy in the paper [84]. From

table 5.12, it can be seen that the biggest difference between the two strategies

lies in the fact that the second one has the 10000 "fuse" images: the inclusion of

the other LINEMOD objects and the realisation of cluttered scenes and occlu-

sions of the object significantly increased the learning of the model. It would be

interesting to be able to conduct further tests on:

• other LINEMOD objects besides "cat" and "duck" in order to detect further
differences;

• other strategies for generating synthetic data such as, for example, the one
using the BLENDER program (see link for more details: https://github.
com/zju3dv/pvnet-rendering).

Experiment 5 - part 1 for "CAT" Object

Net. Parameters Un. Dataset Metrics

Type Score Loss PnP Real Synthetic 2D ADD 5cm Mask 3D Kps

f. f. R F C Proj. 5◦ ap70 RSME

Piece-Wise 1 ∗ ;"0B:

DSAC dsac_� = 0.3 1 ∗ ;�(�� X X X 99.41 79.44 95.31 99.70 91.52

dsac_C = 0.1

Piece-Wise 1 ∗ ;"0B:

DSAC dsac_� = 0.1 1 ∗ ;�(�� X X X 99.10 82.14 95.31 99.40 92.02

dsac_C = 0.1

Standard

PVNet X X X 99.70 75.36 97.41 99.80 88.42

Piece-Wise 1 ∗ ;"0B:

DSAC dsac_� = 0.3 1 ∗ ;�(�� X X 97.51 59.98 78.94 95.41 75.45

dsac_C = 0.1

Piece-Wise 1 ∗ ;"0B:

DSAC dsac_� = 0.1 1 ∗ ;�(�� X X 98.00 65.37 81.34 98.30 79.04

dsac_C = 0.1

Standard

PVNet X X 98.80 68.46 88.12 99.00 81.84

(Continued on next page)

60

https://github.com/zju3dv/pvnet-rendering
https://github.com/zju3dv/pvnet-rendering

CHAPTER 5. EXPERIMENTS AND RESULTS

(Continued on previous page)

Table 5.11: Comparative table of strategies for generating synthetic datasets and showing the
effectiveness of using the "Cut and Paste" strategy for generating synthetic data.

Experiment 5 - part 2 for "CAT" Object

Net. Parameters Un. Dataset Metrics

Type Score Loss PnP Real Synthetic 2D ADD 5cm Mask 3D Kps

f. f. R F C Proj. 5◦ ap70 RSME

Piece-Wise 1 ∗ ;"0B:

DSAC dsac_� = 0.3 1 ∗ ;�(�� X X X 99.41 79.44 95.31 99.70 91.52

dsac_C = 0.1

Piece-Wise 1 ∗ ;"0B:

DSAC dsac_� = 0.1 1 ∗ ;�(�� X X X 99.10 82.14 95.31 99.40 92.02

dsac_C = 0.1

Piece-Wise 1 ∗ ;"0B:

DSAC dsac_� = 0.3 1 ∗ ;�(�� X X X 99.30 76.95 93.81 99.60 90.02

dsac_C = 0.1

Piece-Wise 1 ∗ ;"0B:

DSAC dsac_� = 0.1 1 ∗ ;�(�� X X X 98.80 76.95 92.22 99.60 87.43

dsac_C = 0.1

Table 5.12: Table highlighting the importance of the 10000 "fused" images of the "Cut and Paste"
strategy, thanks to its cluttered scenes and occlusions.

5.5.6 Experiment 6: Variation in Loss Function Weights

During the experiments, it became apparent that the Mask ap70 metric de-

creased both when custom synthesised data was inserted and/or real data was

removed during training and with the presence of the DSAC module. For the

former case, the previous experiment showed us that the generation strategy

used is not particularly effective and that we need to look for generation strate-

gies that synthesise images that are more random and "close" to reality. In the

second case, since a good object mask represents a criticality in the quantity and

quality of votes, it was decided to give a different weight to the components of

the loss function 4.14 if DSAC module is present in the network:

• to the ;�(�� component a weight of 0.8;

• to the ;"0B: component a weight of 1.2.

Tables 5.13 and 5.14 show the results obtained divided by object, and it

can be seen that on average, the values of the metrics increase slightly with the

61

5.5. DISCUSSION OF RESULTS

exception of ADD, which is somewhat penalised when EPnP is present. It would

be interesting to investigate the weighting of the loss function components by

changing both combination and values.

Experiment 6 for "CAT" Object

Net. Parameters Un. Dataset Metrics

Type Score Loss PnP Real Synthetic 2D ADD 5cm Mask 3D Kps

f. f. R F C Proj. 5◦ ap70 RSME

Piece-Wise 1 ∗ ;"0B:

DSAC dsac_� = 0.1 1 ∗ ;�(�� X X X 98.30 44.81 83.13 96.41 61.88

dsac_C = 0.1

Piece-Wise 1 ∗ ;"0B:

DSAC dsac_� = 0.1 1 ∗ ;�(�� X X 98.70 63.17 86.03 98.70 80.94

dsac_C = 0.1

Piece-Wise 1.2 ∗ ;"0B:

DSAC dsac_� = 0.1 0.8 ∗ ;�(�� X X X 98.40 47.51 82.24 99.50 66.27

dsac_C = 0.1

Piece-Wise 1.2 ∗ ;"0B:

DSAC dsac_� = 0.1 0.8 ∗ ;�(�� X X 98.70 52.40 88.92 99.30 69.56

dsac_C = 0.1

Table 5.13: Comparative table of the same models trained with a different loss function in the case of
the "cat" object.

Experiment 6 for "DUCK" Object

Net. Parameters Un. Dataset Metrics

Type Score Loss PnP Real Synthetic 2D ADD 5cm Mask 3D Kps

f. f. Custom Proj. 5◦ ap70 RSME

Piece-Wise 1 ∗ ;"0B:

DSAC dsac_� = 0.1 1 ∗ ;�(�� X X 08.45 04.51 25.73 61.60 22.16

dsac_C = 0.1

Piece-Wise 1 ∗ ;"0B:

DSAC dsac_� = 0.1 1 ∗ ;�(�� X 13.15 08.36 26.39 54.27 34.84

dsac_C = 0.1

Piece-Wise 1.2 ∗ ;"0B:

DSAC dsac_� = 0.1 0.8 ∗ ;�(�� X X 11.46 05.45 30.99 62.82 24.13

dsac_C = 0.1

Piece-Wise 1.2 ∗ ;"0B:

DSAC dsac_� = 0.1 0.8 ∗ ;�(�� X 06.76 04.88 26.29 55.87 24.41

dsac_C = 0.1

Table 5.14: Comparative table of the same models trained with a different loss function in the case of
the "duck" object.

62

6
Conclusions

The purpose of this paper is to explain the importance of 6D pose estimation

in the field of computer vision and to highlight how researchers are working to

perfect it with the help of increasingly innovative tools and approaches. The results

of experiments carried out on one of the main pose estimation methods, called

PVNet, are analysed:

• the introduction of the DSAC module, realised by Donadi and Pretto [2].
It proves to be very effective and brings numerous advantages over the
standard version of PVNet;

• The parameterisation of the scoring function of the DSAC module,
which on average returns better results. The best configuration identified
turns out to be the Piece-Wise function withdsac_betaanddsac_threshold
parameters equal to 0.1.

• the influence of the type of PnP used. Uncertainty PnP did not prove
very useful after introducing the DSAC module, it performs better with
EPnP;

• the dependence or otherwise of the model on the real data in the training
phase. The network needs a small amount of real images in order to
achieve a good level of learning;

• the most effective synthetic data generation strategy. The "Cut and Paste"
strategy used by the PVNet authors turns out to produce data that is more
varied and approximate to the real data than the "generate_PVNet_dataset"
application that generated the custom synthetic dataset;

• the influence of weights in the loss function. In the case of "imprecise"
synthetic data, changing the weights of the loss function components can
benefit the network.

63

Developing an experimental thesis of this type has allowed me to put into

practice the knowledge I learnt during my Computer Vision course, to go into

more detail on the programming of neural networks and to understand how

they actually work. I am satisfied with the results obtained and grateful for

having had the opportunity to contribute, certainly in a small way, to the studies

inherent to 6D pose estimation.

64

References

[1] S. Peng, Y. Liu, Q. Huang, X. Zhou, and H. Bao, “Pvnet: Pixel-wise vot-

ing network for 6dof pose estimation,” in 2019 IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), 2019, pp. 4556–4565. doi:

10.1109/CVPR.2019.00469.

[2] I. Donadi and A. Pretto, Kvn: Keypoints voting network with differentiable

ransac for stereo pose estimation, 2023. arXiv: 2307.11543 [cs.CV].

[3] M. A. Fischler and R. C. Bolles, “Random sample consensus: A paradigm

for model fitting with applications to image analysis and automated car-

tography,” Commun. ACM, vol. 24, no. 6, pp. 381–395, Jun. 1981, issn:

0001-0782. doi: 10.1145/358669.358692. [Online]. Available: https:

//doi.org/10.1145/358669.358692.

[4] S. Hinterstoisser, V. Lepetit, S. Ilic, S. Holzer, G. Bradski, K. Konolige,

and N. Navab, “Model based training, detection and pose estimation of

texture-less 3d objects in heavily cluttered scenes,” vol. 7724, Oct. 2012,

isbn: 978-3-642-37330-5. doi: 10.1007/978-3-642-33885-4_60.

[5] R. Dai and I. Akyildiz, “Akyildiz, i.f.: A spatial correlation model for visual

information in wireless multimedia sensor networks. ieee transactions on

multimedia 11(6), 1148-1159,” Multimedia, IEEE Transactions on, vol. 11,

pp. 1148–1159, Nov. 2009. doi: 10.1109/TMM.2009.2026100.

[6] S. Shalev-Shwartz and S. Ben-David, Understanding Machine Learning: From

Theory to Algorithms. Cambridge University Press, 2014. doi: 10.1017/

CBO9781107298019.

[7] I. Sarker, H. Alqahtani, F. Alsolami, A. Khan, Y. Abushark, and M. K.

Siddiqui, “Context pre-modeling: An empirical analysis for classifica-

tion based user-centric context-aware predictive modeling,” Journal Of

Big Data, vol. 7, Jul. 2020. doi: 10.1186/s40537-020-00328-3.

65

https://doi.org/10.1109/CVPR.2019.00469
https://arxiv.org/abs/2307.11543
https://doi.org/10.1145/358669.358692
https://doi.org/10.1145/358669.358692
https://doi.org/10.1145/358669.358692
https://doi.org/10.1007/978-3-642-33885-4_60
https://doi.org/10.1109/TMM.2009.2026100
https://doi.org/10.1017/CBO9781107298019
https://doi.org/10.1017/CBO9781107298019
https://doi.org/10.1186/s40537-020-00328-3

REFERENCES

[8] Y. Lecun, “Generalization and network design strategies,” English (US),

in Connectionism in perspective, R. Pfeifer, Z. Schreter, F. Fogelman, and L.

Steels, Eds. Elsevier, 1989.

[9] V. Ikawati, Y. Indrasary, and A. Prihatmanto, “Prediction of covid-19 dis-

ease using x-ray images with deep learning algorithm,” Journal of Ap-

plied Science and Advanced Engineering, vol. 1, pp. 28–34, Jan. 2023. doi:

10.59097/jasae.v1i1.11.

[10] “Deep residual learning for image recognition,” Jun. 2016, pp. 770–778.

doi: 10.1109/CVPR.2016.90.

[11] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification

with deep convolutional neural networks,” in Advances in Neural Infor-

mation Processing Systems, F. Pereira, C. Burges, L. Bottou, and K. Wein-

berger, Eds., vol. 25, Curran Associates, Inc., 2012. [Online]. Available:

https://proceedings.neurips.cc/paper_files/paper/2012/file/

c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

[12] R. K. Srivastava, K. Greff, and J. Schmidhuber, Training very deep networks,

2015. arXiv: 1507.06228 [cs.LG].

[13] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L.

Kaiser, and I. Polosukhin, Attention is all you need, 2023. arXiv: 1706.03762

[cs.CL].

[14] Y. Liu, Y. Zhang, Y. Wang, F. Hou, J. Yuan, J. Tian, Y. Zhang, Z. Shi, J. Fan,

and Z. He, A survey of visual transformers, 2022. arXiv: 2111.06091 [cs.CV].

[15] S. Latif, A. Zaidi, H. Cuayahuitl, F. Shamshad, M. Shoukat, and J. Qadir,

Transformers in speech processing: A survey, 2023. arXiv:2303.11607[cs.CL].

[16] X.-S. Gao, X.-R. Hou, J. Tang, and H.-F. Cheng, “Complete solution clas-

sification for the perspective-three-point problem,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 25, no. 8, pp. 930–943, 2003.

doi: 10.1109/TPAMI.2003.1217599.

[17] V. Lepetit, F. Moreno-Noguer, and P. Fua, “Epnp: An accurate o(n) solution

to the pnp problem,” International Journal of Computer Vision, vol. 81, Feb.

2009. doi: 10.1007/s11263-008-0152-6.

66

https://doi.org/10.59097/jasae.v1i1.11
https://doi.org/10.1109/CVPR.2016.90
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://arxiv.org/abs/1507.06228
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2111.06091
https://arxiv.org/abs/2303.11607
https://doi.org/10.1109/TPAMI.2003.1217599
https://doi.org/10.1007/s11263-008-0152-6

REFERENCES

[18] G. Pavlakos, X. Zhou, A. Chan, K. G. Derpanis, and K. Daniilidis, “6-dof

object pose from semantic keypoints,” in 2017 IEEE International Conference

on Robotics and Automation (ICRA), 2017, pp. 2011–2018. doi: 10.1109/

ICRA.2017.7989233.

[19] Y. Zhu, L. Wan, W. Xu, and S. Wang, “Aspp-df-pvnet: Atrous spatial

pyramid pooling and distance-filtered pvnet for occlusion resistant 6d

object pose estimation,” Signal Processing: Image Communication, vol. 95,

p. 116 268, 2021, issn: 0923-5965. doi: https://doi.org/10.1016/j.

image.2021.116268. [Online]. Available: https://www.sciencedirect.

com/science/article/pii/S0923596521001120.

[20] J.-K. You, C.-C. J. Hsu, W.-Y. Wang, and S.-K. Huang, “Object pose es-

timation incorporating projection loss and discriminative refinement,”

IEEE Access, vol. 9, pp. 18 597–18 606, 2021. doi: 10.1109/ACCESS.2021.

3054493.

[21] Z. Zhao, G. Peng, H. Wang, H.-S. Fang, C. Li, and C. Lu, Estimating 6d

pose from localizing designated surface keypoints, 2018. arXiv: 1812.01387

[cs.CV].

[22] W. Zhao, S. Zhang, Z. Guan, H. Luo, L. Tang, J. Peng, and J. Fan, “6d

object pose estimation via viewpoint relation reasoning,” Neurocomput-

ing, vol. 389, pp. 9–17, 2020, issn: 0925-2312. doi: https://doi.org/

10.1016/j.neucom.2019.12.108. [Online]. Available: https://www.

sciencedirect.com/science/article/pii/S0925231220300333.

[23] W. Zhao, S. Zhang, Z. Guan, W. Zhao, J. Peng, and J. Fan, “Learning

deep network for detecting 3d object keypoints and 6d poses,” in 2020

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),

2020, pp. 14 122–14 130. doi: 10.1109/CVPR42600.2020.01414.

[24] J. N. Kundu, M. V. Rahul, A. Ganeshan, and R. V. Babu, “Object pose

estimation from monocular image using multi-view keypoint correspon-

dence,” in Computer Vision – ECCV 2018 Workshops, L. Leal-Taixé and S.

Roth, Eds., Cham: Springer International Publishing, 2019, pp. 298–313,

isbn: 978-3-030-11015-4.

[25] C. Chen, X. Jiang, W. Zhou, and Y. Liu, “Pose estimation for texture-

less shiny objects in a single rgb image using synthetic training data,”

67

https://doi.org/10.1109/ICRA.2017.7989233
https://doi.org/10.1109/ICRA.2017.7989233
https://doi.org/https://doi.org/10.1016/j.image.2021.116268
https://doi.org/https://doi.org/10.1016/j.image.2021.116268
https://www.sciencedirect.com/science/article/pii/S0923596521001120
https://www.sciencedirect.com/science/article/pii/S0923596521001120
https://doi.org/10.1109/ACCESS.2021.3054493
https://doi.org/10.1109/ACCESS.2021.3054493
https://arxiv.org/abs/1812.01387
https://arxiv.org/abs/1812.01387
https://doi.org/https://doi.org/10.1016/j.neucom.2019.12.108
https://doi.org/https://doi.org/10.1016/j.neucom.2019.12.108
https://www.sciencedirect.com/science/article/pii/S0925231220300333
https://www.sciencedirect.com/science/article/pii/S0925231220300333
https://doi.org/10.1109/CVPR42600.2020.01414

REFERENCES

ArXiv, vol. abs/1909.10270, 2019. [Online]. Available: https : / / api .

semanticscholar.org/CorpusID:202718955.

[26] Z. Cao, Y. Sheikh, and N. K. Banerjee, “Real-time scalable 6dof pose es-

timation for textureless objects,” in 2016 IEEE International Conference on

Robotics and Automation (ICRA), 2016, pp. 2441–2448. doi: 10.1109/ICRA.

2016.7487396.

[27] N. Payet and S. Todorovic, “From contours to 3d object detection and

pose estimation,” in 2011 International Conference on Computer Vision, 2011,

pp. 983–990. doi: 10.1109/ICCV.2011.6126342.

[28] M. Ulrich, C. Wiedemann, and C. Steger, “Combining scale-space and

similarity-based aspect graphs for fast 3d object recognition,” IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, vol. 34, no. 10, pp. 1902–

1914, 2012. doi: 10.1109/TPAMI.2011.266.

[29] J. J. Moré, “The levenberg-marquardt algorithm: Implementation and the-

ory,” in Numerical Analysis, G. A. Watson, Ed., Berlin, Heidelberg: Springer

Berlin Heidelberg, 1978, pp. 105–116, isbn: 978-3-540-35972-2.

[30] Y. Konishi, Y. Hanzawa, M. Kawade, and M. Hashimoto, “Fast 6d pose

estimation from a monocular image using hierarchical pose trees,” in

Computer Vision – ECCV 2016, B. Leibe, J. Matas, N. Sebe, and M. Welling,

Eds., Cham: Springer International Publishing, 2016, pp. 398–413, isbn:

978-3-319-46448-0.

[31] E. Muñoz, Y. Konishi, V. Murino, and A. Del Bue, “Fast 6d pose estimation

for texture-less objects from a single rgb image,” in 2016 IEEE International

Conference on Robotics and Automation (ICRA), 2016, pp. 5623–5630. doi:

10.1109/ICRA.2016.7487781.

[32] E. Muñoz, Y. Konishi, C. Beltran, V. Murino, and A. Del Bue, “Fast 6d

pose from a single rgb image using cascaded forests templates,” in 2016

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

2016, pp. 4062–4069. doi: 10.1109/IROS.2016.7759598.

[33] H. Tjaden, U. Schwanecke, and E. Schömer, “Real-time monocular pose es-

timation of 3d objects using temporally consistent local color histograms,”

in 2017 IEEE International Conference on Computer Vision (ICCV), 2017,

pp. 124–132. doi: 10.1109/ICCV.2017.23.

68

https://api.semanticscholar.org/CorpusID:202718955
https://api.semanticscholar.org/CorpusID:202718955
https://doi.org/10.1109/ICRA.2016.7487396
https://doi.org/10.1109/ICRA.2016.7487396
https://doi.org/10.1109/ICCV.2011.6126342
https://doi.org/10.1109/TPAMI.2011.266
https://doi.org/10.1109/ICRA.2016.7487781
https://doi.org/10.1109/IROS.2016.7759598
https://doi.org/10.1109/ICCV.2017.23

REFERENCES

[34] E. Corona, K. Kundu, and S. Fidler, “Pose estimation for objects with ro-

tational symmetry,” in 2018 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), 2018, pp. 7215–7222. doi: 10.1109/IROS.2018.

8594282.

[35] M. Sundermeyer, Z.-C. Marton, M. Durner, M. Brucker, and R. Triebel,

Implicit 3d orientation learning for 6d object detection from rgb images, 2019.

arXiv: 1902.01275 [cs.CV].

[36] F. Massa, B. C. Russell, and M. Aubry, “Deep exemplar 2d-3d detection

by adapting from real to rendered views,” in 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2016, pp. 6024–6033. doi:

10.1109/CVPR.2016.648.

[37] M. Rad and V. Lepetit, “Bb8: A scalable, accurate, robust to partial occlu-

sion method for predicting the 3d poses of challenging objects without

using depth,” in 2017 IEEE International Conference on Computer Vision

(ICCV), 2017, pp. 3848–3856. doi: 10.1109/ICCV.2017.413.

[38] M. Oberweger, M. Rad, and V. Lepetit, “Making deep heatmaps robust

to partial occlusions for 3d object pose estimation,” in Computer Vision –

ECCV 2018, V. Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss, Eds.,

Cham: Springer International Publishing, 2018, pp. 125–141, isbn: 978-3-

030-01267-0.

[39] J. Liu and S. He, 6d object pose estimation based on 2d bounding box, 2019.

arXiv: 1901.09366 [cs.CV].

[40] J. Liu and S.-F. He, “6d object pose estimation without pnp,” ArXiv,

vol. abs/1902.01728, 2019. [Online]. Available:https://api.semanticscholar.

org/CorpusID:59604476.

[41] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once:

Unified, real-time object detection,” in 2016 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2016, pp. 779–788. doi: 10.1109/

CVPR.2016.91.

[42] B. Tekin, S. N. Sinha, and P. Fua, “Real-time seamless single shot 6d object

pose prediction,” in 2018 IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 2018, pp. 292–301. doi: 10.1109/CVPR.2018.00038.

69

https://doi.org/10.1109/IROS.2018.8594282
https://doi.org/10.1109/IROS.2018.8594282
https://arxiv.org/abs/1902.01275
https://doi.org/10.1109/CVPR.2016.648
https://doi.org/10.1109/ICCV.2017.413
https://arxiv.org/abs/1901.09366
https://api.semanticscholar.org/CorpusID:59604476
https://api.semanticscholar.org/CorpusID:59604476
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1109/CVPR.2018.00038

REFERENCES

[43] W. Kehl, F. Manhardt, F. Tombari, S. Ilic, and N. Navab, “Ssd-6d: Making

rgb-based 3d detection and 6d pose estimation great again,” in 2017 IEEE

International Conference on Computer Vision (ICCV), 2017, pp. 1530–1538.

doi: 10.1109/ICCV.2017.169.

[44] Y. Hu, J. Hugonot, P. Fua, and M. Salzmann, “Segmentation-driven 6d

object pose estimation,” in 2019 IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR), 2019, pp. 3380–3389. doi: 10.1109/CVPR.

2019.00350.

[45] Z. Li, G. Wang, and X. Ji, “Cdpn: Coordinates-based disentangled pose

network for real-time rgb-based 6-dof object pose estimation,” in 2019

IEEE/CVF International Conference on Computer Vision (ICCV), 2019, pp. 7677–

7686. doi: 10.1109/ICCV.2019.00777.

[46] K. Park, T. Patten, and M. Vincze, “Pix2pose: Pixel-wise coordinate re-

gression of objects for 6d pose estimation,” in 2019 IEEE/CVF International

Conference on Computer Vision (ICCV), 2019, pp. 7667–7676. doi: 10.1109/

ICCV.2019.00776.

[47] S. Zakharov, I. Shugurov, and S. Ilic, “Dpod: 6d pose object detector and re-

finer,” in 2019 IEEE/CVF International Conference on Computer Vision (ICCV),

2019, pp. 1941–1950. doi: 10.1109/ICCV.2019.00203.

[48] Z. Li, Y. Hu, M. Salzmann, and X. Ji, “Robust rgb-based 6-dof pose esti-

mation without real pose annotations,” ArXiv, vol. abs/2008.08391, 2020.

[Online]. Available: https://api.semanticscholar.org/CorpusID:

221172799.

[49] L. Kästner, D. Dimitrov, and J. Lambrecht, “A markerless deep learning-

based 6 degrees of freedom pose estimation for mobile robots using rgb

data,” in 2020 17th International Conference on Ubiquitous Robots (UR), 2020,

pp. 391–396. doi: 10.1109/UR49135.2020.9144789.

[50] X. Zhang, Z. Jiang, and H. Zhang, “Real-time 6d pose estimation from

a single rgb image,” Image and Vision Computing, vol. 89, pp. 1–11, 2019,

issn: 0262-8856. doi: https://doi.org/10.1016/j.imavis.2019.06.

013. [Online]. Available: https://www.sciencedirect.com/science/

article/pii/S0262885619300964.

70

https://doi.org/10.1109/ICCV.2017.169
https://doi.org/10.1109/CVPR.2019.00350
https://doi.org/10.1109/CVPR.2019.00350
https://doi.org/10.1109/ICCV.2019.00777
https://doi.org/10.1109/ICCV.2019.00776
https://doi.org/10.1109/ICCV.2019.00776
https://doi.org/10.1109/ICCV.2019.00203
https://api.semanticscholar.org/CorpusID:221172799
https://api.semanticscholar.org/CorpusID:221172799
https://doi.org/10.1109/UR49135.2020.9144789
https://doi.org/https://doi.org/10.1016/j.imavis.2019.06.013
https://doi.org/https://doi.org/10.1016/j.imavis.2019.06.013
https://www.sciencedirect.com/science/article/pii/S0262885619300964
https://www.sciencedirect.com/science/article/pii/S0262885619300964

REFERENCES

[51] J. Liu, S. He, Y. Tao, and D. Liu, “Realtime rgb-based 3d object pose detec-

tion using convolutional neural networks,” IEEE Sensors Journal, vol. 20,

no. 20, pp. 11 812–11 819, 2020. doi: 10.1109/JSEN.2019.2946279.

[52] Z. Yang, X. Yu, and Y. Yang, “Dsc-posenet: Learning 6dof object pose

estimation via dual-scale consistency,” 2021 IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition (CVPR), pp. 3906–3915, 2021. [Online].

Available: https://api.semanticscholar.org/CorpusID:233181892.

[53] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.

Berg, “Ssd: Single shot multibox detector,” in Computer Vision – ECCV

2016, B. Leibe, J. Matas, N. Sebe, and M. Welling, Eds., Cham: Springer

International Publishing, 2016, pp. 21–37, isbn: 978-3-319-46448-0.

[54] H. Su, C. R. Qi, Y. Li, and L. J. Guibas, “Render for cnn: Viewpoint estima-

tion in images using cnns trained with rendered 3d model views,” in 2015

IEEE International Conference on Computer Vision (ICCV), 2015, pp. 2686–

2694. doi: 10.1109/ICCV.2015.308.

[55] J. Josifovski, M. Kerzel, C. Pregizer, L. Posniak, and S. Wermter, “Object

detection and pose estimation based on convolutional neural networks

trained with synthetic data,” in 2018 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), 2018, pp. 6269–6276. doi: 10.1109/

IROS.2018.8594379.

[56] B. Li, W. Ouyang, L. Sheng, X. Zeng, and X. Wang, “Gs3d: An effi-

cient 3d object detection framework for autonomous driving,” in 2019

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),

2019, pp. 1019–1028. doi: 10.1109/CVPR.2019.00111.

[57] W. Zou, D. Wu, S. Tian, C. Xiang, X. Li, and L. Zhang, “End-to-end 6dof

pose estimation from monocular rgb images,” IEEE Transactions on Con-

sumer Electronics, vol. 67, no. 1, pp. 87–96, 2021. doi: 10.1109/TCE.2021.

3057137.

[58] P. Poirson, P. Ammirato, C.-Y. Fu, W. Liu, J. Kosecká, and A. C. Berg, “Fast

single shot detection and pose estimation,” in 2016 Fourth International

Conference on 3D Vision (3DV), 2016, pp. 676–684. doi: 10.1109/3DV.2016.

78.

71

https://doi.org/10.1109/JSEN.2019.2946279
https://api.semanticscholar.org/CorpusID:233181892
https://doi.org/10.1109/ICCV.2015.308
https://doi.org/10.1109/IROS.2018.8594379
https://doi.org/10.1109/IROS.2018.8594379
https://doi.org/10.1109/CVPR.2019.00111
https://doi.org/10.1109/TCE.2021.3057137
https://doi.org/10.1109/TCE.2021.3057137
https://doi.org/10.1109/3DV.2016.78
https://doi.org/10.1109/3DV.2016.78

REFERENCES

[59] A. Mousavian, D. Anguelov, J. Flynn, and J. Koecká, “3d bounding box

estimation using deep learning and geometry,” in 2017 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2017, pp. 5632–5640. doi:

10.1109/CVPR.2017.597.

[60] B. Xu and Z. Chen, “Multi-level fusion based 3d object detection from

monocular images,” in 2018 IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 2018, pp. 2345–2353. doi: 10.1109/CVPR.2018.00249.

[61] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox, Posecnn: A convolutional

neural network for 6d object pose estimation in cluttered scenes, 2018. arXiv:

1711.00199 [cs.CV].

[62] S. Mahendran, H. Ali, and R. Vidal, “3d pose regression using convolu-

tional neural networks,” in 2017 IEEE Conference on Computer Vision and

Pattern Recognition Workshops (CVPRW), 2017, pp. 494–495. doi: 10.1109/

CVPRW.2017.73.

[63] T.-T. Do, M. Cai, T. Pham, and I. Reid, Deep-6dpose: Recovering 6d object pose

from a single rgb image, 2018. arXiv: 1802.10367 [cs.CV].

[64] K. Hara, R. Vemulapalli, and R. Chellappa, Designing deep convolutional

neural networks for continuous object orientation estimation, 2017. arXiv: 1702.

01499 [cs.CV].

[65] J. Ku, A. D. Pon, and S. L. Waslander, “Monocular 3d object detection lever-

aging accurate proposals and shape reconstruction,” in 2019 IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 11 859–

11 868. doi: 10.1109/CVPR.2019.01214.

[66] J. Rambach, C. Deng, A. Pagani, and D. Stricker, “Learning 6dof object

poses from synthetic single channel images,” in 2018 IEEE International

Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), 2018,

pp. 164–169. doi: 10.1109/ISMAR-Adjunct.2018.00058.

[67] A. Kendall, M. Grimes, and R. Cipolla, “Posenet: A convolutional net-

work for real-time 6-dof camera relocalization,” in 2015 IEEE International

Conference on Computer Vision (ICCV), 2015, pp. 2938–2946. doi: 10.1109/

ICCV.2015.336.

72

https://doi.org/10.1109/CVPR.2017.597
https://doi.org/10.1109/CVPR.2018.00249
https://arxiv.org/abs/1711.00199
https://doi.org/10.1109/CVPRW.2017.73
https://doi.org/10.1109/CVPRW.2017.73
https://arxiv.org/abs/1802.10367
https://arxiv.org/abs/1702.01499
https://arxiv.org/abs/1702.01499
https://doi.org/10.1109/CVPR.2019.01214
https://doi.org/10.1109/ISMAR-Adjunct.2018.00058
https://doi.org/10.1109/ICCV.2015.336
https://doi.org/10.1109/ICCV.2015.336

REFERENCES

[68] J. Wu, B. Zhou, R. Russell, V. Kee, S. Wagner, M. Hebert, A. Torralba, and

D. M. Johnson, “Real-time object pose estimation with pose interpreter net-

works,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), 2018, pp. 6798–6805. doi: 10.1109/IROS.2018.8593662.

[69] Y. Hu, P. Fua, W. Wang, and M. Salzmann, “Single-stage 6d object pose

estimation,” in 2020 IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), 2020, pp. 2927–2936. doi: 10.1109/CVPR42600.2020.

00300.

[70] Y. Wang, S. Jin, and Y. Ou, “A multi-task learning convolutional neural

network for object pose estimation,” in 2019 IEEE International Conference

on Robotics and Biomimetics (ROBIO), 2019, pp. 284–289. doi: 10.1109/

ROBIO49542.2019.8961594.

[71] Y. Liu, L. Zhou, H. Zong, X. Gong, Q. Wu, Q. Liang, and J. Wang, “Regression-

based three-dimensional pose estimation for texture-less objects,” IEEE

Transactions on Multimedia, vol. 21, no. 11, pp. 2776–2789, 2019. doi: 10.

1109/TMM.2019.2913321.

[72] C. Capellen., M. Schwarz., and S. Behnke., “Convposecnn: Dense convo-

lutional 6d object pose estimation,” in Proceedings of the 15th International

Joint Conference on Computer Vision, Imaging and Computer Graphics The-

ory and Applications (VISIGRAPP 2020) - Volume 5: VISAPP, INSTICC,

SciTePress, 2020, pp. 162–172, isbn: 978-989-758-402-2. doi: 10 . 5220 /

0008990901620172.

[73] G. Wang, F. Manhardt, F. Tombari, and X. Ji, Gdr-net: Geometry-guided

direct regression network for monocular 6d object pose estimation, 2021. arXiv:

2102.12145 [cs.CV].

[74] A. Trabelsi, M. Chaabane, N. Blanchard, and R. Beveridge, “A pose pro-

posal and refinement network for better 6d object pose estimation,” in

2021 IEEE Winter Conference on Applications of Computer Vision (WACV),

2021, pp. 2381–2390. doi: 10.1109/WACV48630.2021.00243.

[75] Y. Hu, S. Speierer, W. Jakob, P. Fua, and M. Salzmann, Wide-depth-range 6d

object pose estimation in space, 2021. arXiv: 2104.00337 [cs.CV].

73

https://doi.org/10.1109/IROS.2018.8593662
https://doi.org/10.1109/CVPR42600.2020.00300
https://doi.org/10.1109/CVPR42600.2020.00300
https://doi.org/10.1109/ROBIO49542.2019.8961594
https://doi.org/10.1109/ROBIO49542.2019.8961594
https://doi.org/10.1109/TMM.2019.2913321
https://doi.org/10.1109/TMM.2019.2913321
https://doi.org/10.5220/0008990901620172
https://doi.org/10.5220/0008990901620172
https://arxiv.org/abs/2102.12145
https://doi.org/10.1109/WACV48630.2021.00243
https://arxiv.org/abs/2104.00337

REFERENCES

[76] Y. Su, J. Rambach, A. Pagani, and D. Stricker, “Synpo-netaccurate and fast

cnn-based 6dof object pose estimation using synthetic training,” Sensors,

vol. 21, no. 1, 2021, issn: 1424-8220. doi: 10.3390/s21010300. [Online].

Available: https://www.mdpi.com/1424-8220/21/1/300.

[77] M. Oberweger, M. Rad, and V. Lepetit, “Making deep heatmaps robust to

partial occlusions for 3d object pose estimation: 15th european conference,

munich, germany, september 8-14, 2018, proceedings, part xv,” in. Sep.

2018, pp. 125–141, isbn: 978-3-030-01266-3. doi: 10.1007/978- 3- 030-

01267-0_8.

[78] M. Rad and V. Lepetit, “Bb8: A scalable, accurate, robust to partial occlu-

sion method for predicting the 3d poses of challenging objects without

using depth,” Oct. 2017, pp. 3848–3856. doi: 10.1109/ICCV.2017.413.

[79] B. Tekin, S. Sinha, and P. Fua, “Real-time seamless single shot 6d object

pose prediction,” Jun. 2018, pp. 292–301. doi: 10.1109/CVPR.2018.00038.

[80] P. Kamousi, S. Lazard, A. Maheshwari, and S. Wuhrer, “Analysis of farthest

point sampling for approximating geodesics in a graph,” Computational

Geometry, vol. 57, Nov. 2013. doi: 10.1016/j.comgeo.2016.05.005.

[81] E. Brachmann, A. Krull, S. Nowozin, J. Shotton, F. Michel, S. Gumhold,

and C. Rother, “Dsac - differentiable ransac for camera localization,” Nov.

2016.

[82] E. Brachmann and C. Rother, “Learning less is more - 6d camera local-

ization via 3d surface regression,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Jun. 2018.

[83] P. Pérez, M. Gangnet, and A. Blake, “Poisson image editing,” ACM Trans.

Graph., vol. 22, pp. 313–318, Jul. 2003. doi: 10.1145/1201775.882269.

[84] D. Dwibedi, I. Misra, and M. Hebert, “Cut, paste and learn: Surprisingly

easy synthesis for instance detection,” Oct. 2017, pp. 1310–1319. doi: 10.

1109/ICCV.2017.146.

[85] J. Xiao, J. Hays, K. Ehinger, A. Oliva, and A. Torralba, “Sun database:

Large-scale scene recognition from abbey to zoo,” Jun. 2010, pp. 3485–

3492. doi: 10.1109/CVPR.2010.5539970.

74

https://doi.org/10.3390/s21010300
https://www.mdpi.com/1424-8220/21/1/300
https://doi.org/10.1007/978-3-030-01267-0_8
https://doi.org/10.1007/978-3-030-01267-0_8
https://doi.org/10.1109/ICCV.2017.413
https://doi.org/10.1109/CVPR.2018.00038
https://doi.org/10.1016/j.comgeo.2016.05.005
https://doi.org/10.1145/1201775.882269
https://doi.org/10.1109/ICCV.2017.146
https://doi.org/10.1109/ICCV.2017.146
https://doi.org/10.1109/CVPR.2010.5539970

