

UNIVERSITÀ DEGLI STUDI DI PADOVA
 Dipartimento di Matematica “TullioLevi Civita”

UNIVERSITÉ PARISDAUPHINE PSL CEREMADE

Département de Mathématiques et Applications

 Master Degree Course in Mathematics
 Double Degree Course “MAPPA”

Project coordinator, Università di Padova: Francesco Rossi

GRAMMAR INFERENCE THROUGH HIDDEN MARKOV MODELS AND
PROBABILISTIC CONTEXTFREE GRAMMARS

Supervisor:
Prof. Robin Ryder

Student:
Eva Shi

Cosupervisor:
Prof. Marco Formentin

Student ID:
2020278 / 22100610

 Academic year 2021/2022

Contents

1 Introduction 3

2 Preliminary notions of grammar 4
2.1 Formal grammar . 4
2.2 Probabilistic grammars . 6
2.3 Data representation and inferring . 6

3 Hidden Markov Models and Baum-Welch Algorithm 8
3.1 Hidden Markov Models . 8
3.2 Pumping Lemma for regular language . 8
3.3 Baum-Welch algorithm . 9
3.4 Implementation . 12
3.5 Deducing the number of hidden states . 12

4 Fleet Library 14
4.1 The model . 14
4.2 Sampling through MCMC . 14

4.2.1 Metropolis-Hasting Algorithm . 14
4.2.2 Parallel Tempering . 16
4.2.3 Adaptive Temperature Ladders . 16

4.3 Likelihood probability . 17
4.4 Prior . 18
4.5 LogSumExp trick . 19
4.6 How to use Fleet . 19

4.6.1 Example of output . 20

5 Grammar inferring 21
5.1 anbn . 21
5.2 Simplified English . 23
5.3 Harry Potter data . 26
5.4 Campbell monkey calls . 32

6 Conclusions 35

2

Chapter 1

Introduction

Following the hierarchy proposed by Chomsky, grammars can be classified into several classes:
moving from the simplest to the most complex we have: regular, context-free, context-sensitive
and recursively enumerable. In this thesis we are interested in inferring the properties of an
unknown grammar from a set of strings produced by that grammar. To do this we will use
several models, first of all the Baum-Welch algorithm, an algorithm for finding the parameters
of Hidden Markov Models. This algorithm is useful for us since we will see that because of
their definition, regular grammars can be represented as Hidden Markov Models. We will
use this algorithm together with the Bayesian Information Criterion [4],[5], where we choose
the best fitted model based on a penalized likelihood probability. The other tool we will
use to try to analyze grammars is a probabilistic context-free grammar for the construction
of hypotheses, in particular we will exploit the C++ Fleet library developed by Yang and
Piantadosi [1]. This library searches for the best program that generates the data it receives
as input by combining primitive operations. This search is done by sampling through Markov
Chain Monte Carlo method, in particular through a parallel tempering method, where the
search is done using multiple chains at different temperatures. We find that, while these
methods are not always very accurate, they are a good starting point for guessing what class
the grammars we are interested in belong to.

In the following chapter we will introduce some preliminary notions of grammar, in par-
ticular the definition of formal grammar and probabilistic grammar, as well as the Chomsky
hierarchy more in detail.

In Chapter 3 we will give the definition of Hidden Markov Models, which are useful to
study regular grammars. We will also introduce the Baum-Welch algorithm and the Pumping
lemma.

In Chapter 4 we will describe the library Fleet, explaining more in detail the model and
the parallel tempering search. There will be also a short section explaining how to use the
library and how to read the output.

In Chapter 5 we will finally infer grammars using the tools we have introduced in the
previous chapters (Baum-Welch algorithm, Pumping lemma and Fleet). We start by studying
simulated data, in particular, data generated by the grammar anbn and a simplified version
of English grammar. We will obtain good result for the former, being a simple grammar, but
not as good result for the latter being more complex. In the following we will also study some
real data: a dataset of sentences from Harry Potter’s book and a dataset of Campbell monkey
calls.

3

Chapter 2

Preliminary notions of grammar

Before digging into more technical details, let us give a brief introduction about formal gram-
mar and then probabilistic grammar, following the definitions given in [2] and [3].

2.1 Formal grammar

Most natural language processing systems are based on formal grammars which we will soon
define. In the following we will introduce also probabilistic grammars, a natural extension
of the first which allows us to use some mathematical tools like Hidden Markov Models and
Bayesian statistics, therefore it will be the one we will work with.

Notation. First of all, let us introduce some notations: consider two sets X and Y , that
could be set of symbols, characters or words. We will write:

• X∗ to indicate the free monoid on X, i.e. the set of strings over X : an element of X∗ is
obtained by concatenating a finite number of elements of X, * is called the Kleene star;

• XY to denote the set of words obtained by concatenating an element of X and an
element of Y .

For instance, if X = {a, b} and Y = {c, d, e} then X∗ = {ϵ, a, b, aa, ab, ba, bb, aaa, aab, ...} and
XY = {ac, ad, ae, bc, bd.be}, with ϵ the empty string.

Definition 1. A formal grammar is defined as G = (A,B, S,R), containing

• a finite set of terminal symbols A = {a1, ..., aK}

• a finite set of nonterminal symbols B = {B0, ..., BJ}

• a distinguished non terminal symbol B0, the start symbol, often denoted by S in the
literature

• a finite set of rules R, each of the form α→ β where α, β ∈ (A ∪ B)∗.

We can think of the set A as the set of all the words in a dictionary of the language and
the set B as syntactic latent variables.

To produce a sentence with the grammar G, one starts with the nonterminal S and applies
the rules in R until there are no more nonterminal symbols left, which means there are no
more rule that could be applied. It is possible to produce both finite and non finite sentences,
depending on the rules that characterize the grammar. Let us show an example.
Example. Consider the grammar G = (A,B, S,R) by:

4

2.1. FORMAL GRAMMAR 5

– B = {B0, B1, B2}

– A = {a1 = “the dog”, a2 = “the cat”, a3 = “runs”, a4 = “fast”}

and the following rules

– r0,1 : B0 → a1B1B2

– r0,2 : B0 → a2B1

– r1,1 : B1 → a3

– r2,1 : B2 → a4

The grammar produces the following sentences:

1. a1a3a4= “the dog runs fast” by applying rules r0,1, r1,1, r2,1;

2. a2a3 =“the cat runs” by applying rule r0,2, r1,1.

We can then classify grammars into different classes, depending on the form of the rules:
the more complex the grammar, the more types of rule it contains. In this classification we
will refer to the Chomsky hierarchy, represented in Figure 2.1. This containment hierarchy
includes four different classes of grammar, the simplest ones are regular grammars, followed
by context-free grammars. We have then context-sensitive grammars and finally recursively
enumerable grammars, the most generic class of grammar, where there are no constraints on
the form of the rules.

Definition 2. Given a formal grammar G = (A,B,S,R), we call it (right) regular if all the
rules take one of the following form:
-Bi → ajBk

-Bi → aj
i.e. ∀(α→ β) ∈ R, α ∈ B, β ∈ A ∪ (AB).

Definition 3. A context-free grammar is one in which all the rules are of the form Bi → β,
i.e. ∀(α→ β) ∈ R, α ∈ B and β string of terminal and nonterminal symbols, it could also be
empty.

Definition 4. A context-sensitive grammar is one in which all rules are of the form αBiβ →
αγβ with α, β, γ ∈ (A ∪ B)∗.

Figure 2.1: Chomsky hierarchy

6 CHAPTER 2. PRELIMINARY NOTIONS OF GRAMMAR

Example of regular grammar. A simple example of regular grammar could is an, more
explicitly with the following rules

– r0,1 : B0 → aB0

– r0,2 : B0 → a

Example of context-free grammar. An example of context-free grammar is one that
generates palindromic sentences, in its easiest version:

– r0,1 : B0 → aB0a

– r0,1 : B0 → bB0b

– r0,2 : B0 → a

– r0,2 : B0 → b

Example of context-sensitive grammar. An example of context-sensitive grammar is
anbncn generated by the rules

- r1 : B0 → aB1B2

- r2 : B0 → aB0B1B2

- r3 : B2B1 → B2T1

- r4 : B2T1 → B1T1

- r5 : B1T1 → B1B2

- r6 : aB1 → ab
- r7 : bB1 → bb
- r8 : bB2 → bc
- r9 : cB2 → cc

The rules from r3 to r5 are needed to obtain B2B1 → B1B2 which does not respect the
form αBiβ → αγβ.

2.2 Probabilistic grammars

In order to study grammars using statistical and probabilistic tools, we can define proba-
bilistic regular and context-free grammars. This can be done by simply assign probability
distributions to all the possible rules that can be applied to a nonterminal symbol. More
formally,

Definition 5. A probabilistic grammar is defined as G = (A,B, B0,P,R) where (A,B, B0,R)
is a formal grammar and P = (P0, ..., PJ) , with J+1 = |B|, where each Pj for j = 0, ..., J is a
probability distribution on Rj, with Rj the set of rules which can be applied to the nonterminal
Bj , i.e. Rj = R∩ {(Bj → β) : β ∈ AB∗} (so that

∑
r∈Rj

P (r) = 1).

2.3 Data representation and inferring

We will study both known grammar from simulated data and unknown grammar with real
data. For some languages, when working with real data, it would be too difficult to study the
given dataset as it is, with every sentence containing a large number of different elements.
Instead we will use a simplified version of the data, where each word is represented by its
speech tag, in this way the set of terminal symbols is finite, that could be a set of characters
or numbers for example.

In the following chapters we will see some methods to study grammars. At first we will
focus on regular grammar, which as we will see, can be represented as Hidden Markov Models.
Knowing this we will use methods to infer Hidden Markov Models, in particular using the

2.3. DATA REPRESENTATION AND INFERRING 7

Baum-Welch algorithm. Later on we study grammars more in general, trying to infer the
rules that generates it through a probabilistic context-free grammar for rule generation. We
will then classify the resulting rule, and when possible we will compare it with the result from
the Baum-Welch algorithm.

Chapter 3

Hidden Markov Models and
Baum-Welch Algorithm

3.1 Hidden Markov Models

To study the properties of a regular grammar we can represent it as a Hidden Markov Model
(HMM). A HMM is one of the main statistical tool to model discrete time series. It can be
used in many application, for example speech recognition, computational biology, computer
vision and econometrics. Let us start with its definition in the discrete version.

Definition 6. A Hidden Markov Model is specified by the following components:

• a set of N hidden states B = {B1, B2, ..., BN};

• a Markov Chain Xn taking values in B, whose transition is not direclty observable, with
transition probability matrix P = (pij)i,j∈{1,..,N}, pij ∈ [0, 1] ∀i, j known;

• a sequence of T observation O1O2...OT , each one drawn from a vocabulary of emis-
sion symbols A = {a1, ..., aM};

• an emission probability matrix E = (ei(aj))ij, each component expressing the prob-
ability of observing aj being generated from a state i, ei(ai) ∈ [0, 1] ∀i, j;

• an initial state distribution (i.e. when t=1) πi = P (X1 = Bi).

In the formal grammar framework, hidden states correspond to nonterminal symbols,
while the emission symbols are terminal symbols. We will always work with finite set of
hidden states and emission symbols.

Without loss of generality the sets of hidden states and emission symbols can be considered
as sets of integers of the same cardinality, we can therefore describe a hidden Markov chain
only by the triplet θ = (A, E, π). Given observed data we aim to infer the parameters that
characterize the transition and emission matrices of a specific HMM. To do so we use the
Baum-Welch algorithm.

3.2 Pumping Lemma for regular language

As already mentioned, a regular grammar can be represented as a HMM where non terminals
are hidden states and terminals are emission symbols. With this representation, it is easy to
prove the Pumping lemma , which is useful in the classification of grammars, we refer to [7].
The Pumping lemma is usually used to prove that a grammar is not regular.

8

3.3. BAUM-WELCH ALGORITHM 9

Lemma 3.2.1. Let G be a regular grammar. Then there exists an integer p ≥ 1 depending
only on L such that every string w in L of length at least p (p is called the ”pumping length”)
can be written as w = xyz (i.e., w can be divided into three substrings), satisfying the following
conditions:

• |y| ≥ 1

• |xy| ≤ p

• (∀n ≥ 0)(xynz ∈ L)

y is the substring that can be pumped (removed or repeated any number of times, and the
resulting string is always in L).

Proof. Remember that a regular language is characterised by a HMM, which has finite number
of hidden states. Let p be the number of hidden states, then for any string of length greater
than p, there must be a hidden state that has been visited more than once, let’s call this state
A, the substring created from the first encounter of S to the second encounter of S is what
is defined as y in the statement of the lemma. It is clear that the sequence of transitions
generating y can be repeated any number of times by the HMM or not appearing at all, so
the conditions of the lemma are satisfied.

3.3 Baum-Welch algorithm

The Baum–Welch algorithm [5] is a powerful tool to learn the probabilities of a HMM given a
set of observed feature vectors, using the idea of the expectation- maximization algorithm to
find the maximum likelihood estimates of said parameters, by estimating the expected value
of the likelihood function and then find the value of the parameters that maximize it.

The algorithm is divided into different steps.

1. Initial step. In this first step, we first initialize the transition and emission matrices,
as well as the initial probabilities, simply by giving guesses of them. It can be done
randomly if there is no information about them.

2. Forward probabilities. Here we apply a forward procedure to compute the prob-
abilities αt(i) = P (O1, .., Ot, Xt = i|θ), i.e. the probability of seeing the observation
O1:t = O1, O2, ..., Ot and being in state i at time t. To compute this we can write

αt(i) = Pθ(O1:t, Xt = i)

=

N∑
k=1

Pθ(Xt = i,Xt−1 = k,O1:t)

=
∑
k

Pθ(Ot|Xt = i,Xt−1 = k,O1:t−1)Pθ(Xt = i|Xt−1 = k,O1:k−1)Pθ(Xt−1 = k,O1:t−1)

We observe that thanks to the Markov property we have Pθ(Ot|Xt = i,Xt−1 = k,O1:t−1) =
Pθ(Ot|Xt = i) = ei(Ot) and Pθ(Xt|Xt−1, O) = Pθ(Xt = i|Xt−1 = k) = pki. Moreover
notice that Pθ(Xt−1 = k,O1:t−1) = αt−1(k). Then the probabilities α are recursively
given by: {

α1(j) = πjej(a1)1 ≤ j ≤ n

αt(j) =
∑N

i=1 αt−1(i)pijej(Ot); 1 ≤ j ≤ N, 1 ≤ t ≤ T

10 CHAPTER 3. HIDDEN MARKOV MODELS AND BAUM-WELCH ALGORITHM

Notice that summing up all the forward probabilities in T we obtain the probability of
seeing the sequence of observation O = O1O2...OT :

P (O1:T |θ) =
N∑
i=1

αT (i)

3. Backward phase. In this phase we compute the probabilities βt(i) = P (Ot+1:T , Xt =
Bi|θ) of seeing the observations from time t+1 to the end, and being in state i at time
t. Similarly to the forward procedure, we deduce these probabilities recursively:{

βT (i) = 1 1 ≤ i ≤ N

βt(i) =
∑N

j=1 pijej(Ot+1)βt+1(j) 1 ≤ i ≤ N, 1 ≤ t < T

As for the forward probabilities, by summing up all the backward probabilities at the
initial time we obtain the probability to see the observations O = O1O2...OT :

P (O1:T |θ) =
N∑
j=1

πjej(O1)β1(j)

4. Probabilities γ and ξ. Using the forward and backward probabilities γt(j) we can
now compute the probability of being in state j at time t given the observations in
O = O1...OT :

γt(j) = P (Xt = j|O, θ)

We can compute this thanks to the Bayes theorem:

γt(j) =
P (Xt = j,O|θ)

P (O|θ)
=

αt(j)βt(j)∑N
j=1 αt(j)βt(j)

Another useful probability we can compute is the probability of being in the state i and
state j at time t and t+ 1 respectively, given the observation sequence and the model:

ξt(i, j) = P (Xt = i,Xt+1 = j|O, θ) =
αt(i)pijej(Ot+1)βt+1(j)∑N

j=1 αt(j)βt(j)

5. Estimation. Using all the probabilities computed in the previous steps we can now
compute the transition probability pij and observation probability bi(aj) from an obser-
vation sequence, even if we don’t know the hidden states sequence.

Let’s begin by seeing how to estimate

p̂ij =
expected number of transitions from state i to state j

expected number of transitions from state i

The idea behind the computation of the numerator is to sum over all times t the prob-
ability to have the transition ij at a specific time t.

The expected number of transitions from state i to state j is then the sum over all t of
ξ. Then for the transition probabilities estimate we have:

p̂ij =

∑T−1
t=1 ξt(i, j)∑T−1

t=1

∑N
k=1 ξt(i, k)

3.3. BAUM-WELCH ALGORITHM 11

Now we would like to estimate the emission probabilities:

êj(ak) =
expected number of times in state j and observing symbol ak

expected number of times in state j

For this, we will need to use the probabilities γt(j), we have:

êj(νk) =

∑T
t=1 1Ot=νkγt(j)∑T

t=1 γt(j)

We repeat iteratively these steps, starting each time with the transition and emission matrices
just estimated, until we reach some convergence conditions, which could be for example that
the change in norm of the transition and emission matrices are less than a tolerance value.

Algorithm 1 Baum-Wech algorithm

Input: guess for transition matrix P = (pij)ij , guess for emission matrix E = (eij)ij, initial
probability vector, string of observation a = a1a2...aT .
while Conditions > tolerance

Compute needed probilities

• Forward probabilities{
α1(j) = πjej(a1)1 ≤ j ≤ n

αt(j) =
∑N

i=1 αt−1(i)pijej(Ot); 1 ≤ j ≤ N, 1 ≤ t ≤ T

• Backward probabilities{
βT (i) = 1 1 ≤ i ≤ N

βt(i) =
∑N

j=1 pijej(Ot+1)βt+1(j) 1 ≤ i ≤ N, 1 ≤ t < T

• Compute γ and ξ probabilitiesγt(j) =
αt(j)βt(j)∑N
j=1 αt(j)βt(j)

1 ≤ j ≤ N, 1 ≤ t ≤ T

ξt(i, j) =
αt(i)pijej(Ot+1)βt+1(j)∑N

j=1 αt(j)βt(j)

Estimation

• p̂ij =
∑T−1

t=1 ξt(i,j)∑T−1
t=1

∑N
k=1 ξt(i,k)

• êj(νk) =
∑T

t=1 1Ot=νk
γt(j)∑T

t=1 γt(j)

Compute convergence condition parameter, could be one or more of the following:

• Conditions=∥P − P̂∥
• Conditions = ∥E − Ê∥
• Conditions = log likelihood of the string with estimated matrices

12 CHAPTER 3. HIDDEN MARKOV MODELS AND BAUM-WELCH ALGORITHM

Update

• P ← P̂ = (p̂ij)

• E ← Ê = (êij)

end while
return P,E

Original transition Estimated transition Original emission Estimated emission[
0.7 0.3
0.2 0.8

] [
0.68 0.32
0.22 0.78

] [
0.1 0.2 0.7
0.7 0.2 0.1

] [
0.12 0.20 0.69
0.71 0.19 0.10

]
 0 1 0

0 0.2 0.8
0.8 0 0.2

 0.04 0.95 0
0 0.17 0.83

0.77 0.05 0.19

 0.2 0.2 0.6
0.6 0.2 0.2
0.4 0.4 0.2

 0.24 0.18 0.58
0.58 0.22 0.20
0.40 0.41 0.20

0 1 0 0
0 0.2 0.8 0
0 0 0.2 0.8
0.8 0 0 0.2

0.02 0.98 0 0
0 0.19 0.81 0
0 0.01 0.24 0.75

0.83 0 0 0.17

0.1 0.22 0.7
0.7 0.2 0.1
0.4 0.5 0.1
0.1 0.5 0.4

0.12 0.22 0.66
0.68 0.20 0.12
0.40 0.51 0.09
0.11 0.48 0.41

Table 3.1: Estimated probabilities obtained by training sequences of simulated data of length
k = 5000.

3.4 Implementation

We want to use the algorithm to infer grammars from dataset of sentences. In order to test the
algorithm and apply it to our data set, we will use the already implemented MATLAB function
hmmtrain which, given a sequence of observations, a guess for the transition matrix and a
guess for the emission matrix, returns the estimated transition and emission matrices and the
loglikelihood of the observed sequence, using the Baum-Welch algorithm. However, we have
to be careful while using the Baum-Welch algorithm, because it can have some convergence
problems due to the existence of possible locally optimal results. Indeed, depending on the
starting guessing matrices the algorithm could not converge to the global optimal solution
but to the locally optimal one. To divert this problem we ran the algorithm starting from
different random initial guesses and took the results with the best loglikelihood.

We test the correctness of the algorithm simulating data using the MATLAB function
hmmtrain. We can observe that the implemented algorithm is quite accurate for different
number of hidden states as shown in Table 3.1

As we can see the algorithm gives quite accurate estimates for different cases with different
number of hidden states.

3.5 Deducing the number of hidden states

Given observed data, we usually don’t know how many hidden states characterize the HMM,
so the next step is to infer the actual number of hidden states given the observed sequence. To
do so we run the Baum-Welch algorithm over different number of hidden states and compute
for each of them the Bayesian Information Criterion (BIC)

BIC = −2 logL+ pn · log k

3.5. DEDUCING THE NUMBER OF HIDDEN STATES 13

where:

• L is the likelihood function

• k is the number of the observed data

• pn is the number of free parameters to be estimated, in our case for n hidden states and
e emission symbols pn = n(n+ e− 1)

The BIC is a criterion that allow us to avoid the overfitting problem that we would have
by increasing the number of parameters, it does so by introducing a penalty term given by
pn · log k. Hence we will choose as the best model the one that has the lowest BIC.

Again, we test the correctness of the criterion using simulated data to check if the method
infer correctly the number of hidden states given a sequence. The tests are made using the
same HMM simulated in the previous section (see Table 3.1). The results are shown in Figure
3.1, where we plotted the BIC value computed with respect to the number of hidden state
guessed. As we can see the minimum BIC value is always reached at the right number of
hidden states.

Figure 3.1: From left to right, the graph of the BIC value tested on HMM with number of
hidden states 2, 3 and 4 respectively.

As we can observe, by minimizing the Bayesian Information Criterion we can correctly
infer the number of hidden states.

In chapter 6 we will see some applications of the method to some unknown grammar.

Chapter 4

Fleet Library

In the previous chapter we introduced a method to study regular grammars, we wish now to
study grammars more in general. For this analysis we will use the approach introduced by
Yang and Piantadosi in [1].
In particular we will use the library Fleet (https://github.com/piantado/Fleet) they imple-
mented for some data we have. But let us explain the method.

4.1 The model

Fleet is a C++ library for the construction of rules for grammars. In particular this is done
by specifying a grammar of primitive operations which can be composed to form complex
hypotheses, following the idea in [8]. These hypotheses are functions that could be composed
of multiple factors recalling themselves. With the library Fleet we observe the data and infer
the most likely hypothesis that could have generate such data.

The hypothesis are generated by the grammar with primitive elements displayed in table
4.1. The hypothesis are explored through MCMC techniques. In particular we will use
the parallel tempering search described in section 4.2.2. After the search Fleet returns the
hypotheses with the highest posterior probability.

4.2 Sampling through MCMC

The sampling of the hypotheses is done using Markov Chain Monte Carlo (MCMC) methods,
in particular using the Metropolis Hasting algorithm [6] together with parallel tempering
method [9] we describe in the following. The sampling is done from the posterior distribution.

4.2.1 Metropolis-Hasting Algorithm

The Metropolis–Hastings algorithm is a MCMC method to sample elements from an unknown
distribution, of which we only know a function proportional to it.

Suppose then that we want to obtain random samples (Zn)n from a distribution π, but
we only know π̂, which is proportional to it. To do so we generate a Markov Chain such that
its stationary distribution is our distribution target π.

We start with any Z0 as the first observation and find iteratively Zn+1 given Zn. The
algorithm is defined as follows: first of all we choose an arbitrary distribution from which
sample a candidate Yn, the usual distribution is the gaussian distribution centered at Zn, but
it could be any:

14

4.2. SAMPLING THROUGH MCMC 15

Primitive Description

Functions on lists (strings)

pair(L,C) Concatenates character C onto list L
head(L) Return the first character of L
tail(L) Return everything except the first character of L
insert(X,Y) Insert list X into the middle of Y
append(X,Y) Append list X and Y

Logical functions

flip(p) Returns true with probability p
X==Y True if string X is the same string as Y
empty(X) True if string X if empty; otherwise, false
if(B,X,Y) Return X if B else return Y

(X and Y may be lists, sets or probabilities)
and, or, not Standard Boolean connectives

Set functions

Σ The set of alphabet symbols
{s} A set consisting of a single string
set∪set Union of two sets
set\s Remove a string from a set
sample(set) Sample from a set

Strings and characters

∅ empty symbol
x the argument to the function
‘a’,‘b’,‘c’,... Alphabet characters (language specific)

Function calls

Fi(z) Calls factor Fi with argument z

Table 4.1: Table of the primitives elements from which compose hypotheses

Yn = Zn + ϵ, with ϵ ∼ N (0,Σ).

We then define the following ratio

α = 1 ∧ π(Yn)

π(Zn)
= 1 ∧ π̂(Yn)

π̂(Zn)

Notice that in the ratio we can consider the known function π̂ obtaining the same ratio as
if considering π, because the two are proportional. Then with probability α we accept the
candidate Yn, otherwise we keep the previous sample Zn, more specifically:

Zn+1 =

{
Yn with probability α,

Zn with probability 1− α,

It can be proved that a Markov Chain defined like this has stationary distribution π [6].
Indeed we recall that for a Markov chain Xt of stationary distribution P (Xi|Xj), π is its
stationary distribution if and only if it satisfies the Detail Balance Equation:

P (Xi|Xj)π(Xj) = P (Xj |Xi)π(Xi)

Let’s verify that such equation is satisfied. The transition distribution of the Markov chain
we have built is P (Yn|Zn) = αZY = 1 ∧ π(Yn)

π(Zn)
. Suppose that we have π(Yn) > π(Zn):

16 CHAPTER 4. FLEET LIBRARY

P (Yn|Zn)π(Zn) =

(
1 ∧ π(Yn)

π(Zn)

)
π(Zn)

= π(Zn)

=
π(Zn)

π(Yn)
π(Yn)

=

(
1 ∧ π(Zn)

π(Yn)

)
π(Yn)

= P (Zn|Yn)π(Yn)

Similarly we can verify the Detail Balance Equation also in the case π(Yn) < π(Zn) and
this prove that π is the stationary distribution for the Markov chain we have constructed.

4.2.2 Parallel Tempering

There might be problems to explore the distribution when π is multimodal because the chain
could get stuck in one mode. In this case it is useful to use the parallel tempering technique:
we can flatter the distribution π by using a parameter T > 1 (that we call temperature) writing
π1/T . The idea is to take T1, T2, ..., Tn and at random steps to swap from a temperature to
another, this swaps happen with probability

Ai,j = min

{(
π(θi)

π(θj)

)βj−βi

, 1

}
where θi is the current position in the parameter space of the ith chain and βi = 1/Ti is the
inverse temperature of this chain. When a swap is accepted, the chain exchange their position
in the parameter space, so that chain i is at θj and chain j is at θi. In this way the chain
manage to explore the entire distribution.

4.2.3 Adaptive Temperature Ladders

Parallel tempering is a very efficient method for sampling that overcomes the problem of
sampling multi-modal probability distribution. However a difficult task is finding the ladder
of temperature that better explore such distribution. We have that at high temperatures it
is easier to switch from one mode to another, while at low temperatures the single mode is
more correctly explored.

We wish for a good ladder that satisfies the following features:

• Tmax large enough so that at this temperature it is easy to access to all the modes of
the distribution;

• the difference βi − βj to be small enough so that Ai, j is not too small, allowing neigh-
bouring chain to swap.

These requirements depend on the shape of the distribution, which we do not know. In
the literature [10], [11] [12] [13] it has been suggested that a good ladder is one where the
acceptance ratios Ai,j are uniform for all pairs (i, j) of adjacent chains.

Assuming that such a ladder gives good results, Vousden, Farr and Mandel suggest in [9]
an adaptive temperature ladder, which is an algorithm that adapts the temperature ladder at
every swap having uniform rate of exchange between chains. Let us explain such algorithm.
We define the following term:

Si := log(Ti − Ti−1)

4.3. LIKELIHOOD PROBABILITY 17

We will have that the correct ordering of temperatures (T1 < ... < TN) will always be
preserved. In order to have Tmax large enough we simply impose βN . In order to obtain
the same acceptance rate for all chains we impose:

dSi

dt
= k(t)[Ai(t)−Ai+1(t)], for 1 < i < N (4.1)

where k is a positive constant that we will discuss later, t indicates the iteration and Ai :=
Ai,i−1.

With this scheme we have that if swaps between itself and adjacent chains are accepted
too often then the gap between the temperature is increased, while, on the contrary, if they
are not accepted very often then the gap is decreased. Discretising 4.1 we have:

Si(t+ 1)− Si(t) = k(t)[Ai(t)−Ai+1(t)]

We have to remark, however, that the scheme proposed and every adaptive sampling
scheme do not satisfy the condition for detailed balance that guarantee an MCMC sampler to
converge. However, from [14] we know that in order for an adaptive sampler to converge it is
sufficient for it to be ergodic in the target distribution. They determined that we can obtain
this by diminishing the amplitude of adaptations at each iteration. For this purpose we use
the parameter k(t) and we define it as follows:

k(t) =
1

ν

t0
t+ t0

where further considerations mande in [9] suggests to take as default parameter values ν =
102/nc and t0 = 103/nc, with nc the number of chains.

4.3 Likelihood probability

The model is such that it allows errors or noise so that almost correct strings can have non
zero likelihood. Such likelihood is computed as follows: starting from the hypothesis found we
generate the most likely strings that can be generated. Then we define pdel the probability of
eliminating the last element from the string and padd the probability of adding one element.
Consider a string x of length Sx that is generated by the hypothesis found with probability
Px, we compute the probability that this string can be equivalent to a string y of length Sy

of the dataset we possess by deleting and adding elements from this string.

The probability to delete exactly m elements from the tail of the string is

p
(Sx−m)
del · (1− pdel)

While the probability to add the exact elements to convert the truncated string x into y is(
padd ·

1

N

)(Sy−m)

· (1− padd)

Then summing up over different m, the overall probability to convert x into y is

∑
x1:m=y1:m

p
(Sx−m)
del · (1− pdel) ·

(
padd ·

1

N

)(Sy−m)

· (1− padd)

where x1:m denotes the string composed of the first m element of string x.

18 CHAPTER 4. FLEET LIBRARY

We then sum this probability to the probability of generating x and compute this prob-
ability for every string generated by the hypothesis, whose set we denote with X and every
string in the dataset Y :

∑
x∈X

Px +
∑
y∈Y

∑
x1:m=y1:m

p
(Sx−m)
del · (1− pdel) ·

(
padd ·

1

N

)(Sy−m)

· (1− padd)

This is the likelihood of a hypothesis.

4.4 Prior

As already mentioned, hypotheses are constructed through a grammar composed of primitive
operations that are combined to form more complex hypotheses. Based on how these hypothe-
ses are composed, we assign a probability. This prior is calculated by assigning a probability
to each rule that characterises the grammar that constructs the hypotheses, in this way the
more complex the hypothesis the lower the prior will be. Let us specify the grammar G for
the construction of such hypotheses: we have 6 non terminal symbols and the following rules

L → pair(L,C) L → if(B,L,L)
L → head(L) L → sample(S)
L → tail(L) L → ∅
L → insert(L,L) L → x
L → append(L,L) L → Fi(L)

S → Σ B → flip(N)
S → {L} B → L==L
S → S∪S B → empty(L)
S → S \L B →and(B)
S → if(B,S,S) B → or(B)

B → not(B)

N → 1/24, 1/12, ..., 1/2 C → ‘a’,‘b’,‘c’,...
N → if(B,N,N)

To define the prior we follow the work in of Goodman, Tenenbaum, Feldman and Griffiths
[8]. Let F be a hypothesis generated by the grammar G which has distribution τ and let
DerivF be the set of all possible ways to obtain F through this grammar, then the prior
probability is given by

P (F |G, τ) =
∏

s∈DerivF

τ(s),

However,we don’t want to fix the distribution of the production probabilities, thus we write

P (F |G) =
∫

P (F, τ |G)dτ

=

∫
P (τ)P (F |τ,G)dτ

=

∫
P (τ)

 ∏
s∈DerivF

τ(s)

 dτ

4.5. LOGSUMEXP TRICK 19

Where P (τ) is the prior probability for a given set of production probabilities. Because
we have no a priori reason to prefer one set of values for τ to another, we select the least
informative prior: P (τ) = 1. The probability of a formula becomes:

P (F |G) =
∫ ∏

s∈DerivF

τ(s)

 dτ

After some simplification done in [8] by recognizing the integral as a Multinomial-Dirichlet
form we obtain:

P (F |G) =
∏

Y ∈non-terminals of G

β(CY (F) + 1)

β(1)

where the term CY (F) indicates the vector of counts of the productions for non-terminal sym-
bol Y in DerivF (and 1 is the vector of ones of the same length). The function β(c1, c2, ..., cn)
is the multinomial beta function for the partial counts (c1, c2, ..., cn), which can be written in
terms of the Gamma function:

β(c1, c2, ..., cn) =

∏n
i=1 Γ(ci)

Γ(ni=1ci)

4.5 LogSumExp trick

During the implementation of the method, it is easy to come across underflow or overflow
problems given the nature of the data, especially since we usually work with small probabili-
ties. To overcome this problem all probabilities are computed as log probabilities so that the
multiplication of two small numbers does not give underflow problems, but it becomes a sum.
Following this idea another trick is to use the LogSumExp operation, for example when we
want to sum small probabilities, this is how it works: suppose we have p̂, q̂ two small probail-
ities, we want to sum the two knowing their logprobabilities p and q respectively, then we
would do p̂+ q̂ = exp(p)+exp(q) but since this could give underflow we define m := max(p, q)
and write p̂+ q̂ = exp(p)+exp(q) = m+log(exp(a−m)+exp(b−m)). This is the LogSumExp
trick, more in general, given p1, p2, ..., pn logprobabilities:

LSE(p1, p2, ..., pn) = m+ log

(
n∑

i=1

exp(pi −m)

)

4.6 How to use Fleet

Fleet is a C++ library implemented by Piantadosi.
Please read the web page https://codedocs.xyz/piantado/Fleet/index.html for a brief intro-
duction. It uses libraries that only work in Linux, so it is recommended to install Linux before
using it or work on a Linux virtual machine. The easiest way to use Fleet is to start from
the examples in the /Fleet-master/Models folder. Various examples of different kinds are
presented here, the one we will use to study grammar is FormalLanguageTheory-Complex.

In the example folder there is, among other files, the main file Main.cpp , a MyGrammar.h

file that contains the grammar defining the construction of the hypotheses and a MyHypothesis.h
file that allows the hypotheses to be generated from the grammar. There is also a Makefile

that debugs and runs the code, to do this, simply go to the example folder via the terminal
and enter the command make, this will create a main file which will be sufficient to run the
algorithm. To make it run then just enter the command ./main followed by the parameters

20 CHAPTER 4. FLEET LIBRARY

Command Description

--input= text file containig the input data (do not write the suffix ”.txt”)
--alphabet= string containing the terminal symbols in the data

--time=
running time, need to write a unit of measurement:
seconds(s), minutes(m), hours(h), days(d)

--steps= number of steps
--top= number of top hypotheses to show
--nfactors= number of factors composing the hypothesis
--chains= number of chains on which to run the MCMC search

Table 4.2: Table of parameters for Fleet

you are interested in. The most relevant parameters we used are those shown in the Table
4.2.

To be able to use your own data, you must first make some changes to the main file. First
make sure that the vector data amounts declared on line 32 has size 1. then comment out
the current definition of the string data path on line 113 and redefine it as

S data path = FleetArgs::input path + ".txt";

You can now safely use your data file. Be careful to declare it in the folder in which it is
located.

4.6.1 Example of output

Let us give a simple example of what kind of output we could expect. This is the hypothesis
we obtain by giving as input data from the grammar AAA,which generates the strings in the
set {a,aa,aaa}:

F(0,x):=.pair(if(flip(3/8),pair(sample((Σ∪{x})),‘a’),),‘a’).

The default argument when calling F is an empty string. Hence the hypothesis generates
‘a’ with probability 5/8, ‘aa’ with probability 1/2 · 3/8 as well as for ‘aaa’.

After running the code, certain information are printed for each hypothesis, which we can
see illustrated in below.

The hypotheses are printed in order of decreasing posterior probability. For each hypothe-
sis, the strings that are generated with the highest probability are shown with their respective
probability. Highlighted in yellow we have in order logPosterior, logPrior and logLikelihood.
Highlighted in green we have the precision and recall values. Finally in light blue we have
the hypothesis that has been sampled. Notice that the code prints also the primitives used
to build the hypotheses, preceded by the terminal that called them.

Chapter 5

Grammar inferring

Let us now analyse grammars using the tools we have presented so far, that is, the Baum
Welch algorithm and the Fleet library. We will first analyse the anbn grammar which generates
strings composed of ‘a’s successive to an equal number of ‘b’s. We will then analyse a simplified
version of the English grammar, which we will define specifically later. To analyse such
grammars, we will generate data that we will use as input in the various algorithms. We
will then move on to analysing real data, in particular we will analyse sentences from Harry
Potter’s book and a dataset of Campbell monkey calls. Our goal is to be able to classify the
grammars that characterise them.

5.1 anbn

In the study of the grammar anbn we will use the data generated in Yang and Piantadosi’s
study [1]. But first let us show through the Pumping lemma that the grammar is non regular:

Claim. The grammar anbn is not a regular grammar.

Proof. To prove the claim we just need to prove that the grammar does not satisfy the
Pumping lemma conditions. Suppose by contradiction that ∃p ≥ 1 s.t. the Pumping lemma
is satisfied, then take n = ⌈p2⌉ and the string w = anbn, where w has length greater0 or equal
to p. We want to find the decomposition w = xyz that satisfies the statement of the lemma
i.e. such that ∀k xykz is a string in anbn.

Suppose y is made of only ‘a’s. For simplicity suppose also that z is only made of ‘b’s.
Then we have x = aq, y = an−q, z = bn. We have then |y| ≥ 1, |xy| = n = ⌈p2⌉ ≤ p which
are the hypothesis of the Pumping lemma. But taking for example k = 2 we have that
xy2z = aqa2n−2qbn = a2n−qbn wich is not a string that can be generated by anbn.

With similar reasoning, it is easy to show that the lemma is not satisfied even in the case
where y is of the form bq or ajbq.

Now we use the Baum-Welch algorithm together with the BIC criterion to study which
HMM, hence regular grammar, best approximates it. As we can see from the Figure 5.1, the
best approximation is an HMM with three hidden states.

We also obtain that it approximates it with likelihood equal to -170.547 and its transition
and emission matrices are

P =

 0.50 0.00 0.50
0 1 0

0.06 0.73 0.21

21

22 CHAPTER 5. GRAMMAR INFERRING

Figure 5.1: BIC from data generated from grammar anbn, the lowest BIC is reached with
n = 3 hidden states

E =

 1 0.00
0 1
1 0.00

A

BC

a

a

b

By naming the hidden states A, B and C, we can observe that, starting from A, the
HMM initially oscillates between states A and C emitting only ‘a’ and then arrives at state
B and remains there emitting only ‘b’. We can therefore observe that the HMM recreates
similar data from the anbn grammar, however it is unable to replicate exactly the rule that
the number of ‘a’s equals the number of ‘b’s as it can not count the number of times they are
emitted.

Let us now try to analyse the data using Fleet. In our work we use 50 numbers for flip()
probabilities and do the search for 10m. The top hypothesis we find is

F(0,x):=x.pair(append(pair(x,‘a’),if(flip(31/100),Ø,F0(x))),‘b’)

with likelihood probability of -40.1515. The value of precision and recall are 1 and 1.

5.2. SIMPLIFIED ENGLISH 23

We therefore have a higher likelihood, so if we did not know the true grammar behind the
data we have, we would accept Fleet’s result. Indeed, it is easy to observe that the hypothesis
found adds a ‘b’ each time an ‘a’ is generated. We therefore have that in this case Fleet
recognises the correct grammar which we know to be a non-regular grammar.

5.2 Simplified English

We would like to study now simplified English grammar, a very simplified version of English
grammar that can be found in introductory textbooks:

S → NP V P

NP → n | d n | d AP n | NP PP

AP → a | a AP

V P → v | v NP | v t S | V P PP

PP → p NP

It is not so easy to verify which class this grammar belongs to. In this case we cannot
use the Pumping lemma as at first sight this grammar would seem to satisfy it. Let us then
use the Baum-Welch algorithm as before to find the best fitting HMM and see if such HMM
replicates the same behaviour of the grammar defined above . We perform a search for the
best parameters using again the BIC criterion and obtain that the best estimate has 6 hidden
states and a logLikelihood of -592.52.

Figure 5.2: Bayesian Information Criterion applied to English dataset, the lowest BIC value
is reached in n = 6 and has value 1631.31 and the log likelihood has value −592.52.

24 CHAPTER 5. GRAMMAR INFERRING

The best HMM has transition and emission matrices respectively of:

P =

0 0.3026 0 0.6974 0 0
0.2464 0 0 0 0 0.7536

0 0.3714 0 0.6286 0 0
0 0.4565 0 0 0.5435 0
0 0.7812 0 0 0.2188 0
0 0.1261 0.5882 0.2857 0 0

E =

0 0 0 0 0 1
1 0 0 0 0 0
0 0 0 0 0.8429 0.1571
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0

A B

C

DE

F

p

p

n

t

da

v

In the graph the circle nodes are the hidden states, while the other nodes are the emission.
We can see that the HMM above describes the behaviour of the grammar quite correctly.
However, by not imposing the option of a start and an end state in the definition of the
algorithm, it does not respect certain characteristics of the grammar, in particular the fact
that each generated sentence must contain at least an ‘n’ and a ‘v’. To overcome this issue we
can easily modify the HMM by adding a ”starting HMM” and other hidden states as follows.

A B

C

DE

F

A1

E1

B1

S

D1

Z

p

p

n

t

da

v

pn

a

d

This HMM replicates well the behaviour given by the rules of the grammar. If we consider a
sentence to start from the node S and finish in node Z, we observe that now in order to reach

5.2. SIMPLIFIED ENGLISH 25

the end node we have to pass through state B1 that emits ‘n’ and state F that emits a ‘v’.
We can conclude that the simplified English grammar is regular as it is possible to represent
it with a HMM.

Let us now try to analyse it using Fleet. We run Fleet for 6 hours using 15 chains for the
parallel tempering. The best hypothesis we obtain is :

F(0,x):=λx.append(append(pair(sample(if(flip(3/8),{append(insert(pair(Ø,‘d’),x),
pair(if(flip(1/8),pair(Ø,‘a’),Ø),‘a’))},if(flip(1/2),x,pair(x,‘d’)))),‘n’),

sample(if(not(flip(1/12)),{pair(Ø,‘v’)},{F0(pair(Ø,‘p’))}))),
if(not(flip(5/24)),Ø,F0(pair(Ø,‘t’)))).

with likelihood and posterior probability respectively of -2544.41 and -2661.33, much lower
values compared to the one we obtained previously. However we notice that the value of the
precision and recall parameters for this hypothesis are 0.343 and 0.178, thus the hypothesis
we found is not really accurate for our grammar. Indeed there are many strings in our
dataset that can not be generated from this hypothesis. In [1] Yang and Piantadosi manage
to obtain good values of precision and recall for this amount of data, by running it for 7 days
as it is more complex compared to anbn. Unfortunately, we have neither the time nor the
technical resources to perform the same computation, thus our results will not be very precise.
Therefore, we will not consider Fleet’s results as correct but will only use them as a guideline
to deduce ideas and conclusions. So let us analyse anyway what we have obtained. To have
a better understanding of the hypothesis we found let us represent it in a tree.

F0()

append()

append()

pair(-,n)

sample()

if flip(3/8)

append()

insert()

pair(-,d)

Ø

x

pair(-,a)

if(flip(1/8))

pair(-,a)

Ø

Ø

if(flip(1/2))

x pair(-,d)

x

sample()

if(not flip(1/12))

pair(Ø,v) F0()

pair(Ø,p)

if(not flip(5/24))

Ø F0()

pair(Ø,t)

We can simplify the tree denoting g(x) the output from pair(sample(if(flip(3/8),

{append(insert(pair(Ø,‘d’),x), pair(if(flip(1/8),pair(Ø,‘a’),Ø),‘a’))}, {if
(flip(1/2),x,pair(x,‘d’))})),‘n’) where we can see that F0 is never called, so this piece
of the function generates a finite number of sentences, which is therefore easily represented by
HMMs (trivially, for example by defining each possible sentence as a terminal, the simplest

26 CHAPTER 5. GRAMMAR INFERRING

HMM consists of a single hidden state that can emit each of the terminals with the appropriate
probability).

F0()

append()

append()

g(x) sample()

if(not flip(1/12))

pair(Ø,v) F0()

pair(Ø,p)

if(not flip(5/24))

Ø F0()

pair(Ø,t)

Observing the tree we can notice then that the grammar described by the hypothesis can
be represented through the following schematic HMM:

O A B

C D

P T

g(Ø)

g(p) g(t)

v Ø

Hence, even if the model is not entirely correct, as we notice the HMM inferred is not
really similar to the one we found before, we have that the best fitted grammar that Fleet
can find within our resources is still regular.

5.3 Harry Potter data

Let us now analyse some real data, in particular we have a dataset consisting of 107 sentences
from Harry Potter’s book. The book is written in English so it will also be interesting to
analyse it by comparing it with the results for simplified English.

We begin our analysis with the Baum-Welch algorithm. As always we are interested in
minimizing the BIC tested for different number of hidden states. We obtain the graph in
Figure 5.3

This means that the best HMM that fits our dataset is one with n = 6 hidden states,
moreover we can also compute the estimated transition and emission matrices, which are:

5.3. HARRY POTTER DATA 27

Figure 5.3: Bayesian Information Criterion applied to Harry Potter data, the lowest BIC value
is reached in n = 6 and has value 9.6873e03 and the log likelihood has value −4.3841e03.

P =

0.0168 0.2657 0.4567 0.0000 0.0821 0.1786
0.0907 0.0449 0.2649 0.0080 0.1682 0.4232
0.3600 0.1913 0.0792 0.3454 0.0000 0.0241
0.5596 0.0000 0.0582 0.2188 0.1017 0.0617
0.0616 0.5670 0.0959 0.0760 0.1995 0.0000
0.0000 0.0000 0.0000 0.0000 1.0000 0.000

E =

0.05 0.00 0.10 0.02 0.04 0.00 0 0.00 0.00 0.01 0.00 0.00 0 0.02 0.76
0.00 0.42 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.46 0.06 0.00
0.00 0.00 0.20 0.00 0.05 0.00 0.01 0.00 0.00 0.07 0.33 0.33 0.00 0.01 0.00
0.00 0.00 0.06 0.61 0.00 0.00 0 0.00 0 0.17 0.00 0.00 0.17 0.00 0.00
0.19 0.00 0.01 0.00 0.00 0 0 0.74 0.01 0.00 0.00 0.05 0.00 0.00 0.00
0.09 0.00 0.00 0.00 0.01 0.63 0 0.00 0.01 0.00 0.25 0.00 0.00 0.00 0.01

Remark.When written 0.00, we consider the value to be smaller than 5 · 10−3.

In order to understand better the matrices in our results we have in Table 5.1 the repre-
sentation of each emission symbol.

Looking at the results we can observe that there are a lot of transitions and emissions
that have a low probability to happen, we can then try to apply once again the Baum-Welch
algorithm starting from guessing matrices obtained by approximating the estimated matrices.
The approximation is done by setting low probabilities (smaller than 0.005) to zero and then
normalizing the matrices. In this way we obtain a slightly better result, as the new estimations
has a higher log likelihood (-4.38613e03), and more interesting, we have matrices with more

28 CHAPTER 5. GRAMMAR INFERRING

Table of symbols

1 ADJ adjective 9 NUM number
2 ADP preposition 10 PART particle
3 ADV adverb 11 PRON pronoun
4 AUX auxiliar verb 12 PROPN proper noun
5 CCONJ conjunction 13 PUNCT punctuation
6 DET article 14 SCONJ sub conjuction
7 INTJ interjection 15 VERB verb
8 NOUN noun

Table 5.1: Table of the speech tag used in the data set

zero entries:

P =

0.0167 0.2657 0.4567 0 0.0821 0.1787
0.0907 0.0449 0.2649 0.0080 0.1682 0.4232
0.3600 0.1913 0.0792 0.3454 0 0.0241
0.5596 0 0.0582 0.2188 0.1017 0.0617
0.0616 0.5670 0.0959 0.0760 0.1995 0

0 0 0 0 1 0

E =

0.06 0 0.11 0.02 0.04 0 0 0 0 0.01 0 0 0 0.01 0.75
0 0.42 0 0 0.07 0 0 0 0 0 0 0 0.45 0.06 0
0 0 0.21 0 0.05 0 0.01 0 0 0.07 0.33 0.33 0 0.01 0
0 0 0.06 0.60 0 0 0 0 0 0.17 0 0 0.17 0 0

0.20 0 0.01 0 0 0 0 0.74 0.01 0 0 0.05 0 0 0
0.10 0 0 0 0.01 0.63 0 0 0.01 0 0.25 0 0 0 0.01

Observations. We can notice that when being in state 6 the model goes to state 5 almost
certainly.We notice also that state 6 is the only state that emits symbol 6 which corresponds
to the article particle, while state 5 mainly emits symbol 8 (nouns) with probability 0.74 and
symbol 1(adjective) with prob 0.18. This reflects how in English, articles precede only nouns
and adjectives.

Moreover we observe that state 6 emits, other than articles (with probability 0.63), also
symbol 11, pronouns, with probability 0.26. This could be thought of the rule for the use of
possessive pronouns (“my”, “yours”, “his”, “her”..), which in English has to be followed by a
noun (“his wife”) or an adjective (“his pale [aunt]”) (examples taken from the dataset).

Another observation we can make is also notice that symbol 4 (auxiliar verb) is emitted
mainly by state 4 with prob 0.60. From state 4 there are two major possible transition: go
to state 1 (p41 = 0.56) which mainly emits verb (symbol 16), that is grammatically the main
use of the auxiliar verb, or stay in 4 and emit with higher prob another auxiliar verb or an
adjective, reflecting correctly the use of the auxiliar in the English grammar.

However, being such HMM quite complex (as there are many non zero entries in the
transition matrix) it is difficult for us to look into further details. We try now to study it
with Fleet.

Before using Fleet on the data we convert its format in a way such that its output is a bit
easier to read. The conversion is shown in table 5.2

As with the Baum-Welch algorithm, we would like to compute the BIC to find the best
number of parameters that gives us the best hypothesis. The parameters varies based on the
number of primitives we construct the hypotheses from. We obtain the graph in Figure 5.4

5.3. HARRY POTTER DATA 29

Table of symbols

1 ADJ a 9 NUM b
2 ADP f 10 PART p
3 ADV s 11 PRON o
4 AUX x 12 PROPN r
5 CCONJ e 13 PUNCT q
6 DET d 14 SCONJ t
7 INTJ i 15 VERB v
8 NOUN n

Table 5.2: Table of conversion symbols for the Harry Potter data

Figure 5.4: Bayesian Information Criterion applied to Harry Potter data using Fleet

We have that the best hypothesis is obtained when doing the sampling with all the prim-
itives. So we do our search with all the primitives. Having a large number of terminals, we
decide to run the code for 12 hours with 15 chains, the result we get is the following:

F(0,x):=λx.if(not(flip(if(flip(5/12),11/24,1/2))),Ø,pair(Ø,‘v’)).
F(1,x):=λx.insert(sample(Σ),if(flip(11/24),insert(head(pair(F0(Ø),‘x’)),

if(flip(5/12),pair(x,‘o’),pair(x,‘r’))),sample(Σ))).

with loglikelihood and logposterior probability respectively of -14040.1 and -14120.
It is immediate to note that the set of sentences generated by this hypothesis is finite, in

fact the factor F0 does not recall any other factors, so as there is no recursion it only produces
a finite number of sentences. On the other hand, factor F1, only recalls factor F0 which, as
just said, is finite, so the grammar generated by this hypothesis is finite and therefore regular.
However we notice that the loglikelihood has a much lower value with respect to the one
obtained from the Baum-Welch algorithm. If the hypothesis found was accurate we would
have obtained at least similiar value of loglikelihood or higher, because if it was regular the
best hypothesis should be similar to the approximation as an HMM, while if it was not regular
we would have obtained a more fitting model. However we have to remark that the value of
precision and recall for this hypothesis are both 0, which makes us think that this hypothesis
is not very accurate. One of the reasons why we have not been able to get a good result is
possibly because the data we have is generated by a grammar that consists of a large number
of rules, and the data we have are not sufficient to deduce it properly.

Let us then try to manipulate the data to see if perhaps reducing the number of terminals
gives a better result. We then merge a few terminals that have a similar syntactic function,
this merge is shown in the Table 5.3.

30 CHAPTER 5. GRAMMAR INFERRING

n°of terminals Alphabet Merging

15 nvsadtpiqeforxb No merging

14 nvsadtpiqeforx b=d

13 nvsadtpiqefor b=d, x=v

12 nvsadtpiqefo b=d, x=v, r=n

11 nvsadtpiqef b=d, x=v, r=n, o=n

10 nvsadtpiqe
b=d, x=v, r=n,
o=n, f=s

9 nvsadtpiq
b=d, x=v, r=n,
o=n, f=s, e=t

8 nvsadtpi
b=d, x=v, r=n,
o=n, f=s, e=q=t

7 nvsadtp
b=d, x=v, r=o=n,
f=i=s, e=q=t

6 nvsadt
b=d, x=v, r=o=n,
f=i=p=s, e=q=t

5 nvsad
b=d, x=v, r=o=n,
f=i=p=e=q=t=s

4 nvsa
x=v, r=o=n,
f=i=p=e=q=t=b=d=s

3 nvs
x=v, r=o=n,
f=i=p=e=q=t=d=a=s

Table 5.3: Table of the merging of terminals.

By doing this merging we obtain, as shown in Figure 5.5 that as we merge more terminals
the likelihood increases as expected since we are decreasing the number of terminals.

Figure 5.5: Result using Fleet for Harry Potter data with different merging. The analysis has
been done for each merge with different number of factors.

In particular, we observe that almost all the hypotheses we obtain, generate a finite gram-
mar and have precision and recall both close to zero. We have exceptions in the merge that
gives us 7 terminals, which is about the number of terminals of the simplified English gram-

5.3. HARRY POTTER DATA 31

mar. We therefore decide to manipulate the original data again in a slightly different way:
our aim is to make them as close as possible to that of the simplified English grammar we
studied earlier. As a first step, we break up the sentences using punctuation and coordinat-
ing conjunctions. We then merge by grouping terminals with similar grammatical function
together to obtain the same terminals. The merging is

• n indicates noun (n), proper noun (r), pronoun (o), interjections (i);

• v indicates verbs(n), auxiliary verbs (x);

• a indicates adjective (a)

• d indicates article (d) and number(b)

• t indicates subordinating conjunctions (t)

• p indicates particles (p) and prepositions (f)

Finally, as a further simplification we eliminate adverbs, since their presence is not so
relevant in the sentence and because they do not properly belong to any of the terminal
classes. The best hypothesis we find is

F(0,x):=λx.if(not(and(flip(11/24),empty(x))),append(sample((if(flip(1/3),Σ,
{pair(if(flip(3/8),pair(pair(if(flip(1/2),x,Ø),‘n’),‘v’),pair(

sample(if(flip(11/24), Σ,{Ø})),‘n’)),‘v’)})Ø)),append(sample(Σ),x)),
pair(F0(if(not(flip(7/24)), x,pair(pair(Ø,‘n’),‘p’))),‘n’)).

with posterior and likelihood probability respectively of -7528.14 and -7413.76, and precision
and recall value of 0.235294 and 0.25.

We can observe that the hypothesis can be simplified as in the tree below, where as before
g(x) indicates the part of the hypothesis that, having no recursion, generates a finite number
of strings.

F0()

if(not(and(flip(11/24),empty(x)))

g(x) pair(-,n)

F()

if(not(flip(7/24))

x ‘np’

Notice that in order to go to g(x), and hence finish the sentence, it is necessary for x to
be empty, although it is not sufficient. We can then represent the hypothesis as an HMM:

A B C

n n

f(np)

32 CHAPTER 5. GRAMMAR INFERRING

The hypothesis we found is then regular. We remark that this grammar is different from that
of simplified English, it contains many sentences that could never be generated by simplified
English, however we can see that in both cases the best guess Fleet finds is a regular grammar.

Now we want to add back the adverbs we removed earlier, increasing the number of
terminals to see how Fleet infers the grammar even with this added element, which adds
complexity to the grammar. We obtain after running for 9 hours:

F(0,x):=λx.append(sample(if(flip(1/2),{append(pair(pair(if(flip(5/24),
sample(Σ),x),‘n’),‘v’),if(flip(1/6),pair(Ø,‘v’),if(flip(1/4),sample(Σ),x)))},
({sample(Σ)}∪{Ø}))),if(flip(11/24),pair(if(flip(1/6),pair(pair(Ø,‘p’),‘d’),

sample(Σ)),‘n’),sample(Σ)))

and a posterior and likelihood probability of -8742.3 and -8640.56, and precision and
recall value of 0.207143 and 0.22. We can see that even with this added element the inferred
grammar is finite, hence regular. The reason why we get a finite grammar may be because
by adding adverbs we add complexity and Fleet cannot find a recurring pattern.

In the end, we cannot deduce with certainty whether the grammar of the data we possess
belongs to the regular class or not. Although Fleet probably lacks sufficient data, time and
hardware resources to work with, we can observe that Fleet’s best guess under these conditions
is in our case a regular grammar.

5.4 Campbell monkey calls

We now want to study other real data. Sumir Keenan collected 224 sequences of monkey calls
consisting on 7 terminals. We would like to study this grammar as we did before. We start
by looking for the best HMM that approximates them. In this analysis we have to remark
that we are not actually considering the data in their original form: as we notice that one
terminal appears only in the two first elements of the string in almost everywhere we decide
to ignore the first two characters in every string, allowing to reduce the number of terminals
to 6.

We find that the best HMM is one with 5 hidden states with BIC of value 3590.91 and
logLikelihood of -1579.31.

The best HMM has transition and emission matrices respectively of:

P =

0.4993 0.3708 0.0562 0.0267 0.0470

0 0.9857 0 0 0.0143
0 0 0.8950 0.1050 0
0 0.0421 0.0333 0.9247 0
0 0.0444 0 0 0.9556

E =

0 0 0.6500 0 0.0082 0.0106 0.3312
0 0 0 0.0080 0.8889 0 0.1031

0.0058 0.7153 0.0729 0 0.0087 0.1625 0.0347
0 0.0405 0.0575 0 0.4984 0.4036 0
0 0 0 0.9327 0.0673 0 0

From the transition matrix we can see that the hidden chain is hardly connected and the most
likely transitions are loops to the same node. We might think then that it is possible that the
data we have are generated by distinct grammars.

We study now our grammar through Fleet. The best hypothesis we obtain is

5.4. CAMPBELL MONKEY CALLS 33

Figure 5.6: Bayesian Information Criterion applied to Monkey calls data, the lowest BIC
value is reached in n = 5.

F(0,x):=λx.sample(if(not(flip(1/3)), {pair(if(flip(1/3),insert(if(flip(7/24),
append(if(flip(11/24), x, Ø) ,x), F0(pair(append (x, insert(x,x)),‘4’))),x),

pair (F0(pair(Ø, ‘3’)),‘5’)),‘5’)}, if(flip(1/3), {insert(insert(head(pair(x,
‘2’)), insert(head(pair(x, ‘2’)), x)), x)},{Ø})))

with posterior and likelihood probabilities respectively of -8612.82 and -8491.28, and precision
and recall value of 0.377358 and 0.4.

The likelihood obtained with Fleet remains lower than with the representation at HMM,
however we observe how the recall value is not very high in this case either, so we cannot
consider this model as correct, however we can still analyze this hypothesis, to see, in these
resource constraints, to which class the hypothesis found belongs. Let us visualize the hy-
pothesis as a tree:

F0()

sample()

if(flip(1/3))

pair(-,5)

if(flip(1/3))

insert()

if(flip(7/24))

g2(x) F0(pair(append(x,insert(x,x)),‘4’)))

x

pair(F0(3),5)

g1(x)

34 CHAPTER 5. GRAMMAR INFERRING

As usual the functions g1(x) and g2(x) represent a part of the hypothesis where there is no re-
cursion. We can see that the hypothesis we obtain is of a non regular grammar as it is not pos-
sible to represent it with an HMM. In fact we can see that every time there is recursion in the
sentence a 5 is added to the end, furthermore when the recursion insert(F0(pair(append(x,

insert(x,x)),‘4’),x) is called the internal part of the sentence is modified, therefore since
there is no way for an HMM to store the number of times there has been recursion the
grammar is non-regular.

Unfortunately, this characterization is not entirely true for all strings in the original data,
however, having a recall value of 0.4 , we have that this is true for 40% of the sentences in
our dataset. So from the observation resulting from the analysis as an HMM it is possible
that this hypothesis found characterizes the grammar of some of the data we have. We can
therefore think about the possibility that the grammar underlying the Campbell monkey call
is non regular.

Chapter 6

Conclusions

In this thesis, we studied methods for deducing grammars, i.e. finding the best HMM that
approximates the data through the Baum-Welch algorithm and through the Fleet library,
trying to find the program that best generates the input data we receive. We obtained that
Baum-Welch’s algorithm gives a good approximation of HMMs for regular grammars, despite
not being implemented to with a start and end state for the sentence. In fact, we noticed
that for example in the simplified English grammar the HMM found reproduced the rules of
the grammar well except for the requirement of the presence of at least one ‘n’ terminal and
one ‘v’ terminal in each sentence. This was not respected because the sentence could end
before passing through certain states. With slight modifications to the HMM, in particular
by appropriately adding a start and an end state, along with some other states, we found an
HMM that reflects the rules of the grammar well, thus proving that the grammar is regular.
The Baum-Welch algorithm is therefore a good starting point to check whether a grammar is
regular or not.

The Fleet library is a potentially very powerful tool when used with the appropriate
technological resources. However, it is not always very easy to analyze the hypotheses we
find. The easiest way to visualize the hypotheses we have found is to represent it as a tree,
but even then we have found a few times complex hypotheses that are very difficult to analyze
but not impossible.

In our analyses on simulated data it appears that Fleet deduces the correct class grammar,
although it does not deduce exactly the correct grammar. We have not had a chance to
perform this test on a lot of data so we cannot be sure that this always happens but we can
think that analyzing data with Fleet might be a good starting point for hypothesizing what
class the grammar belongs to.

By retrieving more data and the right tools, as well as time, it would probably be possible
to reach more accurate results that can give more certainty about which class a grammar
belongs. Ideally, in the case in which we obtain that Fleet is able to obtain almost perfectly
accurately the grammar that generates the input data, we could classify the grammar by
comparing the value of the likelihood obtained with Fleet with that obtained with the Baum-
Welch algorithm: in the case in which the former is quite better we would be led to think that
the grammar is non-regular, without needing to analyze the hypothesis obtained. In fact, if it
were regular, the hypothesis obtained by Fleet would be regular and therefore representable
with an HMM, consequently we would have obtained a result similar to that obtained with
Baum-Welch. If this did not happen, it means that the grammar that best approximates
it is non-regular. While if the two likelihood have similar value then we would classify the
grammar as regular.

Then having good result in Fleet would lead to a simple way to classify grammar into
regular and non regular by simply comparing the likelihood result with the Baum-Welch

35

36 CHAPTER 6. CONCLUSIONS

algorithm’s output. Then an interesting research could be to improve the search of hypotheses
in Fleet to reduce the computational time, as we assumed that one of the reason why we did
not have accurate result was because we needed to search for a longer time. It would be also
interesting to add more primitives to Fleet to reach the optimal BIC value, which we have
seen for the Harry Potter data to be better using all the currently defined primitives.

Bibliography

[1] Y. Yang, S. T. Piantadosi, One model for the learning of language. Proceedings of the
National Academy of Sciences (2022).

[2] R. J. Ryder, Confidence in Bayesian Computational Statistics and Applications to Lin-
guistics, HDR thesis, University Paris-Dauphine (2022).

[3] Geuvers, H., Rot, J., Applications, Chomsky hierarchy, and Recap, Lecture notes, Radboud
University Nijmegen (2017).

[4] D. Jurafsky, J. H. Martin, Speech and Language Processing, Chapter A (2021).

[5] L. R. Welch, The Shannon Lecture: Hidden Markov Models and the Baum-Welch Algo-
rithm , IEEE Information Theory Society Newsletter, Vol.53, No.4 (2023).

[6] P. Brémaud, Markov Chains, Gibbs Fields, Monte Carlo Simulation, and Queues, Springer
(2021)

[7] M. Sipser .Introduction to the Theory of Computation, PWS Publishing.(1997)

[8] N. D. Goodman, J. B. Tenenbaum, J. Feldman, T. L. Griffiths, A rational analysis of
rule-based concept learning, Cogn. Sci. 32, 108-154 (2008).

[9] W. D. Vousden, W. M. Farr, I. Mandel, Dynamic temperature selection for parallel-
tempering in Markov Chain Monte Carlo simulation. Mon. Not. R. Astron. Soc. 455,
1919-1937 (2015)

[10] D.J. Earl, M. W. Deem, Parallel tempering: Theory, applications, and new perspectives,
Physical Chemistry Chemical Physics, Issue 23 (2005).

[11] Y. Sugita, Y. Okamoto, Replica-exchange molecular dynamics method for protein folding,
Chemical Physics Letters, Issue 1-2 (1999)

[12] D. A. Kofke, On the acceptance probability of replica-exchange Monte Carlo trials, The
Journal of Chemical Physics, Volume 117, Issue 15 (2002).

[13] D. A. Kofke, Erratum: “On the acceptance probability of replica-exchange Monte Carlo
trials” [J. Chem. Phys. 117, 6911 (2002)], The Journal of Chemical Physics, Volume 120,
Issue 22 (2004)

[14] G. O. Roberts, J. S. Rosenthal, Coupling and Ergodicity of Adaptive Markov Chain Monte
Carlo Algorithms, Journal of Applied Probability, Volume 44, Issue 2 (2007)

37

