

To my family
and friends

Abstract

Dependency parsing is one of the foundational tasks in Natural Language Pro-
cessing and forms a backbone for syntactic analysis and language understand-
ing. The Arc-Standard transition based parser has largely been adopted to solve
this task, due to its simplicity and effectiveness, but the computational demands
that are attached with its dynamic oracle present very crucial challenges when
dealing with non-projective data.

This thesis deals with the computational inefficiencies of the dynamic oracle
for the Arc-Standard parser. Firstly, an overview is given of the main approaches
to this task, then a more in depth analysis of transition-based parsers and their
oracles follows, in particular detailing the motivations and strengths associated
with the dynamic oracle. Moving on, our research follows the academic litera-
ture reporting the arc decomposition property and its key role in deriving exact
linear dynamic oracles: after explaining why the Arc-Standard parser doesn’t
present this theoretical feature, an exact, but computationally expensive, dy-
namic oracle is implemented. The thesis continues with the implementation of
a linear approximate dynamic oracle, trying to cut down computational com-
plexity while preserving parsing accuracy.

Guided by these findings, this dissertation considers using the reinforcement
learning approach in reformulating the dynamic oracle. Applying machine
learning techniques to adapt parsing decisions dynamically, given a learned
model, can increase both the efficiency and the accuracy of this process. In this
direction, our contribution is a first attempt on reducing computational demands
of the exact dynamic oracle to achieve performance comparable to those original
formulations.

The thesis presents a blend of theoretical discussions, empirical evaluations,
and practical implementations for examining how well provided dynamic oracle
optimizations work. Experimental results illuminate trade-offs of computational
efficiency against parsing accuracy through the stages of our enhancement pro-
cess. In addition, this research offers insights into the field of dependency pars-
ing in that it suggests a reinforcement learning framework tailored specifically
to address the challenges presented by the dynamic oracle of the Arc-Standard
parser.

Sommario

L’analisi delle dipendenze è uno dei compiti fondamentali nel Natural Language
Processing e costituisce un pilastro per l’analisi sintattica e la comprensione del
linguaggio. Il parser basato sulle transizioni Arc-Standard è stato ampiamente
adottato per via della sua semplicità ed efficacia, ma le richieste computazionali
che sono associate al suo oracolo dinamico presentano sfide molto importanti
quando si ha a che fare con dati non proiettivi.

Questa tesi riguarda le inefficienze computazionali dell’oracolo dinamico
per il parser Arc-Standard. In primo luogo viene fornita una panoramica dei
principali approcci a questo compito, segue un’analisi più approfondita dei
parser basati su transizioni e dei loro oracoli, in particolare dettagliando le moti-
vazioni e i punti di forza associati all’oracolo dinamico. Proseguendo, la nostra
ricerca segue la letteratura accademica che riporta la proprietà di decompo-
sizione dell’arco e il suo ruolo chiave nel derivare oracoli dinamici lineari esatti:
dopo aver spiegato perché il parser Arc-Standard non presenta questa caratteris-
tica teorica, viene implementato un oracolo dinamico esatto, ma computazional-
mente costoso. La tesi continua con l’implementazione di un oracolo dinamico
lineare approssimato, cercando di ridurre la complessità computazionale pur
preservando l’accuratezza del parsing.

A questo punto, la dissertazione considera l’utilizzo dell’approccio di ap-
prendimento per rinforzo nella riformulazione dell’oracolo dinamico. Applicare
tecniche di machine learning per adattare dinamicamente le decisioni di pars-
ing, dato un modello appreso, può aumentare sia l’efficienza che l’accuratezza
di questo processo. In questa direzione, il nostro contributo è un primo tentativo
di ridurre le richieste computazionali dell’oracolo dinamico esatto per ottenere
prestazioni paragonabili a quelle delle formulazioni originali.

La tesi presenta una miscela di discussioni teoriche, valutazioni empiriche
e implementazioni pratiche per esaminare quanto bene funzionino le ottimiz-
zazioni dell’oracolo dinamico fornite. I risultati sperimentali mostrano i com-
promessi tra efficienza computazionale e accuratezza del parsing attraverso le
fasi del nostro processo di miglioramento. Inoltre, questa ricerca offre intu-
izioni nel campo dell’analisi delle dipendenze in quanto suggerisce un frame-
work di apprendimento per rinforzo su misura per affrontare le sfide presentate
dall’oracolo dinamico del parser Arc-Standard.

viii

Contents

List of Figures xi

List of Tables xiii

List of Algorithms xvii

List of Code Snippets xvii

List of Acronyms xix

1 Introduction 1
1.1 Natural Language Processing . 1
1.2 Dependency Parsing . 2

1.2.1 Dependency Formalisms 4
1.2.2 Projectivity . 4

2 Background 7
2.1 Transition Based Dependency Parsing 7
2.2 Graph Based Dependency Parsing 10
2.3 Sequence Based Dependency Parsing 11

3 Parsers and Oracles 13
3.1 The components of transition-based parsing 13
3.2 Parser . 14

3.2.1 Arc-Standard . 15
3.2.2 Arc-Eager . 16
3.2.3 Arc-Hybrid . 18

3.3 Oracle . 20
3.3.1 Static . 20

ix

CONTENTS

3.3.2 Non-Deterministic . 21
3.3.3 Dynamic . 23
3.3.4 Summary . 24

4 Arc-Decomposition Property 25
4.1 Arc-Eager parser . 26
4.2 Arc-Hybrid parser . 27
4.3 Arc-Standard parser . 27

5 Dynamic Oracle: Exact vs. Approximate 29
5.1 Exact Dynamic Oracle . 30
5.2 Approximate Dynamic Oracle . 33

5.2.1 Leftarc and Rightarc . 33
5.2.2 Shift . 34

6 Results: part I 39
6.1 Dataset . 40
6.2 Accuracy . 42
6.3 Performance . 44

7 An alternative approach: Reinforcement Learning 49
7.1 Why apply Reinforcement Learning to Dependency Parsing? . . . 50
7.2 Markov Decision Processes . 51

7.2.1 Environment and Agent . 52
7.3 Generalized Policy Iteration . 53

7.3.1 EXAMPLE: Gridworld . 54
7.3.2 Approaches to GPI . 55

7.4 Deep Reinforcement Learning . 56
7.5 From Q-learning to the DQN model 57
7.6 The DQN model for dependency parsing 61

7.6.1 Averaged DQN . 62
7.6.2 Dueling DQN . 63
7.6.3 Proportional Prioritized Experience Replay 65

8 Results: part II 67
8.1 Training of DQN model and parser 68
8.2 Performance . 69

x

CONTENTS

9 Conclusions and Future Works 71
9.1 Future Directions . 72

9.1.1 Expanding Reinforcement Learning Experiments 72
9.1.2 Incorporating Advanced Neural Network Architectures . 72
9.1.3 Extensive Experiment with the Exact Dynamic Oracle for

the Arc-Standard Parser . 72
9.2 Concluding Remarks . 73

A Code I 75

B Code II 99

References 125

Acknowledgments 127

xi

List of Figures

1.1 Dependency parsing tree . 3
1.2 Non-projective sentence . 4

2.1 Transition-based parsing architecture 8
2.2 Gold parsing tree . 8

3.1 Dependency parsing tree . 14
3.2 Static oracle’s search space . 20
3.3 Non-deterministic oracle’s search space 21
3.4 Dynamic oracle’s search space . 23

5.1 left/right-arc cost computation 34
5.2 shift cost computation CASE 1 . 35
5.3 shift cost computation CASE 2.1 36
5.4 shift cost computation CASE 2.2 36
5.5 shift cost computation CASE 2.3 37
5.6 shift cost computation CASE 3 . 38

7.1 Reinforcement Learning dynamics 51
7.2 Gridworld . 55
7.3 GPI approaches . 56

xi

List of Tables

2.1 Parsing example . 8
2.2 Parsing example with alternative path 9

3.1 Arc-Standard parsing example . 15
3.2 Arc-Eager parsing example . 17
3.3 Arc-Hybrid parsing example . 19

6.1 Dataset entry example . 41
6.2 Dataset analysis . 41
6.3 Comparison on projective sentences 43
6.4 Comparison on non-projective sentences 43
6.5 Comparison of UAS scores across different oracles 47

8.1 Comparison of UAS scores among ”classic” and Reinforcement
Learning (RL)-based oracles . 70

xiii

List of Algorithms

1 Loss function computation for Arc-Standard exact dynamic oracle 31
2 Filling Table Procedure . 32
3 Modified training loop with a dynamic oracle 46
4 Q-Learning algorithm . 58
5 Deep Q-Network (DQN) training algorithm 59

xvii

List of Code Snippets

A.1 pip and import . 75
A.2 dataset management . 75
A.3 Arc-Standard Parser . 77
A.4 Static Oracle . 79
A.5 Exact Dynamic Oracle . 80
A.6 Approximate Dynamic Oracle . 83
A.7 Preprocessig data . 86
A.8 BiLSTM model . 87
A.9 Training/testing functions . 91
A.10 Training loop . 96
B.1 pip and import . 99
B.2 dataset management . 100
B.3 Proportional Prioritized Replay Buffer 102
B.4 Dueling Deep Q-Network . 105
B.5 Agent . 106
B.6 Modified Arc-Standard . 111
B.7 Dependency parsing environment 117
B.8 DQN Training loop . 122

xix

List of Acronyms

BiLSTM Bidirectional LSTM

DP Dynamic Programming

DDQN Dueling Deep Q-Network

DQN Deep Q-Network

DRL Deep Reinforcement Learning

GPI Generalized Policy Iteration

MDP Markov Decision Process

MC Monte Carlo

MLP Multi-Layer Perceptron

NLP Natural Language Processing

PPRB Proportional Prioritized Replay Buffer

RL Reinforcement Learning

TD Temporal Difference

UAS Unlabeled Attachment Score

UD Universal Dependencies

xix

1
Introduction

This section presents an introduction to Natural Language Processing (NLP),
a field with a focus on areas of intersection with computer science, linguistics,
and artificial intelligence. The following content is based on Speech and language
processing: an introduction to natural language processing, computational linguistics,
and speech recognition by Jurafsky et al. (2009) [7]. Specifically, dependency
parsing is presented as one of the first task developed in NLP. From being a
syntactic analysis tool to a possible enhancing component in advanced applica-
tions like machine translation and sentiment analysis, dependency parsing is a
foundational task of NLP. The chapter delves into the technicalities of depen-
dency parsing, discussing its representation as a directed graph, the importance
of grammatical relations for forming dependency structures, and the idea of
projectivity of a sentence. These discussions underscore the role of dependency
parsing in the larger context of modern NLP, underpinning its practical appli-
cations and theoretical implications in language understanding and processing.

1.1 Natural Language Processing

NLP is located at the intersection of computer science, linguistics, and arti-
ficial intelligence, dealing with the bridging of human language and machine
understanding. The evolution of NLP can be traced from the mid-20th century,
when researchers began to explore the computational aspects of language, to
our days: over the years, NLP has increased its relevance in our modern world
where large sets of information are encoded in the written text. The explosion

1

1.2. DEPENDENCY PARSING

in digital content, social media, and online communication has caused written
language to be one of the richest sources of data. The emergence of Language
Models (LMs) and, particularly, the more popular development of Large Lan-
guage Models (LLMs) have also dramatically changed the sphere of NLP. Large
Language Models (LLMs), of which OpenAI’s GPT-3 is one, have demonstrated
unprecedented abilities in both understanding and producing human-like text.

Historically, one of the first tasks in the NLP domain is dependency pars-
ing. This task was originally conceived to represent the syntactic relationships
between the words in the sentence; however dependency parsing underwent
renewed importance in modern applications. Unlike its traditional role of syn-
tactic analysis, modern dependency parsing is instrumental in various cutting-
edge NLP tasks, such as machine translation, sentiment analysis, and question
answering. The ability of dependency parsing to capture the hierarchical and
grammatical structures of language has proven invaluable in enhancing the per-
formance of these tasks. This paradigm shift in the way dependency parsing
is applied underlines its adaptability and continued relevance in a dynamic
landscape such as the one of natural language understanding.

1.2 Dependency Parsing

In NLP, the process of dependency parsing refers to the identification of
syntactic structures in a sentence and has historically played an intermediate
role for more in-depth language processing. Modern NLP does not explicitly
employ structures from the parse into neural language models, but there are
new methods for using them.

A summary of the major functions of the linguistic structure in modern NLP
is presented. Firstly, it acts as a tool for the interpretation of neural networks:
understanding that specific layers or neurons may be computing syntactic struc-
tures helps unveiling the ”black box” nature of language models. Secondly, the
structure of language does provide a toolkit for social scientific studies of text
in a practical sense. It aids in the measurement of attitudes by distinguishing
relationships between words, such as adjectives modifying nouns or implied
metaphors in use.

Moreover, detailed semantic structures have practical applications, such as
in legal contracts, where identifying specific clauses with particular meanings
is important. Word sense labels are emphasized due to the fact that they serve

2

CHAPTER 1. INTRODUCTION

the purpose of safeguarding corpus studies from measuring the wrong word
sense. Finally, linguistic structure matters in answering larger questions about
the nature of language, specifically those dealing with its changes over time or
across individuals and therefore require the ability to parse entire documents
from different time periods.

The dependency formalism describes the syntactic structure of a sentence
in terms of directed binary grammatical relations that hold among words. The
relations are represented above the sentence, in the form of labelled arcs from
heads to dependents, resulting in a typed dependency structure with labels
drawn from a fixed inventory of grammatical relations (unlabelled depedency
trees are also used). Explicitly, the root node marks the root of the tree and
signals the head of the whole structure. This policy of direct encoding of key in-
formation in head-dependent relationships simplifies complex phrase-structure
parses.

Figure 1.1: Dependency parsing tree

These dependency structures are based on the traditional conception of
grammatical relations in language. Binary relations consist of a head (cen-
tral organizing word) and a dependent (modifier): these relations present the
feature of making the association between heads and their immediate depen-
dents obvious, providing important syntactic information. In a dependency
grammar, one specifies these head-dependent pairs, but one also classifies the
grammatical relations or functions which the dependent serves in relation to
its head. This classification includes well-known concepts like subject, direct
object, and indirect object: while these notions in English often correlate with
sentence position and constituent type, they are not strictly determined by them.
In languages where word order is considerably less flexible, phrase-based con-
stituent syntax gives little explicit guidance to the understanding of the syntactic
structure, therefore the information encoded in grammatical relations becomes
crucial for understanding syntactic structure.

3

1.2. DEPENDENCY PARSING

1.2.1 Dependency Formalisms

A dependency structure can be defined as a directed graph G = (V, A), where
V is a set of vertices and A is a set of ordered pairs of vertices, referred to as
arcs. In the context of linguistic dependency parsing, V typically corresponds
to the words in a sentence, but it can also include elements like punctuation or
morphological components in languages with complex morphology.

Various grammatical theories or formalisms might impose additional condi-
tions on these dependency structures. Connectivity, existence of a root node,
and acyclicity (or planarity) are typical restrictions. In this context, the most
important computational constraint is that of rooted trees, which is going to
play a crucial role in parsing methods. A dependency tree has to satisfy the
following conditions:

1. One unique designated root node with no incoming arcs exists.

2. Except for the root node, each vertex has exactly one incoming arc.

3. A unique path from the root node to each vertex in V exists.
Such constraints ensure that each word in the sentence has a single head,

and a definite relationship that specifies who is the head of whom. They also
make sure that the dependency structure is connected and that there is a unique
root node from which a directed path can be followed to reach every word in
the sentence. This greatly simplifies both the analysis of and computation on
the linguistic dependencies present in the natural language sentences.

1.2.2 Projectivity

The concept of projectivity introduces an additional constraint based on the
word order in the input. An arc from a head to a dependent is called projective
if there is a path from the head to every word lying between the head and
the dependent in the sentence. Consequently, a dependency tree is deemed
projective if all its constituent arcs are projective.

Figure 1.2: Non-projective sentence

4

CHAPTER 1. INTRODUCTION

Consider Figure 1.2: the arc from ’flight’ to its modifier ’was’ is non-projective,
since there is no path from ’flight’ to the words ’this’ and ’morning’ which lie
in between. Projectivity, or its absence (non-projectivity), can be seen from the
tree diagrams: a dependency tree is projective if it can be drawn without any
crossing edges. For instance, in order to link ’flight’ to its dependent ’was’, one
would have to cross the arc that links ’morning’ to its head.

This concern with projectivity derives motivation from two related issues.
First, widely used English dependency treebanks are often automatically de-
rived from phrase-structure treebanks using head-finding rules that a priori
result in projective trees; this means that if a non-projective example is met,
a problem arises. Moreover, some parsing algorithms, especially those of the
transition-based flavor, are restricted to producing only projective trees; thus,
sentences with non-projective structures may suffer from parsing errors. This
may be a reason for choosing graph-based parsing as a more flexible but also
more computational expensive parsing strategy.

5

2
Background

This chapter analyzes the different techniques of dependency parsing that
can be used within NLP. It starts with analyzing transition-based parsing,
where the parsers build dependency trees using a stack and a buffer and a set
of transitions, facing problems such as ambiguity in language and limitations of
the oracle. Then we elaborate on graph-based parsing, where a score function
is optimized to select the best dependency tree resulting in more accuracy in
handling long sentences and non-projective structures, but with increased com-
putational complexity. Lastly, a discussion on sequence-based parsing, which
predicts grammatical relationships in a linear sequence using machine learning.
This approach, efficient in handling input, is potentially not as effective in cap-
turing long-range dependencies as the more holistic graph-based parsing. Each
method presents unique advantages and drawbacks, underscoring the diverse
strategies employed in parsing and in understanding natural language.

2.1 Transition Based Dependency Parsing

The transition-based parsing approach has a stack 𝜎, a buffer of tokens 𝛽,
and an oracle that dictates the next transitions that must be made to construct
a dependency parse. The parser reads the sentence from left to right, moving
words from the buffer to the stack, while the oracle decides transitions depending
on the current configuration 𝑐 = (𝜎, 𝛽, 𝐴).

Two kinds of transition operator formalize the intuitive actions:

7

2.1. TRANSITION BASED DEPENDENCY PARSING

• REDUCTION: assert a head-dependent relation, removing the dependent
word from the stack.

• SHIFT: remove a word from the input buffer, push it into the stack.

Figure 2.1: Transition-based parsing architecture

In the example below, these operators adhere to the Arc-Standard approach,
asserting relations only between elements at the top of the stack: there are
alternative transition systems that show different parsing behavior, but the Arc-
Standard is pretty effective and easy to implement. The parser iterates over
transitions while the buffer is not empty and the stack has only the root node.

Figure 2.2: Gold parsing tree

Step Stack Buffer Action Relation Added
0 [root] [book, me, the, morning, flight,

to, Denver]
SHIFT

1 [root, book] [me, the, morning, flight, to, Den-
ver]

SHIFT

2 [root, book, me] [the, morning, flight, to, Denver] RIGHTARC (book→me)
3 [root, book] [the, morning, flight, to, Denver] SHIFT
4 [root, book, the] [morning, flight, to, Denver] SHIFT
5 [root, book, the, morning] [flight, to, Denver] SHIFT
6 [root, book, the, morning, flight] [to, Denver] LEFTARC (morning←flight)
7 [root, book, the, flight] [to, Denver] LEFTARC (the←flight)
8 [root, book, flight] [to, Denver] SHIFT
9 [root, book, flight, to] [Denver] SHIFT
10 [root, book, flight, to, Denver] [] RIGHTARC (to→Denver)
11 [root, book, flight, to] [] RIGHTARC (to←flight)
12 [root, book, flight] [] RIGHTARC (book→flight)
13 [root, book] [] RIGHTARC (root→book)
14 [root] [] Done

Table 2.1: Parsing example

8

CHAPTER 2. BACKGROUND

Consider the example in Tables 2.1 and 2.2: when examining transition
sequences in dependency parsing, it’s crucial to note that the given sequence is
not always the sole path leading to a reasonable parse. Ambiguity in language
may result in multiple transition sequences yielding the same parse. Different
paths can lead to equally valid parses.

Step Stack Buffer Action Relation Added
0 [root] [book, me, the, morning, flight,

to, Denver]
SHIFT

1 [root, book] [me, the, morning, flight, to,
Denver]

SHIFT

2 [root, book, me] [the, morning, flight, to, Denver] RIGHTARC (book→me)
3 [root, book] [the, morning, flight, to, Denver] SHIFT
4 [root, book, the] [morning, flight, to, Denver] SHIFT
5 [root, book, the, morning] [flight, to, Denver] SHIFT
6 [root, book, the, morning, flight] [to, Denver] SHIFT
7 [root, book, the, morning, flight,

to]
[Denver] SHIFT

8 [root, book, the, morning, flight,
to, Denver]

[] RIGHTARC (to→Denver)

9 [root, book, the, morning, flight,
to]

[] RIGHTARC (to←flight)

10 [root, book, the, morning, flight] [] LEFTARC (morning←flight)
11 [root, book, the, flight] [] LEFTARC (the←flight)
12 [root, book, flight] [] RIGHTARC (book→flight)
13 [root, book] [] RIGHTARC (root→book)
14 [root] [] Done

Table 2.2: Parsing example with alternative path

Moreover, in practice, there is no guarantee that the oracle will return the
correct transition operator. Erroneous decisions of the oracle can happen in
real applications. The greedy nature of transition-based methods means that
incorrect choices at any step can lead to inaccurate parses, and the parser lacks
the ability to backtrack and explore alternative choices. This greediness implies
that it might not explore the entire search space, potentially missing alternative
valid parses.

Furthermore, the examples are shown without labels on the dependency
relations. To produce labeled trees, the leftarc and rightarc operators can be
parameterized with dependency labels (e.g., leftarc(nsubj) or rightarc(obj)).
This expands the set of transition operators, complicating the oracle’s task as it
now needs to choose from a larger set of operators.

Therefore, the flexibility and simplicity of transition-based parsing come

9

2.2. GRAPH BASED DEPENDENCY PARSING

with challenges related to ambiguity, the accuracy of the oracle, and the explo-
ration of the search space. Improvement of robustness and generalization ability,
including better capacity to handle ambiguity, precision of the oracle, and effi-
ciency in covering the search space, are all required aspects for improvement of
transition-based parsing in real-world applications.

2.2 Graph Based Dependency Parsing

Graph-based methods form an important family of algorithms for depen-
dency parsing, which model the parsing task as a problem of maximizing some
predefined score function so as to search for the dependency tree with the high-
est score (computed either through manually designed features or extracted via
neural network). The various parameters are then adjusted by the system accord-
ing to annotated data in the training process and use linguistic characteristics
and relations to judge the proposed dependency trees. While transition-based
parsing constructs parses step-by-step, graph-based methods traverse the entire
possible dependency tree space to discover with an optimum score.

Graph-based parsers considerably differ from transition-based approaches.
First, they exhibit superior accuracy, particularly advantageous for longer sen-
tences, while transition-based parsers perform poorly whenever heads and de-
pendents are significantly far from each other. Second, the graph-based parsers
excel in handling non-projective structures, which is the desirable flexibility not
exhibited within the transition-based approaches. This becomes very useful in
languages with freer word orders, where non-projective structures are common.

Moreover, the decision-making process in graph-based methods is global
rather than relying on local, greedy decisions. This comprehensive evaluation
of entire trees contributes to improved accuracy in capturing syntactic structures.
The search for the optimal dependency parse is framed as finding the maximum
spanning tree in the space of possible trees, determined by the highest overall
score.

However, the benefits of graph-based parsing are accompanied by a number
of disadvantages as well. The enormous computational burden it places on
searching the space of possible trees can be expensive, particularly in locating the
maximum spanning tree. The scoring schemes also pose strenuous problems,
demanding for meticulous capturing of syntactic relationships.

In conclusion, graph-based dependency parsing offers advantages in accu-

10

CHAPTER 2. BACKGROUND

racy, non-projective structure handling, and global decision-making. However,
these benefits come with challenges related to computational complexity and
scoring. The choice between graph-based and transition-based methods de-
pends on language characteristics and parsing task requirements.

2.3 Sequence Based Dependency Parsing

In sequence-based dependency parsing, the syntactic structure of a sentence
is analyzed by predicting the grammatical relationships between words based
on the sequential order of the input. Unlike transition-based parsing, in which
there is a sequence of state transitions developing the dependency tree part by
part, and graph-based parsing, which treats parsing as a global optimization
task over the entire dependency graph, the sequence-based approach cares
about capturing dependencies linearly. This method exploits machine learning
or deep learning techniques with features like word embeddings and part-of-
speech tags aiding the model in decision-making. The sequential approach here
allows for efficient handling of the input sentences at hand. However, it may face
challenges in capturing long-range dependencies and global interactions present
in the sentence structure, a strength of graph-based methods. Transition-based
parsing, on the other hand, strikes a balance by combining local transitions with
a dynamic global view during parsing, making it adept at capturing both local
and medium-range dependencies.

11

3
Parsers and Oracles

This chapter delves into transition-based parsing in NLP, examining different
types of parsers and oracles. It introduces three parsers, the Arc-Standard, the
Arc-Eager, and the Arc-Hybrid, each of them with their different sets of rules for
building dependency trees. The chapter also describes the three main variants
of oracles for transition-based systems: static, nondeterministic, and dynamic.
Static oracles are rigid, with a fixed transition path and the lack of adaptability,
which could be offered by the non-deterministic oracles, allowing many valid
transitions and hence ambiguity. Finally, the dynamic oracles are able to adapt to
the state of the parser and to handle complex syntactic structures effectively. The
challenges of greedy parsers are emphasized, especially in error propagation,
and the advantage of dynamic oracles in training for improved handling of
linguistic phenomena is outlined.

3.1 The components of transition-based parsing

Transition-based parsing provides a framework that is very conceptual in na-
ture, where an abstract machine is targeted towards the processing of sentences
so that the corresponding parse trees can be build. It features a well-defined
transition system (parser) that is made up of a set of configurations and a corre-
sponding set of transitions. These are transitions that work on the configurations
to shape the process of parsing. Applied to a sentence, the system starts from an
initial configuration and then iteratively applies transitions. After a finite num-

13

3.2. PARSER

ber of transitions, the system converges to a terminal configuration, from which
a parse tree is derived. In this framework, the greedy parsing approach uses
a classifier, trained through imitation learning, to decide at each configuration
the most appropriate transition according to features extracted directly from the
configuration itself and from an expert (oracle) to imitate. The efficacy of the
transition-based parsing framework is contingent on the interplay between the
chosen transition system, the definition of configurations and the specific set of
transitions available. This parsing paradigm exemplifies a dynamic and itera-
tive process that efficiently captures the syntactic structures inherent in natural
language sentences.

3.2 Parser

In the domain of NLP, parsers help to unwrap these intricate grammati-
cal sentence structures. Such computational entities are commissioned with
the challenge of performing a syntactic analysis, helpful in the extraction of
meaningful word-to-word relationships. The parsing process involves a deli-
cate balance in guiding the parser through a series of actions that will result
in properly building an accurate tree of dependencies. This introduction sets
the stage for the exploration of three parsing models: Arc-Standard, Arc-Eager,
and Arc-Hybrid. In the next few paragraphs, we shall look into these parsers
in finer details, illustrating the specifics that keep them distinguished in the
parsing approach. Every parsing example will refer to the gold dependency
tree represented in Figure 3.1.

Figure 3.1: Dependency parsing tree

14

CHAPTER 3. PARSERS AND ORACLES

3.2.1 Arc-Standard

The Arc-Standard parser operates on a straightforward set of rules in depen-
dency parsing, featuring three fundamental transition actions: shift, leftarc,
and rightarc. The process begins with an initial configuration, where all words
are in the buffer, the stack contains the root, and there are no arcs.

• LEFTARC: Creates a dependency arc between the top stack word and the
second-to-top stack word, and removes the second-to-top element from
the stack.

LEFTlb[(𝜎 |𝑠1 |𝑠0, 𝛽, 𝐴)] = (𝜎 |𝑠0, 𝛽, 𝐴 ∪ {(𝑠0, lb, 𝑠1)})
• RIGHTARC: Establishes a dependency arc between the second-to-top

stack word and the top stack word, and removes the top element from
the stack.

RIGHTlb[(𝜎 |𝑠1 |𝑠0, 𝛽, 𝐴)] = (𝜎 |𝑠1, 𝛽, 𝐴 ∪ {(𝑠1, lb, 𝑠0)})
• SHIFT: Moves a word from the buffer to the top of the stack.

SHIFT[(𝜎, 𝑏 |𝛽, 𝐴)] = (𝜎 |𝑏, 𝛽, 𝐴)

This iterative process continues until a single word remains in the stack, and
the buffer is empty, resulting in a valid dependency tree.

The Arc-Standard system imposes specific preconditions on the legality of
transition actions. In this system, the leftarc transition is deemed legal only
when the top element (𝑠1) on the stack is not the root. Additionally, both leftarc
and rightarc transitions are considered legal only when the stack contains at
least two elements. This set of conditions ensures a controlled and systematic
construction of parse trees.

Step Stack Buffer Action Relation Added
0 [root] [book, me, the, morning, flight] SHIFT
1 [root, book] [me, the, morning, flight] SHIFT
2 [root, book, me] [the, morning, flight] RIGHTARC (book→me)
3 [root, book] [the, morning, flight] SHIFT
4 [root, book, the] [morning, flight] SHIFT
5 [root, book, the, morning] [flight] SHIFT
6 [root, book, the, morning, flight] [] LEFTARC (morning←flight)
7 [root, book, the, flight] [] LEFTARC (the←flight)
8 [root, book, flight] [] RIGHTARC (book→flight)
9 [root, book] [] RIGHTARC (root→book)
10 [root] [] Done

Table 3.1: Arc-Standard parsing example

15

3.2. PARSER

The Arc-Standard system follows a bottom-up tree-building approach: each
word is allowed to accumulate all its dependents before it gets attached as mod-
ifier to its head. This bottom-up strategy indeed guarantees an organized and
coherent representation of the syntactic structure. Importantly, the system does
not enforce any ordering constraint on left and right dependents. The flexibility
accounts for the different linguistic structures and ensures adaptability to the
various ways in which dependencies may be expressed in a natural language
sentences. The Arc-Standard system’s adherence to these conditions and its
bottom-up construction method contribute to its effectiveness in capturing the
nuanced syntactic relationships within sentences.

However, the Arc-Standard parser has its limitations as well. It generalizes
worse longer-range dependency relations than local ones and might face diffi-
culty with some linguistic phenomena. The simplicity of this model, while an
asset for efficiency, can be a limitation in capturing complex syntactic structures
accurately.

On the other side, the Arc-Standard parser shows desirable qualities of com-
putational efficiency and implementation simplicity. It is more suited for appli-
cations assigning priority in speed and ease of implementation, hence it is the
preferred choice in practical application for several NLP tasks. While it may not
excel in every linguistic nuance, its balance between accuracy and computational
efficiency makes it a valuable tool in the arsenal of dependency parsers.

3.2.2 Arc-Eager

The Arc-Eager parser is another approach to dependency parsing that employs
a set of rules to construct a syntactic tree. The initial configuration consists of an
empty stack, a buffer containing all of the words with the root as last element
and no arcs.

The rules of the Arc-Eager parser are as follows:

• LEFTARC: Assert a head-dependent relation between the word at the front
of the input buffer and the word at the top of the stack; pop the stack.

LEFTlb[(𝜎 |𝑠, 𝑏 |𝛽, 𝐴)] = (𝜎, 𝑏 |𝛽, 𝐴 ∪ {(𝑏, lb, 𝑠)})
• RIGHTARC: Assert a head-dependent relation between the word on the

top of the stack and the word at the front of the input buffer; shift the word
at the front of the input buffer to the stack.

RIGHTlb[(𝜎 |𝑠, 𝑏 |𝛽, 𝐴)] = (𝜎 |𝑠 |𝑏, 𝛽, 𝐴 ∪ {(𝑠, lb, 𝑏)})

16

CHAPTER 3. PARSERS AND ORACLES

• SHIFT: Remove the word from the front of the input buffer and push it
onto the stack.

SHIFT[(𝜎, 𝑏 |𝛽, 𝐴)] = (𝜎 |𝑏, 𝛽, 𝐴)
• REDUCE: Pop the stack.

REDUCE[(𝜎 |𝑠, 𝛽, 𝐴)] = (𝜎, 𝛽, 𝐴)
Any configuration with an empty stack and a buffer containing only the root

is terminal.
In the Arc-Eager system, specific preconditions govern the legality of tran-

sition actions. For the rightarc and shift transitions, they are considered legal
only when the first element of the buffer is not the root. Additionally, the left-
arc, rightarc, and reduce transitions are legal only when the stack is non-empty.
Furthermore, the leftarc transition is legal only when the top element on the
stack (𝑠1) doesn’t have a parent in the accumulated set A (the set of arcs in the
parse tree). Conversely, the reduce transition is legal when 𝑠1 does have a parent
in A.

Step Stack Buffer Action Relation Added
0 [] [book, me, the, morning, flight, root] SHIFT
1 [book] [me, the, morning, flight, root] RIGHTARC (book→me)
2 [book, me] [the, morning, flight, root] REDUCE
3 [book] [the, morning, flight, root] SHIFT
4 [book, the] [morning, flight, root] SHIFT
5 [book, the, morning] [flight, root] LEFTARC (morning←flight)
6 [book, the] [flight, root] LEFTARC (the←flight)
7 [book] [flight, root] RIGHTARC (book→flight)
8 [book, flight] [root] REDUCE
9 [book] [root] LEFTARC (root→book)
10 [] [root] Done

Table 3.2: Arc-Eager parsing example

The Arc-Eager system is different because its tree-building strategy is even
more eager, adding arcs at the earliest possible moment while parsing. This
eagerness ensures that the dependencies are formed quickly, hence facilitating
efficiency in the parsing process. Importantly, each word collects all its left
dependents before all its right ones in the Arc-Eager system. This ordering of
dependencies generation shows a structural bias capturing the linguistic ten-
dency for words to establish connections with their leftward dependents before
their rightward ones. The combined approach of these preconditions and the
eager construction makes the Arc-Eager system very valuable for the efficient
and accurate parsing of natural language sentences.

17

3.2. PARSER

Limitations of the Arc-Eager parser include potential challenges in handling
non-projective sentences and certain linguistic phenomena that require a more
flexible approach to attachment decisions. However, its strengths lie in its
efficiency and ability to handle local dependencies well, making it suitable for
certain parsing tasks where a more eager attachment strategy is advantageous.

3.2.3 Arc-Hybrid

The Arc-Hybrid parser is another approach in dependency parsing, offering
a distinct set of rules to unravel the grammatical structures of sentences. This
parsing model combines shift, leftarc, and rightarc actions, akin to the Arc-
Standard parser, but introduces an additional set of rules to address specific
linguistic phenomena. In the Arc-Hybrid parser, the initial configuration is the
same as the Arc-Standard one; furthermore:

• LEFTARC: Assert a head-dependent relation between the word at the front
of the input buffer and the word at the top of the stack, then pop the stack.

LEFTlb[(𝜎 |𝑠, 𝑏 |𝛽, 𝐴)] = (𝜎, 𝑏 |𝛽, 𝐴 ∪ {(𝑏, lb, 𝑠)})

• RIGHTARC: Establish a dependency arc between the second-to-top stack
word and the top stack word, then remove the top element from the stack.

RIGHTlb[(𝜎 |𝑠1 |𝑠0, 𝛽, 𝐴)] = (𝜎 |𝑠1, 𝛽, 𝐴 ∪ {(𝑠1, lb, 𝑠0)})

• SHIFT: Move a word from the buffer to the top of the stack.
SHIFT[(𝜎, 𝑏 |𝛽, 𝐴)] = (𝜎 |𝑏, 𝛽, 𝐴)

In the hybrid system, specific preconditions govern the legality of transition
actions. The rightarc transition is deemed legal only when the stack has at
least two elements, ensuring a minimum structural context for the attachment
of dependents. On the other hand, the leftarc transition is legal only when
the stack is non-empty and the top element on the stack (𝑠1) isn’t the root,
reflecting the requirement for a non-empty and non-root configuration to allow
left attachment.

18

CHAPTER 3. PARSERS AND ORACLES

Step Stack Buffer Action Relation Added
0 [root] [book, me, the, morning, flight] SHIFT
1 [root, book] [me, the, morning, flight] SHIFT
2 [root, book, me] [the, morning, flight] RIGHTARC (book→me)
3 [root, book] [the, morning, flight] SHIFT
4 [root, book, the] [morning, flight] SHIFT
5 [root, book, the, morning] [flight] LEFTARC (morning←flight)
6 [root, book, the] [flight] LEFTARC (the←flight)
7 [root, book] [flight] SHIFT
8 [root, book, flight] [] RIGHTARC (book→flight)
9 [root, book] [] RIGHTARC (root→book)
10 [root] [] Done

Table 3.3: Arc-Hybrid parsing example

The hybrid system entails some actions of both the Arc-Standard system and
the Arc-Eager system. It utilizes the leftarc action from the Arc-Eager system
and the rightarc action from the Arc-Standard system. This combination allows
for a dynamic parsing process that benefits from the strengths of both strategies.

It builds trees bottom-up, just like the Arc-Standard system: every word
has acquired all its dependents before being attached to its head. Additionally,
the Arc-Hybrid parser, like the Arc-Eager system, must require all of its left
dependents to be gathered before any right one. This combination of bottom-up
construction and left-to-right dependency collection provides a balance between
efficiency and accuracy, making the Arc-Hybrid parser a flexible and effective
tool for parsing natural language sentences.

Even though its versatility, the Arc-Hybrid parser has its own limits. It
works quite well in capturing a wide range of linguistic structures, but may face
some problems where intricate syntactic or semantic subtlety demands more
sophisticated parsing strategies. The dynamic balance between simplicity and
expressiveness is a trade-off that influences the Arc-Hybrid parser’s performance
across different linguistic contexts.

On the other hand, there are a few strong points of the Arc-Hybrid parser.
It is able to deal fairly well with a great number of syntactic constructions and
can thus handle a broad variety of sentences. Its hybrid nature allows it to
strike a balance between local and non-local dependencies, offering a pragmatic
solution for applications where a compromise between computational efficiency
and linguistic expressiveness is essential.

19

3.3. ORACLE

3.3 Oracle

The oracle is the focal point in the landscape of syntactic parsing: it provides
the parser with the map through which the intricate web of grammatical rela-
tionships within the sentence can be navigated. In this regard, the oracle serves
as a supervising body, defining the optimal sequence of transition actions that
need to be taken so as to acquire a valid dependency tree. We consider the oracle
to be a boolean function 𝑜(𝑡; 𝑐, 𝑇), the value of which is true if and only if the
transition 𝑡 is correct in configuration 𝑐 with respect to the gold tree 𝑇.

It is important to note, however, that such a function could be defined in
terms of many underlying functions that are also referred to as oracles. In
other words, different criteria or sub-functions evaluating how the transition is
correct in the given configuration can be given to construct the boolean oracle
function. Those underlying functions will help to define the general oracle,
and the choice of them may differ according to the parsing context or to the
particular goals of the parsing system. This flexible definition of oracle provides
its adaptation to diverse parsing models, algorithms, and objectives, offering a
modular and customizable approach for defining the correctness of transitions
during parsing.

The static oracle, the non-deterministic oracle, and the dynamic oracle are
the three possible variants that we will focus on. The following paragraphs will
unravel the features of each one of them to clarify how such oracles increase
diversity and agility in the parsing process of NLP.

3.3.1 Static

Figure 3.2: Static oracle’s search space

The static oracle is the function 𝑜𝑠(𝑇) which takes a tree 𝑇 to a sequence
of transitions 𝑡1, ..., 𝑡𝑛 , guaranteeing that a predefined set of transition actions
during the whole parsing process is followed. A static oracle is correct if starting

20

CHAPTER 3. PARSERS AND ORACLES

from the initial configuration and applying transitions in 𝑜𝑠(𝑇) in order results
in the transition system reaching a terminating configuration with gold parse
tree𝑇. All these definitely make the training easier and more feasible in creating
the labeled data to train a machine learning model, nonetheless the static nature
of the oracles also implies limitations in other respects. In parsing, static oracle
translates to a limitation in the coverage and the completeness of the technique.
Indeed, a static oracle is incomplete in the sense that it is defined only for such
configurations that belong to the oracle path. In other words, it is functioning
in a way where it either permits a single transition in a given configuration, or
it is left undefined in that specific configuration.

This means that the static oracle might not offer advice or decisions for all
the configurations that would be met while parsing. It focuses on a particular
sequence of transitions, or path, and does not provide information or guid-
ance on configurations that fall outside of it. For this reason, there might be
configurations where the static oracle is silent or lacks a defined response.

Therefore, while static oracles are useful for some purposes, their basic lim-
itation is that they are selective, in the sense that they cannot give guidance in
general for all the possible configurations of the parser. It may have difficulty
accommodating varied sentence structures, sometimes with parsing results of
lesser quality. Specifically, it is inflexible in the face of parsing challenges that
are typically non-local in nature and have complicated syntactic formations.
However, within these constraints, the static oracle is very appropriate for situ-
ations where consistency and simplicity in training data generation trump the
finer need of nuanced adaptation. The strengths of this approach are the ease of
implementation and the ability to produce consistent training sets, facilitating a
parser that emphasizes stability over dynamic, responsive qualities.

3.3.2 Non-Deterministic

Figure 3.3: Non-deterministic oracle’s search space

21

3.3. ORACLE

The non-deterministic oracle brings in it a kind of flexibility to the parsing
process, in the sense that at every point of the parse, a number of valid transi-
tion actions can take place. On the other hand, the static oracle only admits of
the fact that there is but one path that can possibly lead to a correct syntactic
structure for a given sentence. Hence, a non-deterministic oracle is a function
𝑜𝑛(𝑐, 𝑇) that maps a configuration 𝑐 and a tree 𝑇 to a set of transitions. Such an
oracle is correct if, and only if, for each projective dependency tree 𝑇, for each
configuration 𝑐 from which 𝑇 is reachable, and for every transition 𝑡 ∈ 𝑜𝑛(𝑐, 𝑇),
𝑡(𝑐) is a configuration from which 𝑇 is still reachable. However, this definition
of correctness for non-deterministic oracles is restricted to configurations from
which the gold tree is reachable. Non-deterministic oracles offer more flexibil-
ity than static ones by allowing spurious ambiguity, meaning they support the
possibility of different sequences of transitions leading to the gold tree. Never-
theless, it’s essential to note that they are still only guaranteed to be correct on
a subset of possible configurations: if 𝑇 is not reachable from 𝑐, 𝑜𝑛(𝑐, 𝑇) is not
necessarily well-defined.
The non-deterministic oracle adaptability proves beneficial in capturing the in-
herent ambiguity and variability present in natural language. However, in spite
of their flexibility, they also represent certain difficulty in the training process:
the ambiguity brought about by numerous valid actions calls for its careful
treatment in order to guarantee its effective learning and generalization. Also,
parsing could become complicated since the process involves the parser navi-
gating a tree-like decision space. Even though non-deterministic oracles could
be somewhat hard to handle, they are versatile in terms of sentence structures
and linguistic phenomena. This makes them a valuable choice in scenarios of
flexibility and of the ability to handle varying syntactic constructions become
crucial. The nuanced approach of non-deterministic oracles reflects an under-
standing of essential intricacies and the multifaceted nature of language parsing.
Such flexibility facilitates more realistic approaches to the ambiguities of nat-
ural languages, enhancing the robustness of the parsing model and making it
applicable in real-life situations.

22

CHAPTER 3. PARSERS AND ORACLES

3.3.3 Dynamic

Figure 3.4: Dynamic oracle’s search space

The dynamic oracle represents a more sophisticated version in that the guid-
ing responses are adapted dynamically with the changing state in the parsing
process. Unlike both the static and non-deterministic oracles, the dynamic oracle
considers the parser’s current configuration, allowing it to provide contextually
tailored guidance. In other words, a dynamic oracle is a function 𝑜𝑑(𝑐, 𝑇) that,
given the parser’s current configuration 𝑐, computes the cost for each possi-
ble transition in terms of gold dependency arcs lost with respect to the gold
dependency tree 𝑇.

Following Goldberg and Nivre (2013)[6]:
• the cost function 𝒞(𝐴, 𝑇) measures, through the Hamming loss, the cost

of outputting parse 𝐴 when the gold tree is 𝑇;

• the cost function 𝐶(𝑡; 𝑐, 𝑇) for transition 𝑡 at configuration 𝑐 is defined
as the difference in cost between the best tree reachable from 𝑡(𝑐) and 𝑐,
respectively, that is:

𝒞(𝑡; 𝑐, 𝑇) = min
𝐴:𝑡(𝑐)→𝐴

𝒞(𝐴, 𝑇) − min
𝐴:𝑐→𝐴

𝒞(𝐴, 𝑇)
The dynamic oracle returns the set of transitions with zero cost:

𝑜𝑑(𝑐, 𝑇) = {𝑡 |𝒞(𝑡; 𝑐, 𝑇) = 0}.

As long as correctness is concerned, a dynamic oracle is deemed correct
if and only if, for every projective dependency tree 𝑇 with yield 𝑊 , every
reachable configuration 𝑐 from the initial configuration initial(𝑊), and every
transition 𝑡 ∈ 𝑜𝑑(𝑐, 𝑇), the minimum cost of the parser reachable from 𝑐 equals
the minimum cost of the parser reachable from 𝑡(𝑐). This holds even if the gold
tree 𝑇 is no longer directly reachable. More formally:

min
𝐴:𝑐→𝐴

𝒞(𝐴, 𝑇) = min
𝐴:𝑡(𝑐)→𝐴

𝒞(𝐴, 𝑇).

23

3.3. ORACLE

Additionally, it is also possible to extend the dynamic oracle to non-projective
examples returning the set of minimum-cost transitions, as explored by Aufrant
et al. (2018) [2]:

𝑜𝑑(𝑐, 𝑇) = {𝑡 |min
𝑡
𝒞(𝑡; 𝑐, 𝑇)}.

In conclusion, the dynamic oracle adaptability is valuable in the complex
sentence structure handling, effectively resolving possible ambiguities. The
power of the dynamic oracle consists of capturing non-local dependencies and
intricate syntactic relationships, which is beneficial for parsing tasks where
a set of transition actions may fall short. On the other hand, the dynamic
oracle’s complexity of implementation and continuous real-time adjustments
pose challenges during training. The parser has to learn to navigate a decision
space that undergoes dynamic change and, hence, needs a more complicated
learning process. Overall, it would seem that these problems aside, the dynamic
oracle is remarkable in that it possesses the ability of capturing the granular
subtleties of natural language syntax to afford a responsive and context aware
approach to syntactic parsing.

3.3.4 Summary

Transition-based parsers are known for their speed, but often face challenges
related to error propagation. This issue is exacerbated by their typical training
using deterministic and incomplete oracles (static/non-deterministic). These
oracles assume a unique canonical path throughout the transition process and
are only valid as long as the parser adheres to this specific path.

By exploiting a dynamic oracle during training, the parser gains the ability
to explore alternative and non-optimal paths. This adaptability is particularly
useful in resolving complex situations, such as handling non-projectiveness.
Dynamic oracles provide a more flexible training approach, allowing the parser
to learn from a broader range of scenarios and improving its ability to handle
linguistic phenomena that may deviate from the canonical path assumed by
deterministic oracles.

In the next chapter we will explain the fundamental property that a transition
system is required to possess in order to guarantee the derivation of an exact
dynamic oracle with linear complexity.

24

4
Arc-Decomposition Property

This chapter explores a crucial concept in dependency parsing, focusing on
how the arc decomposition property simplifies parsing by reducing the reacha-
bility of arc sets or trees to individual arcs, aiding in the development of dynamic
oracles. Arc reachability, set reachability, tree consistency, and arc decomposi-
tion are defined and examined in the context of different parsers. It’s shown
that while the Arc-Eager and Arc-Hybrid parsers possess the arc decomposition
property, allowing them to efficiently parse tree-consistent arc sets, the Arc-
Standard parser lacks this property. This limitation in the Arc-Standard parser
is due to the potential for projective trees consistent with arcs where both nodes
are still on the stack, impacting its ability to derive certain tree structures. Thus,
the chapter underscores the varying capabilities and limitations of different
parsing systems in handling complex syntactic structures.

Arc decomposition is a powerful property, allowing us to reduce reasoning
about the reachability of arc sets or trees to reasoning about the reachability of
individual arcs, and can be used to derive dynamic oracles for the Arc-Eager
and Arc-Hybrid systems. Firstly, let’s introduce some formal definitions:

• Arc Reachability: We say that a dependency arc (ℎ, 𝑑) is reachable from
a configuration c, written 𝑐 → (ℎ, 𝑑), if there is (possibly empty) sequence
of transitions 𝑡1, ..., 𝑡𝑘 such that (ℎ, 𝑑) ∈ 𝐴(𝑡𝑘(...𝑡1(𝑐))). In words, we require
a sequence of transitions starting from c and leading to a configuration
whose arc set contains (ℎ, 𝑑).

• Arc Set Reachability: A set of dependency arcs 𝐴 = {(ℎ1, 𝑑1), ..., (ℎ𝑛 , 𝑑𝑛)}
is reachable from a configuration 𝑐, written 𝑐 → 𝐴, if there is a (possi-

25

4.1. ARC-EAGER PARSER

bly empty) sequence of transitions 𝑡1, ..., 𝑡𝑘 such that 𝐴 ⊆ 𝐴(𝑡𝑘(...𝑡1(𝑐))). In
words, there is a sequence of transitions starting from c and leading to a
configuration where all arcs in 𝐴 have been derived.

• Tree Consistency: A set of arcs 𝐴 is said to be tree consistent if there exists
a projective dependency tree 𝑇 such that 𝐴 ⊆ 𝑇.

• Arc Decomposition: A transition system is said to be arc decomposable
if, for every tree consistent arc set 𝐴 and configuration 𝑐, 𝑐 → 𝐴 is entailed
by 𝑐 → (ℎ, 𝑑) for every arc (ℎ, 𝑑) ∈ 𝐴. In words, if every arc in a tree
consistent arc set is reachable from a configuration, then the entire arc set
is also reachable from that configuration.

Let’s now prove the arc decomposition property for the parsers we previously
described.

4.1 Arc-Eager parser

For the Arc-Eager system, consider an arbitrary configuration 𝑐 = (𝜎, 𝛽, 𝐴)
and a tree-consistent arc set 𝐴′ such that all arcs are reachable from 𝑐. We can
partition 𝐴′ into four sets, each of which is by necessity itself a tree-consistent
arc-set:

• B = {(ℎ, 𝑑)|ℎ, 𝑑 ∉ 𝛽}
• 𝐵 = {(ℎ, 𝑑)|ℎ, 𝑑 ∈ 𝛽}
• 𝐵ℎ = {(ℎ, 𝑑)|ℎ ∈ 𝛽, 𝑑 ∈ 𝜎}
• 𝐵𝑑 = {(ℎ, 𝑑)|𝑑 ∈ 𝛽, ℎ ∈ 𝜎}
Arcs in B are already in 𝐴 and cannot interfere with other arcs. 𝐵 is reachable

by any sequence of transitions that derives a tree consistent with 𝐵 for a sentence
containing only the words in 𝛽. In deriving this tree, every node 𝑥 involved in
some arc in 𝐵ℎ or 𝐵𝑑 must at least once be at the head of the buffer. Let 𝑐𝑥 be the
first such configuration. From 𝑐𝑥 , every arc (𝑥, 𝑑) ∈ 𝐵ℎ can be derived without
interfering with arcs in 𝐴′ by a sequence of reduce and leftarc𝑙𝑏 transitions.
This sequence of transitions will trivially not interfere with other arcs in 𝐵ℎ .
Moreover, it will not interfere with arcs in 𝐵𝑑 because 𝐴′ is tree consistent and
projectivity ensures that an arc of the form (𝑦, 𝑧) (𝑦 ∈ 𝜎, 𝑧 ∈ 𝛽) must satisfy
𝑦 < 𝑑 < 𝑥 ≤ 𝑧. Finally, it will not interfere with arcs in 𝐵 because the buffer
remains unchanged. After deriving every arc (𝑥, 𝑑) ∈ 𝐵ℎ , we remain with
at most one (ℎ, 𝑥) ∈ 𝐵𝑑 (because of the single-head constraint). By the same

26

CHAPTER 4. ARC-DECOMPOSITION PROPERTY

reasoning as above, a sequence of reduce and leftarc𝑙𝑏 transitions will take us
to a configuration where ℎ is on top of the stack without interfering with arcs in
𝐴′. We can then derive the arc (ℎ, 𝑥) using rightarc𝑙𝑏 . This does not interfere
with arcs remaining in 𝐵ℎ or 𝐵𝑑 because all such arcs must have their buffer node
further down the buffer (due to projectivity). At this point, we have reached a
configuration 𝑐𝑥+1 to which the same reasoning applies for the next node 𝑥 + 1.

4.2 Arc-Hybrid parser

The proof for the hybrid system is very similar but with a slightly different
partitioning because of the bottom-up order and the different way of handling
right-arcs.

4.3 Arc-Standard parser

The arc decomposition property, which holds for the Arc-Eager system, does
not apply to the Arc-Standard system. To illustrate this, consider a configuration
with the stack 𝜎 = 𝑎, 𝑏, 𝑐. While the arc (𝑐, 𝑏) is reachable via leftarc, and the arc
(𝑏, 𝑎) is reachable via rightarc followed by leftarc, the arc set 𝐴 = {(𝑐, 𝑏), (𝑏, 𝑎)}
forms a projective tree and is thus tree consistent. However, it is easy to see that
𝐴 is not reachable from this configuration.

The reason for the failure of the proof technique in the Arc-Standard system
lies in the fact that the arc set corresponding to 𝐵 in the Arc-Eager system may
involve arcs where both nodes are still on the stack. Consequently, there is no
guarantee that all projective trees consistent with these arcs can be derived. In
a very similar hybrid system, such arcs exist as well, but they are limited to arcs
of the form (ℎ, 𝑑) where ℎ < 𝑑, and ℎ and 𝑑 are adjacent on the stack. This
restriction is sufficient to restore arc decomposition.

27

5
Dynamic Oracle: Exact vs.

Approximate

This chapter will discuss details of how the Arc-Standard parser works, partic-
ularly in relation to the notion of dynamic oracles, which has a major part in rais-
ing the performance level of the parser, due to the ability in handling the natural
complexity of non-projective dependency structures. The discussion navigates
through the nuances of exact and approximate dynamic oracles, shedding light
on their operational mechanisms, computational implications, and their critical
function in the context of transition-based dependency parsing. Starting from
the previous Chapter 4, where we dissected the arc-decomposition property and
its effects on the feasibility and efficiency of dynamic oracles, we offer now a
thorough analysis of the trade-offs between computational complexity and pars-
ing accuracy. The discussion provides details of two distinct dynamic oracles,
exact and approximate, each carefully tuned to optimize the performance of
the Arc-Standard parser, while conscientiously navigating the challenges posed
by non-projective dependency structures. Through this exploration, Chapter 5
aims to present, in detail, the strategies used for enhancing the ability of the
Arc-Standard parser to handle intricate linguistic constructs in a more efficient
and effective manner.

As noted in Chapter 3, transition-based dependency parsers have partial ef-
fectiveness when dealing with non-projective dependency structures due to
certain limitations they encounter in crossing arc-processing. For the identified

29

5.1. EXACT DYNAMIC ORACLE

problem, solutions can be found from the use of dynamic oracles, as shown
in Chapter 2, making these parsers better in terms of performance, generally
maintaining linear time complexity.

However, an exact dynamic oracle with a linear runtime complexity for every
parser is not always possible. Chapter 4 states that for such a derivation to be
easily implemented, the transition system must have the arc decomposition
property, which ”decomposes” reachability reasoning on arc sets or trees into
reachability reasoning of single arcs.

It still makes sense to use the dynamic oracle even in the case of the Arc-
Standard, but providing exactness comes at a very heavy cost with regard to
time complexity.

To delve into the concept of a dynamic oracle, the main objective aims at
the determination of an action cost computing function able to evaluate the
loss concerning gold arcs caused by potential parser transitions. In the context
of the Arc-Standard parser, these transitions are leftarc, rightarc, and shift.
This computational capability, thus, equips the model with the ability to process
non-projective sentences during training efficiently, avoiding not only a wasteful
discard of data, but also enhancing the model’s robustness in scenarios where
there is no unequivocally correct answer. In such cases, the model may decide
to choose the ”lesser evil”, throwing away some gold arcs in order to save more,
generating a parsing tree that is as close as possible to the gold dependency tree.

The following chapter describes two dynamic oracles for the Arc-Standard-
parser: an exact and an approximate one. Both oracles try to solve the challenges
posed by non-projective dependency structures, taking under consideration the
balance between accuracy and computational efficiency.

5.1 Exact Dynamic Oracle

This oracle, initially introduced in an unpublished draft paper, is designed to
enhance the Arc-Standard parser. While the paper itself wasn’t published, we’ll
outline its key concepts below.

The fundamental idea behind the dynamic oracle for the Arc-Standard parser
involves the computation of the quantity 𝐿(𝑐, 𝑡𝐺). This quantity represents the
minimum loss concerning 𝑡𝐺, signifying the smallest loss associated with a tree
that the Arc-Standard parser can generate when parsing from a given config-
uration 𝑐. By calculating this quantity both before and after a transition 𝜏, it

30

CHAPTER 5. DYNAMIC ORACLE: EXACT VS. APPROXIMATE

becomes possible to precisely determine the cost incurred by this transition.
This particular approach is especially effective in handling non-projective trees,
showcasing the parser’s ability to navigate and parse complex linguistic struc-
tures accurately.

To facilitate the explanation, let’s introduce some auxiliary notation. Given
a string 𝑤, a gold dependency tree 𝑡𝐺, and a configuration 𝑐 = (𝜎, 𝛽, 𝐴) obtained
by parsing 𝑤, let 𝛾 = 𝜎𝛽 be the concatenation of the stack and the buffer. We
denote 𝛾[𝑖], 0 ≤ 𝑖 < |𝛾 |, as the 𝑖-th element of 𝛾, and use 𝑏 = |𝜎 | to indicate the
boundary between 𝜎 and 𝛽 in 𝛾, such that 𝛾[𝑏 − 1] = 𝜎[0] and 𝛾[𝑏] = 𝛽[0].

An |𝛾 | × |𝛾 | array𝑇 is introduced, where each element𝑇[𝑖, 𝑗] is an association
list with key ℎ in 𝑉𝑤 (the vocabulary of words in 𝑤) such that 𝑖 ≤ ℎ ≤ 𝑗. The
entry 𝑇[𝑖, 𝑗](ℎ) stores the minimum loss with respect to 𝑡𝐺 of a dependency tree
with head ℎ, obtained through a reduction of the nodes 𝛾[𝑖], ..., 𝛾[𝑗]. Notably,
𝑇[0, |𝛾 | − 1](0) is the desired quantity 𝐿(𝑐, 𝑡𝐺).

Algorithm 1 employs dynamic programming to fill in the association lists in
𝑇. Specifically, each loss is computed as a function of the loss of the two trees
being combined in a reduction and the contribution of the new arc created in
the reduction itself. This dynamic programming approach enables the efficient
calculation of the minimum loss for various dependency trees during the parsing
process.

Algorithm 1 Loss function computation for Arc-Standard exact dynamic oracle
1: for 𝑖 ← 0 to 𝑏 − 1 do
2: 𝑇[𝑖 , 𝑖](𝑖) ← 𝐿(𝛾[𝑖], 𝑡𝐺)
3: end for
4: for 𝑖 ← 𝑏 to (|𝛾 | − 1) do
5: 𝑇[𝑖 , 𝑖](𝑖) ← 0
6: end for
7: for 𝑗 ← (𝑏 − 1) to (|𝛾 | − 1) do
8: for 𝑖 ← 𝑗 downto 0 do
9: FillTableEntry(𝑇,𝑖,𝑗)

10: end for
11: end for
12: return 𝑇[0, |𝛾 | − 1](0)

Algorithm 1 can be summarized as follows:

• Initialization (lines 1-6): in the initialization phase, the algorithm begins
by setting up the main diagonal of the matrix. It distinguishes between
elements originating from the stack and those from the buffer. If an element

31

5.1. EXACT DYNAMIC ORACLE

of 𝛾 comes from the stack, its loss contribution may be non-zero, reflecting
the impact of previous computations resulting in 𝑐. Conversely, if the
element comes from the buffer, its loss contribution is consistently 0.

• Filling upper portion of 𝑇 (lines 7-11): moving on to the next phase, the al-
gorithm focuses on populating the upper portion of matrix𝑇. This process
involves systematically processing columns from left to right and visiting
each column from bottom to top. Notably, the algorithm skips entries
𝑇[𝑖 , 𝑗] with 𝑖 < 𝑏 − 1 during this step: these entries correspond to reduc-
tions of trees situated below the top-most tree in the stack. Such reductions
are deemed invalid in the context of Arc-Standard computations and are,
therefore, excluded from consideration (these entries represent reductions
of trees below the top-most tree in the stack, which arent allowed).

Algorithm 2 Filling Table Procedure
1: procedure FillTableEntry(𝑇,𝑖,𝑗)
2: for 𝑘 ← 𝑖 to (𝑗 − 1) do
3: for each key ℎ𝑙 defined in 𝑇[𝑖, 𝑘] do
4: for each key ℎ𝑟 defined in 𝑇[𝑘 + 1, 𝑗] do
5: lossla← 𝑇[𝑖 , 𝑘](ℎ𝑙) + 𝑇[𝑘 + 1, 𝑗](ℎ𝑟) + 𝛿𝐺(ℎ𝑙 ← ℎ𝑟)
6: 𝑇[𝑖, 𝑗](ℎ𝑟) ← min{lossla, 𝑇[𝑖, 𝑗](ℎ𝑟)}
7: lossra← 𝑇[𝑖, 𝑘](ℎ𝑙) + 𝑇[𝑘 + 1, 𝑗](ℎ𝑟) + 𝛿𝐺(ℎ𝑙 → ℎ𝑟)
8: 𝑇[𝑖, 𝑗](ℎ𝑙) ← min{lossra, 𝑇[𝑖, 𝑗](ℎ𝑙)}
9: end for

10: end for
11: end for

This procedure systematically determines all valid combinations for re-
ducing a tree that spans 𝛾[𝑖], ..., 𝛾[𝑘] with root ℎ𝑙 and another tree spanning
𝛾[𝑘 + 1], ..., 𝛾[𝑗] with root ℎ𝑟 . Each identified combination yields a composite
tree 𝑡 that spans 𝛾[𝑖], ..., 𝛾[𝑗]. The root of 𝑡 is ℎ𝑟 if the reduction involves a
transition 𝜏 = leftarc (as indicated in lines 5 and 6), and ℎ𝑙 if 𝜏 = rightarc is
employed (as denoted in lines 7 and 8). The loss associated with 𝑡 is calculated as
the sum of the losses of the two trees being combined, augmented by a function
𝛿𝐺 pertaining to the arc created by 𝜏. This function is defined by:

𝛿𝐺 =


0, if (𝑖 → 𝑗) is an existing arc in 𝑡𝐺

1, otherwise

32

CHAPTER 5. DYNAMIC ORACLE: EXACT VS. APPROXIMATE

Here, 𝛿𝐺 takes on a value of 0 if the arc (𝑖 → 𝑗) is already present in the tree 𝑡𝐺,
and 1 otherwise.

5.2 Approximate Dynamic Oracle

Algorithm 1 runs with space complexity of 𝒪(|𝛾 |3) and time complexity of
𝒪(|𝛾 |5), where 𝛾 denotes the concatenation of the stack 𝜎 and the buffer 𝛽. In
practice, although the stack is very much smaller than the input string 𝑤, at the
start of the computation, the buffer 𝛽 is of the same order of magnitude as 𝑤,
and this initial condition has a significant effect on the computational cost of the
algorithm.

Despite the potential for optimization by precomputing independent reduc-
tions in 𝛽 and making use of the ”split” technique introduced by Eisner and Satta
(1999) [4], resulting in a shortened buffer 𝛽𝑟𝑒𝑑 and achieving an improved asymp-
totic running time of 𝒪(|𝜎𝛽𝑟𝑒𝑑 |3), this enhancement has not been implemented
in our approach. Instead, we directly pursued a linear approximation.

To address this computational challenge, the approximation technique lever-
ages the identification of distinct configurations within the algorithm. Subse-
quently, a more lenient cost function is extrapolated, allowing for an approxi-
mation of the cost associated with each transition. The effectiveness of this ap-
proximation strategy becomes evident when comparing it to the exact method,
particularly when scrutinizing the set of transitions with minimum cost. Re-
markably, despite its linear runtime, the approximation closely aligns with the
results obtained through the exact approach.

It is essential to note that while the approximation was originally devised
for projective sentences, experimental results indicate its effectiveness extends
to non-projective sentences as well.

5.2.1 Leftarc and Rightarc

Concerning the arc-generating transitions, namely leftarc and rightarc, their
precise cost can be efficiently computed in linear time. To begin, an illegal
transition is flagged with an infinite cost. Such illegality occurs under the
following conditions:

• If there are fewer than two elements in the stack, as two tokens are required
to generate an arc.

33

5.2. APPROXIMATE DYNAMIC ORACLE

• If there are exactly two elements in the stack but the buffer isn’t empty.
This is because the root token is invariably placed at the beginning of the
sentence, and the last arc to be generated is consistently the one between
the root and the last remaining token of the sentence, irrespective of the
correctness of the arc.

• In the case of a leftarc transition, it is also deemed illegal when there are
two elements in the stack and none in the buffer. This is because the root
node cannot serve as a dependent.

After checking the legality of the transition, in either cases the dependent
token (i.e. the top stack element for rightarc, the second top stack element for
leftarc) is the one to be eliminated from the stack, meaning that it won’t be
possible to create other arcs between the dependent and any other token in
either the stack or the buffer. Therefore, in the unfortunate case one or more
child of the dependent haven’t been attached to it, the parser won’t be able to
retrieve those gold arcs, resulting in a loss. By scanning both the stack and the
buffer, we can count the number of gold arcs involving the soon to be eliminated
dependent: this is the cost of a legal left/right-arc transition.

In Figure 5.1 both leftarc and rightarc are legal, so we examine 𝑤3 for
leftarc and 𝑤4 for rightarc. As long as the former is concerned, there is
still a gold arc involving it, (i.e. (𝑤2, 𝑤3)), that won’t be possible to generate if
the leftarc transition is performed; however this loss isn’t actually due to this
specific transition, but rather to a previous one (i.e. a wrong shift), therefore
costleftarc = 01. Performing a rightarc, on the other hand, will results in a
costrightarc = 4, given that the gold arcs [(root, 𝑤4), (𝑤4, 𝑤2), (𝑤4, 𝑤5), (𝑤4, 𝑤7)]
will be impossible to generate.

Figure 5.1: left/right-arc cost computation

5.2.2 Shift

Let’s shift our focus to the third transition for the moment, deferring the
completion of the cost computation for the left/right-arc moves until later, as
it is tied to the shift operation.

34

CHAPTER 5. DYNAMIC ORACLE: EXACT VS. APPROXIMATE

Once again, we assess the legality of the transition, noting that a shift opera-
tion incurs an infinite cost if the buffer is empty. Subsequently, we examine the
top stack element 𝑠1, where three distinct cases may unfold.

CASE 1 If the top stack element 𝑠1 has a right child, the shift on 𝑠1 does not
introduce any loss in terms of gold arcs: we can collect its left children first and
then the right ones, or vice versa, without compromising any gold arcs. In the
configurations represented by Figure 5.2 both leftarc and shift have cost = 0.

In configuration 5.2a, 𝑠1 = 𝑤2: given that 𝑤1 is a left child of 𝑤2 and 𝑤3 is a
right one, we can decide to immediately collect 𝑤1 or do that after shifting 𝑤3 in
the stack and attaching it to its parent through rightarc. Therefore costshift = 0,
since no gold arc in the future will be lost because of a shift transition in the
current configuration.

In configuration 5.2b, 𝑠1 = 𝑤4: once again we have costleftarc = 01 and
costshift = 0, while costrightarc = 4. Focusing on shift, this transition doesn’t
increment the number of gold arcs that will inevitably be lost, as the same
configuration can be reached again after processing the right children of 𝑤4
without compromising the gold arcs currently in the stack. Evidently there is
no guarantee that𝑤4’s right children will be correctly attached, however possible
errors cannot be traced back to a shift in the current configuration, but have to
be assigned to future wrong moves: every reachable gold arc in the current
configuration is still reachable after a shift transition.

(a) (b)

Figure 5.2: shift cost computation CASE 1

CASE 2 If the top stack element 𝑠1 lacks a right child and 𝑠1 is itself a right
child, a comparison between 𝑠1 and the first buffer element 𝑏1 is necessary.

1leftarc does lose the arc (𝑤2, 𝑤3) generating (𝑤4, 𝑤3), however the gold arc was already
lost due to a previous erroneous shift: therefore the actual cost computed by the approximation
is 0. Further details on this matter are provided at the conclusion of this section.

35

5.2. APPROXIMATE DYNAMIC ORACLE

• CASE 2.1: If at any point in the ”lineage” (i.e. set of forefathers including
the examined token) of 𝑏1 there’s an ”orphan” (i.e. a token not yet assigned
as a dependent and whose gold parent has already been eliminated from
the stack), excluding the root token, we return a cost of 0. Once again,
there is no guarantee that no additional errors will be made. However,
it is possible to generate the arc (𝑠1, orphan), resulting in the best case
scenario: where the same current configuration is reached after having
correctly processed the sub-tree whose root is the orphan token.
Considering Figure 5.3 below, 𝑠1 = 𝑤6, 𝑏1 = 𝑤7: in this configuration a
previous wrong move generated the arc (𝑤3, 𝑤4), losing all the dependen-
cies marked with a red X and removing 𝑤4 from the stack. Since 𝑏1 is an
orphan and attaching it to 𝑠1 doesn’t lose additional arcs, shift is costless.

Figure 5.3: shift cost computation CASE 2.1

• CASE 2.2: If at any point in the ”lineage” of 𝑏1 one of the forefathers is
in the stack (excluding the root) we return a cost of 1. We rely on the
left/right-arc cost computations to determine the optimal move, likely a
rightarc, sacrificing the gold arc between the forefather in the stack and its
dependent in the buffer. There is no guarantee that the parser will actually
sacrifice that specific gold arc, however a shift in the current configuration
will make us loose at least that one gold dependency: we can charge this
shift transition of that loss only, while any additional one is caused by
further erroneous moves.
In Figure 5.4 below, 𝑠1 = 𝑤6 and 𝑏1 = 𝑤7: 𝑏1’s father (i.e. 𝑤4) is currently
present in the stack, and it’s not the root. If we choose to shift 𝑏1 into
the stack, it will lead to a configuration where the most favorable outcome
is sacrificing the existing arc between 𝑏1 and its father (in this case 𝑤4),
attaching 𝑏1 to a different token. However, it is still possible to correctly
attach any potential children of 𝑏1 to it. Consequently, to avoid further
losses, the only gold arc that is required to be lost in this scenario is the
one between 𝑏1 and its father, resulting in a cost of 1. This same reasoning
can be applied to any of 𝑏1’s forefathers.

Figure 5.4: shift cost computation CASE 2.2

• CASE 2.3: If neither of the previous conditions is met, we approximate
the cost of a shift as the minimum number of gold arcs between those

36

CHAPTER 5. DYNAMIC ORACLE: EXACT VS. APPROXIMATE

involving the top stack element 𝑠1 and those concerning the first buffer
element 𝑏1. This scenario arises when 𝑏1 is the dependent of the root
token, thus it is highly probable that the minimum cost will correspond to
the number of gold arcs that involve the token 𝑠1 2.
Considering Figure 5.5, where 𝑠1 = 𝑤3 and 𝑏1 = 𝑤4, the returned costshift =
min{1, 4}. It’s easy to notice that, once 𝑤4 is in the stack, the best case sce-
nario will consist in attaching 𝑤1, 𝑤2 and 𝑤3 to 𝑤4, resulting in an actual
loss of 2 gold arcs. Once again, in order to maintain a low computa-
tional complexity we decided to consider only the gold arcs involving 𝑠1,
but a more accurate approximation could be reached by examining the
dependencies concerning 𝑠1’s brothers (in this case 𝑤1).

Figure 5.5: shift cost computation CASE 2.3

CASE 3 If the top stack element 𝑠1 lacks a right child and it is a left child, the
number of its remaining children (all in the stack following the initial projective-
ness hypothesis of our approximation) roughly represents the number of gold
arcs that will be lost. Let’s consider Figure 5.6a: 𝑠1 = 𝑤2 and it has no right
nor left child, therefore the shift transition is costless. On the other hand, in
5.6b, where 𝑠1 = 𝑤3, the approximate oracle calculates a returned cost of 2 since
both 𝑤1 and 𝑤2, children of 𝑠1, are still in the stack. However, the actual cost
should be 1: this is because the optimal strategy for the parser is to sacrifice the
arc (𝑤5, 𝑤4) in favor of creating the wrong dependency (𝑤3, 𝑤4). To obtain the
exact cost, additional analysis and computation would be required, which could
increase the complexity of our algorithm. Therefore, to balance accuracy and
efficiency, we have opted for a more punitive but quicker approximation.

2Usually the root’s dependent (which in the described case is 𝑏1) is the most important
word in the sentence: the one with most dependents, therefore the one involved in more gold
arcs. Thus, it is highly probable that the minimum number of gold arcs between those involving
the root’s dependent and those concerning any other token of the sentence corresponds to the
latter set.

37

5.2. APPROXIMATE DYNAMIC ORACLE

(a) (b)

Figure 5.6: shift cost computation CASE 3

The challenge of devising a linear exact dynamic oracle for the Arc-Standard
parser stems from the nature of the shift transition. Unlike the immediate loss
in terms of gold arcs caused by the generation of a wrong arc, the repercussions
of a wrong shift are deferred and incurred later in the parsing process.

It is accurate to state that the gold arcs, which can no longer be generated
due to a wrong shift, do not register as losses until a subsequent left/right-arc
transition materializes, creating incorrect arcs and resulting in an actual loss in
terms of gold arcs. However, it’s crucial to recognize that the responsibility for
these lost gold arcs doesn’t lie with the last left/right-arc move; instead, they
were destined to be lost due to a preceding wrong shift transition. The key lies
in precisely computing the number of these gold arcs and distinguishing losses
attributable to a shift from those caused by an arc-generating move.

To address this complexity, the costs of one or more prior wrong shift transi-
tions must be retained. This way, when computing the cost of a left/right-arc,
each move is penalized solely for its own ”wrongness”, without being unfairly
burdened by the delayed consequences of something that occurred earlier. Fur-
thermore, distinctions must be made among wrong shifts. Given our focus on
an approximation, we consider only the preceding move: if it is a shift, the costs
of subsequent left/right-arcs will be discounted by the cost of that previous
shift.

38

6
Results: part I

Chapter 6 discusses in detail the outcome obtained with the implementation of
dynamic oracles in the domain of dependency parsing, particularly with the Arc-
Standard parser. Central to our investigation is the utilization of the Universal
Dependencies (UD) dataset, a comprehensive and standardized collection of
annotated treebanks across many languages that has been central in driving
forward research within NLP. This dataset’s structured and uniform annotation
schema allows us to model complex syntactic relations and effectively train
dependency parsers.

We investigate the intricacies of unlabeled dependency parsing by construc-
tion of gold dependency trees using only the ’head’ attribute for each data entry.
This approach necessitates the inclusion of a dummy root to anchor these trees,
underscoring the root node’s significant impact on parsing outcomes as identi-
fied in prior research. The large diversity of languages in the UD dataset and
its associated standard annotations provides a very strong basis for our anal-
ysis, making it possible to evaluate the parser’s performance across different
linguistic settings.

We devise a methodological framework using the BiLSTM architecture, aug-
mented by a Multi-Layer Perceptron (MLP), to distill rich feature representation
at the word level and facilitate imitation learning. This setup, which avoids com-
plex feature engineering in favor of the LSTM’s native capabilities, follows the
recent academic literature around dependency parsing. Despite the possibility
to exploit more advanced models like BERT, our choice is justified by a balance
between training efficiency and performance metrics.

39

6.1. DATASET

Through a rigorous evaluation process, we assess the accuracy of our approx-
imate dynamic oracle against its exact counterpart, revealing a close alignment
in identifying minimum cost actions. This analysis not only underscores the
computational efficiency of our approximation, but also highlights its effective-
ness in enhancing parser performance, particularly in handling non-projective
sentence structures.

As we dissect the performance metrics, measured by the Unlabeled Attach-
ment Score (UAS), across various oracle implementations, we unveil the nuanced
benefits of dynamic oracles in parsing. The data suggests a pronounced advan-
tage in datasets with a higher incidence of non-projective sentences, illustrating
the dynamic oracle’s capacity to harness the full spectrum of training data more
effectively than static oracles.

This chapter, therefore, not only presents a thorough examination of the re-
sults stemming from the application of dynamic oracles in dependency parsing,
but it also offers insights into the potential for further advancements in parser
performance, especially in the context of non-projective sentence parsing.

6.1 Dataset

Universal Dependencies (UD) dataset available on Hugging Face is a crucial
resource for dependency parsing in the field of NLP. This dataset is an extensive
collection of annotated treebanks across multiple languages, designed to foster
shared practices and enhance NLP research globally. The structure of the UD
dataset is meticulous and standardized, enabling it to capture complex syntactic
relationships within sentences.

Each entry in the UD dataset includes a sentence from a particular lan-
guage along with its linguistic annotations. These annotations follow a con-
sistent scheme regardless of the language, which is one of the key strengths
of this dataset. The annotations cover aspects like the part of speech (POS) for
each word, morphological features, and crucially, dependency relations between
words. These relations are annotated in a tree structure, where each word is
linked to its head (or parent) in the sentence, along with a label describing the
type of syntactic relation between them.

Here there is an entry example:

40

CHAPTER 6. RESULTS: PART I

idx text tokens lemmas upos xpos feats head deprel deps misc
en_lines-ud-train-doc1-1 Show All ["Show", "All"] ["show", "all"] [16, 11] ["IMP", "TOT-PL"] ["{’Mood’: ’Imp’, ’VerbForm’: ’Fin’}", "{’Case’: ’Nom’}"] ["0", "1"] [“root”, "obj"] ["None", "None"] ["None", "None"]

Table 6.1: Dataset entry example

In our studies, the unlabeled dependency parsing we aimed at only needs to
construct the gold standard dependency tree with the ’head’ attribute of every
entry. The head of the root dummy node is simply added at the beginning of the
‘head’ array. We use ’-1’ for this but any negative integer can be used. The root’s
position is pivotal, significantly affecting the parser’s efficacy; the variation of
the position of the root node has been studied in the work of M. Ballesteros et
al. (2013) [3], where the diversity in parsing performance is generally related to
it.

The significance of the UD dataset lies in its universality and diversity. By
providing a unified annotation schema across a wide range of languages, it em-
powers researchers and developers in the development of more robust models
and tools that can be transferred across a plurality of languages without much
difficulty. This universality is particularly valuable for training advanced depen-
dency parsers, which are essential tools in many NLP applications like machine
translation, information extraction, and text summarization.

Furthermore, the UD dataset is ever-growing, thanks to thousands of com-
munity contributions from the global linguists and computer scientists. This
not only helps to improve the quality and size of the dataset, but makes it stay
contemporary and meaningful for the world of modern NLP.

Nowadays, this means availability for over 100 languages in terms of data.
This high level of multilingual coverage is one of the best and makes it a partic-
ularly valuable resource not only for dependency parsing generally, but also for
other NLP tasks within such very diverse linguistic contexts. Standard anno-
tations in so many languages, supported by the UD dataset, make the creation
and evaluation of of models that are both linguistically inclusive and robust.

Here there is a brief analysis of the languages we used for our experiments:

Dataset % Non-Projective # sentences average sentence length # tokens # types weighted average arc span1
en_lines 8.07 5243 17.97 94217 11096 2.4
ko_kaist 21.7 27363 12.79 350090 97870 2.0
grc_proiel 37.52 17080 12.53 213999 32983 2.1
grc_perseus 63.87 13919 14.58 202989 41562 2.8

Table 6.2: Dataset analysis

41

6.2. ACCURACY

6.2 Accuracy

We measure the accuracy of our approximation against the exact dynamic
oracle across the training datasets of different languages. For every sentence
in the training data, the cost of every possible transition in every configuration
in a pseudo-random path was computed using both oracles. We identified the
set of transitions with the lowest cost according to each oracle and measured
how much of the set from the approximate oracle was contained in the set from
the exact oracle. Additionally, using the Spearman’s rank correlation coefficient,
we measured the similarity between the rankings of transitions; these rankings
were based on the costs provided by the two oracles.

The Spearman’s rank correlation coefficient (𝜌) is a statistical measurement
that evaluates the monotonic relation between two ranked variables. It tells
how well the relation between these variables can be explained by a consistent
increase or decrease in ranks. Being a measure on a scale between -1 and 1, the
coefficient is particularly useful for non-linear relationships and analysis with
ordinal data. A perfect monotonic relationship is indicated by a value of +1
or -1; 0 is an indication of the lack of such a relationship. The Spearman’s 𝜌

is advantageous since it has the ability to incorporate non-linear and ordinal
data, and it is also robust to outliers since it has its computation based on
ranks rather than real values. In assessing approximate and exact oracles within
NLP, Spearman’s 𝜌 is applied to compare the ranking of transitions based on
their costs, since this informs on how similarly the oracles prioritize decisions,
thus offering a concise evaluation of an approximate oracle’s effectiveness in
mimicking the exact oracle’s decision hierarchy.

The actual transition from one configuration to the next was chosen at ran-
dom from:

• the set of actions with the minimum approximate cost with a probability
of 0.1;

• from the set of legal actions with a probability of 0.9.

This process was carried out separately for projective and non-projective
sentences. The outcomes of this analysis are presented in Tables 6.3 and 6.4.

1An average of the number of words between a token and its head.
2Considering all configurations encountered while parsing all training sentences, this indi-

cates how many times the approximate minimum cost actions set was included in the exact one

42

CHAPTER 6. RESULTS: PART I

PROJECTIVE # sentences % inclusion2 Mean Spearman Std Spearman
en_lines 2921 100.0: 99.22,

66.66: 0.10,
50.0: 0.60,
33.33: 0.06,
0.0: 0.02

0.996 0.043

ko_kaist 17966 100.0: 98.78,
66.66: 0.27,
50.0: 0.80,
33.33: 0.10,
0.0: 0.05

0.991 0.072

grc_proiel 9400 100.0: 99.32,
66.66: 0.16,
50.0: 0.45,
33.33: 0.05,
0.0: 0.02

0.995 0.044

grc_perseus 4272 100.0: 99.25,
66.66: 0.21,
50.0: 0.49,
33.33: 0.03,
0.0: 0.02

0.995 0.045

Table 6.3: Comparison on projective sentences

NON-PROJECTIVE # sentences % inclusion Mean Spearman Std Spearman
en_lines 253 100.0: 98.74,

66.66: 0.21,
50.0: 0.92,
33.33: 0.06,
0.0: 0.07

0.988 0.071

ko_kaist 5042 100.0: 98.00,
66.66: 0.32,
50.0: 1.31,
33.33: 0.21,
0.0: 0.16

0.961 0.139

grc_proiel 5612 100.0: 98.60,
66.66: 0.23,
50.0: 0.91,
33.33: 0.18,
0.0: 0.08

0.981 0.092

grc_perseus 7202 100.0: 98.38,
66.66: 0.28,
50.0: 1.00,
33.33: 0.25,
0.0: 0.09

0.977 0.102

Table 6.4: Comparison on non-projective sentences

43

6.3. PERFORMANCE

The results indicate that the approximate oracle closely aligns with the exact
oracle in determining the set of minimum cost actions. Furthermore, the ap-
proximate oracle has the advantage of being linear in time complexity, making
it an efficient and effective trade-off for computational purposes.

6.3 Performance

In our dependency parsing model, we employed the architecture developed
by Kiperwasser et al. (2016) [8], which utilizes a Bidirectional LSTM (BiLSTM)
to derive rich word-level feature representations within sentences. To guide
the training process, a Multi-Layer Perceptron (MLP) is employed, which lever-
ages imitation learning techniques, specifically learning to imitate the expert-
provided oracle decisions.

The BiLSTM examines sentences in both forward and reverse directions,
integrating context from both preceding and subsequent words to inform its
understanding of each word’s role. This comprehensive context is crucial for
the MLP when it scores potential dependency arcs, allowing it to assess the
likelihood of a syntactic connection between word pairs.

A significant benefit of this approach is its avoidance of extensive feature
engineering and the need for intricate syntactic inputs. Instead, it harnesses the
LSTM’s inherent ability to encapsulate and utilize long-distance dependencies
and sentence structures, simplifying the learning process.

There are many models out there that can provide even higher accuracies,
such as BERT, but for this specific situation, we chose the BiLSTM-based model
because it trains faster and has good enough performance for this application.

In our training routine, we’ve adapted Goldberg and Nivre (2012) [5] on-
line training with a dynamic oracle (represented in Algorithm 3 of their paper),
incorporating elements from Aufrant et al. (2018) [2] to handle non-projective
sentences by considering transitions with minimum cost, as opposed to solely
zero-cost transitions. Furthermore, we’ve deviated from the their update mech-
anism too: rather than updating the model with each prediction outside the
minimum cost set, we accumulate predictions and their corresponding gold la-

with the specified percentage. Examples:
33.33 = only a third of the actions in the approximate set was also present in the exact one;
100.0 = all actions in the approximate set were in the exact one too.

44

CHAPTER 6. RESULTS: PART I

bels throughout the batch, allowing for a singular, comprehensive model update
at the batch’s conclusion exploiting cross-entropy loss.

45

6.3. PERFORMANCE

Algorithm 3 Modified training loop with a dynamic oracle
1: 𝑤 ← 0
2: for 𝐼 = 0 to ITERATIONS do
3: for batch in dataset do
4: for sentence 𝑥 with gold tree 𝐺gold in batch do
5: 𝑐 ← 𝑐𝑠(𝑥)
6: while 𝑐 is not terminal do
7: 𝑡𝑝 ← arg max𝑡 𝑤 · 𝜙(𝑐, 𝑡)
8: 𝑀𝐼𝑁_𝐶𝑂𝑆𝑇 ← {𝑡 |𝑎𝑟𝑔𝑚𝑖𝑛𝑡𝑜(𝑡; 𝑐;𝐺gold)}
9: 𝑡𝑜 ← arg max𝑡∈𝑀𝐼𝑁_𝐶𝑂𝑆𝑇 𝑤 · 𝜙(𝑐, 𝑡)

10: if 𝑡𝑝 ∉ 𝑀𝐼𝑁_𝐶𝑂𝑆𝑇 then
11: Save the couple (𝑡𝑝 , 𝑡𝑜)
12: end if
13: 𝑡𝑛 ← CHOOSE_NEXT(𝐼 , 𝑡𝑝 , 𝑀𝐼𝑁_𝐶𝑂𝑆𝑇)
14: 𝑐 ← 𝑡𝑛(𝑐)
15: end while
16: end for
17: end for
18: Update the model with the collected couples (𝑡𝑝 , 𝑡𝑜)
19: end for
20: return 𝑤

function CHOOSE_NEXTAMB (I, t, MIN_COST)
21: if 𝑡 ∈ 𝑀𝐼𝑁_𝐶𝑂𝑆𝑇 then
22: return 𝑡

23: else
24: return RANDOM_ELEMENT(𝑀𝐼𝑁_𝐶𝑂𝑆𝑇)
25: end if

function CHOOSE_NEXTEXP(I, t, MIN_COST)
26: if 𝐼 > 𝑘 and RAND() > 𝑝 then
27: return 𝑡

28: else
29: return CHOOSE_NEXTAMB(𝐼 , 𝑡 , 𝑀𝐼𝑁_𝐶𝑂𝑆𝑇)
30: end if

We assessed the model’s performance, measured by the Unlabeled Attach-

46

CHAPTER 6. RESULTS: PART I

ment Score (UAS), across implementations using static, non-deterministic, and
dynamic oracles. Due to resource constraints, we could not train the model to
imitate the exact dynamic oracle and therefore couldn’t directly compare its ef-
ficacy with our approximation. Nonetheless, we anticipate that a model trained
with the exact dynamic oracle would outperform our approximate oracle-based
model.

Static oracle (only projective, no approximation) Non Deterministic oracle Dynamic oracle
en_lines 74.6 73.4 73.8
ko_kaist 70.0 66.3 65.3
grc_proiel 64.5 63.7 64.3
grc_perseus 41.7 44.4 47.1

Table 6.5: Comparison of UAS scores across different oracles

The analysis of the UAS with respect to different kinds of sentences in the
dataset offers interesting observations regarding the efficacy of dynamic oracles
in parsing. Results show that datasets with a higher ratio of non-projective
sentences benefit more from the use of dynamic oracles. This is because projec-
tive and non-projective sentences are equally informative, but while a dynamic
oracle can make use of non-projective sentences, effectively increasing the size
of training data, a static oracle cannot exploit this type of data.

The further discussion goes to how parser performance would improve if the
Arc-Standard parser had been an arc decomposable: in that case, a linear exact
dynamic oracle could be built and it would probably do better. This hypothesis
is based on the work of Aufrant et al. (2018) [2], who studied dynamic oracles for
arc-eager parsers. They traced the progression from static to non-deterministic,
and ultimately to dynamic oracles, observing performance improvements at
each stage.

However, the reality for the Arc-Standard parser deviates from this ideal
scenario: the non-deterministic and dynamic oracles for this kind of parser
rely on an approximate cost function. While this approximation closely aligns
with what an exact non-linear dynamic oracle would predict, it remains an
approximation. Consequently, significant performance gains are only noticeable
when the dataset has a very high percentage of non-projective sentences. The
threshold for observing these gains, based on the examined datasets, is at least
60%.

47

7
An alternative approach:
Reinforcement Learning

This chapter discusses the application of Reinforcement Learning (RL) to de-
pendency parsing in NLP. RL, particularly suited for complex decision-making
tasks like parsing, learns through trial-and-error with feedback in the form of
rewards or penalties. The chapter delves into Markov Decision Process as the
foundation of RL, detailing its components and its relevance to parsing con-
figurations and transitions. It highlights the exploration-exploitation trade-off
in RL, crucial for handling non-projective dependency structures in parsing.
General Policy Iteration is introduced, encompassing Dynamic Programming,
Monte Carlo, and Temporal Difference learning approaches, each varying in
policy evaluation and improvement methods. Deep Reinforcement Learning,
which integrates deep neural networks with RL, is explored for its capability
to handle high-dimensional spaces in parsing. The chapter concludes by em-
phasizing the potential of the Deep Q-Network model, particularly with an
Arc-Standard parser, as an effective tool in dependency parsing, offering an
adaptable, self-learning approach to improve parsing performance, especially
in handling non-projective sentences.

49

7.1. WHY APPLY REINFORCEMENT LEARNING TO DEPENDENCY PARSING?

7.1 Why apply Reinforcement Learning to Depen-
dency Parsing?

RL is a machine learning paradigm that deals with problems where an agent
interacts with an environment to achieve a specific goal. Instead of relying
on labeled training data, RL involves learning through trial-and-error, with
the agent receiving feedback from the environment in the form of rewards or
penalties.

When applied to dependency parsing, which is the task of determining syn-
tactic relationships between words in a sentence, RL offers several advantages.
Dependency parsing often involves a complex decision space, and RL excels
in such scenarios where traditional algorithms may struggle. RL models are
dynamic and adaptable, making them well-suited for handling diverse sen-
tence structures and linguistic phenomena commonly encountered in natural
language processing tasks. One specific challenge in dependency parsing is
dealing with non-projective dependency structures, where word relationships
do not strictly follow a left-to-right or right-to-left order. RL, particularly when
combined with exploration-exploitation trade-offs, can effectively address this
challenge. The exploration-exploitation trade-off described by Goldberg and
Nivre (2012) [5] and (2013) [6] is inherent in RL approaches, allowing the parser
to dynamically adapt its strategy, explore alternative paths, and learn from
mistakes: this dynamic behavior enhances adaptability and contributes to the
parser’s ability to handle non-projective dependencies. However, it appears
that Goldberg and Nivre, perhaps due to a lack of familiarity with the RL
framework, implicitly introduced several of its central ideas without explicit ac-
knowledgment of their roots. This observation leads to the practical motivation
for adopting a more rigorous and methodical application of RL strategies.

Additionally, RL enables end-to-end learning, allowing models to directly
learn from input data without the need for explicit feature engineering. This
approach also facilitates the integration of global information across the entire
sentence, enhancing the model’s ability to capture complex dependencies.

Moreover, RL models exhibit flexibility and generalization, making them
suitable for various languages and parsing tasks. The capacity of RL to adapt to
different linguistic structures contributes to its effectiveness in NLP applications.

Before delving into a specific application of RL in dependency parsing, it’s

50

CHAPTER 7. AN ALTERNATIVE APPROACH: REINFORCEMENT LEARNING

essential to understand some basic concepts of this approach. These may include
terms like rewards, policies, exploration-exploitation trade-offs, and the overall
framework of RL algorithms. This foundational knowledge provides a basis for
comprehending how RL is employed in the context of dependency parsing and
the specific strategies utilized to address the challenges inherent in this linguistic
task. This chapter is based on the second edition of Sutton and Barto’s book:
Reinforcement Learning: An Introduction [10].

7.2 Markov Decision Processes

A Markov Decision Process (MDP) is a mathematical framework used in the
field of RL to model decision-making in situations where an agent interacts with
an environment. Specifically, it is a tuple ⟨𝑆, 𝐴, 𝑃, 𝑅, 𝛾⟩ used to represent the
following system:

Figure 7.1: Reinforcement Learning dynamics

• 𝑆 is the set of states that the agent can occupy;

• 𝐴 is the set of actions that the agent can execute;

• 𝑃 is the state transition probability matrix: for each state-action pair (𝑆𝑡 =
𝑠, 𝐴𝑡 = 𝑎), it indicates the probability that the agent moves to the new state
𝑆𝑡+1 = 𝑠′;

• 𝑅 : 𝑆 × 𝐴 → R is the reward function: given the pair (𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎), it
returns a reward for performing action 𝑎 in state 𝑠;

• 𝛾 ∈ [0, 1] is a discount factor that indicates how much importance we want
to give to future rewards.

The MDP serves as the starting point for RL: the first thing to do is to identify
these five elements. In the case of dependency parsing, we have:

• 𝑆 is the set of configurations in which the parser can find itself;

• 𝐴 is the set of transition operations that the parser can perform;

51

7.2. MARKOV DECISION PROCESSES

• 𝑃 is fully determined by a function: given a configuration-transition oper-
ation pair, the new configuration is uniquely determined, so the transition
is not stochastic;

• 𝑅 can be calculated based on the number of edges no longer reachable due
to the executed action or it can be a function of the number of arcs correctly
generated.

The key assumption in an MDP is the Markov property, which states that the
future state depends only on the current state and action, not on the sequence of
events that preceded them. This property allows the modeling and computation
of the system’s behavior.

The agent’s goal in an MDP is typically to find an optimal policy 𝜋∗ that
maximizes the expected cumulative reward over time. A policy is a strategy or
a mapping that defines the agent’s decision-making behavior: it specifies which
action to take in each state.

7.2.1 Environment and Agent

The constitutive elements of the environment are 𝑃 and 𝑅. In particular,

𝑅 = E𝜋[𝑅𝑡+1 |𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]

meaning that the reward function can be interpreted as the expected value of the
reward provided by the environment following policy 𝜋 from the state-action
pair (𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎).

The constitutive elements of an agent are 𝑆, 𝐴, policy 𝜋(𝑎 |𝑠), state value
function 𝑣𝜋(𝑠), and state-action value function 𝑞𝜋(𝑠, 𝑎):

• the policy is a probability distribution over actions given the current state 𝑠:
𝜋(𝑎 |𝑠) = Pr(𝐴𝑡 = 𝑎 |𝑆𝑡 = 𝑠)

• the value of a state is evaluated through the state value function:

𝑣𝜋(𝑠) =
∑
𝑎

𝜋(𝑎 |𝑠)[𝑅(𝑎 |𝑠) + 𝛾
∑
𝑠′

𝑃(𝑠′|𝑠, 𝑎)𝑣𝜋(𝑠′)]

• the value of a state-action pair is computed by the state-action value func-
tion:

𝑞𝜋(𝑠, 𝑎) = 𝑅(𝑎 |𝑠) + 𝛾
∑
𝑠′

𝑃(𝑠′|𝑠, 𝑎)
∑
𝑎′

𝜋(𝑎′|𝑠′)𝑞𝜋(𝑠′, 𝑎′)

Essentially, the policy 𝜋 guides the agent suggesting which action to take
based on evaluations made through the value function 𝑣𝜋(𝑠) or 𝑞𝜋(𝑠, 𝑎).

52

CHAPTER 7. AN ALTERNATIVE APPROACH: REINFORCEMENT LEARNING

The agent’s goal is to maximize the sum of rewards over an episode, which
is a sequence of states from an initial state to a final state. 𝜋, 𝑣𝜋(𝑠), and 𝑞𝜋(𝑠, 𝑎)
are tools used by the agent to achieve this goal.

7.3 Generalized Policy Iteration

To solve a RL problem, the Generalized Policy Iteration (GPI) process is usually
executed, which involves alternating between prediction and control phases:

1. Prediction (Policy Evaluation): assign values to visited states (or executed
state-action pairs) under a certain policy 𝜋. For example, a greedy policy selects
in each state the action that leads to the next state with the highest 𝑣𝜋(𝑠′) value
or selects the action with the highest 𝑞𝜋(𝑠, 𝑎) value.

2. Control (Policy Improvement): after evaluating the states (or state-action
pairs) visited, update the policy 𝜋. In practice, update the probability distri-
bution based on the 𝑣𝜋(𝑠′) or 𝑞𝜋(𝑠, 𝑎) values calculated during the prediction
phase.

The alternation between prediction and control is stopped when the values
of the value function start to stabilize (i.e. the variation from one iteration to
another of prediction is below a fixed threshold).

During the prediction phase, the exploration-exploitation trade-off is imple-
mented. This consists in allowing the agent to choose between exploiting the
knowledge of the environment it already possesses by following actions recom-
mended by the policy or exploring new states through state-action combinations
not yet tried. It is noteworthy that in RL, the agent requires both exploration and
exploitation: without exploration, it might miss the chance to find advantageous
state-action combinations, and without exploitation, it would risk continually
seeking new combinations without capitalizing on the experience gained, of
which the policy 𝜋 is the bearer.

Generally speaking, the epsilon-greedy strategy serves as a policy to effec-
tively navigate the exploration-exploitation trade-off in RL. At the outset, when
the exploration is crucial for building an understanding of the environment, the
strategy sets the exploration probability, denoted by 𝜀, to a high value, typically
1.0.

This implies that:

• With a probability of 1 − 𝜀: Exploitation occurs, where the agent selects
the action associated with the highest state-action pair value, maximizing

53

7.3. GENERALIZED POLICY ITERATION

its current knowledge.

• With a probability of 𝜀: Exploration takes place, involving the selection
of a random action to introduce variability and discover potential new
insights.

During the initial stages of training, the high value of 𝜀 results in a sub-
stantial likelihood of exploration. This is beneficial for the agent to explore the
environment and gather information. However, as the training progresses and
the estimates of the value functions improve in accuracy, the epsilon value is sys-
tematically reduced. This reduction reflects the diminishing need for extensive
exploration and the increasing emphasis on exploitation.

As a consequence, over time, the probability of exploration decreases, allow-
ing the agent to rely more on its accumulated knowledge for decision-making.
The epsilon-greedy strategy thus dynamically adapts, striking a balance between
exploration and exploitation throughout the learning process.

7.3.1 EXAMPLE: Gridworld

In Figure 7.2 is represented a classic RL gridworld example: our agent starts
from any square in the grid with the objective of reaching one of the dark
squares. Each movement incurs a reward of -1 and when the agent reaches a
dark square, it receives a positive reward of +10.

On the left column, estimates of the state values 𝑣(𝑠) are reported during
the policy evaluation (prediction) phase, while on the right, the policy 𝜋 corre-
sponding to the update performed in the policy improvement (control) phase
based on the values of 𝑣(𝑠) in the corresponding row is shown.

At iteration 𝑘 = 0, the agent knows nothing about the environment, so all
state values are null, and the policy is random. At 𝑘 = 1, the agent starts to
understand that states near the dark squares are ”advantageous”, and certain
actions in these states are better than others. After updating the 𝑣(𝑠) values of
these advantageous states, the policy will be updated accordingly, guiding the
agent to move accordingly. This process continues iteratively.

54

CHAPTER 7. AN ALTERNATIVE APPROACH: REINFORCEMENT LEARNING

Figure 7.2: Gridworld

In each iteration, the agent refines its understanding of the environment,
updating state values and the policy accordingly. The policy guides the agent
to make more informed decisions as it learns from its interactions with the
environment.

7.3.2 Approaches to GPI

There are three fundamental approaches to GPI, here they are briefly and
simplistically presented:

• Dynamic Programming (DP): this is illustrated in the Gridworld exam-
ple. In each prediction iteration, all states are evaluated by averaging the
values of states reached by taking an action from the initial state. In each
control iteration, the policy is updated for each state. However, problems
addressed by RL often have state (or state-action) spaces that are too large
for the type of computations required by DP. Subsequent approaches have
the same goal as DP but achieve it with considerably lower computational
cost.

• Monte Carlo (MC): instead of updating each state by considering all
possible actions and evaluating all possible reached states, MC performs a
set of episodes from start to finish, evaluating only the encountered states

55

7.4. DEEP REINFORCEMENT LEARNING

(or executed state-action pairs) at the end of each episode. With the values
calculated in the prediction, the policy can be updated during the control
phase, but only for the states that have been visited. It’s important to note
that MC requires saving the state-action-reward sequences encountered
during the episode. To evaluate a state (or state-action pair), we need to
know the future rewards that state has led toin other words, we need to
backtrack through the episode from the end to the beginning.

• Temporal Difference (TD): in contrast of running an entire episode, TD
allows the agent to learn step-by-step or even every 𝑛 steps within an
episode without reaching the final state. The main advantage of TD is
the ability to learn online, without having to save the state-action-reward
sequence as in MC. This is possible by approximating future rewards based
on the change in the value of a state (or state-action pair) between iterations
of the prediction. This approach has two variants:

– n-step TD: fix a number of steps 𝑛 to simulate in the episode and
evaluate the states (or executed state-action pairs) after taking 𝑛 steps.

– TD(𝜆) or eligibility traces: instead of using a single ”sub-episode”
of 𝑛 steps, multiple ”sub-episodes” with different 𝑛-steps can be
employed, and the values of encountered states in these episodes are
averaged.

Figure 7.3: GPI approaches

7.4 Deep Reinforcement Learning

Deep Reinforcement Learning (DRL) stands at the intersection of RL and
deep neural networks, harnessing the power of advanced machine learning
techniques to address complex problems in high-dimensional and continuous
state and action spaces. The integration of deep learning allows DRL models to
autonomously discover intricate features and representations from raw input,
enabling them to learn and generalize complex behaviors.

Here there is a brief and simplified summary of the main approaches to DRL:

56

CHAPTER 7. AN ALTERNATIVE APPROACH: REINFORCEMENT LEARNING

• Value Approximation: in value approximation methods, the primary fo-
cus is on estimating the value function, representing the expected cumu-
lative reward of taking a specific action in a given state. The introduction
of deep neural networks in methods like DQN extends these techniques
to handle high-dimensional state spaces. The advantages of value approx-
imation methods include stability and sample efficiency. Q-learning, a
prominent example, tends to exhibit lower variance and more stable up-
dates compared to other DRL methods. However, value approximation
methods have their disadvantages. They may struggle with exploration,
relying on epsilon-greedy strategies that might not be sufficient in com-
plex environments. Additionally, handling continuous action spaces can
be challenging without incorporating additional techniques.

• Policy Gradient: policy gradient methods, exemplified by algorithms like
REINFORCE, take a different approach by directly optimizing the poli-
cythe strategy that dictates the agent’s actions. These methods parame-
terize the policy as a neural network, outputting a probability distribution
over actions. Policy gradient methods excel in handling continuous action
spaces without the need for discretization. They naturally encourage ex-
ploration by assigning non-zero probabilities to all actions, making them
particularly suitable for scenarios requiring stochastic policies. Neverthe-
less, policy gradient methods are not without their challenges: they often
exhibit high variance in gradient estimates, leading to potentially less sta-
ble training. Additionally, achieving sample efficiency may require more
training samples compared to some value-based methods.

• Actor-Critic: actor-critic methods represent a hybrid approach, combining
elements of both value approximation and policy gradient methods. In
this framework, two neural networks, the actor (approximating the policy)
and critic (approximating the value function), work collaboratively. The
actor suggests actions based on the policy, while the critic evaluates these
actions using the value function. This combination aims to strike a balance,
harnessing the stability of value-based methods and the expressiveness of
policy-based methods. The advantages of actor-critic methods include
improved stability and sample efficiency compared to standalone policy
gradient methods. They can effectively handle continuous action spaces;
however, this approach introduces additional complexity, requiring the
maintenance of both an actor and a critic network. Fine-tuning parameters
becomes crucial to achieve a balance between the contributions of the actor
and critic components.

7.5 From Q-learning to the DQN model

Q-learning is a fundamental RL algorithm designed to find an optimal policy
for an agent interacting with an environment. The algorithm iteratively updates
Q-values based on the equation:

57

7.5. FROM Q-LEARNING TO THE DQN MODEL

𝑄(𝑆𝑡 , 𝐴𝑡) ← 𝑄(𝑆𝑡 , 𝐴𝑡) + 𝛼 ·
[
𝑅𝑡+1 + 𝛾 ·max

𝑎
𝑄(𝑆𝑡+1, 𝑎) −𝑄(𝑆𝑡 , 𝐴𝑡)

]
.

Here, 𝑄(𝑆𝑡 , 𝐴𝑡) represents the Q-value for taking action 𝐴𝑡 in state 𝑆𝑡 , 𝑅𝑡+1 is
the immediate reward, 𝛾 · max𝑎 𝑄(𝑆𝑡+1, 𝑎) is the discounted estimate optimal
Q-value of next state, and 𝛼 is the learning rate. Q-learning aims to learn the
optimal Q-values, which, when followed, lead to the agent making decisions
that maximize the expected cumulative reward.

Algorithm 4 Q-Learning algorithm
1: Initialize 𝑄(𝑠, 𝑎) arbitrarily for all state-action pairs except 𝑄(terminal, .) = 0

2: for each episode do
3: Observe state 𝑆0

4: 𝑡 ← 0
5: while 𝑆𝑡 not terminal do
6: Choose action 𝐴𝑡 from 𝑆𝑡 using a policy derived from 𝑄 (e.g., 𝜖-greedy)

7: Take the chosen action 𝐴𝑡 , observe the next state 𝑆𝑡+1 and the immediate
reward 𝑅𝑡+1

8: 𝑄(𝑆𝑡 , 𝐴𝑡) ← 𝑄(𝑆𝑡 , 𝐴𝑡) + 𝛼 · [𝑅𝑡+1 + 𝛾 ·max𝑎 𝑄(𝑆𝑡+1, 𝑎) −𝑄(𝑆𝑡 , 𝐴𝑡)]
9: 𝑆𝑡 ← 𝑆𝑡+1

10: end while
11: end for

The transition from Q-learning to DQN introduces the use of deep neural
networks to approximate the Q-function. The Q-function is parameterized by a
neural network with weights 𝜃, denoted as 𝑄(𝑠, 𝑎;𝜃). The update rule for DQN
involves minimizing the temporal difference loss:

ℒ(𝜃) = E
[(
𝑅𝑡+1 + 𝛾 · max

𝑎∈𝒜(𝑆𝑡+1)
𝑄(𝑆𝑡+1, 𝑎;𝜃−) −𝑄(𝑆𝑡+1, 𝐴𝑡+1;𝜃)

)2
]

where 𝜃− represents the parameters of a target Q-network with delayed updates.
This approximation allows DQN to handle high-dimensional state spaces effec-
tively, enabling its application to complex tasks, where traditional Q-learning

58

CHAPTER 7. AN ALTERNATIVE APPROACH: REINFORCEMENT LEARNING

might be impractical.

Algorithm 5 DQN training algorithm
1: Initialize replay memory 𝐷 to capacity 𝑁

2: Initialize action-value function 𝑄 with random weights 𝜃
3: Initialize target action-value function 𝑄̂ with weights 𝜃− = 𝜃

4: for each episode do
5: Observe state 𝑆0

6: 𝑡 ← 0
7: while 𝑆𝑡 not terminal do
8: With probability 𝜀 select a random action 𝐴𝑡

9: otherwise select 𝐴𝑡 = argmax𝑎𝑄(𝑆𝑡 , 𝑎;𝜃)
10: Execute action 𝐴𝑡 and observe reward 𝑅𝑡 , and next state 𝑆𝑡+1

11: Store transition (𝑆𝑡 , 𝐴𝑡 , 𝑅𝑡 , 𝑆𝑡+1) in 𝐷

12: Sample random minibatch of transitions (𝑆 𝑗 , 𝐴 𝑗 , 𝑅 𝑗 , 𝑆 𝑗+1) from 𝐷

13: Set

𝑦 𝑗 =


𝑅 𝑗 if episode terminates at step 𝑗 + 1

𝑅𝑡+1 + 𝛾 · max
𝑎∈𝒜(𝑆𝑡+1)

𝑄(𝑆𝑡+1, 𝑎;𝜃−) otherwise (7.1)

14: Perform a gradient descent step on
(
𝑦 𝑗 −𝑄(𝑆𝑡+1, 𝐴𝑡+1;𝜃))2 with respect

to network parameters 𝜃
15: Every 𝐶 steps reset 𝑄̂ = 𝑄

16: end while
17: end for

The DQN training algorithm comprises two fundamental phases, each play-
ing a pivotal role in the learning process. In the initial phase, known as the
Sampling Phase (lines 8-12), the agent actively interacts with the environment
by executing actions, and the resulting experiences are systematically stored in
a designated replay memory. These experiences are encapsulated as tuples,
including the state, action taken, received reward, and the subsequent state.
This process not only facilitates exploration of the environment but also estab-
lishes a diverse and representative dataset within the replay memory, crucial for
effective learning.

Subsequently, the algorithm enters the Training Phase (lines 13-16), wherein
the agent randomly selects a small batch of experience tuples from the replay

59

7.5. FROM Q-LEARNING TO THE DQN MODEL

memory. This batch is then utilized to update the Q-values through a gradient
descent update step. By learning from randomly sampled batches, the model
breaks the temporal correlation between consecutive experiences, fostering sta-
bility and efficiency in the learning process. The objective is to minimize the
temporal difference error between predicted and target Q-values, refining the
Q-network’s parameters over iterations.

This iterative interplay between the Sampling and Training Phases enables
the DQN algorithm to adapt and improve its Q-value estimates over time. By
leveraging the stored experiences in the replay memory, the model learns to
make informed decisions, ultimately leading to the acquisition of an effective
policy that maximizes cumulative rewards in complex and dynamic environ-
ments.

In the context of DQN, training stability can be a significant challenge, pri-
marily due to the amalgamation of a non-linear Q-value function represented by
a neural network and the incorporation of bootstrapping, where targets are up-
dated using existing estimates rather than complete returns. This combination
may lead to training instability, therefore, to counteract this issue and enhance
the stability of training, three key solutions are commonly implemented:

• Experience Replay: Experience Replay is employed with the aim of mak-
ing more efficient use of past experiences. Rather than training the neural
network on consecutive experiences, this technique involves storing a his-
tory of experiences in a replay buffer and randomly sampling a batch of
these experiences during each training iteration. This breaks the temporal
correlation between consecutive experiences, providing a more diverse set
of training samples and promoting stability.

• Fixed Q-Target: the utilization of a Fixed Q-Target serves the purpose of
stabilizing the training process. To achieve this, a separate target network
with fixed parameters is introduced. This target network is updated less
frequently compared to the main Q-value estimation network. The less
frequent updates reduce the correlation between the target and predicted
Q-values during training, ultimately stabilizing the learning process and
preventing rapid and oscillatory updates.

• Double Deep Q-Learning: Double Deep Q-Learning addresses the prob-
lem of Q-value overestimation, which is a common issue in DQN. By
employing two separate neural networks, one for selecting actions (pol-
icy network) and another for evaluating Q-values (target network), this
approach aims to mitigate the overestimation bias. The decoupling of ac-
tion selection from Q-value evaluation helps in providing more accurate
Q-value estimates, leading to improved learning and decision-making in
the RL setting.

60

CHAPTER 7. AN ALTERNATIVE APPROACH: REINFORCEMENT LEARNING

These three strategies, when integrated, contribute synergistically to stabiliz-
ing the training of Deep Q-Learning models. This not only mitigates the inherent
challenges associated with the combination of non-linear Q-value functions and
bootstrapping but also enhances the robustness of DQN models in effectively
learning optimal policies in complex environments.

7.6 The DQN model for dependency parsing

Returning to the topic of dependency parsing, our chosen model is the
DQN. Specifically tailored for transition-based dependency parsing with an
Arc-Standard parser, DQN excels in managing sequential decision-making tasks.
In the context of dependency parsing, the primary objective is to construct a
syntactic tree by executing a sequence of parser transitions: DQN’s state-action
framework proves to be a suitable representation for the evolving parser config-
uration.

The strength of DQN lies in its ability to approximate the Q-function, aligning
perfectly with the task of evaluating the expected cumulative reward for each
transition within a given state. Moreover, the utilization of deep neural networks
by DQN is advantageous for effectively handling the inherent high-dimensional
state spaces encountered in dependency parsing. As shown by Yu et al. (2018)
[12], the model’s generalization across linguistic contexts, complemented by
features like experience replay, Dueling Deep Q-Network (DDQN) and averaged
DQN, enhances its effectiveness in learning diverse transition patterns.

Furthermore, DQN presents an intriguing alternative to dynamic oracles
when dealing with non-projective sentences in dependency parsing. By learning
directly from environmental interactions, DQN can adapt and discover effective
transition strategies for non-projective sentences without relying on explicitly
constructed oracles. This self-learning capability proves particularly beneficial
in scenarios where dynamic oracles may be impractical or challenging to accu-
rately define (as stated in Chapter 4, this is the case for the Arc-Standard parser).
The RL paradigm of DQN facilitates natural exploration and exploitation of
the solution space, potentially leading to improved performance in handling
non-projective syntactic structures during the parsing process.

61

7.6. THE DQN MODEL FOR DEPENDENCY PARSING

7.6.1 Averaged DQN

The averaged DQN technique (Anschel et al., 2016 [1]), represents a significant
stride in the realm of RL, particularly addressing the challenges of volatility and
instability that are commonly observed in traditional DQNs. This approach
is rooted in the concept of integrating multiple Q-value estimators over time,
ensuring a smoother and more reliable policy evaluation and decision-making
process.

In standard DQN settings, the Q-value estimates are typically updated at
each step or after a fixed number of steps, and these immediate estimates are di-
rectly utilized for guiding actions and further updates. However, this approach
can lead to considerable oscillations in the learning trajectory: the reason lies
in the nature of Q-value updates themselves, which can be substantial at times,
causing sharp shifts in policy direction. This is where the averaged DQN tech-
nique comes into play, offering a more measured and stable alternative. By
maintaining a record of not just the current Q-value estimator but also an array
of past estimators, the averaged DQN method ensures that the policy is informed
by a more balanced perspective, one that is shaped by an aggregation of past
learning experiences as well as the present.

The real prowess of the averaged DQN technique lies in its averaging mech-
anism. This mechanism doesn’t just blunt the edges of variance in Q-value
estimates; it fundamentally reshapes the learning landscape. Each Q-value es-
timator in the series is updated akin to a standard DQN. However, when it
comes to policy determination or making decisions, the averaged DQN doesn’t
rely on the latest snapshot of learning; instead, it consults the averaged wisdom
of multiple past estimators. This approach significantly dampens the volatility
typically associated with Q-value updates, leading to a more consistent and
reliable decision-making process.

Moreover, the technique addresses the notorious issue of catastrophic forget-
ting, a scenario where a network suddenly loses the information it previously
learned upon acquiring new knowledge. The averaged DQN, with its diverse
repository of estimators, ensures that the influence of any single update is ap-
propriately moderated. This preservation of knowledge across a spectrum of
learning stages fortifies the agent against abrupt losses of valuable information,
ensuring a more comprehensive and resilient learning journey.

The stabilization of the learning curve is another hallmark of the averaged

62

CHAPTER 7. AN ALTERNATIVE APPROACH: REINFORCEMENT LEARNING

DQN. By tempering the sharp swings and fluctuations in Q-value estimates
through its averaging process, the technique fosters a smoother and more pre-
dictable progression in learning. This stability is not just beneficial for the
consistency of policy improvement; it also instills a sense of reliability in the
learning outcomes, a quality that’s immensely valuable in environments where
decisions carry significant consequences.

Furthermore, averaged DQN inherently counters the tendency of Q-value
overestimation, a prevalent challenge in standard DQN setups. The averaging
process naturally offsets the extremes, ensuring that both overestimated and
underestimated Q-values are harmonized towards a more balanced estimation.
This balance is crucial, not just for the accuracy of value estimation but also for
maintaining a healthy equilibrium between exploration and exploitation. With
more stable and dependable Q-value estimates, the agent is less prone to being
swayed by erratic estimations of action values, promoting a more measured and
strategic approach to exploring the environment and capitalizing on the learned
knowledge.

In essence, the averaged DQN technique enriches the landscape of RL by
introducing a method that emphasizes stability, reliability, and a comprehen-
sive integration of learning experiences. By leveraging the collective insight of
multiple Q-value estimators, it paves the way for smoother learning trajectories,
fortified retention of knowledge, and more judicious decision-making, especially
in complex and dynamic environments where the clarity and dependability of
every learning step are paramount.

7.6.2 Dueling DQN

The DDQN technique (Wang et al., 2016 [11]) brings a nuanced approach to
learning in reinforcement learning scenarios, particularly distinguishing itself
from the traditional DQN through its unique architectural design. This archi-
tecture meticulously separates the estimation of two critical components: the
value of being in a given state, and the additional value derived from taking a
particular action in that state.

In a traditional DQN setup, the action value function (Q-value) for each
possible action in a given state is straightforwardly estimated. This approach is
denoted as 𝑄(𝑠, 𝑎) and doesn’t explicitly differentiate between the intrinsic value
of the state 𝑠 itself and the value of taking action 𝑎 in that state. The DDQN

63

7.6. THE DQN MODEL FOR DEPENDENCY PARSING

addresses this by splitting the network into two distinct streams beyond a shared
set of initial layers. One stream, known as the ”Value Stream”, is dedicated to
assessing the value of being in a particular state 𝑠, yielding 𝑉(𝑠). The other
stream, termed the ”Advantage Stream”, computes the advantage of each action
𝑎 in state 𝑠, represented as 𝐴(𝑠, 𝑎). This advantage quantifies how much better
it is to take a particular action compared to others on average.

The central idea behind the DDQN is to allow the estimation of the state’s
value to be decoupled from the advantages of individual actions, thereby en-
abling a more focused and potentially more accurate estimation of both. How-
ever, merging these two streams to get the final Q-value isn’t straightforward. A
naive addition of 𝑉(𝑠) and 𝐴(𝑠, 𝑎) could lead to identifiability issues, where the
same Q-value could be decomposed into multiple combinations of values and
advantages. To circumvent this, the combined Q-value is calculated by adding
the state value, 𝑉(𝑠), to the advantage of action 𝑎, 𝐴(𝑠, 𝑎), but then subtracting
the average advantage of all actions in state 𝑠, mathematically expressed as:

𝑄(𝑠, 𝑎) = 𝑉(𝑠) +
(
𝐴(𝑠, 𝑎) − 1

|𝐴| ·
∑
𝑎′

𝐴(𝑠, 𝑎′)
)

In this equation, 1
|𝐴| ·

∑
𝑎′ 𝐴(𝑠, 𝑎′) is the average advantage of all possible actions

in state 𝑠, ensuring that the advantages have a zero mean for each state. This
adjustment not only addresses the identifiability problem, but also stabilizes
the learning by keeping the estimation of state values consistent across different
actions.

The decomposition of Q-values into state values and action advantages brings
several theoretical and practical benefits. It helps the network to focus on what
really matters, distinguishing between the value of different states, and un-
derstanding the impact of each action within those states. The architecture
is particularly advantageous in scenarios where the choice of action does not
significantly affect the state’s outcome, allowing the model to spend more com-
putational resources on understanding the state’s value. On the other hand,
in situations where the choice of action is crucial, the network can effectively
distinguish the relative worth of each action, leading to more informed and
strategic decision-making.

In conclusion, the DDQN, with its dual-stream architecture, brings a so-
phisticated perspective to the estimation of Q-values in reinforcement learning.

64

CHAPTER 7. AN ALTERNATIVE APPROACH: REINFORCEMENT LEARNING

By separately and effectively estimating the value of states and the advantages
of actions, the DDQN enables a more nuanced, stable, and efficient learning
process, proving its worth in complex decision-making scenarios.

7.6.3 Proportional Prioritized Experience Replay

The Proportional Prioritized Replay Buffer (PPRB), introduced by Schaul et
al. (2015) [9], is a refined strategy in RL that optimizes the training of agents by
modifying the traditional methods of storing and retrieving experiences. This
technique emphasizes the importance of certain experiences over others during
the learning process, based on the premise that not all experiences contribute
equally to the agent’s learning progression.

Traditionally, experiences are stored in a replay buffer and are sampled uni-
formly at random when training the agent. However, this approach does not
differentiate between the experiences based on their value for learning. Some
experiences may occur rarely but provide significant insight into the environ-
ment, while others may be frequent yet offer limited new information. The PPRB
addresses this imbalance by assigning a priority to each experience, which is
reflective of its potential to improve the agent’s policy.

In this method, each experience is assigned a priority score based on the
magnitude of its TD error, denoted as 𝛿. The TD error is a measure of the
difference between the current estimated value of a state-action pair (Q-value)
and the improved estimate following an observed transition, calculated as

𝛿 = |𝑟 + 𝛾 ·max
𝑎′

𝑄(𝑠′, 𝑎′) −𝑄(𝑠, 𝑎)|.

Here, 𝑟 represents the reward received after taking action 𝑎 in state 𝑠, leading to
the next state 𝑠′, and 𝛾 is the discount factor that moderates the importance of
future rewards.

The probability of an experience being sampled is made proportional to its
priority. Specifically, if 𝑝𝑖 represents the priority of the 𝑖𝑡ℎ experience, then
the sampling probability 𝑃(𝑖) is given by 𝑃(𝑖) = 𝑝𝛼𝑖∑

𝑘 𝑝
𝛼
𝑘
. The exponent 𝛼 is a

hyperparameter that governs the level of prioritization, with 𝛼 = 0 yielding uni-
form random sampling and larger values increasing the focus on high-priority
experiences.

However, prioritizing experiences in this way introduces bias because it

65

7.6. THE DQN MODEL FOR DEPENDENCY PARSING

changes the distribution from which experiences are drawn. To correct for
this, Importance-Sampling (IS) weights are applied during the update of the

Q-values. The IS weight for the 𝑖𝑡ℎ experience is computed as 𝑤𝑖 =
(

1
𝑁 · 1

𝑃(𝑖)
)𝛽

,
where 𝑁 is the size of the replay buffer and 𝛽 is a hyperparameter that adjusts the
degree of bias compensation. With 𝛽 = 0, there is no compensation (resulting in
high bias), and with 𝛽 = 1, the compensation is full (leading to high variance).

To ensure that the sampling probabilities remain aligned with the potential
for learning, the priorities of experiences are updated after each learning step
based on the new TD errors. This dynamic adjustment of priorities ensures that
the sampling strategy continues to focus on the most informative experiences as
the agent’s policy evolves.

The PPRB offers numerous advantages. It fosters a more focused learning
approach, directing the agent’s attention to experiences that are expected to
provide the most valuable learning insights. This leads to improved sample
efficiency, as the agent can achieve better performance with fewer interactions by
revisiting critical experiences more frequently. The use of IS weights also helps
stabilize the learning process by preventing large updates from dominating
the agent’s learning trajectory. Furthermore, this technique ensures that rare
but pivotal experiences are not lost in the sea of more common occurrences,
providing a balanced learning environment that appreciates the significance of
every encounter in the complex landscape of the agent’s experience.

66

8
Results: part II

To develop our dynamic oracle with the DQN approach, we closely adhered
to the methodology outlined by Yu et al. (2018) [12] in their work on reinforce-
ment learning-based dynamic oracles. Our commitment in replicating their
framework was unwavering, however due to the absence of their original source
code, we autonomously took certain implementation decisions. This situation
led to the need for assumptions, particularly in tuning hyperparameters, which
were adjusted based on limited experimentation rather than extensive, system-
atic trials. These provisional choices highlight areas for in-depth analysis in
future research endeavors.

In this context, we provide an overview of both the DQN model and the
parser training process. Our discussion includes the strategies employed for
training the DQN model, focusing on the adjustments made in the absence of
specific details from the original study. Additionally, we elucidate the parser
training methodology, emphasizing how the DQN model integrates with and
enhances this process.

Concluding our discussion, we present an updated comparison (refer to Table
8.1) of the parser’s performance with different types of oracle. This compari-
son critically evaluates Arc-Standard parsers trained through imitation learning,
contrasting those that utilize ”classic” oracles against those leveraging the DQN
model. Our findings aim to shed a light on the effectiveness of the DQN-based
approach in improving parsing accuracy and efficiency, providing a compre-
hensive understanding of its impact compared to traditional methods.

67

8.1. TRAINING OF DQN MODEL AND PARSER

8.1 Training of DQN model and parser

The training procedure of the DQN model is detailed with a focus on handling
erroneous states in dependency parsing. The training involves random sampling
of training instances that capture erroneous states, which will be crucial in
ensuring the model learns proper recovery strategies. This is done through a
process which, besides following an 𝜖-greedy policy, consists in forking paths
with a certain probability by taking a random valid action. This way the model
can simulate parser errors, treating each forked path as a new episode starting
from the state after the forking action. To enhance sample efficiency, only the
first N states in each episode are considered.

This approach ensures that the model learns from all kinds of scenarios,
acquiring the knowledge of how to properly lead the parser through the po-
tential errors in parsing. The 𝜖-greedy policy, together with forking, simulates
a realistic parsing environment where deviations from the optimal path occur,
thus training the oracle to anticipate and correct for these deviations. This not
only strengthens the parsing system that results in the presence of errors, but
generally enhances the ability of recovery from mistakes and hence improves
parsing accuracy and efficiency.

The input features to the DQN are simple yet effective: binary indicators
represent the position of the gold head for the first ten tokens in both the stack
and the buffer. Additionally, binary features indicate whether the gold head
of a token is missed and whether all pending gold dependents of a token have
been collected. This is done to make sure that the DQN model is presented with
a distilled essence of the parsing configuration and can thus focus on learning
the optimum parsing actions without being overwhelmed by the complexity of
lexical data.

Furthermore, the inclusion of the five previous actions leading to the current
state and all valid actions in this state as part of the input features introduces
a dynamic element to the model, allowing it to consider both historical and
potential future actions in its decision-making process. This design choice not
only enhances the model’s ability to anticipate and recover from parsing errors,
but also enhances it with a sophisticated understanding of the parsing trajec-
tory, enabling it to navigate the complex landscape of dependency parsing with
greater finesse and strategic foresight.

The training process for the parser is relatively straightforward. After train-

68

CHAPTER 8. RESULTS: PART II

ing the oracle (DQN) to manage incorrect states or configurations, the parser’s
training follows an imitation learning approach, leveraging the expertise of the
DQN model: at each configuration both the parser and the oracle are required to
predict the next action. The parser produces a distribution probability across its
transitions, while the oracle’s prediction indicates the actual best move: through
the cross entropy loss computation and its backward propagation the neural net-
work modeling the parser is updated.

8.2 Performance

The performance outcomes achieved from our study align with the findings
presented by Yu et al. (2018) [12]. This comparison reveals that, while the reward
function employed by Yu and colleagues boasts a more universal application
(capable of training a single general oracle to support various parser types,
including Arc-Standard, Swap, Attardi, and Arc-Hybrid), our reward function
is tailor-made for the Arc-Standard parser and, theoretically, should deliver
superior performance for such parser. However, the expected enhancement in
performance was not fully realized in our results.

One plausible reason for this discrepancy, as we highlighted at the start of
this chapter, is the lack of a comprehensive hyperparameter tuning study in
our approach. The absence of meticulous optimization of the model’s hyper-
parameters might have hindered achieving the potential peak performance of
our parser. Identifying and addressing this gap through a focused hyperpa-
rameter optimization effort could significantly boost the model’s efficiency and
effectiveness.

Despite these challenges, the RL strategy we employed marks a promising
direction, especially for parsers that lack the arc decomposition property. As
previously mentioned, this feature is crucial for developing linear dynamic
oracles capable of handling non-projective sentences. Our RL-based approach
stands out as a viable alternative, demonstrating the potential of reinforcement
learning in enhancing parser frameworks that traditionally struggle with such
linguistic structures.

69

8.2. PERFORMANCE

Static oracle (only projective, no approximation) Non Deterministic oracle Dynamic oracle DQN (only projective) DQN (also non-projective)
en_lines 74.6 73.4 73.8 74.2 75.0
ko_kaist 70.0 66.3 65.3 71.5 73.1
grc_proiel 64.5 63.7 64.3 64.4 67.5
grc_perseus 41.7 44.4 47.1 48.2 49.3

Table 8.1: Comparison of UAS scores among ”classic” and RL-based oracles

70

9
Conclusions and Future Works

This thesis has embarked on a comprehensive exploration of transition-based
dependency parsing, delving into the intricacies of parser types, the role of
oracles, and the innovative application of RL to improve parsing strategies.
Through meticulous analysis and experimentation, this work has shed light on
the capabilities and limitations of various parsing systems, particularly focusing
on the Arc-Standard parser, and has highlighted the potential of RL in enhancing
dependency parsing performance.

The journey began with a detailed examination of Arc-Standard, Arc-Eager,
and Arc-Hybrid parsers, each presenting unique approaches to constructing
dependency trees. The subsequent discussion on static, non-deterministic, and
dynamic oracles underscored their crucial role in guiding parsers through op-
timal transitions. The introduction of RL, specifically through the DQN model,
marked a pivotal turn in this exploration, offering a self-learning mechanism
capable of navigating the challenges of non-projective dependency structures.

The application of the DQN model to the Arc-Standard parser, as detailed
in Chapter 7, has opened new avenues for parsing strategies. By harnessing
the power of deep neural networks and leveraging techniques such as averaged
DQN, dueling DQN and proportional prioritized experience replay, the DQN
model demonstrated its potential in accurately parsing complex linguistic struc-
tures. However, the full impact of RL on dependency parsing, particularly in
handling non-projective sentences, remains a promising field of exploration,
with encouraging initial results.

71

9.1. FUTURE DIRECTIONS

9.1 Future Directions

9.1.1 Expanding Reinforcement Learning Experiments

Future research could further explore the application of RL to dependency
parsing by conducting extensive experiments across a wider array of parser
types. This would not only validate the performance gains of the DQN model,
but also uncover challenges and opportunities for RL in parsing: if the RL
exploration-exploitation paradigm is actually superior to the one proposed in
”traditional” NLP literature for dynamic oracles, considerable improvements in
parsing accuracy could be obtained. Additionally, experimenting with other
RL algorithms, such as Proximal Policy Optimization (PPO) or Soft Actor-Critic
(SAC), could offer insights into the most effective RL approaches for dependency
parsing.

9.1.2 Incorporating Advanced Neural Network Architectures

Exploring advanced neural network architectures, such as transformers,
within the RL framework for dependency parsing, could significantly enhance
the model’s ability to understand and represent complex linguistic patterns.
This approach could leverage the self-attention mechanism to better capture
long-distance dependencies, almost certainly surpassing the performance of
our developed models.

9.1.3 Extensive Experiment with the Exact Dynamic Oracle for
the Arc-Standard Parser

A critical avenue for future research that was not explored in this thesis, due
to resource constraints, is conducting an extensive experimentation with the ex-
act dynamic oracle for the Arc-Standard parser. This testing would be essential
for establishing a robust baseline that can serve as a benchmark in evaluating
our models. The exact dynamic oracle, with its ability to provide the optimal
set of transitions for constructing dependency trees, represents the theoretical
best performance achievable under the Arc-Standard parsing framework. Im-
plementing and testing the exact dynamic oracle would not only validate the
effectiveness of the approximate dynamic oracle and other RL-based approaches

72

CHAPTER 9. CONCLUSIONS AND FUTURE WORKS

discussed in this thesis, but also highlight areas where these methods can be
further optimized. By understanding the performance gap between the exact
oracle and the proposed models, researchers would identify specific challenges
and opportunities for enhancing parsing accuracy, especially in dealing with
non-projective sentences.

9.2 Concluding Remarks

This thesis represents a first step in the formal application of RL to depen-
dency parsing, offering a new perspective on tackling the challenges inherent
in understanding natural language syntax. The exploration of dynamic oracles,
the integration of RL, and the preliminary experiments with the DQN model
have laid a solid foundation for future research in this exciting intersection of
NLP and RL.

As we consider the next steps, the directions we’ve proposed hold poten-
tial for enriching our understanding and effectiveness in dependency parsing,
contributing modestly to the broader field of NLP technologies. These avenues,
from conducting comprehensive experiments with dynamic oracles to exploring
the nuances of RL and the impact of non-projectivity, represent our commitment
to a deeper exploration of how machine learning can enhance our engagement
with human language. By embracing these opportunities for innovation and
research, we hope to contribute to the ongoing dialogue in NLP, understanding
that our efforts are but one part of a much larger community endeavor. It’s
through this collective pursuit of knowledge and the humble recognition of the
vast complexities of language that we can move forward, inch by inch, towards
more sophisticated and nuanced computational linguistics tools. Our journey is
ongoing, and each small step contributes to the gradual unveiling of the potential
machine learning holds in bridging the gap between computational processes
and the rich tapestry of human communication.

73

A
Code I

1 !pip install datasets

2 !pip install conllu

3

4 import torch

5 import torch.nn as nn

6 from functools import partial

7 from datasets import load_dataset

8

9 !pip install evaluate

10

11 import matplotlib.pyplot as plt

12 import numpy as np

13 import copy

14 import time

15 import random as rd

Code A.1: pip and import

1 # the function returns whether a tree is projective or not. It is

2 # currently implemented inefficiently by brute checking every pair

3 # of arcs.

4 def is_projective(tree):

5 for i in range(len(tree)):

6 if tree[i] == -1:

7 continue

8 left = min(i, tree[i])

9 right = max(i, tree[i])

10

75

11 for j in range(0, left):

12 if tree[j] > left and tree[j] < right:

13 return False

14 for j in range(left+1, right):

15 if tree[j] < left or tree[j] > right:

16 return False

17 for j in range(right+1, len(tree)):

18 if tree[j] > left and tree[j] < right:

19 return False

20

21 return True

22

23 # the function creates a dictionary of word/index pairs: our

24 # embeddings vocabulary threshold is the minimum number of

25 # appearance for a token to be included in the embedding list

26 def create_dict(dataset, threshold=3):

27 dic = {} # dictionary of word counts

28 for sample in dataset:

29 for word in sample[’tokens’]:

30 if word in dic:

31 dic[word] += 1

32 else:

33 dic[word] = 1

34

35 map = {} # dictionary of word/index pairs: our embedding list

36 map["<pad>"] = 0

37 map["<ROOT>"] = 1

38 map["<unk>"] = 2 #used for words that do not appear in our list

39

40 next_indx = 3

41 for word in dic.keys():

42 if dic[word] >= threshold:

43 map[word] = next_indx

44 next_indx += 1

45

46 return map

47

48 # split the dataset in training , validation and testing sets

49 train_dataset = load_dataset(’universal_dependencies’, ’en_lines’,

split="train")

50 dev_dataset = load_dataset(’universal_dependencies’, ’en_lines’,

split="validation")

51 test_dataset = load_dataset(’universal_dependencies’, ’en_lines’,

76

APPENDIX A. CODE I

split="test")

52

53 # build a dictionary counting the number of occurrences of each type

of the dataset

54 # and a list containing the number of word for each phrase

55 types = {}

56 phrase_lengths = []

57 for dataset in train_dataset , dev_dataset , test_dataset:

58 for s in dataset:

59 phrase_lengths.append(len(s[’tokens’]))

60 for t in s[’tokens’]:

61 types[t] = types.get(t, 0) + 1

62

63 # For unlabeled depedency parsing we only need the gold tree

64 train_dataset = [sample for sample in train_dataset if ’None’ not in

sample["head"]]

65 dev_dataset = [sample for sample in dev_dataset if ’None’ not in

sample["head"]]

66 test_dataset = [sample for sample in test_dataset if ’None’ not in

sample["head"]]

Code A.2: dataset management

1 class ArcStandard:

2 def __init__(self, sentence):

3 # Initialize the parser with the input sentence

4 self.sentence = sentence

5 # Create a buffer with indices for each word in the sentence

6 self.buffer = [i for i in range(len(self.sentence))]

7 # Initialize an empty stack for the parsing process

8 self.stack = []

9 # Initialize a list to store arcs with default -1 (no arc)

10 self.arcs = [-1 for _ in range(len(self.sentence))]

11

12 # Perform three shift operations to start the parsing process

13 self.shift()

14 self.shift()

15 # If the sentence has more than two words, perform a third shift

16 if len(self.sentence) > 2:

17 self.shift()

18

19 # Initialize the loss array for the stack (needed for exact

dynamic oracle)

20 self.loss = [0 for i in range(len(self.stack))]

77

21

22 def shift(self):

23 # Take the first item from the buffer and move it to the stack

24 b1 = self.buffer[0]

25 self.buffer = self.buffer[1:]

26 self.stack.append(b1)

27

28 def left_arc(self):

29 # Remove the second item from the stack and create an arc from it

to the top of the stack

30 o1 = self.stack.pop()

31 o2 = self.stack.pop()

32 self.arcs[o2] = o1

33 # Put the top item back on the stack

34 self.stack.append(o1)

35 # If the stack is too small and the buffer isn’t empty, perform a

shift

36 if len(self.stack) < 2 and len(self.buffer) > 0:

37 self.shift()

38

39 def right_arc(self):

40 # Remove the top item from the stack and create an arc to the

second item

41 o1 = self.stack.pop()

42 o2 = self.stack.pop()

43 self.arcs[o1] = o2

44 # Put the second item back on the stack

45 self.stack.append(o2)

46 # If the stack is too small and the buffer isn’t empty, perform a

shift

47 if len(self.stack) < 2 and len(self.buffer) > 0:

48 self.shift()

49

50 def is_tree_final(self):

51 # Check if the parsing is complete: one item on the stack and

buffer is empty

52 return len(self.stack) == 1 and len(self.buffer) == 0

53

54 def print_configuration(self):

55 # Print the current stack and buffer states along with loss and

arcs

56 s = [self.sentence[i] for i in self.stack] # Convert indices to

words for printing

78

APPENDIX A. CODE I

57 b = [self.sentence[i] for i in self.buffer] # Convert indices to

words for printing

58 print(s, b)

59 print(self.loss)

60 print(self.arcs)

Code A.3: Arc-Standard Parser

1 class StaticOracle:

2 def __init__(self, parser, gold_tree):

3 # Initialize the oracle with a parser instance and a gold parse

tree

4 self.parser = parser

5 self.gold = gold_tree

6

7 def is_left_arc_gold(self):

8 # Check if the left arc action is correct according to the gold

tree

9 s1 = self.parser.stack[-1] # Top of the stack

10 s2 = self.parser.stack[-2] # Second item from the top of the

stack

11

12 # If s2 is the parent of s1 in the gold tree, left arc is correct

13 return self.gold[s2] == s1

14

15 def is_right_arc_gold(self):

16 # Check if the right arc action is correct according to the gold

tree

17 s1 = self.parser.stack[-1] # Top of the stack

18 s2 = self.parser.stack[-2] # Second item from the top of the

stack

19

20 # If s1 is not the parent of s2, right arc is not correct

21 if self.gold[s1] != s2:

22 return False

23

24 # Check for any dependents of s1 to the right in the buffer

25 for i in self.parser.buffer:

26 if self.gold[i] == s1:

27 return False

28

29 # Right arc is correct if none of the above conditions are met

30 return True

31

79

32 def is_shift_gold(self):

33 # Check if the shift action is correct according to the gold tree

34 # Shifting is not possible if buffer is empty

35 if len(self.parser.buffer) == 0:

36 return False

37

38 # Shifting should not be done if a left or right arc is possible

39 if self.is_left_arc_gold() or self.is_right_arc_gold():

40 return False

41

42 # Shifting is correct if none of the above conditions are met

43 return True

Code A.4: Static Oracle

1 class ExactDynamicOracle:

2 def __init__(self, parser, gold_tree):

3 # Initialize the oracle with the parser and the gold parse tree

4 self.parser = parser

5 self.gold = gold_tree

6 # Compute the initial loss of the parser state compared to the

gold tree

7 self.current_cost = computeLoss(self.parser, self.gold)

8

9 def cost_left_arc(self):

10 # Calculate cost for left arc; return infinity if the transition

is illegal

11 if len(self.parser.stack) < 2 or (len(self.parser.stack) == 2 and

len(self.parser.buffer) != 0) or self.parser.stack[-2] == 0:

12 return float(’inf’)

13

14 # Create a deep copy of the parser to simulate the left arc

without affecting the original parser

15 fake_parser = copy.deepcopy(self.parser)

16 # Update loss if the left arc does not align with the gold tree

17 if self.gold[fake_parser.stack[-2]] != fake_parser.stack[-1]:

18 fake_parser.loss[-1] += 1

19 # Merge losses and perform the left arc

20 fake_parser.loss[-1] += fake_parser.loss.pop(-2)

21 fake_parser.left_arc()

22 # Compute the new cost and return the difference

23 new_cost = computeLoss(fake_parser , self.gold)

24 return new_cost - self.current_cost

25

80

APPENDIX A. CODE I

26 def cost_right_arc(self):

27 # Similar logic to cost_left_arc but for right arc transitions

28 if len(self.parser.stack) < 2 or (self.parser.stack[-2] == 0 and

len(self.parser.buffer) > 0):

29 return float(’inf’)

30

31 fake_parser = copy.deepcopy(self.parser)

32 if self.gold[fake_parser.stack[-1]] != fake_parser.stack[-2]:

33 fake_parser.loss[-2] += 1

34 if len(fake_parser.loss) > 2:

35 tmp = fake_parser.loss[-2] + fake_parser.loss[-1]

36 fake_parser.loss[-2] = tmp

37 else:

38 fake_parser.loss[0] += fake_parser.loss[1]

39

40 fake_parser.loss.pop()

41 fake_parser.right_arc()

42

43 new_cost = computeLoss(fake_parser , self.gold)

44

45 return new_cost - self.current_cost

46

47 def cost_shift(self):

48 # Calculate cost for shift; return infinity if the transition is

illegal

49 if len(self.parser.buffer) == 0:

50 return float(’inf’)

51

52 fake_parser = copy.deepcopy(self.parser)

53 fake_parser.shift()

54 fake_parser.loss.append(0)

55 new_cost = computeLoss(fake_parser , self.gold)

56

57 return new_cost - self.current_cost

58

59 def provideTransitionCosts(self):

60 # Provide costs for all types of transitions

61 return [self.cost_left_arc(), self.cost_right_arc(), self.

cost_shift()]

62

63 # Auxiliary functions for the Exact Dynamic Oracle

64 def computeLoss(parser, gold):

65 b = len(parser.stack)

81

66 gamma = parser.stack + parser.buffer

67 table = [[{} for _ in range(len(gamma))] for _ in range(len(gamma))

]

68

69 # Table initialization

70 j = 0

71 for i in range(len(gold)):

72 if parser.arcs[i] != -1:

73 continue

74 if j < b: # Initialize table entries for diagonal elements coming

from the stack

75 table[j][j] = {j: [parser.loss[j], i]}

76 j += 1

77 elif j < len(gamma) and j >= b: # Initialize table entries for

diagonal elements coming from the buffer

78 table[j][j] = {j: [0, i]}

79 j += 1

80

81 # Fill in the remaining table entries

82 for j in range(b - 1, len(gamma)):

83 for i in range(j, -1, -1):

84 fillTableEntry(table, i, j, gold)

85

86 return table[0][len(gamma) - 1][0][0]

87

88 def checkGold(head, dependent , gold):

89 if gold[dependent] == head:

90 return 0

91 else:

92 return 1

93

94 def fillTableEntry(table, i, j, gold):

95 for k in range(i, j): # Loop over possible split points in the

interval [i, j-1]

96 for key_left in table[i][k]:

97 for key_right in table[k+1][j]:

98 value_right = table[i][j].get(key_right , (float(’inf’), None)

)

99 value_left = table[i][j].get(key_left, (float(’inf’), None))

100

101 loss_left_arc = table[i][k][key_left][0] + table[k+1][j][

key_right][0] + checkGold(table[k+1][j][key_right][1], table[i][k

][key_left][1], gold)

82

APPENDIX A. CODE I

102 if value_right[0] == float(’inf’):

103 table[i][j][key_right] = [min(loss_left_arc , value_right

[0]), table[k+1][j][key_right][1]]

104 else:

105 table[i][j][key_right][0] = min(loss_left_arc , value_right

[0])

106 table[i][j][key_right][1] = table[k+1][j][key_right][1]

107

108 loss_right_arc = table[i][k][key_left][0] + table[k+1][j][

key_right][0] + checkGold(table[i][k][key_left][1], table[k+1][j][

key_right][1], gold)

109 if value_left[0] == float(’inf’):

110 table[i][j][key_left] = [min(loss_right_arc , value_left[0])

, table[i][k][key_left][1]]

111 else:

112 table[i][j][key_left][0] = min(loss_right_arc , value_left

[0])

113 table[i][j][key_left][1] = table[i][k][key_left][1]

Code A.5: Exact Dynamic Oracle

1 class DynamicOracle:

2 def __init__(self, parser, gold_tree):

3 # Initialize the oracle with a parser and gold parse tree

4 self.parser = parser

5 self.gold = gold_tree

6 # Track the previous action type and its cost

7 self.previous_action = [-1, 0]

8

9 def cost_left_arc(self):

10 # Cost for left arc transition; infinite if illegal

11 if len(self.parser.stack) < 2 or (len(self.parser.stack) == 2 and

len(self.parser.buffer) != 0) or self.parser.stack[-2] == 0:

12 return float(’inf’)

13

14 cost = 0

15 s1 = self.parser.stack[-1]

16 s2 = self.parser.stack[-2]

17

18 # Decrease cost for correct gold arc

19 if self.gold[s2] == s1:

20 cost -= 1

21

22 # Check remaining gold arcs in stack and buffer

83

23 for i in self.parser.stack + self.parser.buffer:

24 if self.gold[i] == s2 or self.gold[s2] == i:

25 cost += 1

26

27 # Adjust for previous shift

28 if self.previous_action[0] == 2:

29 cost -= self.previous_action[1]

30

31 return cost

32

33 def cost_right_arc(self):

34 # Cost for right arc transition; infinite if illegal

35 if len(self.parser.stack) < 2 or (self.parser.stack[-2] == 0 and

len(self.parser.buffer) != 0):

36 return float(’inf’)

37

38 cost = 0

39 s1 = self.parser.stack[-1]

40 s2 = self.parser.stack[-2]

41

42 # Decrease cost for correct gold arc

43 if self.gold[s1] == s2:

44 cost -= 1

45

46 # Check remaining gold arcs in stack and buffer

47 for i in self.parser.stack + self.parser.buffer:

48 if self.gold[i] == s1 or self.gold[s1] == i:

49 cost += 1

50

51 # Adjust for previous shift

52 if self.previous_action[0] == 2:

53 cost -= self.previous_action[1]

54

55 return cost

56

57 def cost_shift(self):

58 # Cost for shift transition; infinite if illegal

59 if len(self.parser.buffer) == 0:

60 return float(’inf’)

61

62 cost = 0

63 s1 = self.parser.stack[-1]

64

84

APPENDIX A. CODE I

65 # CASE 1: s1 has a right child; right child allows costless shift

66 for i in self.parser.buffer:

67 if self.gold[i] == s1:

68 return cost

69

70 # CASE 2: s1 is a right child without right children

71 if self.gold[s1] < s1:

72 b1 = self.parser.buffer[0]

73 sacrifice = 0

74 orphan = False

75 father = self.gold[b1]

76

77 # Search for a lost father to create an arc with s1

78 while not orphan and father != 0:

79 flag = father in self.parser.stack

80 if not (father in self.parser.buffer or flag):

81 orphan = True

82 if flag:

83 return 1

84 father = self.gold[father]

85

86 # Check for lost gold arcs

87 if orphan:

88 return 0

89

90 for i in self.parser.stack + self.parser.buffer:

91 if self.gold[i] == b1 or self.gold[b1] == i:

92 sacrifice += 1

93

94 # Check gold arcs involving s1

95 for i in self.parser.stack:

96 if self.gold[i] == s1 or self.gold[s1] == i:

97 cost += 1

98

99 return min(cost, sacrifice)

100

101 # CASE 3: s1 is a left child with no right children

102 for i in self.parser.stack:

103 if self.gold[i] == s1:

104 cost += 1

105

106 return cost

107

85

108 def provideTransitionCosts(self):

109 # Provide costs for all types of transitions

110 return [self.cost_left_arc(), self.cost_right_arc(), self.

cost_shift()]

Code A.6: Approximate Dynamic Oracle

1 # remove the non projective trees in the train dataset: we need to do

this if we use a static oracle or

2 # if we want to train the dynamic oracle only on projective sentences

and test it on non-projective ones to evaluate

3 # its the effectiveness.

4 train_dataset = [sample for sample in train_dataset if is_projective

([-1] + [int(head) for head in sample["head"]])]

5

6 # create the embedding dictionary

7 emb_dictionary = create_dict(train_dataset)

8

9 def process_sample(sample, get_gold_path = False):

10

11 # put sentence and gold tree in our format

12 sentence = ["<ROOT>"] + sample["tokens"]

13 gold = [-1] + [int(i) for i in sample["head"]] #heads in the gold

tree are strings, we convert them to int

14

15 # embedding ids of sentence words

16 enc_sentence = [emb_dictionary[word] if word in emb_dictionary else

emb_dictionary["<unk>"] for word in sentence]

17

18 return enc_sentence , sentence , gold

19

20 def prepare_batch(batch_data):

21 data = [process_sample(s) for s in batch_data]

22 # sentences , paths, moves, trees are parallel arrays, each element

refers to a sentence

23 enc_sentences = [s[0] for s in data] # input_ids

24 sentences = [s[1] for s in data] # sentences

25 trees = [s[2] for s in data] # gold_tree

26 return enc_sentences , sentences , trees

27

28 BATCH_SIZE = 32

29

30 bilstm_train_dataloader = torch.utils.data.DataLoader(train_dataset ,

batch_size=BATCH_SIZE , shuffle=True, collate_fn=partial(

86

APPENDIX A. CODE I

prepare_batch))

31 bilstm_dev_dataloader = torch.utils.data.DataLoader(dev_dataset ,

batch_size=BATCH_SIZE , shuffle=False, collate_fn=partial(

prepare_batch))

32 bilstm_test_dataloader = torch.utils.data.DataLoader(test_dataset ,

batch_size=BATCH_SIZE , shuffle=False, collate_fn=partial(

prepare_batch))

Code A.7: Preprocessig data

1 EMBEDDING_SIZE = 200

2 LSTM_SIZE = 200

3 LSTM_LAYERS = 2

4 MLP_SIZE = 200

5 DROPOUT = 0.2

6 EPOCHS = 15

7 LR = 0.001 # learning rate

8 PROBABILITY_THRESHOLD = 0.1

9

10 class BilstmParser(nn.Module):

11 def __init__(self, device):

12 super(BilstmParser , self).__init__()

13 # Initialize the device for computations and embedding layer

14 self.device = device

15 self.embeddings = nn.Embedding(len(emb_dictionary),

EMBEDDING_SIZE , padding_idx=emb_dictionary["<pad>"])

16

17 # Initialize bi-directional LSTM

18 self.lstm = nn.LSTM(EMBEDDING_SIZE , LSTM_SIZE , num_layers=

LSTM_LAYERS , bidirectional=True, dropout=DROPOUT)

19

20 # Initialize the feedforward layers

21 self.w1 = torch.nn.Linear(8*LSTM_SIZE , MLP_SIZE, bias=True)

22 self.activation = torch.nn.Tanh()

23 self.w2 = torch.nn.Linear(MLP_SIZE, 3, bias=True)

24 self.softmax = torch.nn.Softmax(dim=-1)

25

26 # Initialize dropout layer

27 self.dropout = torch.nn.Dropout(DROPOUT)

28

29 # Initialize hidden state

30 self.h = torch.zeros(1,1,1)

31

32 def forward(self, x, paths, flag_enc , flag_feat):

87

33 # Forward pass for the model

34 if flag_enc:

35 # Embedding layer and dropout applied to input

36 x = [self.dropout(self.embeddings(torch.tensor(i).to(self.

device))) for i in x]

37 # Run the bi-LSTM layer

38 self.h = self.lstm_pass(x) # size(longest_sentence , batch_size ,

features)

39

40 # Arrange inputs for the feedforward layers based on LSTM output

and paths

41 mlp_input = self.get_mlp_input(paths, self.h)

42

43 # Run the feedforward network to get action scores

44 out = self.mlp(mlp_input)

45

46 return out

47

48 def lstm_pass(self, x):

49 # Process inputs through the LSTM

50 x = torch.nn.utils.rnn.pack_sequence(x, enforce_sorted=False)

51 h, (h_0, c_0) = self.lstm(x)

52 h, h_sizes = torch.nn.utils.rnn.pad_packed_sequence(h) # size h:

(length_sentences , batch, output_hidden_units)

53 return h

54

55 def get_mlp_input(self, configurations , h):

56 # Prepare inputs for the MLP from LSTM outputs

57 mlp_input = []

58 zero_tensor = torch.zeros(2*LSTM_SIZE , requires_grad=False).to(

self.device)

59 # For each sentence in the batch

60 for i in range(len(configurations)):

61 # Concatenate LSTM outputs for the items in the configuration

62 mlp_input.append(torch.cat([zero_tensor if configurations[i][0]

== -1 else h[configurations[i][0]][i],

63 zero_tensor if configurations[i][1]

== -1 else h[configurations[i][1]][i],

64 zero_tensor if configurations[i][2]

== -1 else h[configurations[i][2]][i],

65 zero_tensor if configurations[i][3]

== -1 else h[configurations[i][3]][i]]))

66 mlp_input = torch.stack(mlp_input).to(self.device)

88

APPENDIX A. CODE I

67 return mlp_input

68

69 def mlp(self, x):

70 # Feedforward network to calculate scores

71 return self.softmax(self.w2(self.dropout(self.activation(self.w1(

self.dropout(x))))))

72

73 # Inference function to run the parser

74 def infere(self, x):

75 # Initialize parsers for each sentence

76 parsers = [ArcStandard(i) for i in x]

77

78 # Get embeddings for each sentence

79 x = [self.embeddings(torch.tensor(i).to(self.device)) for i in x]

80

81 # Run the LSTM

82 h = self.lstm_pass(x)

83

84 # Iterate until all sentences are parsed

85 while not self.parsed_all(parsers):

86 # Get current configurations and score the next moves

87 configurations = self.get_configurations(parsers)

88 mlp_input = self.get_mlp_input(configurations , h)

89 mlp_out = self.mlp(mlp_input)

90 # Take the next parsing step

91 self.parse_step(parsers, mlp_out)

92

93 # Return the predicted dependency trees

94 return [parser.arcs for parser in parsers]

95

96 def get_configurations(self, parsers):

97 # Generate configurations for each parser in the batch

98 configurations = []

99 for parser in parsers:

100 if parser.is_tree_final():

101 conf = [-1, -1, -1, -1]

102 else:

103 if len(parser.stack) == 0:

104 conf = [-1, -1, -1]

105 elif len(parser.stack) == 1:

106 conf = [-1, -1, parser.stack[-1]]

107 elif len(parser.stack) == 2:

108 conf = [-1, parser.stack[-2], parser.stack[-1]]

89

109 else:

110 conf = [parser.stack[-3], parser.stack[-2], parser.stack

[-1]]

111 if len(parser.buffer) == 0:

112 conf.append(-1)

113 else:

114 conf.append(parser.buffer[0])

115 configurations.append(conf)

116

117 return configurations

118

119 def parsed_all(self, parsers):

120 # Check if all parsers have completed parsing

121 for parser in parsers:

122 if not parser.is_tree_final():

123 return False

124 return True

125

126 # in this function we select and perform the next move according to

the scores obtained.

127 def parse_step(self, parsers, moves):

128 moves_argm = moves.argmax(-1)

129 for i in range(len(parsers)):

130 if parsers[i].is_tree_final():

131 continue

132 else:

133 if moves_argm[i] == 0:

134 if parsers[i].stack[-2] != 0:

135 parsers[i].left_arc()

136 else:

137 if len(parsers[i].buffer) > 0:

138 parsers[i].shift()

139 else:

140 parsers[i].right_arc()

141 elif moves_argm[i] == 1:

142 if parsers[i].stack[-2] == 0 and len(parsers[i].buffer)>0:

143 parsers[i].shift()

144 else:

145 parsers[i].right_arc()

146 elif moves_argm[i] == 2:

147 if len(parsers[i].buffer) > 0:

148 parsers[i].shift()

149 else:

90

APPENDIX A. CODE I

150 if moves[i][0] > moves[i][1]:

151 if parsers[i].stack[-2] != 0:

152 parsers[i].left_arc()

153 else:

154 parsers[i].right_arc()

155 else:

156 parsers[i].right_arc()

Code A.8: BiLSTM model

1 # Find the indices of the minimum value in nums

2 def find_min_indices(nums):

3 min_value = min(nums)

4 min_indices = [i for i, num in enumerate(nums) if num == min_value]

5 return min_indices

6

7 # Execute actions for each parser in context of the approximate

dynamic oracle

8 def execute(parsers, actions, oracles, costs):

9 for parser, action, oracle, cost in zip(parsers, actions, oracles,

costs):

10 if parser.is_tree_final():

11 continue

12 else:

13 if action == 0:

14 parser.left_arc()

15 oracle.previous_action = [0, cost[0]]

16 elif action == 1:

17 parser.right_arc()

18 oracle.previous_action = [1, cost[1]]

19 elif action == 2:

20 parser.shift()

21 oracle.previous_action = [2, cost[2]]

22

23 # Execute actions for each parser in context of the exact dynamic

oracle

24 def executeExactDynamicOracle(actions, parsers, gold_trees):

25 for parser, action, gold_tree in zip(parsers, actions, gold_trees):

26 if parser.is_tree_final():

27 continue

28 else:

29 if action == 0:

30 if gold_tree[parser.stack[-2]] != parser.stack[-1]:

31 parser.loss[-1] += 1

91

32 parser.loss[-1] += parser.loss.pop(-2)

33 parser.left_arc()

34

35 elif action == 1:

36 if gold_tree[parser.stack[-1]] != parser.stack[-2]:

37 parser.loss[-2] += 1

38 if len(parser.loss) > 2:

39 tmp = parser.loss[-2] + parser.loss[-1]

40 parser.loss[-2] = tmp

41 else:

42 parser.loss[0] += parser.loss[1]

43 parser.loss.pop()

44 parser.right_arc()

45

46 elif action == 2:

47 parser.loss.append(0)

48 parser.shift()

49

50 def choose_next_amb(iteration , transition , min_cost):

51 if transition in min_cost:

52 return transition

53 else:

54 return min_cost[rd.randint(0, len(min_cost) - 1)]

55

56 def choose_next_exp(iteration , transition , min_cost):

57 if iteration >= 1 and rd.random() > PROBABILITY_THRESHOLD:

58 return transition

59 else:

60 return choose_next_amb(iteration , transition , min_cost)

61

62 def parsed_all(parsers):

63 for parser in parsers:

64 if not parser.is_tree_final():

65 return False

66 return True

67

68 def evaluate(gold, preds):

69 total = 0

70 correct = 0

71

72 for g, p in zip(gold, preds):

73 for i in range(1,len(g)):

74 total += 1

92

APPENDIX A. CODE I

75 if g[i] == p[i]:

76 correct += 1

77

78 return correct/total

79

80 def train(model, dataloader , criterion , optimizer , epoch, device):

81 model.train()

82 total_loss = 0

83 count = 0

84 error_count = 0

85

86 # For each batch

87 for batch in dataloader:

88 # Extract sentence enconding , sentence itself and gold tree for

each sentence in the batch

89 enc_sentences , sentences , trees = batch

90 # Reset the gradient for the current batch

91 optimizer.zero_grad()

92 # Containers to store transitions scores and respective gold

labels

93 global_transitions_scores = []

94 global_gold_transitions = []

95

96 # Flag to tell the model whether to save the encodings and the

features tensor h for a new batch or not

97 flag_enc = True

98 # Initialize a parser and an oracle for each sentence in the

batch

99 parsers = [ArcStandard(s) for s in sentences]

100

101 # CHANGE ORACLE CLASS HERE

102 oracles = [DynamicOracle(parser, tree) for parser, tree in zip(

parsers, trees)]

103

104 # While each sentence hasn’t been fully parsed

105 while not parsed_all(parsers):

106

107 # Save configuration: later we’ll need the sequence of

configurations in order to associate each one to the correct

transition

108 configurations = []

109 for parser in parsers:

110 if parser.is_tree_final():

93

111 configurations.append([-1, -1, -1, -1])

112 else:

113 if len(parser.stack) == 0:

114 configurations.append([-1, -1, -1])

115 elif len(parser.stack) == 1:

116 configurations.append([-1, -1, parser.stack[-1]])

117 elif len(parser.stack) == 2:

118 configurations.append([-1, parser.stack[-2], parser.stack

[-1]])

119 else:

120 configurations.append([parser.stack[-3], parser.stack

[-2], parser.stack[-1]])

121 if len(parser.buffer) == 0:

122 configurations[-1].append(-1)

123 else:

124 configurations[-1].append(parser.buffer[0])

125

126 # The model produce the scores for each transition given the

current configuration

127 transitions_scores_tensor = model(enc_sentences , configurations

, flag_enc)

128 transitions_scores = transitions_scores_tensor.cpu().detach().

numpy()

129 flag_enc = False

130 # Cost of each transition for each current configuration

131 costs = [oracle.provideTransitionCosts() for oracle in oracles]

132

133 # Legal transitions for each current configuration

134 legal_moves = [[index for index, value in enumerate(cost) if

value != float(’inf’)] for cost in costs]

135

136 # Legal transition with higher score according to the model for

each current configuration

137 predicted_transition = [moves[np.argmax([scores[i] for i in

moves])] if not parser.is_tree_final() else -1 for scores, moves,

parser in zip(transitions_scores , legal_moves , parsers)]

138

139 # Collect the set of transitions with minimum cost for each

current configuration

140 min_cost_transitions = [find_min_indices(cost) for cost in

costs]

141

142 # Collect the best scoring transition among the ones with

94

APPENDIX A. CODE I

minimum cost for each current configuration

143 best_min_cost_transitions = [

144 max(

145 (score, i) for i, score in enumerate(scoring_quadruplet) if i

in min_cost_transition

146)[1]

147 for scoring_quadruplet , min_cost_transition in zip(

transitions_scores , min_cost_transitions)

148]

149

150 # Select a transition: the one predicted by the model or a

randomly chosen one from the set of minimum cost transitions

151 actual_transitions = [choose_next_exp(epoch,

predicted_transition[i], min_cost_transitions[i]) for i in range(

len(predicted_transition))]

152

153 # Check if the predicted transition is among the ones with

minimum cost: if not we need to update the model

154 for i, parser in enumerate(parsers):

155 if not parser.is_tree_final():

156 global_transitions_scores.append(transitions_scores_tensor[

i])

157 global_gold_transitions.append(best_min_cost_transitions[i

])

158

159 # Perform the decided transition

160 execute(parsers, actual_transitions , oracles, costs)

161 #executeExactDynamicOracle(actual_transitions , parsers, trees)

162

163 if len(global_transitions_scores) != 0:

164 global_transitions_scores = torch.stack(

global_transitions_scores).to(device)

165 loss = criterion(global_transitions_scores , torch.tensor(np.

array(global_gold_transitions)).to(device))

166 loss.backward()

167 optimizer.step()

168 total_loss += loss.item()

169 count +=1

170

171 return total_loss/count

172

173 def test(model, dataloader):

174 model.eval()

95

175

176 gold = []

177 preds = []

178

179 for batch in dataloader:

180 enc_sentences , sentences , trees = batch

181 with torch.no_grad():

182 pred = model.infere(enc_sentences)

183

184 gold += trees

185 preds += pred

186

187 return evaluate(gold, preds)

Code A.9: Training/testing functions

1 device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

2 print("Device:", device)

3 BiLSTM_model = BilstmParser(device)

4 BiLSTM_model.to(device)

5

6 criterion = nn.CrossEntropyLoss()

7

8 optimizer = torch.optim.Adam(BiLSTM_model.parameters(), lr=LR)

9

10 # lists to store losses and scores for later being put into the

graphs

11 bilstm_losses = []

12 bilstm_scores = []

13

14 start = time.time()

15

16 for epoch in range(EPOCHS):

17 avg_train_loss = train(BiLSTM_model , bilstm_train_dataloader ,

criterion , optimizer , epoch, device)

18 val_uas = test(BiLSTM_model , bilstm_dev_dataloader)

19

20 bilstm_losses.append(avg_train_loss)

21 bilstm_scores.append(val_uas)

22

23 print("Epoch: {:3d} | avg_train_loss: {:5.3f} | dev_uas: {:5.3f} |"

.format(epoch, avg_train_loss , val_uas))

24

25 end = time.time()

96

APPENDIX A. CODE I

26

27 # Save the trained model weights

28 torch.save(BiLSTM_model.state_dict(), ’bilstm_model_weights.pth’)

29

30 # minutes of training time

31 bilstm_training_time = (end - start)/60

Code A.10: Training loop

97

B
Code II

1 import os

2 import numpy as np

3 import random as rd

4 import torch as T

5 import torch.nn as nn

6 import torch.nn.functional as F

7 import torch.optim as optim

8

9 !pip install datasets

10 !pip install conllu

11

12 import torch

13 import torch.nn as nn

14 from functools import partial

15 from datasets import load_dataset

16

17 !pip install evaluate

18

19 import matplotlib.pyplot as plt

20

21 !pip install "stable-baselines3[extra]>=2.0.0a4"

22 import gymnasium as gym

23 from gymnasium import spaces

24 from stable_baselines3.common.env_checker import check_env

25 from stable_baselines3.common.env_util import make_vec_env

Code B.1: pip and import

99

1 # the function returns whether a tree is projective or not. It is

currently

2 # implemented inefficiently by brute checking every pair of arcs.

3 def is_projective(tree):

4 for i in range(len(tree)):

5 if tree[i] == -1:

6 continue

7 left = min(i, tree[i])

8 right = max(i, tree[i])

9

10 for j in range(0, left):

11 if tree[j] > left and tree[j] < right:

12 return False

13 for j in range(left+1, right):

14 if tree[j] < left or tree[j] > right:

15 return False

16 for j in range(right+1, len(tree)):

17 if tree[j] > left and tree[j] < right:

18 return False

19

20 return True

21

22 # the function creates a dictionary of word/index pairs: our

embeddings vocabulary

23 # threshold is the minimum number of appearance for a token to be

included in the embedding list

24 def create_dict(dataset, threshold=3):

25 dic = {} # dictionary of word counts

26 for sample in dataset:

27 for word in sample[’tokens’]:

28 if word in dic:

29 dic[word] += 1

30 else:

31 dic[word] = 1

32

33 map = {} # dictionary of word/index pairs. This is our embedding

list

34 map["<pad>"] = 0

35 map["<ROOT>"] = 1

36 map["<unk>"] = 2 #used for words that do not appear in our list

37

38 next_indx = 3

39 for word in dic.keys():

100

APPENDIX B. CODE II

40 if dic[word] >= threshold:

41 map[word] = next_indx

42 next_indx += 1

43

44 return map

45

46 train_dataset = load_dataset(’universal_dependencies’, ’en_lines’,

split="train")

47 dev_dataset = load_dataset(’universal_dependencies’, ’en_lines’,

split="validation")

48 test_dataset = load_dataset(’universal_dependencies’, ’en_lines’,

split="test")

49

50 # remove the non projective trees in the train dataset

51 #train_dataset = [sample for sample in train_dataset if is_projective

([-1] + [int(head) for head in sample["head"]])]

52

53 # create the embedding dictionary

54 emb_dictionary = create_dict(train_dataset)

55

56 def process_sample(sample, get_gold_path = False):

57

58 # put sentence and gold tree in our format

59 sentence = ["<ROOT>"] + sample["tokens"]

60 gold = [-1] + [int(i) for i in sample["head"]] #heads in the gold

tree are strings, we convert them to int

61

62 # embedding ids of sentence words

63 enc_sentence = [emb_dictionary[word] if word in emb_dictionary else

emb_dictionary["<unk>"] for word in sentence]

64

65 return enc_sentence , sentence , gold

66

67 def prepare_batch(batch_data):

68 data = [process_sample(s) for s in batch_data]

69 # sentences , paths, moves, trees are parallel arrays, each element

refers to a sentence

70 enc_sentences = [s[0] for s in data] # input_ids

71 sentences = [s[1] for s in data] # sentences

72 trees = [s[2] for s in data] # gold_tree

73 return enc_sentences , sentences , trees

74

75 BATCH_SIZE = 10

101

76

77 bilstm_train_dataloader = torch.utils.data.DataLoader(train_dataset ,

batch_size=BATCH_SIZE , shuffle=True, collate_fn=partial(

prepare_batch))

78 bilstm_dev_dataloader = torch.utils.data.DataLoader(dev_dataset ,

batch_size=BATCH_SIZE , shuffle=False, collate_fn=partial(

prepare_batch))

79 bilstm_test_dataloader = torch.utils.data.DataLoader(test_dataset ,

batch_size=BATCH_SIZE , shuffle=False, collate_fn=partial(

prepare_batch))

Code B.2: dataset management

1 class PrioritizedReplayBuffer():

2 def __init__(self, max_size, input_shape , alpha=0.9):

3 """

4 Initialize the Prioritized Replay Buffer.

5

6 Args:

7 max_size (int): The maximum size of the buffer.

8 input_shape (tuple): The shape of the inputs.

9 alpha (float): Determines how much prioritization is used,

with 0 corresponding to no prioritization.

10 """

11 self.mem_size = max_size

12 self.mem_cntr = 0

13 self.alpha = alpha # The exponent alpha determines how much

prioritization is used

14

15 # Initialize memory for states, actions, rewards, terminal flags,

and priorities

16 self.state_memory = np.zeros((self.mem_size, *input_shape), dtype

=np.float32)

17 self.new_state_memory = np.zeros((self.mem_size, *input_shape),

dtype=np.float32)

18 self.action_memory = np.zeros(self.mem_size, dtype=np.int64)

19 self.reward_memory = np.zeros(self.mem_size, dtype=np.float32)

20 self.terminal_memory = np.zeros(self.mem_size, dtype=np.uint8)

21 self.priority_memory = np.zeros(self.mem_size, dtype=np.float32)

+ 1e-5 # Initialize with small positive values

22 self.max_priority = 1.0 # Initial max priority

23

24 def store_transition(self, state, action, reward, state_, done):

25 """

102

APPENDIX B. CODE II

26 Store a transition in the buffer.

27

28 Args:

29 state: The state of the environment before the action.

30 action: The action taken.

31 reward: The reward received.

32 state_: The state of the environment after the action.

33 done: Whether the episode has ended.

34 """

35 index = self.mem_cntr % self.mem_size # Circular buffer

36

37 # Store the transition in the respective memory arrays

38 self.state_memory[index] = state

39 self.new_state_memory[index] = state_

40 self.action_memory[index] = action

41 self.reward_memory[index] = reward

42 self.terminal_memory[index] = done

43

44 # Assign the max priority seen so far to new experiences

45 self.priority_memory[index] = self.max_priority

46

47 self.mem_cntr += 1

48

49 def sample_buffer(self, batch_size , beta=0.5):

50 """

51 Sample a batch of transitions from the buffer.

52

53 Args:

54 batch_size (int): The size of the batch to sample.

55 beta (float): The exponent for adjusting the importance -

sampling weights.

56

57 Returns:

58 Tuple containing states, actions, rewards, next states,

terminals , indices of the sampled transitions , and the importance -

sampling weights.

59 """

60 # Determine the range of memory to sample from

61 num_sampled_elements = min(self.mem_cntr , self.mem_size)

62 priorities = self.priority_memory[:num_sampled_elements]

63

64 # Normalize priorities and convert to probabilities

65 scaled_priorities = np.power(priorities , self.alpha)

103

66 sample_probs = scaled_priorities / np.sum(scaled_priorities)

67

68 # Sample experiences based on probabilities

69 chosen_indices = np.random.choice(num_sampled_elements ,

batch_size , replace=False, p=sample_probs)

70

71 # Retrieve sampled experiences

72 states = self.state_memory[chosen_indices]

73 actions = self.action_memory[chosen_indices]

74 rewards = self.reward_memory[chosen_indices]

75 states_ = self.new_state_memory[chosen_indices]

76 terminal = self.terminal_memory[chosen_indices]

77

78 # Compute importance -sampling weights and adjust with beta

79 weights = np.power(self.mem_size * sample_probs[chosen_indices],

-beta)

80 weights /= np.max(weights) # Normalize for stability

81 weights = torch.tensor(weights, dtype=torch.float32).view(-1, 1)

Convert to tensor and reshape

82

83 return states, actions, rewards, states_, terminal,

chosen_indices , weights

84

85 def update_priorities(self, indices, priorities):

86 """

87 Update the priorities of the sampled transitions in a vectorized

manner.

88

89 Args:

90 indices (list or numpy.ndarray): Indices of the sampled

transitions.

91 priorities (list or numpy.ndarray): New priorities for the

sampled transitions.

92 """

93 # Ensure that no priority is set to exactly 0 by using np.maximum

, as a priority of 0 would mean a transition is never sampled.

94 # Adding a small value (1e-5) ensures all priorities are non-zero

and transitions have a chance of being sampled.

95 priorities = np.maximum(priorities , 1e-5)

96

97 # Update the priorities in a vectorized manner.

98 # This is generally faster and more efficient than a loop,

especially for large arrays.

104

APPENDIX B. CODE II

99 self.priority_memory[indices] = priorities

100

101 # Update the maximum priority with the largest priority in the

new set.

102 # This value is used to set the priority for new experiences (

ensuring they have a high chance of being sampled initially).

103 self.max_priority = max(self.max_priority , np.max(priorities))

Code B.3: Proportional Prioritized Replay Buffer

1 class DuelingDeepQNetwork(nn.Module):

2 def __init__(self, lr, n_actions , name, input_dims , chkpt_dir):

3 """

4 Initialize the Dueling Deep Q Network.

5

6 Args:

7 lr (float): Learning rate for the optimizer.

8 n_actions (int): Number of possible actions.

9 name (str): Name of the network, used in saving and loading

models.

10 input_dims (tuple): Dimensions of the input state.

11 chkpt_dir (str): Directory where the checkpoints (model weights

) are saved.

12 """

13 super(DuelingDeepQNetwork , self).__init__()

14 self.chkpt_dir = chkpt_dir

15 self.checkpoint_file = os.path.join(self.chkpt_dir , name)

16

17 # Define the first fully connected layer

18 self.fc1 = nn.Linear(*input_dims , 128)

19 # Define the layer for estimating the state-value function V

20 self.V = nn.Linear(128, 1)

21 # Define the layer for estimating the advantage function A

22 self.A = nn.Linear(128, n_actions)

23

24 # Set up the optimizer (Adam) and the loss function (Mean Squared

Error)

25 self.optimizer = optim.Adam(self.parameters(), lr=lr)

26 self.loss = nn.MSELoss()

27 # Define the device (use GPU if available)

28 self.device = T.device(’cuda:0’ if T.cuda.is_available() else ’

cpu’)

29 self.to(self.device)

30

105

31 def forward(self, state):

32 """

33 Perform a forward pass through the network.

34

35 Args:

36 state (torch.Tensor): The input state.

37

38 Returns:

39 V (torch.Tensor): The estimated state-value function.

40 A (torch.Tensor): The estimated advantage function.

41 """

42 flat1 = F.relu(self.fc1(state)) # Pass the state through the

first fully connected layer

43 V = self.V(flat1) # Compute the state-value function

44 A = self.A(flat1) # Compute the advantage function

45

46 return V, A

47

48 def save_checkpoint(self):

49 """

50 Save the model’s current state.

51 """

52 print(’...saving checkpoint...’)

53 T.save(self.state_dict(), self.checkpoint_file)

54

55 def load_checkpoint(self):

56 """

57 Load the model’s state from a saved checkpoint.

58 """

59 print(’...loading checkpoint...’)

60 self.load_state_dict(T.load(self.checkpoint_file))

Code B.4: Dueling Deep Q-Network

1 class Agent():

2 def __init__(self, gamma, epsilon, lr, n_actions , input_dims ,

mem_size, batch_size , eps_min=0.01, eps_dec=5e-7, replace=1000,

beta_start=0.5, beta_increment_per_sampling=0.001, beta_max=1.0,

chkpt_dir=’tmp/dueling_ddqn’):

3 """

4 Initialize the agent with given hyperparameters and network

parameters.

5

6 Args:

106

APPENDIX B. CODE II

7 gamma (float): discount factor for future rewards.

8 epsilon (float): initial exploration rate for epsilon-greedy

action selection.

9 lr (float): learning rate for updating the neural network.

10 n_actions (int): number of possible actions the agent can take.

11 input_dims (tuple): dimensions of the input features.

12 mem_size (int): size of the replay memory.

13 batch_size (int): number of experiences sampled from memory for

each learning step.

14 eps_min (float): minimum value for epsilon (exploration rate).

15 eps_dec (float): decrement value for epsilon after each episode

.

16 replace (int): number of steps after which the target network

weights are updated.

17 beta_start (float): initial value of beta for importance -

sampling weights.

18 beta_increment_per_sampling (float): increment value for beta

after each sampling.

19 beta_max (float): maximum value for beta.

20 chkpt_dir (str): directory where model checkpoints are saved.

21 """

22 # Initialize parameters

23 self.gamma = gamma

24 self.epsilon = epsilon

25 self.lr = lr

26 self.n_actions = n_actions

27 self.input_dims = input_dims

28 self.batch_size = batch_size

29 self.eps_min = eps_min

30 self.eps_dec = eps_dec

31 self.replace_target_cnt = replace

32 self.beta = beta_start

33 self.beta_increment_per_sampling = beta_increment_per_sampling

34 self.beta_max = beta_max

35 self.chkpt_dir = chkpt_dir

36 self.learn_step_counter = 0

37 self.action_space = [i for i in range(self.n_actions)]

38

39 # Initialize memory and Dueling DQNs for current and target

network

40 self.memory = PrioritizedReplayBuffer(mem_size, input_dims)

41 self.q_eval = DuelingDeepQNetwork(lr, n_actions , ’q_eval’,

input_dims , chkpt_dir)

107

42 self.q_next = DuelingDeepQNetwork(lr, n_actions , ’q_next’,

input_dims , chkpt_dir)

43

44 # Initialize variables for averaging network weights

45 self.average_q_eval_state_dict = None # To store the averaged

state dict of the Q_eval network

46 self.networks_counter = 0 # To count the number of networks

added to the average

47

48 def choose_action(self, observation):

49 """

50 Choose an action based on the current state and the epsilon-

greedy policy.

51

52 Args:

53 observation (np.array): the current state observation.

54

55 Returns:

56 action (int): the action chosen by the agent.

57 """

58 if np.random.random() > self.epsilon:

59 # Exploitation: choose the best action according to the network

’s output

60 state = T.tensor(np.array(observation), dtype=T.float32).to(

self.q_eval.device)

61 _, advantage = self.q_eval.forward(state)

62 action = T.argmax(advantage).item()

63 else:

64 # Exploration: choose a random action

65 action = np.random.choice(self.action_space)

66 return action

67

68 def store_transition(self, state, action, reward, state_, done):

69 """

70 Store a transition in the replay buffer.

71

72 Args:

73 state (np.array): the starting state.

74 action (int): the action taken.

75 reward (float): the reward received.

76 state_ (np.array): the next state after taking the action.

77 done (bool): whether the episode is finished.

78 """

108

APPENDIX B. CODE II

79 self.memory.store_transition(state, action, reward, state_, done)

80

81 def replace_target_network(self):

82 """

83 Update the target network by copying the weights from the

evaluation network.

84 This happens every ’replace_target_cnt’ learning steps.

85 """

86 if self.learn_step_counter % self.replace_target_cnt == 0:

87 self.q_next.load_state_dict(self.q_eval.state_dict())

88

89 def update_average_network(self, current_state_dict):

90 """

91 Update the running average of the Q_eval network weights.

92 This is intended to stabilize the training by smoothing out the

variations in the network weights over training steps.

93

94 Args:

95 current_state_dict (dict): state_dict of the current Q_eval

network.

96 """

97 self.networks_counter += 1

98 if self.average_q_eval_state_dict is None:

99 self.average_q_eval_state_dict = {k: v.clone().detach() for k,

v in current_state_dict.items()}

100 else:

101 new_average_q_eval_state_dict = {}

102 for key in self.average_q_eval_state_dict.keys():

103 new_average_q_eval_state_dict[key] = (

104 self.average_q_eval_state_dict[key] * (self.

networks_counter - 1)

105 + current_state_dict[key]

106) / self.networks_counter

107 self.average_q_eval_state_dict = new_average_q_eval_state_dict

108

109 def decrement_epsilon(self):

110 """

111 Decrement the epsilon value to reduce exploration over time.

112 """

113 self.epsilon = max(self.epsilon - self.eps_dec, self.eps_min)

114

115 def save_models(self):

116 """

109

117 Save the current and target network models.

118 """

119 self.q_eval.save_checkpoint()

120 self.q_next.save_checkpoint()

121

122 def load_models(self):

123 """

124 Load the saved models for the current and target networks.

125 """

126 self.q_eval.load_checkpoint()

127 self.q_next.load_checkpoint()

128

129 def learn(self):

130 """

131 The learning process for the agent. Samples a batch of

experiences and updates the network.

132 """

133 if self.memory.mem_cntr < self.batch_size:

134 return # Do not learn until enough samples are available

135

136 self.q_eval.optimizer.zero_grad()

137

138 # Update the target network and the average network at the

specified intervals

139 if self.learn_step_counter % self.replace_target_cnt == 0:

140 self.replace_target_network()

141 self.update_average_network(self.q_eval.state_dict())

142

143 # Sample a batch from the replay buffer

144 states, actions, rewards, states_, dones, indices, weights = self

.memory.sample_buffer(self.batch_size , self.beta)

145

146 states = T.tensor(states).to(self.q_eval.device)

147 actions = T.tensor(actions).to(self.q_eval.device)

148 dones = T.tensor(dones).to(self.q_eval.device)

149 rewards = T.tensor(rewards).to(self.q_eval.device)

150 states_ = T.tensor(states_).to(self.q_eval.device)

151 weights = weights.clone().detach().requires_grad_(True).to(self.

q_eval.device)

152

153 batch_indices = np.arange(self.batch_size)

154

155 # Load the averaged network weights for predicting the next Q-

110

APPENDIX B. CODE II

values

156 self.q_eval.load_state_dict(self.average_q_eval_state_dict)

157

158 V_s, A_s = self.q_eval.forward(states)

159 V_s_avg, A_s_avg = self.q_eval.forward(states_)

160

161 q_pred = T.add(V_s, (A_s - A_s.mean(dim=1, keepdim=True)))[

batch_indices , actions]

162 q_next = T.add(V_s_avg, (A_s_avg - A_s_avg.mean(dim=1, keepdim=

True)))

163 q_next[dones.bool()] = 0.0 # Set Q value of next state to 0 if

the episode ended

164 q_target = rewards + self.gamma * q_next[batch_indices , T.argmax(

A_s_avg, dim=1)]

165

166 # Compute loss, perform backpropagation , and update network

weights

167 loss = self.q_eval.loss(q_target, q_pred) * weights # Apply

importance -sampling weights

168 loss = loss.mean() # Average the loss over the batch

169 loss.backward()

170 self.q_eval.optimizer.step()

171

172 # Update learning step counter and epsilon

173 self.learn_step_counter += 1

174 self.decrement_epsilon()

175

176 # Increment beta, ensuring it doesn’t exceed beta_max

177 self.beta = min(self.beta + self.beta_increment_per_sampling ,

self.beta_max)

178

179 # Update the priorities in the replay buffer based on TD error

180 td_errors = (q_target - q_pred).detach().cpu().numpy()

181 new_priorities = np.abs(td_errors) + 1e-5 # Ensure priorities

are non-zero

182 self.memory.update_priorities(indices, new_priorities)

Code B.5: Agent

1 class ArcStandard:

2 def __init__(self, sentence, tree):

3 self.gold_tree = tree

4 self.sentence = sentence

5 self.buffer = [i for i in range(len(self.sentence))]

111

6 self.stack = []

7 self.arcs = [-1 for _ in range(len(self.sentence))]

8 self.prev_actions = [None, None, None, None, None]

9

10 # three shift moves to initialize the stack

11 self.shift()

12 self.shift()

13 if len(self.sentence) > 2:

14 self.shift()

15

16 self.loss = [0 for i in range(len(self.stack))]

17

18 def shift(self):

19 b1 = self.buffer[0]

20 self.buffer = self.buffer[1:]

21 self.stack.append(b1)

22 if len(self.prev_actions) == 5:

23 self.prev_actions.pop(0)

24 self.prev_actions.append(’shift’)

25

26 def left_arc(self):

27 o1 = self.stack.pop()

28 o2 = self.stack.pop()

29 self.arcs[o2] = o1

30 self.stack.append(o1)

31 if len(self.prev_actions) == 5:

32 self.prev_actions.pop(0)

33 self.prev_actions.append(’left_arc’)

34 if len(self.stack) < 2 and len(self.buffer) > 0:

35 self.shift()

36 if len(self.prev_actions) == 5:

37 self.prev_actions.pop(0)

38 self.prev_actions.append(’shift’)

39

40 def right_arc(self):

41 o1 = self.stack.pop()

42 o2 = self.stack.pop()

43 self.arcs[o1] = o2

44 self.stack.append(o2)

45 if len(self.prev_actions) == 5:

46 self.prev_actions.pop(0)

47 self.prev_actions.append(’right_arc’)

48 if len(self.stack) < 2 and len(self.buffer) > 0:

112

APPENDIX B. CODE II

49 self.shift()

50 if len(self.prev_actions) == 5:

51 self.prev_actions.pop(0)

52 self.prev_actions.append(’shift’)

53

54 def is_tree_final(self):

55 return len(self.stack) == 1 and len(self.buffer) == 0

56

57 def print_configuration(self):

58 s = [self.sentence[i] for i in self.stack]

59 b = [self.sentence[i] for i in self.buffer]

60 print(s, b)

61 print(self.arcs)

62

63 def get_valid_actions(self):

64 """

65 Determine the valid actions that can be taken from the current

state of the parser.

66

67 Returns:

68 list: A list of valid actions.

69 """

70 valid_actions = [’shift’, ’left_arc’, ’right_arc’]

71

72 # ’shift’ is not valid if the buffer is empty

73 if len(self.buffer) == 0:

74 valid_actions.remove(’shift’)

75

76 # ’left_arc’ is not valid if:

77 # 1. The stack has less than 2 elements

78 # 2. The stack has exactly 2 elements but the buffer is not empty

79 # 3. The second-to-last element on the stack is the root (0)

80 if len(self.stack) < 2 or (len(self.stack) == 2 and len(self.

buffer) != 0) or self.stack[-2] == 0:

81 valid_actions.remove(’left_arc’)

82

83 # ’right_arc’ is not valid if:

84 # 1. The stack has less than 2 elements

85 # 2. The second-to-last element on the stack is the root (0) and

the buffer is not empty

86 if len(self.stack) < 2 or (self.stack[-2] == 0 and len(self.

buffer) != 0):

87 valid_actions.remove(’right_arc’)

113

88

89 return valid_actions

90

91 def get_binary_features(self, N=10):

92 """

93 Construct the binary feature vector for the current state.

94 Each of the top 10 tokens from the stack and the first 10 tokens

from the buffer

95 will have their gold head position binary encoded using 5 bits,

and additional bits

96 indicating if the gold head is lost and if all dependents are

already collected.

97

98 Args:

99 N (int): The number of tokens from the stack and buffer to

consider.

100

101 Returns:

102 np.array: The binary feature vector representing the current

state.

103 """

104 # Initialize the binary feature vector

105 binary_features = []

106

107 # Get the top N tokens from the stack and the first N tokens from

the buffer

108 stack_elements = self.stack[-N:] if len(self.stack) >= N else

self.stack + [-1] * (N - len(self.stack))

109 buffer_elements = self.buffer[:N] if len(self.buffer) >= N else

self.buffer + [-1] * (N - len(self.buffer))

110

111 # Combine stack and buffer elements for easier indexing

112 combined_elements = stack_elements + buffer_elements

113

114 # Get the complete stack and buffer for checking if the gold head

is lost

115 complete_elements = self.stack + self.buffer

116

117 # Encode the position of the gold head for each element in

stack_elements and buffer_elements

118 for token_index in combined_elements:

119 if token_index == -1:

120 binary_features.extend([-1, -1, -1, -1, -1, -1, -1]) #

114

APPENDIX B. CODE II

Padding representation with 7 bits

121 else:

122 if token_index == 0:

123 binary_features.extend([1, 1, 1, 1, 1, 0] + [self.

has_collected_all_dependents(token_index)])

124 else:

125 gold_head = self.gold_tree[token_index]

126 gold_head_pos = combined_elements.index(gold_head) if

gold_head in combined_elements else -1

127 gold_head_lost = 1 if (self.gold_tree[token_index] not in

complete_elements and token_index != 0) else 0

128 all_dependents_collected = self.

has_collected_all_dependents(token_index)

129 if gold_head_pos == -1:

130 binary_features.extend([-1, -1, -1, -1, -1,

gold_head_lost , all_dependents_collected]) # Gold head is lost or

not in the 20 elements

131 else:

132 binary_features.extend([int(bit) for bit in self.

position_to_binary(gold_head_pos)] + [gold_head_lost ,

all_dependents_collected])

133 # Encode the last 5 (or fewer, with padding) actions leading to

this state

134 binary_features.extend(self.get_padded_prev_actions(self.

prev_actions))

135

136 # Encode all valid actions in this state

137 # Assuming ’get_valid_actions’ returns a list of valid actions in

the current state

138 valid_actions = self.get_valid_actions()

139 binary_features.extend([1 if action in valid_actions else 0 for

action in [’shift’, ’left_arc’, ’right_arc’]])

140

141 return np.array(binary_features)

142

143 def position_to_binary(self, pos, max_pos=20):

144 """

145 Convert a position to a 5-bit binary representation.

146 If the position is out of range (lost or not among the 20

elements), return ’00000’.

147

148 Args:

149 pos (int): The position to be converted.

115

150 max_pos (int): The maximum position value (20 for top 10 in

stack and first 10 in buffer).

151

152 Returns:

153 str: A 5-bit binary string representing the position.

154 """

155 if pos < 0 or pos >= max_pos:

156 return ’00000’

157 return format(pos, ’05b’)

158

159 def has_collected_all_dependents(self, first_common_parent):

160 for token in self.stack:

161 if self.gold_tree[token] == first_common_parent:

162 return 0

163

164 for token in self.buffer:

165 if self.gold_tree[token] == first_common_parent:

166 return 0

167

168 return 1

169

170 def action_to_binary(self, action):

171 """

172 Convert an action to its binary (one-hot encoded) representation.

173

174 Args:

175 action (str): The action to be converted.

176

177 Returns:

178 list: The binary representation of the action.

179 """

180 if action == ’left_arc’:

181 return [1, 0]

182 elif action == ’right_arc’:

183 return [0, 1]

184 elif action == ’shift’:

185 return [1, 1]

186 else: # For padding or unknown actions

187 return [0, 0]

188

189 def get_padded_prev_actions(self, prev_actions , max_prev_actions=5)

:

190 """

116

APPENDIX B. CODE II

191 Get the binary representations of previous actions, padded with

zeros if there are fewer than ’max_prev_actions’.

192

193 Args:

194 prev_actions (list): The list of the last few actions taken.

195 max_prev_actions (int): The maximum number of previous actions

to consider.

196

197 Returns:

198 list: A flattened list containing the binary representations of

previous actions, padded with zeros.

199 """

200 # Convert each previous action to its binary representation

201 binary_prev_actions = [self.action_to_binary(action) for action

in prev_actions]

202

203 # Calculate the number of actions to pad

204 num_padding = max_prev_actions - len(binary_prev_actions)

205

206 # Pad with vectors representing ’no action’

207 binary_prev_actions.extend([self.action_to_binary(None)] *

num_padding)

208

209 # Flatten the list of binary vectors into a single list

210 return [bit for action_bits in binary_prev_actions for bit in

action_bits]

Code B.6: Modified Arc-Standard

1 class DependencyParsingEnv(gym.Env):

2 metadata = {’render.modes’: [’human’]}

3

4 def __init__(self, sentence, tree, max_steps_per_episode=5):

5 super(DependencyParsingEnv , self).__init__()

6 self.sentence = sentence

7 self.tree = tree

8 self.parser = ArcStandard(sentence, tree)

9 self.previous_action = [-1, 0]

10 self.positive_reward = 1

11 self.current_step = 0

12 self.max_steps_per_episode = max_steps_per_episode

13

14 # Define action and observation space

15 self.action_space = spaces.Discrete(3)

117

16 self.observation_space = spaces.Box(low=-1, high=1, shape=(self.

parser.get_binary_features().shape[0],), dtype=np.float32)

17

18 def get_valid_actions(self):

19 valid_actions = self.parser.get_valid_actions()

20 valid_actions_indexes = []

21 if ’left_arc’ in valid_actions:

22 valid_actions_indexes.append(0)

23 if ’right_arc’ in valid_actions:

24 valid_actions_indexes.append(1)

25 if ’shift’ in valid_actions:

26 valid_actions_indexes.append(2)

27

28 return valid_actions_indexes

29

30 def step(self, action):

31 self.current_step += 1

32 valid_actions = self.get_valid_actions()

33 # Map the action to the parser’s functions

34 if action == 0 and action in valid_actions: # left_arc

35 self.parser.left_arc()

36 elif action == 1 and action in valid_actions: # right_arc

37 self.parser.right_arc()

38 elif action == 2 and action in valid_actions: # shift

39 self.parser.shift()

40

41 # Compute the reward for the current action

42 reward, _ = self.computeReward(self.parser.stack, self.parser.

buffer, self.parser.gold_tree , action, self.previous_action)

43

44 # Update the previous action

45 self.previous_action = [action, reward]

46

47 # Check if the episode (parsing of one sentence) is done

48 done = self.parser.is_tree_final()

49

50 # Check if max steps per episode is reached

51 truncated = False

52 if self.current_step >= self.max_steps_per_episode:

53 done = True

54 truncated = True

55

56 # Get the next state representation

118

APPENDIX B. CODE II

57 state = self.parser.get_binary_features().astype(np.float32)

58

59 # Additional info can be added if necessary

60 info = {}

61

62 return state, reward, done, truncated , info

63

64 def reset(self, seed=None, options=None):

65 # Reset the state of the environment to an initial state

66 self.parser = ArcStandard(self.sentence, self.tree)

67 self.previous_action = [-1, 0]

68 self.current_step = 0

69 observation = self.parser.get_binary_features().astype(np.float32

)

70 info = {} # Optional: can contain additional information

71 return observation , info

72

73 def render(self, mode=’human’, close=False):

74 # Render the environment to the screen

75 self.parser.print_configuration()

76

77 def computeReward(self, stack, buffer, gold_tree , action,

previous_action):

78 # LEFT_ARC

79 if action == 0:

80 if len(stack) < 2 or (len(stack) == 2 and len(buffer) != 0) or

stack[-2] == 0:

81 return -100, False

82 reward = 0

83 s1 = stack[-1]

84 s2 = stack[-2]

85

86 if gold_tree[s2] == s1:

87 reward += 2

88

89 for i in stack:

90 if gold_tree[i] == s2 or gold_tree[s2] == i:

91 reward -= 1

92

93 for i in buffer:

94 if gold_tree[i] == s2 or gold_tree[s2] == i:

95 reward -= 1

96

119

97 if previous_action[0] == 2:

98 reward -= previous_action[1]

99

100 if reward == 1:

101 reward = self.positive_reward

102

103 return reward, False

104 # RIGHT_ARC

105 elif action == 1:

106 if len(stack) < 2 or (stack[-2] == 0 and len(buffer) > 0):

107 return -100, False

108 reward = 0

109

110 s1 = stack[-1]

111 s2 = stack[-2]

112

113 if gold_tree[s1] == s2:

114 reward += 2

115

116 for i in stack:

117 if gold_tree[i] == s1 or gold_tree[s1] == i:

118 reward -= 1

119

120 for i in buffer:

121 if gold_tree[i] == s1 or gold_tree[s1] == i:

122 reward -= 1

123

124 if previous_action[0] == 2:

125 reward -= previous_action[1]

126

127 if reward == 1:

128 reward = self.positive_reward

129

130 return reward, False

131 # SHIFT

132 elif action == 2:

133 if len(buffer) == 0:

134 return -100, False

135

136 reward = 0

137 s1 = stack[-1]

138

139 for i in buffer:

120

APPENDIX B. CODE II

140 if gold_tree[i] == s1:

141 return self.positive_reward , False # a right child allows a

costless shift

142

143 # s1 is a right child without right children

144 if gold_tree[s1] < s1:

145 b1 = buffer[0]

146 sacrifice = 0

147 # search for a lost father so that we can create an arc

between s1 and the orphan node

148 orphan = False

149 father = gold_tree[b1]

150 while not orphan and father != 0:

151 flag = father in stack

152 if (father not in buffer and not flag):

153 orphan = True

154 if flag:

155 return -1, False

156 father = gold_tree[father]

157

158 if orphan:

159 return 0, False

160

161 for i in stack:

162 if gold_tree[i] == b1 or gold_tree[b1] == i:

163 sacrifice -= 1

164 for i in buffer:

165 if gold_tree[i] == b1 or gold_tree[b1] == i:

166 sacrifice -= 1

167

168 for i in stack:

169 if gold_tree[i] == s1 or gold_tree[s1] == i:

170 reward -= 1

171

172 if reward == 0:

173 return self.positive_reward , False

174

175 return max(reward, sacrifice), False

176

177 # s1 is a left child with no right children

178 for i in stack:

179 if gold_tree[i] == s1:

180 reward -= 1

121

181

182 if reward == 0:

183 reward = self.positive_reward

184 return reward, False

Code B.7: Dependency parsing environment

1 def evaluateSingleTree(gold, preds):

2 total = 0

3 correct = 0

4

5 for i in range(1,len(gold)):

6 total += 1

7 if gold[i] == preds[i]:

8 correct += 1

9

10 return correct/total

11

12 max_forked_episodes = 5

13 max_episode_length = 100

14 max_epochs= 30

15

16 agent = Agent(gamma=0.9, epsilon=1.0, lr=5e-4, n_actions=3,

input_dims=[153], mem_size=50000, batch_size=1000, eps_min=0.01,

eps_dec=1e-7, replace=100)

17

18 for epoch in range(max_epochs):

19 for batch_data in bilstm_train_dataloader:

20 enc_sentences , sentences , trees = batch_data

21 for enc_sentence , sentence , tree in zip(enc_sentences , sentences ,

trees):

22 for _ in range(max_forked_episodes):

23 env = DependencyParsingEnv(sentence, tree,

max_steps_per_episode=max_episode_length)

24 state = env.reset()[0]

25 for _ in range(max_episode_length):

26 action = agent.choose_action(state)

27 valid_actions = env.get_valid_actions()

28 if np.random.rand() < 0.05 and len(valid_actions) != 0: #

Forking probability

29 action = np.random.choice(valid_actions)

30 next_state , reward, done, truncated , _ = env.step(action)

31 agent.store_transition(state, action, reward, next_state ,

done)

122

APPENDIX B. CODE II

32 agent.learn()

33 state = next_state

34 if done or truncated:

35 break

36 if done:

37 break # No more forking if the true end of the sentence is

reached

38

39 count = 0

40 tot_loss = 0

41 for batch_data in bilstm_dev_dataloader:

42 enc_sentences , sentences , trees = batch_data

43 for enc_sentence , sentence , tree in zip(enc_sentences , sentences ,

trees):

44 env = DependencyParsingEnv(sentence, tree,

max_steps_per_episode=500)

45 state = env.reset()[0]

46 while not env.parser.is_tree_final():

47 action = agent.choose_action(state)

48 next_state , reward, done, truncated , _ = env.step(action)

49 state = next_state

50 if done or truncated or reward == -100:

51 count += 1

52 tot_loss = evaluateSingleTree(tree, env.parser.arcs)

53 break

54

55 # Print epoch summary

56 print(f’Epoch: {epoch}, UAS: {tot_loss/count}’)

Code B.8: DQN Training loop

123

References

[1] Oron Anschel, Nir Baram, and Nahum Shimkin. Averaged-DQN: Variance
Reduction and Stabilization for Deep Reinforcement Learning. 2017. arXiv:
1611.01929 [cs.AI].

[2] Lauriane Aufrant, Guillaume Wisniewski, and François Yvon. “Exploit-
ing Dynamic Oracles to Train Projective Dependency Parsers on Non-
Projective Trees”. In: Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language Technologies. Ed.
by ACL. ACL. New Orleans, United States, June 2018, pp. 413–419. url:
https://hal.science/hal-01813394.

[3] Miguel Ballesteros and Joakim Nivre. “Going to the Roots of Dependency
Parsing”. In: Computational Linguistics 39 (Mar. 2013), pp. 5–13. doi: 10.
1162/COLI_a_00132.

[4] Jason Eisner and G. Satta. “Efficient Parsing for Bilexical Context-Free
Grammars and Head Automaton Grammars”. In: Annual Meeting of the As-
sociation for Computational Linguistics. 1999. url:https://api.semanticscholar.
org/CorpusID:333410.

[5] Yoav Goldberg and Joakim Nivre. “A Dynamic Oracle for Arc-Eager De-
pendency Parsing”. In: Dec. 2012, pp. 959–976.

[6] Yoav Goldberg and Joakim Nivre. “Training Deterministic Parsers with
Non-Deterministic Oracles”. In: Transactions of the Association for Compu-
tational Linguistics 1 (Oct. 2013), pp. 403–414. issn: 2307-387X. doi: 10.
1162/tacl_a_00237. eprint: https://direct.mit.edu/tacl/article-
pdf/doi/10.1162/tacl_a_00237/1566681/tacl_a_00237.pdf. url:
https://doi.org/10.1162/tacl%5C_a%5C_00237.

125

https://arxiv.org/abs/1611.01929
https://hal.science/hal-01813394
https://doi.org/10.1162/COLI_a_00132
https://doi.org/10.1162/COLI_a_00132
https://api.semanticscholar.org/CorpusID:333410
https://api.semanticscholar.org/CorpusID:333410
https://doi.org/10.1162/tacl_a_00237
https://doi.org/10.1162/tacl_a_00237
https://direct.mit.edu/tacl/article-pdf/doi/10.1162/tacl_a_00237/1566681/tacl_a_00237.pdf
https://direct.mit.edu/tacl/article-pdf/doi/10.1162/tacl_a_00237/1566681/tacl_a_00237.pdf
https://doi.org/10.1162/tacl%5C_a%5C_00237

REFERENCES

[7] Dan Jurafsky and James H. Martin. Speech and language processing : an in-
troduction to natural language processing, computational linguistics, and speech
recognition. Upper Saddle River, N.J.: Pearson Prentice Hall, 2009. isbn:
9780131873216 0131873210. url: http : / / www . amazon . com / Speech -
Language-Processing-2nd-Edition/dp/0131873210/ref=pd_bxgy_

b_img_y.

[8] Eliyahu Kiperwasser and Yoav Goldberg. Simple and Accurate Dependency
Parsing Using Bidirectional LSTM Feature Representations. 2016. arXiv: 1603.
04351 [cs.CL].

[9] Tom Schaul et al. Prioritized Experience Replay. 2016. arXiv: 1511.05952
[cs.LG].

[10] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Intro-
duction. Second. The MIT Press, 2018. url: http://incompleteideas.
net/book/the-book-2nd.html.

[11] Ziyu Wang et al. Dueling Network Architectures for Deep Reinforcement Learn-
ing. 2016. arXiv: 1511.06581 [cs.LG].

[12] Xiang Yu, Thang Vu, and Jonas Kuhn. “Approximate Dynamic Oracle for
Dependency Parsing with Reinforcement Learning”. In: Jan. 2018, pp. 183–
191. doi: 10.18653/v1/W18-6021.

126

http://www.amazon.com/Speech-Language-Processing-2nd-Edition/dp/0131873210/ref=pd_bxgy_b_img_y
http://www.amazon.com/Speech-Language-Processing-2nd-Edition/dp/0131873210/ref=pd_bxgy_b_img_y
http://www.amazon.com/Speech-Language-Processing-2nd-Edition/dp/0131873210/ref=pd_bxgy_b_img_y
https://arxiv.org/abs/1603.04351
https://arxiv.org/abs/1603.04351
https://arxiv.org/abs/1511.05952
https://arxiv.org/abs/1511.05952
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
https://arxiv.org/abs/1511.06581
https://doi.org/10.18653/v1/W18-6021

Acknowledgments

Chi mi conosce bene sa che amo essere laconico: poche parole chiare e senza
fronzoli. Tuttavia, al termine di questo percorso, sento la necessità di esprimere
un profondo riconoscimento verso chi mi ha accompagnato finora, facendomi
crescere come persona e come studente.

Comincio con un profondo ringraziamento a Giorgio Satta, che non solo
ha saputo farmi da Virgilio durante questo lungo lavoro di tesi, ma che mi ha
anche guidato e consigliato per ciò che sarà il futuro, aiutandomi a dare forma
concreta alle mie vaghe aspirazioni. In lui ho trovato una passione coinvolgente
per il campo del NLP, che ora condivido, ed un vero e proprio mentore capace
di camminare sia davanti a me per guidarmi nella propria area di conoscenza,
sia al mio fianco nell’esplorare argomenti a lui nuovi. Grazie per la pazienza, la
disponibilità ed il sostegno che mi ha dimostrato.

Un ringraziamento speciale va anche a Gian Antonio Susto e a Niccolò Tur-
cato, che si sono prestati ad un progetto non propriamente nel loro campo di
ricerca e, cionondimeno, si sono sempre interessati al suo sviluppo con contributi
non indifferenti. Grazie per il tempo prezioso che mi avete dedicato.

Ringrazio Giacomo, Paolo e Marco con cui ho affrontato buona parte del mio
percorso universitario condividendo fatiche e successi: siete stati compagni di
viaggio insostituibili ed indispensabili. Vi auguro il meglio per i vostri percorsi,
ovunque vi portino.

Una calorosa riconoscenza va anche a Giuliano: un amico e un fratello che
ha saputo risollevarmi ed incoraggiarmi nei momenti più duri. Avere accanto
una persona del suo calibro è un onore e una fonte d’ispirazione più unica che
rara.

Infine un ultimo ringraziamento va alla mia famiglia: dai miei genitori,
Cinzia e Paolo, che mi hanno permesso di studiare fino ad ora senza farmi
mai mancare nulla, alla nonna Lindia, pilastro portante fin dalla mia nascita.

127

REFERENCES

Ringrazio anche quelli che purtroppo oggi non ci sono più: il nonno Igino e
gli zii Luana e Luciano mi hanno cresciuto come un figlio e non posso che
essere loro grato. Ultimi, ma non meno importanti, Elisa e Marco: grazie della
vostra compagnia, vedervi percorrere la vostra strada è uno dei miei più grandi
privilegi.

Pietro

128

	List of Figures
	List of Tables
	List of Algorithms
	List of Code Snippets
	List of Acronyms
	Introduction
	Natural Language Processing
	Dependency Parsing
	Dependency Formalisms
	Projectivity

	Background
	Transition Based Dependency Parsing
	Graph Based Dependency Parsing
	Sequence Based Dependency Parsing

	Parsers and Oracles
	The components of transition-based parsing
	Parser
	Arc-Standard
	Arc-Eager
	Arc-Hybrid

	Oracle
	Static
	Non-Deterministic
	Dynamic
	Summary

	Arc-Decomposition Property
	Arc-Eager parser
	Arc-Hybrid parser
	Arc-Standard parser

	Dynamic Oracle: Exact vs. Approximate
	Exact Dynamic Oracle
	Approximate Dynamic Oracle
	Leftarc and Rightarc
	Shift

	Results: part I
	Dataset
	Accuracy
	Performance

	An alternative approach: Reinforcement Learning
	Why apply Reinforcement Learning to Dependency Parsing?
	Markov Decision Processes
	Environment and Agent

	Generalized Policy Iteration
	EXAMPLE: Gridworld
	Approaches to GPI

	Deep Reinforcement Learning
	From Q-learning to the DQN model
	The DQN model for dependency parsing
	Averaged DQN
	Dueling DQN
	Proportional Prioritized Experience Replay

	Results: part II
	Training of DQN model and parser
	Performance

	Conclusions and Future Works
	Future Directions
	Expanding Reinforcement Learning Experiments
	Incorporating Advanced Neural Network Architectures
	Extensive Experiment with the Exact Dynamic Oracle for the Arc-Standard Parser

	Concluding Remarks

	Code I
	Code II
	References
	Acknowledgments

