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Introduction

Over the last 20 years, advances in determining the chemical composition of the Sun
have adversely affected the agreement between Standard Solar Models (SSMs) and he-
lioseismology, to the point where SSMs can no longer be made to agree with helio-
seismic constraints. Agreement with helioseismology could be restored by either in-
creasing atomic opacity at the bottom of the convection zone and decreasing it towards
the solar center by 30%, or by returning to older, higher metal abundances. Recently
Bailey et al. (2015) has showed how Fe opacity could be underestimated by some 60%
for conditions close to those of the bottom of the solar convective envelope, and how
increasing its value alone could resolve about half the discrepancy between SSMs and
helioseismology.
Even more recently Magg et al. (2022) have published a new high-Z solar chemical com-
position obtained considering new oscillator strengths for atomic calculations, which
gives a value of (Z/X)⊙ = 0.0225, close to the old 0.0230 of Grevesse and Sauval (1998).
Magg et al. claim that SSMs realized with this new composition are consistent with the
solar structure obtained from helioseismic observations, ruling out the need of an in-
crease of atomic opacities. The goal of this work is to investigate the effect of increasing
the Fe opacity on SSMs assuming Magg et al. (2022) chemical composition, calibrating
models computed with different opacity tables from the OPAL and TOPS projects and
trying to give an estimate for the Fe opacity values that best reproduce the helioseis-
mic constraints. A correction factor is applied to Fe monochromatic opacity prior to
the computation of the Rosseland mean opacity, and an MCMC technique is used to
calibrate SSMs and obtain the models that best reproduce the solar data.
This work is organized as follows. Chapter 1 provides a brief description of the Sun,
defining SSMs and their characteristics, and providing a short overview of helioseis-
mology and how it relates to solar structure. Chapter 2 presents the technique I used to
realize and calibrate the models and the results of this calibration, including the effects
of increasing Fe opacity and introducing non-zero envelope overshooting in modeling
the Sun. Chapter 3 shows how well the considered models behave in reproducing the
measured solar neutrino flux, including considerations for the effects of the reaction
rates used in neutrino-producing reactions. Finally, Chapter 4 concludes the analysis,
presenting the models that best describe solar data.
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Chapter 1

Standard Solar Models

The Sun is our closest star. This means its properties are easier to observe and deter-
mine than those of farther stars, making it the ideal candidate for testing stellar models.
Standard Solar Models (SSMs) represent a simplified physical description of the Sun; in
their framework one can draw predictions on the properties of the Sun, which are to be
tested against observations. Despite the many approximations SSMs use, they provide
a quite successful description of many properties of the Sun, allowing to get informa-
tion both about its photospheric properties and its internal structure. The solar interior
can also be investigated by studying the frequency and oscillations of acoustic waves re-
verberating through it; this goes under the name of helioseismology. Until recent years
SSMs predictions and the properties inferred by helioseismology have shown excellent
agreement, confirming the validity of the SSM. However, in the last twenty years the
concordance between SSMs and helioseismology was altered by new determinations
of solar photospheric abundances by Asplund et al. (2005) using new time-dependent
3D radiation hydrodynamic (3D-RHD) models for stellar atmospheres. These newly
determined abundances are lower than the previously commonly adopted Grevesse
and Sauval (1998) abundances. Adopting these new abundances in SSMs led to loose
the previous agreement with helioseismic data. The discrepancy between helioseismic
results and SSMs is often called the solar abundance problem and is still an open prob-
lem of modern astrophysics. Although yet unresolved, the solar abundance problem
has motivated further investigation on the physical inputs of solar models, in particular
on the improvement of nuclear reaction rates, on theoretical and experimental determi-
nation of radiative opacities and on the appropriate equation of state to describe solar
interiors.

1.1 Overall properties of the Sun

Many of the properties of the Sun are known with high precision thanks to observa-
tions, without the need of modeling its structure.
The age of the Sun t⊙ can be determined by studying the age of meteorites, together
with models for the formation and the evolution of the solar system. Guenther (1989)
determined an age of t⊙ = (4.49 ± 0.04)× 109 yr. Guenther also showed that, although
the commonly used solar age for SSMs at that time was 4.7 × 109 yr, the calibrated pa-
rameters of the model were not significantly modified by that small age difference. The
value proposed by Guenther was later revised to t⊙ = (4.566 ± 0.005)× 109 yr (Bahcall
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1. STANDARD SOLAR MODELS

et al., 1995, appendix). Stellar evolution models suggest that the Sun is now halfway
through its life, and will remain in the main sequence for roughly another 4.5 × 109 yr.
The mass of the sun M⊙ can be determined thanks to the study of planetary motion:
the product GM⊙ can be calculated from Kepler’s third law, so that the accuracy limit
for M⊙ is set by how precisely the gravitational constant G is known. The nowadays
commonly used value is M⊙ = 1.989 × 1033 g. We know the mass of the Sun varies
during its life because of mass loss through stellar winds; the estimated mass loss rate
is roughly Ṁ⊙ ≃ 10−14 M⊙/yr, with no significant change during the main sequence,
so the solar mass can be taken as approximately constant, at least during the main se-
quence.
The solar radius R⊙ can be determined from the apparent diameter of the Sun knowing
Sun-Earth distance, or by transit and eclipse measurements. Recent solar models have
used R⊙ = 6.9598 × 1010 cm (Guenther et al., 1992).
The solar luminosity L⊙ is determined from solar radiance measurements by satellites
(e.g. Willson and Hudson, 1991). The usually adopted value is L⊙ = 3.846 × 1033 erg/s
(Guenther et al., 1992).
From the determination of the luminosity and the radius of the Sun one can easily eval-
uate its effective temperature Teff,⊙, which is the temperature of a black body radiating
the same energy flux at the surface of the star, and is a good measure of the temper-
ature of the photosphere. It follows that the luminosity, the radius and the effective
temperature are linked by Stefan-Boltzmann law,

L = 4πR2σT4
eff, (1.1)

σ being Stefan-Boltzmann constant. With the values previously stated for the luminos-
ity and the radius, the effective temperature of the Sun is Teff,⊙ = 5778 K.

1.2 Solar chemical composition

Determining the chemical abundance of elements in the Sun usually requires a spec-
troscopic analysis of the solar photosphere. Such a determination needs to be coupled
with detailed models of the solar photosphere and with radiative transfer calculations,
in order to link chemical abundances to the intensity and the shape of lines and to the
position where they form in the photosphere. The introduction of 3D-RHD models for
the photosphere and of non-local thermodynamic equilibrium calculations for line for-
mation led to a revision downward for many abundances. A detailed review of the
most used chemical compositions and their relation with the solar abundance problem
can be found in Serenelli (2016). Table 1.1 shows the photospheric abundances deter-
mined by different authors through the years: Grevesse and Sauval (1998, hereafter
GS98), Asplund et al. (2009, hereafter AGSS09), Caffau et al. (2011, hereafter C11), As-
plund et al. (2021, hereafter AAG21) and Magg et al. (2022, hereafter MBSS22). The
last row of the table shows the photospheric hydrogen-to-metal ratio (Z/X)⊙ at the
present day for each chemical composition. AGSS09 is a revision of the abundances
given by Asplund et al. (2005) a few years before. Photospheric abundances are given
in the so-called astronomical scale, i.e. normalized to the hydrogen number density as

A(El.) = log ǫ(El.) = log
n(El.)
n(H)

+ 12, (1.2)
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1.2. Solar chemical composition

Table 1.1. Solar photospheric composition for different authors for most relevant metals. Abun-
dances given in the astronomical scale A(El.) = log [n(El.)/n(H)] + 12 as discussed in the text.

Element GS98 AGSS09 C11 AAG21 MBS22

C 8.52 8.43 8.50 8.46 8.56
N 7.92 7.83 7.86 7.83 7.98
O 8.83 8.69 8.76 8.69 8.77

Ne 8.08 7.93 8.05 8.06 8.15
Mg 7.58 7.60 7.54 7.55 7.55
Si 7.55 7.51 7.52 7.51 7.59
S 7.33 7.13 7.16 7.12 7.16

Fe 7.50 7.50 7.52 7.46 7.50

(Z/X)⊙ 0.0230 0.0180 0.0209 0.0187 0.0225

where log n(H) = 12. GS98 represents the old high-Z chemical composition, while the
introduction of 3D-RHD models led to lower metal abundances, like those of AGSS09
and C11, hence the name of low-Z chemical composition. AGSS09 is one of the most
used chemical compositions for the Sun. It has abundances > 30% lower than those
of GS98. C11 has CNO abundances which are intermediate between those of GS98
and AGSS09, obtained via 3D-RHD independent models. The latest revision of spec-
troscopic results AAG21 shows results similar to AGSS09. MBS22 is a new solar com-
position obtained combining new up-to-date solar observational data, non-local ther-
modynamic equilibrium modeling, different atmospheric models and new oscillator
strengths for atomic transitions. Interestingly the calculations predict a value of (Z/X)⊙
which is higher than previous models (26% higher than AGSS09, 10% higher than C11),
comparable with the old value obtained by GS98 (1% difference). However, this agree-
ment is just a numerical coincidence since the internal distribution of metals is different.
For example, MBS22 O abundance is 15% lower than GS98, while Si abundance is 10%
higher.
Along with photospheric determinations, many refractory elements can be precisely
determined from chondritic CI meteorites, which are representative of the average cos-
mic matter the solar system formed from (see Lodders et al., 2009). Refractory elements
constitute up to 20% of the total metal abundance in stars and are particularly important
for their contribution to the radiative opacity in solar interiors. Meteoritic abundances
have remained robust through the years, while the spectroscopic ones slowly evolved
towards the meteoritic values. This seems to suggest that meteoritic determinations are
more accurate, and indeed usually one combines meteoritic abundances for refractories
and photospheric abundances for volatile elements in building SSMs.
Meteoritic abundances are usually given in the so-called cosmochemical scale, meaning
they are normalized to the Si number density. Matching the cosmochemical scale and
the astronomical scale then requires an anchor point between the two. This is usually
done by setting the Si abundance to be equal on both scales. So meteoritic abundances
in the astronomical scale can be found as

A(El.) = c + log n(El.), (1.3)
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1. STANDARD SOLAR MODELS

where c is a constant to be found imposing the value for A(Si) to match the photo-
spheric value, with n(Si) = 106.
Uncertainties on photospheric abundances are difficult to quantify, since they depend
on the details of the atmospheric models involved and on the selection of spectral lines,
and are thus to be taken as indicative. On the other hand uncertainties on meteoritic
abundances are smaller and much less prone to systematic errors, since no modeling is
involved in this case. This again reinforces the idea that meteoritic abundances should
be used in constructing solar models, when available.

1.3 Solar structure and evolution

Before describing the physics involved in SSMs, it is useful to remember that they are
built on some key assumptions.

• The Sun is considered to be isolated in space, so that its evolution is fully deter-
mined by its intrinsic properties, such as the mass and the initial composition.

• The model is considered to be spherically symmetric. Spherical symmetry is
prompted by self-gravity and is usually a good approximation, but deviations
may arise because of non-central forces, like those originating from rotation and
magnetic fields. The Sun is known to exhibit many features due to magnetic fields
(see Schrijver and Zwaan, 2000), but the field strength is negligible when com-
pared to gravity. Rotation can be more important, in particular because it also
induces rotational mixing, and there is a lot of evidence about the rotation of the
Sun (e.g. Beck, 2000). However, for the Sun rotational forces are again small com-
pared to gravity.

• The Sun is assumed to have formed with homogeneous chemical composition,
a reasonable assumption since the molecular clouds out of which stars form are
well-mixed.

Once these assumptions are made, a SSM is a solution of the basic equations of stellar
structure, which are

∂r

∂m
=

1
4πr2ρ

, (1.4)

∂P

∂m
= − Gm

4πr4 , (1.5)

∂l

∂m
= ǫnuc − ǫν − T

∂s

∂t
, (1.6)

∂T

∂m
= − Gm

4πr4

T

P
∇. (1.7)

Here r is the radial distance from the center, m is the mass enclosed by a sphere of ra-
dius r, ρ is the density, P is the pressure, T is the temperature, l is the local luminosity
(i.e. the energy per unit time emitted by a sphere of radius r), ǫnuc is the energy per unit
time generated by nuclear reactions, ǫν is the energy per unit time lost because of neu-
trinos, s is the specific entropy (i.e. the entropy per unit mass) and ∇ = d ln T/d ln P is
the temperature gradient.
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1.3. Solar structure and evolution

Equation (1.4) represents mass conservation, and establishes the equivalence between
Eulerian coordinates, with the distance from the center expressed as r, and Lagrangian
coordinates, with the distance from the center characterized by m(r) =

∫ r
0 4πr2ρ dr.

Equation (1.5) is the hydrostatic equilibrium equation, representing the balance be-
tween gravitational forces and pressure forces.
Equation (1.6) is instead an energy balance equation: the nuclear energy rate equili-
brates the energy loss from a sphere of mass m, once neutrino losses are subtracted
from this energy. The specific entropy term takes into account quasi-static gravitational
readjustments due to heat transfer.
Equation (1.7) describes the transfer of energy from the center to the surface. The tem-
perature gradient ∇ depends on the physical mechanism responsible for energy trans-
port being radiation, in which case the radiative temperature gradient ∇rad is used,
or convection, in which case the real temperature gradient ∇ is used. When radiative
transfer is the main energy transport mechanism the temperature gradient sollows the
radiative one, which is given by

∇rad =
3

16πacG

κP

T4

l

m
, (1.8)

where a is the radiation density constant, c is the speed of light and κ is the opacity, a
key parameter describing the interaction of light with matter defined so that the mean
free path of photons is ℓph = 1/κρ. The opacity has different contributions from the
different physical processes via which radiation interacts with matter (see Section 1.3.1).
On the other hand when convection is the main mechanism responsible for energy
transfer one needs to specify a prescription for the description of convective transfer.
The onset of convection as the main energy transfer mechanism instead of radiative
diffusion is usually given by Schwarzschild criterion: regions where ∇rad < ∇ad, with
∇ad = (∂ ln T/∂ ln P)s is the adiabatic temperature gradient, the derivative taken at
constant entropy, are stable against convection. When ∇rad > ∇ad convection sets on,
becoming more efficient than radiative diffusion in transporting energy. In this case it
is fundamental to describe the temperature gradient ∇, and in particular the so-called
superadiabaticity ∇−∇ad, giving the deviations of the temperature gradient from the
adiabatic one. The condition ∇rad > ∇ad can be satisfied in regions where a large
energy flux l/m is produced, like in the center of massive stars, or in regions where
the opacity κ is high and the temperature T is low, like in the outer regions close to the
surface. This is the case for the Sun, which has a convective layer extending from its
surface up to a radial coordinate of 0.713 R⊙ (Basu and Antia, 1997).
Equations (1.4) to (1.7) determine the structure of the model, while the time evolution
is governed by a fifth equation for the chemical composition, which is

∂Xi

∂t
=

Aimu

ρ

[

−∑
j

(

1 + δij

)

rij + ∑
k

∑
l

rkl,i

]

+ mixing terms. (1.9)

Here Xi is the mass fraction of the i-th species, Ai its atomic mass, mu is the atomic
mass unit and rij and r : kl, i are nuclear reaction rates. The first term in square brackets
takes into account all the reactions depleting the species i as i + j → products, while
the second one is the sum over all the reactions producing the species i as k + l → i +
other products. This equation can be complicated by the mixing term, which takes into
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1. STANDARD SOLAR MODELS

account other mixing processes such as turbulence, diffusion and settling (see Proffitt
and Michaud, 1991).
The five equations are non-linear and coupled, so they must be solved together using
using numerical procedures. The SSM is the solution of these equations at the present
day age of the Sun t⊙. Such a solution depends on the initial conditions of the model,
in particular on the initial composition, usually described via Zini and Yini, and from
Xini + Yini + Zini = 1 the composition is fully determined. The standard procedure to
obtain a SSM is to treat Yini and Zini as free parameters of the model together with the
mixing length parameter α used to describe convection (see Section 1.3.2), and calibrate
the model to reproduce the solar luminosity L⊙, effective temperature Teff,⊙ and surface
composition at the present day age of the Sun t⊙. Roughly speaking α is related to Teff,⊙,
Yini to L⊙ and Y⊙ and Zini to (Z/X)⊙, although the three adjustable parameters depend
on all the observational constraints and are thus correlated.
In order to solve eqs. (1.4) to (1.7) and (1.9) one needs to specify the underlying physics
giving prescriptions for the quantities appearing on the right-hand sides as functions
of P, T and the composition Xi. The main input physics needed to solve the equations
is discussed below.

1.3.1 Equation of state and opacity

Equations (1.4) and (1.5) can be solved when coupled with an Equation of State (EoS)
describing the pressure P as a function of the density ρ, the temperature T and the
chemical composition Xi. The computation of the EoS requires to describe the state
of all the main particle species (atoms, ions, molecules, electrons, etc.), following their
abundance and evolution. The different particle species have also impact on the calcu-
lation of the radiative opacity κ, which depends on the population of all electron energy
levels that contribute significantly to photoabsorption and photon scattering in the ma-
terial, and is then directly linked to the EoS.
There are two different formulations commonly used for the EoS: the first one is the
so-called physical picture, which treats all the different particles such as electrons and
nuclei as distinct, and looks at the electric interaction between them. In this way en-
vironmental effects are included naturally, since the interactions lead to the formation
of clusters of particles representing ions, atoms and molecules interacting with the en-
vironment. The most used description of the EoS in the physical picture is that of the
OPAL project (Iglesias and Rogers, 1996).
The other possibility is the chemical picture, which considers atoms, ions and molecules
as given, and looks at the reactions between them, like the ionization of atoms, or the
dissociation of a molecule. Environmental effects in this picture are treated as perturba-
tions. Examples of chemical picture EoS are the MHD multi-species EoS used by the OP
project (Hummer and Mihalas, 1988) and the CHEMEOS used in the ATOMIC opacity
code (Colgan et al., 2016) in Los Alamos TOPS project.
In order to calculate opacity tables with either picture, one has to take into account
nuclear processes, the computation of which requires the knowledge of nuclear cross
sections. Determining these cross sections can be challenging because of the reaction
energies relevant for stellar interiors. The most used collection of reaction parameters
is that of the JINA REACLIB database (Cyburt et al., 2010).
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1.3. Solar structure and evolution

1.3.2 Convection

In the Sun convection occurs in the outer 29% of the solar radius, as determined with
helioseismologic studies by Basu and Antia (1997). In this region it is necessary to
describe the temperature gradient ∇, and in particular the superadiabaticity ∇−∇ad.
The reference theory for the description of convection in stellar interiors is the Mixing
Length Theory (MLT), originally proposed by Böhm-Vitense (1958). The main idea
of the MLT is to describe the bulk motions of fluids in analogy with molecular heat
transfer. It considers "particles" of fluid with local uniform physical characteristics and
traces their movement. A particle will be in pressure equilibrium with its surroundings,
but not in thermal equilibrium, so hot particles will move toward cooler regions, while
cooler particles will move toward cooler regions. As hot particles rise they expand and
lose their homogeneous physical characteristics, and the same happens to cool particles,
which sink and compress. The typical distance such a particle can travel before losing
its properties is called the mixing length α, which can be thought of as the mean free
path of the particle. The overall movement of these particles leads to a net outward flux
of energy, a simple toy model of which is

Fconv =
1
2

ρvcPT
λ

HP
(∇−∇ad), (1.10)

with ρ the density, v the velocity, cP the specific heat and α = λ/HP the mixing length
given as a fraction of the pressure scale height HP = |dr/d ln P|, the distance over
which the pressure changes by an e-folding factor. The flux Fconv is determined by the
superadiabaticity ∇ − ∇ad and the mixing length α, which modulates the efficiency
of convective energy transport: the larger α, the larger the energy flux transported by
convection. Moreover, convection results in bulk motions of matter, favoring chemical
mixing. In solar models α is left as a free parameter and it is determined by calibrating
the model to reproduce the known properties of the Sun. A nice review of the MLT and
its applications in stellar models, including some possible alternatives and extensions,
can be found in Joyce and Tayar (2023).
The boundary of convective regions is usually given by Schwarzschild criterion on the
basis of the local temperature gradient. However when convective bubbles reach this
point their acceleration vanishes, but their velocity is still non-zero. This means convec-
tive bubbles can penetrate beyond the boundary of the convective region up to some
point where their velocity vanishes and they dissolve, and this point should be taken
as the true boundary. This phenomenon is called convective overshooting. The appro-
priate treatment of overshooting usually involves non-local MLTs (Shaviv and Salpeter,
1973; Bressan et al., 1981, 2012). The main idea is to follow the whole motion of a con-
vective bubble from its formation to its dissolution, solving its equation of motion and
determining the true extent of the convective zone.
Overshooting in the Sun can happen below the convective envelope. The main pa-
rameter describing the overshoot is the mean free path of convective bubbles below the
convective zone, given in terms of the local pressure scale height as ΛeHP. The pos-
sibility of a significant overshoot region at the base of the convective envelope was
initially explored by Alongi et al. (1991). Two important observational effects related
to this phenomenon have been studied: the location of the RGB Bump in the red gi-
ant branch (RGB) of low-mass stars and the extension of the blue loops in intermediate
mass stars. Both effects have been found to be better explained by a moderate amount

7



1. STANDARD SOLAR MODELS

of overshoot, with a typical extension below the border of approximately 0.25 − 1.0HP.
However solar model calibration reproduces the transition between the fully adiabatic
envelope and the underlying radiative region in the Sun without the need of overshoot-
ing. This does not exclude the possibility that convection may penetrate just below
the fully adiabatic region in the form of radiative fingers, which can induce significant
mixing. Recent arguments suggest that such a mechanism could better align with the
physical state of matter in this transition region, as inferred from solar oscillation data
(Christensen-Dalsgaard et al., 2011). The magnitude of this effect has been estimated
to be around 0.4HP, although it is also consistent with a larger value of 0.6HP, which
aligns well with the value adopted since Alongi et al. (1991).

1.3.3 Nuclear reactions

Nuclear reactions are fundamental in stellar models since they are the main source of
energy in stars, and they determine the evolution of chemical abundances. Energy
generation in the Sun results from the fusion of hydrogen into helium with the net
reaction

41H −−→ 4He + 2 e+ + 2 νe. (1.11)

The path by which this reaction takes place involves different sequences of reaction de-
pending on the temperature at which they take place. The two main possibilities are the
pp-chain and the CNO cycle. Then there are several other reactions involving heavier
elements, which contribute less to the energy production but are important to follow
correctly the chemical composition of the Sun during its evolution. As mentioned be-
fore, a complete collection of nuclear reaction rates can be found in the JINA REACLIB
database (Cyburt et al., 2010).
Following nuclear reactions is also important to have a correct description of neutrino
losses: since neutrinos do not interact with matter they can escape freely from the star,
representing an energy loss. These neutrinos travel to the Earth, where the solar neu-
trino flux can be measured. Calibrating solar models to reproduce the correct neutrino
fluxes for the different reactions, which is possible because the neutrino energy loss
is different for each reaction, can help in understanding the correct processes that are
going on inside the Sun and what their contribution to the total solar energy is. A
summary of the state-of-art SSMs neutrino results can be found in Serenelli (2016).

1.4 Helioseismology

Solar oscillations have an important diagnostic potential. These observed oscillations
exhibit very small amplitudes, so they can be described as linear perturbations around
the solar models generated through evolutionary calculations. Consequently, the fre-
quencies of these oscillations serve as direct indicators of the properties of the solar
interior: by utilizing a solar model, one can accurately calculate the pertinent aspects of
the frequencies, and any differences between the observed and calculated frequencies
can be attributed to something missing or not treated properly in the model.
The basic idea behind solar oscillations is the perturbation up to linear order of the
continuity equation

∂ρ

∂t
+∇ · (ρv) = 0 (1.12)

8



1.4. Helioseismology

and Euler equation
∂v
∂t

+ (v · ∇)v = −1
ρ
∇P + g (1.13)

for the fluid in stellar interiors. Here g = −∇Φ is the gravitational acceleration, with
Φ obeying Poisson equation ∇2Φ = 4πGρ. Since in stars the average period of os-
cillations is much shorter than the timescale for energy exchange, one can assume the
adiabatic approximation. Given a spherically symmetric and time independent equi-
librium, the solutions for the perturbed equations can be separated in time, radial and
angular components. The time components are simple harmonic functions e−iωt char-
acterized by an oscillatory frequency ω, while the angular components are the spherical
harmonics Ym

l (θ, φ). The radial components obey different perturbed equations which
offer solutions only for discrete values of ω. Thus for each (l, m) there is a set of fre-
quencies ωnlm, distinguished by their radial order n. Within the adiabatic approxima-
tion these frequencies are completely determined by ρ, P, g and Γ1 as a function of the
distance r from the center. However, since we are dealing with stellar interior g is given
by

g = −Gm

r2 r̂, (1.14)

and it is related to P and ρ through eqs. (1.4) and (1.5). So specifying just two of the
four quantities above is sufficient to completely determine the oscillation frequencies,
and vice-versa the observed frequencies solely offer direct information regarding these
"mechanical" quantities. Other properties can be determined if further information is
provided, such as an EoS or the other equations of stellar structure.
The observed solar oscillations are in most cases predominantly of acoustic nature (the
so-called "p modes"), and frequencies are most sensitive to the sound speed, which is

c2
s =

(

∂ ln P

∂ ln ρ

)

s

= Γ1
P

ρ
≃ Γ1kBT

µmu
, (1.15)

the last equality coming from the fact that solar interior can be approximated as an ideal
gas with EoS P = kBρT/µmu, with kB Boltzmann constant and µ the mean molecular
weight. The approximate behavior of p modes inside the Sun is shown in Figure 1.1. As
r decreases the temperature, and hence the sound speed, increases, and the increasing
sound speed makes sound rays bend, until they reach an inner turning point and then
proceed outwards. The modes observed as global oscillations on the stellar surface are
the result of the interference between these waves. The turning point is located closer
to the center for higher angular degree l and lower frequency ω. In particular modes
with l = 0 penetrate the center, while modes with l ≥ 1000 are trapped in a tiny shell
close to the surface. Hence the oscillation frequencies of various modes serve as probes
of distinct regions within the Sun, and through an inversion process they allow to de-
termine the properties of the solar interior.
Solar oscillations exhibit diverse manifestations in the solar atmosphere. Changes in en-
ergy transport in the outer layers lead to oscillations in solar energy output, fluctuations
in atmospheric temperature are reflected in the properties of solar spectral lines, while
matter displacement can cause the atmosphere itself to move. Each of these effects al-
lows the observation of oscillations, and since they all come from the same underlying
modes, they yield the same frequencies of oscillation.

9



1. STANDARD SOLAR MODELS

Figure 1.1. Propagation of p modes in the solar interior. Sound rays are bent by the increase
in the sound speed, until they reach the inner turning point, represented by dotted lines.
At the surface the waves are reflected because of the rapid decrease in density. Image from
Christensen-Dalsgaard (2002).

1.4.1 Inversion for solar structure

The idea of the inversion technique is that of obtaining information on the solar in-
terior given the differences between the observed frequencies and those predicted by
the model. The starting point for inversion is the Euler equation for the perturbations,
which can be rewritten as

ω2
δr = F (δr), (1.16)

where δr is the displacement of a fluid element and F is a linear operator. Multiplying
by ρδr

∗ and integrating over the volume the equation becomes

ω2 =

∫

δr
∗ ·F (δr)ρ dV
∫

|δr|2ρ dV
. (1.17)

This equation defines a variational principle (Chandrasekhar, 1964): perturbations on
the frequencies of the equilibrium model are obtained perturbing this equation. The
perturbation on the right-hand side of the equation can suitably be expressed in terms
of two mechanical quantities, as

(

ρ, c2
s

)

. Indicating with i the couple (n, l) for simplicity,
the resulting equation is

δωi

ωi
=

∫ R

0

[

Ki
c2

s ,ρ(r)
δc2

s

c2
s

(r) + Ki
ρ,c2

s
(r)

δρ

ρ
(r)

]

+ I−1
i Fsurf(ωi), (1.18)

where Ki
c2

s ,ρ and Ki
ρ,c2

s
are two functions called kernels depending on the reference model,

δρ and δc2
s are the differences between the Sun and the model in the sense δρ = ρ⊙ −

ρmod, Ii =
∫

|δr|2ρ dV is the mode inertia and Fsurf is a surface term coming from in-
adequacies in the treating of the physics of the model, which are relevant close to the
surface. Inverting equation (1.18) allows to estimate δc2

s /c2
s and δρ/ρ.

The principle of the inversion technique is to use linear combinations of the above equa-
tion with different weights di(r0) chosen in order to obtain an average δc2

s /c2
s or δρ/ρ

10



1.4. Helioseismology

near r = r0 while suppressing the contributions from the other terms. For example for
the sound speed one wants to get

δc2
s

c2
s

(r0) ≃ ∑
i

di(r0)
δωi

ωi
=

∫ R

0
K(r0, r)

δc2
s

c2
s

(r)dr, (1.19)

where the last equality is valid because of equation (1.18), with the averaging kernel
K(r0, r) defined as

K(r0, r) = ∑
i

di(r0)K
i
c2

s ,ρ(r). (1.20)

The determination of inversion coefficients and averaging kernels is influenced by the
chosen inversion method and the potential parameters involved in the process. In fact,
the inversion can be considered as a means to obtain coefficients and averaging ker-
nels that yield the maximum amount of information. The averaging kernels serve as
indicators of the resolution of the inversion. Ideally, it is desirable to achieve sharply
peaked averaging kernels around a specific point r = r0, while minimizing their am-
plitude far away from that point. Two commonly utilized inversion techniques are the
Regularized Least Squares (RLS) method and the Optimally Localized Averages (OLA)
method. The RLS method aims to determine the profiles of δc2

s /c2
s and δρ/ρ that best

fit the data by minimizing residuals and reducing uncertainties. On the other hand,
the aim of the OLA method is not to fit the data, but rather to find linear combina-
tions of frequency differences that result in a localized average of the unknown func-
tion through corresponding kernels, while also keeping the uncertainties small. More
detailed information on the implementation of these techniques can be found in Basu
(2016).
Once one has δc2

s /c2
s = (c2

s,⊙ − c2
s,model)/c2

s,⊙ it is possible to invert the relation and find
the values for c2

s,⊙ since the model values are known. Basu et al. (2000) showed that
the inferred values for the Sun depend very little on the reference model, and are thus
considered a reliable description of the internal structure of the Sun.

1.4.2 Helioseismology results and the solar abundance problem

The early observation of high degree modes, which are trapped in the outer layer of
the Sun, allowed to obtain information on the adiabatic structure of these layers, in
particular on the depth of the convective envelope, which is estimated to be RCZ =
(0.713 ± 0.001)R⊙ (Basu and Antia, 1997).
More recent observations of modes of all degrees, together with the inversion technique
described in the previous section, allowed to obtain much more detailed information
about the internal structure of the Sun. Figure 1.2 shows the profile of δcs/cs obtained
via helioseismic inversion in the solar interior for the chemical compositions presented
in Table 1.1. For all the models the differences never exceed ∼ 0.010, meaning data
and model agree within 1%. The differences are however significant: all models share
a peak just below the convective zone, and through the years the better determination
of the chemical composition and the opacity profile of the solar interior only worsened
the discrepancy, going from the excellent agreement of GS98 composition to the maxi-
mum difference of AGSS09. These inferences show that most recent models, including
C11 and AAG21, are inadequate. MBS22 composition seems to restore the agreement
with helioseismic data, obtaining results comparable to those of GS98. There are thus
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1. STANDARD SOLAR MODELS

Figure 1.2. Differences of sound speed, in the sense (Sun) − (model), in the solar interior ob-
tained via helioseismic inversion for the different chemical compositions presented in Table 1.1.
The shaded blue area represents the MBS22 model uncertainties arising from the inputs to the
model. Plot from Magg et al. (2022).

large differences between high-Z and low-Z models, with high-Z models giving better
agreement with helioseismic data. These differences commonly go under the name of
solar abundance problem.
Most seismic probes do not directly depend on the composition of the Sun, but rather
on its opacity profile, which is a combined result of atomic calculations for the EoS
and the chemical abundances. Christensen-Dalsgaard et al. (2009) computed a low-Z
SSM with ad hoc adjustments so that the opacity profile mimics a high-Z models, while
the chemical composition remains low-Z, obtaining results practically indistinguish-
able from those of a high-Z model. This means seismology cannot constrain opacity or
compositions separately.

1.4.3 Possible solutions to the solar abundance problem

Since helioseismic results primarily depend on the opacity profile rather than on the
chemical composition alone, there are a few possible ways out.
The first one is to question the determination of the low-Z abundances. 3D-RHD atmo-
sphere models offer a good physical description of the solar photosphere, and different
3D-RHD models are in good agreement with each other. Thus it did not seem possi-
ble to restore a high-Z chemical composition, at least without a revision of the atomic
physics involved in spectral lines formation, as was done for MBS22.
A possible alternative is that mixing processes in SSMs are not correct, and there are
additional processes affecting the chemical composition such that it resembles a high-Z
abundance in solar interior, while the surface composition remains low-Z. Examples of
such processes are an increased element diffusion (Montalbán et al., 2004) and early ac-
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1.4. Helioseismology

cretion events in the solar system evolution (Guzik and Mussack, 2010; Serenelli et al.,
2011). However, none of them offers a complete solution to the solar abundance prob-
lem.
The last possibility is to question the opacity determination. Villante (2010) showed
that if the low-Z solar composition is adopted, adjustments of the order of 15 − 20% in
the radiative opacity are necessary to restore agreement between helioseismology and
SSMs, while Villante et al. (2014) performed a global analysis including SSMs uncer-
tainties, helioseismology and solar neutrinos, finding that there is no freedom in SSMs
that can compensate the reduction of the metallicity other than the increase of the opac-
ity. The experimental determination of opacities under solar conditions is particularly
difficult due to the combination of high temperatures and densities. To accurately repli-
cate the conditions present in the solar interior, experiments need to reach at least the
less extreme conditions found at the base of the convective envelope, where the temper-
ature is approximately T ≃ 2.35 × 106 K and the density is around ρ ≃ 0.2 g cm−3, with
an electron number density of ne ≃ 1023 cm−3. Reaching these conditions experimen-
tally remains a challenge, although recent results have approached them closely. This
seems to indicate that an improvement in the opacity determination is indeed possible,
and might be a way to solve the solar abundance problem.
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Chapter 2

Changing Fe opacity in SSMs

Motivated by the fact that an increase in the radiative opacity could restore the agree-
ment between SSMs and helioseismology, as showed by Villante (2010), and that there
is room for an improvement in the opacities determination, I decided to investigate the
effects of an increase of the radiative opacity on SSMs. In particular increased values for
iron opacity are investigated. Iron plays a crucial role in solar opacities, contributing
approximately 25% to the total opacity at the base of the convective envelope. Con-
sequently, it significantly influences the seismic properties of SSMs (see Villante et al.,
2014). This is due to iron being both abundant in the Sun and with a complex atomic
structure. Recently at the Z-facility at Sandia labs (Bailey et al., 2015) an experiment
showed that at conditions really close to those of the bottom of the convective envelope
the Rosseland mean opacity for iron is on average 60% larger than the value predicted
from atomic calculations. When experimental results are combined with atomic calcu-
lations the overall Rosseland mean is ∼ 7% larger than the OP value used in SSMs. It
is important to note that the conditions achieved at the Z-facility are not yet equiva-
lent to those at the base of the convective zone, in particular the electron density is still
approximately 2.5 times lower. However, there is clear evidence indicating that radia-
tive opacities in atomic calculations could be underestimated by a significantly larger
fraction than what differences between various theoretical calculations would suggest.
In particular, the increase in Fe opacity alone found by Bailey et al. (2015) could be
enough, if extrapolated to solar conditions, to restore the agreement between SSMs and
helioseismology when C11 composition is used. This suggests that increasing the Fe
opacity could improve the tension between SSMs and helioseismology.

2.1 Methods

In order to investigate the effect of an increase in opacity, several different SSMs re-
alized with ad hoc opacity tables are calibrated. Opacity tables are obtained coupling
the OPAL tables1 or the TOPS tables2 for the chosen chemical composition at high tem-
perature 4.0 ≤ log (T/K) ≤ 8.7 with the opacities calculated with the latest version
of the ÆSOPUS code (Marigo and Aringer, 2009; Marigo et al., 2022) at low tempera-
ture 3.2 ≤ log (T/K) ≤ 4.0. Apart from one model obtained using C11 abundances,

1http://opalopacity.llnl.gov/
2https://aphysics2.lanl.gov/
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2. CHANGING FE OPACITY IN SSMS

Table 2.1. Characteristics of the different models realized for this work. Last column represents
the multiplicative factor for iron opacity.

Model Chemical composition Opacity Fe multiplicative factor

C11 C11 OPAL
MBS22 MBS22 OPAL

FE1 MBS22 TOPS 1
FE2 MBS22 TOPS 2
FE3 MBS22 TOPS 3
FE4 MBS22 TOPS 4
FE5 MBS22 TOPS 5
FE7 MBS22 TOPS 7

the reference chemical composition is the new MBS22. Table 2.1 summarizes the main
characteristics of the realized models, labeled as C11, MBS22 (as the used chemical com-
position) and FEn, as the Fe opacity multiplicative factor. The increase in iron opacity
is achieved by multiplying the opacity value by a numeric multiplicative factor n, re-
ported in the last column of the table. Figure 2.1 illustrates the logarithm of the ratio
between the opacity of the different FEn models and OPAL opacities as a function of the
temperature T and the variable R = ρT−3

6 , with T6 = T/106 K. In general TOPS opaci-
ties are lower than OPAL opacitites in the majority of the R − T plane, and they become
comparable when the multiplicative factor is between 4 and 7. At low temperature
3.2 ≤ log (T/K) ≤ 4.0 all plots show a vertical white band, representing no differ-
ence in the chosen opacities, coming from the fact that in both cases in this temperature
range the opacities are obtained with ÆSOPUS. Apparently, a good correspondence be-
tween the OPAL and TOPS opacities can be obtained when using a multiplicative factor
around 3 − 4.

2.1.1 SSMs with PARSEC

All the models used in this work are realized with PARSEC, PAdova and TRieste Stellar
Evolution Code (Bressan et al., 2012). Given the initial composition Zini and Yini and
the mixing length α, PARSEC solves the stellar evolution equations and computes an
evolutionary track for the model from the Pre-Main Sequence (PMS) phase up to a
given point. For solar models the computation was stopped at 5.5 Gyr. Convection
is treated according to the MLT, while nuclear reaction rates are taken from the JINA
REACLIB database. For the realized models the envelope overshooting parameter is
set to zero.

2.1.2 Calibration technique

Each realized SSM needs to be calibrated, i.e. one has to find the appropriate values
of Yini, Zini and α that reproduce the characteristics of the Sun at its present age t⊙, as
briefly described in Section 1.3. Table 2.2 summarizes the main characteristics of the
Sun that can be compared with model predictions, together with the reference they are
taken from. The surface abundances depend on the reference chemical composition for
the model.
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2.1. Methods

Figure 2.1. Differences in Rosseland mean opacities obtained form the OPAL and the TOPS
project for the different models FEn.
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2. CHANGING FE OPACITY IN SSMS

Table 2.2. Observable quantities used for solar calibration. The surface abundances depend on
the reference chemical composition. RADI is the radial coordinate at which there is the transition
of ∇ from radiative to adiabatic, ρADI is the density at RADI and cs,ADI is the adiabatic sound
speed at RADI.

Solar data Chemical composition Source
C11 MBS22

M⊙ [1033 g] 1.989 1.989 From Kepler’s third law
t⊙ [Gyr] 4.566(5) 4.566(5) Bahcall et al. (1995)

L⊙ [erg s−1] 3.846(5) 3.846(5) Guenther et al. (1992)
Teff,⊙ [K] 5778(8) 5778(8) From L⊙ and R⊙
Y⊙ 0.2485(35) 0.2485(35) Basu and Antia (2004)
Z⊙ 0.0152(15) 0.0165(14) Caffau et al. (2011) - Magg et al. (2022)
(Z/X)⊙ 0.0207(15) 0.0225(14) Caffau et al. (2011) - Magg et al. (2022)
R⊙ [1010 cm] 6.960(1) 6.960(1) Guenther et al. (1992)
RADI/R⊙ 0.713(1) 0.713(1) Basu and Antia (1997)
ρADI [g cm−3] 0.192(7) 0.192(7) Basu et al. (2009)
cs,ADI [107 cm s−1] 2.23(2) 2.23(2) Basu et al. (2009)

The adopted calibration procedure is a bit different from usual, in the sense that it has
four free parameters: the usual initial chemical composition Yini and Zini and mixing
length α and then the age of the model, which is left as a free parameter. Calibrating
the model thus means also finding the best value for the age of the model at which the
model observables match the observed solar quantities. I will call the observables of the
model the physical quantities (L, Teff, Ysurf, Zsurf, (Z/X)surf, R, RADI, ρADI, cs,ADI), which
are to be compared to those reported in Table 2.2. Zsurf, Ysurf and (Z/X)surf represent
surface abundances. The table also reports the solar mass, which is a fixed parameter
for the models, and the estimated solar age.
The best values for the four parameters θ = (age, Zini, Yini, α) are found using a Markov-
Chain Monte Carlo (MCMC) algorithm. MCMC methods are a class of algorithms for
sampling from a probability distribution, that can also be used in inference for finding
the model that best fits a given set of data. They are particularly useful in determining
robust uncertainties on the parameters of the model and in exploring the correlation
between these parameters. The distribution to be sampled is the posterior distribution
p(θ|x) of a certain parameter θ given the data x, which is obtained from Bayes theorem

p(θ|x) = p(θ)p(x|θ)
p(x)

, (2.1)

with p(θ) the prior distribution of the parameter, p(x|θ) the likelihood of the model and
p(x) the evidence, representing just a normalization factor.
A prerequisite of these algorithms is the ability to predict the model observables for
any given combination of the parameters in the parameter space, which is needed to
evaluate the likelihood. Calculating an evolutionary track for each step of the MCMC
algorithm would be too computationally expensive, so this problem was solved as fol-
lows. For each model many evolutionary tracks with different combinations of Zini, Yini

and α are realized. In particular Zini is chosen between 0.012 and 0.020 in steps of 0.001,
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Yini is chosen between 0.25 and 0.31 in steps of 0.01 and α is chosen between 1.5 and 2.2
in steps of 0.175. So a total number of 9 × 7 × 5 = 315 tracks are calculated for each
model. These boundaries are chosen to give acceptable values of the solar observables:
models with an age lower than 4 Gyr or higher than 5 Gyr are not acceptable, while the
initial helium and metal abundances must certainly be higher than the present solar
value, since both surface helium and metal abundances decrease during the evolution
because of gravitational settling. This sets a robust lower bound for Yini, while because
of the uncertainties on the solar chemical composition I decided to explore a larger re-
gion of the initial metallicity parameter space, setting the lower bound to 0.012.
For each track the values of the observables at given values of the age of the model are
collected in a table, the age chosen between 4.0 Gyr and 5.2 Gyr in steps of 0.02 Gyr.
This table is used to construct an interpolator, that can predict the values of the model
observables at any point in the parameter space linearly interpolating between all the
calculated tracks.
Once the problem of calculating the model at any given point of the parameter space
is solved, the MCMC analysis is carried out as follows. At the beginning an initial set
of L walkers θ(t) = {θ1(t), . . . , θL(t)} is defined, where each walker represents a ran-
dom point (age, Zini, Yini, α) in the parameter space. The walkers begin exploring the
parameter space taking a given number of steps N. At each step a proposal for a move
θk(t) → θk(t + 1) for each walker in another point of the parameter space is done. The
new position can be accepted with a certain acceptance probability that depends on
how well the model in this new point describes the data. The likeliness of the model
at a given point of the parameter space is numerically accounted for by the likelihood
distribution, which is related to the model χ2 as

lnL(θ) = −χ2

2
= −1

2 ∑
i

(

modeli(θ)− datai

σi

)2

, (2.2)

the sum running over all the observables of the model. σi is the uncertainty of the i-th
observable, reported in Table 2.2. The uncertainties for L and Teff are different from
those of the table, and are fixed to 0.01%. In this way, the luminosity and effective tem-
perature have a higher weight with respect to the other observables, and the algorithm
is forced to reproduce them with high precision.
The MCMC checks the ratio of the likelihood lnL(θk(t + 1))/ lnL(θk(t)). If the new
location produces a better match to the data, the walker moves there and repeats the
process. If the new location is worse, it retreats to its previous position and tries a new
direction. Sometimes even when a new position is good the walker stays put, or if the
new position is bad, the walker goes, depending on the acceptance probability. This
makes sure that walkers do not get trapped on individual peaks of high probability.
As many steps are done the walkers explore the parameter space, and eventually they
begin climbing towards the maximum of the probability distribution. Once all the steps
are performed the first 20% of the walkers’ positions are discarded. This is done because
the first part of the chain is an adjustment part, where the walkers almost freely explore
the space in search of the maximum posterior position. This means the first terms are
not necessarily representative of the posterior distribution, so a common practice is to
discard them. Figure 2.2 shows the behavior of the walkers in the MCMC calibration of
my MBS22 model. The first steps of the walkers randomly explore the parameter space,
and only after a few iterations the walkers start to move towards the region of highest
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2. CHANGING FE OPACITY IN SSMS

Figure 2.2. Positions of the walkers during the calibration of model MBS22. Z and Y refer to the
initial values.

probability, stopping the exploration of the regions of low probability. There is also one
walker who got stuck, rejecting all move proposals and never moving until the end of
the simulation.
At the end of the process one has the posterior distributions for all the parameters of
the model. The median of the posterior distribution represents the value of the param-
eter that gives a model best describing the data, while the uncertainties are given by
the 16 and 84 percentiles. The posterior distributions can also be used to calculate joint
distributions and analyze the correlation between the parameters.
The MCMC analysis is carried out with python emcee package (Foreman-Mackey et al.,
2013), which makes use of the Metropolis-Hastings algorithm and proposes moves for
the walkers with the "stretch move" method by Goodman and Weare (2010), moving
L = 50 walkers randomly initialized in the parameter space by N = 15 000 steps. The
prior distributions for the four parameters are assumed to be uniform over the param-
eter space.
The whole calibration procedure can be repeated adding new evolutionary tracks for
points in the parameter space closer to the maximum of the posterior distribution, in
order to improve the performance of the interpolator and refine the results of the cali-
bration.

2.1.3 Internal structure

Once each model was calibrated, I computed an evolutionary track for the model using
the best fit values of the parameters obtained from the calibration. This allows to have
more accurate values for the model observables rather than relying on the approximate
values given by the interpolator. Furthermore, for each model it is possible to calculate
the internal structure and plot the profiles of δc2

s /c2
s and δρ/ρ using as reference values

the helioseismic ones, in order to see if the model has improved the agreement with
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helioseismology. The variations are calculated in the sense (Sun − model), and the
reference values for the solar quantities are those presented by Basu et al. (2009) from
the Birmingham Solar Oscillation Network (BiSON) experiment.

2.2 Results

2.2.1 OPAL opacities: C11 and MBS22 models

Both MBS22 and C11 models are particularly interesting, the former because it is ob-
tained with MBS22 chemical composition, which was only recently published, and the
latter because an analogous calibration was performed by Bressan et al. (2012) with
PARSEC using the same observational data. Differences between that calibrated model
and my C11 model are thus due to the different version of PARSEC used, since the code
has undergone some improvement during the last decade.
Figures 2.3 and 2.4 show the posterior distributions resulting from the MCMC for C11

Figure 2.3. Posterior distributions for the four parameters (age, Zini, Yini, α) with their best esti-
mates for model C11. The red line represents the reference value for the age of the Sun t⊙.
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Figure 2.4. Posterior distributions for the four parameters (age, Zini, Yini, α) with their best esti-
mates for model MBS22. The red line represents the reference value for the age of the Sun t⊙.

and MBS22 models. In all C11 contour plots there are some values on the lower left cor-
ner, probably given by a walker that got stuck in that point of the parameter space. A
similar situation happens in MBS22 contour plots, with a walker stuck on the boundary
of the parameter space. Both figures show direct correlation between Zini and Yini, con-
sistently with the fact that increasing Yini leads to a more luminous star, and to balance
the increasing luminosity Zini needs to increase as well. Similarly, the inverse correla-
tion between Yini and the age of the model shown in the figure can be explained by the
fact that increasing the luminosity, related to Yini, the model arrives at the solar value
sooner during its evolution, so the age of the model decreases. Finally, the plots show
direct correlation between the mixing length α and the age of the model.
Table 2.3 summarizes the main characteristics of my models and of Bressan et al. (2012)
model. All the quantities of C11 model are consistent with those found by Bressan et al.
(2012). The last row of the table reports the reduced χ2 of the models, which indicate
good agreement between both models and the available data. The age of both the mod-
els is consistent with the measured one of t⊙ = (4.566 ± 0.005) × 109 yr, at a level of
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Table 2.3. Main characteristics of Bressan et al. (2012) model and C11 and MBS22 models.
MCMC parameters are listed with their uncertainties. The last row is the reduced χ2 of my
models.

Observable Bressan et al. (2012) C11 MBS22

age [Gyr] 4.593 4.65 ± 0.13 4.68+0.14
−0.13

Zini 0.01774 0.0177+0.0004
−0.0005 0.0186+0.0004

−0.0005

Yini 0.28 0.279+0.002
−0.003 0.279+0.002

−0.003

α 1.74 1.743+0.015
−0.017 1.725+0.016

−0.018

L [erg s−1] 3.848 3.844 3.845
Teff [K] 5779 5777 5778
Ysurf 0.24787 0.24813 0.24824
Zsurf 0.01597 0.01600 0.01681
(Z/X)surf 0.02169 0.02174 0.02287
R [1010 cm] 6.9584 6.9589 6.9576
RADI/R 0.7125 0.7139 0.7139
ρADI [g cm−3] 0.1887 0.1893 0.1920
cs,ADI [107 cm s−1] 2.2359 2.2336 2.2336

χ2
red 0.38 1.04

Figure 2.5. Ratio between the model characteristics and the corresponding solar value. Symbols
are as follows. Blue stars and solid line: C11 model; blue stars and dashed line: Bressan et al.
(2012) model; yellow dots and dotted line: my MBS22 model. The black line represents the
solar values of Table 2.2 with their uncertainties. The first two blue values of the ratios L/L⊙
and Teff/Teff,⊙ are for my C11 model, the second two in yellow are for my MBS22 model.

0.7σ (C11 model) and 1σ (MBS22 model). Figure 2.5 shows the values of the different
observables for the three models compared to the solar quantities. The reported values
of L/L⊙ and Teff/Teff,⊙ indicate that both models reproduce the observed luminosity
and effective temperature with a precision of a few 10−4. All the observables are at
< 1σ from the solar data, apart from the radius of MBS22 model, which is at ∼ 3σ from
the measured value. The metallicity of C11 and MBS22 models is a bit higher than the
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2. CHANGING FE OPACITY IN SSMS

solar value, while the density at the bottom of the convective envelope is a bit lower
for C11 model. Both features are shared between C11 model and Bressan et al. (2012)
model. Overall there is no significant discrepancy between these two models. Both my
models have an optimum agreement with the observable data and can be accepted as
good models for the Sun.
The left-hand panel of Figure 2.6 shows the relative adiabatic sound speed variation
δc2

s /c2
s in the sense (Sun−model) as a function of the radial coordinate inside the Sun

for my models C11 (blue solid line) and MBS22 (yellow dotted line). The solar values
are obtained from BiSON data (Basu et al., 2009). In the same figure there are Bressan
et al. (2012) model (blue dashed line), Basu et al. (2009) model differences with respect
to Michelson Doppler Imager (MDI) data using GS98 abundances (green dashed line)
and Serenelli et al. (2009) profiles using GS98 abundances (red dash-dotted line) and
AGSS09 abundances (purple solid line) for comparison. The right-hand panel shows
the relative density variation δρ/ρ profile for my C11 and MBS22 models, and for Bres-
san et al. (2012) and Basu et al. (2009) models. Apart from the innermost and outermost
regions, my C11 model performs quite well regarding the sound speed profile, at a
comparable level with Basu et al. (2009) and Serenelli et al. (2009) models with GS98
abundances. Also MBS22 model is quite accurate, even though the sound speed in
the middle region is a bit more overestimated than C11 model, while it has a less pro-
nounced decrease close to the bottom of the convective envelope. The comparison be-
tween my C11 model and Bressan et al. (2012) model regarding the sound speed profile
shows small variations, with my new model performing a little worse in the innermost
region and a little better close to the convective envelope. The density profile instead
has a worse behavior, with both my models underestimating the density in the inner-

Figure 2.6. Left-hand panel: interior relative differences (in the sense Sun minus model) in the
squared sound speed δc2

s /c2
s . Solar values are obtained from BiSON data (Basu et al., 2009).

Symbols are as follows. Blue solid line: my C11 model; blue dashed line: Bressan et al. (2012)
model; yellow dotted line: my MBS22 model; green dashed line: Basu et al. (2009) model using
GS98 solar abundances; red dash-dotted line: Serenelli et al. (2009) model using GS98 solar
abundances; purple solid line: Serenelli et al. (2009) model using AGSS09 solar abundances.
Right-hand panel: interior relative differences for the density profile δρ/ρ. In this case only
Basu et al. (2009) model is shown for comparison. In both panels the dotted black vertical line
represents the radial coordinate of the bottom of the convective envelope.
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most regions and overestimating it elsewhere. In this case my C11 model and Bressan
et al. (2012) model behave a bit differently, in particular in the convective region, where
they exhibit an opposite behavior.

2.2.2 TOPS opacities: FEn models

Figures A.1 to A.6 in Appendix A show the results of the MCMC algorithm for the
various FEn models. The two cases FE1 and FE2 both exhibit the same behavior, with
walkers getting stuck on the boundary of the parameter space. Figures 2.7 and 2.8 show
the behavior of the walkers in MCMC calibration of these two models as a function of
the number of iterations. Both figures show how the walkers looked for regions of
higher metallicity in the parameter space, getting stuck in the upper boundary trying
to reach even higher values. Such a high Zini would result in a too high Zsurf at the
present day age of the Sun, meaning these two models produce no acceptable solution.
This is probably due to TOPS FE1 and FE2 opacities being too low, and since the opacity
is low the model tries to go to higher metallicity to compensate for the missing opacity
contribution. This would suggest that these two cases have too low opacity to explain
the observed characteristics of the Sun. Figure 2.7 also shows how Yini got stuck on the
lower boundary of the parameter space, and the fact that the helium abundance could
not decrease anymore is related to the age not increasing above a certain value, gener-
ating a boundary effect even if the age walker is located in the middle of the parameter
space. This is consistent with the inverse correlation between Yini and the age of the
model.
Moving to models FE3 to FE7, all of them give acceptable solutions in the parameter
space. All the plots show the same behavior as C11 and MBS22 models, with direct
correlation between Zini and Yini and between the age and α, and inverse correlation

Figure 2.7. Positions of the walkers during the calibration of model FE1. Z and Y refer to the
initial values.
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2. CHANGING FE OPACITY IN SSMS

Figure 2.8. Positions of the walkers during the calibration of model FE2. Z and Y refer to the
initial values.

between Yini and the age of the model.
Table 2.4 reports the values of the observables of FEn models, while Figure 2.9 shows
the ratio between these observables and the reference solar value. In both cases there is
no FE1 or FE2 model, because no acceptable solution was found in the parameter space.
The values of L/L⊙ and Teff/Teff,⊙ suggest that all the models are quite descriptive of
these two fundamental solar quantities, with differences from few 0.01% to few 0.1%.
As already noted, the initial metallicity Zini of the models decreases with increasing
opacity, in order to compensate for the missing contribution. Moreover during hydro-
gen burning the surface metallicity decreases, mainly because of gravitational settling,
so lowering the initial metallicity results in a lower surface value at the best age of
the model. On the contrary the initial helium abundance Yini increases with increasing
opacity and decreasing Zini, as if trying to keep constant the initial hydrogen abundance
Xini. This might be related to the fact that the value Xini determines how much fuel is
available for hydrogen burning, which is directly linked to the age of the model. Since
all models need to arrive at roughly half the main sequence to be representative of the
Sun, the age (and so Xini is somehow fixed). Increasing Yini then results in an increased
surface helium Ysurf at the best age of the model. This suggests that there is no way for
models FE5 and FE7 to match the observed surface abundances: at their best age they
both have a surface helium higher than the solar value and a surface metallicity lower
than the solar value. Adjusting the metallicity would require increasing Zsurf and thus
Zini, but since Zini and Yini are directly proportional this would mean increasing also
Yini, so Ysurf would increase as well, worsening the agreement with the reference value.
The same reasoning applies when trying to decrease Ysurf.
Models FE3 and FE4 on the other hand give both good agreement with the reference
solar values. The high χ2

red of FE3 model is mainly due to the radius value, which is
at roughly 3σ from the reference value. Nevertheless, all the other parameters of the
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model have optimal agreement with the reference value, suggesting that this model
could be accepted.
Finally, the age of all the models is ∼ 2σ higher than the reference solar value, and
it increases with the opacity, even though the initial helium abundance increases and
the age and Yini are inversely correlated, so these models are hardly acceptable as a
good description of the Sun. Models with higher multiplicative factors for the opacity,
like FE5 and FE7, overestimate the solar age too much and surely cannot be accepted.
Nevertheless, the fact that all models overestimate the solar age, even if within the 3σ

Table 2.4. Main characteristics of FEn models. MCMC parameters are listed with their uncer-
tainties. The last row is the reduced χ2 of the models.

Observable FE3 FE4 FE5 FE7

age [Gyr] 4.78+0.11
−0.12 4.79+0.10

−0.12 4.85 ± 0.13 4.92+0.12
−0.10

Zini 0.0187 ± 0.0004 0.0167 ± 0.0004 0.0148 ± 0.0004 0.0125+0.0003
−0.0002

Yini 0.278+0.003
−0.002 0.283 ± 0.003 0.284 ± 0.003 0.289 ± 0.002

α 1.747 ± 0.013 1.696+0.011
−0.012 1.651+0.014

−0.011 1.589+0.010
−0.011

L [erg s−1] 3.844 3.845 3.849 3.833
Teff [K] 5775 5778 5779 5777
Ysurf 0.24726 0.25116 0.25286 0.25750
Zsurf 0.01689 0.01501 0.01338 0.01131
(Z/X)surf 0.02296 0.02046 0.01824 0.01546
R [1010 cm] 6.9636 6.9581 6.9602 6.9508
RADI/R 0.7152 0.7143 0.7146 0.7123
ρADI [g cm−3] 0.1944 0.1973 0.1971 0.2056
cs,ADI [107 cm s−1] 2.2254 2.2309 2.2291 2.2436

χ2
red 3.21 1.43 3.47 27.5

Figure 2.9. Ratio between the model characteristics and the corresponding solar value. Symbols
are as follows. Blue stars and solid line: FE3 model; yellow dots and dotted line: FE4 model;
green squares and dashed line: FE5 model; red diamonds and dash-dotted line: FE7 model.
The black line represents the solar values of Table 2.2 with their uncertainties. The values of the
ratios L/L⊙ and Teff/Teff,⊙ are associated to the model described by the same color.
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2. CHANGING FE OPACITY IN SSMS

Figure 2.10. Left-hand panel: interior relative differences (in the sense Sun minus model) in
the squared sound speed δc2

s /c2
s . Right-hand panel: interior relative differences for the density

profile δρ/ρ. Solar values are obtained from BiSON data (Basu et al., 2009). Symbols are as
follows. Blue Solid line: FE3 model; yellow dotted line: FE4 model; green dashed line: FE5
model; red dash-dotted line: FE7 model. In both panels the dotted black vertical line represents
the radial coordinate of the bottom of the convective envelope.

boundary, suggests that there might be something missing in the treatment of the mod-
els.
Figure 2.10 shows the internal profiles of the relative variation of the adiabatic sound
speed δc2

s /c2
s and of the density δρ/ρ as a function of the radial coordinate for FE3 to

FE7 models. The left-hand panel shows how the discrepancy with the reference pro-
file gets worse with increasing opacity, with FE3 being the model that best agrees with
the helioseismic constraints. For all the models the peak just below the bottom of the
convective envelope has disappeared, while there is a broad region in which the sound
speed is largely above the reference helioseismic value. This is the opposite of what
was found for models MBS22 and C11, where between 0.35 R⊙ and 0.7 R⊙ the sound
speed was close to the solar value, and presented a peak just below the convective zone.
In the innermost region of the Sun instead models with higher opacity give an under-
estimated sound speed, with a discrepancy of 2 − 3%. Model FE3 is also the one with
the best density profile above the FEn models, as shown in the right-hand panel. All
models are close to the helioseismic reference in the region between 0.1 R⊙ and 0.35 R⊙,
while from that point on the density of the models increases and the discrepancy with
the helioseismic value gets worse, resulting in a 4 − 8% difference in the convective en-
velope.
Overall, models FE3 and FE4 are the ones best describing the Sun, but the overestimated
age and the discrepancy in sound speed and density profiles suggests that there is still
room for improving the model. Moreover, when also C11 and MBS22 models are taken
into account, it seems that the OPAL opacities still offer a better physical description,
without the need for an increase in the iron contribution.

2.2.3 Envelope overshooting

SSMs have been able to describe the proprieties of the Sun without the need of enve-
lope overshooting (Basu et al., 1994; Christensen-Dalsgaard et al., 1995). However, the
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recent results of Christensen-Dalsgaard et al. (2011) suggest that it might be possible
to include envelope overshooting in the description of the Sun. Motivated by this, I
decided to realize some solar models including the envelope overshooting parameter
Λe as a free parameter of the MCMC simulations, to be determined together with the
age, the initial composition and the mixing length. In this case the age parameter space
was chosen between 3.8 Gyr and 5.0 Gyr in steps of 0.1 Gyr. The larger step in the age
parameter space is necessary because of computational reasons, since including a new
parameter in the MCMC algorithm increases exponentially the computational time. Λe

was chosen between zero and 0.4 in steps of 0.1. The models taken into consideration
are MBS22, FE2, FE3, FE4 and FE5. All these models show an overestimation of the
solar age. Moreover FEn models exhibit a sound speed profile with opposite behavior
with respect to what was found for my OPAL MBS22 and C11 models and for Bressan
et al. (2012) model, suggesting that these models may require some improvement.
Figures B.1 to B.5 in Appendix B show the results of the MCMC algorithm for these
overshooting models. FE2 model in this case presents a solution in the parameter space,
unlike in the previous case without overshooting, with Λe ∼ 0.28, although the poste-
rior for this parameter is not sharply peaked. The age of the model is 2.5σ below the
measured age t⊙, making the model hardly acceptable for a suitable description of the
Sun. FE3 and MBS22 models have a solution within 1σ form the correct age and can be
accepted. Their prediction for the overshooting parameter is Λe = 0.093 and Λe = 0.062
respectively. In both cases the posterior for Λe is peaked slightly above zero, suggesting
that a moderate amount of overshooting might improve the model. Models FE4 and
FE5 also predict a solar age within 1σ from the measured value, making these models
acceptable in principle, but they both show a posterior distribution for Λe peaked to-

Table 2.5. Main characteristics of the models realized calibrating the overshooting parameter
Λe. MCMC parameters are listed with their uncertainties. The last row is the reduced χ2 of the
models.

Observable MBS22 FE2 FE3 FE4

age [Gyr] 4.47+0.19
−0.20 3.97+0.27

−0.22 4.47+0.21
−0.30 4.65+0.19

−0.21

Zini 0.0181+0.0006
−0.0007 0.0189 ± 0.0006 0.0180+0.0006

−0.0009 0.0161+0.0005
−0.0004

Yini 0.279+0.002
−0.003 0.270 ± 0.002 0.279+0.002

−0.004 0.281+0.004
−0.002

α 1.692+0.027
−0.045 1.674+0.076

−0.083 1.703+0.029
−0.049 1.672+0.024

−0.029

Λe 0.062+0.075
−0.042 0.280+0.076

−0.083 0.093+0.098
−0.057 0.051+0.063

−0.037

L [erg s−1] 3.847 3.830 3.849 3.852
Teff [K] 5779 5775 5782 5780
Ysurf 0.24935 0.24511 0.25016 0.25078
Zsurf 0.01643 0.01744 0.01639 0.01459
(Z/X)surf 0.02238 0.02365 0.02234 0.01986
R [1010 cm] 6.9570 6.9508 6.9509 6.9592
RADI/R 0.7123 0.7102 0.7154 0.7149
ρADI [g cm−3] 0.1893 0.1841 0.1879 0.1920
cs,ADI [107 cm s−1] 2.2415 2.2417 2.2256 2.2277

χ2
red 2.25 23.5 20.2 1.94
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2. CHANGING FE OPACITY IN SSMS

wards zero, indicating a preference for no overshooting. Model FE5 in particular shows
an initial chemical composition which is the same as the case with no overshooting. For
this reason I decided to discard this model for the following analyses, while I still kept
track of model FE4.

Figure 2.11. Ratio between the model characteristics and the corresponding solar value. In all
cases the dashed line indicates the model with overshooting, while the solid line represents
the model without overshooting (i.e. with Λe = 0) discussed in the previous section (when
available). Symbols are as follows. Blue stars: MBS22 model; yellow dots: FE2 model; green
squares: FE3 model; red diamonds: FE4 model. The black line represents the solar values of
Table 2.2 with their uncertainties. The values of the ratios L/L⊙ and Teff/Teff,⊙ are associated
to the model with overshooting described by the same color.

Figure 2.12. Left-hand panel: interior relative differences (in the sense Sun minus model) in
the squared sound speed δc2

s /c2
s . Right-hand panel: interior relative differences for the density

profile δρ/ρ. Solar values are obtained from BiSON data (Basu et al., 2009). Symbols are as
follows. Blue line: MBS22 model; yellow line: FE2 model; green line: FE33 model; red line: FE4
model. Dashed lines represent models with overshooting, while solid lines of the same color are
the models with the same opacity but without overshooting discussed in the previous section
(when available). In both panels the dotted black vertical line represents the radial coordinate
of the bottom of the convective envelope.
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Table 2.5 reports the values of the observables of these overshooting models, while Fig-
ure 2.11 shows the ratio between the observables and the reference solar value. Dashed
lines represent models with overshooting, while solid lines of the same color are the
models with the same opacity but without overshooting, discussed in the previous sec-
tion (when available). Model FE2 is not able to describe the solar luminosity, which is
well measured and together with the effective temperature is a fundamental parameter
in calibrating solar models. MBS22, FE3 and FE4 models instead both reproduce L⊙
and Teff,⊙ within few ∼ 0.1% accuracy, whit MBS22 touching ∼ 0.03% accuracy.
The most notable effects of envelope overshooting are a reduction of Zsurf, (Z/X)surf
and ρADI with respect to models without overshooting. In the case of FE4 model, this
results in a surface metallicity that seems too low to be able to well describe a model
with the high-Z MBS22 chemical composition, despite the reduced χ2 of the model be-
ing the smallest of the four. Model FE3 instead has a high χ2 because of the radius
prediction, which is ∼ 9σ below the measured value. Apart from the radius however
model FE3 describes solar luminosity, effective temperature and chemical composition
quite well, at a comparable level with MBS22 model, which seems the best model of the
four.
Figure 2.12 shows the internal profiles of the relative variation of the adiabatic sound
speed δc2

s /c2
s and of the density δρ/ρ as a function of the radial coordinate for the four

overshooting models. Both panels show how model FE2 cannot reproduce the solar
profile. For models MBS22, FE3 and FE4 the introduction of overshooting has improved
both the density and the sound speed profiles. The peak in the sound speed profile be-
low the convective zone appears again, with an amplitude of ∼ 0.1% comparable to
that of many other models in literature. In all the other regions the sound speed profile
difference for MBS22 and FE3 models is below 0.5%. The same applies to the density
profile, with MBS22 and FE3 models giving the best result, even better than my MBS22
model with no overshooting, with differences with respect to solar values lying below
1% almost everywhere. Model FE4 has undergone some improvement as well thanks
to the introduction of overshooting, describing the density profile almost perfectly in
the region 0.2 ≤ R/R⊙ ≤ 0.5, but failing in representing the solar behavior in the con-
vective region.
From this analysis it seems that introducing some envelope overshooting in the models
can indeed lead to better results, with MBS22 and FE3 models being the ones showing
the best description of the Sun.
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Chapter 3

Solar neutrinos

The Sun is powered by a chain of nuclear reactions, with the net result of hydrogen
being burnt into helium. Some of these reactions produce neutrinos, which do not
interact with matter and can escape freely from the Sun, traveling to the Earth, where
their flux can be measured. Each reaction provides a characteristic neutrino spectrum,
so measuring the different fluxes can help in understanding which are the dominant
reactions ongoing in the Sun and what is their contribution to the total solar energy.
Moreover, the comparison between the measured flux and the predictions given by
SSMs can offer a valuable test of our understanding of the Sun.

3.1 Main sources of solar neutrinos

I will give a brief description of the main reactions that produce neutrinos in the Sun
following Bahcall (1989). There are eight nuclear reactions responsible for the produc-
tion of solar neutrinos, five in the pp-chain and three in the CNO-cycle. Equations (3.1)
and (3.2) show the different reactions of these two hydrogen burning mechanisms,
highlighting the reactions which produce neutrinos. The most abundant neutrinos

Figure 3.1. Solar neutrino energy spectrum taken from Borexino Collaboration et al. (2018). The
flux is given in units of cm−2 s−1 MeV−1 for continuum sources and in cm−2 s−1 for monoener-
getic sources. Numbers in square brackets are 1σ uncertainties.

33



3. SOLAR NEUTRINOS

come from the pp reaction, but they have low energy (q ≤ 0.420 MeV, with q being
the neutrino energy). Figure 3.1 shows the solar neutrino energy spectrum predicted
from SSMs obtained by the Borexino Collaboration et al. (2018). The pp neutrino spec-
trum increases slowly up to a maximum at ∼ 0.31 MeV and then cuts off quickly. 8B
and hep spectra are more symmetric and more energetic, with peaks at ∼ 6.4 MeV and
∼ 9.6 MeV and extended tails. pep and 7Be neutrinos produce monoenergetic spectra,
with q = 1.442 MeV for the pep neutrino and q = 0.862 MeV (89.7%) or q = 0.384 MeV
(10.3%) for the 7Be neutrino.

pp-chain

p + p → 2H + e+ + νe

pp-ν

p + e− + p → 2H + νe

pep-ν

2H + p → 3He + γ

3He + 3He → 4He + 2 p
pp-I

3He + p → 4He + e+ + νe

hep-ν

3He + 4He → 7Be + γ

7Be + e− → 7Li + νe
7Be-ν

7Be + p → 8B + γ

7Li + p → 2 4He
pp-II

8B → 8Be∗ + e+ + νe
8B-ν

8Be∗ + p → 2 4He
pp-III

99.6% 0.4%

2 × 10−5%85%

15%

99.87% 0.13%
(3.1)

12C + p → 13N + γ

13N → 13C + e+ + νe
13N-ν

CNO-cycle

13C + p → 14N + γ

14N + p → 15O + γ 17O + p → 14N + 4He

15O → 15N + e+ + νe
15O-ν

17F → 17O + e+ + νe
17F-ν

15N + p → 4He + 12C 16O + p → 17F + γ

15N + p → 16O + γ

99.96%

0.04%

(3.2)
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CNO energy spectra have the same shape as the pp neutrino spectrum, but they are
more difficult to measure since only few CNO reactions are ongoing in the Sun. 8B and
hep neutrinos, although being only a tiny fraction of the total neutrinos emitted by the
Sun, are the most energetic ones, which in principle makes them easier to detect on
Earth. Most of the experiments are primarily sensitive to 8B neutrinos. CNO neutri-
nos have low energy and are too scarce to be detected consistently, making their flux
difficult to evaluate.

3.2 Solar neutrino fluxes

During the last years many efforts were done to improve the determination of the flux
of solar neutrinos. Bergström et al. (2016) collected and analyzed data from many neu-
trino experiments, giving some predictions for the flux for the different solar neutrinos
of the pp-chain and giving upper bounds for the flux of CNO neutrinos. Some im-
provement from those data has been done recently by the Borexino collaboration, with
new up-to-date flux measurements for the pp, pep, 7Be and 8B neutrinos (Borexino Col-
laboration et al., 2018) and a first measurement of the total CNO neutrino flux (Appel
et al., 2022). However Bergström et al. (2016) values for the fluxes are widely used in
literature, so I will take them as the reference solar value for a comparison with my
results.
I calculated the pp, 7Be, 8B and the three CNO neutrino fluxes, while I do not provide
an estimate for the pep and hep neutrinos, because PARSEC does not include these two
reactions in its nuclear network.

3.2.1 My models’ predictions

I calculated the predicted neutrino luminosity integrating the local production rate ri

for each neutrino over the mass of the Sun as

Lνi
=

∫ M

0
ri(m, T, ρ, . . . ) dm. (3.3)

The flux at the Earth is then obtained by dividing the previous value by 4πd2 with
d = 1 AU. The first part of Table 3.1 shows the values for the different neutrino fluxes
for my C11, MBS22 and FEn models, including overshooting models. They are all re-
alized using JINA REACLIB reaction rates. Almost all the models reproduce closely
the pp neutrino flux (within ∼ 1σ) and meet the conditions for CNO neutrinos. Excep-
tions are FE5 and FE7 models, which perform poorly in reproducing all neutrino fluxes.
These models were not successful in reproducing the solar observables and the sound
speed and density profiles either, confirming they are not suitable for a good descrip-
tion of the Sun. Regarding 7Be and 8B neutrinos, all the models give predictions that
are greater than the solar value, with differences between 7 − 30% for 7Be and 8 − 80%
for 8B. The more the opacity increases, the farther the model predictions are from so-
lar values. Overshooting models seem to perform a little better than models without
overshooting. The fact that 7Be and 8B fluxes are systematically overestimated suggests
that there might be something missing in the treatment of the models, and that there is
room for some improvement.
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Table 3.1. Neutrino fluxes at 1 AU of the different realized models. -ovr models are the models with non-zero overshooting discussed in Sec-
tion 2.2.3. Solar values are taken from Bergström et al. (2016). V17 values are from Vinyoles et al. (2017) taking as reference a high-Z (HZ) or low-Z
(LZ) chemical composition. Units are 1010 (pp), 109 (7Be), 108 (13N, 15O) and 106 (8B, 17F) cm−2 s−1. The first half of the table refers to models using
JINA reaclib rates for 7Be electron capture, while the second half refers to models using Vescovi et al. (2019) rate for 7Be electron capture.

Flux Φ(pp) Φ(7Be) Φ(8B) Φ(13N) Φ(15O) Φ(17F)

Solar 5.971+0.037
−0.033 4.80+0.24

−0.22 5.16+0.13
−0.09 ≤ 13.7 ≤ 2.8 ≤ 85

V17 (HZ) 5.98(1 ± 0.006) 4.93(1 ± 0.06) 5.46(1 ± 0.12) 2.78(1 ± 0.15) 2.05(1 ± 0.17) 5.29(1 ± 0.20)
V17 (LZ) 6.03(1 ± 0.005) 4.50(1 ± 0.06) 4.50(1 ± 0.12) 2.04(1 ± 0.14) 1.44(1 ± 0.16) 3.26(1 ± 0.28)

JINA rates
C11 5.94 5.38 6.18 3.26 2.54 5.02
MBS22 5.93 5.40 6.15 3.69 2.89 4.96
MBS22-ovr 5.97 5.15 5.62 3.39 2.58 4.40
FE3 5.89 5.77 7.61 4.26 3.47 6.08
FE3-ovr 5.96 5.33 6.55 3.69 2.89 5.00
FE4 5.87 5.93 8.30 3.98 3.27 5.79
FE4-ovr 5.92 5.72 7.72 3.66 2.96 5.20
FE5 5.86 6.12 8.82 3.71 3.11 5.55
FE7 5.78 6.25 9.14 3.28 2.82 5.10

Vescovi et al. (2019) rates
C11 5.94 4.97 8.97 3.26 2.54 5.02
MBS22 5.93 4.99 9.02 3.69 2.89 4.96
MBS22-ovr 5.97 4.77 8.17 3.39 2.58 4.40
FE3 5.89 5.36 11.12 4.26 3.47 6.08
FE3-ovr 5.96 5.12 9.98 3.69 2.89 5.00
FE4 5.87 5.75 12.61 3.98 3.27 5.79
FE4-ovr 5.92 5.49 11.29 3.66 2.96 5.20
FE5 5.86 5.90 12.96 3.71 3.11 5.55
FE7 5.78 6.07 13.28 3.28 2.82 5.10
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Figure 3.2. Differential neutrino generation rate in neutrinos per second for the different reac-
tions for models FE3 (left-hand panel) and FE7 (right-hand panel), both without envelope over-
shooting. Solid lines are neutrinos from the pp-chain, while dashed lines represent neutrinos
from the CNO-cycle. The black dotted line represents the differential luminosity dL/d(R/R⊙)
produced at that radial coordinate. In both panels this luminosity follows closely the pp reac-
tion rate.

Overall the best-performing models are MBS22, MBS22-ovr and FE3-ovr, which are the
same models that best describe the solar observables and the sound speed and density
profiles as well.
Figure 3.2 shows the local neutrino generation rate dN/d(R/R⊙), i.e. the number of
neutrinos generated per each reaction per second at each radial coordinate as a function
of the radial coordinate itself, for models FE3 (left-hand panel) and FE7 (right-hand
panel). Similar plots for all the models can be found in Appendix C. The values for
each reaction are normalized to the integrated total generation rate for that reaction.
Most of the neutrinos are produced in the innermost region of the core for R . 0.1 R⊙
because of their strong temperature dependence. Exceptions are represented by pp
neutrinos, with a weaker temperature dependence than the other reactions, produced
mostly between 0.05 R⊙ and 0.2 R⊙, with a peak at ∼ 0.1 R⊙, and by 13N neutrinos,
which have two separate peaks roughly at 0.05 R⊙ and 0.17 R⊙, the second peak being
less important than the first one. The black dotted line represents the local luminosity
dL/d(R/R⊙), which follows almost perfectly in both cases the pp production rate,
confirming that this reaction is the main responsible for the emitted solar luminosity.
The increase of iron opacity modifies the shape and the position of the peaks of 7Be and
8B rates. This effect might be related to a variation of the temperature, which is closely
linked to the opacity.

3.2.2 Revised 7Be electron capture rate

The prediction of neutrino fluxes in standard solar models is highly dependent on the
reaction rates adopted. The inner regions of stars exhibit elevated temperatures and
densities, meaning the atoms are almost completely ionized. Consequently, describing
the matter within the stellar core requires the application of plasma physics. The decay
of a specific isotope is significantly influenced by the plasma’s density ρ and tempera-
ture T under such conditions. To calculate decay rates within stellar contexts it is essen-

37



3. SOLAR NEUTRINOS

tial to use precise plasma models. Recently Vescovi et al. (2019) presented a revised rate
for the 7Be electron capture which takes into consideration the screening effect of the
surrounding plasma. This rate was calculated modeling the electron capture as a two
body scattering problem, whose rate is proportional to the electron density ρe, which is
screened and modified by the surrounding particles in the plasma. The expression of
the modified rate is

λ

(

ρ

µe
, T6

)

=
ρ

µe

κ√
T6

[

1 + α(T6 − 16) + β
ρ

µe
(1 + γ(T6 − 16))

]

, (3.4)

where ρ is the density in g cm−2, T6 is the temperature in units of 106 K, µe is the electron
mean molecular weight and κ, α, β and γ are some constants (see Vescovi et al., 2019,

Figure 3.3. Ratio between the neutrino flux predicted from each model and the solar reference
value for 7Be-ν (upper panel) and 8B-ν (lower panel). Filled markers represent models using
JINA rate for 7Be electron capture, while empty markers are models using Vescovi et al. (2019)
revised rate. The gray band is the 1σ interval around the reference solar value. In both panels
the models are ordered by growing age.
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Table 2). The rate is related to the electron number density as ne = ρ/µemp, mp being
the mass of the proton.
The introduction of screening effects makes the electron capture on 7Be less efficient,
resulting in a lower reaction rate and a lower neutrino flux. This could have some ben-
eficial effects on my models, all of which overestimate the 7Be neutrino flux. The results
from the computation of my models with this revised rate for this reaction are reported
in the second half of Table 3.1. 7Be neutrino fluxes with this revised rate are 3 − 8%
lower than the fluxes obtained using JINA rates and are closer to the solar value. In par-
ticular MBS22-ovr model reproduces almost perfectly the 7Be flux, while C11, MBS22
and FE3-ovr models predictions are roughly at 1σ from the solar value. Conversely, the
8B neutrino flux obtained with this revised rate for 7Be electron capture has increased
by 40 − 50% with respect to models using JINA rates, going even farther from the solar
value. This was expected, since the two main reactions 7Be can undergo are proton
capture 7Be(p, γ)8B (leading to a 8B neutrino) and electron capture 7Be(e−, νe)

7Li (pro-
ducing a 7Be neutrino). Reducing the electron capture rate means more 7Be nuclei are
available for the other reaction, thus increasing the number of 8B neutrinos. This be-
havior of the 7Be and 8B neutrino fluxes is shown in Figure 3.3. The upper panel shows
the ratio between the 7Be neutrino flux and the corresponding solar value for all my
models, while the lower panel does the same for the 8B flux. In both panels filled mark-
ers represent models with JINA rate, and empty markers represent models with the
revised rate of Vescovi et al. (2019). Models are ordered by growing age. Both pan-
els show the progressive worsening of the models as the opacity increases, confirming
how models with high opacity are unable to describe the Sun. The upper panel shows
that models that lie close to the solar value are models C11, MBS22, MBS22-ovr and
FE3-ovr, with the revised rate performing better than JINA rate. The lower panel on
the contrary shows that almost all models give values too far from the solar one. The
closest model is MBS22-ovr, whose 8B flux prediction is at 3.5σ for the solar value, being
∼ 9% higher. In this case the revised rate performs definitely worse, and its predictions
are incompatible with the measured flux.
The overall best-performing model is MBS22-ovr, followed by MBS22 and FE3-ovr.
These models all give predictions at . 2σ from the measured flux for 7Be with JINA
rates. Using Vescovi et al. (2019) revised rate gives better predictions for the 7Be flux,
but makes the 8B flux totally incompatible with the measured one. This suggests that
overall JINA REACLIB reaction rates perform better than Vescovi et al. (2019) revised
rate.

3.3 About the age of the models

Even if it is not strictly related to solar neutrinos, the age of the models is a key pa-
rameter in the description of SSMs. Figure 3.3 shows the models ordered by their age,
reported on the upper horizontal axis of each panel. The reference solar value for the
age of the Sun is (4.556 ± 0.005)Gyr (Bahcall et al., 1995), which is a revision of the
previously adopted (4.49± 0.04)Gyr (Guenther, 1989). Considering only the predicted
values of the age and not their uncertainties (which are usually quite big for SSMs),
only MBS22-ovr and FE3-ovr agree with the old measure of the age by Guenther (1989),
while no model is in agreement with Bahcall et al. (1995) measure.
Increasing Fe opacity has the effect of increasing the age of the model, going farther and
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farther from the reference value. However, the introduction of envelope overshooting
has a significant effect: the age of the model decreases by ∆t ∼ 0.30 Gyr (∼ 7%) for FE3
model and by ∆t ∼ 0.15 Gyr (∼ 3%) for FE4 model. The overshooting parameter Λe

for the two overshooting models is 0.093 and 0.051 respectively. Despite being small, it
has a significant impact on the age of the models. This probably happens because of a
balance between convective mixing and gravitational settling, which requires adjusting
the age of the model to recover the correct values for the surface helium and metallicity.
The new FE3-ovr and FE4-ovr models now have an age difference of ∼ 0.18 Gyr and
bracket the solar reference value by Bahcall et al. (1995). This bracketing suggests that
there might be a new model in between with an intermediate value for the Fe opacity
whose age matches the reference solar value.
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Chapter 4

Conclusions

Advancements in determining the solar chemical composition during the last years
have had an adverse impact on the alignment between SSMs and helioseismology, with
SSMs no longer aligning with helioseismic constraints. The restoration of the agree-
ment would require either increasing the atomic opacity or returning to the previous
higher metal abundances. The new high-Z chemical composition by Magg et al. (2022)
alleviates the tension between SSMs and helioseismology, but the opacity still plays a
key role: using either the OPAL or TOPS opacity tables has a drastic impact on SSMs
realized adopted MBS22 chemical composition.
My model MBS22-ovr realized with OPAL opacities performs well in reproducing both
the present-day solar observables (luminosity, effective temperature, surface composi-
tion) and the internal sound speed and density profiles. The best model among my
models realized using TOPS opacities is model FE3-ovr, which performs at a compara-
ble level to my MBS22-ovr model. Both these models have a small amount of envelope
overshooting, Λe = 0.062 for MBS22-ovr and Λe = 0.093 for FE3-ovr. Models with the
same opacity but with no envelope overshooting perform slightly worse in reproducing
the sound speed and density profiles, in particular in the convective zone. When con-
sidering higher multiplicative values for Fe opacity, like 5 or 7, the models are unable
to reproduce the present-day surface chemical composition of the Sun and the sound
speed and density profiles, which worsen as the opacity increases, and even consider-
ing non-vanishing envelope overshooting does not fix these models.
Regarding solar neutrinos, MBS22-ovr and FE3-ovr models predict fluxes that are close
to the measured ones, while models with different opacity multiplicative factors give
inaccurate predictions. The pp neutrino flux prediction is close to the measured value,
while the 7Be and 8B values are larger than the measured ones for both models. Con-
sidering the revised rate by Vescovi et al. (2019) for 7Be electron capture improves the
predictions of 7Be neutrinos, but almost doubles the discrepancy between 8B neutrino
predictions and observations. This suggests that the adopted JINA REACLIB reaction
rates still perform better. Still, there is room for the improvement of the models.
In conclusion, models with OPAL opacities are able to well reproduce what is known
about the Sun, while models with TOPS opacities give an acceptable description with
an increase of Fe opacity by a factor 3, and in both cases a small amount of envelope
overshooting helps in improving the model. Such a multiplicative factor for TOPS opac-
ities gives the closest values to the OPAL ones among the considered multiplicative
factors, and this is probably the reason why FE3-ovr model resembles quite closely
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MBS22-ovr model. This underlines the need for more accurate and reliable opacity
determinations, in particular at the solar interior conditions.
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Appendix A

FEn MCMC plots

Figure A.1. Posterior distributions for the four parameters (age, Zini, Yini, α) with their best
estimates for model FE1.
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Figure A.2. Posterior distributions for the four parameters (age, Zini, Yini, α) with their best
estimates for model FE2. The red line represents the reference value for the age of the Sun t⊙.
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Figure A.3. Posterior distributions for the four parameters (age, Zini, Yini, α) with their best
estimates for model FE3. The red line represents the reference value for the age of the Sun t⊙.
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Figure A.4. Posterior distributions for the four parameters (age, Zini, Yini, α) with their best
estimates for model FE4. The red line represents the reference value for the age of the Sun t⊙.
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Figure A.5. Posterior distributions for the four parameters (age, Zini, Yini, α) with their best
estimates for model FE5. The red line represents the reference value for the age of the Sun t⊙.

53



Figure A.6. Posterior distributions for the four parameters (age, Zini, Yini, α) with their best
estimates for model FE7. The red line represents the reference value for the age of the Sun t⊙.
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Appendix B

Overshooting MCMC plots

Figure B.1. Posterior distributions for the five parameters (age, Zini, Yini, α, Λe) with their best
estimates for model MBS22.
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Figure B.2. Posterior distributions for the five parameters (age, Zini, Yini, α, Λe) with their best
estimates for model FE2.
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Figure B.3. Posterior distributions for the five parameters (age, Zini, Yini, α, Λe) with their best
estimates for model FE3.
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Figure B.4. Posterior distributions for the five parameters (age, Zini, Yini, α, Λe) with their best
estimates for model FE4.
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Figure B.5. Posterior distributions for the five parameters (age, Zini, Yini, α, Λe) with their best
estimates for model FE5.
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Appendix C

Differential neutrino flux

Figure C.1. MBS22 Figure C.2. MBS22-ovr

Figure C.3. FE3 Figure C.4. FE3-ovr
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Figure C.5. FE4 Figure C.6. FE4-ovr

Figure C.7. FE5 Figure C.8. FE7

Figure C.9. C11
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