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Abstract

The task for this project was to build the hardware for the BlueRov2 and
implement an autopilot in a way that emulated a simulator. This was done to
test how well the simulator matched reality and to evaluate its coherence
This is an important project because it is the first practical project for the DEI
of Padova University involving this hardware. The project will rely on a set of
foundations that can be used for future projects
This was the first time I approached a project like this, and I found it constructive
to see how the knowledge I gained through my studies can be applied to a
practical project
Unfortunately, the program didn’t work very well, but this experience taught
me the standard procedure for approaching a project like this, and how to see
progress despite setbacks. It also helped me improve my problem-solving skills

for future projects of this nature
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introduction

BACKGROUND

Underwater vehicles (UV) are today used in a variety of marine operations,
such as industrial, military and research applications. Specific tasks may be
inspections, seafloor mapping and surveillance, as well as military specific mis-
sions like mine hunting and sabotage.

They perform tasks that earlier have been done by humans, as well as task hu-
mans can’t do. They are in general highly maneuverable, as well as cost efficient,
reliable and delivers high quality services

Based on their level of autonomy, UUVs may be divided into two categories:

* Remotely operated vehicles (ROV)
Underwater vehicles that are controlled by an operator on the surface or
on a nearby vessel. ROVs are typically tethered to a support vessel or
platform, which provides power, control signals, and video feedback to
the operator

e Autonomous underwater vehicles (AUV)

Underwater vehicles that are capable of operating without direct human
control. Unlike remotely operated vehicles (ROVs), which are controlled
by an operator on the surface, AUVs are self-contained and can operate
independently.

AUVs are typically pre-programmed with a mission plan that outlines the
vehicle’s intended path, speed, and actions. Once deployed, the AUV will
follow this plan and perform its tasks autonomously, without the need for

human intervention . . .
With advances in artificial intelligence and machine learning, AUVs are



1.2. TASKS TACKLED

becoming even more autonomous, able to make decisions based on real-
time data and adapt their behavior to changing conditions. This allows
them to operate more efficiently and effectively, while also reducing the
risk of human error and increasing the safety for human operators relative
to hostile environments

TASKS TACKLED

¢ The primary objective was to program the ROV in such a way that its
behavior would precisely mirror that of the simulator [7]. This was carried
out to evaluate the disparities between the simulation and actual-world
testing.

¢ Since Python was not part of my study program, a significant portion of
the task was to become familiar with and learn to utilize this environment.

¢ While it is possible to program the BlueRov2 in Python, there may not be a
comprehensive guide available for it. Therefore, one of the tasks involved
in this project was to conduct thorough research by sifting through various
forums and online resources, such as the BlueRoboticsforum [2], to learn
how to write a script for controlling the ROV using Python.

¢ The simulator [7] was not intended for practical use, and as a result, the
ability to manually set the path was not implemented.

CHAPTERS DESCRIPTION

¢ Chapter 1-Introduction

— This is the chapter that you are currently reading. It provides an
overview of the importance of subsea automation, highlights the
challenges encountered during the initial phase of the project, and
provides a brief description of the different chapters of this thesis.

¢ Chapther 2- Theory

— This chapter is dedicated to explaining the fundamental aspects of
the knowledge that I employed in this project. Specifically, the topics

covered include coordinate frames, slide mode control, and the model
of the ROV.



CHAPTER 1. INTRODUCTION

e Champter 3- The physical ROV we considered

— "This chapter is dedicated to providing an overview of the main hard-
ware and software components used in the project. This includes a
detailed description of the different components, such as the sensors,
controllers, and other hardware, as well as the software. The goal is
to provide the reader with a clear understanding of the technology
and tools used throughout the project and how they relate to each
other.

Chapther 4- The Simulator

— This section provides an overview of the primary components of the
Matlab simulator [7] and explains how it works. The discussion covers
the fundamental aspects of the simulator and provides a detailed
explanation of its functionality.

Chapther 5- Program’s developmet

— In this section I will explain the logic behind the script and its com-
ponents

Chapther 6-Test and evaluation

Chapther 7-conclusion






Theory

In this chapter, I will acknowledge the theoretical framework that has been
used in this project. To this end, I have drawn upon various sources, including
the simulator’s documentation [7] and a thesis from NUTU university [6]. By
considering the relevant literature, I aim to provide a comprehensive under-
standing of the underlying principles that inform the development and imple-
mentation of the project.

CoORDINATE FRAMES

Coordinate frames are essential for defining the orientation and position of
objects with respect to each other. In the case of controlling a moving vehicle,
having a reference point that remains constant is crucial. The body frame is a
frame of reference that remains constant when viewed from the perspective of a
moving vehicle, even though it is actually moving in relation to the world frame.
For this project, I have chosen to use the North-East-Up (NEU) representation
as the coordinate frame.

The ship motion convention outlines standard movement directions in rela-
tion to a vehicle’s body frame. In order to properly apply attitude and position
set points to a vehicle, it is crucial to understand how they are presented within
the body frame, as this knowledge is necessary to properly manage the behavior
of the vehicle’s thrusters.



2.2. SLIDING MODE CONTROLLER (SMC)
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Figure 2.2: A diagram that shows the convention for ship motion on a nautical
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SLIDING MODE cCONTROLLER (SMC)

The Sliding Mode controller is a popular choice for controlling non-linear
systems in this environment due to its low computational cost and robustness
to disturbances. Although this topic was not covered in my studies, my un-
derstanding is that it is a feedback control technique that forces the system to
slide along a prescribed path by sending a discontinuous control signal. While
I do not have a complete understanding of its inner workings, its effectiveness

in controlling non-linear systems makes it a viable option for this project.



CHAPTER 2. THEORY

Figure 2.3: an example of how a Sliding Mode Controller interact with a system

TaeE ROV’s MODEL

To study his behaviour we have to consider not only the kinematic of the
vehicle but the kinetics too; For that we used the Fossen notation Which takes

both into account

i=Jmv 2.1)

Mv+Cv)v+Dv)v+g(n) =1 (2.2)

* The first equation use the matrix J(q) to pass from the body frame move-
ments V=[u,v,w,p,q,r] (surge, sway, heave, roll, pitch and yaw) in to the
world frame movements n=[x,y,z,¢,0,¢']

_[7] (7]) 03x
Jtn) = [ 013><3 123(113) 23)

cosypcos —sinycosd +cosyPsinOsing siny sing + cos cos Ppsin O
Ji(n) = | sinipcos® cospcosp +sinpsinfsiny  —cosysing + sin O siny cos ¢

—sin @ cos O 'sin ¢ cos O cos ¢
(2.4)
1 sin(¢)tan(0) cos(¢)tan(0)
L) =10  cos(®) —sin(¢) (2.5)
0 sin(¢) cos(¢)
cos(0) cos(0)

where let us recall that ]2 is not defined when 6=—m,7)



2.3. THE ROV’'S MODEL

e The second one is about UUVs motion, derived from the Newton-Euler
fomulation (T. I. Fossen 2021), in particular:
— M s the system inertia matrix with:

* X3, Y, Zw, Ky, Mg, N; are the added mass components
* Iy, I, I, are the Inertia moment components

m-X, 0 0 0 mZ, 0
0 m-Y, 0 -mZg 0 0
_ 0 0 m—Zy 0 0 0
M=1"90 -mz, 0" .-k, 0 0 (2.6)
mz 0 0 0 I,-M; 0
0 0 0 0 0 I, — N;
— Cis the Coriolis and centripetal matrix
0 0 0 0 mw + Zypw 0
0 0 0 —mw — Zypw 0 -Xuu
0 0 0 mv — Yy —mu + Xy u
Cv) = 0 mw—Zypw — —mo+ Yo 0 Iy — Npr —lyg+M;q 2.7)
—mw + Zyw 0 —mu + Xitu —I;r + Nyr 0 pr—K,}p
mv = Y5v —mu + Xy u 0 Iyqg—Mgq —Ixp + Kpp 0

— D(v) is the hydrodynamic dampening matrix
* Xy, Yy, Zw, Ky, Mgy, N, are the linear dumping components
* Xyl Yool Zuwlwl Kplpl» Mgla), Ny|#| are the quadratic damping com-

ponents

Xus + Xy i 0 0 0 0 0

0 Yo + Yypolo] 0 0 0 0

0 0 Zao + Zygj 0] 0 0 0
D) = - : 28
™) 0 0 0 Kp + Ky 1 o 0 28)

0 0 0 0 Mg + Mgy 1d] 0

0 0 0 0 0 Ny + Nyjp l#l

- g(q) is the vector of restoring forces and moments
(W —B)sin 6
—(W —B)cos Osin¢
_ —(W —B) cos 0 cos ¢
8 = YpB cos 6 cos ¢ — z;B cos O sin ¢ (2.9)
—zpBsin O — xp B cos O cos ¢
xpBcosOsing + y,Bsin 0

where W=mg and B=pgV are respectively the gravity and buoyancy
forces (p the water density and V the volume of fluid displaced by the
vehicle), and (xb,yb,zb) are the coordinates of the center of buoyancy
expressed in the body frame

- T=[X,Y,Z,K,M,N] is the vector that contains the forces and moments
applied to the vehicle



The physical ROV we considered

The ROV that i used for the experience is a BlueRov2 bought from the univer-
sity from BlueRobotics [BlueRobotics]; a company that specializes in designing
and manufacturing underwater robotics and related components.

The BlueROV2 is designed to be modular and customizable, with a variety of
add-ons and accessories available, including sonar systems, manipulators, and
scientific sensors. It is also open-source, which means that users can modify
and customize the ROV’s software and hardware to suit their needs.

Precisely i use the heavy configuration variant: amodified version of the base one

with additional components that increase its payload capacity and endurance.

Figure 3.1: To the left a BlueRov2 in normal configuration, to the right a BlueRov2
in heavy configuration



3.1. HARDWARE

HARDWARE

The structure have eight T200 thrusters that allow the vehicle to perform
movements with 6 DOF

Figure 3.2: A diagram that show how the thrusters are mounted in a BlueRov2
in heavy configuration

The ROV already has several sensors, including;:

3 DOF GYROSCOPE

Device that measures the rate of rotation or angular velocity of an object in
three dimensions. The 3 DOF gyroscope on the BlueRov2 is used to measure
the rotational velocity of the vehicle in three axes - pitch, roll, and yaw. The
gyroscope is used to provide information to the vehicle’s control system, which
adjusts the thrust of the ROV’s thrusters to maintain stability and orientation

3 DOF ACCELEROMETER

The BlueRov2 is equipped with a 3 degrees of freedom (DOF) accelerometer
that is used to measure the vehicle’s acceleration in three axes - X, Y, and Z.

An accelerometer is a device that measures changes in velocity or acceleration

10



CHAPTER 3. THE PHYSICAL ROV WE CONSIDERED

of an object. In the case of the BlueRov2, the accelerometer is used to provide

information about the ROV’s movement and orientation.

MAGNETOMETER

Sensor that measures the strength and direction of a magnetic field. The
magnetometer on the BlueRov2 is used to provide information about the vehi-
cle’s orientation with respect to the Earth’s magnetic field. The magnetometer
measures the strength and direction of the magnetic field and uses this informa-
tion to calculate the vehicle’s heading or direction of travel. The magnetometer
is used in conjunction with other sensors, such as the 3 DOF accelerometer and
3 DOF gyroscope, to provide accurate positioning and orientation control for
the ROV

PRESSURE SENSOR

sensor that measures the pressure of the surrounding environment. The
pressure sensor on the BlueRov2 is used to measure the depth of the ROV in
water.
The pressure sensor measures the pressure of the water surrounding the ROV
and converts it into a depth measurement. This information is used by the
vehicle’s control system to adjust the thrusters and maintain the desired depth.
For issue about acquire the data sensor this instrument isn't used during the
project

HIGH-RESOLUTION CAMERA

The BlueRov2 is equipped with a high-resolution camera that is used for

underwater imaging and video recording. The camera is designed to capture
high-quality images and videos of the underwater environment and can be used
for a wide range of applications such as marine research, underwater inspection,
and exploration.
The camera is mounted on a tilt mechanism, which allows the operator to adjust
the camera angle to capture images and videos of different areas of interest.
The camera is also equipped with various features such as autofocus and image
stabilization, which help to ensure that the captured images and videos are
sharp and clear.

11



3.1. HARDWARE

The camera is connected to the operator’s control station on the surface through a
tether cable, which provides power and data transmission. The video feed from
the camera is displayed on the operator’s monitor in real-time, allowing the
operator to remotely control the vehicle and navigate through the underwater
environment while simultaneously capturing high-quality footage
Unfortunately there is a bug in the software dedicated to the Ubuntu (the S.O. of
the laboratory computer) operating system, which is preventing the recording
of video from the BlueRov2

2 LED L1GHTS

Lights use to illuminate the environment and can be controlled through
a Pulse Width Modulation (PWM) signal. The intensity of the lights can be
adjusted by changing the duty cycle of the PWM signal

12



CHAPTER 3. THE PHYSICAL ROV WE CONSIDERED

SOFTWARE

The software is composed by 3 main component:

Companion
Computer Software

QGroundControl

Figure 3.3: A image that show the main software’s components and where they
are loaded

QGCONTROLLER [5]

The QGController is a software that run on the surface computer; it provides a
user-friendly interface for controlling the ROV’s movements, viewing live video

feeds, and monitoring sensor data.

ArpuSus [1]

Is loaded on to the internal memory of the autopilot board and contain all
the logical process necessary to control the vehicle
Ardusub communicate with a protocol called Mavlink and by a python imple-
mentation called Pymavlink is possible write a script to read sensor data and
send commands
It is an open-source software system that is designed specifically for remotely
operated underwater vehicles (ROVs), including the BlueRov2. ArduSub is
based on the popular ArduPilot software platform, which is widely used for
unmanned aerial vehicles (UAVs) and other robotic systems.
ArduSub provides a range of features and capabilities that are tailored to the
requirements of underwater applications, including precise control and navi-
gation (if the hardware is implemented with the necessary sensors), depth and
altitude hold, and support for various sensors and instruments such as sonar,

cameras, and manipulators

13



3.2. SOFTWARE

Brute Rosotics CoOMPANION

Blue Robotics Companion is a software package developed by Blue Robotics
specifically for the BlueROV2 remotely operated underwater vehicle (ROV); it is
a modified version of Raspbian that is written onto a microSD card and installed
in the Companion Computer

Can perform the following function:

* relays communication from the autopilot and the QGroundControl via
ethernet comunication

e Streams HD video to QGroundControl

¢ allow the implementation of additional peripherals

14



The simulator

For the experience i thought to use the simulator that i found on the BlueR-
obotics site [7]; it is a simulator, implemented on Simulink, designed recently
by a group of researchers of the University of Southern Denmark; it is develop
to model the environment and the BlueRov’s behaviour controlled by a SM

controller

Figure 4.1: the simulink scheme of the simulator used for the experience that
represents the main component and some visualize data tools

15



From the software is possible to set some parameters like:

e Starting position and speed

Figure 4.2: window of setting initial position and speed

* Vehicle’s and environment’s parameters

Figure 4.3: window of setting Vehicle’s and environment’s parameters

¢ The number of thrusters, their position and the output limit

Figure 4.4: window of setting of the number of thrusters, their position and the
output limit

¢ The external forces: ocean current, tether and manual force

Figure 4.5: window of setting of the external forces

16



CHAPTER 4. THE SIMULATOR

e The sensors used

Figure 4.6: window of setting of the sensors used

CONTROLLERS

The simulator use a SMC to calculate the necessary force for each DOF of the

body frame to apply and after it convert the value in the world frame

THRUSTER DYNAMICS

This block has the task of calculate the force to apply to each thruster in order
to obtain the force desired in the appropriate DOF

According to the documentation [7] in order to link the vector of forces and
moments applied to the vehicle t to the voltages Vi applied to each thruster, they
use the expression:

7 = Te(s)F(V) (4.1)

where:

[ ]
is the so-called thrust configuration matrix; that change in base of the
hardware setup chosen

* K(s)
Is a diagonal matrix that contains unity DC-gain transfer functions ac-
counting for the dynamic relation between Vi and the force F

* F(v)
Is the vector "i cui elementi rappresentano” the force of each thruster "in
base" of the voltage input; It is obtained by a nonlinear regression using
data from experiments conducted in prior work.
This block is dedicate to calculate the values of this vector

17



4.3. EXTERNAL FORCE

ExTERNAL FORCE

That component simulate the behaviour of the external force like the ocean
current ("settabile” from the starting setting) and how the tether interact with
the rov

The tether disturbs the ROV due to the forces generated by the drag and
underwater currents so in the simulator to "ricreare" this effect "e stato imple-

mentato" a model of the tether from

EQUATIONS OF MOTION

Here the simulator emulate the body frame’s behaviour to the application of
the thrusters and external force

This block use the equation [2.1] and [2.2] describe in the "ROV’s model"

section

Bopy2WORLD

At last the body frame behaviour are converted in the world frame

18



Program development

The program is written in Python, and its structure is depicted in the fol-
lowing block diagram. Acknowledgements from the Ardusub site [1] and the
BlueRobotics forum [2] were utilized in its development. The code was struc-
tured into sub-blocks to facilitate future modifications.

19
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CHAPTER 5. PROGRAM DEVELOPMENT

CHECK POSITION

The position targets for the vehicle are set in a matrix format, where the

number of rows corresponds to the number of desired set points. The first six
columns represent the X, y, and z positions from the starting point, as well as the
pitch, roll, and yaw positions. The last value in each row represents the time at
which the vehicle should reach the set point.
If the current position of the vehicle matches the desired set point, the program
will check if it is the last set point. If not, it will move on to the next set point
and continue navigating. If it is the last set point, the program will disarm the
vehicle and end the navigation.

DATA ACQUIRE

This block is dedicated to acquiring data from the sensor, specifically the
acceleration in the body frame, time from system boot, and angular position
(roll, pitch, and yaw) and speed. The position of the data is recorded on the
Ardusub site [1]. Subsequently, the program calculates the world frame position
from the sensor data and the previous acquisition time, with the origin being
the starting point.
import time

import sys
from world_body import w2b,b2w

# Import mavutil

from pymavlink import mavutil

V=[0,0,0,0,0,0] #posizione
Vd=[0,0,0,0,0,0] #velocita
Vaccw=[0,0,0] #acc world frame
Vaccb=[0,0,0] #acc body frame
Vxyzm=[0,0,0] #acc xyz data
Ti=[0]

5 def acq_sensor(V,Vd,Ti):

# Create the connection
master = mavutil.mavlink_connection(’udpin:0.0.0.0:145507)

21
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5.2. DATA ACQUIRE

# Wait a heartbeat before sending commands

master.wait_heartbeat ()

# Request all parameters
master.mav.param_request_list_send(master.target_system, master.
target_component)

V[3]=round(master.messages[ ATTITUDE’].roll,2) #
assegn roll in rad

V[4]=round(master.messages[’ATTITUDE’].pitch,2) #
assegn pitch

V[5]=round(master.messages [’ ATTITUDE’].yaw,2) #assegn
yaw

Vd[3]=master.messages[ ATTITUDE’].rollspeed #assegn
rollspeed

Vd[4]=master.messages[’ATTITUDE’].pitchspeed #assegn
pitchspeed

Vd[5]=master.messages[ ATTITUDE’].yawspeed #assegno
yawspeed

Tn=master.messages[ SYSTEM_TIME’].time_boot_ms*pow(10,-3)

#acq time now [ms]+ conv [ms]>[s]

while True:
msg = master.recv_match()
if not msg:
continue
if msg.get_type() == 'RAW_IMU’:
data = str(msg) #acq stringa whit sensor
data

data = data.split(":")

Xacc = -int(data[2].split(",")[0]) #acq Xacc body
frame

Yacc = int(data[3].split(",")[0]) #acq Yacc body
frame

Zacc = int(datal[4].split(",")[0]) #acq Zacc body
frame

22



50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

break

Vaccb[0]=(Xacc)*(9.80665/1000)
m/s/s

Vaccb[1]=(Yacc)*(9.80665/1000)
m/s/s

Vaccb[2]=(Zacc)*(9.80665/1000)
m/s/s

Vaccw=b2w (V, Vacch)

world frame

Vaccw[2]=Vaccw[2]+9.80665

component

DT=Tn-Ti[0]
Ti[0]=Tn
Vd[0]=Vd[0]+Vaccw[0]*DT

Vd[1]=Vd[1]+Vaccw[1]*DT
Vd[2]=Vd[2]+Vaccw[2]*DT

CHAPTER 5. PROGRAM DEVELOPMENT

#conversion in

#conversion in

#conversion in

#from body frame to

#cut gravity

#calc delta t

#calc speed x
#calc speed y
#calc speed z

VIO]=round(V[O]+Vd[0]*DT+0.5*Vaccw[0] *pow (DT, 2),2)

#calc position x

V[1]=round(V[1]+Vd[1]*DT+0.5*Vaccw[1]*pow(DT,2),2)

#calc position y

V[2]=round(V[2]+Vd[2]*DT+0.5*Vaccw[2]*pow (DT,2),2)

#calc position z

return (Xacc,Yacc,Zacc)

Code 5.1: acquisition data
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5.2. DATA ACQUIRE

Finally, all of the collected data is printed into a text file for further post-

processing analysis.

Acc_xyz=acqg_sensor(V,Vd,Ti)

Acc_xyz=str(Acc_xyz)
Vtx=str (V)
Vdtx=str (Vd)
Titx=str(Ti)
with open(’data_sensor.txt’, 'a’) as f:
f.write(’Acc_xyz:’)
for line in Acc_xyz:
f.write(line)
f.write(’V:’)
for line in Vtx:
f.write(line)
f.write(’Vd: ")
for line in Vdtx:
f.write(line)
f.write(’Ti: ")
f.write(Titx)
f.write(’\n’)

Code 5.2: Data writer
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CONTROLLERS

To replicate the behavior of the simulator accurately, I employed the same
controller, namely a Sliding Mode controller, as used in the simulator.

1 import math
> from world_body import w2b,b2w

4+ V=[0,0,0,0,0,0]
5 Vd=V

¢ Pref=V

7 Pstart=V

9 def Xcontroller(V,Vd,Pref,Pstart):
11 #Xref(xposition_ref,xspeed_ref,xacc_ref)

12 XRef=[Pref[0], (Pref[0]-Pstart[0])/Pref[6],(Pref[0]-Pstart[0]) /pow(
Pref[6],2)]

15 #power limiter
16 P1=85

18 #costant controller

19 L=1.17
20 epsilon=0.08
21 cOd=1

2 alpha=0.1

23

24 # ASMC

25 £=1.6209324404039762157481163740158*Vd[5]*Vd
[1]1-0.050360901614439512741228099912405*Vd
[0]1*%(32.779999999998835846781730651855*%abs (Vd[0])
+26.099999999998544808477163314819)
-0.064290727000994252193777356296778*math.sin(V[4])
-1.0384720227252728363964706659317*Vd[4]*Vd[2]

2 gt=0.050360901614439512741228099912405%*1

27

28 # Control error(s)

29 e=V[0]-XRef[0]

30 e_d=Vd[0]-XRef[1]

31

2 # Original constraint function(s)
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5.3. CONTROLLERS

sigma = e_d+cO%*e

# % Switching gain
rho=alpha/math.sqrt(2)+L
v=-rho*(sigma)/(abs(sigma)+epsilon)

# Control input signal
u=pow(gt,-1)*(XRef[2]-cO*e_d+V)

#power limiter
if (u<(-Pl)):
u=-P1

if (u>Pl):
u=P1

return u

def Ycontroller(V,Vd,Pref,Pstart):

#Yref(yposition_ref,yspeed_ref,yacc_ref)
YRef=[Pref[1],(Pref[1]-Pstart[1])/Pref[6],(Pref[1]-Pstart[1])/pow(
Pref[6],2)]

#power limiter
P1=85

#costant controllorer
L=1.04

epsilon=0.03

c0=3

alpha=0.5

# ASMC

£=0.061908963933639427068555960431695*math.cos(V[4])*math.sin(V[3])
-0.048495193430703409376292256638408*Vd
[11%(50.940000000002328306436538696289*abs(Vd[1])+20.0)
-1.5608821469741087639704346656799*Vd[5]*Vd
[0]1+0.96295324102777613006765022873878*Vd[5]*Vd[2]

gt=0.048495193430703409376292256638408

# Control error(s)
e::V [1] —'YI{e:f [0]
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CHAPTER 5. PROGRAM DEVELOPMENT

e_d=Vd[1]-YRef[1]

# Original constraint function(s)

sigma = e_d+cO*e

# % Switching gain
rho=alpha/math.sqrt (2)+L
v=-rho*(sigma) /(abs(sigma)+epsilon)

# Control input signal
u=pow(gt,-1)*(YRef[2]-cO*e_d+Vv)

#power limiter
if (u<(-Pl)):
u=-P1

if (u>Pl):
u=P1

return u

def Zcontroller(V,Vd,Pref,Pstart):

#Zref (Zposition_ref,Zspeed_ref,Zacc_ref)
ZRef=[Pref[2],(Pref[2]-Pstart[2])/Pref[6],(Pref[2]-Pstart[2]) /pow(
Pref[6],2)]

#power limiter
P1=120

#costant controllorer
L=0.7

epsilon=0.05

c0=2

alpha=0.1

# ASMC

f = 0.039662804814355467897257767617702*math.cos(V[3])*math.cos(V
[4]) - 0.031069093540931902452939539216459*Vd
[11%(47.330000000001746229827404022217*abs(Vd[2]) +
36.339999999996507540345191955566) -
0.61692885839886457688407972455025*Vd[3]*Vd[1] +
0.64066335945904029358644038438797*Vd[4]*Vd[0]

27



5.3. CONTROLLERS

108 gt =0.031069093540931902452939539216459

109

110 # Control error(s)

111 e=V[2]-ZRef[0]

112 e_d=Vd[2]-ZRef[1]

113

114 # Original constraint function(s)

115 sigma = e_d+cO*e

116

117 # % Switching gain

118 rho=alpha/math.sqrt (2)+L

119 v=-rho*(sigma)/(abs(sigma)+epsilon)

120

121 # Control input signal

122 u=pow(gt,-1)*(ZRef[2]-cO®*e_d+Vv)

123

124 #power limiter

125 if (u<(-Pl)):

126 u=-P1

127

128 if (u>Pl):

129 u=P1

130

131 return u

132

133 def THETcontroller(V,Vd,Pref,Pstart):

134

135 #THETref (position_ref,speed_ref,acc_ref)

136 THETRef=[Pref[4], (Pref[4]-Pstart[4])/Pref[6], (Pref[4]-Pstart[4])/
pow(Pref[6],2)]

137

138 #power limiter

139 P1=16

140

141 #costant controllorer

142 L=1.83
143 epsilon=0.1
144 c0=0.4

145 alpha=0.1

146

147 # ASMC

148 f = -0.064291*math.sin(V[4]) - 0.050361*Vd[0]*(32.78*abs(Vd[0]) +
26.1) + 1.6209*Vd[5]*Vd[1] - 1.0385*Vd[4]*Vd[2]
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149 gt =2.7410526

150

151 # Control error(s)

152 e=V[4] -THETRef[0]

153 e_d=Vd[4]-THETRef[1]

154

155 # Original constraint function(s)
156 sigma = e_d+cO*e

157

158 # % Switching gain

159 rho=alpha/math.sqrt(2)+L

160 v=-rho*(sigma) /(abs(sigma)+epsilon)
161

162 # Control input signal

163 u=pow(gt,-1) *(THETRef[2]-cO®*e_d+Vv)
164

165 #power limiter

166 if (u<(-P1l)):

167 u=-P1

168

169 if (u>Pl):

170 u=P1

171

172 return u

173

174 def PSIcontroller(V,Vd,Pref,Pstart):

176 #PSIref(position_ref,speed_ref,acc_ref)

1777 PSIRef=[Pref[5],(Pref[5]-Pstart[5])/Pref[6],(Pref[5]-Pstart[5])/pow
(Pref[6],2)]

178

179 #power limiter

180 P1=22

181

182 #costant controllorer

183 L=2.05
184 epsilon=0.1
185 c0=2

186 alpha=0.1

187

188 # ASMC

189 f = -0.064291*math.sin(V[4]) - 0.050361*Vd[0]*(32.78*abs(Vd[0]) +
26.1) + 1.6209*Vd[5]*Vd[1] - 1.0385*Vd[4]*Vd[2]
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190 gt =1.690587

191

192 # Control error(s)

193 e=V[5]-PSIRef[0]

194 e_d=Vd[5]-PSIRef[1]

195

196 # Original constraint function(s)
197 sigma = e_d+cO*e

198

199 # % Switching gain

200 rho=alpha/math.sqrt(2)+L

201 v=-rho*(sigma)/(abs(sigma)+epsilon)
202

203 # Control input signal

204 u=pow(gt,-1)*(PSIRef[2]-cO*e_d+Vv)
205

206 #power limiter

207 if (u<(-Pl)):

208 u=-P1

210 if (u>Pl):
211 u=P1
212

213 return u

Code 5.3: controllers
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CHAPTER 5. PROGRAM DEVELOPMENT

WORLD 2 BODY/BODY 2 WORLD

These components are designed to convert the sensor data from the body
frame to the world body frame and vice versa for the controller input. Itis worth
noting that roll, pitch, and yaw do not require body-to-world transformation
because they are evaluated from the internal program in the world frame.

import numpy

_

2> import math

4+ V=[0,0,0,0,0,0]
5 B=[0,0,0]
6 C:[®’®1®1®1®1®]

s def w2b(V,C):
9 J=numpy.array ([[math.cos(V[5])*math.cos(V[4]),
-math.cos(V[4])*math.sin(V[5]), math
.sin(V[41)1,

10 [math.cos(V[5])*math.sin(V[3])*math.sin(V[4])-math.cos(V
[3]1)*math.sin(V[5]), math.cos(V[3])*math.cos(V[5])+math.sin(V[3])
*math.sin(V[5])*math.sin(V[4]), math.cos(V[4])*math.sin(V[3])],

11 [math.sin(V[3])*math.sin(V[5])+math.cos(V[3])*math.cos(V
[5])*math.sin(V[4]), math.cos(V[3])*math.sin(V[5])*math.sin(V[4])

-math.cos(V[5])*math.sin(V[3]), math.cos(V[3])*math.cos(V[4])1]1)
12
13 T=numpy.array ([ [1, 0, -math.sin(V[4])],
14 [0, math.cos(V[3]), math.cos(V[4])*math.sin(V[3])],
15 [0, -math.sin(V[3]), math.cos(V[3])*math.cos(V[4])]1])

18 Vtl=numpy.array([C[0],C[1],C[2]1])
19 ul=numpy.dot (J,numpy.transpose(Vtl))

21 Vt2=numpy.array([C[3],C[4],C[511)
2 u2=numpy .dot (T, numpy. transpose(Vt2))

24 u=numpy .concatenate([ul,u2])
2 return u
2% def b2w(V,B):

29 J=numpy.array ([[math.cos(V[5])*math.cos(V[4]),
-math.cos(V[4])*math.sin(V[5]), math
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WORLD 2 BODY/BODY 2 WORLD

.sin(V[41)1,
[math.cos(V[5])*math.sin(V[3])*math.sin(V[4])-math.cos(V
[3]1)*math.sin(V[5]), math.cos(V[3])*math.cos(V[5])+math.sin(V[3])
*math.sin(V[5])*math.sin(V[4]), math.cos(V[4])*math.sin(V[3])],
[math.sin(V[3])*math.sin(V[5])+math.cos(V[3])*math.cos(V
[51)*math.sin(V[4]), math.cos(V[3])*math.sin(V[5])*math.sin(V[4])
-math.cos(V[5])*math.sin(V[3]), math.cos(V[3])*math.cos(V[4])1]1)

Jinv=numpy.linalg.inv(J)
Vt=numpy.array ([B[0],B[1],B[2]])

u=numpy .dot (Jinv ,numpy.transpose (Vt))

return u

Code 5.4: world body

32



—

N

W

'S

o

o

~

CHAPTER 5. PROGRAM DEVELOPMENT

THRUSTER'S INPUT

The thrusters in the system are regulated by a Pulse Width Modulation
(PWM) signal. The duty cycle of the PWM signal is utilized to determine the
power output of the thrusters.

hj i#

Lo b b o b o o oo |
1100 ps 1200 ps 1300 us 1400 us 1500 ps 1600 ps 1700 ps 1800 s 1900 ps

Full throttle Initialize/Stop Full throttle
reverse forward

Figure 5.1: A diagram that show how the period of the Pulse-Width-Modulation
(PWM) signal command the thruster behaviour found on bluerobotic’s site
[BlueRobotics]

Assuming a linear relationship between the power output and the duty
cycle of the Pulse Width Modulation (PWM) signal, I have employed a simple
conversion method to obtain the input signal, utilizing the maximum value

specified in the simulator’s thesis [7].

#Input calc

Im[0]=int (1500-N[0]*(400/84))
Im[1]=int (1500-N[1]*(400/84))
Im[2]=int (1500-N[2]*(400/120))
Im[3]=int (1500-N[3]*(400/26))
Im[4]=int (1500-N[4]*(400/14))
Im[5]=int (1500+N[5]*(400/22))

for i in range(5): #security end run
if Im[i]>1900:
Im[i]=1900
if Im[i]<1100:
Im[i]=1160

Code 5.5: thrusters input
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5.6. COMMAND THRUSTER

COMMAND THRUSTER

For this section, I employed a program that was developed by a BluRobotic’s
developer, which can be found in [4].
Within the script, there are two methods for controlling the thruster’s behavior:

¢ The first method involves manually sending the duty cycle value to each
thruster individually, but the developer discourages this approach as it
turns off all the security systems of the ROV.

* The second method involves specifying how the ROV should behave with
respect to the relative degrees of freedom (DOF).

34



Test

Initially, I planned to conduct some basic movement tests to evaluate how
the ROV would behave in the physical world following predefined commands.
Subsequently, I intended to perform more complex paths such as rectangular
trajectories. The objective was to compare the data collected during the field
tests with the simulated ones and identify any discrepancies that occurred and
when they happened.

SITE OF THE TEST

Figure 6.1: Satellite photos that show the site of the test and the near departments
of UNIPD

* It was decided to conduct the tests on the nearby Piovego river due to its
close proximity to the laboratories, which would be convenient in case of
any need for further testing or adjustments.
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6.2. PREPARATION

Figure 6.2: To the left, a photo showing how we were arranged on the platform.
To the right, a photo of the BlueRov2 in the water

PREPARATION

In this section, I will describe the preparation of the equipment needed for
the tests

® N O Ul N =
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The BlueROV2’s battery was fully charged, as well as the computer’s bat-
tery. However, due to the high power consumption of the computer pro-
grams, we brought along some spare batteries to replace them if needed
during the tests

For the testing, the ROV was secured to a rope to facilitate its immersion
and retrieval from the river.

In addition, prior to the test, the program was modified to enable the
thrusters that had been disabled during the setup process outside of the
water for safety reasons. Additionally, a separate script was prepared in
case it was necessary to halt all of the thrusters.

The controls for the joystick in QGroundControl [5] were configured to
pre-position the vehicle at the center of the river before the test, with the
aim of avoiding obstacles during the simulation.

A Python script was developed to organize the sensor data and generate
plots for analysis and visualization purposes.

import numpy as np
import matplotlib.pyplot as plt

#read data

with open(’data_sensor.txt’) as f:
contents = f.read()

data = str(contents)

data = data.split("\n")

data=data[:len(data)-1]

#time

T=np.zeros(len(data))

for i in range(len(data)):
data_t=data[i].split(’Ti:"’")
data_t=data_t[1]
data_t=data_t[1l:len(data_t)-1]
data_t=float(data_t)
T[il=data_t-T[0]

T[O]=0
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#position x

X=np.zeros(len(data))

for i in range(len(data)):
data_x=dataf[i].split(’:’)
data_x=data_x[2].split(’,’)
data_x=data_x[0]
data_x=data_x[1:]
X[il=float(data_x)

#position Y

Y=np.zeros(len(data))

for i in range(len(data)):
data_y=dataf[i].split(’:’)
data_y=data_y[2].split(’,’)
data_y=data_y[1]
data_y=data_y[1:]
Y[il=float(data_y)

#position Z

Z=np.zeros(len(data))

for i in range(len(data)):
data_z=dataf[i].split(’:’)
data_z=data_z[2].split(’,’)
data_z=data_z[2]
data_z=data_z[1:]
Z[il=float (data_z)

#position roll

Roll=np.zeros(len(data))

for i in range(len(data)):
data_r=dataf[i].split(’:’)
data_r=data_r[2].split(’,’)
data_r=data_r[3]
data_r=data_r[1:]
Roll[i]l=float(data_r)

#position pinch

Pinch=np.zeros(len(data))

for i in range(len(data)):
data_p=dataf[i].split(’:’)
data_p=data_p[2].split(’,’)
data_p=data_p[4]
data_p=data_p[1l:]
Pinch[i]=float(data_p)

#position yaw

Yaw=np.zeros(len(data))

for i in range(len(data)):
data_ya=data[i].split(’:’)

data_ya=data_ya[2].split(’,’)

data_ya=data_yal[5]

data_ya=data_ya[l:len(data_ya) -3]

Yaw[i]=float (data_ya)

#acceleration X

Xacc=np.zeros(len(data))

for i in range(len(data)):
data_xacc=datal[i].split(’:’)

data_xacc=data_xacc[1l].split(’

data_xacc=data_xacc[0]
data_xacc=data_xacc[1:]
Xacc[i]=float(data_xacc)

#acceleration Y

Yacc=np.zeros(len(data))

for i in range(len(data)):
data_yacc=datal[i].split(’:’)

data_yacc=data_yacc[1l].split(’

data_yacc=data_yacc[1]
data_yacc=data_yacc[1:]
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6.2. PREPARATION

a2 Yacc[i]=float(data_yacc)

93 #acceleration Z

9 Zacc=np.zeros(len(data))

95 for i in range(len(data)):

9% data_Zacc=datal[i].split(’:’)

97 data_Zacc=data_Zacc[1].split(’,’)

98 data_Zacc=data_Zacc[2]

99 data_Zacc=data_Zacc[l:len(data_Zacc)-2]

100 Zacc[i]l=float(data_Zacc)
101

102 #plot data
103 plt.figure(l)

104

105 plt.subplot(611)

106 plt.plot(T,X)

107 plt.ylabel ("X[m] ")

108 plt.xlabel (’Time[s]’)

100 plt.grid(True)
110

111 plt.subplot(612)

112 plt.plot(T,Y)

13 plt.ylabel (’Y[m] )

114 plt.xlabel(’'Time[s]’)

15 plt.grid(True)
116

117 plt.subplot (613)

s plt.plot(T,Z)

119 plt.ylabel(’Z[m] ")

120 plt.xlabel (’Time[s]’)

121 plt.grid(True)
122

123 plt.subplot(614)

124 plt.plot(T,Ro0ll)

125 plt.ylabel ('Roll[rad]’)
126 plt.xlabel('Time[s]’)

127 plt.grid(True)
128

129 plt.subplot (615)

130 plt.plot(T,Pinch)

131 plt.ylabel (’Pinch[rad]’)
132 plt.xlabel (’Time[s]’)

133 plt.grid(True)

134

135 plt.subplot (616)

136 plt.plot(T,Yaw)

137 plt.ylabel (’Yaw[rad]’)
138 plt.xlabel (’Time[s]’)
139 plt.grid(True)

140

141 plt.suptitle(’Position’)
142
143

s plt. figure(2)

145

146 plt.subplot(311)

147 plt.plot (T, Xacc)

us plt.ylabel (’Xacc[mg]’)
149 plt.xlabel ('Time[s]’)
150 plt.grid(True)

151

12 plt.subplot (312)

153 plt.plot(T, Yacc)

154+ plt.ylabel (’Yacc[mg]’)
155 plt.xlabel ("Time[s]’)

156 plt.grid(True)
157

158 plt.subplot(313)
159 plt.plot (T, Zacc)
160 plt.ylabel(’Zacc[mg]’)
161 plt.xlabel (’'Time[s]’)
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12 plt.grid(True)

163

164 plt.suptitle(’Acceleration measured’)
165

166 plt.show()
Code 6.1: data vector generator

SUGGESTIONS FOR INSTRUMENTATION

In this section, I will provide some suggestions regarding the equipment
setup for future tests.
* The rope used to tie the ROV wasn’t waterproof, so during the water test,

it gained weight and caused some buoyancy problems. For future tests, I
recommend using a waterproof rope

* To study the ROV’s behavior, we did it visually due to a lack of instruments.
For future tests, I recommend using reference points such as buoys to have
a better understanding of its movement in the real world
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conclusion

SUMMARY OF CONCLUSIONS

Unfortunately, the program did not function as expected during the test.
Although the thrusters appeared to be spinning in the correct direction, they
only activated sporadically, which affected their overall performance. Asaresult,
it appeared that they did not exert enough force to move the vehicle efficiently.
Despite my best efforts to troubleshoot and resolve the issue during the test, I
was unsuccessful. In hindsight, I realized that my initial assumption about the
linear gain of the thrusters was incorrect. Upon conducting further research, I
discovered a diagram that clearly represented the thruster output in relation to
the input signal.

Thrust (Kg f)

Reverse ESC PWM Input Value (microseconds) Forward

Figure 7.1: Diagram that shows in detail how the period of the PWM signal and
the Output force of a thruster T200 are correlate in base of the supply voltage
found on the BlueRobotics site [3]
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7.2. FUTURE PROJECTS

In addition to the issues previously mentioned, it is worth noting that the
thrusters appeared to respond correctly to external forces during the test. Fur-
thermore, the script was able to save the sensor data as predicted

FUTURE PROJECTS

Due to time constraints, I am unable to continue working on this project at
the moment. However, I suggest the following features as potential areas for

future work:

¢ To improve the performance of the ROV, the block responsible for gener-
ating the input signals should be completely rewritten. This is necessary
to ensure that the controller receives the correct power output, which will
ultimately lead to more efficient and reliable thruster performance.

* A more in-depth study is necessary to determine whether a Sliding Mode
Control (SMC) is the optimal controller for this experiment. It may also be
beneficial to write a program that is capable of switching between different
controllers based on the desired path and environmental conditions.

e It is possible that the sporadic behavior of the thrusters could be due to
one of the security systems that the developer mentioned to me. It appears
that if the thrusters do not receive an input for a certain period of time,
they will stop. To address this issue, it may be necessary to accelerate the
data acquisition program in order to reduce the time of the cycle.

¢ During the testing phase, another issue was identified with the acceleration
readings of the body frame. The data obtained showed inaccuracies due
to the noise, which in turn affected the position evaluation. To tackle this
problem, it would be advisable to implement a Kalman filter, which can
improve the accuracy of the readings by incorporating additional sensors.
This approach can help enhance the reliability of the data and improve the
performance of the ROV in its intended tasks.
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