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Abstract

The urban drainage system could be studied using a hydrological model to
simulate the flow inside the sewers and the surface runoff. It is not so easy to find
appropriate methods of representing and predicting rainfall; rainfall is usually
obtained from rain gauges set up in a larger area, or derived using weather radar
data. The currently is no method to estimate the real trend of the data in a small
(sub-kilometre) catchment, so it is difficult to have an accurate analysis with
hydrological models about what happens in terms of surface runoff in a small
urban catchment.

This work explores the spatial variability of rainfall on a sub kilometre scale, in an
urban catchment of 1 km?, in terms of correlation between the rain gauges
according to the dependence on time scale (ranging from 5 minutes to 3 hours)
and dependence on rainfall intensity.

It is also showed that it is possible to use a good interpolating method like Kriging
to have a good trend of the rainfall, starting from some ground truth (rainfall data
measured using rain gauges) and how it is operative according to the different
rainfall event.

In the end it is possible to argue that there are different behaviours of the spatial
variability according to the different events and time scales, which can be

described with the correlation.
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Introduction

There is a growing interest to determine the performance of urban drainage
systems both in terms of water quality and urban flood risk.

To have a good pattern to study these performances the input data used are taken
by radar and rain gauges.

However it is not so easy to have good cumulative temporal scales of data, because
the two instruments indicated above have some problems respectively.

The data from the radar can give back only the quantitative of 5 minutes of rainfall
and even if it covers a big area, it is able to show the same value of rainfall in all the
area covered by a pixel, which is usually a square kilometre.

The rain gauge on the other hand is able to give back a more specific value of
rainfall data for every minute, but it is only a punctual data and we will need a lot
of rain gauges to know the trend of the event.

So the radar data gives the spatialization of the event and the rain gauge data gives
the punctual precision of the rainfall, the best condition would be to have a fusion
of the two items.

At the moment, researchers are working on finding a solution to have a good value
from radar data in an area lower than one kilometre square, and also to find a link
between the real data of rainfall collected by rain gauge and the radar data,
because the latter are usually bigger or smaller than the real data value that is
measurable by rain gauge.

The main aim of this study is to analyse the correlation between the rain gauges
for different events, to understand how many rain gauges we need to have a good
study in a small urban catchment and to know which are the best conditions of
correlation to search for the lower cumulative temporal scales to use on
hydrological models.

This study is a follow up on previous studies in this field and in particular on the
study "Influence of rainfall estimation error and spatial variability on sewer flow
prediction at a small urban scale", where the researchers have analysed the
behaviour of some hydrological models using as data input the radar data and the

rain gauge data.
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They have compared the results from their hydrological model, using both data
input from radar and rain gauge, with the data measured inside the sewer.

They have noticed that the flow simulation results provide a generally good fit, but
the results are changed if they use lower temporal resolution rainfall data as input
to the model.

In fact, in the graphs that they show it is possible to notice that when the rainfall
resolution is reduced, peak intensities are smoothed, and it is noticed for 15
minutes resolution rainfall data as an input; when the resolution is further reduced
to 60 minutes, the peak is almost entirely missing, and the simulated flow mimics
few of the features of the measured flow.

In the end, although the hydrodynamic model showed a tendency to underestimate
the flow peaks for the larger events, comparison of the flow peaks simulated using
radar or rain gauge data with measured flow peaks in the sewer system provided a
valuable insight into the effect of rainfall measurement technique and the effect of
spatial variability of rainfall. On the small spatial and temporal scales of the
hydrodynamic model, the spatial representativeness error in the rainfall estimates
translated to considerable differences in simulated flow peaks. The results
highlight that there were very significant differences in the prediction of the peak
flow rates within the sewer system. The events studied in this paper illustrated the
difficulty in accurately simulating the occurrence of sewer flow peaks.

It is concluded that, to ensure optimum accuracy of peak flow predictions, it is
necessary to use rainfall data that has both high spatial and temporal resolution.
This is the reason why we are looking for the best trend of a correlation for every
event that we would like to categorize into some fixed groups. So if we have good
results, we can use a number of rain gauges in every location, which will be enough
to estimate the spatialization of all the data on the study area. In these conditions
we know which kind of resolution of cumulative temporal scale we can use in
every case.

This study will provide a good estimation of the data to use inside hydrological

models to study the trend of the drainage system.
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Chapter 1: Measurement instruments

The rain gauge and the radar are two instruments that researchers and
meteorologists use to provide the rainfall data. In this work it will be used only the
rain gauge that is able to give back a punctual value and is more useful in an

analysis of small urban area than the radar.

1.1. Rain gauges

A rain gauge, also known as a pluviometer, is a type of instrument used by
meteorologists and hydrologists to gather and measure the amount of liquid
precipitation over a set period of time.

Most rain gauges generally measure the precipitation in millimetres. The level of
rainfall is sometimes reported as inches or centimetres.

The rain gauge amounts are read either manually or by automatic weather station.
The frequency of readings will depend on the requirements of the collection
agency. Some countries will supplement the paid weather observer with a network
of volunteers to obtain precipitation data for sparsely populated areas.

Rain gauges have their limitations; attempting to collect rain data in a hurricane
can be nearly impossible and unreliable (even if the equipment survives) due to
the wind power. Also, rain gauges only indicate rainfall in a localized area. For
virtually any gauge, drops will stick to the sides or funnel of the collecting device,
such that amounts are very slightly underestimated, and those of .01 inches or .25
mm may be recorded as a trace.

Another problem encountered is when the temperature is close to or below
freezing. Rain may fall on the funnel and ice or snow may collect in the gauge and
not permit any subsequent rain to pass through.

Rain gauges should be placed in an open area where there are no obstacles, such as
buildings or trees, to block the rain. This is also to prevent the water collected on
the roofs of buildings or the leaves of trees from dripping into the rain gauge after

arain, resulting in inaccurate readings.
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1.2. Types

In the following section there is a general description of the different rain gauges.
Types of rain gauges include graduated cylinders, weighing gauges, tipping bucket
gauges, and simple buried pit collectors. Each type has its advantages and

disadvantages for collecting rain data.

1.2.1. Standard rain gauge

The standard rain gauge, developed at the start of the 20th century, consists of a
funnel emptying into a graduated cylinder, 2 cm in diameter, which fits inside a
larger container which is 20 cm in diameter and 50 cm tall. If the rainwater
overflows the graduated inner cylinder, the larger outer container will catch it.
When measurements are taken, the height of the water in the small graduated
cylinder is measured, and the excess over flow in the large container is carefully
poured into another graduated cylinder and measured to give the total rainfall. In
locations using the metric system, the cylinder is usually marked in mm and will
measure up to 250 millimetres (9.8 in) of rainfall. Each horizontal line on the
cylinder is 0.5 millimetres (0.02 in). In areas using Imperial units each horizontal

line represents 0.01 inch.
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Figure 1: Standard rain gauge.
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1.2.2. Weighing precipitation gauge

A weighing type precipitation gauge consists of a storage bin, which is weighed to
record the mass. Certain models measure the mass using a pen on a rotating drum,
or by using a vibrating wire attached to a data logger. The advantages of this type
of gauge over tipping buckets are that it does not underestimate intense rain, and
it can measure other forms of precipitation, including rain, hail and snow. These
gauges are, however, more expensive and require more maintenance than tipping
bucket gauges.

The weighing type recording gauge may also contain a device to measure the
quantity of chemicals contained in the location's atmosphere. This is extremely
helpful for scientists studying the effects of greenhouse gases released into the

atmosphere and their effects on the levels of the acid rain.

/!

Figure 2: Weighing precipitation gauge.

1.2.3. Optical rain gauge

These have a row of collection funnels. In an enclosed space below each is a laser
diode and a photo transistor detector. When enough water is collected to make a
single drop, it drops from the bottom, falling into the laser beam path. The sensor

is set at right angles to the laser so that enough light is scattered to be detected as a
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sudden flash of light. The flashes from these photo detectors are then read and

transmitted or recorded.

Figure 3: Optical rain gauge.

1.2.4. Tipping bucket rain gauge

The tipping bucket rain gauge consists of a funnel that collects and channels the
precipitation into a small seesaw-like container. After a pre set amount of
precipitation falls, the lever tips, dumping the collected water and sending an
electrical signal. An old-style recording device may consist of a pen mounted on an
arm attached to a geared wheel that moves once with each signal sent from the
collector. In this design, the wheel turns the pen arm moves either up or down
leaving a trace on the graph and at the same time making a loud click. Each jump of
the arm is sometimes referred to as a 'click’ in reference to the noise. The chart is
measured in 10 minutes periods (vertical lines) and 0.4 mm (0.015 in) (horizontal
lines) and rotates once every 24 hours and is powered by a clockwork motor that
must be manually wound.

The tipping bucket rain gauge is not as accurate as the standard rain gauge
because the rainfall may stop before the lever has tipped. When the next period of
rain begins it may take no more than one or two drops to tip the lever. This would
then indicate that pre-set amount has fallen when in fact only a fraction of that
amount has actually fallen. Tipping buckets also tend to underestimate the amount
of rainfall, particularly in snowfall and heavy rainfall events. The advantage of the

tipping bucket rain gauge is that the character of the rain (light, medium, or heavy)
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may be easily obtained. Rainfall character is decided by the total amount of rain
that has fallen in a set period (usually 1 hour) and by counting the number of
‘clicks' in a 10 minutes period the observer can decide the character of the rain.
Correction algorithms can be applied to the data as an accepted method of

correcting the data for high level rainfall intensity amounts.

Figure 5: Tipping-bucket rain gauge, external view.
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1.3. Tipping bucket rain gauge errors

There are some studies to characterize the errors associated with tipping-bucket
rain gauges when used to provide rainfall intensity estimates at small temporal
scales. The main source of the tipping bucket gauge sampling error is its sampling
mechanism and its inability to capture the small temporal features of the rainfall
time series. The study has found significant error levels in the one minute
estimates especially at low rain rates, but it also has found that as the time scale of
the computed rain rates increased, the error decreased substantially. With time
scales longer than 15 minutes, the error becomes negligible. The gauge’s
performance and its associated errors are sensitive to the applied sampling
interval and the bucket volume. Therefore, we recommend sampling intervals on
the order of 5-10 s, along with a bucket size no larger than 0.254 mm. finally, there
are also approximate formulas of the tipping bucket sampling error obtained
under various operational schemes. The analysis was based on rainfall
observations that were mostly dominated by convective storms with few strati
form events. Similar analysis may be needed to investigate the scope of
applicability of the developed formulas under different climatological regimes.
However, the formulas serve as a first-order approximation that can be used in

practical applications.
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1.4. Tipping-bucket rain gauge for our research

1.4.1. General description

Research has shown that a conventionally shaped rain gauge interferes with the
airflow and that the flow accelerates and turbulence increases over the top of the
funnel than otherwise would have fallen on the ground. In most cases this is
ignored, but it may be corrected arithmetically or overcome physically by placing
the gauge in a pit so that the rim of the funnel is level with the ground, the pit is
covered by a grating to simulate the aerodynamic roughness of the ground surface
while preventing any splash into the funnel. There are obvious advantages with
this method, but it is not always practical. The body of the rain gauge has a profile
that has been designed to reduce the drag and turbulence and therefore be sited

conventionally on exposed sites with some confidence.

Figure 6: Tipping-bucket used for our research.
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Figure 7: Tipping-bucket used for our research.

Rain gauges which operate on the tipping bucket principle provide a switch
closure output, which may be connection to a digital data logger. The pulses
returned during rainfall may be counted over any time interval desired allowing

accurate determination of the rainfall rate.

1.4.2. Description of the ARG100 rain gauge

The ARG100 aerodynamic rain gauge has been designed to minimise the above
effect by presenting a reduced area to the wind. Rainfall is measured by the well-
proven tipping bucket method. Precipitation is collected by a funnel and is passed
to one of the two buckets situated at either end of a short balance arm. The balance
arm tips when the first bucket is full, emptying this bucket and positioning the
second bucket under the funnel. The tipping process repeats indefinitely as long as
the rain continues to fall, with each tip corresponding to a fixed quantity of rainfall;
at each tip the moving arm forces a magnet past a reed switch, causing contact to

be made for a few milliseconds.
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1.4.3. Choosing a site

The site chosen to install the rain gauge will depend in part on the application to
which it is being put and in part on the particular circumstances at the site. But if
possible site the rain gauge so the distance between the rain gauge and
obstruction, such as trees or buildings is at least as great as twice the height of

obstruction.

1.5. Calibration of tipping-bucket rain gauge

The sensitivity of the rain gauge is accurately calibrated at manufacture to a
nominal 0,2 mm/tip. Each rain gauge being supplied with its own calibration
figure.

The figure below shows the calibration number of the rain gauge that we have
recalibrated. To do this there are two different methods, the static calibration and

the dynamic calibration.

Figure 8: Calibration number
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1.5.1. Static calibration

Install the gauge over a sink as illustrated in figure, ensuring that it is correctly
levelled; using a burette or pipette, slowly drip in 10,13 cm3 of water for 0,2
mm/tip. The bucket should tip on the last drip of water. Adjust the relevant thumb
screw, located under each bucket, until the above condition is met. We have to
repeat for the other side of bucket. It is not possible to set screws very precisely
using this method, but it should be done with as much care as possible. It is
obviously very important that both buckets tip in response to the same amount of
water. However, a dynamic test is required to check this calibration precisely after
reach readjustment and the process becomes very time-consuming. In any case, it
is virtually impossible to get the adjustments absolutely correct, and it is generally
preferable to adjust the settings as closely as is reasonably practical, and then
derive a calibration factor for each rain gauge individually after a dynamic
calibration. And this is what we did for several rain gauges. It is explained better in

the following under section.

BURETTE
OR
PIPETTI

1 \& / . LEVEL GAUGE

" BY USING

o I e ADJUSTING SCREWS

SINK

Figure 9: static calibration

1.5.2. Dynamic calibration

Configure the gauge as in figure, ensure gauge is levelled and connected to a data
logger or counter. Fill a container with 1000 cm3 of water for 0,2 mm/tip
calibration, but we have seen that is not enough, so we prefer to do it with 3000
cm3, this is usually achieved most precisely and consistently by weighing the
water on a balance capable of measuring to 0,1 g that correspond to 0,1 cm3. Allow
the water to drip slowly into the gauge, taking at least 60 minutes to empty,

approximately 40 seconds for each tip, but for us that we have used a bigger value
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of three times we need to wait at least 3 hours, to do it we have used a pump that
had different intensities to simulate different situation. At the end of this period
approximately 98 tips will have occurred (we have found approximately 294 tips),
but the exact number is obtained from the data logger or counter. To this add on an
accurate estimation of what fraction of a tip is left in the bucket when the water

stops flowing, a graduated syringe is ideal for this.

Figure 10: Dynamic calibration in laboratory.

1.5.3. Calculating the calibration factor
To calculate the value of calibration factor, we know the nominal amount of the
tips for a 0,2 mm bucket is 98,7167 tips, let N as the number of tips, the calibration

factor (C.F.) is then calculated as follows:

C.F. = Gauge size (0,2 mm) X Nominal amount (98,7167) / N
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Numbers of tips Calibration factor
96,7 to 96,9 0,204 mm/tip
97,0t097,4 0,203 mm/tip
97,5t097,9 0,202 mm/tip
98,0t0 98,4 0,201 mm/tip
98,5 t0 98,9 0,200 mm/tip
99,0t099,4 0,199 mm/tip
99,5t099,9 0,198 mm/tip
100 to 100,4 0,197 mm/tip

Table 1: range of calibration factors.

in other words, each tip correspond to a value of rainfall. Provided the calibration
factor falls between 0,197 mm and 0,204 mm it is acceptable for most purposes. If
the calibration factor lies outside these limits, repeat the static and dynamic

calibration procedure.
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Chapter 2: Location of the study

Bradford lies at the heart of the City of Bradford, a metropolitan borough of West
Yorkshire, in Northern England. It is situated in the foothills of the Pennines, 8,6
miles (14 km) west of Leeds, and 16 miles (26 km) northwest of Wakefield.
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Figure 11: Location of the city of our studies.

25



2.1 General description of location

2.1.1. Geography

Bradford is located at 53° 45’ 00” N 01° 50" 00” W (53.7500, -1.8333)1.
Topographically, it is located in the eastern moorland region of the South
Pennines.

Bradford is not built on any substantial body of water but is situated at the
junction of three valleys, one of them, that of the Bradford Beck which rises in
moorland to the west, and is swelled by its tributaries, the Horton Beck,
Westbrook, Bowling Beck and Eastbrook. At the site of the original ford, the beck
turns north, and flows towards the River Aire at Shipley. Bradfordale is a name
given to this valley. It can be regarded as one of the Yorkshire Dales, though as it
passes though the city, it is often not recognised as such. The beck's course through
the city centre is interred and has been since the mid 19th century. On the 1852
Ordnance Survey it is visible as far as Sun Bridge, at the end of Tyrrell Street, and
then from beside Bradford Forster Square railway station on Kirkgate. On the 1906
Ordnance Survey, it disappears at Tumbling Hill Street, off Thornton Road, and
appears north of Cape Street, off Valley Road, though there are culverts as far as
Queens Road.

The Bradford Canal, built in 1774, linking the city to the Leeds and Liverpool Canal
took its water from Bradford Beck and its tributaries. The supply was often
inadequate to feed the locks, and the polluted state of the canal led to its
temporary closure in 1866: the canal was closed in the early 20th century as

uneconomic.

2.1.2. Geology
The underlying geology of the city is primarily carboniferous sandstones. These
vary in quality from rough rock to fine, honey-coloured stone of building quality.

Access to this material has had a pronounced effect on the architecture of the city.
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2.1.3. Climate

As with the rest of the UK, Bradford benefits from a maritime climate, with limited
seasonal temperature ranges, and generally moderate rainfall throughout the year.
Records have been collected since 1908 from the Met Office's weather station at
Lister Park, a short distance north of the city centre. This constitutes one of the
nations longest unbroken records of daily data.

The absolute maximum temperature recorded was 32.2 °C in August 1990. In an
average year, the warmest day should attain a temperature of 27.5 °C, with a total
of 6 days rising to a maximum of 25.1 °C or above.

The absolute minimum temperature recorded was -13.9 °C during January 1940.
The weather station's elevated suburban location means exceptionally low
temperatures are unknown. Typically, 41.4 nights of the year will record an air
frost. Rainfall averages around 870 mm per year with over 1mm falling on 139

days.

2.2 Locations of rain gauge stations

The rain gauge stations are placed on Bradford University city campus and they
are sixteen.

All rain gauges are ARG100 tipping bucket rain gauges, they have been setted to
read tips every 1 minute; we manually read out the data approximately every 3
weeks and we also check and clean the rain gauges.

The period of study is long from 6th of April to 2nd of November, the rest of the
year we are unable to have a good value of data for the problem of the tipping
bucket rain gauge to catch the data of snowy and haily days.

The picture below could give a general idea of the location of all the rain gauges,

but it will be explained better in the following section.
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Figure 12: Location of measurement places.

2.2.1. Location of every point
Point A - two rain gauges clamped on the railings of Phoenix building, distance of
more than twice the height of the surrounding building, but they do not satisfy the

5 metres away from roof edge.

Figure 13: Rain gauges of point 4, in Phoenix building.
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Point B - School of Health. Two rain gauges clamped to the railings of a balcony,
they can’t be placed in middle, as there is an approximately 4 m high wall. Rain

gauges are not at 5 m away from roof edge.

Figure 14: Rain gauges of point B, in School of Health.

Point C - Richmond building, behind the atrium wing. Two rain gauges clamped to
the white railings, because there is a high building behind us, the blue cladded
Richmond building on right of the photo above, we are not sure about exact height
of the building, at the edge of this roof we’re probably not quite twice the height of

the building away. The rain gauges are also not 5 m away from roof edge.
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Figure 15: Rain gauges of point C, in Richmond building.

Point E - Pemberton building. Two rain gauges in middle of the flat roof, so it is

satisfying all the criteria.

Figure 16: Rain gauges of point E, in Pemberton building.

Points F and G, Library roof, 2 pairs of rain gauges, one on either side of flat roof,
located several meters from the edge. The rain gauges have more than 5 metres

away from roof edge.
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Figure 17: Rain gauges of point F and G, both in Library roof.
Point [ and H - There are four rain gauges, one pair either side, on roof of Student
Central, several metres from edge, distance of more than twice the height of

surrounding buildings.

Figure 18: Rain gauges of point I and H, on roof of Student Central.

In the end to give clarity of the all locations, there are some pictures taken from
aerial photography.
Location of points: E-F-G-H-C

.;s’.‘.‘.

Figure 19: Location of the rain gauges in Pemberton Buildings, Student Central and Library.

Location of points: A-F-G-H-C
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Figure 20: Location of the rain gauges in Phoenix Buildings, Student Central and Library

Location of point B and C:

Figure 21: Location of the rain gauges in Richmond Buildings and School of Health.

2.2.2. Distances and coordinates
Here below there are the coordinates of every point, just analysed.
* Phoenix building, point A, rain gauges 7 and 6: x = 415325,y = 432740;
* Student central, point H&I:
Rain gauges 8 and 9: x = 415356,y = 432847,
Rain gauges 10 and 12: x =415374, y = 432858;
* Library, point F&G:
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rain gauges 15 and 16: 415395,y =432811;

rain gauges 13 and 14: 415426,y = 432774;
* Pemberton, point E, rain gauges 4 and 5: x = 415513, y = 432834,
* School of Health, point B, rain gauges 17 and 18, x = 415626,y = 432762;
¢ Richmond building, point C, rain gauges 1 and 2, x =415720,y = 432795;

The following table shows the distances between all the points.

Stations | Distance [m]
AB 304
AC 404
Al 88
AE 209
AF 105
AG 95
AH 131
BC 104
BI 290
BE 139
BF 204
BG 246
BH 270
CI 380
CE 216
CF 304
CG 338
CH 355
IE 166
IF 96
IG 44
[H 46
EF 111
EG 127
EH 139
FG 56
FH 102
GH 52

Table 2: distances between all the stations.
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Chapter 3: Models for the analysis

3.1. Correlation

In statistics, dependence is any statistical relationship between two random
variables or two sets of data. Correlation refers to any of a broad class of statistical
relationships involving dependence.

Familiar examples of dependent phenomena include the correlation between the
physical statures of parents and their offspring, and the correlation between the
demand for a product and its price. Correlations are useful because they can
indicate a predictive relationship that can be exploited in practice.

Formally, dependence refers to any situation in which random variables do not
satisfy a mathematical condition of probabilistic independence. In loose usage,
correlation can refer to any departure of two or more random variables from
independence, but technically it refers to any of several more specialized types of
relationship between mean values. There are several correlation coefficients, often
denoted p orr, measuring the degree of correlation. The most common of these is
the Pearson correlation coefficient, which is sensitive only to a linear relationship
between two variables (which may exist even if one is a nonlinear function of the
other). Other correlation coefficients have been developed to be more robust than
the Pearson correlation - that is, more sensitive to nonlinear relationships. Mutual

information can also be applied to measure dependence between two variables.

3.1.1. Pearson's product-moment coefficient

The most familiar measure of dependence between two quantities is the Pearson
product-moment correlation coefficient, or "Pearson's correlation coefficient",
commonly called simply "the correlation coefficient". It is obtained by dividing the
covariance of the two variables by the product of their standard deviations. Karl
Pearson developed the coefficient from a similar but slightly different idea by

Francis Galton.
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3.1.2. Population and sample methods

Pearson's correlation coefficient when applied to a population is commonly
represented by the Greek letter o and may be referred to as the population
correlation coefficient or the population Pearson correlation coefficient. The

formula for o is:

cov(X,Y)  E[(X—u)(Y — py)]
oxOy Ox Oy

pxy = corr(X,Y) =

where, cov is the covariance, which is a measure of how much two random
variables change together. If the greater values of one variable mainly correspond
with the greater values of the other variable, and the same holds for the smaller
values, i.e., the variables tend to show similar behaviour, the covariance is positive.
In the opposite case, when the greater values of one variable mainly correspond to
the smaller values of the other, i.e., the variables tend to show opposite behaviour,
the covariance is negative. The sign of the covariance therefore shows the
tendency in the linear relationship between the variables; oy is the standard
deviation of X; uy is the mean of X; and E is the expectation, which refers,
intuitively, to the value of a random variable one would "expect" to find if one
could repeat the random variable process an infinite number of times and take the
average of the values obtained. More formally, the expected value is a weighted
average of all possible values.

Pearson's correlation coefficient when applied to a sample is commonly
represented by the letter r and may be referred to as the sample correlation
coefficient or the sample Pearson correlation coefficient. We can obtain a formula
for r by substituting estimates of the covariances and variances based on a sample

into the formula above. That formula for r is:

=X =X - )

- \/z’;l(xi—;?)z \/Z?zl(yi_y)z

R
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An equivalent expression gives the correlation coefficient as the mean of the
products of the standard scores. Based on a sample of paired data (X Yi), the

sample Pearson correlation coefficient is:

R =

n — —
1 Z(Xi—X)(Yi—Y)
=

where:

The standard score is:

X; - X)

the mean is:

>
[
3|
Nl
>

~
1l
[

and the sample standard deviation is:

n
1 _
Sy = > - Xy
i=1

n—1

The absolute values of both the sample and population Pearson correlation
coefficients are less than or equal to 1. Correlations equal to 1 or -1 correspond to
data points lying exactly on a line, or to a bivariate distribution entirely supported
on a line (in the case of the population correlation). The Pearson correlation

coefficient is symmetric: corr(X,Y) = corr(Y,X).

3.1.3. Interpretation
The correlation coefficient ranges from -1 to 1. A value of 1 implies that a linear
equation describes the relationship between X and Y perfectly, with all data points

lying on a line for which Y increases as X increases. A value of -1 implies that all
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data points lie on a line for which Y decreases as X increases. A value of 0 implies

that there is no linear correlation between the variables.

More generally, note that (Xi — X)(Yi - Y) is positive if and only if X; and Y; lie on the
same side of their respective means. Thus the correlation coefficient is positive if X;
and Y; tend to be simultaneously greater than, or simultaneously less than, their
respective means. The correlation coefficient is negative if X; and Y; tend to lie on

opposite sides of their respective means.

3.1.4. Interpretation of the size of a correlation

Several authors have offered guidelines for the interpretation of a correlation
coefficient. However, all such criteria are in some ways arbitrary and should not be
observed too strictly. The interpretation of a correlation coefficient depends on the
context and purposes. A correlation of 0.8 may be very low if one is verifying a
physical law using high-quality instruments, but may be regarded as very high in
the social sciences where there may be a greater contribution from complicating

factors.
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3.2. Kriging

Optimal interpolation based on regression against observed z values of
surrounding data points, weighted according to spatial covariance values.

The interpolation is an estimation of a variable at an unmeasured location from
observed values at surrounding locations. For example, estimating ¢. based on

values at nearest six data points in our zone data:

5700 PY ¢4= 12.68
5200 = 1441 0, =12.87
9=1459 ¢ .
g- ¢ ¢ =7
o 4700 + %=
E P
<
o ) 3 b iyiqe
Z 4200 - < ay =1f(d,) ¢, = 12.15
3700 ®
o, =13.84
3200 T T T T T T —T v —r ——— = . .
500 1000 1500 2000 2500 3000 3500 4000
Easting (m)

Figure 22: Estimation of the value ¢, using data values of the surrounding locations.

It would seem reasonable to estimate ¢u by a weighted average X A «¢u, with
weights 1 « given by some decreasing function of the distance, de, from u to data
point a .

All interpolation algorithms (inverse distance squared, splines, radial basis
functions, triangulation, etc.) estimate the value at a given location as a weighted
sum of data values at surrounding locations. Almost all assign weights according to
functions that give a decreasing weight with increasing separation distance.
Kriging assigns weights according to a (moderately) data-driven weighting
function, rather than an arbitrary function, but it is still just an interpolation

algorithm and will give very similar results to others in many cases. In particular:
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- If the data locations are fairly dense and uniformly distributed throughout the
study area, you will get fairly good estimates regardless of interpolation algorithm.

- If the data locations fall in a few clusters with large gaps in between, you will get
unreliable estimates regardless of interpolation algorithm.

- Almost all interpolation algorithms will underestimate the highs and
overestimate the lows; this is inherent to averaging and if an interpolation
algorithm didn’t average we wouldn’t consider it reasonable.

Some advantages of kriging:

- Helps to compensate for the effects of data clustering, assigning individual points
within a cluster less weight than isolated data points (or, treating clusters more
like single points)

- Gives estimate of estimation error (kriging variance), along with estimate of the
variable, Z, itself (but error map is basically a scaled version of a map of distance to
nearest data point, so not that unique)

- Availability of estimation error provides basis for stochastic simulation of

possible realizations of Z(u)

3.2.1. Kriging approach and terminology
All kriging estimators are but variants of the basic linear regression estimator

Z*(u) defined as

n(u)

7@ = m@w = ) AdZ(ug) - m(ug)]

with:

u and ug : location vectors for estimation point and one of the neighbouring data
points, indexed by o;

n(u): number of data points in local neighbourhood used for estimation of Z*(u)
m(u), m(uq): expected values (means) of Z(u) and Z(uq)

A «(u): Kkriging weight assigned to datum z(uq) for estimation location u; same
datum will receive different weight for different estimation location.

Z(u) is treated as a random field with a trend component, m(u), and a residual
component, R(u)= Z(u)- m(u). Kriging estimates residual at u as weighted sum of

residuals at surrounding data points. Kriging weights, A, are derived from
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covariance function or semivariogram, which should characterize residual
component. Distinction between trend and residual somewhat arbitrary; varies

with scale.

3.2.2. Basics of kriging

Again, the basic form of the kriging estimator is

n(u)

7@ = mw = ) AlZ(ug) — m(ug)]

The goal is to determine weights, A, that minimize the variance of the estimator
of (w) = Var{Z"(u) — Z(w)}

under the unbiasedness constraint E{Z*(u) — Z(u)} = 0
The random field Z(u) is decomposed into residual and trend components,
Z(u) = R(u) + m(u), with the residual component treated as an random field
with a stationary mean of 0 and a stationary covariance (a function of lag, h, but
not of position, u):
E{fR(w)} =0
Cov{R(u),R(u+h)} = E{R(u) - R(u+ h)} = Cz(h)

The residual covariance function is generally derived from the input
semivariogram model, Cz(h) = Cz(0) — y(h) = Sill — (h).

Thus the semivariogram we feed to a kriging program should represent the
residual component of the variable.

The three main kriging variants, simple, ordinary, and kriging with a trend, differ

in their treatments of the trend component, m(u).

3.2.3. Simple kriging
For simple kriging, we assume that the trend component is a constant and known

mean, m(u) = m, so that
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n(u)

Zie@) =m+ ) AF[Z(u,) — m(ug)]

a=1

This estimate is automatically unbiased, since E[Z(u,) —m] =0, so that
El[Z{y ()] =m = E[Z(u)] . The estimation error Ziy(u) —Z(u) is a linear
combination of random variables representing residuals at the data points, uq, and

the estimation point, u:

Zsx(w) —Z(w) = [Zgx(w) —m ]- [Z(w) —m]

n(u)

_ Z 25K (WR(ug) — R(w) = Ry (u) — R(u)

Using rules for the variance of a linear combination of random variables, the error

variance is then given by

af (W) = Var{Rgx (W)} + Var{Rsx (W)} — 2Cov{Rsy (), Rex (w)}

n(u) n(u) n(u)
= ) ) A @ A @ (e — ug) + Co(0) = 2 ) (W) oty — w)
a=1 f=1 a=1

To minimize the error variance, we take the derivative of the above expression
with respect to each of the kriging weights and set each derivative to zero. This

leads to the following system of equations:

n(u)

Z 2K (@)Cr(ug —up) = Crlu, —u) a=1,..,n(u)
p=1

Because of the constant mean, the covariance function for Z(u) is the same as that
for the residual component, C(h) = Cr(h), so that we can write the simple kriging

system directly in terms of C(h):

n(u)

Z A3 C(u, —ug) = Clug —u) a=1,..,n()
p=1
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This can be written in matrix form as:
KAk (u) = k

where Kk is the matrix of covariances between data points, with elements K; ;=
C(u; - ), k is the vector of covariances between the data points and the estimation
point, with elements given by k; =C(u;—u),and Asx(u) is the vector of simple kriging
weights for the surrounding data points. If the covariance model is licit (meaning
the underlying semivariogram model is licit) and no two data points are collocated,
then the data covariance matrix is positive definite and we can solve for the kriging

weights using:
/151{ = K_lk

Once we have the kriging weights, we can compute both the kriging estimate and

the kriging variance, which is given by:

n(u)

o (W) = C(0) = @k =C(0) = > A WC(ug—w)

after substituting the kriging weights into the error variance expression above.

So what does all this math do? It finds a set of weights for estimating the variable
value at the location u from values at a set of neighbouring data points. The weight
on each data point generally decreases with increasing distance to that point, in
accordance with the decreasing data-to-estimation covariances specified in the
right-hand vector, k. However, the set of weights is also designed to account for
redundancy among the data points, represented in the data point-to-data point
covariances in the matrix K. Multiplying k by K1 (on the left) will down weight
points falling in clusters relative to isolated points at the same distance.

Some characteristics to note:

Smoothness: Kriged surface will basically be as smooth as possible given the

constraints of the data; in many cases, probably smoother than the “true” surface.
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Bullseyes: Because kriging averages between data points, local extremes will
usually be at well locations; bullseyes are inevitable. This is true of almost all
interpolation algorithms. Extreme form of this is artefact discontinuities at well

locations when semivariogram model includes significant nugget.

Error map reflects data locations, not data values: Map of kriging standard
deviation depends entirely on data configuration and covariance function;

essentially a map of distance to nearest well location scaled by covariance function.

3.2.4. Ordinary kriging

For ordinary kriging, rather than assuming that the mean is constant over the
entire domain, we assume that it is constant in the local neighbourhood of each
estimation point, that is that m(u, )= m(u) for each nearby data value, Z(u. ), that

we are using to estimate Z(u). In this case, the kriging estimator can be written:

n(u)

2@ = mw + Y A WIZ(a,) — m(ug)]

n(u) n(u)
= Y AWz + 1= Y W mw

and we filter the unknown local mean by requiring that the kriging weights sum to

1, leading to an ordinary kriging estimator of

n(u) n(u)
75 (u) = z ASK(w)Z(u,)  with z A%K () = 1,
a=1 a=1

In order to minimize the error variance subject to the unit-sum constraint on the
weights, we actually set up the system minimize the error variance plus an

additional term involving a Lagrange parameter, pox (u):
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n(u)

L= 02(0) + 200 (0) 1= ) 2,(0)

so that minimization with respect to the Lagrange parameter forces the constraint

to be obeyed:

In this case, the system of equations for the kriging weights turns out to be

m(uw)
Z A () Cr(ug —ug) + pog () = Cpug —w)  a=1,..,n(u)
B=1
< n(u)
Z 235 () = 1.
\ B=1

where Cr (h) is once again the covariance function for the residual component of
the variable. In simple kriging, we could equate Cr (h) and C (h), the covariance
function for the variable itself, due to the assumption of a constant mean. That
equality does not hold here, but in practice the substitution is often made anyway,
on the assumption that the semivariogram, from which C(h) is derived, effectively
filters the influence of large-scale trends in the mean.

In fact, the unit-sum constraint on the weights allows the ordinary kriging system
to be stated directly in terms of the semivariogram (in place of the CR (h) values
above). In a sense, ordinary kriging is the interpolation approach that follows
naturally from a semivariogram analysis, since both tools tend to filter trends in
the mean.

Once the kriging weights (and Lagrange parameter) are obtained, the ordinary

kriging error variance is given by

n(u)

0 = C(0) = > AZ@C(ug — W) = oy (W)
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3.2.5. Kriging with a Trend

Kriging with a trend (the method formerly known as universal kriging) is much
like ordinary kriging, except that instead of fitting just a local mean in the
neighbourhood of the estimation point, we fit a linear or higher-order trend in the
(x,y) coordinates of the data points. A local linear (a.k.a., first-order) trend model

would be given by

m(u) = m(x,y) = ay + a;x + a,y

Including such a model in the kriging system involves the same kind of extension
as we used for ordinary kriging, with the addition of two more Lagrange
parameters and two extra columns and rows in the K matrix whose (non-zero)
elements are the x and y coordinates of the data points. Higher-order trends
(quadratic, cubic) could be handled in the same way, but in practice it is rare to use
anything higher than a first-order trend. Ordinary kriging is kriging with a zeroth-
order trend model. If the variable of interest does exhibit a significant trend, a
typical approach would be to attempt to estimate a “de-trended” semivariogram
using one of the methods described in the semivariogram lecture and then feed

this into kriging with a first- order trend.

3.3. Cross validation

Cross validation allows us to compare estimated and true values using only the
information available in the sample data set
Cross validation may help us to choose between different weighting procedures,

search strategies, variogram models, or estimation methods

3.3.1. Role of Cross Validation
The Cross Validation results are often used simply to compare the distribution of
the estimation errors or residuals from different estimation procedures and

choose the one that works better
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A careful study of the spatial distribution of cross validated residuals (estimated
minus true values) can provide insights into where an estimation procedure may

run into trouble.

3.3.2. Cross Validation Method

Starting from all the data inside the data set, we need to know if the kriging
method is an accurate method to estimate the values of the interest points.

So, the sample value at a particular location, which is located on the interest place,

is temporarily removed from the sample data set. The graphic below explains that

condition:
1
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Figure 23: Principle of the cross validation, calculation of the value in a point and make the
comparison between the estimate value and the real value.

The value at the same location is then estimated using the remaining samples, and
in this case we have used the kriging interpolation method.

Once the estimation is calculated we can compare it to the true sample value that
was initially removed from the sample data set

This procedure is repeated for all available samples, which are sixteen points that
correspond to the sixteen rain gauges or to the eight average values of the rain

gauges pairs.
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Figure 24: Compariosn between the real value and the estimate value.

How the figure 3 shows, in the second illustration where there was only the
original datum we have calculated the datum using the kriging interpolation
method, and we can have a comparison to understand how accurate is the method.
One of the factors that limits the conclusions that can legitimately be drawn from a
cross validation exercise is recurring problem of clustering

In fact, If our original sample data set is spatially too clustered, then so are our
cross validated residuals. Therefore, some conclusions drawn from it may be

applicable to the entire map area, others may not.

3.3.3. Limitations of Cross Validation Method
* (CV can generate pairs of true and estimated values only at sample locations;
* (lustering problem in the sample data set;
* In practice, the residuals may be more representative of only certain
regions or particular ranges of values.
Clustering problem can be overcome either by calculating declustered mean of
residuals or by performing CV at a selected subset of locations that is
representative of the entire study area. If very close nearby samples are not
available in the actual estimation, it makes little sense to include them in CV
The problem areas identified by cross validation may warrant additional sampling,

especially when there are major consequences.
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Chapter 4: Atmospheric events in 2012

4.1. Introduction of the events

This work is going to analyse rainfall data collected in 2012.

Starting from the rainfall data of every rain gauge, we have in total 8 pairs of rain
gauges, which take the value of the rainfall every minute, so it is possible to see the
trend for the whole period of every rain gauge.

There have been some periods, to be more precise from the end of August 2012
until the end of 2012, in which not all the rain gauges were working because there
have been some problems noticed while catching the data, which showed some
problems of calibration. This occurred because there were building works on the
library roof, which meant the rain gauges had to be moved out of the way of the
building works, and some got damaged during the works. That is why for the last
period it is possible to use the data of only 6 pairs of rain gauges.

It is possible to see the graphic in the following page that represents the trend of
the daily rainfall for the whole period.

The location of the studies has not given the possibility to catch the data for all the
year, but only for the period ranging from the beginning of April to the end of
October. The reason of this condition is that the winter season is too cold and there
is too much snow, and if it is not snowing, the rainfall is replaced by hail and also
the rainfall inside the funnel and the bucket freezes.

This type of tipping-bucket rain gauge was unheated, and hence not able to catch
these kind of data also because the hail usually bounces out of the bucket, and as
regards the snow, the temperature is usually under 0 degree, so we have to wait
for it to thaw; which means the evaporated part of the rainfall and information
regarding real time of the event is lost.

Hence there are no accurate data for the winter period.

Watching the graph it is possible to notice that for the measurement period there
are lot of rainy days, and there are only two weeks when it does not rain: the last
week of May and the beginning of September. For the rest of the time, there are
only one or two days without rain.

Dividing the analysing period in accordance with the seasons:
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e  Winter: 23rd of December to 20th of March;

* Spring: 21st of March to 21st of June;

*  Summer: 22nd of June to 22nd of September;

¢ Autumn: 23rd of September to 22nd of December.

There are in average 830 mm of rainfall for the whole examined period, most of

this during the spring and the summer, the following Table 1 shows the division

for the period.

Total

Spring

Summer

Autumn

| [mm] 831.1

303.5

345.7

176.5

Table 3: Rainfall for the whole period and every season.

Most of the rainfall has fallen down during the summer and the first days of
autumn and the last days of spring.

Every day in average there are 4 mm of rainfall, during the spring 1.4 mm, during

the summer 1.7 mm and in the end, during the autumn only 0.8 mm.

The highest precipitation was on the 22 of June when it rained 48 mm in 22

hours.
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Figure 25: Trend of the rainfall for the whole period and every season.
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4.2. Events analysed

To start our analysis we have chosen some events for every month according to
the depth of the rainfall.

We have begun analysing the month of April and we have chosen three days: 25th,
26th and the 18, which are characterized by 20 mm or more of rainfall.

Figure 26 shows with a histogram the trend of every rain gauge for every day,

where every rain gauge is expressed by a different colour.

April 2012
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Figure 26: Trend of every rain gauge of every day of April

Using the same method, and watching the trend for all rain gauges for every
month, we have chosen some events for every month.

The following graphs, figures 27 and 28, show the months of June and July. In the
first, it is possible to notice better the event mentioned above: the 22nd of June,

when there are more than 40 mm of rainfall.
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June 2012
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Figure 27: Trend of every rain gauge of every day of June

The second one, the graph of July, shows a high depth of rainfall for the 6t, but

from the 2 to the 10t we can see a group of small events.

July 2012
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Figure 28: Trend of every rain gauge of every day of July
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To conclude, the list of all the events is the following:

- Event 1: 25% of April for a duration of 13 hours;

- Event 2: 26t of April for a duration of 18 hours;

- Event 3: 9th - 10t of May for a duration of 13 hours;
- Event 4: 221 of June for a duration of 22 hours;

- Event 5: 6% of July for a duration of 10 hours;

- Event 6: 5t of August for a duration of 4 hours;

- Event 7: 24th of September for a duration of 14 hours;
- Event 8: 3 of October for a duration of 5 hours;

- Event 9: 11th of October for a duration of 8 hours;

- Event 10: 16t of October for a duration of 4 hours;
- Event 11: 18t of April for a duration of 12 hours;

- Event 12: 3rd of June for a duration of 20 hours;

- Event 13: 15t of June for a duration of 3 hours;

- Event 14: 15t of August for a duration of 4 hours;

- Event 15: 25t of August for a duration of 2 hours;

- Event 16: 25t of September for a duration of 22 hours.
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4.3. Errors of rain gauges

Before starting the analysis, it is necessary to pay attention to downloaded data.

In fact, after the downloading, we have to check if there are some errors on the
measurements of every rain gauge. This is the reason why we have 8 pairs of rain
gauges and not only one rain gauge in every place, so it is easier to verify if there
are some problems in one of those making a comparison between the elements of
the pair.

As we have already observed in the chapter on the rain gauge, there is a range
within which, during a period of use, the calibration factor could change and it
could give a wrong data in output.

As it can be seen in table 4, the usual value of the calibration factor is ranging from
0,197 to 0,203 mm/Tip, over these ranges there are some problems, and in

extreme cases we cannot use the data catched.

Range: 0.197 vs 0.203
Usual: 0.198 vs 0.202
Biggest: 0.196 vs 0.204
worst case: 0.195 vs 0.205

Table 4: range of an accurate calibration

So, if difference between rain gauge pairs is bigger, approximately 4.1% (it
corresponds to the range 0,195 vs 0,205), then could be a small blockage or other
random error, so we have to cut off these data from the analysis.

Figure 29 and 30 show the examination of the pair of rain gauges of the months of

April and August, where there have been some problems.
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Figure 29: errors of the pair of rain gauges.

In this period all the rain gauges have a good behaviour and they are always near
the first or second line (green line and yellow line), but for the couple of the rain
gauges 4 and 5 there are always problems during the whole period. One of these is
probably badly calibrated and it is not a blockage, because the problem persists for

the whole period and it is not characteristic of only one event.
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Figure 30: errors of the pair of rain gauges.
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Figure 30 shows the period of August, where there is also a problem in one pair; it
is not the same of Figure 29 but it is the pair of rain gauges 8 and 9.

This condition is different from the other one, in that it could be only a temporary
blockage of one rain gauge, because the problem is for only one event as opposed
to the situation described above.

During the analysis we cannot consider the data of those rain gauges, which have

registered an error.
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4.4. Intensity

After choosing the events, there is one more characteristic to analyse: the intensity
of all the events. In this chapter we cannot show any reference value, but in the
following ones, by studying the correlation of rain gauges, it will be possible to

explain the behaviour of the events.

Intensity

Figure 31: Intensity of all the events
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Chapter 5: Analysis of correlation between rain gauges

This chapter analyses the correlation between the rain gauges, studying the
different behaviour of each pair of rain gauges, and how the correlation between
pairs of rain gauges changes with different typologies of rainfall events and with
the distance between the rain gauge pairs.

The axes of the diagram, which will explain the trend, represent the correlation on
the vertical axis, which is going from zero where there is not correlation, to one
where there is perfect correlation between the values; on the horizontal axis there
is the distance between rain gauges in kilometres.

Every event will be analysed for a range of time scales, so it is possible to see how
the correlation changes with different cumulative time scales; starting with the
cumulative time scale of 5 minutes followed by 6, 10, 12, 15, 20 and 30 minutes
respectively, as well as 1, 2 and 3 hours.

Before starting it is necessary to notice that we are using the character "," instead

of "." on the correlation graphs, to express decimal numbers.

5.1. Correlation analysis

The first step consists in studying the correlation between each single rain gauge
and the others; at this stage we are not using the second rain gauge in the same
position, because we have a pair of rain gauges in every location, and we do not
consider the correlation between the couple, since it will always be near to 1.

We are using the data without the errors and the results that we obtain are
showed in the following graphs.

The first graph, figure 32, shows the state of the event 2; the different colour points
indicate the different cumulative time scales as the legend suggests.

It shows how for the lowest cumulative time scale, which is of 3 minutes, the
correlation is low and it is near the 0.5 and is going down with the increasing of the
distance; the second trend line of the cumulative time scale of 6 minutes shows
that the correlation is better than before, and it is near 0.65 and it is always going

down with the increasing of the distance.
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Figure 32: Correlation of event 2 - 26/04/2012, where there are cumulative temporal scales from 5
minutes to 3 hours.

To find a good state of correlation we have to observe the cumulative time scale of
7 minutes, which is on the line of 0.8 and it is a good line for the correlation.

The best one that we can use for the estimation data in this event is the cumulative
time scale of 10 minutes, which is on the line of 0.9 and over this line there is a

very high correlation.
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Figure 33: Correlation of event 8 - 3/10/2012.
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The second graph, in figure 33, shows the state of the event 8, which represents a
different behaviour in comparison with the event 2.

At the beginning we already have a rather high correlation. In fact, the cumulative
time scale of 3 minutes is already between the values of 0.7 and 0.8 of correlation.
We had to wait for the cumulative time scale of 10 minutes to have a good degree
of correlation for the event 2, whereas in the event 8, the cumulative time scale of

6 minutes is enough to be on the 0.9 line.

The last graph of correlation in figure 34, which represents the event 14, shows a
third different state of the correlation.

In fact, we have a new different behaviour in comparison with the other events.

It has the best behaviour because all the trend lines are above the 0.9 line of the
correlation, so there is a good chance to have a very good estimation for the data

also for the lowest cumulative time scale.
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Figure 34: Correlation of event 14 - 15/08/2012.
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5.2. Group division

In the section above (5.1.), we have described three different behaviours of the
events, which represent the three groups in which we can insert all the events.
In fact, we have started the analysis studying sixteen events, but we cannot
consider the event 7 and the event 16 because there are too many problems with
the rain gauges in that period that is September, so it may have been due to the
same problem. The rest of the events have been studied and the results showed
that each one of them could be included in the three groups as showed above.
The studies indicate that the three groups can be divided in the following way:

» group A:event1,2,3,4,11 and event 12;

» group B: event 8,9, 10 and event 13;

» group C: event5, 6, 14 and event 15.
At the end of this chapter, it is possible to find all the graphs of all the events in
order to make a comparison.
At this point, the aim is to find what these events have in common, in order to
elaborate an objective method to insert a general event into one of these groups.
The first thing that we have considered is the period of occurrence, because there
might be a link between the events. In fact, at the moment there is no accurate
method of dividing them, but the seasons give a first idea of the group of they
belong to.
As regards the method of division into groups according to the seasons, we can see
that the events of group A happen during the spring or over the days immediately
before or after the last days of spring, as the event 4 shows, which happens on the
22nd of June; the events of group B occur in autumn and those of group C can be
observed in the summer.
A more objective method to divide the events into groups could be analysing the
intensity of the rainfall, so now we are going to discuss more thoroughly the values
of the intensities that we have already analysed in chapter 4.
Starting from the total cumulative of every event we make a ratio between it and

the duration of the event.
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The results give us three different groups appropriately selected. The tables below
show the range values of the intensity according to which there is a division of the

events into three groups.

Range Group
0-2 [mm/h] A
2-3 [mm/h] B
over 3 [mm/h] C

Table 5: group division based on the range of the intensity.

Intensity [mm/h] | Groups
Event 1 2,010 A
Event 2 1,249 A
Event 3 1,690 A
Event 4 1,927 A
Event 5 3,626 C
Event 6 5,687 C
Event 8 2,563 B
Event 9 2,924 B
Event 10 2,157 B
Event 11 1,640 A
Event 12 1,290 A
Event 13 2,158 B
Event 14 4,627 C
Event 15 4,189 C

Table 6: values of intensity for each event and the groups they belong to.

The figure 35 shows the intensity values expressed in the table 6; the colours help
to give a faster perception of the division of the events. The yellow one indicates
the events which belong to group A, the pink one is for group B and the last one,

the blue one, for the events belonging to group C.
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Figure 35: Intensity of every event and group division.
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5.3. First considerations

After this first step, where we have studied the correlation for sixteen events
starting from the data value of every single rain gauge correlated with the others,
without using the data values of the other rain gauge of the pair in the same
position, we have seen that all the correlations of all the events follow three
different trends of behaviour. As concerns these three trends and the
corresponding groups, the first one has the worst behaviour because the trend line
that interpolates the lowest points starts from the 0.5 line of correlation and we
have to use the cumulative time scale of 10 minutes to have a good degree of
correlation; for the other two groups there is a better trend and the second one
gave us a good correlation data starting from 6 minutes of cumulative temporal
scale; the last one, which is the best one, is always over the 0.9 line of correlation
also for the 3 minutes of cumulative time scale.

We noticed that these three groups could be divided according to the season of

occurrence and the intensity, which offer a first indication about the behaviour of

the events.
Intensity | Correlation at 5 min Correlation at 15 min
Event| Date |Group| range timescale timescale
[mm/h] | 100 m 400 m 100 m 400 m
1 |25/04/12| A 0-2 0,72572 0,68010 0,96108 0,93261
2 (26/04/12| A 0-2 0,71154 0,66392 0,93612 0,91131
3 |09/05/12| A 0-2 0,61103 0,60003 0,91058 0,89209
4 122/06/12| A 0-2 0,93523 0,70552 0,93523 0,88581
5 |06/07/12| C over 3 0,94658 0,93643 0,98241 0,97964
6 |05/08/12| C over 3 0,97073 0,95129 0,99904 0,99440
8 |03/10/12| B 2-3 0,89851 0,84753 0,97731 0,97590
9 |11/10/12 B 2-3 0,92769 0,91276 0,98612 0,96609
10 |16/10/12 B 2-3 0,71628 0,61743 0,96102 0,93851
11 |18/04/12| A 0-2 0,72578 0,66711 0,94023 0,93787
12 |03/06/12| A 0-2 0,45295 0,38179 0,84144 0,79988
13 |15/06/12| B 2-3 0,91019 0,78009 0,92388 0,84761
14 |15/08/12| C over 3 0,94649 0,97689 0,98936 0,99822
15 |25/08/12| C over 3 0,96492 0,78691 0,97828 0,72877

Table 7: Summary of the events, with their group of belonging, date, intensity range and the values of
correlation for 3 and 15 time scales at the distances of 100 and 400 metres.
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5.4. Correlation analysis for average values

In this section we are going to study the behaviour of the correlation considering
the average values of the rain gauge couple. So, if before we had sixteen rain
gauges and we have considered each one independently, now we have eight rain
gauges placed in the average coordinates of the original position of the two rain
gauges.

We are going to examine the same three events that we have studied in section
5.1., where we used the correlation counting all the rain gauges.

The first graph in figure 36 regards the event 2, which belongs to group A of
division. The trend of correlation is going better than before and all the trend lines
have increased their degree of correlation. In fact, there is a good value of
correlation for the cumulative time scale of 7 minutes, which is already on the line
of 0.9.

In comparison with the trend of the results obtained before, there is an

improvement of the method.
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Figure 36: Correlation of the event 2 - 26/04/2012, using the average data value of the pairs of rain
gauges.

The second graph in figure 37 regards the event 8 and also here we have a better

trend. The first line related to the cumulative time scale of 3 minutes is already
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between the 0.8 and 0.9 lines, and with the cumulative time scale of 4 minutes we

are over the 0.9 line.
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Figure 37: Correlation of the event 8 - 3/10/2012, using the average data value of the pairs of rain
gauges.
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Figure 38: Correlation of the event 14 - 15/08/2012, using the average data value of the pairs of rain
gauges.

The last graph in figure 38 regards the event 14, which belongs to group C. It is not
easy to establish if there is also an improvement of the position of the trend lines,
but according to what we have seen in the other two graphs, figures 36 and 37, we

can conclude that it should have the same improvement.
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5.5. Comparison between the two analysis methods

5.5.1. Comparison between the two methods for the Event 8

To be more specific, we can make a comparison between the same events analysed
with the different input values to see graphically how they change.

What we are going to explain will be referring to the graph below, which is a
comparison between the two methods of analysis concerning the event 2
examined in the previous sections. The reason why we have chosen this event is
because it had the best improvements.

There are only four cumulative time scales in order to have a clearer view of what
is happening.

Starting with the cumulative time scale of 3 minutes it is possible to notice how the
red line, which indicates the trend of the average data, is upper than the black line,
which indicates the trend of single rain gauge, and there is an improvement of 0.15
of the correlation. There is also an improvement for the other trend lines, but the
range is reduced, i.e. there is always a better trend with the red lines but the range

of improvement decreases with an increase of the cumulative time scale.
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Figure 39: Comparison between the correlations of the event 2, using the two methods of analysing.
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5.5.2. Comparison between the two methods for the Event 8

The following graph in figure 40 shows the behaviour of the correlation for the
event 8 and for the all events, which belongs to group B.

As we have already examined in the section above for the event 2, we can notice an
improvement of the correlation degree.

In fact, watching the trend lines, the black line indicate the trend of the points
which are provided from a single rain gauge, the red line on the other hand
indicate the trend of the points from the average of the rain gauge couples; the
increase of the correlation degree is bigger for the smallest cumulative time scales

and it smaller for the higher cumulative time scale.
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Figure 40: Comparison between the correlations of the event 8, using the two methods of analysing.

The values are:
¢ cumulative time scale of 3 minutes: R=0.75 =2 R =0.87;
¢ cumulative time scale of 5 minutes: R=0.85 2 R =0.93;

¢ cumulative time scale of 15 minutes: R=0.97 2> R =0.98.
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5.5.3. Comparison between the two methods for the Event 14

These increases of the correlation degree become lower if we examine the events

belonging to the group C, as the graph in figure 41 shows.
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Figure 41: Comparison between the correlations of the event 14, using the two methods of analysing.

The vertical axis is starting from a higher value than the other two events

examined, in fact, it starts from 0.93 that is already a good correlation degree.

So the increase of this method for these types of events it is not so useful.

The values of correlation degree are:

cumulative time scale of 3 minutes: R =0.93 - R =0.96;
cumulative time scale of 5 minutes: R = 0.96 2 R =0.975;
cumulative time scale of 10 minutes: R = over 0.99;

cumulative time scale of 15 minutes: R = over 0.99.
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5.6. Considerations

In the end we can say that there is a great difference between the two models,
though it is shown only for a group of events. In fact, the events belonging to the
group C are not characterized by a great difference in their behaviour, because
there is a high correlation in both models, but the advantage of the average data
model is clear for the events of group B and even more so for the events of group C.
The reason why there is this increase is due to the competence to reduce the
errors of the single rain gauge. In fact, in our study area there are a lot of other
effects, which exasperate the errors of the measurement, for example the wind that
is really strong for the most of the year.

Using more than one rain gauge, there is more possibility to decrease the errors of

measurement, so this method provides a higher degree of correlation.

5.7. Correlation analysis for average values of four rain gauges

In this section we are going to study the behaviour of the correlation considering
the average values of the four rain gauges less distant. So, if before we had sixteen
rain gauges and we have considered each one independently, and in the second
step we have eight rain gauges placed in the average coordinates of the original
position of the two rain gauges, now we have four clusters of rain gauges. We are
going to examine the same three events that we have studied in section 5.1., where
we used the correlation counting all the rain gauges. In comparison with the trend
of the results obtained before, there is an improvement of the method, which is
showed in the following section.

The first graph in figure 42 shows the event 2 of the 26/04 /2014, and we expected

the best improvement for these types of the events.
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Comparison: average of 2 RG vs average of 4 RG
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Figure 42: Comparison between the correlations of the event 2, using the second and the third method
of analysing.

We can see another improvement of the correlation trend lines, which are
represented by the blue line for the average of the four rain gauges and by the red
line for the average of the couple of the rain gauges.
The values of correlation degree are:

¢ cumulative time scale of 3 minutes: R =0.87 =2 R =0.88;

e cumulative time scale of 5 minutes: R=0.93 2 R =0.935;

* cumulative time scale of 15 minutes: approximately the same value.
We are closer to the 0.9 degree than before, even if the increase is not so big.
Using a group of 4 rain gauges we are able to defeat more than 0.4 of the errors for
the correlation degree than using only one rain gauge.
It is not necessary to show how this method is able to change the correlation
degree for the other two events (the event of group B and group C) because the
best results are shown on the first graph, where there were the strongest
problems.
As we have already examined in the section 5.4, the method of the average of the
couples is enough to provide a good value of rainfall data for the events of the

group B and C.
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5.8. Graphs of correlation analysis for values of single rain
gauge

5.8.1. Events belong Group A
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Figure 43: Correlation of the event 1 - 25/04/2012.
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Figure 44: Correlation of the event 3 - 10/05/2012.
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Figure 45: Correlation of the event 4 - 22/06/2012.
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Figure 47: Correlation of the event 12 - 03/06/2012.
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5.8.2. Events belong Group B
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Figure 48: Correlation of the event 9 - 11/10/2012.
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Figure 49: Correlation of the event 10 - 16/10/2012.
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Figure 50: Correlation of the event 13 - 15/06/2012.
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5.8.3. Events belong Group C
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Figure 51: Correlation of the event 5 - 06/07/2012.
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Figure 52: Correlation of the event 6 - 05/08/2012.
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Figure 53: Correlation of the event 15 - 25/08/2012.
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5.9. Graphs of correlation analysis for average values

5.9.1. Events belong Group A
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Figure 54: Correlation using the average data for the event 1 - 25/04/2012.
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Figure 55: Correlation using the average data for the event 3 - 10/05/2012.
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Correlation average event 4
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Figure 56: Correlation using the average data for the event 4 - 22/06/2012.
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Figure 57: Correlation using the average data for the event 11 - 18/04/2012.
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Figure 58: Correlation using the average data for the event 12 - 03/06/2012.
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5.9.2. Events belong Group B

Correlation average event 9
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Figure 59: Correlation using the average data for the event 9 - 11/10/2012.
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Figure 60: Correlation using the average data for the event 10 - 16/10/2012.
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Figure 61: Correlation using the average data for the event 13 - 15/06/2012.
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5.9.3. Events belong Group C
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Figure 62: Correlation using the average data for the event 5 - 06/07/2012.
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Figure 63: Correlation using the average data for the event 6 - 05/08/2012.

Correlation average event 15

ol © 3minuti
09 d z @ 4 minuti
]
@ 5 minuti
08
© 6 minuti
07 © 7 minuti
@ 8 minuti
. [
o8 © 9 minuti
© 10 minuti
®os
12 minuti
04 @ 15 minuti
@ 20 minuti
03 —
30 minuti
lora
02
2o0re
01 3ore
0
0 005 01 015 02 025 03 035 04 045

Distance [km]

Figure 64: Correlation using the average data for the event 15 - 25/08/2012.
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Chapter 6: Analysis for the spatial variability

6.1. Introduction

In this chapter we are going to analyse the method of cross validation, using the
spatial interpolation model of Kriging. This analysis uses the data from the rain
gauges, and we call these data points "ground truth" because in that place we are
sure about that value.

Our latest analyses of correlation have shown the best way to use the average data
of the pair of rain gauges, or of the four rain gauges, instead of the data of every
single rain gauge, so for this study we are going to use only the average data of the
pair of the rain gauges.

So we can show, comparing the ground truth data with the theoretical data, the
trend of kriging interpolation for different events and cumulative time scales.

By "theoretical data" we intend the data of rainfall, which are estimated using the
interpolation model of kriging in an area of 500 square metres; the ground truth
data correspond to the empirical data, which are provided by the rain gauges.

The interpolation model of Kriging provides a trend of spatial variability of every
event, starting from the ground truth data; in this way it is able to estimate the
data everywhere inside the area of study.

In this chapter we analyse how the data values of the rainfall in the points where
there are rain gauges change if they are calculated with the interpolation model of
kriging. So, we can see the importance of a high correlation to estimate the data as
closely as possible to the real data.

This method is very important because when the correlation is high and the
kriging model is accurate, we are able to provide the data for every place inside

our area with a high probability of obtaining correct values.

6.2. Comparison between the methods

In the following section, the behaviour of the cross validation test of the kriging

spatialization method will be analysed for every cumulative time scale.
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6.2.1. Cumulative time scale of 5 minutes

We are starting with the lower cumulative time scale, it is 5 minutes because if we
had used 3 minutes there was the risk to have too zero data, and also because the
cumulative of 5 minutes is really good to have a valid estimation.

To approach this analysis we are using the event 4 for group A, which represents
the worst case of behaviour. The first graph, in figure 65, represents the typical
trend of the group A using a single rain gauge as a measure of the rainfall, we can
notice that the spread of the points is bigger than the spread of the graphs on the
other two methods, which are represented in figure 66 and 67.
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Figure 65: Comparison between the data estimate by kriging, the theoretical ones, and the real data of
rainfall provide by rain gauges. It is referred to the event 2 of the group A, for 5 minutes timescale
using as data input the single rain gauge.

The behaviour in the other two, figure 66 and 67, which represent the estimate of
the data using the average of two and four rain gauges, it is not so different, but
thinking at the results of the correlation they suggest that the third graph should
have the best spread, i.e. that the points should be closer to the equality line than

the other two groups.
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Comparison: 5 minutes
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Figure 66: Comparison between the data estimate by kriging, the theoretical ones, and the real data of
rainfall provide by rain gauges. It is referred to the event 2 of the group A, for 5 minutes timescale
using as data input the average of 2 rain gauges.
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Figure 67: Comparison between the data estimate by kriging, the theoretical ones, and the real data of
rainfall provide by rain gauges. It is referred to the event 2 of the group A, for 5 minutes timescale
using as data input the average of 4 rain gauges.
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6.2.2. Cumulative time scale of 15 minutes

About the comparison between the groups analysing the cumulative time scale of
fifteen minutes, we can notice that the spread of the data for the first graph, figure
68, is always broader than the other two graphs, in figures 69 and 70.

Also here, it is clear that location of the data provided from the average of two and
four rain gauges have a better trend and in particular the last one; in fact, it is
possible to see that the last graph has a bigger number of points on the equality
line than the second graph. So we have the best spatialization using the data from
the average of 4 rain gauges.

According to what there is for the cumulative time scale of 5 minutes, the
behaviour of kriging for 15 minutes is better than before, and this happen because
for a bigger cumulative scale there are more data than for 5 minutes of cumulating

and the correlation is always upper the 0.9 line.
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Figure 68: Comparison between the data by cross validation method, the theoretical ones and the real
data of rainfall provide by rain gauges. It is of the event 2 of the group A, for 15 minutes timescale
using as data input the single rain gauge.
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Comparison: 15 minutes
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Figure 69: Comparison between the data by cross validation method, the theoretical ones and the real
data of rainfall provide by rain gauges. It is of the event 2 of the group A, for 15 minutes timescale
using as data input the average of 2 rain gauges.
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Figure 70: Comparison between the data by cross validation method, the theoretical ones and the real
data of rainfall provide by rain gauges. It is of the event 2 of the group A, for 15 minutes timescale
using as data input the average of 4 rain gauges.
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6.3. Accuracy of the method

The next section speaks about the accuracy of the interpolation method of kriging
to estimate rainfall depth data in all the area of the study.

We have used a different graphic, which is more qualitative than quantitative, to
show how the interpolation method of kriging is able to provide an accurate
spatial variability. In the graphic there are: the horizontal axis, which shows the
difference among real data of rainfall, which are provided from the rain gauges,
and predicted data, which are provided from the interpolation method of kriging;
on the vertical axis there is the weighted cumulative distribution, which represent

the percentage of the rainfall weighted in order to more intensive event of rainfall.

6.3.1. Using 5 cumulative time scale

The first under section analyses what happen for the 5 minutes cumulative time
scale, the three green lines indicate the values of the mean and the first and third
quartile, if they are approximately near zero there is a very good trend of the
spatialization. The value of the mean shows us how the predicted data and the real
data are as close as possible between them; the other two green lines show us the
distance between the mean line, which can indicate if the kriging interpolation is a
good method to estimate data inside our boundary lines.

The following graphs represent the accuracy of estimation using as data input the
data from single rain gauge, the data from the average of the couples of the rain
gauges and the last one represents the behaviour for data of the average of four

rain gauges.

86



5 minutes

Qe
-2 0 T ATVUVRTV PR [ ST 1D I, S
o
=
o
5 o
o o 7
B
- 0
'>
T
= o i (ST
= o
=1
o
o
§ 4
-0.060:!
o
o | |
T T T T T
-0.4 -0.2 0.0 0.2 0.4

Difference between real value and predicted

Figure 71: Trend of kriging estimation to provide the rainfall data for the area analysed. It is about
the event 2, for a time scale of 5 minutes using a single rain gauge.
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Figure 72: Trend of kriging estimation to provide the rainfall data for the area analysed. It is about
the event 2, for a time scale of 5 minutes using as data input the average of 2 rain gauges.
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All the three case studies indicate that the kriging interpolation method is a good
method to estimate the value of data in a small urban catchment; there is a good
trend in all of them, but the best one is the graphic in figure 73, which is the graph
refers to the using as data input the average of 4 rain gauges.

Analysing the spread, which is the distance between the first and third quartile, we
can see that for the figure 71 it is 0.137, for the figure 72 it is 0.1095, for the figure
73, itis 0.0974. The reason why the last one is the best one is that with the average
data of 4 rain gauges the trend of the correlation is already high for 5 minutes of

cumulative time scale.
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Figure 73: Trend of kriging estimation to provide the rainfall data for the area analysed. It is about
the event 2, for a time scale of 5 minutes using as data input the average of 4 rain gauges.
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6.3.2. Using 15 cumulative time scale
To finish, there are the graphs of the 15 minutes cumulative temporal scale; they
show a homogenization results on the graphs in figures 74,75 and 76 that is an
evolution than what we have seen above for the cumulative time scale of 5
minutes. There is a good trend for all the three groups, and this improvement is
due to increasing values of rain on the cumulative data.
So there are not big differences between the estimation from the average of 2 and
4 rain gauges, in fact, analysing the spread again, which can provide the trend of
the method, we can find:

e group A, spread = 0.1827;

e group B, spread = 0.1295;

e group C, spread = 0.1209;
Now the trend is approximately the same as expected, because for a cumulative
temporal scale of 15 minutes, we have seen that using the correlation way of the
average data we have an improvement of the correlation, and so with the 15

minutes cumulative time scale there is already a high correlation.
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Figure 74: Trend of kriging estimation to provide the rainfall data for the area analysed. It is about
the event 2, for a time scale of 15 minutes using as data input the single rain gauge.
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Figure 75: Trend of kriging estimation to provide the rainfall data for the area analysed. It is about
the event 2, for a time scale of 15 minutes using as data input the average of 2 rain gauges.
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Figure 76: Trend of kriging estimation to provide the rainfall data for the area analysed. It is about
the event 2, for a time scale of 15 minutes using as data input the average of 4 rain gauges.
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6.4. Final consideration

In the end it is possible to conclude that for a small urban catchment, like the area
that we have analysed, the kriging interpolation method is a good method to
estimate the spatial variability of the rainfall. The real point is that using this
interpolative method we need the more accurate value as data input, and for the
events belonging to group C it is enough to use the data from the single rain
gauges; but if the events belongs group B, to have a more accurate data input it is
important to have couples of rain gauges to be sure to measure the real rainfall
data with the smallest error. In the end, the worst case, if we have an event
belonging to group A, we need at least a cluster of four rain gauges to have an

accurate value.
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Chapter 7: Conclusion

A detailed study into the differences between the correlations of the rain gauges on
a small urban catchment, in the end gives us some results that allow us to know
how the rain gauges behave, and to have a good estimation data as a function of
the different events.

Starting from the studies of the correlation using a single rain gauge and evaluating
how it changes for the different typologies of events, we noticed that there are
three groups where we can put each event. For each one of these, there is a
different behaviour of the correlation that indicates which is the best, in other
words, the lowest temporal scale to use in the hydrological models. After a second
analysis focused on the evaluation of the best trend of correlation, we noticed that
using a group of rain gauges in every place is better than using only one. The
reason is that by using this method, it is possible to check and verify if the data
measured are accurate or if there are some errors.

After this examination, and the removal of the data with errors, we can carry out
the same studies made above, but using an average of the rainfall data, and we will
obtain a better trend of correlation for all the groups of the events.

In fact the correlation trend lines are higher than in the other graphs, so it is
possible to use a lower temporal scale to estimate the data to be used on the
hydrological model.

This study has also shown the accuracy of the kriging interpolation method in
providing the values of the data calculated everywhere inside the boundaries of
the studied area. If we are able to categorize the different events, knowing their
behaviour, which allows us to establish the lowest cumulative temporal scale of
reference with a few rain gauges well positioned, the kriging interpolation method
can provide all the data estimated for the area and it allows using the hydrological
models to study the surface runoff.

To conclude, in this small area of studies of approximately 500 m2 we have noticed
that for this distance the correlation has a rather linear trend, in fact, the
correlation degree is not affected from the different distance between the rain
gauges, the low correlation degree of single rain gauge is due to some errors of the

tipping bucket and for other external problems like the wind. To resolve these
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problems it is necessary to use a group of rain gauges in the same location to cut
the measurement errors.

If we use together with the rain gauges the data from the radar, which offers a
general overview of the events to know how big the examined area is, it will be
possible to have more accurate and specific data in real time. The next step of this
study should be to find a good method to take the radar data under the pixel of 1
km square to have a good comparison between the radar and rain gauge, and so

using the radar data where there are not rain gauges.
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Appendix A

In this appendix there are some codes of the programs used to analyse the
correlation and the interpolation by the kriging method. We have used a program
called R. Most of them have been used to provide the data, using the interpolation
method of Kriging, and also to obtain some graphs.

Program 1:

library(gstat)
library(lattice)
library(graphics)
source("/Users/Antonio/Desktop/Lavoro di tesi/programmi R/draw.cdf.r")
number_ev =1
rain_yy <- read.table("C:/Users/Patania/Desktop/TESI/stazioniMed.csv" header=T ,sep=";" ,dec=",")
rain_yy.grid <- read.table("C:/Users/Patania/Desktop/TESI/griglia.txt" header=T sep="," ,dec=".")
file_name = paste("C:/Users/Patania/Desktop/TESI/file di lettura/pm_med_ev" ,number_ev,".csv" sep=")
yy <- as.matrix(read.table(file_name header=F sep=";".dec=","))
durata=5
prev_tot <- c()
oss_tot <- ¢()
scarti_tot <- c()
for(cn in 0:(((length(yy[,1])-1)/durata)-1))
{
mO <- (durata*cn)+2
mD <- (durata*(cn+1)+1)
yh <- as.vector(colSums(yy[m0:mD,]))
rain_yy[,4]<-yh
#it###HAH## ANALISI VARIOGRAMMA
v1 <- variogram(rr~1.locations=~X+Y, data=rain_yy)
model.1 <- fit.variogram(v1,model=vgm(1,"Exp" range=10,nugget=0))
#CROSS VALIDATION
x <- krige.cv(formula=rr~1,locations=~X+Y, data=rain_yy,model=model.1, nmax = 10, nfold=5)
prev_tot <- c(prev_tot,x$varl.pred)
0ss_tot <- c(oss_tot,x$observed)
scarti_tot <- c(scarti_tot,x$residual)
}
pdf(paste("C:/Users/Patania/Desktop/TESI/ScatterPlot/Evento_" number_ev,"_DT_" durata,".pdf" ,sep="))
plot(oss_tot,prev_tot,pch=16,cex=0.5,col="black" ,main="Comparison" xlab="Empirical" ,ylab="Theoretical",
xlim=c(round(min(c(oss_tot,prev_tot),digits=1)),round(max(c(oss_tot,prev_tot) digits=1))),
ylim=c(round(min(c(oss_tot,prev_tot),digits=1)),round(max(c(oss_tot,prev_tot) digits=1))))
lines(c(0,1000),c(0,1000) col="red")
draw .cdf(scarti_tot,main_cdf='Residuals', col_line_cdf='blue'Jabel_quant=T,
xlab_cdf=list('Diffrences between Real and Predicted' ,col='darkblue'),
ylab_cdf=list('Cumulative distribution',col='darkblue'),
quantils_lines=c(16,50,84) fill="lightblue',col_grid='black',col_quant='green")
draw .cdf(scarti_tot,0ss_tot,main_cdf="Residuals', col_line_cdf='blue' Jabel_quant=T,
xlab_cdf=list('Diffrences between Real and Predicted' ,col='darkblue'),
ylab_cdf=list('Weighted cumulative distribution',col='darkblue'),
quantils_lines=c(16,50,84) fill="lightblue',col_grid='black',col_quant='green")
dev.off()

Program 2:

# Kriging

library(gstat)

library(lattice)

library(graphics)

source("/Users/Antonio/Desktop/Lavoro di tesi/programmi R/draw.cdf.r")

rain_yy <- read.table("/Users/Antonio/Desktop/Lavoro di tesi/stazioni.csv" header=T sep=";",dec=",")
rain_yy.grid <- read.table("/Users/Antonio/Desktop/Lavoro di tesi/griglia.txt" header=T sep=",".dec=".")
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yy <- as.matrix(read.table("/Users/Antonio/Desktop/Lavoro di tesi/file di
lettura/pm_tot_ev1.csv" header=F,sep=";",dec=","))
prev_tot <- c()
oss_tot <- ¢()
scarti_tot <- ¢()
dir.create("/Users/Antonio/Desktop/25_04_E1", showWarnings = TRUE, recursive = FALSE, mode = "0777")
#t##HEA A INTZIO CICLO ####HHHHHHHHHH A
cn<-0
mO0 <- (60*cn)+2
m60 <- (60*(cn+1)+1)
yh <- as.vector(colSums(yy[m0:m60,]))
rain_yy[,4]<-yh
pdf(paste('/Users/Antonio/Desktop/25_04_El1/istant_',round(m60/60), .pdf' ,sep="))
aa <- c(seq(0,4.7 length=200))
bb <- c(seq(0,4.7 length=500)
v1 <- variogram(rr~1.locations=~X+Y, data=rain_yy)
v2 <- variogram(log(rr)~1.]locations=~X+Y, data=rain_yy)
model.1 <- fit.variogram(v1,model=vgm(1,"Exp" range=10,nugget=0))
model.1
z <- krige(formula=rr~1 locations=~X+Y, data=rain_yy,newdata=rain_yy.grid,model=model.1 ,nmax=10)
levelplot(varl .pred ~ X+Y, z, aspect = "mapasp(z)" ,main="Ordinary kriging
prediction" ,col.regions=colorRampPalette(c("white","blanchedalmond","azure3","cadetblue3","cyan2","cornflowerbl
ue","dodgerblue4","blue3","chartreuse4","darkolivegreen","darkgreen","goldenrod","darkgoldenrod","darkorange","f
irebrick1","deeppink3","darkred","chocolate4","bisque4","black")), at =aa)
#errore standard di kriging
levelplot(sqrt(varl.var) ~ X+Y, z, aspect = "mapasp(x)" ,main = "Ordinary kriging prediction standard errors")
#CROSS VALIDATION
x <- krige.cv(formula=rr~1]locations=~X+Y, data=rain_yy,model=model.1, nmax = 10, nfold=5)
cros_val <- array( ,dim=c(length(x[ ,1]),3))
cros_val[ ,1] <- x$varl .pred
cros_val[ 2] <- x$observed
cros_val[ ,3] <- x$residual
write.table(cros_val paste("/Users/Antonio/Desktop/25_04_E1/CV_istant_",
round(m60/60 digits=1),".csv" sep="),sep=";',dec=", row.names=F,
col.names=c('Previsione', Dati osservati', Residui') ,quote=F)
write.table(x paste("/Users/Antonio/Desktop/25_04_E1/CV_tot_istant_",
round(m60/60 digits=1),".csv" ,sep="),sep=";',dec=",' row.names=F ,quote=F)
modell<-lm(rain_yy$rr ~ x$varl.pred)
T GR AFTCHHHHHHHHHHHH A
prev <- cros_val[,1]
oss <- cros_val[,2]
scarti <- cros_val[,3]
# aggiorno i vettori totali di CV
prev_tot <- c(prev_tot,prev)
0ss_tot <- c(0ss_tot,0ss)
scarti_tot <- c(scarti_tot,scarti)
plot(oss,prev,pch=16,cex=0.5 col="black" ,main="Comparison" xlab="Empirical" ,ylab="Theoretical",
xlim=c(round(min(c(oss,prev),digits=1)),round(max(c(oss,prev),digits=1))),
ylim=c(round(min(c(oss,prev),digits=1)),round(max(c(oss prev),digits=1))))
lines(c(0,1000),c(0,1000) col="red")
draw .cdf(scarti,main_cdf="Residuals', col_line_cdf='blue',Jabel_quant=T,
xlab_cdf=list('Diffrences between Real and Predicted' ,col='darkblue'),ylab_cdf=list('Cumulative
distribution',col='darkblue") fill="lightblue',col_grid='black',col_quant='green')
draw .cdf(scarti,oss,main_cdf='"Residuals', col_line_cdf="blue',label_quant=T,
xlab_cdf=list('Diffrences between Real and Predicted' ,col='darkblue'),ylab_cdf=list('Weighted
cumulative distribution' ,col='darkblue') fill="lightblue',col_grid='black',col_quant='green')
dev.off()
#it###HA A FINE CICLO ##HH#H A
# analisi sulla cumulata totale di pioggia
ytot <- as.vector(colSums(yy))
rain_yy[ 4]<-ytot
pdf('/Users/Antonio/Desktop/25_04_E1/cum_tot.pdf')
aa <- c¢(seq(0,22,0.1),seq(22.5,24.0,0.05) seq(24.5,28.5,0.01),seq(28.6,30,0.2))
rg_grid <- read.table("/Users/Antonio/Desktop/Lavoro di tesi/coord_stazioni.csv" header=T sep=";" ,dec=",")
plot(rg_grid$X rg_grid$Y ,pch=16 cex=1, col=terrain.colors(n=50), main= "Stations", xlab="Coordiantes
GB",ylab="Coordiantes GB")
######H###PESO INV PROP ALLA DISTANZA
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z <- krige(formula=rr~1locations=~X+Y, data=rain_yy,newdata=rain_yy.grid,model=NULL)
levelplot(varl .pred ~ X+Y, z, main="Inverse distance
interpolation" col.regions=colorRampPalette(c("white","gray","black")),contour="T")
######H##H#PESO INV PROP AL QUADRATO DELLA DISTANZA
z <- krige(formula=rr~1Jocations=~X+Y, data=rain_yy,newdata=rain_yy.grid,model=NULL set=list(idp=2))
levelplot(varl .pred ~ X+Y, z, main="Inverse square distance
interpolation” col.regions=colorRampPalette(c("white","gray","black")),at=aa)
#####H## ANALISI VARIOGRAMMA
v1 <- variogram(rr~1,locations=~X+Y, data=rain_yy)
#plot(vl)
v2 <- variogram(log(ir)~1,locations=~X+Y, data=rain_yy)
#plot(v2)
model.1 <- fit.variogram(v1l,model=vgm(1,"Exp" range=10,nugget=0))
######HH#H#KRIGING ORDINARIO
z <- krige(formula=rr~1 locations=~X+Y, data=rain_yy newdata=rain_yy.grid,model=model.l ,nmax=10)
levelplot(varl .pred ~ X+Y, z, aspect = "mapasp(z)" main="Ordinary kriging
prediction" col.regions=colorRampPalette(c("white","gray","black")),contour="T")
levelplot(varl .pred ~ X+Y, z, aspect = "mapasp(z)" ,main="Ordinary kriging
prediction" ,col.regions=colorRampPalette(c("white","blanchedalmond","azure3","cadetblue3","cyan2","cornflowerbl
ue","dodgerblue4","blue3","chartreuse4","darkolivegreen","darkgreen","goldenrod","darkgoldenrod","darkorange","f
irebrick1","deeppink3","darkred","chocolate4","bisque4","black")))
#errore standard di kriging
levelplot(sqrt(varl.var) ~ X+Y, z, aspect = "mapasp(x)",main = "Ordinary kriging prediction standard
errors" contour="T")
#CROSS VALIDATION
# five-fold cross validation:
x_tot <- krige.cv(formula=rr~1,locations=~X+Y, data=rain_yy,model=model.1, nmax = 10, nfold=5)
write.table(x_tot,"/Users/Antonio/Desktop/25_04_E1/CV_cum_tot.csv" sep=";',dec=",' row.names=F ,quote=F)
0s <- x_tot$varl .pred
prv <- x_tot$observed
res <- x_tot$residual
plot(os,prv,pch=16,cex=0.5 col="black" ,main="Comparison" xlab="Empirical" ,ylab="Theoretical",
xlim=c(round(min(c(os,prv),digits=1)),round(max(c(os,prv) digits=1))),
ylim=c(round(min(c(os,prv),digits=1)),round(max(c(os,prv) digits=1))))
lines(c(0,1000),c(0,1000) col="red")
draw .cdf(res,main_cdf="Residuals', col_line_cdf='blue',Jabel_quant=T,
xlab_cdf=list('Diffrences between Real and Predicted' col='darkblue'),ylab_cdf=list('Cumulative
distribution',col='darkblue") fill="lightblue',col_grid='black',col_quant='green')
draw .cdf(res,os,main_cdf='"Residuals', col_line_cdf='blue',label_quant=T,
xlab_cdf=list('Diffrences between Real and Predicted',col='darkblue'),ylab_cdf=list('Weighted
cumulative distribution' ,col='darkblue') fill="lightblue',col_grid='black',col_quant='green')
dev.off()
HH B
pdf('/Users/Antonio/Desktop/25_04_E1/tot_istanti.pdf’)
# aggiorno 1 vettori totali di CV
prev_tot <- c(prev_tot,prev)
0Ss_tot <- c(0ss_tot,0ss)
scarti_tot <- c(scarti_tot,scarti)
plot(oss_tot,prev_tot,pch=16,cex=0.5,col="black" ,main="Comparison" xlab="Empirical" ,ylab="Theoretical",
xlim=c(round(min(c(oss_tot,prev_tot),digits=1)),round(max(c(oss_tot,prev_tot).digits=1))),
ylim=c(round(min(c(oss_tot,prev_tot),digits=1)),round(max(c(oss_tot,prev_tot) digits=1))))
lines(c(0,1000),c(0,1000) col="red")
draw .cdf(scarti_tot,main_cdf='Residuals', col_line_cdf='blue',Jabel_quant=T,
xlab_cdf=list('Diffrences between Real and Predicted' col='darkblue'),ylab_cdf=list('Cumulative
distribution',col='darkblue") fill="lightblue',col_grid='black',col_quant="green')
draw .cdf(scarti_tot,0ss_tot,main_cdf="Residuals', col_line_cdf='blue' Jlabel_quant=T,
xlab_cdf=list('Diffrences between Real and Predicted',col='darkblue'),ylab_cdf=list('Weighted
cumulative distribution' ,col='darkblue') fill="lightblue',col_grid='black',col_quant='green')
dev.off()
XX_tot <- as.matrix(array( ,dim=c(length(prev_tot),3)))
xx_tot[,1] <- prev_tot
XX_tot[,2] <- oss_tot
XX_tot[,3] <- scarti_tot
write.table(xx_tot,"/Users/Antonio/Desktop/25_04_E1/CV_tot_ist.csv" sep=";'dec=', row.names=F ,quote=F)
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