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Abstract

In recent years, the use of autonomous mobile robots with the goal of increasing the 
productivity in different domains, has been on the rise. The field of AI robotics has 
seen many advances since its emergence with the early robots that were built in an 
effort to facilitate some work for humans.
The human-robot interaction can be categorized into three methods of shared-control, 
shared-autonomy and shared-intelligence. Starting from shared-control and moving 
towards shared-intelligence, the robot progressively acquires more participation in its 
own final action. Shared-control, which is also the focus of this thesis work, involves 
the robot being able to apply small modifications to the user inputs such as altering 
the steering angle due to the existence of an obstacle. In shared-autonomoy, there 
exist pre-defined behavioral procedures for the robot that get activated in very certain 
occasions  and  moreover,  there  is  some  a  priori  knowledge  available  about  the 
environment which is provided to the robot. Shared-intelligence can be considered as 
the  method in  which the  robot  has  the  most  active  role  in  determining the  final 
decision. It makes use of several policies which are essentially behavioral guidelines 
for the robot, each policy generates a probability grid which will be fused with every 
other policy.  The final  action of  the robot will  be based on this fusion,  which is 
basically the action, that according to the policies, is considered as the most probable 
for that situation.
Therefore,  the  work  presented  in  this  thesis  explores  the  topic  of  shared  control 
navigation of a mobile robot, namely TIAGo from PAL Robotics [1], in a partially 
observable  environment,  while  the  navigation  is  locally  planned  using  artificial 
potential  fields  (APF)  created  around  the  objects  and  the  system  is  assisted  by 
predicting the most probable intention of the user.
The experiments were carried out both in a simulated environment and on the real 
robot.  The  behavioral  results  of  the  robot  were  almost  similar  in  the  two 
environments although we did not  manage to dive deep enough in the real-world 
experiments. 
The  APF  showed  promising  results  while  the  utilized  assistance  system  was 
originally tested in an object manipulation context and still needs more fine-tuning 
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for our case of navigation and this would thus be among the future work on this thesis 
along with providing more in-depth results from the real-world experiments.
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Sommario

Negli ultimi anni è aumentato l’uso di  autonomous mobile robots con l’obiettivo di 
aumentare  la  produttività  in  diversi  settori.  Il  campo  della  robotica  basata 
sull’intelligenza artificiale ha visto molti progressi sin dalla sua comparsa con i primi 
robot costruiti nel tentativo di facilitare alcuni lavori per gli esseri umani.
L’interazione  uomo-robot  può  essere  classificata  in  tre  metodi  di  shared-control, 
shared-autonomy e  shared-intelligence.  Partendo  dal  shared-control  e  procedendo 
verso  il  shared-intelligence,  il  robot  acquisisce  progressivamente  una  maggiore 
partecipazione alla propria azione finale. Il shared-control, che è anche il fulcro di 
questo lavoro di tesi, prevede che il robot sia in grado di applicare piccole modifiche 
agli input dell'utente, come alterare l'angolo di sterzata a causa dell'esistenza di un 
ostacolo. Nel shared-autonomy, esistono procedure comportamentali predefinite per il 
robot che vengono attivate in determinate occasioni e inoltre, è disponibile una certa 
conoscenza a priori sull'ambiente che viene fornita al robot. Il shared-intelligence può 
essere considerato come il metodo in cui il robot ha il ruolo più attivo nel determinare 
la decisione finale. Fa uso di diverse politiche che sono essenzialmente linee guida 
comportamentali per il robot, ciascuna politica genera una griglia di probabilità che 
verrà fusa con ogni altra politica. Su questa fusione si baserà l'azione finale del robot, 
che è sostanzialmente l'azione che, secondo le policy, è considerata la più probabile 
per quella situazione.
Pertanto, il lavoro presentato in questa tesi esplora il tema della navigazione a shared-
control di un mobile robot, vale a dire TIAGo di PAL Robotics [1], in un ambiente 
parzialmente osservabile, mentre la navigazione è pianificata localmente utilizzando 
artificial  potential  fields  (APF)  creati  attorno  agli  oggetti  e  il  sistema  è  assistito 
prevedendo l'intenzione più probabile dell'utente.
Gli esperimenti sono stati condotti sia in un ambiente simulato che sul robot reale. I 
risultati comportamentali del robot erano quasi simili nei due ambienti, anche se non 
siamo riusciti ad approfondire abbastanza gli esperimenti nel mondo reale.
L'APF ha mostrato risultati promettenti mentre il sistema di assistenza utilizzato è 
stato originariamente testato in un contesto di object manipulation e necessita ancora 
di una maggiore messa a punto per il nostro caso di navigazione e questo rientrerebbe 
quindi tra i lavori futuri su questa tesi insieme a fornire risultati più approfonditi dagli 
esperimenti nel mondo reale.

4



Contents

1. Introduction................................................................................................................7
1.1 A brief history of AI robotics..............................................................................7
1.2 Human-robot interaction......................................................................................9

1.2.1 Shared control.............................................................................................11
1.2.2 Shared autonomy........................................................................................11
1.2.3 Shared Intelligence.....................................................................................12

1.3 Autonomous mobile robot navigation...............................................................13
1.4 Artificial potential fields....................................................................................14
1.5 Limitations of Artificial Potential Fields...........................................................17
1.6 Scope of the work..............................................................................................19
1.7 Structure of the thesis........................................................................................19
1.8 System Overview...............................................................................................19

2. Literature review...................................................................................................F21
3. Localization and mapping........................................................................................29
4. Goal assistance.........................................................................................................34
5. Proximity grid..........................................................................................................36
6. Fusion of the potential field and user commands....................................................40
7. Experiments and results...........................................................................................43

7.1. Robotic platform...............................................................................................43
7.2 Deployment of the code.....................................................................................43
7.3 Experiments in the simulation...........................................................................45
7.4 Analytical results...............................................................................................54
7.5 Exepriments in the real world............................................................................59

Conclusion and future work.........................................................................................62
Bibliography................................................................................................................64
List of Figures..............................................................................................................66

5



Acknowledgements

This thesis was developed at University of Padua, Intelligent Autonomous Systems 
(IAS)  Laboratory between October  2023 and June  2024.  The work on the  thesis 
started off as a research training period in the aformentioned laboratory, where I got 
to  initially  study  the  previous  works  on  Artificial  Potential  Fields  and  Shared-
Control/Autonomy/Intelligence Methods, carried out previously by the members of 
the laboratory. I wish to thank my supervisor, Prof. Stefano Tortora, for giving me 
supervision during this time and the IAS Laboratory for providing the access to the 
TIAGo robot for carrying out the experiments, leading to the final preparation of this 
thesis.

6



 
 
 
 

 

 

 
 
 
 
 
 

 
 
 



These autonomous mobile robots would ideally have a high degree of autonomy. In 
addition to the robot receiving commands from the Earth and sending back signals, it 
would also navigate properly and not fall into canyons.  
It was soon realized that having a rover working on a planet on its own, would lead to 
the occurrence of  many unpredictable  performance issues.  The autonomous rover 
could easily end up finding itself in situations from which it could not save itself.
Therefore, at first robots might have seemed like a temporary solution for putting 
human  beings  into  space  but  they  became  more  complicated  soon  after.  NASA 
introduced the idea that AI robots were much more than simply being bolted to the 
factory  ground  for  indusrial  purposes  and  that  they  might  have  the  potential  of 
integrating all forms of AI (understanding speech, planning, reasoning, representing 
the world, learning) into one program. A program, which of course, has not been 
made yet. [2]
The field of AI robotics has surely experienced significant advances since then. The 
field has seen the emergence of the first AI robots such as Shakey; using a “sense-
plan-act” cycle, the Sojourner robot; a Mars explorer capable of navigating to a point 
selected  on  an  image  without  human  intervention  and  the  iRobot  Roomba;  the 
vacuum cleaner robot.

  
Fig. 2. Shakey and Charles Rosen, one of the inventors of the robot [4]

Autonomous mobile robots have gained a dramatic popularity in the recent years, due 
to  their  practicality  and potential  uses  in  the modern world.  They are  capable  of 
independent decision-making and taking corrective actions, similar to the behavior 
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generally seen in humans. To the point that a fully autonomous mobile robot is able 
to  perceive  the  environment,  make  judgments  based  on  the  received  sensory 
information and/or what is has been trained to recognize and then take an action using 
all that knowledge.

1.2 Human-robot interaction
It  may happen that  the human is involved in doing some task that  is  particularly 
tiring, boring or generally demanding in time and energy. The human would prefer to 
delegate those tasks to the robot rather than micromanaging every little motion or 
decision.  Shared approaches,  in which the robot receives the user  commands and 
contextualizes  them  using  its  context  awareness  (provided  by  the  sensory 
information), involves both the human and the robot [5]. The final’s robot action is 
determined by evaluating the shared information among the two, which is essentially 
the user’s commands and the robot’s perception.
Three main forms of human-robot interaction has been detected and taxonomized as 
shared-control, shared-autonomy and shared-intelligence.  The choice of these three 
typologies recalls the decision-making theory, categorizing the human choices into 
three levels as follows:

- Operational level: detailed and short term decisions
- Tactical level: including the allocation of resources over a medium planning 
   horizon
- Strategic level: the acquierd strategies for the achievement of high-level goals

Following this classification, we may also deduce a new point of view of the level of 
details of the decisions taken by the user and by the robot, which is a division into 
three categories of low level, medium level and high level. Low level interactions are 
made up of the execution of specific control signals that quickly expire.  Medium 
level interactions refer to performing operations by an autonomous robot in a medium 
time, while the high level interactions are associated with strategies that aim to guide 
both the human and the robot’s choices in accomplishing their common goal.
It is possible to represent the decision-making theory using a pyramidical structure as 
observed in figure 4.
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planning phase.The robot receiving these user commands, processes them and treates 
them as triggers for activating some previously-established routines or procedures.
As  opposed  to  shared  control,  the  user  solely  supervises  the  interaction  while 
constantly having the possiblity of intervening in the execution of the shared task.
One vivid difference from the shared control is that since the robot has a map of the 
environment, it will no longer halt the navigation in case of an emergency. Instead, 
the robot can activate a recovery procedure to handle the emergency situation.
With the robot being more  actively  environment in the task, the user will only be 
focusing on the  final  destination  while  the  robot  is  managing obstacle  avoidance 
behaviors and trajectory planning.
It is common in shared autonomy methods to make use of a temporary subgoal which 
keeps getting updated throughout the motion of the robot. This subgoal is defined in 
an unoccupied cell of the global map. A map that as mentioned before, is provided to 
the robot and it’s the same the robot utilizes for its localization.
Although  there  is  a  reduction  in  the  human’s  workload  compared  to  the  pure 
teleoperation (if not essentially to shared control) and the user can rely more on the 
capabilities of the robot, shared autonomy has a few shortcomings. 
First of all, there is always a setup phase before starting the method which consists of 
providing  the  map-related  information  to  the  robot.  Secondly,  the  predetermined 
procedures in the robot are rather limiting. In the sense that there must be a very 
specific situation in which these behaviors get activated. 
Moving higher in the pyramidical  structure of  Figure 4,  we encounter  the shared 
intelligence method which is presented in the next subsection. [5]

1.2.3 Shared Intelligence

In  shared  intelligence,  the  robot  contributes  to  the  decision  making  process  by 
questioning the user’s commands using its acquired sensory information. The robot is 
also  able  to  take  the  control  over  the  human  (in  emergency  cases  for  instance). 
Nevertheless, the user is still constantly supervising the task and can intervene at any 
chosen time.
In these systems, the intelligence of the robot depends on several factors influencing 
the robot’s motion.  These factors that  are represented as  policies,  each encodes a 
certain behavioral guideline for the robot such as the robot should stay far from the 
obstacles,  should  reach  the  target  and  should  implement  the  user’s  command  if 
possible.
These policies equally contribute in determining the robot’s motion. In other words, 
there is no mechanism choosing strictly one policy in a “winner-takes-it-all” manner. 
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Path planning techniques for autonomous mobile robots can be divided into classical 
and heuristic approaches with classical  ones being typically more computationally 
expensive  and  are  usually  found  less  effective  in  dynamic  environments  while 
heuristic approaches are more versitile and can handle uncertainties in the workspace 
better than the classical methods. The very specific kind of classical path planning 
that we have focused on in this thesis, is the artificial potential field method which 
will be well elaborated in the following subsection. [6]

1.4 Artificial potential fields
Artificial potential fields (APF) are widely used for mobile robot path planning. The 
result of the path planning is usually the direction towards which the robot should 
turn plus the speed or velocity planning. [7]
The philosophy of the APF approach can be schematically described as follows: “The 
manipulator (our mobile robot) is moving in a field of forces.  The position to be 
reached is an attractive pole for the end-effector (which in our case is the entire body 
of the robot) and obstacles are repulsive surfaces for the manipulator parts.” [8]
The idea is to assign a potential value to each point in the robot’s workspace. These 
potential  values  represent  the  influence  of  difference  forces  and  objects  such  as 
obstacles and goals, on the robot. A combination of these forces create a potential 
field.
Artificial potential fields are a specific kind of potential fields, designed particularly 
for robotics applications. 
In  order  for  us  to  dive  deeper  in  the  context,  we might  first  want  to  define  the 
problem of collision avoidance with a single obstacle O .

If xd represents the target position, it is possible to control the robot by subjecting it to 
the artificial potential field:

U art (x )=U O(x )+U xd (x )

Eq. 1. 

Leading to the following expression of the potential energy of the Lagrangian:

  U (x )=U art (x )+U g(x )

Eq. 2.

in which U g ( x ) represent the gravity potential energy. Based on Lagrange’s equations 
and the end-effectory dynamic decoupling [8], we will reach the command vector F

(also called the total force FT ) of the decoupled end-effector (in our case, the entire 
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body of the robot), corresponding to applying the artificial potential field of U art may 
be written as:

         F *
= F xd

*
+ F O

*

 
Eq. 3 

where we have:

                       F xd
*

=−∇ [U xd ( x )]

    FO
*
=−∇ [U o ( x )]

Eq. 4. 

F xd
*

 is defined as an attractive force, which allows the point x  of the robot, reach the 

goal position xd . FO
¿

is the Force inducing an artificial repulsion from the surface of 

the obstacle, which is created by the potential field U O ( x ) .

The total force ( F*

or FT ) that is being applied to the robot, is the net force of the 
attractive as well as repulsive forces. Thanks to this force, the robot is able to steer 
towards the target position while not colliding with the obstacles. 

Ultimately, it will be the gradient of FT steering the robot in the appropriate direction. 
Which is,  towards  the goal  and away from the  obstacles.  We might  redefine  the 

attractive force as FA (x) and the repulsive force as FR(x ) :

           FT (x)=F A (x)+F R(x )

Eq. 5.

and thus we will have:

             FT (x)=−∇ [U xd (x )]−∇ [U O(x )]

Eq. 6.

One note on the sign of the gradients in the formula is that in path planning using the  
APF, the aim is to guide the robot towards a region in the workspace in which the net  
force is the minimum. This stems from the reality that in the surroundings of  an 
obstacle, the repulsive forces keep getting larger as we approach the obstacle. While 
in  the  case  of  a  target,  the  attractive  forces  keep  getting  smaller  as  the  goal  is 
approached. This phenomenon is observed in Figure 7 where we have the attractive 
forces around the target in b and the repulsive forces around the obstacle in a:
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1.6 Scope of the work
This thesis work starts off by envisioning a scenario in which a mobile robot (TIAGo 
to be precise) and a user being able to send velocity commands using the keyboard, 
are working together with the shared goal of getting the robot reach a particular user-
selected goal position which is defined in an environment for which there is already a 
global map available and to which the robot has access. The global map is used for 
the localization of the robot and is the reason why we have the possibility of pre-
defining  goal  positions  in  the  robot’s  workspace.  The  robot  is  not  aware  of  the 
positioning of the goals which explains the rationale for using APF as the local path 
planner. 
Therefore, the navigation of the robot towards the goal position is a collaborative task 
done both by the user, who is responsible for supervising the interaction and giving 
linear  as  well  angular  velocity  commands,  and  the  robot  being  responsible  for 
managing obstacle avoidance using its local sensory readings, while being assisted by 
a global predictor for the goal the user is trying to guide the robot to. The assistance 
system is aware of both the positioning of the goals as well as the positioning of the 

robot in the environment and will be described in chapter 4.

1.7 Structure of the thesis
In  chapter  2,  a  literature  review will  be  provided,  along  with  the  localization  in 
chapter 3. In chapter 4 the goal assistance system will be elaborated, followed by the 
proximity  grid  and  the  APF  in  chapters  5  and  6  respectively.  In  chapter  7,  the 
experiments both in the simulation and the real world along with the experimental 
results will be given, followed by the conclusion in the last chapter.

1.8 System Overview
In this subsection we aim to provide an overview of the system.
The robot through its laser is providing the source for the repellors and attractors,  
along with its pose info that will be subscribed to by the assistance system that takes 
as input the global goals and the user velocity commands as well. Shared navigation 
represents the node that based on the data coming from the repellors and attractors, 
compute the final APF velocity. This velocity can be combined with that coming 
from the user as a final control phase. It’s also worth noticing that there is no direct 
link between the user input and the robot and also, there is no direct link between the 
shared navigation node and the robot either. This suggests that any velocity has to 
first go through the  filter  of the final control, to be properly weighted before being 
published to the robot.

19



Fig. 10. The scheme of the work
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The subtarget in white is a temporary goal for the robot based on the fusion of the 
attractive and repulsive forces into a heuristic function. 
Another work [5] exploring the realm of telepresence robots as well, focuses on the 
brain-machine interfaces (BMIs) in order to receive the user commands. They explain 
the shortcomings of these interfaces as they are prone to noise and error and the fact 
the impaired user using them, has to make a lot of mental effort in order to control the 
robot. Their contribution is a shared-intelligence framework in order to fully exploit 
the functionalities of an intelligent robot in this scenario. 
The rationale  for  using  a  shared-intelligence  frame instead of  a  common shared-
control  one,  is  to  be  able  to  implement  the  user’s  actions  in  a  safer  way.  The 
intelligence of the robot lies in the fact the robot will decide its next motion not only  
based on its  sensory readings from the environment and the user’s input but also 
based on the natural direction of robot’s motion.
As a result of testing the framework on 13 healthy people and it turned out that the 
robot’s motion is in line with the intentions (through the BMI) of the user. It can be 
said  that  their  major  finding highlighting  the  potentials  of  the  shared-intelligence 
methods, was  the fact that the robot’s motion through the BMI was coherent with 
that from the continuous teleoperation of the robot.
The human-robot interaction was further explored in [10] by focusing on a trade-off 
between human safety  and robot  efficiency.  Explaining that  when the robots  and 
humans are put together in an environment to interact with each other, the safety for 
the humans has to be strictly prioritized and that’s when the efficiency of the robot 
might get jeopardized.
More  specific  to  their  case,  they  consider  a  system  in  which  there  are  multiple 
autonomous mobile  robots  interacting  with  humans  and  the  path  planning of  the 
robots is based on the generation of potential fields. The repulsive potential field is 
generated uniformly around static obstacles based on their position, a condition that 
can not be of much use when it comes to an environment with dynamic obstacles. 
Moreover, a uniform circular repulsive field can obstruct the robot’s path towards the 
goal which might ultimately lead to the robot not being able to reach the destination.  
Their contribuition is the introduction of a behavior potential for dynamic obstacles. 
The behavior potential is generated based on not only the position of the object but 
also its velocity and direction of movement. Furthermore, this potential is capable of 
changing  its  shape  according  to  the  obstacle,  as  opposed  to  the  usual  repulsive 
potential field that constantly appears in a circular shape around the obstacle and thus 
repelling the robot equally all around the object. 
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3. Localization and mapping

One of the crucial constituent technologies for autonomous mobile robots is SLAM 
(simultaneous localization and mapping), suppoting environmental recognition and 
path planning. 
Solving SLAM requires solving two subproblems of localization and mapping. In 
localization  the  aim is  for  the robot  to  estimate  its  own pose  in  the map and in 
mapping the objective is for the robot to create a map of the sensed environment. This 
is challenging since either of the two, depends on the other. In order words, in order 
to solve mapping, we need information from localization and vice versa. 
G-mapping is one of the famous SLAM methods for creating occupancy grids of the 
environment to represent its map. Occupancy grid is a grid-like structure in which 
every cell stores a probabilistic estimation of whether that cell in the environment is 
occupied or not. 
Furthermore, self-localization is an important feature which mobile robots should be 
equipped with in order to fulfill tasks such as navigation. Localization is either global 
or local. In local localization, the initial position of the robot is known and the robot 
uses its sensory readings to track and update its own position. Common methods are 
odometry and inertial navigation methods. 
In global methods instead, it is assumed that the initial position of the robot is not 
known  and  there  should  be  some  external  information  directly  provided  by  the 
robot’s sensors to estimate its pose.
The state of the art method in localization is the Adaptive Monte Carlo Localization 
which is a probabilistic algorithm [14]. It works by estimating a normal probability 
distribution  representing  the  robot’s  position  at  every  time  instance  as  a  set  of 
hypotheses. It introduces the concept of a  particle  which is basically a tuple in the 
format <x, w, h> in which x is a hypothesis, w the dedicated weight to that hypothesis 
and h being the indicator of the likelihood of each particle with regards to the last  
perception of the robot. 
The AMCL algorithm has three phases in which the particle tuples are updated. In 
other words, in a sequential manner the position of the particles and the weights of 
the particles are updated. In the end, based on the weights of the hypotheses,  the 
hypotheses having a low weight are removed and replaced with new hypotheses that 
are created near to the ones with high weights. The algorithm adapts the number of 
particles  to the uncertainty of  the set  of  hypotheses.  That  is  how concentrated or 
dispersed the particles are. When the uncertainty is low and the particles are more 
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dense. This explains the dependency of mapping and localization on one another that 
was previously mentioned.
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being the id of the goal having the highest probability (since the assistance system 
already knows the goals and their dedicated identifier number).
The probability distribution will be stored in the form of a vector from which the 
probability of either of the goals can be accessed and later used for computing the 
center of mass of all the goals. This will be discussed further in chapter 5.
It’s  worth  mentioning  the  challenge  we  faced  in  tuning  the  parameters  of  the 
predictor such as the δ since the position of the center of mass should not change 
more slowly than the robot changing position. In other words, the computed center of 
mass is further from the target than the robot is from the target, there is basially no 
use in using the assistance. If δ is chosen as too small, the probability of the desired 
goal won’t increase fast enough because the robot has to get super close to the target 
in order to receive the assistance he/she needs. We remind that these probabilities will 
later be used as weights of each goals to compute a center of mass of the goals, and if 
the probabilities are not well-adjusted with the behavior of the robot, the assistance 
won’t be much of a help. As a rule of thumb, δ should be 2 or 3 times bigger than the 
width of the robot (given that the robot has a circular base).
On the other hand, if the δ is chosen so big, the assistance would be so sensitive to the 
behavior of the user. Any single command can potentially make a dramatic change in 
the probabilities and this was strongly discouraged since neither the simulated world 
on Gazebo and nor the real world were huge spaces.
The same care had to be given to α . It deals with how much each user action has to 
be penalized based on distance. Having a larger alpha, could potentially increase the 
sensitivity of the assistance in the sense that each action towards one specific goal 
could cause the probability of that goal increase in a more satisfactory way.
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color actually indicates the difference in the measured distance between the robot to 
the closest object. The red sectors are faced towards a region in which the distances 
are relatively small and thus the probabiltiy of a collision is higher in comparison to 
the other sectors. Moving in a gradient of colors from red to green, blue and purple 
we encounter regions which suggest a progressively safer space for the robot to move 
towards. 
The proximity grid is configured to be spanned in an angle range of (-90, 81.42) 
degrees and having an angle difference of 9.0 degrees between any two sequential 
sectors  which will  make up 21 sectors.  Moreover,  there  are min and max ranges 
defined as well in meters, with the min range being 0.0 and the max being 6.0 meters. 
The ID of the sectors start from the leftmost sector and keeps increasing one by one. 
For instance the sector with ID of 0, is situated between an angle range of (-90, -81) 
degrees.
In  this  work,  two  separate  instances  proximity  grids  are  utilized  to  assist  the 
navigation of the robot. The information provided by these two grids are published on 
two  distinct  topics  in  the  ROS network,  namely  /repellors and  /attractors 

containing the data regarding the repulsion from obstacles and the attraction towards 
the goal respectively.
The way the two proximity grids are filled with data is essentially different. In the 
case of repellors, every single sector of the grid is filled with the shortest distance 
information but concerning the attractors, only a single sector in the grid gets filled 
with  data  and  the  rest  are  inf  values;  suggesting  a  sector  with  no  significant 
information. This single sector is supposed to be pointing in the direction towards 
which the robot should be attracted.
Computing the shortest distance values from the robot to the obstacles in the case of 
filling  the  repellors  grid  is  a  trivial  task  since  these  distance  values  are  already 
provided in the /scan_raw topic, published as soon as the simlutation of the robot in 

the world starts.
However, the case of the attractors is distinct since the only non-inf sector is filled 
with the shortest distance value between the robot and the center of mass of the goals. 
The predicted probability for  either of the three goals are being published on the 
/final_goal topic and are later used as weight parameters in computing the center 

of mass using the below formula:
 

center of mass=((goal1 x weight 1)+(goal2∗weight2)+(goal3∗weight 3))/(weight1+weight2+weight 3)

Eq. 9.
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Fig. 25. Theta is the angle between the heading direction of the
robot and the vector representing the euclidean distance between

the target and the goal

After having computed the angle between the heading direction of the robot and the 
eculidean distance between the robot and the target, it’s time to fill the one sector in 
the attractors proximity grid which points to the target. This is done by finding the id 
of the grid in which our angle lies in using the method GetSectorId(angle) which 

is one of  the functions implemented in the dedicated class  of  the proximity grid. 
Having the id, we are able to fill the corresponding sector of the grid using another 
class  methods  of  the  proximity  grid,  namely  SetSectorByPolar  (angle, 

distance), which having the angle and the euclidean distance from the goal, fills the 

sector with the provided euclidean distance.
There will be an attractive force towards the goal, generated by the last non-empty 
and non-infinite sector of the grid, which since there will be only one sector in which 
our computed angle lies in, there will be only one non-empty and non-infinite sector 
available. The target will be the angle corresponding to the sector which points to the 
goal and will thus guide the robot towards the goal.
Lastly, it might happen that the computed angle between the heading direction of the 
robot and the vector representing the euclidean distance from the goal falls outside of 
the grid. In other words, the angle is either smaller than the minimum angle or is 
bigger than the maximum angle in the grid. In the first case, the angle is smaller than 
-90.0 degrees and in order to have the goal fall in the angle range of the grid, the 
robot starts rotating anticlockwise and for the second case, the angle is bigger than 
81.42 degrees and the robot starts moving clockwise to have the goal fall in the grid.
In the link below, there is a video of the goal being outside of the grid and the robot 
rotating in order to make the goal fall in the grid:
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The angular motion due to the APF, is in a way that the robot should be put away 
from the obstacles and also being roughly headed towards the center of mass of the 
goals. The first behavior is achievable for the case of dyanmic obstacles as well. If an 
object that has not been in the map is suddently put at the front of the robot, the 
repulsive field generated around the new object will successfully cause the robot to 
steer away from the obstacle. 
There have been defined the strength value parameters for either of the two forces, 
indicating the strength they will have in creating repulsion and attraction. Finding a 
good balance between the two forces is rather challenging but it must be considered. 
If a high strength is given to the attractors, the robot might end up forcing its way to  
pass through the walls in order to reach the goal. Instead, if a high strength is given to 
the repellors, the robot might start having troubles in navigation since everything in 
the environment no matter how far they are, will be dramatically repelling the robot. 
The peak of such behavior can be seen in narrow spaces where the robot will  be 
heavily oscillating itself through the free space.
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already several deployed packages so there was no need to fully deploy every single 
package in the workspace. In this work, 6 packages were deployed on the robot:

 Goals; dealing with the definition of reachable target positions with respect to 
the  map  of  the  environment  and  broadcasting  them,  plus  managing  the 
communication with the assistance for receiving the predicted probabilities and 
publishing the center  of  mass of the goals which will  later be used for  the 
generation of the attractive field.

 Key_input;  managing the pure teleoperation of the robot and publishing the 
velocity values to be received by several others nodes in the network

 Localization; managing the localization of the robot within the world and also 
with respect to its own reference frame using SLAM and publishing the pose 
information

 Proximity_grid; creating the two proximity grids around the robot based on the 
information received from the  laserscan  plus  the visualization  tools  for  the 
grids  on  RViz.  The  package  contains  modifications  on  the  original 
implementation provided in [18]

 Shared_navigation; the main package responsible for computing the velocities 
of the APF based on the information provided from the proximity_grid, fusing 
them with the user input and publishing them to be received by the controllers 
of the robot, again the package contains modifications such as the addition of 
new nodes while the logic behind the computation of the APF-based velocities 
is left intact. Original implementation provided in [18]

 Predictor_assistance; the package contains both a navigation assistance which 
was  not  utilized  and  a  goal  assistance  which  was  explored.  The  pacakge 
contains  a  few  modifications  on  some  of  the  parameters  for  tuning  the 
performance of the predictor. Orignial implementation in [19]

For deploying the code, there are two options. Either to deploy only the package we 
have recently modified using the two commands below [17]: 

alis deploy=”rosrun pal_deploy deploy.py”
deploy -p <package_name> tiago-87c

Or to deploy the entire workspace at once:

rosrun pal_deploy deploy.py –-user pal tiago-87c
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The figure above depicts the simulated world that was used on Gazebo for this thesis, 
with the initial position of the robot being on the right of the map and three chosen 
goals being represented using three square lights in the corners of the large room. The 
obstacles are the yellow cylinders and the gray walls which are the boundaries of the 
room. The underlying grid of the simulated world helps us in estimating the position 
of the robot. The grid from which the robot starts from corresponds to the position (0,  
0)  with  respect  to  the  fixed/world  reference  frame of  /map.  As  the  robot  moves 
forward (towards the west of the map above), it would be moving along the x-axis of 
the world (positive x) and if it moves to its left (south of the map above), it would be 
moving along the y-axis of the world (positive y).
A useful visualization tool that was also used a lot during this work is RViz which is  
basically an essential component of the ROS ecosystem. It allows the visualization 
and analysis  of  many features  related to  the mobile  robot  system in real-time.  It 
makes it possible to view the data being published on specific ROS topics such as the 
laserscan of the robot, odometry information and transformed coordinate frames. This 
allows us to gain precious insight into how the robot is observing the environment 
along with tracking the localization and mapping of the robot in a known map. [20] 
Prior  to  testing  the  real  robot,  experiments  were  done on the  simulated  robot  in 
Gazebo. Experiments started with tasks as simple as teleoperating the robot using the 
keyboard which is quite similar to the famous turtlesim on ROS in which the user is 
able to move a graphical object (a turtle) on the screen. [21] 
As mentioned earlier,  TIAGo has a  differential-drive base and is  thus able to  go 
forward and backward (linear velocity) and for rotating the robot should rotate in 
place about its own z axis (angular velocity). It’s also possible to combine the two 
velocities. The same condition applies to the simulation.
The experiments in the simulation moved further by introducing the attractive and 
repulsive  forces  to  the  world.  Having  only  the  repulsion  from  the  surrounding 
obstacles, the robot is able to move forward without colliding with anything. In this 
case, the robot is basically wandering purposelessly in the world since there is no 
goal to generate an attraction. A recorded video of the motion of the robot purely 
based on the repellors is available at: 
drive.google.com/drive/folders/1i_4KDME2yapR6Iqe01yC6u8LitV8jq1l

It may not be the best choice of a shared framework to not make the user feel like the 
robot’s behavior is not in line with what the user intends to do. But then again, when 
it comes to emergency situations such as that of a collision, the robot must be able to 
either  not  fall  into one  in  the  first  place  or  to  be  able  to  survive  the emergency 
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situation on its own. There is a video below in which the user tries to steer the robot  
towards the wall and force it to have a collision. We see how the robot is showing 
some resistance but not too much in order to not make the shared task too tiring or 
too  challenging  for  the  user,  but  it’s  also  constantly  trying  to  escape  from  the 
dangerous situation that the user is forcing upon it. The user in the end manages to 
make the collision happen but then the robot is able to survive it by pulling itself back 
from the obstacle:
drive.google.com/file/d/157DOAUR04XgyiOLjXOd3b1tgjFCCDi4K/view?
usp=drive_link

In another attempt, a higher weight was given to the APF which results in the robot 
showing more resistance to the user’s intention in trying to make a collision happen. 
In the video shared below, the robot is first faced towards the opposite side of the 
wall when the user tries to steer it towards the wall instead. The robot progressively 
shows a higher resistance until it is finally crashed into the wall by the user, followed 
by the robot pulling itself back from the wall and starting to steer away from it again:
drive.google.com/file/d/1LtTyhpTbVseLTQIDxtOvnyCVZKQD4ouy/view?
usp=drive_link

Although it must be mentioned that (also as mentioned earlier in chapter 4) the linear 
velocity  computed by the  APF will  only be applied to  the robot  when it  is  also 
accompanied by a non-zero linear velocity sent from the user. The videos above are 
created in  order  to  simply verify the correctness  of  the  repulsive forces  while  in 
reality and also further in the real-world experiments, the linear velocity of the APF 
will never be moving the robot forward on its own.
Bringing the attractors into play, generated for only one goal initially, the robot will 
be attracted to the goal and move towards it while avoiding the collision with the 
obstacles. When the robot reaches the goal position it shows an interesting pattern of 
motion which consists of the robot rotating around the same position which happens 
to be the goal. This happens due to the nature of the proximity grid of the attractors.  
The robot keeps rotating until  the target position falls in the angular range of the 
proximity grid. The video is available at:
drive.google.com/drive/folders/1rQ7nSM_ir1FhfEVdQfWhzZ08VSIcsxJJ

In the link above,  there are also other  videos of  the effect  of  the strength of  the 
attractors on the behavior of the robot. If the strength is so large in value, the robot 
might get stuck since the attractive force is so strong that the robot wants to pass 
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Fig. 29. TIAGo successfully exiting the narrow
hallway after a reduction in the strength of the

attractors 

Moving forward with the experiments on attractors,  the next item to test  was the 
overal behavior of the robot, being influenced by both the repellors and attractors, 
when having the final  target  positions.  The setup of  this  step  was defining three 
different goals in the world that are sufficiently distant from one another. The goals 
being distant would positively influence the perfomance of the assistance since there 
would then be a clearer distinction between the goals and thus the behaviors of the 
user can be interpreted in a more meaningful way. The three goals are shown in the 
figure below:

Fig. 30. TIAGo approaching one of the targets in Gazebo 

The three goals with their positions are highlighted with the yellow text boxes. The 
robot would always start moving from the right side of the narrow hallway, in the 
small rectangular space, from a grid cell with the position of (0, 0). The goal positions 
(and later the constantly-changing center of masses) are defined with respect to this 
fixed frame and the robot has to transform these positions to its own reference frame 
to plan its motion towards them. Moreover, in the original setup of the simulated 
world, there are also obstacles located in the middle of the room which were removed 
for this section in order study the effects of the attractors more efficiently.
As it can be observed, the three goals are defined as distant as possible. The current 
assistance system only updates the probabilities in the case of receiving a non-zero 
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the user who later keeping guiding it forward towards the (12,1). The robot keeps 
showing some resistance which is later mitigated when the user tries to approach the 
goal from a different position which becomes a successful attempt since the robot is 
now attracted more towards the actual chosen goal of the (12, 1). The video available 
at:
drive.google.com/file/d/1SS2CEz52OJf6BuZ-i2XFsVfEOSp8HMgU/view?
usp=drive_link

Fig. 33. The path to reach (12, 1)

The second experiment is dedicated to the user following goal at (13, -4). Similar to 
the previous case, the robot is instantly attracted towards its right after exiting from 
the  narrow  passage.  The  user  continues  to  guide  the  robot  forward  and  slightly 
steering it towards the chosen goal. The robot this time demonstrates some resistance 
and appears  more  attracted  towards  a  center  of  mass  that  is  situated  somewhere 
between  the  (13,  -4)  and  (12,  1).  The  user  proceeds  to  move  the  robot  forward 
towards (13, -4) when eventually the robot is successfully attracted to the chosen goal 
and  does  not  show  any  resistance.  The  robot  showing  resistance  would  be  the 
manifestation of a rapid rotation towards the opposite side of the where the user has 
been guiding it so far. The video available at:
drive.google.com/file/d/1VL2bCYdUVjoCX5CAeOsK4lV_yHCkhXqj/view?
usp=drive_link
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Fig. 34. The path to reach (13, -4)

Last  by  not  least,  the  third  goal  or  the  one  at  (7,  -4)  appeared  to  be  the  most 
challenging for the robot to reach or be attracted to. Our assumption is that since the 
path towards this goal contains a high number of obstacles such as the walls and the 
yellow obstacle which the robot will face if it instantly steers right after exiting from 
the passage, the repulsive forces generated by these obstacles prevents the robot from 
being able to be attracted to a position beyond them. Moreover, if the user tries to 
guide the robot by first moving towards the center of the room and then guiding it to  
its right, this could potentially confuse the predictor since in the beginning it appears 
that the user is trying to guide the robot towards the goal at (13, -4). 
In the video provided later in this paragraph, the user tries to approach the target from 
2 different sides but in neither of them the robot manages to become attracted enough 
:drive.google.com/file/d/1oSyrw2drCZXpIPpqiBJeYwZB07HSnb07/view?
usp=drive_link
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in which the robot is able to steer away from obstalces that are newly introduced and 
are not in the known map: 
drive.google.com/file/d/17P6025roJ6DfTqHbkitlu-CJ9fAdSRuG/view?
usp=drive_link

There are more videos available in which the similar final experiment that was done 
in the simulation was also carried out in the real-world environment. 
Due to the complications of the real-world, the experiments could not be explored as 
much as they did in the simulations. Although, in the limited experiments that we 
managed to do with the real robot, the results were more or less similar to that of the 
simulation. 
Perhaps one of the parameters that required much tuning was the weight given to the 
user velocity command and that computed by the APF. The safety was one of the 
important factors that had to be considered which was one of the elements that led to 
the user command velocities having a lower weight. Although this weight should not 
be so low so that it would make the user feel like that they are not really in control of 
the robot or the robot is not really doing what they are aiming for.
The robot would often end up behaving different in each run which was not always 
easy to guess the reason of since many times it would occur that by restarting the 
robot, the behavior would totally change, either in our favor or not.
The link to the videos: 
drive.google.com/drive/folders/1bBjPHnJ-1JeZoxrPCmEhz9A7X_0zveJr
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Conclusion and future work

In this thesis we discussed the shared control navigation of TIAGO based on the 
generation  of  artificial  potential  fields  around  the  obstalces  and  the  goals.  Input 
velocity is coming from two sources: the user sending velocity commands using the 
keyboard and the local planner of the APF which manages the obstacle avoidance and 
helps the user in achieving the desired target by steering the robot towards the target.
The robot is equipped with a map of the environment and is therefore able to localize 
itself in it but it’s unaware of the positioning of the goals and hence the need for an 
assistance system, predicting the most probable target of the navigation based on the 
overall behavior of the robot since the start of the interaction with the robot.
A limitation  that  was  experienced  several  times  during the  experiments,  was  the 
performance  of  the  assistance  system  in  updating  the  probabilities.  It’s  rather 
challenging to create the perfect sensitivity of the system to the user’s behavior and it  
might happen that sometimes the probability of the intended goal not get updated 
either as soon as desired or as much as desired. Using a softmax function on the 
predicted probabilities could potentially mitigate this problem.
Another issue was the inconsistency of the TIAGo’s localization in the real world. 
The robot would every now and then not manage to do the mapping between its 
sensory readings and the known map or experience some delay in updating its own 
pose. Moreover, it was observed that sending a sudden linear velocity of a high value 
could  easily  worsen  this  situation  while  sending  a  sequence  of  angular  velocity 
commands could help the robot re-localize itself in the map. This was a rather big 
issue since the localization node and the relavant pose information that it publishes, 
are a crucial part of the work.
A possible way to extend this work could be by trying to implement the concept of 
escape points [11] which deals with the generation of a sequence of points in the 
cartesian space, on the surface of the convex obstacles. This was originally proposed 
as a solution for the fact that the local planner of the APF is prone to getting stuck in 
local minima. Having generated the sequence of escape points, the robot can safely 
modify  its  trajectory by tracing the escape  points  in  order  to  pull  itself  out  of  a 
possible local minimum condition or to not fall into one in the first place.
Furthermore, it would be nice to assess the system using a qualitative questionare. 
Basically  we  would  need  several  people  teleoperating  the  robot  in  different 
modalities  such  as  the  pure  teleoperation  and  shared-control  teleoperation.  The 
questionare could possibly contain questions such as whether the user was feeling in 
control, was the robot’s behavior in line with the user’s expectation, whether the user 
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had to put much effort in controlling the robot and whether their overal experience 
was positive with either of the modalities. 

63



Bibliography

[1] pal-robotics.com/robots/tiago/

[2] “Introduction to AI Robotics.” MIT Press, https://mitpress.mit.edu/9780262038485/introduction
-to-ai-robotics/. Accessed 24 June 2024.

[3]  nasa.gov/image-article/astronaut-john-young-collecting-lunar-samples

[4] leorover.tech/post/what-was-the-worlds-first-mobile-intelligent-robot

[5] Beraldo, Gloria, et al. “Brain-Driven Telepresence Robots: A Fusion of User’s Commands with 
Robot’s Intelligence.” AIxIA 2020 – Advances in Artificial Intelligence, edited by Matteo Baldoni 
and Stefania Bandini, Springer International Publishing, 2021, pp. 235–48. Springer Link, 
https://doi.org/10.1007/978-3-030-77091-4_15

[6] Loganathan, Anbalagan, and Nur Syazreen Ahmad. “A Systematic Review on Recent Advances 
in Autonomous Mobile Robot Navigation.” Engineering Science and Technology, an International 
Journal, vol. 40, Apr. 2023, p. 101343. DOI.org (Crossref), 
https://doi.org/10.1016/j.jestch.2023.101343

[7] Huang, L. “Velocity Planning for a Mobile Robot to Track a Moving Target — a Potential Field 
Approach.” Robotics and Autonomous Systems, vol. 57, no. 1, Jan. 2009, pp. 55–63. DOI.org 
(Crossref), https://doi.org/10.1016/j.robot.2008.02.005 

[8] Khatib, Oussama. “Real-Time Obstacle Avoidance for Manipulators and Mobile Robots.” The 
International Journal of Robotics Research, vol. 5, no. 1, Mar. 1986, pp. 90–98. DOI.org (Crossref), 
https://doi.org/10.1177/027836498600500106

[9] Teli, Tawseef Ahmed, and M. Arif Wani. “A Fuzzy Based Local Minima Avoidance Path 
Planning in Autonomous Robots.” International Journal of Information Technology, vol. 13, no. 1, 
Feb. 2021, pp. 33–40. DOI.org (Crossref), https://doi.org/10.1007/s41870-020-00547-0

[10] Hoshino, S., and K. Maki. “Safe and Efficient Motion Planning of Multiple Mobile Robots 
Based on Artificial Potential for Human Behavior and Robot Congestion.” Advanced Robotics, vol. 
29, no. 17, Sept. 2015, pp. 1095–109. DOI.org (Crossref), 
https://doi.org/10.1080/01691864.2015.1033461

[11] Gottardi, Alberto, et al. “Shared Control in Robot Teleoperation With Improved Potential 
Fields.” IEEE Transactions on Human-Machine Systems, vol. 52, no. 3, June 2022, pp. 410–22. 
DOI.org (Crossref), https://doi.org/10.1109/THMS.2022.3155716.

[12] Beraldo, Gloria, et al. “Shared Autonomy for Telepresence Robots Based on People-Aware 
Navigation.” Intelligent Autonomous Systems 16, edited by Marcelo H. Ang Jr et al., Springer 
International Publishing, 2022, pp. 109–22. Springer Link, https://doi.org/10.1007/978-3-030-
95892-3_9

[13] Chen, Yong-bo, et al. “UAV Path Planning Using Artificial Potential Field Method Updated by 

64

https://doi.org/10.1007/978-3-030-95892-3_9
https://doi.org/10.1007/978-3-030-95892-3_9
https://doi.org/10.1109/THMS.2022.3155716
https://doi.org/10.1080/01691864.2015.1033461
https://doi.org/10.1007/s41870-020-00547-0
https://doi.org/10.1177/027836498600500106
https://doi.org/10.1016/j.robot.2008.02.005
https://doi.org/10.1016/j.jestch.2023.101343
https://doi.org/10.1007/978-3-030-77091-4_15


Optimal Control Theory.” International Journal of Systems Science, vol. 47, no. 6, Apr. 2016, pp. 
1407–20. DOI.org (Crossref), https://doi.org/10.1080/00207721.2014.929191.

[14] García, Alberto, et al. “Portable Multi-Hypothesis Monte Carlo Localization for Mobile 
Robots.” 2023 IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2023, 
pp. 1933–39. DOI.org (Crossref), https://doi.org/10.1109/ICRA48891.2023.10160957.

[15] Tonin, Luca, et al. “Learning to Control a BMI-Driven Wheelchair for People with Severe 
Tetraplegia.” iScience, vol. 25, no. 12, Dec. 2022, p. 105418. DOI.org (Crossref), 
https://doi.org/10.1016/j.isci.2022.105418.

[16] wiki.ros.org/rviz/UserGuide

[17] docs.pal-robotics.com/ari/sdk/23.1.11/development/deploy-code.html

[18] github.com/braingear-wheelchair

[19] github.com/shared-control

[20]  Lin,  Rui,  et  al.  “Ultra-Wide-Band-Based  Adaptive  Monte  Carlo  Localization  for  Kidnap 
Recovery of Mobile Robot.” International Journal of Advanced Robotic Systems, vol. 20, no. 2, 
Mar. 2023, p. 172988062311639. DOI.org (Crossref), https://doi.org/10.1177/17298806231163950.

[21] wiki.ros.org/turtlesim

[22] Javdani, Shervin, et al. “Shared Autonomy via Hindsight Optimization for Teleoperation and 
Teaming.” The International Journal of Robotics Research, vol. 37, no. 7, June 2018, pp. 717–42. 
DOI.org (Crossref), https://doi.org/10.1177/0278364918776060

65

https://doi.org/10.1177/0278364918776060
https://doi.org/10.1177/17298806231163950
https://doi.org/10.1016/j.isci.2022.105418
https://doi.org/10.1109/ICRA48891.2023.10160957
https://doi.org/10.1080/00207721.2014.929191


List of Figures

1 “John Young uncomfortably collecting lunar samples"
nasa.gov/image-article/astronaut-john-young-collecting-lunar-samples/

2 “Shakey and Charles Rosen, one of the inventors of the robot”
justai.in/shakey-the-worlds-first-ai-bot/

3 “The decision making theory depicted as a pyramidical structure”
doi.org/10.1007/978-3-030-77091-4_15

4 “Typical Shared Intelligence framework”
doi.org/10.1007/978-3-030-77091-4_15

5 “The robot is able to avoid dynamic obstacles if the path planning is done locally”
doi.org/10.1016/j.jestch.2023.101343

6 “(a) An obstacle generating a repulsive field in which the energy the energy is maximized at 
the center of the field. (b) A target object generating an attractive field in which the energy is 
minimized at the center of the field”
doi.org/10.1007/s41870-020-00547-0

7 “Interaction between the repulsive and attractive field”
doi.org/10.1007/s41870-020-00547-0

8 “The choice of the potential function can influence the performance of the system”
doi.org/10.1080/01691864.2015.1033461

9 “Two scenarios illustrating how the robot can get trapped inside a local minimum. There 
exists a target beyond the obstacle and the robot is attracted it”
doi.org/10.1007/s41870-020-00547-0

10 “The scheme of the work”
based on the idea developed for this work by me and my supervisor

11 “The generation of escape points can prevent the robot from getting trapped inside the local 
minima. Moreover, if the robot starts moving from inside a local minimum, escape points 
will guide the robots outside while, the standard APF, without the escape points, is unable to 
do so”
doi.org/10.1109/THMS.2022.3155716

12 “(a) The robot should be aware of social manners if it’s supposed to be interacting with 
humans socially (b) Recognition of humans (c) The robot is exposed to the fusion of 
attractive and repulsive forces and that’s how it will be guided far from the obstacles and 
towards the target(s)”
doi.org/10.1007/978-3-030-95892-3_9

66



13 “(a) A typical circular repulsive field (b) behvaior potential field generated for a human with 
a slow pace (c) behavior potential field generated for a human with a faster pace”
doi.org/10.1080/01691864.2015.1033461

14 “Adjacent repulsive fields”
doi.org/10.1080/01691864.2015.1033461

15 “The robot will be attracted towards a newly defined virtual target while it’s being repelled 
by the exterme points on the obstacle as a way of reassuring that it won’t fall into the local 
minimum again”
doi.org/10.1007/s41870-020-00547-0

16 “Path generated by APF”
doi.org/10.1007/s41870-020-00547-0

17 “Path generated by the fuzzy block”
doi.org/10.1007/s41870-020-00547-0

18 “Typical ANN with two hidden layers”
doi.org/10.1016/j.jestch.2023.101343

19 “Dense particles”
Gazebo

20 “Rather widespread particles”
Gazebo

21 “Acceptable localization”
Gazebo

22 “Fast linear motion of the robot might sometimes make the robot
disoriented with respect to the known map”
Gazebo

23 “Problem of figure 21 gets resolved by a sequence of angular
velocity commands ”
Gazebo

24 “Proximity grid around TIAGo”
Gazebo

25 “Theta is the angle between the heading direction of the robot and the vector representing 
the euclidean distance between the target and the goal”
Gazebo

26 “TIAGo”
pal-robotics.com/robots/tiago/

27 “The simulated world on Gazebo. The yellow cylindars are the obstacles

67



and the targets are highlighted using green squares”
Gazebo

28 “TIAGo not being able to exit from the narrow hallway due to a high strength given
to the attractors”
Gazebo

29 “TIAGo successfully exiting the narrow hallway after a reduction in the strength of the
attractors ”
Gazebo

30 “TIAGo approaching one of the targets in Gazebo ”
Gazebo

31 “The increase in the corresponding probability of the target towards which
the robot is approaching”
Gazebo

32 “Another case of the increase in the corresponding probability”
Gazebo

33 “The path to reach (12, 1)”
Gazebo

34 “The path to reach (13, -4)”
Gazebo

35 “The path to reach (7, -4), which fails in the end”
Gazebo

36 “Probability values for the target (13, -4)”
made with Matplotlib from the recorded rosbags

37 “Probability values for target (7, -4)”
made with Matplotlib from the recorded rosbags

38 “Probability values for target (12, 1)”
made with Matplotlib from the recorded rosbags

39 “The path from the starting pose of the robot to the target (13, -4)”
made with Matplotlib from the recorded rosbags

40 “A different path to reach the same target as in figure 37”
made with Matplotlib from the recorded rosbags

41 “Predicted probabilities for target (13, -4)”
made with Matplotlib from the recorded rosbags

42 “Predicted probabilities for target (7, -4)”
made with Matplotlib from the recorded rosbags
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43 “Predicted Probabilities for target (12, 1)”
made with Matplotlib from the recorded rosbags

44 “The created map of the real-world environment”
RViz

45 “The real-world environment where the three red dots represent the goals”
taken from the IAS lab using an Intel RealSense camera
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