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Introduzione 

 

Negli ultimi vent’anni gli studi funzionali sul cervello umano hanno avuto un ampio sviluppo sia 

grazie ai progressi tecnologici che hanno messo a disposizione apparecchiature sempre più sensibili 

e sofisticate, sia grazie all’impiego di tecniche di indagine non invasive (Risonanza Magnetica 

funzionale (fMRI), Tomografia ad Emissione di Positroni (PET), Magnetoencefalografia (MEG), 

Elettroencefalografia (EEG)) che permette di ricavare immagini e segnali dell’attività cerebrale a 

partire da sue misure emodinamiche, metaboliche, elettromagnetiche o elettriche. Le prime ricerche 

condotte puntavano a studiare quell’aspetto dell’organizzazione delle strutture cerebrali che 

comunemente viene indicato con il nome di segregazione funzionale. Tali studi, infatti, avevano 

l’obiettivo di riuscire ad individuare e isolare le regioni funzionalmente specializzate nello 

svolgimento di determinati compiti cognitivi o attività sensoriali. Più recentemente, soprattutto 

negli ultimi dieci anni, l’interesse si è focalizzato sullo studio della cosiddetta integrazione 

funzionale, cioè la rilevazione e la comprensione dei legami e dei meccanismi che permettono a 

gruppi di neuroni di interagire e integrarsi tra di loro. A tal proposito sono state sviluppate diverse 

tecniche e metodiche per lo studio dell’attività cerebrale che si sono rivelate fondamentali per la 

comprensione dei complessi meccanismi che regolano il funzionamento del cervello umano. Tali 

metodiche hanno dimostrato che le diverse regioni neuronali del cervello non operano in isolamento 

ma interagiscono tra loro formando una complessa rete di connessioni. Lo studio di queste 

relazioni/connessioni esistenti tra le diverse regioni corticali è generalmente indicato come studio 

della connettività. La definizione di connettività può essere classificata in tre categorie principali: 

 connettività anatomica: è strettamente associata alla presenza di connessioni assoniche tra i 

vari neuroni; 

 connettività funzionale: è definita come la correlazione temporale tra eventi neurofisiologici 

appartenenti a diverse regioni neurali; 
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 connettività effettiva: è definita come l’influenza che una regione neurale esercita attraverso 

una relazione causa-effetto su un’altra regione. 

In letteratura sono presenti due principali approcci per lo studio della connettività: uno è di tipo 

esplorativo, basato esclusivamente sui dati da cui estrarre informazioni sia sulla topologia sia sulla 

forza, l’altro, invece, prevede la conoscenza a priori di un modello di rete per ottenere informazioni 

circa l’intensità degli accoppiamenti. Al primo approccio appartengono i metodi basati sui modelli 

autoregressivi multivariati (MVAR), da cui derivano una serie di indici quali Directed Transfer 

Function (DTF), Partial Directed Coherence (PDC) e i coefficienti di causalità di Granger; al 

secondo approccio, invece, appartiene il metodo detto Structural Equation Modeling (SEM). 

L’obiettivo di questa tesi si è focalizzato sulla validazione e implementazione di questi metodi. Essi 

sono stati ampiamente esaminati in letteratura per quantificare la loro capacità di rilevare le 

connessioni cerebrali, ma gli studi di simulazione proposti sono basati su modelli di generazione dei 

dati in silico che semplificano molto la reale complessità del cervello ([7]) e che si basano sui 

modelli autoregressivi stessi. Perciò, per superare questo problema, è stata sviluppata una 

simulazione con un approccio innovativo basato sull’utilizzo di un Neural Mass Model ([9]). 

L’obiettivo consiste nel generare dati simulati completamente indipendenti dalle equazioni lineari 

dei metodi che poi si vanno a testare e, al contempo, in grado di simulare la complessità delle reti 

neurali. Brevemente, la simulazione consiste nelle seguenti fasi: 

 vengono simulati diversi set di dati in silico utilizzando il modello neurale di massa con 

diversi modelli di topologia, livelli di non linearità e intensità di connessioni; 

 per ogni set dei suddetti parametri vengono generate 100 realizzazioni di segnali di 2 

secondi; 

 le reti stimate a partire dai parametri di connettività calcolati con i metodi considerati 

vengono confrontate con le reti vere. 

Questa tesi riporta per esteso l’analisi di 3 reti ed è la prosecuzione e il completamento di un lavoro 

precedente ([19]) in cui è stata ampiamente analizzata un’altra tipologia di rete della quale, in 

questa sede, vengono riportati i risultati. L’obiettivo principale di questo studio di simulazione è 

innanzitutto quello di confrontare, per ogni determinata situazione di analisi, le prestazioni dei vari 

indici di stima della connettività sottolineando per ognuno i pregi e i limiti al fine di fornire una 

procedura robusta da usare per l’analisi della connettività del cervello umano, in grado di 

classificare i diversi stati del cervello in supporto sia della ricerca in ambito cognitivo sia 

dell’attività clinica. 
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Questa tesi si sviluppa in cinque capitoli di seguito brevemente riassunti. Nel Capitolo 1 si 

definiscono sia i modelli multivariati autoregressivi e gli indici derivati per stimare la connettività in 

termini di causalità di Granger e nel dominio della frequenza, sia il metodo SEM. Inoltre in questo 

capitolo vengono descritti i metodi impiegati per la valutazione della significatività statistica dei 

vari stimatori. Nel Capitolo 2 si descrive il modello (Neural Mass Model) utilizzato per la 

generazione dei dati simulati analizzati in questa tesi e si presentano le caratteristiche principali 

delle reti di simulazione considerate e dei dataset simulati. Nel Capitolo 3 vengono riportati i valori 

dei parametri adottati nelle equazioni del Neural Mass Model per la generazione dei dati in silico e 

vengono mostrati alcuni esempi di segnali simulati. Nel Capitolo 4 si presentano i principali 

risultati ottenuti dallo studio della connettività corticale per ogni rete per tutti i dataset. Infine, nel 

Capitolo 5 si discutono i risultati presentati nel capitolo 4 evidenziando pregi, difetti, vantaggi, 

svantaggi e limiti dei vari metodi in modo da definire globalmente le loro prestazioni. L’Appendice, 

infine, riporta i risultati per ogni esperimento individuale condotto per ogni rete. 
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Introduction 

 

In the recent years  the functional studies about the human brain had a large development both due 

to technological advances, which have offered more and more sensitive and sophisticated 

instruments, both due to use of non-invasive techniques (the functional Magnetic Resonance 

Imaging (fMRI), the Positron Emission Tomography (PET), the Magnetoencephalography (MEG), 

the Electroencephalography (EEG)) which allows to get images and signals of the cerebral activity 

starting from hemodynamic, metabolic, electromagnetic or electrical measures. The earlier 

researches aimed to study the so called functional segregation. Indeed, these studies aimed to 

identify and isolate regions functionally specialized in the performance of some cognitive tasks or 

sensory activities. Recently, especially in the last decade, interest has focused on the study of so 

called functional integration, that is the detection and understanding of the linkages and 

mechanisms which allow groups of neurons to interact and integrate with each other. Different 

techniques and methods have been developed for the study of cerebral activity and have proved to 

be fundamental for the understanding of the complicated mechanisms which control the functioning 

of the human brain. These methods have shown that different neural regions do not operate alone 

but they interact establishing structure-function relationships in human brain. In literature such 

relationships have been defined in terms of structural, functional and effective connectivity.  

 The structural connectivity refers to a pattern of anatomical links among brain regions. The 

analysis aims to characterize the architecture of complex networks underlying the cerebral 

functional organization.  
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 Functional connectivity and effective connectivity aim at identifying the presence and the 

strength of connections in terms of statistically significant dependency. The former is 

defined as the temporal correlation between neurophysiological events occurring in 

distributed neuronal groups and areas. The latter describes the causal influence that one 

neural system exerts over another either directly or indirectly in terms of temporal 

precedence and physical control ([1],[2]). Functional and effective connectivity can be 

estimated exploiting both Functional Magnetic Resonance Imaging (fMRI) and 

electrophysiological signals, such as Electroencephalography (EEG) and 

Magnetoencephalography (MEG), with different advantages and drawbacks. fMRI provides 

high spatial resolution (mm) but poor temporal precision (s) while EEG/MEG has more 

limited spatial resolution (cm) and higher temporal precision (ms). Since functional and 

effective connectivity are largely estimated over time, EEG and MEG are more suitable for 

calculating such connectivity. 

In literature several methods have been developed to characterize brain connectivity in terms of 

network topology, connections strength and causality, following two main approaches: the data-

driven, where topology, causality and strength are all inferred from data, and the neural model-

based, where the model topology is postulated from a priori knowledge and only the connections 

strength is estimated from the data. The first approach consists of methods based on multivariated 

autoregressive models (MVAR) from which some indices are quantified such Directed Transfer 

Function (DTF), Partial Directed Coherence (PDC) and Granger causality coefficients; the second 

approach consists of a method called Structural Equation Modeling (SEM). The objective of this 

work focused  on validation and implementation of these methods. They have been examined in 

literature to quantify their ability in revealing cerebral connections ([7],[8],[4]) but based on 

simulation studies not able to provide a comprehensive analysis because they use in silico data 

generated by self-referential linear methods which do not reproduce the complexity of the brain. 

Thus, to overcome this issue, an innovative simulation approach has been developed in this work, 

based on a nonlinear neural mass model ([9]) totally independent of SEM and MVAR linear 

equations and able to address the complexity of neural networks. This no-self referential approach 

was exploited to generate in silico network data to be used as a benchmark, to quantitatively 

compare obtained results with true connections.  
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Briefly, the simulation consists of the following stages: 

 different in silico datasets are simulated using the neural mass model with different 

topology, level of non-linearity, and connections strength; 

 100 realizations of 2 second signals are generated for each dataset of these parameters; 

 networks estimated from the connectivity parameters, calculated with the methods 

considered, are compared with the real networks. 

This work reports a complete analysis of three networks and it is the continuation and completion of 

a previous work ([19]) where another type of network has been extensively analyzed the results of 

which are included here for completeness.  

The main objective of this work was to understand limits and advantages of MVAR indices and 

SEM by exploiting the simulation study. Thus, it mainly serves as a proof-of-concept for 

connectivity measures under ideal conditions. Our purpose was to derive from simulation results 

some practical procedures in order to classify different brain states to support both cognitive 

research and clinical activity. 

This thesis consists of five chapters below briefly summarized.  

Chapter 1 describes the considered connectivity measures, such are those based on Multivariate 

Autoregressive models and the Structural Equation Modelling. It explains how the connecting 

parameters of MVAR and SEM models are identified on EEG data and describes procedures 

commonly exploited to analyze connectivity. Besides, it describes the procedure used to evaluate 

the statistical significance of each index results, such are the F-test for Granger causality index and 

the null distribution threshold using surrogate data for MVAR frequency indices. Chapter 2 reports 

an overview about the principal models used to generate in silico data, namely the neural mass 

models, and describes the neural mass model exploited in this work. Finally, it characterizes 

network models adopted to simulate data and lists the procedure followed to generate in silico 

datasets. Chapter 3 reports parameter values adopted in NMM equations for the generation of in 

silico data and are shown examples of simulated signals of different network models. Chapter 4 

illustrates the main results obtained with the simulation study for all networks for all datasets, in 

terms of both topology and strength estimates. Finally, Chapter 5 discusses the results showed in 

the Chapter 4 and underlines strengths, weaknesses, advantages, disadvantages and limits of 
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different methods so as to define their overall performance. The Appendix reports results for each 

individual experiment performed for each network. 
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Chapter  1 

 

Multivariate methods for connectivity 

analysis 

 

In literature several methods have been developed to characterize brain connectivity in terms of 

network topology, connections strength and causality, following two main approaches: the neural 

model based approach, where the model topology is postulated from a priori knowledge and only 

connection strength is estimated from the data, and the data driven approach, where topology, 

causality and strength are all inferred from the data. The most prevalent data driven methods are 

those based on Granger causality principles, while those based on neural model are the Dinamic 

Causal Modeling (DCM) and the Structural Equation Modeling (SEM). Granger causality and SEM 

have been largely applied but, however, some criticisms have been arisen in literature concerning 

their assumptions ([6]). Both methods are based on multivariate linear regression models but they 

differ as regards the way they address temporal information. Granger causality is computed by 

using Multivariate Autoregressive Models, where correlations among measurements at different 

time lags are used to quantify coupling. SEM models instantaneous interactions among variables 

and ignores the influence that previous states have on current responses.  

This chapter explains how the connecting parameters of MVAR and SEM models are identified on 

EEG data and describes procedures commonly exploited to analyze connectivity.  

 

9 



1.1 MVAR model identification 

 

A multivariate autoregressive model is a discrete-time, linear and time invariant model and it is 

described by difference equations. The MVAR model with N variables is expressed as: 

 

                                                       𝒚 𝑛 = − 𝑨 𝑘 𝒚 𝑛 − 𝑘 + 𝒆 𝑛 

𝑝

𝑘=1

                                               (1.1) 

 

where 𝒚 𝑛  = [𝑦1 𝑛 , 𝑦2 𝑛 …..𝑦𝑁 𝑛 ]T
 is the data vector of dimension N containing the n-samples 

of the N time series, 𝑝 is the model order, 𝑨 𝑘 , k =1…p, are the N x N matrices containing model 

coefficients, 𝒆(𝑛) = [𝑒1 𝑛 , 𝑒2 𝑛 …..𝑒𝑁 𝑛 ]T  
is  the vector containing the 𝑛-samples of the 

prediction errors, i.e. it is a multivariate white noise process with diagonal covariance matrix 

 =𝑒 diag[σ1
2, σ2

2, … , σN
2 ]. Assuming that the order p is known, identifying the model means to define 

numerical values for the model coefficients and for the covariance matrix. The model coefficients 

and the covariance matrix are identified on time series data by applying the correlation approach 

known as the multichannel Yule-Walker method which minimizes the mean square prediction error 

to find the optimum MVAR parameters set.  

Considering the autocorrelation definition 

 

                                                                     𝑹𝑦 𝑘 = 𝐸 𝒚 𝑛 𝒚 𝑛 − 𝑘 𝑇 ,                                                 (1.2) 

 

we can obtain the following set of equations, knows as multivariate Yule-Walker equations 

 

                                                        𝑹𝑦 𝑘 = − 𝑨(𝑖)𝑹𝑦 𝑘 − 𝑖 

𝑝

𝑖=1

+ Σ𝑒𝛿 𝑘 ,                                            (1.3) 

 

where δ(k) is Kronecker delta function (δ(k) = 1 when k = 0, otherwise δ(k) = 0). 

Therefore, let 𝐬 be a set of N time series: 

                                            𝐬(n) = [𝐬1 𝑛 , 𝐬2 𝑛 ,…  , 𝐬𝑁 𝑛 ],  n=1, … , L                                    (1.4) 

where L is the number of data points applied in the estimation. 
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Using the sample correlation 𝑅 𝑠(𝑘) and the set of equations (1.3) with (p+1) matrix equations and 

(p+1) unknown matrix parameters, the MVAR coefficient matrices (𝑨(𝑘), Σ𝑒) can be solved using 

the Levinson – Durbin recursion extended to the multivariate Yule – Walker. We have previously 

assumed the model order as known but, generally, even the model order must be inferred from data. 

To this purpose, several MVAR models are calculated while varying p, and the best order is the one 

minimizing a parsimony criterion. We considered the Akaike Information Criterion (AIC) given by 

                                                       AIC(p) = L log(det𝛴𝑒)+2p𝑁2                                                  (1.5) 

For reliable parameter identification, the number of parameters must be significantly smaller than 

the number of data points available, i.e. p𝑁2<< NL. 

 

 

1.2 Granger causality index 

 

The origin of causality concept in time series analysis arose in statistical field, when Wiener (1956) 

([10]) recognized the role of temporal ordering in the inference of cause-effect relationship between 

two simultaneously measured time series. Coupling is defined in terms of ability of one time series 

to better predict a second time series by incorporating knowledge of the first one. Later, in 1969, 

Granger ([3]) defined a mathematical formulation of the causality concept introduced from Wiener. 

He formalized this notion for linear regression models of stochastic processes specifying that a 

decrease in prediction error variance of the second time series, once the knowledge of the first one 

was incorporated, implies a driver-response relationship between them. Different implementations 

of this concept were applied to study the feedback relation between input and output variables and 

to multivariate autoregressive processes introducing the concept of conditional causality ([11],[12]). 

In the 1990s neurobiological applications rapidly spread, growing interest in studying the effect that 

one part of the nervous system has on another, either in the absence of identifiable behavioral 

events or in the context of task performances ([13]). 
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The original bivariate Granger definition is generalized to interactions among sets of interdependent 

variables taking into account the data variance. According to Granger definition, a cause-effect 

relationship exists between two time series 𝑦𝑖 𝑛  and 𝑦𝑗  𝑛 , with i ≠ j, if the variance of the 

prediction error of 𝑦𝑗  n  estimated with a MVAR model including all the N time series of 𝐲 n , 

called the complete model, is lower than the one estimated with a MVAR model including all the N 

time series of 𝐲 n  but 𝑦𝑖 n , called the restricted model.  

Hence, the Granger causality from 𝑦𝑖 𝑛  to 𝑦𝑗  𝑛  respect to all the other inputs is measured as: 

 

𝐺𝐶 𝑦 𝑖→𝑦𝑗  𝑦 
 

= ln
𝜍𝑗

𝜍𝑗
 

where  𝜍𝑗  and 𝜍𝑗  are the variance of prediction error for restricted and complete regression model, 

respectively. 

As an example, let us consider three jointly distributed, stationary multivariate stochastic 

processes 𝐲1, 𝐲2 and 𝐲3. To measure the causality from 𝐲2 to  𝐲1 given 𝐲3, the complete MVAR 

model is the following: 

 

𝑦1 𝑛 = − 𝑎1,1 𝑘 𝑦1 𝑛 − 𝑘 −

𝑝

𝑘=1

 𝑎1,2 𝑘 𝑦2 𝑛 − 𝑘 −

𝑝

𝑘=1

 𝑎1,3 𝑘 𝑦3 𝑛 − 𝑘 

𝑝

𝑘=1

+ 𝑒1(𝑛) 

𝑦2 𝑛 = − 𝑎2,1 𝑘 𝑦1 𝑛 − 𝑘 −

𝑝

𝑘=1

 𝑎2,2 𝑘 𝑦2 𝑛 − 𝑘 −

𝑝

𝑘=1

 𝑎2,3 𝑘 𝑦3 𝑛 − 𝑘 

𝑝

𝑘=1

+ 𝑒2(𝑛) 

𝑦3 𝑛 = − 𝑎3,1 𝑘 𝑦1 𝑛 − 𝑘 −

𝑝

𝑘=1

 𝑎3,2 𝑘 𝑦2 𝑛 − 𝑘 −

𝑝

𝑘=1

 𝑎3,3 𝑘 𝑦3 𝑛 − 𝑘 

𝑝

𝑘=1

+ 𝑒3(𝑛) 

 

with covariance matrix   Σ =  

𝜍1
2 𝜍12

2 𝜍13
2

𝜍21
2 𝜍2

2 𝜍23
2

𝜍31
2 𝜍32

2 𝜍3
2

  . 

 

(1.6) 

(1.7) 
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The restricted MVAR model, instead, is described by the following equations: 

𝑦1 𝑛 = − 𝑎 1,1 𝑘 𝑦1 𝑛 − 𝑘 −

𝑝

𝑘=1

 𝑎 1,3 𝑘 𝑦3 𝑛 − 𝑘 

𝑝

𝑘=1

+ 𝑒 1 𝑛  

 

𝑦3 𝑛 = − 𝑎 3,1 𝑘 𝑦1 𝑛 − 𝑘 −

𝑝

𝑘=1

 𝑎 3,3 𝑘 𝑦3 𝑛 − 𝑘 

𝑝

𝑘=1

+ 𝑒 3(𝑛) 

 

 

with covariance matrix Σ =  
𝜌1

2 𝜌13
2

𝜌31
2 𝜌3

2   . 

 

The Granger causality  𝐲2 → 𝐲1, defined in equation (1.6), is expressed from the elements of Σ and Σ 

as follows: 

     𝐺𝐶 𝑦2→𝑦1 𝑦3  
= ln

𝜌1
2

𝜍1
2 

 

This index is positive when the prediction error of 𝐲1estimated in the complete model is lower than 

the one estimated in the restricted model, whilst is close to zero when  𝐲2 does not improve the 

regression. 

In general we can conclude that Granger causality index is always defined as a non negative index 

and it is zero when there is no link between the analyzed signals. Whereas a significantly non-zero 

value indicates that there is a connection/causality between  the two analyzed signals. 

 

 

1.2.1 Statistical significance: F-test for Granger causality 

 

Statistical significance can be determined via F-statistic which is an application to regression 

problems of classical F-test: 

 

                              𝐹 𝑦𝑖→𝑦𝑗  𝑦 
 

=  
𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

𝑢𝑛𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒
=  

𝜍𝑗 − 𝜍𝑗
𝑝
𝜍𝑗

(𝐿 − 2𝑝 − 1)

                                      (1.9) 
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where 𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 is associated to the difference of the Residuals Sum of Squares of 

restricted and unrestricted models and the 𝑢𝑛𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 is the Residuals Sum of Squares 

of unrestricted model, corrected for numerator and denominator degrees of freedom. 𝜍𝑗  and 𝜍𝑗  are 

the Residuals Sum of Squares of restricted and complete models respectively; p and (𝐿 − 2𝑝 − 1) 

are the degrees of freedom of numerator and denominator. A significant F-statistic is interpreted as 

evidence that the complete model provides a better prediction and better estimates of the parameters 

compared to what does the restricted one ([13]). In fact, model with more parameters will always be 

able to fit the data at least as well as the model with fewer parameters.  

In order to determine whether the unrestricted model gives a significantly better fit to data, the F 

calculated from the data should be greater than the critical value of the F-distribution for some 

desired false rejection probability.  

 

 

1.3 Frequency indices 

 

The spectral representation of a MVAR model gives useful tools for the analysis of stochastic 

processes, based on MVAR model transformation into Z domain. In fact, considering the MVAR 

model equation (1.1) and moving the autoregressive part to the left side of the equality the 

following occurs: 

 

                                                          𝒚 𝑛 +  𝑨 𝑘 𝒚 𝑛 − 𝑘 = 𝒆 𝑛                                                  (1.10)

𝑝

𝑘=1

 

 

Going to transformation into Z domain: 

                                                         

                                                         𝐘 𝑧 = 𝐇 𝑧 𝐄(𝑧)                                                                (1.11) 

 

where 𝐇 𝑧  is the system transfer matrix 

                                                            𝐇 𝑧 = (𝐈 +  𝐀 𝑘 𝑧−𝑘)−1

𝑝

𝑘=1

                                                       (1.12) 

and 𝐄 𝑧  is the prediction error Z-transform. 
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The N x N frequency response matrix can be expressed as:  

 

                          𝐇(𝑓)  =  𝐇(𝑧)|𝑧 = 𝑒𝑖2𝜋𝑓𝑇                 

 

where T is the sampling period, while the cross-spectral matrix can be derived as follows: 

 

                    𝐒 𝑓  = 𝐇 𝑓 𝛴𝑒𝐇 𝑓 𝐻     

 

where (∗)𝐻 stands for the Hermitian transpose and 𝛴𝑒 = 𝑑𝑖𝑎𝑔(𝜍𝑖
2) prediction error covariance 

matrix.  

The most traditional function proposed to detect cooperative neuronal activity in a couple of 

electro-physiological signals, 𝑦𝑖 𝑛  and 𝑦𝑗  𝑛 , is coherence which is defined as follows: 

       

 

 

where  𝑆𝑖𝑗 (𝑓) and   𝑆𝑖𝑖(𝑓), 𝑆𝑗𝑗  𝑓   are the cross and the auto – spectra respectively, evaluated from 

the cross-spectral matrix (1.14) and varying in the range 0-1. High values of coherence between two 

EEG signals are interpreted as evidence for ongoing cooperation and long-range synchronization. 

Although coherence is a consolidated index to describe the linear coupling between two processes, 

it provides a symmetrical information, i.e. 𝐶𝑜𝑖𝑗 (𝑓)=𝐶𝑜𝑗𝑖 (𝑓), and hence cannot distinguish the 

direction of the relation.  To overcome this problem, several measures have been suggested ([14]) 

and the most applied are Directed Transfer Function ([15]) and Partial Directed Coherence ([16]).  

 

 

 

 

 

(1.15) 

(1.13) 

(1.14) 
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Directed Transfer Function  (DTF) 

Let us consider the equation (1.15) representing the coherence definition between two signals 𝑦𝑖 𝑛  

and 𝑦𝑗  𝑛  and rewritten as follows: 

 

 

 

The first factor contains the generalized version of DTF index; thus, DTF index is defined as: 

 

 

 

 

with 𝐻𝑖: 𝑓  being the i-th row of H 𝑓 . 

Unlike the coherence, DTF index is able to identify dependency direction, since it exclusively 

depends on the frequency response, which is a non-symmetrical matrix, 𝐻𝑖𝑗 (𝑓)  ≠ 𝐻𝑗𝑖 (𝑓). It 

expresses the influence of  𝑦𝑗  on  𝑦𝑖  as the ratio between the inflow from j to i to all the inflows to i. 

Since DTF is normalized, it varies in the interval [0, 1], where 0 means no significant connections 

and positive values describe the presence of connection. DTF index represents a robust and reliable 

estimation method because it is able to distinguish the direction of the relation between two signals, 

but it is not able to distinguish between direct and indirect connections. 

Partial Directed Coherence (PDC) 

Unlike DTF, PDC relies on the inverse of the frequency response matrix, written as follows: 

                                                                 𝐇𝑖𝑛𝑣 (𝑓) = 𝐇(𝑓)−1 =  𝐀 (𝑓)                                               (1.18) 

where 𝐀 (𝑓) is expressed as  

(1.17) 

(1.16) 
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𝐴 
𝑖𝑗  𝑓 =   𝑎 𝑖𝑗  𝑘 𝑒

−𝑗2𝜋𝑓𝑘

𝑝

𝑘=1

 

 

directly based on the MVAR model coefficients, and is defined as follows: 

 

                                                                 𝜋𝑗→𝑖 𝑓 =
𝐴 

𝑖𝑗 (𝑓)

  𝜍𝑛
2|𝐴 

𝑛𝑗 (𝑓)|2 𝑁
𝑛=1

                                              (1.20) 

              =  
𝐴 

𝑖𝑗 (𝑓)

 𝐴 
:𝑗
𝐻 𝑓 𝐴 

:𝑗 (𝑓)

 

 

with 𝐴 
:𝑗 (𝑓) being the j-th column of  𝐀  𝑓 . 

PDC describes the influence of 𝑦𝑗  on 𝑦𝑖  as the ratio between the outflow from 𝑦𝑗  to 𝑦𝑖  to all the 

outflows from the source 𝑦𝑗 . As for coherence and DTF, also PDC varies in the interval [0, 1], 

where 0 means no significant connections and a positive value at a specific frequency f  indicates  

the presence of connection at that frequency. Unlike DTF, PDC clearly reflects the 

interdependencies within a system providing representation of direct causalities. In other words 

PDC is able to identify direct connections. 

 

Comparison between DTF and PDC  

It is interesting to note that, even if both DTF and PDC operate in frequency domain, they assume 

different meanings. As we have said previously, DTF and PDC differ in the ability of distinguishing 

direct and indirect dependencies: DTF shows not only direct but also cascade flows, whereas PDC 

shows only direct flows. In order to understand better this concept, let us consider, as before, three 

stochastic processes  𝐲1, 𝐲2 and 𝐲3 described by the MVAR model of equation (1.7) with frequency 

response rewritten as follows: 

 

 

(1.19) 
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          𝑯 𝑓 =
1

det (𝑨 (𝑓))
 

𝐴 
22𝐴 

33 − 𝐴 
23𝐴 

32

− 𝐴 
12𝐴 

33 − 𝐴 
13𝐴 

32 

𝐴 
21𝐴 

32 − 𝐴 
22𝐴 

31

     

−(𝐴 
12𝐴 

33 − 𝐴 
13𝐴 

32)

 𝐴 
11𝐴 

33 − 𝐴 
13𝐴 

31

− 𝐴 
11𝐴 

32 − 𝐴 
12𝐴 

31 

     

𝐴 
12𝐴 

23 − 𝐴 
13𝐴 

22

−(𝐴 
11𝐴 

23 − 𝐴 
13𝐴 

21)

𝐴 
11𝐴 

22 − 𝐴 
12𝐴 

21

  

 

 

Coupling between variables i and j described with DTF, equation (1.17), results in a linear 

combination of the elements of the 𝐀  𝑓  matrix (1.18), whilst PDC, equation (1.20), considers the 

single 𝐴 
𝑖𝑗 (𝑓) element. If there is absence of direct connection between i and j, then 𝑎 𝑖𝑗  𝑘 =0 for 

each k and, hence, PDC equals zero. Differently DTF reveals some connections in any case due to 

alternative indirect paths linking those two variables. For example, let us consider the element in 

position (1,2) of matrix 𝑯 𝑓  (1.21). Even if we suppose that 𝐴 
12  is equal zero, the element (1,2) is 

not null because the other term 𝐴 
13𝐴 

32  provides the information about link 12 throughout 

indirect connection. Therefore, DTF can be treated as a global index which describes interaction 

between i and j throughout both direct and indirect connections, while PDC only reveals direct 

ones. 

Moreover, another difference between two indices concerns the interpretation in terms of spectral 

density. DTF can be interpreted in terms of spectral density as the power spectrum of 𝑦𝑖  coming 

from 𝑦𝑗  normalized to all the contributions to 𝑦𝑖  at frequency f. Unlike DTF, PDC has not a direct 

correspondence with the power spectrum. It depends on the inverse of the frequency response 

matrix (equation (1.13)) which does not reflect spectral information.  

DTF and PDC magnitude is usually evaluated at the peak frequency and the more these functions 

rise the more connection strength increases. In order to quantitatively sum up their frequency 

information, global DTF and PDC indices can be derived  by AUC (Area Under the Curve):  

 

                                𝐷𝑇𝐹𝑡𝑜𝑡 =  𝛾𝑗→𝑖 𝑓  𝑑𝑓
𝑓𝑚𝑎𝑥

0

     ,    𝑃𝐷𝐶𝑡𝑜𝑡 =  𝜋𝑗→𝑖 𝑓  𝑑𝑓
𝑓𝑚𝑎𝑥

0

                        (1.22) 

 

In addition, to evaluate connection strength in classical EEG bands, AUC integrals are computed 

considering δ, θ, α, β and γ frequency intervals. 

 

 

(1.21) 
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1.3.1 Statistical significance: Null hypothesis test for DTF and PDC 

 

To examine the statistical significance of DTF and PDC a null hypothesis test is performed for each 

pair of signals. This statistical test is a modified version of the surrogate data strategy proposed in 

([26]). Specifically, instead of shuffling the time series, the phase randomization is used in order to 

break time relationships. Consider i.e. DTF (but the same is also true for PDC). Its null distribution 

is  determined using phase randomization, i.e. each data set is transformed in frequency domain via 

FFT,  randomly shuffled in order to change phase information and then reported in time domain via 

iFFT. If we suppose to iterate this procedure 100 times, we obtain 100 realizations under the null 

hypothesis and for each realization a DTF profile is computed and its maximum value is selected, 

thus obtaining one-hundred distinct values. Hence the null distribution is estimated by pooling 

together the peak value reached in each surrogate realization, as shown in Fig. 1.1. This choice has 

two main reasons. First, it is cautious since considers high indices values avoiding as much as 

possible spurious connections. Second, it is a global value independent of the frequency structure of 

the data. Threshold at P<0.05 fixes 𝛾0 critical value at its 95
th

 percentile. Hence, there exists a 

connection for a specific frequency 𝑓0 between two signals if  DTF (or PDC) function overcomes 

threshold line in correspondence to 𝑓0. 

 

 

 

 

 

 

 

Fig. 1.1: Representative example of null distribution resulting from 100 surrogate realizations for DTF. a) DTF 

functions among ROI 1, ROI 2 and ROI 3 when causal influence is absent: arrow indicates the peak value. b) DTF 

distribution by combining results from  one hundred realizations. 
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1.4 SEM (Structural Equation Modeling) 

 

The analysis of brain imaging data has recently focused on the examination of the covariances of 

activity among neural regions during different behaviors. One of the main covariance-based 

methods is SEM (Structural Equation Modeling). SEM grew out of geneticist, social-science and 

economics fields from 1920s onwards and has been used in functional imaging since the early 

1990s. It was firstly applied to animal autoradiographic data and then extended to human PET data 

to identify task-dependent differential activation of the dorsal and ventral visual pathways 

([5],[17]). Since then, other researchers have used SEM to analyze fMRI and EEG data ([18],[7]).  

SEM is a static multivariate regression model widely used to estimate connections within a defined 

network. It is based on the hypothesis that the topology of the network in terms of interconnections 

among interacting variables is a priori known and that inter variables coupling is linear time 

invariant. In fact, in this method, connections between brain areas are based on known 

neuroanatomy and the interregional covariances of activity are used to calculate path coefficients 

representing the magnitude of the influence of each directional path.  

Considering as an example the following network 

 

 

 

 

 

 

 

 

these assumptions are translated in the following equations 

                    𝑣2 𝑡 = 𝑘21𝑣1 𝑡 + 𝑒2(𝑡) 
(1.23) 

                                                         𝑣3(𝑡)  =  𝑘31𝑣1(𝑡)  + 𝑘32𝑣2(𝑡)  +  𝑒3(𝑡) 

 

Fig. 1.2: An example of structural model with three regions and three connections. Each region is 

associated with variable, 𝑣𝑖  , i = 1,2,3. Arrows indicate causal relationships that are assumed a 

priori and strength connections are defined by the scalar 𝑘𝑖𝑗 . 
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where 𝑣𝑛 𝑡  is the model prediction for cortical activity associated with variable n, with n=1,2,3, 

𝑘𝑖𝑗  is the path coefficient from variable j to variable i and 𝑒𝑛(𝑡) is a residual term with covariance 

𝛴𝑒 , interpreted as driving each variable stochastically and assumed to be uncorrelated with 𝑣𝑛 𝑡 .  

The path coefficients 𝑘𝑖𝑗  and the covariance matrix 𝛴𝑒  are identified on time series data by 

minimizing the difference between the covariance matrix estimated from the data and the 

covariance matrix implied by the structural model in Fig. 1.2. Hence, in terms of neural systems, a 

measure of covariance represents the degree to which the activities of two or more regions are 

related. 

Let 𝐬 be a set of three time series: 

                                                             

                                                           𝐬(n) = [𝐬1 𝑛 , 𝐬2 𝑛 , 𝐬3 𝑛 ],  n=1, … , L.                               (1.24) 

 

The 3x3 covariance matrix estimated from the data is: 

   

   𝑺 =
𝒔𝑇𝒔

𝐿 − 1
 

                                                                                     

where L is the number of observations. Covariance matrix implied by the model, respect to equation 

(1.23), is calculated as: 

                                                                𝛴𝑣 = (1 − 𝐤)−𝑇𝛴𝑒(1 − 𝐤)−1                                               (1.26) 

 

where 𝐤 =   
0 0 0

𝑘21 0 0
𝑘31 𝑘32 0

  . 

The unknown parameters are estimated by minimizing a function of the observed (i.e. estimated 

from the data) and implied covariance matrices. The most widely used objective function for SEM 

is the maximum likelihood (ML) function: 

                                                              𝐹 = 𝑙𝑛 𝛴𝑣 − 𝑡𝑟 𝑺𝛴𝑣
−1 − 𝑙𝑛 𝑺                                               (1.27) 

(1.25) 
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The ML objective function of equation (1.27) is optimized by means of a fitting criterion which 

employs a Newton-type algorithm based on an analytic gradient. The starting values can be 

estimated using ordinary least square. Statistical inference takes into account two aspects: the 

goodness of the overall fit of the model and the difference between alternative models, called 

stacked-model approach. For example, the 𝜒2 statistic test can be used to infer statistical 

significance of the structural equation modeling. 
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Chapter  2 

 

The neural mass model for data 

simulation 

 

Modeling neurophisiological nervous system mechanisms rely upon simplifying assumptions and 

empirical priors. Recent years literature shows a rising interest in this issue and several approaches 

have been developed to model neural signals. The most feasible approach is based on mathematical 

tools, called neural mass models (NMM). They are designed to provide an easier description of 

electrical behavior of the brain areas than models mapping single neurons. Neural mass models  

obtain this simplification assuming that neighbor neurons, belonging to the same population, have a 

similar membrane potential. The main purpose of the neural mass models is to simulate different 

EEG signals when the connections between different brain areas change. This approach describes 

the processes generating EEG signals by arranging in series and in parallel simplified blocks which 

simulate the key mechanisms. A neural mass model of EEG is thus a surrogate of a cortical area. It 

usually comprises a small number of neural populations interacting each other and uses only one or 

two state variables to represent the mean activity of each single neural population. The dynamics of 

entire neural populations and of their synapses are described under the assumptions that neurons in 

the same population share similar inputs and synchronize their activity. Therefore by tuning the 

kinetics parameters of each population, this procedure is able to design specific signal rhythms and 

reproduce responses seen empirically.  
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One of the first proposed model is the Wilson-Cowan oscillator to study synchronization among 

neural oscillations ([30]). Subsequently, Lopes da Silva et al. proposed a simple model of two 

populations, by using a feedback loop incorporating excitatory and inhibitory neuron groups, to 

simulate the generation of the α rhythm in the thalamus ([31]). Freeman proposed a similar model to 

study dynamics in the olfactory cortex ([20]). These models have been subsequently improved by 

Jansen; his model includes the interaction between three neural populations with different synaptic 

kinetics (pyramidal neurons, excitatory interneurons, inhibitory interneurons) ([32]). The Jansen 

equations are still frequently used to build models of interconnected cortical areas, able to 

reproduce EEG dynamics in large regions of the brain, to study effective connectivity from EEG or 

fMRI data or to investigate how event related potentials depend on intrinsic connectivity ([33], 

[34],[35], [36]). An important improvement in the use of neural mass models has been provided by 

Wendling ([37]). Studying  hippocampus dynamics during epilepsy, he proposed the addition of a 

fourth population to the Jansen’s model to account for the presence of fast interneurons. This model 

allows to simulate the dynamics of real EEG signals measured with intracerebral electrodes in the 

hippocampus during epileptic seizures. 

The majority of neural mass models of EEG responses have been designed to model alpha rhythms; 

recent studies have emphasized the necessitate to produce rhythms in different bands. Some of the 

literary works cited above show that the kinetic of inhibitory populations have a focal influence on 

signals generation in particular to generate a γ rhythm ([9]). Hence, in the last decade more attention 

has been drawn to simulate several rhythms coexisting in the same cortical area ([33], [38], [9]).  

The model exploited to simulate our in silico data ([9]) aims to render the dynamics of the cerebral 

network as much realistic as possible. It has been developed by Ursino’s team and consistent 

literature works prove its effectiveness in reproducing EEG signal behavior ([9], 

[16],[17],[18],[30],[31]). A new aspect in Ursino's model, not present in previous versions, consists 

in the inclusion of a self-loop among fast inhibitory interneurons. Two main objectives have been 

pursued by Ursino: (i) to enrich the model of a single cortical region with a new feedback loop, 

through which fast inhibitory interneurons can produce a γ rhythm per se  (i.e. without the 

participation of the other neural populations), and (ii) to demonstrate that the modified model can 

easily produce EEGs PSD of a single cortical region characterized by several peaks. 

 

 

 

24 



2.1  The neural mass model 

 

The model [9] simulates one cortical region and produces an intrinsic rhythm that can vary its 

frequency band by changing the synaptic kinetics parameters. 

It consists of four neural populations representing pyramidal neurons, excitatory interneurons and 

inhibitory interneurons with slow and fast synaptic kinetics. Each populations represents a group of 

neurons of the same type which approximately share the same membrane potential and can be 

massed together.  The dynamic of each group is described with a similar mathematical formalism 

consisting of three key blocks in cascade, as shown in Fig. 2.1: it represents general three blocks 

cascade to simulate the synapses junction and the information transmission. 

 

 

 

 

 

 

 

 

Each block is characterized by an input-output relationship. The block 1) receives from other neural 

populations the so-called post-synaptic potentials 𝑦𝑖  and combines them linearly by multiplying for 

a constant 𝐶𝑖𝑗 . It results in an average post-synaptic membrane potential 𝑣𝑖  which subsequently is 

converted into an average density of spikes fired by the neurons, 𝑧𝑖 , as represented in block 2). In 

order to account for the presence of inhibition (when potential is below a given threshold) and 

saturation (when potential is high), which are two non – linear mechanism, this conversion is 

simulated with a static sigmoidal relationship. Finally, the last block reproduces the synaptic 

kinetics with a second order system, with different parameter values each group. In the following, a 

quantity which belongs to a neural population will be denoted with subscript p (pyramidal), e 

(excitatory interneuron), s (slow inhibitory interneuron) and f (fast inhibitory interneuron). Hence, 

these previous concepts are summarized by the following equations: 

Fig. 2.1: Layout of the general model of a single population. Modified Fig. 1 of [9] 
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where 

 

 

where the subscript j refers to a presynaptic neural group, 𝑦𝑖  is the post-synaptic potential change 

induced by a unitary synapse coming from other groups, 𝐶𝑖𝑗  represents the connectivity constant 

from the jth group to the ith one; parameters e0 and r, assumed equal for all groups, set the maximal 

saturation and the slope of the sigmoidal relationship; 𝐺𝑖  and 𝜔𝑖  represent the strength (i.e. the gain) 

and the reciprocal of the time constant (i.e. natural frequency) of the individual synapses. It is worth 

noting that, by giving different values to 𝐺𝑖  and 𝜔𝑖  (i = p, e, s, f) one can mimic the impulse 

response of the different synapses. In the following, these impulse responses will be denoted with 

symbols 𝑒(𝑡), 𝑠(𝑡) and 𝑓(𝑡), assuming that excitatory interneurons have the same kinetics as 

pyramidal cells (i.e. 𝑝 𝑡 = 𝑒(𝑡)). 

A particular attention should be drawn to the following scheme adopted for the fast inhibitory 

interneurons:  

 

 

 

 

 

 

 

 

 

This group synapses with itself and is powered by an external input. The rationale of this choice 

stands in previous work ([39]) which implements self loop to generate γ rhythms. The addition to 

this neural mass model of a feedback loop with fast inhibitory interneurons allows producing γ 

rhythm per se without the contribution of the other groups. 

i = p, e, s, f (2.1) 

Fig. 2.2: Scheme of fast inhibitory interneurons. It consists of three blocks in cascade as for the 

general model in Fig. 2.1  but, in addition, the first block is powered by an external input 𝑢𝑓(𝑡) and 

by the feedback loop. Modified Fig. 2 of [9]. 
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To model a whole cortical area, the four populations are connected via excitatory and inhibitory 

synapses, with impulse response 𝑒(𝑡), 𝑠(𝑡) or 𝑓(𝑡). Connecting these four groups we obtain the 

complete scheme of the neural mass model which is represented as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It consists of three general blocks cascade of Fig. 2.1 for the pyramidal cells, the excitatory 

interneurons and the slow inhibitory interneurons plus the scheme of Fig. 2.2 for the fast inhibitory 

interneurons. An important aspect of the model is the external inputs, targeting the excitatory and 

Fig. 2.3: Layout of the complete model for one region. Four neural groups, designed as shown in Fig. 2.1, 

communicating via excitatory and inhibitory synapses: 1) Pyramidal cells. 2) Excitatory interneurons. 3) 

Slow inhibitory interneurons. 4) Fast inhibitory interneurons. Modified Fig. 3 of [9]. 
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the fast inhibitory interneurons. In a physiological context, these comprehend all external signals 

coming from the other cortical areas. In order to study connectivity between two cortical areas, a 

linear relationship is assumed between the averaged spike density of pyramidal neurons of the pre-

synaptic area, 𝑧𝑝
𝑘 , and the input of the post-synaptic area, 𝑢𝑗

 , as follows: 

 

where 𝑛𝑗 (𝑡) represents Gaussian white noise, 𝑊𝑗  is the weight factor and ω is the time delay. N = 20 

tunes the input signal amplitude. 

For brevity, in this work the model will be described with a condensed mathematical formalism to 

highlight the two different impulse responses, 𝑒𝑥 (𝑡) and 𝑖𝑛 (𝑡) , for excitatory and inhibitory 

inputs, respectively. 

 

 

2.2 NMM parameters analysis 

 

In order to generate electro-physiological signals, ranging in EEG band 0 − 30 Hz, the NMM 

equations ([9]) have been studied by varying the kinetic parameters within the set (0, 5, 30, 55, 56, 

80, 126, 130) and fixing the others (𝜔𝑒 , 𝜔𝑠, 𝜔𝑓 , 𝐺𝑒 , 𝐺𝑠, 𝐺𝑓) to the values in Table 1 of ([9]).  

To identify the optimal parameter set, several simulations have been performed to analyze both 

the system stability and its frequency response. To this purpose, the NMM equations, after been 

linearized, have been described as multi input-output (MIMO) system of linear differential 

equations with the state-space representation:  

 

                                                                             𝐱 = 𝐀𝐱 + 𝐁𝐮 

𝐯 = 𝐂𝐱 + 𝐃𝐮 

 

where x is a n by 1 vector representing the state, u and v are the input and the output, respectively. 

The matrices A (n by n), B (n by m), and C (r by n) determine the relationships between the state 

and input and output variables. In our case, there are ten first-order differential equations, two 

(2.2) 

(2.3) 
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 B 

inputs, 𝑢𝑝(𝑡) and 𝑢𝑓(𝑡), and four outputs 𝑣𝑝 𝑡 , 𝑣𝑒 𝑡 , 𝑣𝑠 𝑡 , 𝑣𝑓 𝑡 .  System matrices A, B and C 

are the following: 

   

A= 

 
 
 
 
 
 
 
 
 
 
 

0
0
0
0

−𝜔𝑒
2

𝑘1𝐶𝑝𝑒

𝑘2𝐶𝑠𝑝

𝑘3𝐶𝑓𝑝

0
0

     

0
0
0
0

𝑘1𝐶𝑝𝑒

−𝜔𝑒
2

0
0
0
0

     

0
0
0
0

−𝑘1𝐶𝑝𝑠

0
−𝜔𝑠

2

−𝑘3𝐶𝑓𝑠

0
0

     

0
0
0
0

−𝑘1𝐶𝑝𝑓

0
0

−𝑘3𝐶𝑓𝑓−𝜔𝑓
2

0
0

     

1
0
0
0

−2𝜔𝑒

0
0
0
0
0

     

0
1
0
0
0

−2𝜔𝑒

0
0
0
0

     

0
0
1
0
0
0

−2𝜔𝑠

0
0
0

     

0
0
0
1
0
0
0

−2𝜔𝑓

0
0

     

0
0
0
0
0
0
0
𝑘3

0
−𝜔𝑒

2

     

0
0
0
0
0
0
0
0
1

−2𝜔𝑒

 

 
 
 
 
 
 
 
 
 
 
 

 

 

where 𝑘1 = 𝐺𝑒𝜔𝑒
𝑒0𝑟

2
, 𝑘2 = 𝐺𝑠𝜔𝑠

𝑒0𝑟

2
 and 𝑘3 = 𝐺𝑓𝜔𝑓

𝑒0𝑟

2
, 

 

 

 

 

 

 

 

C = 

 
 
 
 

0
𝐶𝑒𝑝

𝐶𝑠𝑝

𝐶𝑓𝑝

     

𝐶𝑝𝑒

0
0
0

     

−𝐶𝑝𝑠

0
0

−𝐶𝑓𝑠

     

−𝐶𝑝𝑓

0
0

−𝐶𝑓𝑓

     

0
0
0
0

     

0
0
0
0

     

0
0
0
0

     

0
0
0
0

     

0
0
0
1

     

0
0
0
0 
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To evaluate the system stability, work [19] has verified that all eigenvalues of A lie in the left-hand 

side, while to analyze the frequency response, in [19] the state-space representation was re-written 

into Laplace domain, as follows: 

𝑠𝐗 𝑠 = 𝐀𝐗 𝑠 + 𝐁𝐔(𝑠) 

 𝑠𝐈 − 𝐀 𝐗 𝑠 = 𝐁𝐔(𝑠) 

𝐗 𝑠 =   𝑠𝐈 − 𝐀 −1 𝐁𝐔(𝑠) 

and 

 

𝐕 𝑠 =  𝐂 𝑠𝐈 − 𝐀 −1𝐁 + 𝐃 𝐔 𝑠 = 𝐇 𝑠 𝐔(𝑠) 

 

where 𝐇 𝑠  is the matrix transfer function relating the output vector 𝐕 𝑠  to the input vector  𝐔(𝑠): 

 

𝐇 𝑠 =  
𝐂𝑎𝑑𝑗  𝑠𝐈 − 𝐀 𝐁 + 𝑑𝑒𝑡 𝑠𝐈 − 𝐀 𝐃

𝑑𝑒𝑡 𝑠𝐈 − 𝐀 
 

 

In our case, 𝐇 𝑠  is 4 by 2 matrix whose elements are the individual transfer functions relating a 

given component of the output 𝐕 𝑠  to a component of the inputs 𝐔(𝑠), as described in the 

following set of equations: 

 
 
 
 
𝑉𝑝 𝑠 

𝑉𝑒(𝑠)
𝑉𝑠(𝑠)
𝑉𝑓(𝑠) 

 
 
 

 = 

 
 
 
 
 
𝐻𝑝𝑝 (𝑠)

𝐻𝑒𝑝 (𝑠)

𝐻𝑠𝑝(𝑠)

𝐻𝑓𝑝 (𝑠)

     

𝐻𝑝𝑓 (𝑠)

𝐻𝑒𝑓 (𝑠)

𝐻𝑠𝑓(𝑠)

𝐻𝑓𝑓 (𝑠) 
 
 
 
 

  
𝑈𝑝(𝑠)

𝑈𝑓(𝑠)
  . 

Among the subsets of parameter values assuring the system stability, spectral analysis of the 

frequency response has been performed in order to find those generating signals with well-defined 

frequency peaks. The attention was focused on the transfer functions relating the inputs with 𝑉𝑝 𝑠 , 

since 𝑣𝑝 𝑡  represents the cortical pyramidal cells signal. By evaluating their response magnitude: 
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                                                                𝐻𝑝𝑝 (𝜔) 
2

 and  𝐻𝑝𝑓 (𝜔) 
2
                                                       (2.4) 

 

we choose those sets giving peak frequency around 5 Hz, 15 Hz and 30 Hz. 

Since these two transfer functions refer to excitatory and inhibitory cells, respectively, to highlight 

their meaning they are called 𝐻𝑒𝑥  𝜔  and 𝐻𝑖𝑛  𝜔  and, hence 𝑒𝑥 (𝑡) and 𝑖𝑛 (𝑡) in time domain. 

 

 

2.3 Simulated datasets 

 

The NMM described above has been used to simulate a ROI cortical EEG, where the input is white 

noise 𝑛(𝑡) with zero mean and variance 𝜍2 = 5 for both impulse response 𝑒𝑥 (𝑡) and 𝑖𝑛  𝑡 , while 

the output is 𝑣𝑛(𝑡), corresponding to the NMM 𝑣𝑝(𝑡), represented in condensed formalism in Fig. 

2.4: 

 

 

 

 

 

 

 

By combining three populations - called ROI 1, ROI 2 and ROI 3, connected by weight parameters 

A, B, C and characterized by different synaptic kinetics - four different network models have been 

analyzed. The first one is a feed-forward network and it has been extensively analyzed in a previous 

work ([19]). This network is shown in Fig. 2.5a. The other three networks, instead, obtained by 

combining the same three ROIs, are analyzed in this work and they are: the open-loop network with 

two direct links, connecting ROI 1 to ROI 2 and ROI 2 to ROI 3 (Fig. 2.5b), the network with a 

feed-back link from ROI 2 to ROI 1 (Fig. 2.5c) and finally the cycle network (Fig. 2.5d). 

Fig. 2.4: One ROI model. Each ROI is characterized by two impulse responses, 𝑒𝑥 (𝑡) and 𝑖𝑛  𝑡 , 

for excitatory and inhibitory inputs, 𝑛(𝑡) which are assumed Gaussian with zero mean and 

variance σ
2 

= 5. 𝑣𝑛(𝑡)  corresponds to the pyramidal output 𝑣𝑝(𝑡) in the NMM (a). Picture in (b) 

shows the symbolism used for synthetic representations. 
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For all these networks, three datasets have been generated with different degrees of non linearity 

defined as the slope r adopted in the sigmoid relationships of the model, assuming the following 

values: 

 dataset 1 with r = 0.36; 

 dataset 2 with r = 0.56; 

 dataset 3 with r = 0.66. 

For each dataset, weight parameters A, B and C have been fixed to simulate ten conditions as 

follows: 

 basal condition : A=B=C=1; 

 increasing A): A = 2, 3 and 4, while B = C = 1; 

 increasing B): B = 2, 3 and 4, while A = C = 1; 

 increasing C): C = 2, 3 and 4, while A = B = 1; 

(a) (b) 

(c) (d) 

Fig. 2.5: Neural network models used to simulate data. The connection intensity 

between coupled ROIs is described by weight parameters A, B and C. (a) feed-

forward network, (b) open-loop network, (c) network with a feed-back link, (d) cycle 

network. 
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Summing up, for feed-forward network, network with feed-back link and cycle network thirty 

experiments have been simulated, while for open-loop network twenty-one experiments have been 

simulated. For each of them one hundred realizations of 2s have been generated for the three ROIs, 

with sampling frequency 𝐹𝑠 = 200 H𝑧.  

In Tables 2.1, 2.2, 2.3, 2.4 the network schemes and weight values assumed for each experiment are 

summarized.  

The analysis is detailed for networks (b), (c) and (d) of Fig.2.5 while for network (a) only results are 

reported since the detailed analysis is in [19].  

 

 

 

 

Table 2.1: Feed-forward network schemes and weight values assumed for 

each experiment. 
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Table 2.2: Open loop network schemes and weight values assumed for each 

experiment. 
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Table 2.3: Network with feedback link schemes and weight values assumed for 

each experiment. 
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Table 2.4: Cycle network schemes and weight values assumed for each 

experiment. 
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Chapter 3 

 

In silico experiments 

 

In this chapter are reported parameter values (which are maintained the same for all analyzed 

networks) adopted in NMM equations for the generation of in silico data and are shown examples 

of simulated signals of different network models. 

 

 

3.1 Simulation  

3.1.1 NMM parameters 

 

System stability analysis has been performed considering 77 different combinations of NMM 

parameter values. Among the subsets of parameter values assuring the system stability, we choose 

those sets giving peak frequency in low (around 5 Hz), medium (around 15 Hz) and high (around 30 

Hz) frequency. Parameter values adopted in NMM equations are reported in Table 3.1: 
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a) Common parameters   

          Parameters Symbols Values 

 Average gain (mV)  𝐺𝑒  5.17 

 𝐺𝑠 4.45 

 𝐺𝑓  57.1 

 Time Constant reciprocal (𝑠−𝟏)  𝑤𝑒  75 

 𝑤𝑠 30 

 𝑤𝑓  75 

 Sigmoid saturation (𝑠−𝟏)  𝑒0 2.5 

 Time delay (ms)  𝜔 10 

 Input noise variance  𝜍2 5 

 

 

b) Region’s parameters 

                 Parameters  Symbols   ROI 1   ROI 2    ROI 3  

 Number of synaptic contacts  𝐶𝑒𝑝   55  5  130   

 𝐶𝑝𝑒   5  5  5   

 𝐶𝑠𝑝   5  5  105   

 𝐶𝑝𝑠   55  55  130   

 𝐶𝑓𝑝   56  56  80   

 𝐶𝑓𝑠   5  5  126   

 𝐶𝑝𝑓   0  5  30   

 𝐶𝑓𝑓   5  5  30   

 

 

  

 

Table  3.1: Network models kinetics parameters. a) Common parameters are average gains, 
time constant reciprocals, sigmoid saturations and time delays. Values are the same of [21]. b) 
Regions’ parameters are the synaptic contact numbers. 
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3.1.2 Model predicted EEG signals 

 

After identifying those parameter sets generating well-defined frequency peak in low, medium and 

high frequency, in silico EEG have been simulated using ad hoc Matlab code provided by Ursino’s 

team. For each experiment described in 2.3, one hundred realizations 2s long of  three joined time 

series have been generated with sampling frequency 𝐹𝑠 = 200 Hz.  

Examples of signals of the different network models are shown in Fig. 3.1, evidencing how the 

linking direction influences the frequency content. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.1: Model predicted EEG signals in time and frequency domain for each network 

model in basal condition, where all weights are equal to 1 and r=0.56. 
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If we observe feed-forward and open-loop networks, Fig. 3.1 (a) and (b), we can see that ROI 2 

clearly exhibits spectral contribute coming from ROI 1, while in ROI 3 there are not significant 

differences between the two network models, since its intrinsic gain is very low in the pass-band of 

ROI 1 and ROI 2 and, hence, frequency contents of inflowing ROIs are less evident. Differently, 

networks in Fig. 3.1 (c) and (d) produce an increasing in ROI 3 PSD, thanks to the synergic 

connection of the feed-back link. 

The following figures show, for all networks, the model prediction in time and frequency domain in 

a representative realization characterized by different values of network sigmoid slope r. This 

parameter is very important because it influences frequency contents, since it directly modifies the 

intrinsic gain of each ROI. Figures show basal condition and experiments characterized by different 

values of A, B and C parameters.   

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 Fig. 3.2: Basal condition (A=B=C=1). Model predicted EEG signals in time and frequency domain in a 

representative realization for each dataset for feed-forward network. In the right side: upper panel r=0.36, 

middle panel r=0.56, lower panel r=0.66. 
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Fig. 3.3: Model predicted EEG signals in time and frequency domain in a representative realization of experiments 

characterized by different values of A, B and C parameters of the network bold link (r=0.56 dataset). 
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Fig. 3.4: Basal condition (A=B=1). Model predicted EEG signals in time and frequency domain in a representative 

realization for each dataset for open-loop network. In the right side: upper panel r=0.36, middle panel r=0.56, lower 

panel r=0.66. 
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X2 

X3 

X4 

Fig. 3.5: Model predicted EEG signals in time and frequency domain in a representative realization of experiments 

characterized by different values of A and B parameters of the network bold link (r=0.56 dataset), for open-loop 

network. 
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Fig. 3.6 Basal condition (A=B=C=1). Model predicted EEG signals in time and frequency domain in a representative 

realization for each dataset for network with feed-back link. In the right side: upper panel r=0.36, middle panel r=0.56, 

lower panel r=0.66. 

. 
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X4 

X3 

X2 

Fig. 3.7: Model predicted EEG signals in time and frequency domain in a representative realization of experiments characterized by 

different values of A, B and C parameters of the network bold link (r=0.56 dataset), for network with feed-back link. 
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Fig. 3.8: Basal condition (A=B=C=1). Model predicted EEG signals in time and frequency domain in a representative 

realization for each dataset for cycle network. In the right side: upper panel r=0.36, middle panel r=0.56, lower panel 

r=0.66. 
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X4 

X3 

X2 

Fig. 3.9: Model predicted EEG signals in time and frequency domain in a representative realization of experiments characterized by 

different values of A, B and C parameters of the network bold link (r=0.56 dataset), for cycle network. 
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Chapter  4 

 

Assessment on in silico data: results 

 

This chapter reports connectivity results obtained by means of  MVAR and SEM methods for each 

considered network model. 

 

 

4.1 Connectivity estimation 

 

A multivariate model is fitted to each simulation data by means of the Matlab package ARFIT, 

based on stepwise least square algorithm ([22]), selecting the best order with Akaike’s information 

criterion. Then, Granger causality estimation is achieved using the Matlab toolbox GCCA ([23]), 

with the ordinary-least-squares option, and frequency indices computation is performed by applying 

the Matlab toolbox implemented in ([24]). Estimation of SEM path coefficients is accomplished by 

analyzing data in R using its package ”sem” ([25]). Obtained results are averaged over the one 

hundred realizations for each experiment. 
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4.1.1 Assessment of estimated indices 

 

Topology analysis. Network topology is estimated by means of MVAR indices. GC, DTF and PDC 

are calculated initially for each realization and subsequently reported results are averaged over the 

one hundred realizations for each experiment. For each index, statistical tests are performed to 

evidence significant values.  

Comparison with true network gives the amount of false negative and false positive results and 

statistical power of GC, DTF and PDC is described in terms of sensitivity and specificity, which are 

defined as follows: 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
 

where TP = true positives, FN = false negatives, TN = true negatives and FP = false positives. 

Sensitivity relates to the ability of identifying true connections, while specificity refers to the test 

ability of identifying absence of connections. 

Below, results will be expressed by means of the following scheme:  

 

 

 

 

 

 

 

 

 

 

  Condition 

 True False 

 

Outcome 
Positive 

Negative 

 TP FP 

 FN TN 

Type I error (α) 

Type II error (β) 

  Sensitivity Specificity  

Table 4.1: Relationships between actual condition (true or false) and predicted 

outcomes (positive or negative). False positives (FP) and negatives (FN) provide type I 

(α) and type II (β) error rate, respectively. Ratio of true positives (TP) to combined TP 

and FN gives the sensitivity amount, while ratio of true negative (TN) to combined FP 

and TN furnishes the specificity. 
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Strength analysis. Network strength connections are evaluated by considering the output scores of 

GC, equation (1.6), DTF and PDC AUC integrals, equation (1.22) and SEM path coefficients. Since 

estimates and true weights are measured with different scales, they are compared using linear 

regression to verify the existence of a linear relationship between them. 

Following paragraphs report overall results throughout all experiments performed on the feed-

forward network, on the open-loop network, on the network with feed-back link and on the cycle 

network, describing both topology and strength estimate. 

 

 

4.1.2 Topology estimation 

 

For each simulated dataset, consisting of 100 realizations,  the number of identified connections, 

revealed by GC, DTF and PDC, is evaluated. Network topology is inferred by means of statistical 

test responses, such are F-test for GC and comparison with the null hypothesis threshold for DTF 

and PDC. For each set of 100 realizations is performed a total number of 3000 tests, since are 

executed 10 experiments for each considered dataset (there are three datasets). 

 

In Tables 4.2, 4.3 and 4.4 are reported percentages of positive connections indentified between each 

pair of ROIs for three indices respectively, for feed-forward network. In Tables 4.5, 4.6 and 4.7 are 

reported percentages of positive connections indentified between each pair of ROIs for three indices 

respectively, for open-loop network. In Tables 4.8, 4.9 and 4.10 are reported percentages of positive 

connections indentified between each pair of ROIs for three indices respectively, for network with 

feed-back link. Finally, in Tables 4.11, 4.12 and 4.13 are reported percentages of positive 

connections indentified between each pair of ROIs for three indices respectively, for cycle network. 
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4.1.2.1 Feed-forward network 

   

Links  DATASET 1 DATASET 2 DATASET 3 

    

 A=B=C=1 A=B=C=1 A=B=C=1 

    

 

    

 
 

 
ROI 1 -> ROI 2  

 

63 

    

97 

    

98 

 

 
ROI 1 -> ROI 3  46 88 98 

 
ROI 2 -> ROI 3  51 92 100 

 
ROI 2 -> ROI 1  3 4 5 

 
ROI 3 -> ROI 1  5 4 9 

 
ROI 3 -> ROI 2  3 3 1 

    

 

         

   

Links  DATASET 1 DATASET 2 DATASET 3 

    

 x2 x3 x4 x2 x3 x4 x2 x3 x4 
 

  

 

         

 

 
ROI 1 -> ROI 2  99 100 100 100 100 100 100 100 100 

 
ROI 1 -> ROI 3  33 40 14 72 57 51 90 72 67 

 
ROI 2 -> ROI 3  56 75 73 98 100 100 100 99 100 

 
ROI 2 -> ROI 1  4 2 4 7 6 9 4 8 12 

 
ROI 3 -> ROI 1  3 7 4 3 7 2 5 7 6 

 
ROI 3 -> ROI 2  7 6 1 3 4 9 2 10 10 

    

 

         

   

Links  DATASET 1 DATASET 2 DATASET 3 

    

 x2 x3 x4 x2 x3 x4 x2 x3 x4 

    

 

          

 
 

 
ROI 1 -> ROI 2  73 48 43 86 80 74 96 90 84 

 
ROI 1 -> ROI 3  98 99 100 100 100 100 100 100 100 

 
ROI 2 -> ROI 3  54 41 50 90 96 95 100 100 99 

 
ROI 2 -> ROI 1  2 6 3 5 6 4 6 4 2 

 
ROI 3 -> ROI 1  10 3 2 3 6 7 6 13 11 

 
ROI 3 -> ROI 2  6 5 3 3 5 10 6 2 1 

    

 

         

   

Links  DATASET 1 DATASET 2 DATASET 3 

    

 x2 x3 x4 x2 x3 x4 x2 x3 x4 

    

 

          

 
 

 
ROI 1 -> ROI 2  65 65 79 79 98 97 99 97 98 

 
ROI 1 -> ROI 3  41 39 46 84 78 85 93 93 96 

 
ROI 2 -> ROI 3  100 100 100 100 100 100 100 100 100 

 
ROI 2 -> ROI 1  1 6 6 2 4 4 3 5 6 

 
ROI 3 -> ROI 1  2 4 4 7 8 7 7 1 4 

 
ROI 3 -> ROI 2  1 3 7 4 3 6 5 12 5 

    

 

           
Table 4.2: GC index: percentage of true and false positives in each experiment. Bold arrow in network model 

indicates the link with true strength multiplied by factors 2, 3 and 4. 

52 



 

   

Links  DATASET 1 DATASET 2 DATASET 3 

    

 A=B=C=1 A=B=C=1 A=B=C=1 

    

 

    

 
 

 
ROI 1 -> ROI 2  

 

76 

    

83 

    

82 

 

 
ROI 1 -> ROI 3  85 98 97 

 
ROI 2 -> ROI 3  82 100 100 

 
ROI 2 -> ROI 1  14 7 6 

 
ROI 3 -> ROI 1  5 0 0 

 
ROI 3 -> ROI 2  3 0 0 

    

 

         

   

Links  DATASET 1 DATASET 2 DATASET 3 

    

 x2 x3 x4 x2 x3 x4 x2 x3 x4 
 

  

 

         

 

 
ROI 1 -> ROI 2  80 94 92 83 81 92 71 83 72 

 
ROI 1 -> ROI 3  53 82 58 89 76 80 80 86 76 

 
ROI 2 -> ROI 3  43 46 35 94 85 73 90 92 74 

 
ROI 2 -> ROI 1  6 3 3 9 6 3 4 3 5 

 
ROI 3 -> ROI 1  5 3 3 5 5 3 4 3 5 

 
ROI 3 -> ROI 2  5 3 3 5 5 3 4 3 5 

    

 

         

   

Links  DATASET 1 DATASET 2 DATASET 3 

    

 x2 x3 x4 x2 x3 x4 x2 x3 x4 

    

 

          

 
 

 
ROI 1 -> ROI 2  46 19 29 38 41 43 40 33 43 

 
ROI 1 -> ROI 3  93 97 99 96 100 99 100 99 100 

 
ROI 2 -> ROI 3  33 19 18 84 69 60 95 91 66 

 
ROI 2 -> ROI 1  9 5 6 9 9 9 5 5 3 

 
ROI 3 -> ROI 1  10 2 6 8 8 8 4 4 3 

 
ROI 3 -> ROI 2  9 2 5 8 8 8 4 4 3 

    

 

         

   

Links  DATASET 1 DATASET 2 DATASET 3 

    

 x2 x3 x4 x2 x3 x4 x2 x3 x4 

    

 

          

 
 

 
ROI 1 -> ROI 2  38 35 43 41 30 44 32 31 36 

 
ROI 1 -> ROI 3  55 50 58 72 46 60 68 54 57 

 
ROI 2 -> ROI 3  94 98 100 100 100 100 100 99 100 

 
ROI 2 -> ROI 1  8 7 3 7 5 6 10 5 5 

 
ROI 3 -> ROI 1  8 7 3 7 4 4 10 5 5 

 
ROI 3 -> ROI 2  8 8 3 7 4 4 10 5 5 

    

 

          
Table 4.3: DTF index (AUC): percentage of true and false positives in each experiment. Bold arrow in network model 

indicates the link with true strength multiplied by factors 2, 3 and 4. 
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Links  DATASET 1 DATASET 2 DATASET 3 

    

 A=B=C=1 A=B=C=1 A=B=C=1 

    

 

    

 
 

 
ROI 1 -> ROI 2  

 

68 

    

60 

    

25 

 

 
ROI 1 -> ROI 3  72 86 84 

 
ROI 2 -> ROI 3  84 100 100 

 
ROI 2 -> ROI 1  7 0 0 

 
ROI 3 -> ROI 1  6 0 0 

 
ROI 3 -> ROI 2  3 0 0 

    

 

         

   

Links  DATASET 1 DATASET 2 DATASET 3 

    

 x2 x3 x4 x2 x3 x4 x2 x3 x4 
 

  

 

         

 

 
ROI 1 -> ROI 2  69 92 90 59 55 62 25 33 35 

 
ROI 1 -> ROI 3  11 8 4 18 8 3 16 8 6 

 
ROI 2 -> ROI 3  51 45 45 96 100 95 97 99 96 

 
ROI 2 -> ROI 1  5 3 3 5 5 3 4 3 5 

 
ROI 3 -> ROI 1  5 3 3 5 5 3 4 3 5 

 
ROI 3 -> ROI 2  5 3 3 5 5 3 4 3 5 

    

 

         

   

Links  DATASET 1 DATASET 2 DATASET 3 

    

 x2 x3 x4 x2 x3 x4 x2 x3 x4 

    

 

          

 
 

 
ROI 1 -> ROI 2  22 4 8 8 8 8 4 4 3 

 
ROI 1 -> ROI 3  82 96 98 93 99 99 94 98 100 

 
ROI 2 -> ROI 3  34 27 30 88 85 69 96 98 85 

 
ROI 2 -> ROI 1  9 5 6 8 8 8 4 4 3 

 
ROI 3 -> ROI 1  10 2 6 8 8 8 4 4 3 

 
ROI 3 -> ROI 2  9 2 5 8 8 8 4 4 3 

    

 

         

   

Links  DATASET 1 DATASET 2 DATASET 3 

    

 x2 x3 x4 x2 x3 x4 x2 x3 x4 

    

 

          

 
 

 
ROI 1 -> ROI 2  34 27 42 18 15 27 11 7 16 

 
ROI 1 -> ROI 3  24 22 14 34 15 13 28 11 19 

 
ROI 2 -> ROI 3  97 100 100 100 100 100 100 100 100 

 
ROI 2 -> ROI 1  8 7 3 7 4 4 10 5 5 

 
ROI 3 -> ROI 1  8 7 3 7 4 4 10 5 5 

 
ROI 3 -> ROI 2  8 8 3 7 4 4 10 5 5 

    

 

          
Table 4.4: PDC index (AUC): percentage of true and false positives in each experiment. Bold arrow in network model 

indicates the link with true strength multiplied by factors 2, 3 and 4. 
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4.1.2.2 Open-loop network 

 

   

Links  DATASET 1 DATASET 2 DATASET 3 

    

 A=B=1 A=B=1 A=B=1 

   

 

          

 
 

 
ROI 1 -> ROI 2  

 

72 

  

97 

  

100 

 

 
ROI 2 -> ROI 3  61 96 100 

 
ROI 1 -> ROI 3  6 5 6 

 
ROI 2 -> ROI 1  2 4 6 

 
ROI 3 -> ROI 1  10 6 5 

 
ROI 3 -> ROI 2  6 3 4 

    

 

         

   

Links  DATASET 1 DATASET 2 DATASET 3 

    

 x2 x3 x4 x2 x3 x4 x2 x3 x4 

   

 

          

 
 

 
ROI 1 -> ROI 2  100 100 100 100 100 100 100 100 100 

 
ROI 2 -> ROI 3  67 68 83 98 98 100 100 100 100 

 
ROI 1 -> ROI 3  4 2 3 3 8 2 7 5 3 

 
ROI 2 -> ROI 1  9 3 1 6 7 5 6 13 9 

 
ROI 3 -> ROI 1  5 2 1 8 0 7 8 5 6 

 
ROI 3 -> ROI 2  4 3 2 4 5 5 2 1 6 

    

 

         

   

Links  DATASET 1 DATASET 2 DATASET 3 

    

 x2 x3 x4 x2 x3 x4 x2 x3 x4 

   

 

          

 
 

 
ROI 1 -> ROI 2  68 82 67 97 95 97 99 100 99 

 
ROI 2 -> ROI 3  100 100 100 100 100 100 100 100 100 

 
ROI 1 -> ROI 3  1 8 6 1 5 4 4 5 7 

 
ROI 2 -> ROI 1  6 5 1 0 4 5 2 4 6 

 
ROI 3 -> ROI 1  5 3 3 3 6 5 6 6 8 

 
ROI 3 -> ROI 2  2 5 5 4 7 8 5 9 8 

    

 

          

 

 

 

 

Table 4.5: GC index: percentage of true and false positives in each experiment. Bold arrow in network model 

indicates the link with true strength multiplied by factors 2, 3 and 4. 
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Links  DATASET 1 DATASET 2 DATASET 3 

    

 A=B=1 A=B=1 A=B=1 

   

 

          

 
 

 
ROI 1 -> ROI 2  

 

48 

  

42 

  

33 

 

 
ROI 2 -> ROI 3  40 93 98 

 
ROI 1 -> ROI 3  8 6 8 

 
ROI 2 -> ROI 1  6 2 5 

 
ROI 3 -> ROI 1  6 1 5 

 
ROI 3 -> ROI 2  5 1 5 

    

 

         

   

Links  DATASET 1 DATASET 2 DATASET 3 

    

 x2 x3 x4 x2 x3 x4 x2 x3 x4 

   

 

          

 
 

 
ROI 1 -> ROI 2  85 87 94 86 89 89 74 85 76 

 
ROI 2 -> ROI 3  43 41 34 91 81 69 91 76 59 

 
ROI 1 -> ROI 3  6 14 17 25 26 39 29 42 31 

 
ROI 2 -> ROI 1  3 3 5 7 8 9 7 7 4 

 
ROI 3 -> ROI 1  2 3 4 6 6 9 7 6 4 

 
ROI 3 -> ROI 2  2 3 4 6 6 9 7 6 4 

    

 

         

   

Links  DATASET 1 DATASET 2 DATASET 3 

    

 x2 x3 x4 x2 x3 x4 x2 x3 x4 

   

 

          

 
 

 
ROI 1 -> ROI 2  29 43 40 43 48 34 29 26 40 

 
ROI 2 -> ROI 3  94 99 100 100 100 100 99 98 100 

 
ROI 1 -> ROI 3  9 20 14 12 22 20 15 15 30 

 
ROI 2 -> ROI 1  2 3 3 5 6 6 6 4 9 

 
ROI 3 -> ROI 1  2 4 4 5 6 6 6 3 9 

 
ROI 3 -> ROI 2  3 3 3 5 6 6 6 3 9 

    

 

          

 

 

 

 

Table 4.6: DTF index (AUC): percentage of true and false positives in each experiment. Bold arrow in network model 

indicates the link with true strength multiplied by factors 2, 3 and 4. 
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Links 
 

 DATASET 1 DATASET 2 DATASET 3 

     

 A=B=1 A=B=1 A=B=1 

   

 

          

 
 

 
ROI 1 -> ROI 2  

 

44 

  

42 

  

28 

 

 
ROI 2 -> ROI 3  42 93 99 

 
ROI 1 -> ROI 3  5 1 5 

 
ROI 2 -> ROI 1  5 1 5 

 
ROI 3 -> ROI 1  6 1 5 

 
ROI 3 -> ROI 2  5 1 5 

     

 

         

   

Links 
 

 DATASET 1 DATASET 2 DATASET 3 

     

 x2 x3 x4 x2 x3 x4 x2 x3 x4 

   

 

          

 
 

 
ROI 1 -> ROI 2  84 88 94 86 88 89 73 84 70 

 
ROI 2 -> ROI 3  47 53 49 98 98 92 98 100 100 

 
ROI 1 -> ROI 3  2 3 4 6 6 9 7 6 4 

 
ROI 2 -> ROI 1  4 3 4 6 6 9 7 6 4 

 
ROI 3 -> ROI 1  2 3 4 6 6 9 7 6 4 

 
ROI 3 -> ROI 2  2 3 4 6 6 9 7 6 4 

     

 

         

   

Links 
 

 DATASET 1 DATASET 2 DATASET 3 

     

 x2 x3 x4 x2 x3 x4 x2 x3 x4 

   

 

          

 
 

 
ROI 1 -> ROI 2  29 44 42 42 47 34 28 26 37 

 
ROI 2 -> ROI 3  96 99 100 100 100 100 100 100 100 

 
ROI 1 -> ROI 3  2 5 3 5 6 6 6 3 9 

 
ROI 2 -> ROI 1  2 3 3 5 6 6 6 3 9 

 
ROI 3 -> ROI 1  2 4 4 5 6 6 6 3 9 

 
ROI 3 -> ROI 2  3 3 4 5 6 6 6 3 9 

     

 

          

 

 

 

 

Table 4.7: PDC index (AUC): percentage of true and false positives in each experiment. Bold arrow in network model 

indicates the link with true strength multiplied by factors 2, 3 and 4. 
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4.1.2.3 Network with feed-back link 

 

   

Links  DATASET 1 DATASET 2 DATASET 3 

    

 A=B=1 A=B=1 A=B=1 
 

   
 

   

 

 
 

 
ROI 1 -> ROI 2  

 

78 

  

98 

  

100 

 

 
ROI 2 -> ROI 3  52 98 100 

 
ROI 2 -> ROI 1  87 100 100 

 
ROI 1 -> ROI 3  2 4 2 

 
ROI 3 -> ROI 1  2 4 7 

 
ROI 3 -> ROI 2  7 2 4 

    

 

         

   

Links  DATASET 1 DATASET 2 DATASET 3 

    
 x2 x3 x4 x2 x3 x4 x2 x3 x4 

 

 

 
ROI 1 -> ROI 2 

 

100 100 100 100 100 100 100 100 100 

 
ROI 2 -> ROI 3  73 65 67 98 98 100 99 100 96 

 
ROI 2 -> ROI 1  91 92 96 100 100 100 100 100 100 

 
ROI 1 -> ROI 3  5 4 5 4 11 14 6 22 48 

 
ROI 3 -> ROI 1  5 5 9 6 10 7 3 9 10 

 
ROI 3 -> ROI 2  6 0 3 5 5 7 4 9 6 

    
 

         

   

Links  DATASET 1 DATASET 2 DATASET 3 

    
 x2 x3 x4 x2 x3 x4 x2 x3 x4 

 

 

 
ROI 1 -> ROI 2 

 

66 57 70 100 100 100 100 100 100 

 
ROI 2 -> ROI 3  100 100 100 100 100 100 100 100 100 

 
ROI 2 -> ROI 1  89 72 64 100 100 98 100 100 100 

 
ROI 1 -> ROI 3  4 5 6 9 5 10 9 15 13 

 
ROI 3 -> ROI 1  6 1 1 5 6 4 0 3 10 

 
ROI 3 -> ROI 2  4 3 2 4 2 1 6 2 10 

    
 

         

   

Links  DATASET 1 DATASET 2 DATASET 3 

    
 x2 x3 x4 x2 x3 x4 x2 x3 x4 

 

 

 
ROI 1 -> ROI 2 

 

79 95 96 100 100 100 100 100 100 

 
ROI 2 -> ROI 3  41 34 37 89 80 53 96 88 67 

 
ROI 2 -> ROI 1  100 100 100 100 100 100 100 100 100 

 
ROI 1 -> ROI 3  0 8 3 4 5 2 5 10 8 

 
ROI 3 -> ROI 1  5 5 2 3 4 2 3 7 7 

 
ROI 3 -> ROI 2  2 5 6 4 2 5 3 5 4 

    
 

          
Table 4.8: GC index: percentage of true and false positives in each experiment. Bold arrow in network model indicates 

the link with true strength multiplied by factors 2, 3 and 4. 
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Links  DATASET 1 DATASET 2 DATASET 3 

    

 A=B=1 A=B=1 A=B=1 
 

   
 

   

 

 
 

 
ROI 1 -> ROI 2  

 

32 

  

35 

  

22 

 

 
ROI 2 -> ROI 3  44 90 94 

 
ROI 2 -> ROI 1  53 83 75 

 
ROI 1 -> ROI 3  4 16 7 

 
ROI 3 -> ROI 1  2 9 6 

 
ROI 3 -> ROI 2  2 9 6 

    

 

         

   

Links  DATASET 1 DATASET 2 DATASET 3 

    

 x2 x3 x4 x2 x3 x4 x2 x3 x4 
 

 

 
ROI 1 -> ROI 2 

 

87 99 90 74 76 56 56 69 67 

 
ROI 2 -> ROI 3  45 33 32 75 36 11 46 8 7 

 
ROI 2 -> ROI 1  35 39 39 76 49 24 55 19 10 

 
ROI 1 -> ROI 3  12 17 28 16 18 9 12 8 7 

 
ROI 3 -> ROI 1  6 4 3 3 3 2 7 6 7 

 
ROI 3 -> ROI 2  6 4 3 3 3 2 7 6 7 

    
 

         

   

Links  DATASET 1 DATASET 2 DATASET 3 

    
 x2 x3 x4 x2 x3 x4 x2 x3 x4 

 

 

 
ROI 1 -> ROI 2 

 

32 25 40 30 27 43 20 30 38 

 
ROI 2 -> ROI 3  92 100 100 100 100 100 96 98 99 

 
ROI 2 -> ROI 1  43 44 41 70 71 78 79 81 90 

 
ROI 1 -> ROI 3  7 6 13 8 11 17 4 8 18 

 
ROI 3 -> ROI 1  7 2 4 6 8 7 3 6 8 

 
ROI 3 -> ROI 2  6 2 4 6 8 7 3 6 8 

    
 

         

   

Links  DATASET 1 DATASET 2 DATASET 3 

    
 x2 x3 x4 x2 x3 x4 x2 x3 x4 

 

 

 
ROI 1 -> ROI 2 

 

27 33 27 36 34 21 23 7 19 

 
ROI 2 -> ROI 3  28 14 14 81 69 35 69 46 21 

 
ROI 2 -> ROI 1  78 70 63 93 83 78 87 88 86 

 
ROI 1 -> ROI 3  6 4 7 9 6 7 7 5 10 

 
ROI 3 -> ROI 1  6 2 6 6 3 5 6 4 9 

 
ROI 3 -> ROI 2  7 2 7 6 3 5 6 4 9 

    
 

          
Table 4.9: DTF index (AUC): percentage of true and false positives in each experiment. Bold arrow in network model 

indicates the link with true strength multiplied by factors 2, 3 and 4. 
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Links  DATASET 1 DATASET 2 DATASET 3 

    

 A=B=1 A=B=1 A=B=1 
 

   
 

   

 

 
 

 
ROI 1 -> ROI 2  

 

34 

  

41 

  

25 

 

 
ROI 2 -> ROI 3  33 62 38 

 
ROI 2 -> ROI 1  36 29 8 

 
ROI 1 -> ROI 3  3 9 6 

 
ROI 3 -> ROI 1  2 9 6 

 
ROI 3 -> ROI 2  2 9 6 

    

 

         

   

Links  DATASET 1 DATASET 2 DATASET 3 

    

 x2 x3 x4 x2 x3 x4 x2 x3 x4 
 

 

 
ROI 1 -> ROI 2 

 

89 97 91 70 62 26 50 22 10 

 
ROI 2 -> ROI 3  36 32 22 48 29 14 27 13 7 

 
ROI 2 -> ROI 1  22 23 21 14 4 2 7 6 7 

 
ROI 1 -> ROI 3  6 4 3 3 3 2 7 6 7 

 
ROI 3 -> ROI 1  6 4 3 3 3 2 7 6 7 

 
ROI 3 -> ROI 2  6 4 3 3 3 2 7 6 7 

    
 

         

   

Links  DATASET 1 DATASET 2 DATASET 3 

    

 x2 x3 x4 x2 x3 x4 x2 x3 x4 
 

 

 
ROI 1 -> ROI 2 

 

30 22 41 29 29 51 22 26 41 

 
ROI 2 -> ROI 3  89 100 100 96 100 100 84 100 99 

 
ROI 2 -> ROI 1  17 5 5 7 8 7 3 6 8 

 
ROI 1 -> ROI 3  6 2 4 6 8 7 3 6 8 

 
ROI 3 -> ROI 1  7 2 4 6 8 7 3 6 8 

 
ROI 3 -> ROI 2  6 2 4 6 8 7 3 6 8 

    

 

         

   

Links  DATASET 1 DATASET 2 DATASET 3 

    
 x2 x3 x4 x2 x3 x4 x2 x3 x4 

 

 

 
ROI 1 -> ROI 2 

 

31 32 27 32 33 25 23 9 10 

 
ROI 2 -> ROI 3  10 8 6 13 8 5 9 4 9 

 
ROI 2 -> ROI 1  69 62 50 38 29 15 12 4 11 

 
ROI 1 -> ROI 3  6 2 6 6 3 5 6 4 9 

 
ROI 3 -> ROI 1  6 2 6 6 3 5 6 4 9 

 
ROI 3 -> ROI 2  7 2 6 6 3 5 6 4 9 

    
 

          
Table 4.10: PDC index (AUC): percentage of true and false positives in each experiment. Bold arrow in network 

model indicates the link with true strength multiplied by factors 2, 3 and 4. 
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4.1.2.4 Cycle network 

 

   

Links DATASET 1 DATASET 2 DATASET 3 

    
A=B=1 A=B=1 A=B=1 

        
  

ROI 1 -> ROI 2 

 

78 

  

95 

  

99 

 

 
ROI 2 -> ROI 3 68 97 100 

 
ROI 3 -> ROI 1 91 99 100 

 
ROI 1 -> ROI 3 6 7 5 

 
ROI 3 -> ROI 2 5 3 4 

 
ROI 2 -> ROI 1 0 5 2 

             

   

Links DATASET 1 DATASET 2 DATASET 3 

    
x2 x3 x4 x2 x3 x4 x2 x3 x4 

 

            

 

 
 

 
ROI 1 -> ROI 2 100 100 100 100 100 100 100 100 100 

 
ROI 2 -> ROI 3 77 77 73 97 98 100 100 100 100 

 
ROI 3 -> ROI 1 86 95 91 99 100 100 100 100 100 

 
ROI 1 -> ROI 3 6 7 5 6 2 6 6 8 16 

 
ROI 3 -> ROI 2 3 4 4 6 6 3 2 3 7 

 
ROI 2 -> ROI 1 7 4 5 7 3 4 5 13 23 

             

   

Links DATASET 1 DATASET 2 DATASET 3 

    
x2 x3 x4 x2 x3 x4 x2 x3 x4 

 

 

 
ROI 1 -> ROI 2 62 73 69 97 97 99 100 100 100 

 
ROI 2 -> ROI 3 100 100 100 100 100 100 100 100 100 

 
ROI 3 -> ROI 1 89 93 94 100 100 100 100 100 100 

 
ROI 1 -> ROI 3 7 5 3 7 8 10 7 14 16 

 
ROI 3 -> ROI 2 3 1 3 5 7 4 5 3 11 

 
ROI 2 -> ROI 1 3 2 5 5 5 6 4 9 5 

             

   

Links DATASET 1 DATASET 2 DATASET 3 

    
x2 x3 x4 x2 x3 x4 x2 x3 x4 

 

 

 
ROI 1 -> ROI 2 87 84 97 99 99 100 100 100 100 

 
ROI 2 -> ROI 3 67 64 68 99 99 100 100 100 100 

 
ROI 3 -> ROI 1 100 100 100 100 100 100 100 100 100 

 
ROI 1 -> ROI 3 16 21 32 8 9 7 6 15 21 

 
ROI 3 -> ROI 2 6 7 5 2 1 4 4 3 9 

 
ROI 2 -> ROI 1 3 6 3 3 7 6 7 10 16 

              
Table 4.11: GC index: percentage of true and false positives in each experiment. Bold arrow in network model 

indicates the link with true strength multiplied by factors 2, 3 and 4. 
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Links DATASET 1 DATASET 2 DATASET 3 

    
A=B=1 A=B=1 A=B=1 

        
  

ROI 1 -> ROI 2 

 

41 

  

43 

  

26 

 

 
ROI 2 -> ROI 3 48 93 92 

 
ROI 3 -> ROI 1 41 21 3 

 
ROI 1 -> ROI 3 3 10 3 

 
ROI 3 -> ROI 2 4 8 2 

 
ROI 2 -> ROI 1 3 8 2 

             

   

Links DATASET 1 DATASET 2 DATASET 3 

    
x2 x3 x4 x2 x3 x4 x2 x3 x4 

 

            

 

 
 

 
ROI 1 -> ROI 2 90 90 86 67 76 67 68 60 60 

 
ROI 2 -> ROI 3 43 40 28 85 67 54 84 56 37 

 
ROI 3 -> ROI 1 22 22 11 9 5 7 10 5 10 

 
ROI 1 -> ROI 3 9 10 11 13 17 22 17 23 25 

 
ROI 3 -> ROI 2 3 4 6 5 4 6 9 4 10 

 
ROI 2 -> ROI 1 3 3 6 6 4 6 9 4 10 

             

   

Links DATASET 1 DATASET 2 DATASET 3 

    
x2 x3 x4 x2 x3 x4 x2 x3 x4 

 

 

 
ROI 1 -> ROI 2 24 28 26 37 22 20 20 24 17 

 
ROI 2 -> ROI 3 93 97 100 98 99 100 99 99 100 

 
ROI 3 -> ROI 1 21 27 29 10 8 6 9 10 2 

 
ROI 1 -> ROI 3 4 6 6 13 6 7 10 11 7 

 
ROI 3 -> ROI 2 3 3 4 6 3 3 9 9 2 

 
ROI 2 -> ROI 1 8 11 23 10 23 59 10 32 69 

             

   

Links DATASET 1 DATASET 2 DATASET 3 

    
x2 x3 x4 x2 x3 x4 x2 x3 x4 

 

 

 
ROI 1 -> ROI 2 46 43 33 26 23 17 23 12 18 

 
ROI 2 -> ROI 3 35 34 22 80 71 55 83 82 65 

 
ROI 3 -> ROI 1 83 95 98 38 59 58 20 31 36 

 
ROI 1 -> ROI 3 9 13 14 2 5 2 5 5 6 

 
ROI 3 -> ROI 2 4 9 6 1 5 2 4 4 6 

 
ROI 2 -> ROI 1 4 8 6 4 6 4 6 8 12 

              
Table 4.12: DTF index (AUC): percentage of true and false positives in each experiment. Bold arrow in network model 

indicates the link with true strength multiplied by factors 2, 3 and 4. 
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Links DATASET 1 DATASET 2 DATASET 3 

    
A=B=1 A=B=1 A=B=1 

        
  

ROI 1 -> ROI 2 

 

45 

  

41 

  

22 

 

 
ROI 2 -> ROI 3 51 93 96 

 
ROI 3 -> ROI 1 40 21 4 

 
ROI 1 -> ROI 3 4 9 2 

 
ROI 3 -> ROI 2 3 8 2 

 
ROI 2 -> ROI 1 3 8 2 

             

   

Links DATASET 1 DATASET 2 DATASET 3 

    
x2 x3 x4 x2 x3 x4 x2 x3 x4 

 

            

 

 
 

 
ROI 1 -> ROI 2 93 92 92 75 80 67 66 49 42 

 
ROI 2 -> ROI 3 52 48 47 92 93 95 99 98 95 

 
ROI 3 -> ROI 1 26 21 11 11 9 7 11 5 10 

 
ROI 1 -> ROI 3 3 3 6 5 4 6 9 4 10 

 
ROI 3 -> ROI 2 3 3 6 5 4 6 9 4 10 

 
ROI 2 -> ROI 1 3 3 7 5 4 6 9 4 10 

             

   

Links DATASET 1 DATASET 2 DATASET 3 

    
x2 x3 x4 x2 x3 x4 x2 x3 x4 

 

 

 
ROI 1 -> ROI 2 23 33 26 37 24 29 18 22 16 

 
ROI 2 -> ROI 3 92 100 100 99 99 100 100 100 100 

 
ROI 3 -> ROI 1 24 32 31 12 8 10 9 10 3 

 
ROI 1 -> ROI 3 3 3 4 6 3 3 9 9 2 

 
ROI 3 -> ROI 2 3 3 4 6 3 3 9 9 2 

 
ROI 2 -> ROI 1 3 3 4 6 3 3 9 9 2 

             

   

Links DATASET 1 DATASET 2 DATASET 3 

    
x2 x3 x4 x2 x3 x4 x2 x3 x4 

 

 

 
ROI 1 -> ROI 2 49 53 46 29 27 24 21 14 19 

 
ROI 2 -> ROI 3 44 35 25 86 86 77 91 96 91 

 
ROI 3 -> ROI 1 85 95 99 46 61 67 23 42 46 

 
ROI 1 -> ROI 3 9 11 13 1 5 2 4 5 6 

 
ROI 3 -> ROI 2 4 8 5 1 5 2 4 4 6 

 
ROI 2 -> ROI 1 4 8 5 1 5 2 4 4 6 

              
Table 4.13: PDC index (AUC): percentage of true and false positives in each experiment. Bold arrow in network model 

indicates the link with true strength multiplied by factors 2, 3 and 4. 
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Observing the tables above, it is interesting to note that as regard GC index, in all networks 

percentage of identified connections is larger in links where the connection is true. This observation 

is true again as regard DTF and PDC indices for open-loop network, while for the other three 

networks sometimes it occurs that percentage of identified true connections is similar (or sometimes 

smaller) to percentage of identified false connections.  

Another observation that can be done is the following: in each condition the strongest link clearly 

emerged, since it generally has the highest score. This is always true for GC index for all networks, 

while as regard DTF and PDC it does not always occur. Finally, for all networks and for all indices, 

a significant difference appears within experiments, where false negatives percentage relative to 

predominant links is smaller than false negatives percentage of those realizations characterized by 

equal connection strengths (for example in Table 4.2 we note that percentage of false negatives in 

basal condition for ROI 1  ROI 2 is 37% while when A increases percentage of false negatives is 

1% or 0%. This occurs also for the other significant connections). 

Specificity and sensitivity are summarized in Tables 4.14, 4.15, 4.16 and 4.17. For all networks 

analyzed in this work, value of specificity is always greater than 90% for all indices, while value of 

sensitivity is greater than 90% only for GC index. Great value of specificity for each index respect 

to sensitivity suggests the methods are highly conservative. Globally, probability of error I is 

around 6% and there are high false negative rates for  DTF and PDC indices. 
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(a) GC outcomes 

   

        

  
Positive Condition 

 
Negative Condition 

   

        Positive Outcomes 
 

7574 
 

456 
 

False Positive Rate (α) 5% 

        Negative Outcomes 
 

1426 
 

8544 
 

False Negative Rate (β) 16% 

        

  
Sensitivity 

 
Specificity 

   

  
84% 

 
95% 

   

        

        

        

  
(b) DTF outcomes 

   

        

  
Positive Condition 

 
Negative Condition 

   

        Positive Outcomes 
 

6354 
 

476 
 

False Positive Rate (α) 5% 

        Negative Outcomes 
 

2646 
 

8524 
 

False Negative Rate (β) 29% 

        

  
Sensitivity 

 
Specificity 

   

  
71% 

 
95% 

   

        

        

      

  
(c) PDC outcomes 

   

        

  
Positive Condition 

 
Negative Condition 

   

        Positive Outcomes 
 

4819 
 

443 
 

False Positive Rate (α) 5% 

        Negative Outcomes 
 

4181 
 

8557 
 

False Negative Rate (β) 46% 

        

  
Sensitivity 

 
Specificity 

   

  
54% 

 
95% 
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Table 4.14: Statistical measures of the performances of GC (a), DTF (b) and PDC (c) throughout the experimental conditions, 

for feed-forward network. 



 

 
 

 
(a) GC outcomes 

   

        

  
Positive Condition 

 
Negative Condition 

   

        Positive Outcomes 
 

3944 
 

405 
 

False Positive Rate (α) 5% 

        Negative Outcomes 
 

256 
 

7995 
 

False Negative Rate (β) 6% 

        

  
Sensitivity 

 
Specificity 

   

  
94% 

 
95% 

   

        

        

        

  
(b) DTF outcomes 

   

        

  
Positive Condition 

 
Negative Condition 

   

        Positive Outcomes 
 

2926 
 

724 
 

False Positive Rate (α) 9% 

        Negative Outcomes 
 

1274 
 

7676 
 

False Negative Rate (β) 30% 

        

  
Sensitivity 

 
Specificity 

   

  
70% 

 
91% 

   

        

        

      

  
(c) PDC outcomes 

   

        

  
Positive Condition 

 
Negative Condition 

   

        Positive Outcomes 
 

3063 
 

413 
 

False Positive Rate (α) 5% 

        Negative Outcomes 
 

1137 
 

7987 
 

False Negative Rate (β) 27% 

        

  
Sensitivity 

 
Specificity 

   

  
73% 

 
95% 

   

        

 

 

Table 4.15: Statistical measures of the performances of GC (a), DTF (b) and PDC (c) throughout the experimental 

conditions, for open-loop network. 
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(a) GC outcomes 

   

        

  
Positive Condition 

 
Negative Condition 

   

        Positive Outcomes 
 

8259 
 

527 
 

False Positive Rate (α) 6% 

        Negative Outcomes 
 

741 
 

8473 
 

False Negative Rate (β) 8% 

        

  
Sensitivity 

 
Specificity 

   

  
92% 

 
94% 

   

        

        

      

  
(b) DTF outcomes 

   

        

  
Positive Condition 

 
Negative Condition 

   

        Positive Outcomes 
 

4938 
 

620 
 

False Positive Rate (α) 7% 

        Negative Outcomes 
 

4062 
 

8380 
 

False Negative Rate (β) 45% 

        

  
Sensitivity 

 
Specificity 

   

  
55% 

 
93% 

   

        

        

      

  
(c) PDC outcomes 

   

        

  
Positive Condition 

 
Negative Condition 

   

        Positive Outcomes 
 

2966 
 

468 
 

False Positive Rate (α) 5% 

        Negative Outcomes 
 

6034 
 

8532 
 

False Negative Rate (β) 67% 

        

  
Sensitivity 

 
Specificity 

   

  
33% 

 
95% 

   

         

 

 

 

Table 4.16: Statistical measures of the performances of GC (a), DTF (b) and PDC (c) throughout the experimental 

conditions, for network with feed-back link. 
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(a) GC outcomes 

   

        

  
Positive Condition 

 
Negative Condition 

   

        Positive Outcomes 
 

8556 
 

608 
 

False Positive Rate (α) 7% 

        Negative Outcomes 
 

444 
 

8392 
 

False Negative Rate (β) 5% 

        

  
Sensitivity 

 
Specificity 

   

  
95% 

 
93% 

   

        

        

      

  
(b) DTF outcomes 

   

        

  
Positive Condition 

 
Negative Condition 

   

        Positive Outcomes 
 

4178 
 

809 
 

False Positive Rate (α) 9% 

        Negative Outcomes 
 

4822 
 

8191 
 

False Negative Rate (β) 53% 

        

  
Sensitivity 

 
Specificity 

   

  
46% 

 
91% 

   

        

        

      

  
(c) PDC outcomes 

   

        

  
Positive Condition 

 
Negative Condition 

   

        Positive Outcomes 
 

4633 
 

452 
 

False Positive Rate (α) 5% 

        Negative Outcomes 
 

4367 
 

8548 
 

False Negative Rate (β) 48% 

        

  
Sensitivity 

 
Specificity 

   

  
51% 

 
95% 

   

         

 

 

 

 

Table 4.17: Statistical measures of the performances of GC (a), DTF (b) and PDC (c) throughout the experimental 

conditions, for cycle network. 
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4.1.3 Strength estimation 

 

Below, for all experiments by each index are reported estimates of strength connections for all 

networks analyzed in this work. As regard GC and SEM index, estimates of strength connections 

are obtained calculating average of strength estimates, while as regard DTF and PDC index 

estimates of strength connections are obtained via AUC of the main function in the frequency 

domain. Concerning this, in Figs. 4.1, 4.2 and 4.3, are shown, as an example, DTF and PDC index 

as function of frequency for three networks; in this figures, for simplicity, are considered only basal 

condition (A=B=C=1) and the experiments with A=C=1 and B=2.  

Since estimates and true weights are measured with different scales, estimates are analyzed in terms 

of their correlation with true value, so as to assess the ability of each index to reproduce strength 

proportionality within networks. 

 

 

 

a) 

c) d) 

b) 

Fig. 4.1: DTF and PDC index as function of frequency for open-loop network. Panels a)  and c) show basal condition (A=B=1), while the 

other two panels, b) and d),  are relative to the experiment with A=1 and B=2.  Yellow and red bands represent 100 realizations and 

their threshold respectively, while blue line within yellow and red bands are their mean functions.  

 

c) d) 
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a) b) 

c) d) 

Fig. 4.2: DTF and PDC index as function of frequency for network with feed-back link. Panels a)  and c) show basal condition 

(A=B=C=1), while the other two panels, b) and d),  are relative to the experiment with A=C=1 and B=2.  Yellow and red bands represent 

100 realizations and their threshold respectively, while blue line within yellow and red bands are their mean functions.  
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a) b) 

c) d) 

Fig. 4.3: DTF and PDC index as function of frequency for cycle network. Panels a)  and c) show basal condition (A=B=C=1), while the 

other two panels, b) and d),  are relative to the experiment with A=C=1 and B=2.  Yellow and red bands represent 100 realizations and 

their threshold respectively, while blue line within yellow and red bands are their mean functions.  

 

71 



In Tables 4.18, 4.19, 4.20 and 4.21 are reported estimates of strength true connections for all 

experiments by each index (GC, DTF, PDC and SEM) for feed-forward network. In Tables 4.22, 

4.23, 4.24 and 4.25 are reported estimates of strength true connections for all experiments by each 

index (GC, DTF, PDC and SEM) for open-loop network. In Tables 4.26, 4.27, 4.28 are reported 

estimates of strength true connections for all experiments by each index (GC, DTF, PDC) for 

network with feed-back link. In this case SEM method cannot be applied because it cannot define a 

model for this network. In Tables 4.29, 4.30, 4.31 and 4.32 are reported estimates of strength true 

connections for all experiments by each index (GC, DTF, PDC and SEM) for cycle network.  
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4.1.3.1 Feed-forward network 

 

 

 

  

Links  DATASET 1 DATASET 2 DATASET 3 

    

 A=B=C=1 A=B=C=1 A=B=C=1 

    

 

         

 

 
 

 
ROI 1 -> ROI 2  

 
0,03 

  
0,07 

  
0,08 

 

 
ROI 1 -> ROI 3  

 
0,02 

  
0,05 

  
0,06 

 

 
ROI 2 -> ROI 3  

 
0,03 

  
0,07 

  
0,09 

 

  

 

         
 

  

Links  DATASET 1 DATASET 2 DATASET 3 

    

 x2 x3 x4 x2 x3 x4 x2 x3 x4 

   

 

         

 

 
ROI 1 -> ROI 2  0,10 0,15 0,24 0,16 0,27 0,36 0,20 0,31 0,40 

 
ROI 1 -> ROI 3  0,01 0,01 0,01 0,03 0,03 0,02 0,05 0,04 0,03 

 
ROI 2 -> ROI 3  0,03 0,03 0,03 0,03 0,04 0,04 0,10 0,11 0,12 

  

 

         
 

  

Links  DATASET 1 DATASET 2 DATASET 3 

    

 x2 x3 x4 x2 x3 x4 x2 x3 x4 

   

 

         

 

 
ROI 1 -> ROI 2  0,03 0,02 0,02 0,05 0,04 0,04 0,07 0,05 0,04 

 
ROI 1 -> ROI 3  0,05 0,11 0,16 0,12 0,20 0,27 0,17 0,26 0,33 

 
ROI 2 -> ROI 3  0,02 0,02 0,02 0,06 0,06 0,06 0,08 0,09 0,07 

  

 

         
 

  

Links  DATASET 1 DATASET 2 DATASET 3 

    

 x2 x3 x4 x2 x3 x4 x2 x3 x4 

   

 

         

 

 
ROI 1 -> ROI 2  0,03 0,03 0,03 0,06 0,06 0,06 0,08 0,07 0,07 

 
ROI 1 -> ROI 3  0,01 0,01 0,01 0,04 0,04 0,04 0,06 0,06 0,06 

 
ROI 2 -> ROI 3  0,08 0,14 0,22 0,17 0,28 0,37 0,22 0,34 0,42 

  

 

          

 

 

 

Table 4.18: GC index: average strength estimates in each experiment. Bold arrow in network model indicates the link 

with true strength multiplied by factors 2, 3 and 4. 
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Links  DATASET 1 DATASET 2 DATASET 3 

    

 A=B=C=1 A=B=C=1 A=B=C=1 

    

 

         

 

 
 

 
ROI 1 -> ROI 2  

 
2,45 

  
4,45 

  
5,12 

 

 
ROI 1 -> ROI 3  

 
3,18 

  
6,28 

  
8,16 

 

 
ROI 2 -> ROI 3  

 
2,93 

  
6,62 

  
8,17 

 

  

 

         
 

  

Links  DATASET 1 DATASET 2 DATASET 3 

    

 x2 x3 x4 x2 x3 x4 x2 x3 x4 

   

 

         

 

 
ROI 1 -> ROI 2  5,32 6,61 8,26 7,60 9,60 10,55 8,99 10,61 11,12 

 
ROI 1 -> ROI 3  3,44 3,68 4,47 7,08 7,88 8,66 9,66 10,00 9,98 

 
ROI 2 -> ROI 3  3,68 3,93 4,88 7,25 8,29 9,14 8,57 9,26 10,15 

  

 

         
 

  

Links  DATASET 1 DATASET 2 DATASET 3 

    

 x2 x3 x4 x2 x3 x4 x2 x3 x4 

   

 

         

 

 
ROI 1 -> ROI 2  2,26 2,24 2,44 4,07 3,92 4,23 5,38 5,05 4,98 

 
ROI 1 -> ROI 3  4,82 7,70 9,53 9,52 11,94 13,87 11,75 14,19 15,98 

 
ROI 2 -> ROI 3  2,41 1,96 1,79 5,57 4,27 3,63 6,61 5,64 4,21 

  

 

         
 

  

Links  DATASET 1 DATASET 2 DATASET 3 

    

 x2 x3 x4 x2 x3 x4 x2 x3 x4 

   

 

         

 

 
ROI 1 -> ROI 2  2,62 2,47 2,46 4,42 3,84 4,40 4,84 4,78 4,95 

 
ROI 1 -> ROI 3  2,74 2,53 2,43 5,76 4,70 4,97 7,30 6,47 6,01 

 
ROI 2 -> ROI 3  6,41 9,22 11,09 11,22 14,07 14,90 12,91 15,07 16,01 

  

 

          

 

  

Table 4.19: DTF index: strength estimates computed via AUC of the mean function in the frequency domain for each experiment. 
Bold arrow in network model indicates the link with true strength multiplied by factors 2, 3 and 4. 
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Links  DATASET 1 DATASET 2 DATASET 3 

    

 A=B=C=1 A=B=C=1 A=B=C=1 

    

 

         

 

 
 

 
ROI 1 -> ROI 2  

 
2,18 

  
3,24 

  
3,19 

 

 
ROI 1 -> ROI 3  

 
2,64 

  
5,05 

  
6,94 

 

 
ROI 2 -> ROI 3  

 
3,14 

  
7,78 

  
9,97 

 

  

 

         
 

  

Links  DATASET 1 DATASET 2 DATASET 3 

    

 x2 x3 x4 x2 x3 x4 x2 x3 x4 

   

 

         

 

 
ROI 1 -> ROI 2  4,86 6,18 7,85 6,22 8,25 9,24 6,50 8,44 9,00 

 
ROI 1 -> ROI 3  2,08 1,62 1,50 3,86 3,39 3,26 6,10 4,82 4,54 

 
ROI 2 -> ROI 3  3,94 4,30 5,63 8,92 10,75 12,40 11,44 13,24 14,80 

  

 

         
 

  

Links  DATASET 1 DATASET 2 DATASET 3 

    

 x2 x3 x4 x2 x3 x4 x2 x3 x4 

   

 

         

 

 
ROI 1 -> ROI 2  1,79 1,44 1,43 2,00 1,50 1,39 2,04 1,43 1,18 

 
ROI 1 -> ROI 3  4,40 7,56 9,56 9,83 12,68 14,79 12,46 15,78 17,47 

 
ROI 2 -> ROI 3  2,77 2,42 2,29 7,07 6,08 5,46 9,08 8,42 6,77 

  

 

         
 

  

Links  DATASET 1 DATASET 2 DATASET 3 

    

 x2 x3 x4 x2 x3 x4 x2 x3 x4 

   

 

         

 

 
ROI 1 -> ROI 2  2,43 2,25 2,39 3,32 3,11 3,62 3,17 3,44 3,74 

 
ROI 1 -> ROI 3  2,00 1,75 1,35 4,35 3,16 2,82 6,18 4,74 3,76 

 
ROI 2 -> ROI 3  6,99 9,99 12,17 13,26 16,16 17,48 15,96 18,46 19,30 

  

 

          

  

Table 4.20: PDC index: strength estimates computed via AUC of the mean function in the frequency domain for each experiment. 
Bold arrow in network model indicates the link with true strength multiplied by factors 2, 3 and 4. 
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Links  DATASET 1 DATASET 2 DATASET 3 

    

 A=B=C=1 A=B=C=1 A=B=C=1 

    

 

         

 

 
 

 
ROI 1 -> ROI 2  

 
0,16 

  
0,21 

  
0,23 

 

 
ROI 1 -> ROI 3  

 
0,10 

  
0,15 

  
0,18 

 

 
ROI 2 -> ROI 3  

 
0,10 

  
0,08 

  
0,07 

 

  

 

         
 

  

Links  DATASET 1 DATASET 2 DATASET 3 

    

 x2 x3 x4 x2 x3 x4 x2 x3 x4 

   

 

         

 

 
ROI 1 -> ROI 2  0,29 0,36 0,42 0,21 0,36 0,45 0,23 0,39 0,50 

 
ROI 1 -> ROI 3  0,09 0,07 0,05 0,15 0,14 0,12 0,18 0,18 0,17 

 
ROI 2 -> ROI 3  0,14 0,18 0,23 0,08 0,13 0,20 0,07 0,12 0,19 

  

 

         
 

  

Links  DATASET 1 DATASET 2 DATASET 3 

    

 x2 x3 x4 x2 x3 x4 x2 x3 x4 

   

 

         

 

 
ROI 1 -> ROI 2  0,16 0,17 0,17 0,21 0,22 0,22 0,23 0,22 0,23 

 
ROI 1 -> ROI 3  0,18 0,26 0,32 0,15 0,26 0,35 0,18 0,31 0,42 

 
ROI 2 -> ROI 3  0,11 0,13 0,15 0,08 0,10 0,12 0,07 0,09 0,10 

  

 

         
 

  

Links  DATASET 1 DATASET 2 DATASET 3 

    

 x2 x3 x4 x2 x3 x4 x2 x3 x4 

   

 

         

 

 
ROI 1 -> ROI 2  0,16 0,16 0,16 0,21 0,20 0,21 0,23 0,23 0,22 

 
ROI 1 -> ROI 3  0,09 0,09 0,08 0,15 0,15 0,15 0,18 0,19 0,19 

 
ROI 2 -> ROI 3  0,15 0,19 0,24 0,08 0,12 0,15 0,07 0,09 0,10 

  

 

          

 

 

 

 

Table 4.21:  SEM index: average strength estimates in each experiment. Bold arrow in network model indicates the link 

with true strength multiplied by factors 2, 3 and 4. 
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4.1.3.2 Open-loop network 

 

 

 

   

Links  DATASET 1 DATASET 2 DATASET 3 
 

   

 A=B=1 A=B=1 A=B=1 

    

 

         

 

 
 

 

 
ROI 1 -> ROI 2 

 

 
0,03 

  
0,06 

  
0,09 

 

 
ROI 2 -> ROI 3  

 
0,02 

  
0,06 

  
0,09 

 

  

 

         

  

 

         
 

  

Links  DATASET 1 DATASET 2 DATASET 3 

    

 x2 x3 x4 x2 x3 x4 x2 x3 x4 

 

 

 
 

ROI 1 -> ROI 2 

 

0,08 0,16 0,24 0,17 0,27 0,36 0,22 0,32 0,40 

 
ROI 2 -> ROI 3  0,02 0,03 0,04 0,07 0,08 0,09 0,10 0,10 0,12 

  

 

         

  

 

         
 

  

Links  DATASET 1 DATASET 2 DATASET 3 

    

 x2 x3 x4 x2 x3 x4 x2 x3 x4 

 

 

 
 

ROI 1 -> ROI 2 

 

0,03 0,03 0,03 0,07 0,06 0,07 0,09 0,09 0,09 

 
ROI 2 -> ROI 3  0,08 0,15 0,22 0,17 0,28 0,37 0,23 0,34 0,43 

  

 

         

  

 

          

 

 

  

Table 4.22: GC index: average strength estimates in each experiment. Bold arrow in network model indicates the link 

with true strength multiplied by factors 2, 3 and 4. 
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Links  DATASET 1 DATASET 2 DATASET 3 
 

   

 A=B=1 A=B=1 A=B=1 

    

 

         

 

 
 

 

 
ROI 1 -> ROI 2 

 

 
2,28 

  
4,00 

  
5,09 

 

 
ROI 2 -> ROI 3  

 
3,22 

  
7,45 

  
9,90 

 

  

 

         

  

 

         
 

  

Links  DATASET 1 DATASET 2 DATASET 3 

    

 x2 x3 x4 x2 x3 x4 x2 x3 x4 

 

 

 
 

ROI 1 -> ROI 2 

 

4,51 6,90 8,21 7,85 9,43 10,37 8,99 10,84 11,22 

 
ROI 2 -> ROI 3  3,41 4,50 5,52 8,21 9,07 9,53 10,27 10,45 11,59 

  

 

         

  

 

         
 

  

Links  DATASET 1 DATASET 2 DATASET 3 

    

 x2 x3 x4 x2 x3 x4 x2 x3 x4 

 

 

 
 

ROI 1 -> ROI 2 

 

2,50 2,48 2,56 4,28 4,16 4,03 5,12 5,20 5,10 

 
ROI 2 -> ROI 3  6,99 9,91 11,54 12,55 15,07 16,60 15,03 16,95 17,80 

  

 

         

  

 

          

  

 

 

 

 

 

 

Table 4.23: DTF index: strength estimates computed via AUC of the mean function in the frequency domain for each experiment. 
Bold arrow in network model indicates the link with true strength multiplied by factors 2, 3 and 4. 
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Links  DATASET 1 DATASET 2 DATASET 3 
 

   

 A=B=1 A=B=1 A=B=1 

    

 

         

 

 
 

 

 
ROI 1 -> ROI 2 

 

 
2,24 

  
3,85 

  
4,82 

 

 
ROI 2 -> ROI 3  

 
3,27 

  
7,79 

  
10,61 

 

  

 

         

  

 

         
 

  

Links  DATASET 1 DATASET 2 DATASET 3 

    

 x2 x3 x4 x2 x3 x4 x2 x3 x4 

 

 

 
 

ROI 1 -> ROI 2 

 

4,43 6,72 8,07 7,55 9,10 9,99 8,57 10,45 10,67 

 
ROI 2 -> ROI 3  3,50 4,85 6,08 9,31 10,93 12,13 12,00 13,58 15,75 

  

 

         

  

 

         
 

  

Links  DATASET 1 DATASET 2 DATASET 3 

    

 x2 x3 x4 x2 x3 x4 x2 x3 x4 

 

 

 
 

ROI 1 -> ROI 2 

 

2,45 2,43 2,52 4,13 4,07 3,97 4,88 5,03 4,95 

 
ROI 2 -> ROI 3  7,17 10,41 12,19 13,54 16,51 18,15 16,72 19,11 20,11 

  

 

         

  

 

          

 

 

 

 

 

 

 

Table 4.24: PDC index: strength estimates computed via AUC of the mean function in the frequency domain for each experiment. 
Bold arrow in network model indicates the link with true strength multiplied by factors 2, 3 and 4. 
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Links DATASET 1 DATASET 2 DATASET 3 
 

   
A=B=1 A=B=1 A=B=1 

             

 

 
 

 

 
ROI 1 -> ROI 2 

 
0,15 

  
0,20 

  
0,23 

 

 
ROI 2 -> ROI 3 

 
0,07 

  
0,06 

  
0,05 

 

           

           
 

  

Links DATASET 1 DATASET 2 DATASET 3 

    
x2 x3 x4 x2 x3 x4 x2 x3 x4 

 

 

 
 

ROI 1 -> ROI 2 0,28 0,37 0,41 0,36 0,45 0,50 0,39 0,50 0,56 

 
ROI 2 -> ROI 3 0,09 0,12 0,15 0,09 0,14 0,18 0,10 0,15 0,20 

           

           
 

  

Links DATASET 1 DATASET 2 DATASET 3 

    
x2 x3 x4 x2 x3 x4 x2 x3 x4 

 

 

 
 

ROI 1 -> ROI 2 0,15 0,16 0,16 0,21 0,21 0,21 0,22 0,22 0,22 

 
ROI 2 -> ROI 3 0,12 0,18 0,22 0,11 0,14 0,15 0,08 0,10 0,09 

           

            

 

 

 

 

 

 

 

Table 4.25:  SEM index: average strength estimates in each experiment. Bold arrow in network model indicates the link 

with true strength multiplied by factors 2, 3 and 4. 
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4.1.3.3 Network with feed-back link 

 

 

 

  

Links  DATASET 1 DATASET 2 DATASET 3 

    

 A=B=1 A=B=1 A=B=1 

    

 

         

 

 
 

 
ROI 1 -> ROI 2  

 
0,03 

  
0,08 

  
0,12 

 

 
ROI 2 -> ROI 3  

 
0,02 

  
0,06 

  
0,08 

 

 
ROI 2 -> ROI 1  

 
0,04 

  
0,11 

  
0,16 

 

  

 

         
 

  

Links  DATASET 1 DATASET 2 DATASET 3 

    

 x2 x3 x4 x2 x3 x4 x2 x3 x4 

 

 

 
ROI 1 -> ROI 2 

 
0,09 0,19 0,26 0,22 0,33 0,39 0,28 0,37 0,41 

 
ROI 2 -> ROI 3  0,03 0,03 0,03 0,07 0,07 0,08 0,09 0,09 0,07 

 
ROI 2 -> ROI 1  0,04 0,05 0,06 0,13 0,15 0,16 0,19 0,20 0,19 

  

 

         
 

  

Links  DATASET 1 DATASET 2 DATASET 3 

    

 x2 x3 x4 x2 x3 x4 x2 x3 x4 

 

 

 
ROI 1 -> ROI 2 

 
0,02 0,03 0,03 0,08 0,07 0,08 0,11 0,11 0,10 

 
ROI 2 -> ROI 3  0,07 0,14 0,20 0,17 0,27 0,36 0,21 0,33 0,41 

 
ROI 2 -> ROI 1  0,04 0,03 0,03 0,10 0,08 0,06 0,13 0,10 0,09 

  

 

         
 

  

Links  DATASET 1 DATASET 2 DATASET 3 

    

 x2 x3 x4 x2 x3 x4 x2 x3 x4 

 

 

 
ROI 1 -> ROI 2 

 
0,04 0,06 0,07 0,12 0,16 0,18 0,16 0,19 0,21 

 
ROI 2 -> ROI 3  0,01 0,01 0,01 0,05 0,04 0,02 0,06 0,04 0,03 

 
ROI 2 -> ROI 1  0,13 0,23 0,32 0,29 0,42 0,53 0,37 0,51 0,59 

  

 

          

 

 

 

 

 

Table 4.26: GC index: average strength estimates in each experiment. Bold arrow in network model indicates the link with 

true strength multiplied by factors 2, 3 and 4. 
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Links DATASET 1 DATASET 2 DATASET 3 

    
A=B=1 A=B=1 A=B=1 

             

 

 
 

 
ROI 1 -> ROI 2 

 
2,96 

  
4,79 

  
6,33 

 

 
ROI 2 -> ROI 3 

 
3,32 

  
7,80 

  
10,28 

 

 
ROI 2 -> ROI 1 

 
3,41 

  
6,40 

  
7,99 

 

           
 

  

Links DATASET 1 DATASET 2 DATASET 3 

    
x2 x3 x4 x2 x3 x4 x2 x3 x4 

 

 

 
ROI 1 -> ROI 2 5,43 8,68 9,93 9,74 13,00 14,12 11,97 14,87 14,54 

 
ROI 2 -> ROI 3 3,63 4,35 5,21 8,00 9,17 10,55 10,08 10,81 12,99 

 
ROI 2 -> ROI 1 3,19 4,27 5,35 7,24 7,96 9,29 8,32 9,01 10,72 

           
 

  

Links DATASET 1 DATASET 2 DATASET 3 

    
x2 x3 x4 x2 x3 x4 x2 x3 x4 

 

 

 
ROI 1 -> ROI 2 2,11 2,59 2,95 5,15 4,90 5,42 5,96 6,31 6,31 

 
ROI 2 -> ROI 3 6,68 9,57 11,29 12,74 15,15 16,04 15,16 16,72 17,33 

 
ROI 2 -> ROI 1 3,22 3,27 3,11 6,39 6,21 5,92 8,15 7,81 8,00 

           
 

  

Links DATASET 1 DATASET 2 DATASET 3 

    
x2 x3 x4 x2 x3 x4 x2 x3 x4 

 

 

 
ROI 1 -> ROI 2 3,66 5,36 6,34 7,31 9,63 11,06 8,38 9,77 11,30 

 
ROI 2 -> ROI 3 3,00 2,95 3,15 7,79 7,86 7,93 10,46 11,30 10,80 

 
ROI 2 -> ROI 1 6,31 7,91 8,53 10,08 11,16 11,86 11,83 13,97 13,90 

            

 

 

 

 

 

Table 4.27: DTF index: strength estimates computed via AUC of the mean function in the frequency domain for each experiment. 
Bold arrow in network model indicates the link with true strength multiplied by factors 2, 3 and 4. 
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Links  DATASET 1 DATASET 2 DATASET 3 

    

 A=B=1 A=B=1 A=B=1 

    

 

         

 

 
 

 
ROI 1 -> ROI 2  

 
2,87 

  
4,57 

  
5,96 

 

 
ROI 2 -> ROI 3  

 
3,04 

  
6,75 

  
9,13 

 

 
ROI 2 -> ROI 1  

 
2,96 

  
4,43 

  
4,79 

 

  

 

         
 

  

Links  DATASET 1 DATASET 2 DATASET 3 

    

 x2 x3 x4 x2 x3 x4 x2 x3 x4 

 

 

 
ROI 1 -> ROI 2 

 
5,34 8,52 9,64 9,31 12,16 12,54 11,10 12,76 10,94 

 
ROI 2 -> ROI 3  3,43 4,35 5,25 7,63 10,21 12,86 11,36 14,26 16,53 

 
ROI 2 -> ROI 1  2,74 3,57 4,24 4,80 4,64 4,67 4,30 4,03 4,50 

  

 

         
 

  

Links  DATASET 1 DATASET 2 DATASET 3 

    

 x2 x3 x4 x2 x3 x4 x2 x3 x4 

 

 

 
ROI 1 -> ROI 2 

 
2,06 2,52 2,92 4,92 4,75 5,23 5,61 5,92 6,01 

 
ROI 2 -> ROI 3  6,28 9,33 11,25 12,60 15,65 17,01 15,52 18,06 19,04 

 
ROI 2 -> ROI 1  2,39 1,91 1,64 2,96 2,15 1,82 3,13 2,38 2,21 

  

 

         
 

  

Links  DATASET 1 DATASET 2 DATASET 3 

    

 x2 x3 x4 x2 x3 x4 x2 x3 x4 

 

 

 
ROI 1 -> ROI 2 

 
3,58 5,10 6,05 6,91 8,96 10,19 7,80 8,62 9,71 

 
ROI 2 -> ROI 3  2,34 2,31 2,50 5,73 6,23 5,90 8,53 9,23 9,44 

 
ROI 2 -> ROI 1  5,80 7,21 7,71 7,65 8,48 9,17 8,03 9,57 9,40 

  

 

         

Table 4.28: PDC index: strength estimates computed via AUC of the mean function in the frequency domain for each experiment. 
Bold arrow in network model indicates the link with true strength multiplied by factors 2, 3 and 4. 

 

83 



4.1.3.4 Cycle network 

 

 

 

  

Links  DATASET 1 DATASET 2 DATASET 3 

    

 A=B=1 A=B=1 A=B=1 

    

 

         

 

 
 

 
ROI 1 -> ROI 2  

 
0,03 

  
0,07 

  
0,10 

 

 
ROI 2 -> ROI 3  

 
0,03 

  
0,07 

  
0,09 

 

 
ROI 3 -> ROI 1  

 
0,04 

  
0,10 

  
0,13 

 

  

 

         
 

  

Links  DATASET 1 DATASET 2 DATASET 3 

    

 x2 x3 x4 x2 x3 x4 x2 x3 x4 

 

 

 
ROI 1 -> ROI 2 

 
0,09 0,16 0,24 0,19 0,29 0,38 0,24 0,35 0,43 

 
ROI 2 -> ROI 3  0,03 0,03 0,03 0,08 0,09 0,10 0,10 0,12 0,13 

 
ROI 3 -> ROI 1  0,04 0,05 0,05 0,10 0,10 0,11 0,13 0,13 0,14 

  

 

         
 

  

Links  DATASET 1 DATASET 2 DATASET 3 

    

 x2 x3 x4 x2 x3 x4 x2 x3 x4 

 

 

 
ROI 1 -> ROI 2 

 
0,03 0,03 0,03 0,07 0,07 0,07 0,09 0,10 0,10 

 
ROI 2 -> ROI 3  0,08 0,15 0,21 0,18 0,30 0,38 0,24 0,34 0,43 

 
ROI 3 -> ROI 1  0,05 0,05 0,05 0,10 0,11 0,11 0,13 0,14 0,13 

  

 

         
 

  

Links  DATASET 1 DATASET 2 DATASET 3 

    

 x2 x3 x4 x2 x3 x4 x2 x3 x4 

 

 

 
ROI 1 -> ROI 2 

 
0,04 0,04 0,05 0,08 0,10 0,11 0,11 0,12 0,15 

 
ROI 2 -> ROI 3  0,02 0,02 0,02 0,07 0,07 0,07 0,10 0,10 0,11 

 
ROI 3 -> ROI 1  0,15 0,26 0,39 0,28 0,48 0,65 0,35 0,57 0,75 

    

 

          

 

 

 

 

Table 4.29: GC index: average strength estimates in each experiment. Bold arrow in network model indicates the link with true 

strength multiplied by factors 2, 3 and 4. 
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Links DATASET 1 DATASET 2 DATASET 3 

    
A=B=1 A=B=1 A=B=1 

             

 

 
 

 
ROI 1 -> ROI 2 

 
2,37 

  
4,17 

  
5,12 

 

 
ROI 2 -> ROI 3 

 
3,35 

  
7,94 

  
10,35 

 

 
ROI 3 -> ROI 1 

 
2,63 

  
4,28 

  
4,34 

 

           
 

  

Links DATASET 1 DATASET 2 DATASET 3 

    
x2 x3 x4 x2 x3 x4 x2 x3 x4 

 

 

 
ROI 1 -> ROI 2 4,99 6,48 7,87 7,62 9,42 10,19 9,25 10,63 11,01 

 
ROI 2 -> ROI 3 3,77 4,34 4,96 8,67 9,13 10,39 10,56 11,59 12,14 

 
ROI 3 -> ROI 1 2,56 3,03 3,04 4,16 4,36 4,47 4,30 4,49 4,51 

           
 

  

Links DATASET 1 DATASET 2 DATASET 3 

    
x2 x3 x4 x2 x3 x4 x2 x3 x4 

 

 

 
ROI 1 -> ROI 2 2,35 2,74 2,55 4,24 4,07 4,14 4,78 5,09 5,00 

 
ROI 2 -> ROI 3 7,03 9,8 11,84 12,84 16,03 17,19 15,95 17,96 18,74 

 
ROI 3 -> ROI 1 3,14 3,53 3,72 4,44 5,27 5,83 4,79 5,60 6,18 

           
 

  

Links DATASET 1 DATASET 2 DATASET 3 

    
x2 x3 x4 x2 x3 x4 x2 x3 x4 

 

 

 
ROI 1 -> ROI 2 2,72 2,76 3,20 4,59 5,15 5,53 5,30 5,56 6,46 

 
ROI 2 -> ROI 3 3,02 2,99 2,99 8,07 8,20 8,53 10,64 11,39 11,71 

 
ROI 3 -> ROI 1 6,83 9,80 12,5 9,39 12,92 14,84 9,79 13,36 14,78 

            

 

 

 

 

 

Table 4.30: DTF index: strength estimates computed via AUC of the mean function in the frequency domain for each experiment. 
Bold arrow in network model indicates the link with true strength multiplied by factors 2, 3 and 4. 

 

85 



 

 

 

 
 

  

Links DATASET 1 DATASET 2 DATASET 3 

    
A=B=1 A=B=1 A=B=1 

             

 

 
 

 
ROI 1 -> ROI 2 

 
2,33 

  
3,98 

  
4,84 

 

 
ROI 2 -> ROI 3 

 
3,39 

  
8,25 

  
10,98 

 

 
ROI 3 -> ROI 1 

 
2,65 

  
4,33 

  
4,43 

 

           
 

  

Links DATASET 1 DATASET 2 DATASET 3 

    
x2 x3 x4 x2 x3 x4 x2 x3 x4 

 

 

 
ROI 1 -> ROI 2 4,96 6,43 7,79 7,38 9,21 9,79 8,83 10,07 10,17 

 
ROI 2 -> ROI 3 3,96 4,68 5,45 9,74 10,94 13,13 12,52 14,71 16,25 

 
ROI 3 -> ROI 1 2,59 3,08 3,10 4,25 4,50 4,65 4,40 4,71 4,78 

           
 

  

Links DATASET 1 DATASET 2 DATASET 3 

    
x2 x3 x4 x2 x3 x4 x2 x3 x4 

 

 

 
ROI 1 -> ROI 2 2,29 2,70 2,53 4,14 3,95 4,06 4,52 4,80 4,78 

 
ROI 2 -> ROI 3 7,23 10,25 12,32 13,77 17,31 18,69 17,36 19,89 20,89 

 
ROI 3 -> ROI 1 3,17 3,64 3,89 4,60 5,66 6,46 5,08 6,18 6,99 

           
 

  

Links DATASET 1 DATASET 2 DATASET 3 

    
x2 x3 x4 x2 x3 x4 x2 x3 x4 

 

 

 
ROI 1 -> ROI 2 2,63 2,70 3,12 4,38 4,99 5,31 5,04 5,17 5,88 

 
ROI 2 -> ROI 3 3,14 3,16 3,22 8,39 8,63 9,14 11,29 12,17 12,77 

 
ROI 3 -> ROI 1 6,89 9,96 12,76 9,78 13,56 15,77 10,31 14,4 16,09 

            

 

 

 

 

 

Table 4.31: PDC index: strength estimates computed via AUC of the mean function in the frequency domain for each experiment. 
Bold arrow in network model indicates the link with true strength multiplied by factors 2, 3 and 4. 
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Links DATASET 1 DATASET 2 DATASET 3 

    
A=B=1 A=B=1 A=B=1 

             

 

 
 

 
ROI 1 -> ROI 2 

 
0,15 

  
0,18 

  
0,20 

 

 
ROI 2 -> ROI 3 

 
0,08 

  
0,06 

  
0,05 

 

 
ROI 3 -> ROI 1 

 
-0,09 

  
-0,06 

  
-0,03 

 

           
 

  

Links DATASET 1 DATASET 2 DATASET 3 

    
x2 x3 x4 x2 x3 x4 x2 x3 x4 

 

 

 
ROI 1 -> ROI 2 0,27 0,34 0,40 0,32 0,41 0,47 0,36 0,46 0,53 

 
ROI 2 -> ROI 3 0,11 0,15 0,19 0,10 0,15 0,20 0,09 0,15 0,20 

 
ROI 3 -> ROI 1 -0,10 -0,10 -0,12 -0,05 -0,05 -0,06 -0,01 -0,01 -0,01 

           
 

  

Links DATASET 1 DATASET 2 DATASET 3 

    
x2 x3 x4 x2 x3 x4 x2 x3 x4 

 

 

 
ROI 1 -> ROI 2 0,13 0,11 0,09 0,15 0,12 0,10 0,18 0,16 0,14 

 
ROI 2 -> ROI 3 0,14 0,18 0,21 0,11 0,15 0,16 0,10 0,12 0,12 

 
ROI 3 -> ROI 1 -0,09 -0,10 -0,10 -0,08 -0,11 -0,16 -0,06 -0,12 -0,19 

           
 

  

Links DATASET 1 DATASET 2 DATASET 3 

    
x2 x3 x4 x2 x3 x4 x2 x3 x4 

 

 

 
ROI 1 -> ROI 2 0,13 0,13 0,12 0,15 0,15 0,13 0,18 0,17 0,15 

 
ROI 2 -> ROI 3 0,09 0,10 0,10 0,07 0,07 0,08 0,06 0,06 0,07 

 
ROI 3 -> ROI 1 -0,16 -0,22 -0,26 -0,12 -0,16 -0,19 -0,08 -0,12 -0,14 

            

 

 

 

 

 

 

Table 4.32: SEM index: average strength estimates in each experiment. Bold arrow in network model indicates the link with true 

strength multiplied by factors 2, 3 and 4. 
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Results of strength estimates reported above, suggest some considerations about each index. Let us 

start from GC index. In feed-forward network (Table 4.18), characterized by three direct coupling 

(ROI 1  ROI 2, ROI 2  ROI 3, ROI 1  ROI 3) and an indirect link (ROI 1  ROI 3), the 

causality increases only between signals involved in the connection with increasing weight.  Also 

for the open-loop network (Table 4.22)  characterized by two direct coupling (ROI 1  ROI 2, ROI 

2  ROI 3) and an indirect link (ROI 1  ROI 3) we can observe a causality increase only 

between signals involved in the connection with increasing weight. In presence of reciprocal links, 

as in network with feed-back link (Table 4.26), characterized by direct connection between ROI 1 

and ROI 2 in both ways, direct link between ROI 2 and ROI 3 and indirect connection from ROI 1 

to ROI 3, GC index records again a causality increase in the link ROI 1  ROI 2 when increases 

the corresponding true weight A, a causality increase in the link ROI 2  ROI 3 when increases B 

and a causality increase in the link ROI 2  ROI 1 when increases C. Finally, observing results 

obtained with cycle network (Table 4.29), also in this case the increase of a weight influences the 

strength only in the corresponding link. Indeed, other significant links remain almost unvaried (as 

also it occurs in the other previous networks), despite the cyclic topology of network. 

As regard DTF and PDC indices, reported in Tables 4.19, 4.23, 4.27 and 4.30 for DTF and 4.20, 

4.24, 4.28 and 4.31 for PDC, we can notice that when connection weight increases, DTF value 

reflects an increase in signal connectivity related to that connection both in direct and indirect way. 

This limit can be noticed observing panels a) and b) in Figs. 4.1, 4.2 and 4.3: even if not recognized 

as significant, DTF index shows the influence of signal from ROI 1 to ROI 3 due to the presence of 

an indirect connection. At last, we can say that sometimes it occurs that increase in signal 

connectivity related to increase of corresponding connection weight is not very significant. 

Approximately the same considerations are also valid for PDC with the only difference that 

connectivity analysis using PDC allows to distinguish direct connections from indirect ones. 

Indeed, with reference to panels c) and d) of Figs. 4.1, 4.2 and 4.3, the contribution due to indirect 

connection from ROI 1 to ROI 3 results heavily weakened. 

Finally, as regard SEM, we can say that its results underline the difficulty in estimating connection 

series. Considering values of open-loop network (Table 4.25), we observe that SEM is able to 

recognize strength increasing from ROI 1 to ROI 2 when A increases and strength increasing from 

ROI 2 to ROI 3 when B increases but in the basal condition, where weights are equal, it is not in 

agreement with true network. Besides the problem of SEM, not only in this network but also in 

feed-forward and cycle network, concerns the connection from ROI 2 to ROI 3; indeed, when the 

weights of the other connections increase and the weight related to connection ROI 2  ROI 3 is 

equal to basal condition, values of strength related to this connection are not in line with basal 
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condition values because they also increase. Performances get worse in the cycle network (Table 

4.32) estimation where SEM confuses the direction of one link and finally fall down in estimating 

network with reciprocal connection.  

Figs. 4.4, 4.5, 4.6 and 4.7 displays, for each network, scatter-plots showing regression between 

estimates and true weights, pooling together results over experimental conditions for all methods 

and datasets. Following tables report the correlation coefficient R for each regression line relative to 

scatter-plots in Figs. 4.4, 4.5, 4.6 and 4.7 for each index and dataset: 

 

 

 

  

Link from ROI 1 to ROI 2 
  DATASET 1 

 
DATASET 2 

 
DATASET 3 

  
GC 0,99 

 
0,99 

 
0,98 

DTF 0,97 
 

0,95 
 

0,92 

PDC 0,95 
 

0,85 
 

0,84 

SEM 0,98 
 

0,98 
 

0,97 

      Link from ROI 1 to ROI 3 

 
DATASET 1 

 
DATASET 2 

 
DATASET 3 

 
GC 0,99 

 
0,99 

 
0,98 

DTF 0,92 
 

0,82 
 

0,80 

PDC 0,99 
 

0,95 
 

0,93 

SEM 0,97 
 

0,97 
 

0,97 

      Link from ROI 2 to ROI 3 

 
DATASET 1 

 
DATASET 2 

 
DATASET 3 

 
GC 0,99 

 
0,98 

 
0,98 

DTF 0,90 
 

0,77 
 

0,75 

PDC 0,90 
 

0,72 
 

0,66 

SEM < 0,5 
 

< 0,5 
 

< 0,5 

      

Link from ROI 1 to ROI 2 

 
DATASET 1 

 
DATASET 2 

 
DATASET 3 

 
GC 0,9960 

 
0,9996 

 
0,9963 

DTF 0,9959 
 

0,9716 
 

0,9605 
PDC 0,9965 

 
0,9721 

 
0,9584 

SEM 0,9858 
 

0,9826 
 

0,9850 

      Link from ROI 2 to ROI 3 

 
DATASET 1 

 
DATASET 2 

 
DATASET 3 

 
GC 0,9951 

 
0,9972 

 
0,9957 

DTF 0,9680 
 

0,9703 
 

0,9557 
PDC 0,9594 

 
0,9268 

 
0,8811 

SEM 0,8752 
 

0,2894 
 

-0,2959 

      

a) 

b) 
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Link from ROI 1 to ROI 2 
  DATASET 1 

 
DATASET 2 

 
DATASET 3 

  
GC 0,9824 

 
0,9441 

 
0,9336 

DTF 0,8728 
 

0,7990 
 

0,8326 

PDC 0,8815 
 

0,7865 
 

0,7487 

SEM - 
 

- 
 

- 

      Link from ROI 2 to ROI 3 

 
DATASET 1 

 
DATASET 2 

 
DATASET 3 

 
GC 0,9937 

 
0,9876 

 
0,9835 

DTF 0,9693 
 

0,9426 
 

0,9245 

PDC 0,9532 
 

0,8444 
 

0,9089 

SEM - 
 

- 
 

- 

      Link from ROI 2 to ROI 1 

 
DATASET 1 

 
DATASET 2 

 
DATASET 3 

 
GC 0,9953 

 
0,9795 

 
0,9654 

DTF 0,9272 
 

0,8684 
 

0,9061 

PDC 0,9128 
 

0,8712 
 

0,8961 

SEM - 
 

- 
 

- 

      

Link from ROI 1 to ROI 2 

 
DATASET 1 

 
DATASET 2 

 
DATASET 3 

 
GC 0,9958 

 
0,9930 

 
0,9882 

DTF 0,9878 
 

0,9611 
 

0,9428 

PDC 0,9879 
 

0,9596 
 

0,9372 

SEM 0,9774 
 

0,9716 
 

0,9789 

      Link from ROI 2 to ROI 3 

 
DATASET 1 

 
DATASET 2 

 
DATASET 3 

 
GC 0,9979 

 
0,9953 

 
0,9933 

DTF 0,9764 
 

0,9663 
 

0,9545 

PDC 0,9713 
 

0,9164 
 

0,8833 

SEM 0,7079 
 

0,4215 
 

0,2212 

      Link from ROI 3 to ROI 1 

 
DATASET 1 

 
DATASET 2 

 
DATASET 3 

 
GC 0,9985 

 
0,9995 

 
0,9993 

DTF 0,9933 
 

0,9830 
 

0,9752 

PDC 0,9927 
 

0,9802 
 

0,9718 

SEM -0,9878 
 

-0,7514 
 

-0,4522 

      

c) d) 

Tables 4.33: correlation coefficient R relative to scatter plots in Figs. 4.4, 4.5, 4.6 and 4.7 for each index and dataset  for: a) 

feed-forward network, b) open-loop network, c) network with feed-back link, d) cycle network. 
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Fig. 4.4: Linear regression and R correlation coefficients between GC, DTF, PDC and SEM estimated connectivity values and true connections weights for feed-forward network. Values [1, 2, 3, 4] are 
weight values assumed by parameters A, B and C, corresponding to connection ROI1 ROI2, ROI1 ROI3 and ROI2 ROI3 respectively. For each dataset, four conditions were performed, 
comprehending a basal one with unit value in A, B and C, and three obtained by varying one parameter at a time from 2 to 4. High correlations (R>0.9, P<0.05) are evident in direct links - ROI1 ROI2, 
ROI1 ROI3 – for all indexes, while only GC shows the same performances also in link ROI2 ROI3, demonstrating its robustness. 

 9
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Fig. 4.5: Linear regression and R correlation coefficients between GC, DTF, PDC and SEM estimated connectivity values and true connections weights for open-loop network . Values [1, 2, 3, 4] are weight 

values assumed by parameters A and B, corresponding to connection ROI1 ROI2 and ROI2 ROI3 respectively. For each dataset, four conditions were performed, comprehending a basal one with unit 

value in A and B, and three obtained by varying one parameter at a time from 2 to 4. 
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Fig. 4.6: Linear regression and R correlation coefficients between GC, DTF and PDC estimated connectivity values and true connections weights for network with feed-back link. Values [1, 2, 3, 4] are 

weight values assumed by parameters A, B and C, corresponding to connection ROI1 ROI2, ROI2 ROI3 and ROI2 ROI1 respectively. For each dataset, four conditions were performed, 

comprehending a basal one with unit value in A, B and C, and three obtained by varying one parameter at a time from 2 to 4.  
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Fig.  4.7: Linear regression and R correlation coefficients between GC, DTF, PDC and SEM estimated connectivity values and true connections weights for cycle network. Values [1, 2, 3, 4] are weight values 

assumed by parameters A, B and C, corresponding to connection ROI1 ROI2, ROI2 ROI3 and ROI3 ROI1 respectively. For each dataset, four conditions were performed, comprehending a basal one 

with unit value in A, B and C, and three obtained by varying one parameter at a time from 2 to 4. 
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Observing Tables 4.33 a), 4.33 b), 4.33 c) and 4.33 d) and Figs. 4.4, 4.5, 4.6 and 4.7 we can notice 

that correlation proves that exists an high significant linear relationship with R > 0.9 for all GC 

estimates in all networks. 

As regard DTF and PDC there are different situations depending on the network type. For open-

loop network and cycle network what has been said for the GC estimates is still true, i.e. also for 

DTF and PDC estimates exists an high significant linear relationship with R > 0.9. Instead, for 

network with feed-back link, correlation slightly decreases for DTF and PDC with R ~ 0.8, 

particularly in link from ROI 1 to ROI 2. For feed-forward network correlation decreases, R ~ 0.8 

and R ~ 0.7, in links connecting ROI 3.   

As regard SEM, for open-loop network, for cycle network and for feed-forward network, estimates 

are well correlated with true weights in direct link from ROI 1 to ROI 2, while it fails in estimating 

the link from ROI 2 to ROI 3 and in the cycle network provides negative values of correlation in 

link from ROI 3 to ROI 1. In this regard, it is interesting to note that the coefficient sign reveals 

what kind of covariance relationship exists between network components. A positive coefficient 

means a synergic connection, conversely, a negative one implies that the increasing activity in one 

variable leads to a decrease in the activity of the variable it projects to. 
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Chapter 5 

 

Discussion 

 

The purpose of this study was to assess the effectiveness of commonly used measures for brain 

connectivity estimate using in silico data. The strategy used was to reproduce plausible 

neurophysiological processes in which we could manipulate coupling among ROIs. These ROIs 

were simulated by a neural mass model generating real power spectra very similar to the empirical 

ones.  

Two connectivity methods were tested, both based on linear regression equations but different in 

describing data dynamics: MVAR indices and SEM. MVAR models consider past data information, 

while SEM describes variables interaction using only present instants. Considering connectivity 

estimate we can say that in the first approach topology, causality and strength are all inferred from 

data, while in the second one the model topology is postulated from a priori knowledge and only 

connections strength is estimated from the data. The aim of this work was to compare their 

performances underlining their strengths and weaknesses in order to provide a validated protocol to 

support both cognitive research and clinical activity. 
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5.1  Network connectivity estimation 

 

In chapter 4, the results of connectivity estimation were presented for all networks analyzed: feed-

forward network, open-loop network, network with feed-back link and cycle network. In this 

paragraph will be commented the results obtained and reported in tables of previous chapter.  

Main results regarding both topology and strength are summarized in Fig. 5.1. For each network 

continuous lines indicate true connections and the associated numbers quantify the percentage of 

true positives, averaged throughout all experiments, while dashed lines indicate absent connections, 

thus the associated numbers quantify the percentage of false positives, averaged throughout all 

experiments. Blue numbers associated with continuous lines indicate the correlation coefficient 

between true and estimated values, i.e. the correlation coefficient R for each regression line shown 

in Figs. 4.4, 4.5, 4.6 and 4.7 of chapter 4. Results obtained by means of SEM show only the 

correlation coefficient R since SEM assumes known topology. Finally, we can note that SEM is 

applied to three networks only since it cannot define a model for network with feed-back link. 

While numbers in Fig. 5.1 pool together all results from the three experiments, in the Appendix 

results for each individual experiment are reported. 
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GC DTF PDC SEM 

Fig. 5.1: Network topology and strength connection: continuous lines indicate true connections and the associated numbers quantify the percentage of true positives, averaged throughout all 

experiments. Dashed lines indicate absent connections, thus the associated numbers quantify the percentage of false positives, averaged throughout all experiments. The blue numbers associated with 

continuous lines indicate the correlation coefficient between true and estimated values.  
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Figure 5.1 indicates that as regard topology, all methods are able to suggest the absence of causal 

influence  where effectively no connection exists, i.e. ROI 2  ROI 1, ROI 3  ROI 1 and ROI 3 

 ROI 2 for feed-forward network, ROI 2  ROI 1, ROI 3  ROI 2, ROI 3  ROI 1 and ROI 1 

 ROI 3 for open-loop network, ROI 3  ROI 2, ROI 3  ROI 1 and ROI 1  ROI 3 for network 

with feed-back link and ROI 2  ROI 1, ROI 1  ROI 3 and ROI 3  ROI 2 for cycle network, 

since the percentages of revealed connections by all methods are much lower than  those of real 

direct connections, i.e. ROI 1  ROI 2, ROI 1  ROI 3 and  ROI 2  ROI 3 for feed-forward 

network, ROI 1  ROI 2 and ROI 2  ROI 3 for open-loop network, ROI 1  ROI 2, ROI 2  

ROI 1 and ROI 2  ROI 3 for network with feed-back link and ROI 1  ROI 2, ROI 2  ROI 3 

and ROI 3  ROI 1 for cycle network. Overall results of topology estimation, averaged by pooling 

together datasets and conditions, show that for each index  the percentage associated with false 

positives is nearly always about 5% (except for few cases where there are values, mostly in DTF 

and referring to indirect connections, around 10%, 12% and 19%), while that one associated with 

true positives is approximately greater than 50%. Analyzing statistical performances (Tables 4.14 

4.15, 4.16, 4.17) for each network, all methods provide high values of specificity, meaning they 

clearly recognize where connection does not exist, as said above. As regard value of sensitivity, 

instead, it is greater than 90% only for GC index, while DTF and PDC provide less powerful 

performances and hence this means that these two indices have greater difficulty in identifying true 

connections. In fact, as regard False Positive Rate (α) and False Negative Rate (β) we can say that 

first one assumes a rather low value in all indices and for all networks, while the second one 

assumes  low values for GC index in all networks but assumes high values for DTF and PDC 

indices. Observing Fig. 5.1, indeed, we can note easily that for all networks GC index provides the 

highest percentages of true positives. This allows to say that GC can be considered a good network 

estimator; it is able to recognize not only coupling direction but also to locate direct connection 

contributions in case of reciprocal and cycle links. 

Furthermore, previous works ([19] and [24]) have shown that results according to DTF and PDC 

greatly vary depending on the statistical testing strategy used. Unlike GC, for which statistical test 

is based on evaluation of the F-statistic and results depend on p-value only, for DTF and PDC exist 

different ways to assess connectivity significance. Alongside well-known methods based on phase-

randomization, adopted in this work, surrogate data can be generated shuffling time series samples 

or using multivariate ARMA processes. Other innovative approaches are proposed in literature for 

PDC analysis, such as those based on asymptotic statistic ([27]) and anti-symmetrisation testing 

([28]). 
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In ([19]) and ([24]) an ad hoc analysis to understand the optimal strategy was performed comparing 

permutation methods, both time samples and phase, and those based on simulation with multivariate 

ARMA processes ([24]). Results obtained in these works evidenced that, unlike phase-

randomization, thresholds obtained with sample-shuffling and ARMA simulation provided  smaller 

false negative rate but much more false positives. For this reason also in this work was used phase-

randomization strategy with disadvantage of having smaller sensitivity values. Moreover, the 

average value of the threshold distribution that comes out from the four networks is always around 

0.5, a well-established threshold value in literature to determine the coherence significance ([29]). 

As regard strength, since true networks and estimates are measured with different scales, linear 

regression analysis is used to understand if they are sensitive to strength modulation (Fig. 5.1 and 

Figs. 4.4, 4.5, 4.6, 4.7). Examining Fig. 5.1 we can note that for GC index the correlation coefficient 

is always R > 0.95 in all networks, meaning that increasing true weights of one connection 

estimates increase nearly proportionally with them. Similar considerations are also valid for DTF 

and PDC even if sometimes their correlation coefficients slightly decrease. Hence, correlation 

evidences the ability of MVAR indices to quite well reproduce connection intensity for all 

networks. Unfortunately we cannot say the same for the SEM. Observing Fig. 5.1, SEM reveals 

considerable difficulty in estimating connection between ROI 2 and ROI 3 for all considered 

networks; in fact, for this connection the value of correlation coefficient is low and relationship 

between true networks and estimates is little linear. Besides, for cycle network SEM confuses the 

direction of link from ROI 3 to ROI 1 and hence appears a negative correlation. SEM weakness to 

describe simple connectivity patterns is probably due to the over-simplified model underlying SEM 

equations. Indeed, unlike MVAR approach, including past information of each time series, SEM 

computes connections taking into account only present information. This is an unreliable 

assumption causing troubles in particular in case of cycle network (as said above) and reciprocal 

network for which SEM is not even able to define a model.  

Even if the networks explored in this work and in ([19]) are simple, some useful conclusions 

emerged and they will be presented in the next paragraph. 
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5.2  Conclusion 

 

Results obtained for all networks, widely discussed in the previous paragraph, demonstrate that 

Granger causality is the best method among those considered for the estimation of cortical 

connectivity. As regard topology, GC index can be used  as a good estimator supported by its high 

values of specificity and sensitivity. As regard strength, even if GC index isn’t a directed measure 

of intensity connectivity, its regression analysis confirms the existence of a linear relationship 

between true and estimated strength. Also frequency indices, DTF and PDC, show to be able to 

provide information about network topology and connection intensity but their results are less 

accurate than GC performances. Neither these two indices are a direct measure of strength 

connectivity, nevertheless also for them regression analysis confirms the existence of a linear 

relationship between true and estimated intensity. 

The method that, instead, proves to be really limited is SEM. Results show the difficulty of its 

approach to describe simple connections. Considering only the present information  and not the past  

makes SEM limited and not sufficiently robust to characterize neuronal dynamic activity, as if brain 

connectivity could describe time series relationships by the instant we observe it.  

Finally, this work suggests that GC is a stand-alone estimator and can be used as a explorative 

instrument to define both network topology and intensity connections. As regards DTF, it is not 

able to discriminate contribution coming from indirect rather than direct relation. PDC, instead, is 

able to distinguish direct connections. For this reason this work suggests that DTF and PDC should 

be used together to obtain a more robust network characterization.  

The goodness of results obtained in this work for MVAR indices opens new possibility of research 

that go further simulation study. Next stage, indeed, can be testing these methods on real EEG in 

order to study true connections among brain areas.  
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A. Individual networks topology 

estimation 

 
In this appendix are shown, for each individual network, figures of results of topology 

estimation averaged throughout each dataset, reporting for each link between two ROIs the 

mean percentage of statistical significant connections for each index. Continuous lines indicate 

true connections and the dashed ones represent links where connection is absent. The blue 

numbers associated with continuous lines indicate the correlation coefficient between true and 

estimated values; this coefficient is useful for strength connections analysis but not for topology 

analysis. 

Besides in addition to topology figures, are also reported tables of performances, one for each 

dataset for all networks, in order to compare the ability of each index to estimate topology  in 

different situations, i.e. when slope is 0.36, 0.56 and 0.66. 

 

Fig. A.1 and Tables A.1, A.2 and A.3 report, respectively, estimated topology and performances 

for the open-loop network. Observing the performances we can note that value of specificity is 

always greater or equal than 90%, except for a case in which it is 89%, for all datasets and 

indices. This means that, independently of the dataset, all indices have a great ability of 

identifying absence of connections. As regard sensitivity, instead, in all datasets the highest 

value is given by the GC index. In dataset 3 (r = 0.66), for example, value of sensitivity for GC 

index is even equal to 100%. Hence, GC is index that has greater ability of identifying true 

connections than DTF and PDC. For False Positive Rate and False Negative Rate we can say 

that the first one assumes, as expected, rather low values for all indices and in all datasets (mean 

value of False Positive Rate is around 6%), while the second one always assumes low values for 

GC index and high values for DTF and PDC indices.  
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Summarizing  we can say that as regard GC index the best performances in terms of topology 

are given by dataset 3, while as regard DTF and PDC indices the best performances are given by 

dataset 2. 

Fig. A.2 and Tables A.4, A.5 and A.6 report, respectively, estimated topology and performances 

for network with feed-back link, while Fig. A.3 and Tables A.7, A.8 and A.9 report, 

respectively, estimated topology and performances for cycle network. Also for these two 

networks it occurs that specificity is greater than 90% and sensitivity is highest for GC index 

(there is also here value of sensitivity equal to 100% in dataset 3 of cycle network for example) 

and lowest for DTF and PDC. Hence, once again GC is the index that has greater ability of 

identifying true connections than DTF and PDC. Remains true also what has been said for False 

Positive Rate and False Negative Rate.  

Concluding for these two networks we can say that as regard GC index the best performances in 

terms of topology are given once again by dataset 3 both in network with feed-back link and 

cycle network, while as regard DTF index the best performances in terms of topology are given 

by dataset 2 for network with feed-back link and by dataset 1 for cycle network. Finally, as 

regard PDC index the best performances in terms of topology are given by dataset 1 for both 

networks. 
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GC DTF PDC 

Dataset 1: 

Dataset 2: 

 

Dataset 3: 

 

Figure A.1: Estimated topology for the open-loop network: continuous lines indicate true connections and the associated numbers quantify the percentage of true positives, averaged   

throughout each dataset. Dashed lines indicate absent connections, thus the associated numbers quantify the percentage of false positives averaged throughout each dataset. The blue 

numbers associated with continuous lines indicate the correlation coefficient between true and estimated values. 
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(a) GC outcomes 
   

        

  
Positive Condition 

 
Negative Condition 

   

        Positive Outcomes 
 

1168 
 

113 
 

False Positive Rate (α) 4% 

        Negative Outcomes 
 

232 
 

2687 
 

False Negative Rate (β) 16% 

        

  
Sensitivity 

 
Specificity 

   

  
83% 

 
96% 

   

        

        

        

  
(b) DTF outcomes 

   

        

  
Positive Condition 

 
Negative Condition 

   

        Positive Outcomes 
 

877 
 

161 
 

False Positive Rate (α) 6% 

        Negative Outcomes 
 

523 
 

2639 
 

False Negative Rate (β) 37% 

        

  
Sensitivity 

 
Specificity 

   

  
63% 

 
94% 

   

        

        

        

  
(c) PDC outcomes 

   

        

  
Positive Condition 

 
Negative Condition 

   

        Positive Outcomes 
 

911 
 

97 
 

False Positive Rate (α) 3% 

        Negative Outcomes 
 

489 
 

2703 
 

False Negative Rate (β) 35% 

        

  
Sensitivity 

 
Specificity 

   

  
65% 

 
96% 

   

        
Table A.1: Statistical measures of performances of GC (a), DTF (b) and PDC (c) throughout experimental conditions for 

dataset with r=0.36 of open-loop network.  
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(a) GC outcomes 

   

        

  
Positive Condition 

 
Negative Condition 

   

        Positive Outcomes 
 

1378 
 

130 
 

False Positive Rate (α) 5% 

        Negative Outcomes 
 

22 
 

2670 
 

False Negative Rate (β) 1% 

        

  
Sensitivity 

 
Specificity 

   

  
98% 

 
95% 

   

        

        

        

  
(b) DTF outcomes 

   

        

  
Positive Condition 

 
Negative Condition 

   

        Positive Outcomes 
 

1065 
 

271 
 

False Positive Rate (α) 10% 

        Negative Outcomes 
 

335 
 

2529 
 

False Negative Rate (β) 24% 

        

  
Sensitivity 

 
Specificity 

   

  
76% 

 
90% 

   

        

        

        

  
(c) PDC outcomes 

   

        

  
Positive Condition 

 
Negative Condition 

   

        Positive Outcomes 
 

1109 
 

156 
 

False Positive Rate (α) 5% 

        Negative Outcomes 
 

291 
 

2644 
 

False Negative Rate (β) 21% 

        

  
Sensitivity 

 
Specificity 

   

  
79% 

 
94% 

    

 

 

 

 

Table A.2: Statistical measures of performances of GC (a), DTF (b) and PDC (c) throughout experimental conditions for 

dataset with r=0.56 of open-loop network.  
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(a) GC outcomes 

   

        

  
Positive Condition 

 
Negative Condition 

   

        Positive Outcomes 
 

1398 
 

162 
 

False Positive Rate (α) 6% 

        Negative Outcomes 
 

2 
 

2638 
 

False Negative Rate (β) 0% 

        

  
Sensitivity 

 
Specificity 

   

  
100% 

 
94% 

   

        

        

        

  
(b) DTF outcomes 

   

        

  
Positive Condition 

 
Negative Condition 

   

        Positive Outcomes 
 

984 
 

292 
 

False Positive Rate (α) 10% 

        Negative Outcomes 
 

416 
 

2508 
 

False Negative Rate (β) 30% 

        

  
Sensitivity 

 
Specificity 

   

  
70% 

 
89% 

   

        

        

        

  
(c) PDC outcomes 

   

        

  
Positive Condition 

 
Negative Condition 

   

        Positive Outcomes 
 

1043 
 

160 
 

False Positive Rate (α) 6% 

        Negative Outcomes 
 

357 
 

2640 
 

False Negative Rate (β) 25% 

        

  
Sensitivity 

 
Specificity 

   

  
74% 

 
94% 

   

         

 

Table A.3: Statistical measures of performances of GC (a), DTF (b) and PDC (c) throughout experimental conditions for 

dataset with r=0.66 of open-loop network.  
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Dataset 1: 

Dataset 2: 

Dataset 3: 

Fig. A.2: Estimated topology for the network with feed-back link: continuous lines indicate true connections and the associated numbers quantify the percentage of true positives, averaged 

throughout each dataset. Dashed lines indicate absent connections, thus the associated numbers quantify the percentage of false positives averaged throughout each dataset. The blue numbers 

associated with continuous lines indicate the correlation coefficient between true and estimated values. 

 

GC DTF PDC 

1
09

 



 

 

  
(a) GC outcomes 

   

        

  
Positive Condition 

 
Negative Condition 

   

        Positive Outcomes 
 

2401 
 

121 
 

False Positive Rate (α) 4% 

        Negative Outcomes 
 

599 
 

2879 
 

False Negative Rate (β) 20% 

        

  
Sensitivity 

 
Specificity 

   

  
80% 

 
96% 

   

        

        

        

  
(b) DTF outcomes 

   

        

  
Positive Condition 

 
Negative Condition 

   

        Positive Outcomes 
 

1499 
 

189 
 

False Positive Rate (α) 6% 

        Negative Outcomes 
 

1501 
 

2811 
 

False Negative Rate (β) 50% 

        

  
Sensitivity 

 
Specificity 

   

  
50% 

 
94% 

   

        

        

        

  
(c) PDC outcomes 

   

        

  
Positive Condition 

 
Negative Condition 

   

        Positive Outcomes 
 

1240 
 

126 
 

False Positive Rate (α) 4% 

        Negative Outcomes 
 

1760 
 

2874 
 

False Negative Rate (β) 59% 

        

  
Sensitivity 

 
Specificity 

   

  
41% 

 
96% 

   

         

 

 

 

 

Table A.4: Statistical measures of performances of GC (a), DTF (b) and PDC (c) throughout experimental conditions for 

dataset with r=0.36 of network with feed-back link.  
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(a) GC outcomes 

   

        

  
Positive Condition 

 
Negative Condition 

   

        Positive Outcomes 
 

2912 
 

156 
 

False Positive Rate (α) 5% 

        Negative Outcomes 
 

88 
 

2844 
 

False Negative Rate (β) 3% 

        

  
Sensitivity 

 
Specificity 

   

  
97% 

 
95% 

   

        

        

        

  
(b) DTF outcomes 

   

        

  
Positive Condition 

 
Negative Condition 

   

        Positive Outcomes 
 

1834 
 

221 
 

False Positive Rate (α) 7% 

        Negative Outcomes 
 

1166 
 

2779 
 

False Negative Rate (β) 39% 

        

  
Sensitivity 

 
Specificity 

   

  
61% 

 
93% 

   

        

        

        

  
(c) PDC outcomes 

   

        

  
Positive Condition 

 
Negative Condition 

   

        Positive Outcomes 
 

1026 
 

156 
 

False Positive Rate (α) 5% 

        Negative Outcomes 
 

1974 
 

2844 
 

False Negative Rate (β) 66% 

        

  
Sensitivity 

 
Specificity 

   

  
34% 

 
95% 

    

 

 

 

 

 

Table A.5: Statistical measures of performances of GC (a), DTF (b) and PDC (c) throughout experimental conditions for 

dataset with r=0.56 of network with feed-back link.  
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(a) GC outcomes 

   

        

  
Positive Condition 

 
Negative Condition 

   

        Positive Outcomes 
 

2946 
 

250 
 

False Positive Rate (α) 8% 

        Negative Outcomes 
 

54 
 

2750 
 

False Negative Rate (β) 2% 

        

  
Sensitivity 

 
Specificity 

   

  
98% 

 
92% 

   

        

        

        

  
(b) DTF outcomes 

   

        

  
Positive Condition 

 
Negative Condition 

   

        Positive Outcomes 
 

1605 
 

210 
 

False Positive Rate (α) 7% 

        Negative Outcomes 
 

1395 
 

2790 
 

False Negative Rate (β) 46% 

        

  
Sensitivity 

 
Specificity 

   

  
53% 

 
93% 

   

        

        

        

  
(c) PDC outcomes 

   

        

  
Positive Condition 

 
Negative Condition 

   

        Positive Outcomes 
 

700 
 

186 
 

False Positive Rate (α) 6% 

        Negative Outcomes 
 

2300 
 

2814 
 

False Negative Rate (β) 77% 

        

  
Sensitivity 

 
Specificity 

   

  
23% 

 
94% 

    

 

 

Table A.6: Statistical measures of performances of GC (a), DTF (b) and PDC (c) throughout experimental conditions for 

dataset with r=0.66 of network with feed-back link.  
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Dataset 1: 

Dataset 2: 

Dataset 3: 

Fig. A.3: Estimated topology for the cycle network: continuous lines indicate true connections and the associated numbers quantify the percentage of true positives, averaged throughout 

each dataset. Dashed lines indicate absent connections, thus the associated numbers quantify the percentage of false positives averaged throughout each dataset. The blue numbers 

associated with continuous lines indicate the correlation coefficient between true and estimated values. 

 

GC DTF PDC 

1
13

 



 

 

  
(a) GC outcomes 

   

        

  
Positive Condition 

 
Negative Condition 

   

        Positive Outcomes 
 

2583 
 

187 
 

False Positive Rate (α) 6% 

        Negative Outcomes 
 

417 
 

2813 
 

False Negative Rate (β) 14% 

        

  
Sensitivity 

 
Specificity 

   

  
86% 

 
94% 

   

        

        

        

  
(b) DTF outcomes 

   

        

  
Positive Condition 

 
Negative Condition 

   

        Positive Outcomes 
 

1496 
 

206 
 

False Positive Rate (α) 7% 

        Negative Outcomes 
 

1504 
 

2794 
 

False Negative Rate (β) 50% 

        

  
Sensitivity 

 
Specificity 

   

  
50% 

 
93% 

   

        

        

        

  
(c) PDC outcomes 

   

        

  
Positive Condition 

 
Negative Condition 

   

        Positive Outcomes 
 

1610 
 

144 
 

False Positive Rate (α) 5% 

        Negative Outcomes 
 

1390 
 

2856 
 

False Negative Rate (β) 46% 

        

  
Sensitivity 

 
Specificity 

   

  
54% 

 
95% 

    

 

 

 

Table A.7: Statistical measures of performances of GC (a), DTF (b) and PDC (c) throughout experimental conditions for 

dataset with r=0.36 of cycle network.  
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(a) GC outcomes 

   

        

  
Positive Condition 

 
Negative Condition 

   

        Positive Outcomes 
 

2974 
 

162 
 

False Positive Rate (α) 5% 

        Negative Outcomes 
 

26 
 

2838 
 

False Negative Rate (β) 1% 

        

  
Sensitivity 

 
Specificity 

   

  
99% 

 
95% 

   

        

        

        

  
(b) DTF outcomes 

   

        

  
Positive Condition 

 
Negative Condition 

   

        Positive Outcomes 
 

1421 
 

270 
 

False Positive Rate (α) 9% 

        Negative Outcomes 
 

1579 
 

2730 
 

False Negative Rate (β) 53% 

        

  
Sensitivity 

 
Specificity 

   

  
47% 

 
91% 

   

        

        

        

  
(c) PDC outcomes 

   

        

  
Positive Condition 

 
Negative Condition 

   

        Positive Outcomes 
 

1605 
 

130 
 

False Positive Rate (α) 4% 

        Negative Outcomes 
 

1395 
 

2870 
 

False Negative Rate (β) 46% 

        

  
Sensitivity 

 
Specificity 

   

  
53% 

 
96% 

   

         

 

 

 

Table A.8: Statistical measures of performances of GC (a), DTF (b) and PDC (c) throughout experimental conditions for 

dataset with r=0.56 of cycle network.  
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(a) GC outcomes 

   

        

  
Positive Condition 

 
Negative Condition 

   

        Positive Outcomes 
 

2999 
 

259 
 

False Positive Rate (α) 9% 

        Negative Outcomes 
 

1 
 

2741 
 

False Negative Rate (β) 0% 

        

  
Sensitivity 

 
Specificity 

   

  
100% 

 
91% 

   

        

        

        

  
(b) DTF outcomes 

   

        

  
Positive Condition 

 
Negative Condition 

   

        Positive Outcomes 
 

1261 
 

333 
 

False Positive Rate (α) 11% 

        Negative Outcomes 
 

1739 
 

2667 
 

False Negative Rate (β) 58% 

        

  
Sensitivity 

 
Specificity 

   

  
42% 

 
89% 

   

        

        

        

  
(c) PDC outcomes 

   

        

  
Positive Condition 

 
Negative Condition 

   

        Positive Outcomes 
 

1418 
 

178 
 

False Positive Rate (α) 6% 

        Negative Outcomes 
 

1582 
 

2822 
 

False Negative Rate (β) 53% 

        

  
Sensitivity 

 
Specificity 

   

  
47% 

 
94% 

    

 

 

 

Table A.9: Statistical measures of performances of GC (a), DTF (b) and PDC (c) throughout experimental conditions for 

dataset with r=0.66 of cycle network.  
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