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Abstract

This thesis deals with the problem of optimal reactive power compensation for the
minimization of power distribution losses in a microgrid.

We first propose a simple nonlinear model for a microgrid and then an approximate
linear version of it. It allows to formulate the problem as a convex quadratic, linearly
constrained, optimization problem, in which decision variables are the amount of reactive
power that compensators inject into the network.

We suppose that agents in the microgrid have a partial knowledge of the problem
parameters and state and can only perform local measurements. So, we propose a
distribution approach for solving the aforementioned problem: we design a randomized
distributed algorithm, whose main idea is the decomposition of the original minimization
problem into smaller subproblems, each one related to a specific cluster consisting of
agents able to communicate and exchange information.

We provide conditions for convergence of the algorithm and a convenient upper
bound of the rate of convergence.

We analyze the rate of convergence for some specific topologies of the grid and for
some choices of the agents communication topologies. Our analysis shows that the best
performance can be achieved when we command cooperation among agents which are
”neighbors” in the microgrid.

As the microgrid is a dynamic system, solving the optimization subproblems makes
the grid voltages change: they are subjected to a interval time of transient. The
resolution of the following optimization subproblem cannot start before the system
attains a new stedy state. We face the problem of obtaining an estimate of the time
between two consecutive iterations of the proposed algorithm.

We propose a first-order dynamic model, describing the input-output relation between
complex power references imposed at compensators and the voltage measurements, and
consider its approximate version. It exhibits two interesting features: it is linear and
contains explicitly the network parameters and topology. We study the positions of the
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Abstract

eigenvalues of the linear model, being related to the settling time of the system.
Numerical simulations are included to validate the proposed models and confirm

the analytical results about the performance of the designed algorithm.
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CHAPTER 1

Introduction

This thesis considers the problem of minimizing reactive power flows in distribution
power grids (or parts of them). The objective is to define an optimization problem for
this purpose and design an algorithm in order to solve it.

The power distribution network is one of the three main subsystems of a traditional
electric grid, together with the power generation and transmission subsystems.

Electrical energy is usually generated in a relatively small number of large power
plants. They generally take place near the energy resources and then the produced
electrical energy is transmitted over long distances to the load centers (transmission
system). As the energy losses in a transmission line are proportional to the current
squared, transmission lines operate at high and extra-high voltages (above 100 kV).
Most of the electrical energy is then transferred to distribution high (100− 300 kV) and
medium voltage (1− 100 kV) networks in order to be delivered to large and medium
consumers. Finally, power is transformed to a low voltage (below 1 kV) and distributed
to small customers (domestic, industrial, commercial).

In the industrialized countries, these traditional electric power systems are aging and
being stressed by scenarios not imaginable when the majority of them were designed [6],
[8].

• Energy deregulation: new possibilities of energy trading have implied power flow
scenarios and uncertainties the system was not designed to handle.

• Renewable energy sources : because of environmental issues such as global warming
and sustainability, a great interest is increasing to renewable (but unreliable and
intermittent) energy sources, both in large installations and in dispersed micro-
generators; their presence in the system increases the uncertainties in supply and
adds stress to the existing infrastructures.
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Chapter 1. Introduction

• Power demand : our society is increasing the amount of power supply and the
quality of the service.

Many industries and national governments consider the smart-grid technology the
answer to these new scenarios.

The objective is to translate the classical electrical power grids into smart-grids, so
as to provide a reliable, high-quality electric power in an environmentally friendly and
sustainable way.

Smart grids will grow on the existing electric network and should coexist with it
at least for a while, adding new functionalities. Part of this process will be done by
developing the so called smart microgrids.

A microgrid can be defined as a portion of the low-voltage power distribution
network which includes electrical loads and distributed power generators. Loads can
be residential or industrial consumers; generators may be solar panels, micro wind
turbines, or any of alternate power sources. The size of a microgrid can be the size
of the whole distribution network, or part of it, like a town or a group of buildings
(shopping centers, industrial parks, college campus, etc.). A microgrid is connected to
the power transmission network in one point (the point of common coupling or PCC)
and it is managed autonomously from the rest of the network to achieve better quality
of the service, improve efficiency and pursue specific economic interests.

A smart microgrid can appear deeply different from the traditional power distribution
grid, whose unique task is to deliver energy power from the transmission grid to the
loads.

A smart microgrid may include a large number of intelligent entities (agents), such
as micro-generators, able to inject power instead of being supplied with only, electronic
loads with their specific dynamic behaviors, ”smart” customers which can postpone
their demand if financially rewarded, etc.

All the microgenerators are connected to the microgrid via electronic interfaces
(inverters), whose main task is to enable the injection of the produced power into the
microgrid. However, these devices, if properly commanded and coordinated, can also
perform other tasks needed to guarantee a desired quality of the distribution; they are
the so called ancillary services [9], [12]: reactive power compensation, voltage support
and regulation, harmonic compensation, reliability and robustness to faults, etc.

In this thesis we consider the problem of optimal reactive power compensation, one
of the most important ancillary services.

The solution of such an optimization problem requires the design of a proper
algorithm, according to the system features.

A smart microgrid presents some characteristics that allow to include it in the class
of complex, large-scale systems; in fact:

• a smart microgrid presents a group of agents, whose number is generally large and
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1.1 Complex power and phasorial notation

may be unknown and time-varying, because of external events or the possibility
that some new agents appear, disconnect or are reconfigured;

• agents can have a partial knowledge of the system state and the system structure
(distributed information), such as the number of agents, their configuration, the
communication among them etc.;

• each agent is not usually able to communicate with all the other agents in the
system, but it is forced to interact with a smaller subset of neighbors;

• the information exchange among agents is possible not only via a given communi-
cation channel, but also via local actuation and measurement performed on an
underlying physical system.

Owing to these issues, it might be impossible solving the optimization problem for
the minimization of reactive power flows on a global level: it should be preferred a
distributed algorithm, like the algorithm we will propose in Chapter 4.

1.1 Complex power and phasorial notation

Consider an inverter v connected to the power distribution network and let be u(t) and
i(t) the voltage at its point of connection and the injected current respectively.

If the network is operating in steady state, then voltages and currents are sinusoidal
signals at the same frequency f0 = ω0/2π, and so:

u(t) = U sin(ω0t+ θu), i(t) = I sin(ω0t+ θi). (1.1)

The instantaneous power is so defined:

π(t) = u(t)i(t) =
UI

2
cosφ− UI

2
cos(2ω0t+ 2θu − φ),

where φ = θu − θi.
The average value in a period of a sinusoidal power is called active power :

p =
1
T

∫
T
π(t)dt =

UI

2
cosφ. (1.2)

On the analogy of the active power, the reactive power is defined as:

q =
UI

2
sinφ. (1.3)

The execution of operations among sinusoidal signals may be very burdensome. In
order to obviate these difficulties, we will use an alternative representation of signals
based on phasors.
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Chapter 1. Introduction

A one-to-one relation can be defined between each element of the set of sinusoidal
signals with the same frequency and each complex number: if y(t) belongs to the set of
sinusoidal signals with the same frequency f0, with magnitude YM and phase ψ, and y
is a complex number, such a relation may be defined:

y(t) = YM sin(ω0t+ ψ) ⇔ y = |y|ej∠y

by a couple {Ky, ζF } such that: |y| = KyYM

∠y = ζF + ψ.
(1.4)

The complex numbers associated to sinusoidal signals by (1.4) are called phasors and
are the symbolic representations of sinusoidal signals.

It is frequent using the transformation (1.4) where {Ky = 1/
√

2, ζF = 0} (root-
mean-square transformation), so that the phasor y represents the signal:

y(t) = |y|
√

2 sin(ω0t+ ∠y).

So, for voltage and current of the inverter v defined in (1.1), it results:

u(t) = U sin(ω0t+ θu) ⇔ u(v) =
U√
2
ejθu

i(t) = I sin(ω0t+ θi) ⇔ i(v) =
I√
2
ejθi .

By phasors, we can define the complex power (a complex operator but not a phasor)
of the inverter v:

s(v) = u(v)̄i(v) =
UI

2
ejφ =

UI

2
(cosφ+ j sinφ) = p(v) + jq(v), (1.5)

where ī denotes the complex conjugate of i; therefore, comparing (1.5) with (1.2) and
(1.3), active and reactive powers result to be the real and the imaginary part of the
complex power respectively:

p(v) = Re[s(v)] q = Im[s(v)].

It is worth noticing that the power terms introduced before can be defined also
in the case signals are not sinusoidal; it is possible by defining the homo-integral of a
generic function x(t) as:

x̂(t) = ω0(X(t)− X̃(t)),

where:

X(t) =
∫ t

0
x(τ)dτ, X̃(t) =

1
T0

∫ t+T0

t
X(t)dt.

By defining the internal product:

〈x, y〉 =
1
T0

∫ t+T0

t
x(τ)y(τ)dτ,

4



1.1 Complex power and phasorial notation

φ

u(t)

i(t)

t

t

i(t)
ir(t) ia(t)

− θu
ω0

T

Figure 1.1: Decomposition of i(t) into two components ia(t) and ir(t), in-phase and out-of-phase
with u(t) respectively .

active and reactive powers can be defined as the instantaneous quantities:

P (t) = 〈u, i〉, Q(t) = 〈û, i〉.

Notice that, if u(t) and i(t) are sinusoidal signals, then P (t) = p and Q(t) = q.

1.1.1 Reactive power

Both residential and industrial users belonging to a microgrid may require a sinusoidal
current which is not in phase with voltage.

A convenient description for that consists in saying that they demand active power
and reactive power associated with in-phase and out-of-phase components of the current,
respectively. Consider the current and voltage sinusoidal signal in (1.1) and suppose
φ 6= 0. The current i(t) may be decomposed in two components owing to the properties
of sinusoidal functions:

i(t) = I sin(ω0t+ θu − φ)

= (I cosφ) sin(ω0t+ θu) + (I sinφ) sin(ω0t+ θu −
π

2
)

= ia(t) + ir(t),

where ia(t) = Ia sin(ω0t+θia) = (I cosφ) sin(ω0t+θu) can be defined as the active current
and it is the component in-phase with the voltage, while ir(t) = Ir sin(ω0t + θir) =
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Chapter 1. Introduction

(I sinφ) sin(ω0t+ θu − π
2 ) can be called reactive current and it is the component out-of-

phase with u(t).
The current ia(t) allows to have the following active and reactive powers:

p(a)(t) =
V Ia
2

cos(θu − θia) =
V I

2
cosφ = p(t)

q(a)(t) =
V Ia
2

sin(θu − θia) = 0,

being θu − θia = 0. It means that we have the same active power with both i(t) and
ia(t).

Differently, having a current ir(t):

p(r)(t) =
V Ir
2

cos(θu − θir) = 0

q(r)(t) =
V Ir
2

sin(θu − θir) =
V I

2
sinφ = q(t),

being θu − θir = π
2 .

Then the concept of reactive power is a convenient way of saying that the current
i(t) has a component (ir(t)) which leads to no active power.

Reactive power is not a real physical power, i.e. it does not involve fuel costs to
produce it. Nevertheless, also reactive power flows contribute to power losses on the
lines, cause voltage drop, and may lead to grid instability; then it is preferable to
minimize reactive power flows by producing it as close as possible to the users that need
it [13].

1.2 Optimal reactive power flow problem in a micro-

grid

Consider a portion of power distribution network (microgrid); let it be described by a
graph G, whose edges represent the electrical connections among the devices and nodes
correspond to agents, each of them injecting an amount p(v) of active power and a
quantity q(v) of reactive power into the network.

A subset of nodes can be commanded to inject a given amount of reactive power, while
they inject a fixed amount of active power (the amount generated by the corresponding
micro-generator). The other nodes (users) inject or are supplied with, if negative, a
fixed and unknown amount of both active and reactive power.

One possible approach to the problem of distributed reactive power compensation in
a smart microgrid has been proposed in [9]. It consists in a centralized controller that
measures the reactive power flow at the point where the microgrid connects with the
main grid. According to this measurement, the controller produces a reference for the
amount of reactive power that has to be produced inside the microgrid. This reference
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1.3 Outline

has to be split by a power sharing unit (PSU) among compensators, which can produce
a commanded amount of reactive power, in a way that minimizes reactive power flows
in the microgrid.

In [10], it is proposed a decentralized nonlinear controller for reducing system
losses by the optimal management of the reactive power supplied by the inverters
of photovoltaic units. The control strategy is based on an artificial dynamic system
explicitly designed to be stable by the adoption of Lyapunov theory; this dynamic
system provides control laws to be sent to local controllers of photovoltaic inverters,
acting as references.

Because of the characteristics of a smart microgrid and its agents, we think a
distributed approach is preferable. Here, we will propose a distributed algorithm in
which the optimization problem is decomposed into smaller subproblems, each one
related to a subset of agents able to exchange information. The subproblems are solved
one at a time (in a random and possibly repeated order), by using the Newton’s method
which guarantees a 1-step convergence. Even though this algorithm is not centralized,
we will show it to converge to the optimal solution of the problem under a reasonable
assumption on the communication constraints among the agents. Moreover we prefer it
compared with other possible methods (possibly better from a computational viewpoint)
because it keeps information about the network.

1.3 Outline

In Chapter 2 we propose a simple nonlinear model for the problem of optimal reactive
power flows in a microgrid and present a linearized version of this model, by using the
tool of the complex gradient. In order to catch the effect of the interconnections among
nodes, we express the voltages of nodes as a linear function of the injected currents by
all the nodes.

In Chapter 3, we define the optimization problem; by using an approximate expression
of the currents, the problem results to be a (quadratic) convex optimization problem.
Then we give an approximate expression of the gradient of the cost function, possibly
unknown by the agents.

In Chapter 4 we propose a distributed randomized algorithm for this problem. In
order to estimate the interval time between two consecutive iterations, we introduce an
approximate (linearized) dynamic model of the microgrid.

In Chapter 5 we analyze the performance of the algorithm, by showing a condition
for the convergence to the optimal solution of the optimization problem and providing
a bound on the rate of convergence.

In Chapter 6 we provide a result on the best achievable behaviour and some study
cases, corresponding to specific topologies of the grid.

7



Chapter 1. Introduction

Finally in Chapter 7 we validate the proposed models and simulate the behaviour of
the proposed optimization method.

1.4 Notations

In this section we describe the notation we will use thoroughout this thesis.
We use R to denote the set of real numbers, R+ to denote the set of positive real

numbers and C to denote the set of complex numbers. The set of real (complex)
n-vectors is indicated with Rn (Cn), while the set of real (complex) m× n matrices is
indicated with Rm×n (Cm×n). We denote vectors and matrices with square brackets.

Sometimes we will use a notation different from standards for vectors and matrices.
As we index the PCC node via the integer 0, the first elements of vectors u, i and s are
u(0), i(0) and s(0) respectively. Then, we say that the elements of the matrices related
to these vectors have the first row (and/or column) of index 0 (because related to the
PCC).

For example, the components of a certain (m× n)-matrix Y may be indicated as
follows:

Y =



y00 y01 · · · y0n

y10 y11 · · · y1n

...

...
ym0 ym1 · · · ymn


.

However, it will be explicitly said when such a notation is used.
A special vector is 1W ∈ Rn , defined as follows:

[1W ]i =

1 i ∈ W

0 i /∈ W
.

So, for example, if W = {w, 1 ≤ w ≤ n} (|W| = 1), the vector 1W is a vector of the
canonical basis; if W = {1, . . . , n}, 1W is a vector whose components are all one and,
for the sake of clarity, we denote this vector as 1.

The real part and the imaginary part of a vector or a variable y are indicated as
Re y and Im y respectively (analogously for matrices).

We indicate as Ȳ the complex conjugate of a matrix (or vector) Y and as Y T the
transpose of Y ; with Y ] we denote the Moore-Penrose generalized inverse of Y .

The kernel of a m× n matrix Y is the set

kerY = {y |Y y = 0}

while the imagine of Y is the set

ImY = {Y y,∃y} .

8



CHAPTER 2

Microgrid model

In this chapter we introduce an approximate model for the power distribution network
(microgrid).

We start by modelling a microgrid as a directed graph G = (V, E , σ, τ) (Figure 2),
where:

• V = {0, 1, . . . , N} is the set of nodes (|V| = N + 1); the node 0 is a special node:
the point of connection of the microgrid to the transmission grid (PCC or point
of common coupling);

• E = {1, . . . , NE} is the set of the edges (|E| = NE);

• σ, τ : E → V are two functions which associate an edge e ∈ E to its source node
σ(e) and terminal node τ(e) respectively.

Nodes of G represent agents (loads and generators connected to the microgrid), while
edges represent power lines.

The study of a grid may be decomposed into the analysis of the types of its
components (typology) and of the way they are interconnected (topology).

The typologies are defined by the laws relating currents and voltages at each node
of the microgrid. We model the node corresponding to the PCC as a constant voltage
generator, i.e.

u(0) = u0 ∈ C, (2.1)

whereas we assume that all the other nodes inject (or are supplied with, if negative) a
constant power into the microgrid:

s(v) = u(v) ī(v) = ŝ(v) ∈ C, ∀v ∈ V \ {0}, (2.2)

9



Chapter 2. Microgrid model

0 σ(e) τ(e)e

Figure 2.1: Graph describing the adopted microgrid model.

where u(v) is the voltage at node v, i(v) is the current injected by node v into the
grid, s(v) is the complex power injected by node v into the grid and ŝ(v) is a constant
reference complex power 1.

This model choice is a special case of the more general exponential model (see for
example [18]):

p(v) = p̂(v)
(
|u(v)|
|u0|

)ηp

; q(v) = q̂(v)
(
|u(v)|
|u0|

)ηq

(2.3)

where p̂(v) = Re ŝ(v) and q̂(v) = Im ŝ(v), while the exponents ηp and ηq are parameters
which can take any value; our case is the one in which ηp = ηq = 0, so that, by (2.3):

s(v) = p(v) + j q(v) = ŝ(v),

i.e. a constant power model like (2.2) 2.

The choice of such a model is a good approximation for all the devices connected to
the grid via an inverter. The vast majority of microgeneration devices and industrial or
residential loads fit in this category.

The topology of the microgrid is studied by Kirchhoff’s laws:

• Kirchhoff’s voltage laws (KVL):

u(σ(e))− u(τ(e)) = z(e) ξ(e) ∀e ∈ E (2.4)

where ξ(e) is the current flowing on the edge e and z(e) is the (complex) impedance
of the power line corresponding to the edge e;

• Kirchhoff’s current laws (KCL):

i(v) +
∑

e | τ(e)=v

ξ(e)−
∑

e |σ(e)=v

ξ(e) = 0. (2.5)

1Our study is limited to the steady state behaviour of the system, so voltages and currents are

sinusoidal signals with the same frequency f0; then u(v) and i(v) represent the corresponding phasors,

according to what described in the Introduction.
2Other frequent choices are ηp = ηq = 1 (constant current model) and ηp = ηq = 2 (constant

impedance model).

10



The topology of a graph can be also described by a matrix A ∈ {0,±1}NE×(N+1)

called incidence matrix. Each row corresponds to an edge and each column corresponds
to a node; the element in position (e, v) is:

[A]ev =


−1 if v = σ(e)
1 if v = τ(e)
0 otherwise.

(2.6)

As hinted in Section 1.4, we use a notation different from standards for matrix A (and
also for other matrices later): while the rows of A are indexed via the integers 1, . . . , NE ,
the columns are indexed via 0, . . . , N ; this is for the sake of clarity, owing to the notation
used for the set V = {0, . . . , N}. So the element in position (h, k) of the matrix A is
indicated as ah,k, with 1 ≤ h ≤ NE , 0 ≤ k ≤ N .

As each row of A contains only zeros except one 1 and one −1, the columns of the
matrix A are not independent.

In the following, we will assume the graph G is connected, i.e. there exists a path
connecting each couple of its nodes; then it can be shown that the vector 1 is the only
vector in kerA.

By the matrix A, the equations (2.4) and (2.5) can be rewritten in a compact way.
Let define the vectors:

u =


u(0)
u(1)

...
u(N)

 i =


i(0)
i(1)

...
i(N)

 ξ =


ξ(1)
ξ(2)

...
ξ(NE)

 s =


s(0)
s(1)

...
s(N)

 ;

then, a microgrid may be modelled by the following system of equations:

AT ξ + i = 0, (2.7a)

Au+ Zξ = 0, (2.7b)

u(v) ī(v) = s(v), ∀v ∈ V\{0} (2.7c)

u(0) = u0 (2.7d)

where Z = diag(z(e), e ∈ E).
It is worth noticing that, by multiplying both the sides of (2.7a) by 1T , we deduce

a further (redundant) constraint:

1T (AT ξ + i) = 1T i = 0

as we are assuming G to be connected (1 ∈ kerA).
Equations in (2.7) provide a nonlinear system of 2(N + 1) +NE equations, whose

variables are u, i, ξ. Our task is now solving this system in order to obtain the grid
voltages and currents, given the network parameters, the injected power at every node
and the nominal voltage at the PCC u0.

11



Chapter 2. Microgrid model

2.1 Matrices L and X

In this paragraph, we introduce two matrices which are useful for giving an expression
of u as a function of i and vice versa.

The first matrix we present is the Laplacian matrix L ∈ C(N+1)×(N+1), defined as:

L = ATZ−1A

Both rows and columns of L are indicated with indices belonging to the set {0, . . . , N};
the reason is the same explained before for matrix A.

From (2.7b):
ξ = −Z−1Au (2.8)

and, by substituting into (2.7a):
i = Lu. (2.9)

So, we have derived a solution for the current vector of the microgrid which is a linear
function of u.

In order to obtain a similar expression for the voltages, we should find a matrix
which allows to express the vector of voltages as a function of the vector of currents.
If L were a full rank matrix, we would find its inverse. However the matrix L is not
invertible (1 ∈ kerL). A natural approach is to use a generalized inverse (Appendix C)
of the Laplacian matrix, defined by the following lemma.

Lemma 1. There exists a unique symmetric matrix X ∈ C(N+1)×(N+1) such that:{
XL = I − 11T0

X10 = 0
(2.10)

Proof. We have to show the existence, the unicity and the simmetry of the matrix X.

• Existence: as kerL = Im1 = ker(I − 11T0 ), then there exists X̃ such that:
X̃L = I − 11T0 . Let be: X = X̃ (I − 101T ). Then:

XL = X̃ (I − 101T )L = X̃L = I − 11T0

X10 = X̃ (I − 101T )10 = 0,

so there exists a matrix X satisfying (2.10).

• Uniqueness: as[
X 1
1T 0

][
L 10

1T0 0

]
=

[
XL + 11T0 X10

1TL 1T10

]
=

[
I 0
0 1

]
it results: [

X 1
1T 0

]
=

[
L 10

1T0 0

]−1

.

Owing to the uniqueness of the inverse of a matrix, X is unique.

12



2.1 Matrices L and X

• Simmetry: as L = LT :

[
X 1
1T 0

]T
=

[
XT 1
1T 0

]
=

[ L 10

1T0 0

]−1
T

=

[
L 10

1T0 0

]−1

=

[
X 1
1T 0

]

and so X = XT .

In order to satisfy these properties, the matrix X must have the first row and the
first column (indexed with 0: for X we use the same notation of L) equal to zero.

The matrix X is positive semidefinite, it has only one eigenvalue in zero and
ker(X) = {10}.

By X it is possible to express u as a linear function of i: by multiplying both sides
of (2.9) by X, it results XLu = X i and, by (2.10):

u = X i+ u0 1. (2.11)

Then:

u(v) = 1Tv X i+ u0, (2.12)

for each node v ∈ V, included the node 0 representing the PCC, being:

u(0) = 1T0 X i+ u0 = u0

owing to the properties of the matrix X.
Finally, the effective impedance between two nodes is expressed as a function of X,

as stated by the following lemma.

Lemma 2. Let consider two nodes v and w of the graph G. The effective impedance
between v and w is zeff(v, w) : V × V → C and can be expressed as:

zeff(v, w) = (1v − 1w)TX(1v − 1w). (2.13)

Proof. The effective impedance measured across nodes v and w is the difference of
potentials that appears across terminals v and w when a unit current source is applied
between them. Consider the specific case when i = 1v − 1w, corresponding to a unit
current source connected from the node v to the node w. Then:

zeff(v, w) = u(v)− u(w) = (1v − 1w)Tu

= (1v − 1w)T [Xi+ u01]

= (1v − 1w)TX(1v − 1w).
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Chapter 2. Microgrid model

2.2 Approximate model

In this section we derive an approximate model for a microgrid, by linearization of the
nonlinear system (2.7) obtained in the previous section.

By substituting (2.9) into (2.7c), the system (2.7) can be rewritten as:{
u(v)1Tv L̄ ū = s(v) ∀v ∈ V \ {0}

u(0) = u0

Let be: µ = u− u01 and ε = 1/u0.

A microgrid can be described by the system g(µ, ε) = 0, with: g : CN → CN such
that: 

g0 = µ(0)

gv = ε

[
µ(v) +

1
ε
1Tv L̄ µ̄− s(v)

]
∀v ∈ V \ {0}

(2.14)

In order to make this system linear, we use the linear Taylor polynomial. Neverthless,
g(µ, ε) is a complex function of complex variables and this can create some problems.

A complex function can be thought as: g = gr + jgi and the linearization of g can
be made through the linearization of gr and gi and composing g at the end.

Tipically, the linearizations of gr and gi are done with respect to the real and
imaginary parts of their complex variables, so the gradient concerned is real. In [17], an
alternative approach based on the definition of complex gradient is proposed. It will be
briefly explained in the next paragraph.

2.2.1 Complex gradient

Let define the vector w ∈ R2n×1 as

w =



x1

y1

...
xn

yn


and f : R2n → R a smooth function of elements of the vector w.

The linear Taylor polynomial of f about the point w = 0 is:

f(w) ≈ f(0) +
∂f

∂wT

∣∣∣∣
w=0

w (2.15)

where ∂f
∂wT ∈ R1×2n is the row-vector of first-order derivatives of f with respect to the

elements of w and its transpose is called real gradient.
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2.2 Approximate model

Let consider a complex vector z ∈ Cn, whose components are zi = xi + jyi:[
zi

z̄i

]
= Ĵ

[
xi

yi

]
with Ĵ =

[
1 j

1 −j

]
(2.16)

[
xi

yi

]
= Ĵ−1

[
zi

z̄i

]
with Ĵ−1 =

1
2

¯̂
JT . (2.17)

Defining:

v =



z1

z̄1
...
zn

z̄n


it results:

v = Jw with J = diag[Ĵ , · · · , Ĵ ] ∈ C2n×2n

and
w = J−1v =

1
2
J̄Tv. (2.18)

As:
∂f

∂vi
=

2n∑
j=1

∂f

∂wj

∂wj
∂vi

it follows:

∂f

∂v
=

1
2
J̄
∂f

∂w
,

∂f

∂vT
=
(
∂f

∂v

)T
=

1
2

(
∂f

∂w

)T
J̄T =

1
2

(
∂f

∂wT

)
J̄T (2.19)

by keeping in mind that ∂f
∂v and ∂f

∂w are the transpose of ∂f
∂vT and ∂f

∂wT respectively.
The vector ∂f

∂v ∈ C2n×1 is defined as the complex gradient on the real function f

with respect to complex variable v.
From equations (2.18) and (2.19) it results:

∂f

∂wT
w =

1
2
∂f

∂wT
J̄Tv =

∂f

∂vT
v. (2.20)

Equations (2.19) and (2.20) show that the real gradient ∂f
∂w and the complex gradient

∂f
∂v are related by a simple linear transformation.

By substituting (2.20) in (2.15):

f(v) ≈ f(0) +
∂f

∂vT

∣∣∣∣
v=0

v. (2.21)

It is easy the extension to functions fc : Cn → C: we can follow the same procedure
seen before for the real functions Re fc and Im fc (which we assume both smooth
functions) and then compose fc = Re fc + j Im fc at the end: by (2.21)

fc(v) = fc(0) +
n∑
i=1

∂fc
∂zi

∣∣∣∣
v=0

zi +
n∑
i=1

∂fc
∂z̄i

∣∣∣∣
v=0

z̄i + o(|v|2), (2.22)
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Chapter 2. Microgrid model

where |v| denotes the vector containing the absolute values of the components of v.

It is worth noticing that, if v = v̂ is the solution of

fc(0) +
n∑
i=1

∂fc
∂zi

∣∣∣∣
v=0

zi +
n∑
i=1

∂fc
∂z̄i

∣∣∣∣
v=0

z̄i = 0,

then, by (2.22), fc(v̂) ∈ o(|v|2).

2.2.2 Approximate solution for currents

Let consider the system described by the equations g(µ, ε) = 0, where g = gr + jgi is
the one of equation (2.14) with:

grv =
gv + ḡv

2
=


µ0 + µ̄0

2
v = 0

χv + χ̄v
2

v 6= 0
giv =

gv − ḡv
2j

=


µ0 − µ̄0

2j
v = 0

χv − χ̄v
2j

v 6= 0
(2.23)

where χv = (ε µ(v) + 1)1Tv L̄ µ̄− ε s(v).
We want to write gr and gi by using the linear Taylor polynomial, as described in

the previous paragraph; by equation (2.21), it results:

gr(µ, ε) ≈ gr(0, 0) +
∂gr

∂µ

∣∣∣∣
(0,0)

µ+
∂gr

∂µ̄

∣∣∣∣
(0,0)

µ̄+
∂gr

∂ε

∣∣∣∣
(0,0)

ε+
∂gr

∂ε̄

∣∣∣∣
(0,0)

ε̄ (2.24)

where: gr(0, 0) = 0,

∂grv
∂ε

∣∣∣∣
(0,0)

=
∂grv
∂ε

∣∣∣∣
(0,0)

=


0 v = 0

µ(v)1Tv L̄ µ̄− s(v)
2

∣∣∣∣
(0,0)

= −s(v)
2

v 6= 0

∂grv
∂µ(w)

=
∂grv
∂µ̄(w)

=



1
2

v = w = 0

0 v = 0, w 6= 0

(ε̄ µ̄(v) + 1)1Tv L1v + ε1Tv L̄ µ̄
2

v = w 6= 0

(ε̄ µ̄(v) + 1)1Tv L1w
2

otherwise

and so:
∂grv
∂µ(w)

∣∣∣∣
(0,0)

=
1Tv L1Tw

2
v 6= 0.

As to the imaginary part of g:

gi(µ, ε) ≈ gi(0, 0) +
∂gi

∂µ

∣∣∣∣
(0,0)

µ+
∂gi

∂µ̄

∣∣∣∣
(0,0)

µ̄+
∂gi

∂ε

∣∣∣∣
(0,0)

ε+
∂gi

∂ε̄

∣∣∣∣
(0,0)

ε̄ (2.25)
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2.2 Approximate model

where: gi(0, 0) = 0,

∂giv
∂ε

∣∣∣∣
(0,0)

=
∂giv
∂ε

∣∣∣∣∣
(0,0)

=


0 v = 0

µ(v)1Tv L̄ µ̄− s(v)
2j

∣∣∣∣
(0,0)

= −s(v)
2j

v 6= 0.

∂giv
∂µ(w)

=
∂giv
∂µ̄(w)

=



1
2j

v = w = 0

0 v = 0, w 6= 0

−(ε̄ µ̄(v) + 1)1Tv L1v + ε1Tv L̄ µ̄
2j

v = w 6= 0

−(ε̄ µ̄(v) + 1)1Tv L1w
2j

otherwise

(2.26)

and so:
∂giv
∂µ(w)

∣∣∣∣
(0,0)

= −1Tv L1Tw
2j

v 6= 0.

From (2.22), by replacing these derivatives in (2.24) and (2.25), it results:

g(µ, ε) = gr + jgi ≈ −1
2

[
0
sM

]
ε− 1

2

[
0
s̄M

]
ε̄+

1
2

[
1T0
LM

]
µ+

1
2

[
1T0
L̄M

]
µ̄+

j

(
− 1

2j

[
0
sM

]
ε+

1
2j

[
0
s̄M

]
ε̄− 1

2j

[
−1T0
LM

]
µ+

1
2j

[
−1T0
L̄M

]
µ̄

)
where sM is the N -vector obtained from s by eliminating its first element s(0), while
LM is the N × (N + 1) matrix obtained from L by eliminating its first row (indexed
with 0 according to our notation).

So, the system described by equations g(µ, ε) = 0 is approximated by:{
µr(0) + jµi(0) = 0

L̄M µ̄− sM ε = 0

which is equivalent to: {
u(0) = u0

LM (u− u01) = LM , u = ε̄ s̄M
(2.27)

The system (2.27) is linear, with N + 1 equations and the couple (u, s) as variables.
From (2.9) and (2.27) we can conclude (indicating with l0 the first row of L, indexed

with 0):

i = Lu =

[
l0u

LMu

]
≈ 1
ū0
s̄ (2.28)

with the constraint s(0) = −
∑

v∈V\{0} s(v), according to (2.7a)
In particular, by the considerations in the previous paragraph, it results:

i =
1
ū0
s̄+ o

(
1
|u0|2

)
:
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Chapter 2. Microgrid model

the solution of (2.27) in (2.28) is a good approximation for large values of the voltage
at the PCC u0 and values of voltages of nodes which are about u0.

A numerical validation of the approximate model proposed in this section will be
presented in Section 7.1.
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CHAPTER 3

Problem formulation

This chapter and the following one represent the core of this thesis. Here we will define
the optimization problem, then we will propose an algorithm to solve it.

As described in the previous chapter, we will choose of optimizing the power losses
minimization, and in particular the losses related to the reactive power. Thanks to the
proposed model of a microgrid, we will able to define an approximate but quadratic
cost function and so we will have the advantage of working with a convex optimization
problem.

Moreover, an estimation of the gradient of the cost function will be proposed: it
will depend only on local measurements, as it is necessary owing to the characteristics
of the agents, which usually have a partially knowledge of the grid.

3.1 Cost function for power losses minimization

In this section we define the optimization problem for the optimal reactive power
compensation.

Our choice is to minimize the total active power losses on the edge:

∑
e∈E

Re l(e) =
∑
e∈E

Re[z(e) |ξ(e)|2] = Re[ξ̄TZ ξ].
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Chapter 3. Problem formulation

By (2.8):

Re l(e) = Re[ξ̄TZ ξ] = Re[ūTAT Z̄−1Au]

= Re[(X̄ ī+ u01)T L̄ (X i+ u01)]

= Re[̄iT X̄ L̄X i]

= Re[̄iT (I − 11T0 )X i]

= Re[̄iTX i]

where we have used (2.11) and the properties of the matrices L and X.

By using the approximate solution for the variable i obtained in (2.28):

∑
e∈E

Re l(e) = Re[̄iTX i] ≈ 1
|u0|2

Re[sTX s̄]

=
1
|u0|2

Re[s̄TX s]

=
1
|u0|2

Re[(pT − jqT )(Re[X] + j Im[X])(p+ jq)]

=
1
|u0|2

(
pT Re[X] p+ qT Re[X] q

)
(3.1)

where p = Re s is the injected active power, while q = Im s is the injected reactive
power. So the problem of optimal power flows has been decomposed into the problem
of optimal active and reactive power compensation.

For the formulation of the minimization problem, it is reasonable to command only a
subset C ⊆ V : this is the set of compensators, whose cardinality is indicated as |C| = NC .

Moreover, according to what said in Section 1.1.1, we assume we are allowed to
command only the amount of reactive power injected into the grid by the nodes of
C, as the decision on the amount of active power follows imperative economic criteria
(for example, in the case of renewable energy sources, any available active power is
generally injected into the grid to replace generation from traditional plants which are
more expensive and exhibit a worse environmental impact).

According to these assumptions, we introduce, without loss of generality 1, the
following block-form for q and X:

q =

[
qC̄
qC

]
X =

[
XC̄C̄ XC̄C
XCC̄ XCC

]
. (3.2)

Then, the cost function (3.1) is equivalent to:

1If nodes are not oredered according to this notation, it is sufficient to introduce a proper reordering

of nodes’indices.
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3.1 Cost function for power losses minimization

J ′(qC) =
1
|u0|2

qT Re[X]q

=
1
|u0|2

[
qTC̄ qTC

]
Re

[
XC̄C̄ XC̄C
XCC̄ XCC

][
qC̄
qC

]
=

1
|u0|2

(
qTC Re[XCC ] qC + 2qTC̄ Re[XC̄C ] qC + qTC̄ Re[XC̄C̄ ] qC̄

)
,

(3.3)

where we have exploited the simmetry of the matrix X.
The optimization problem may be formulated as follows:

min
qC

J(qC)

subject to 1T qC = −1T qC̄ (3.4)

where
J(qC) =

1
|u0|2

(
qTC Re[XCC ] qC + 2qTC̄ Re[XC̄C ] qC

)
(3.5)

is the objective function of the problem, obtained from (3.3) exploiting the fact that
the minimization is with respect to qC; thanks to the approximation (2.28), (3.5) is
a (quadratic) convex function and the problem of optimal reactive injection at the
compensators, defined by (3.4), is a quadratic, linearly constrained problem.

We now introduce an assumption on the impedances of the edges (power lines) of
the microgrid.

Assumption 3. The inductance-resistance ratio is fixed for each edges, i.e.:

z(e) = z(e) ejθe with θe = θ ∀e ∈ E ,

where z(e) = |z(e)|.

By Assumption 3:

Z = ejθZ L = ATZ−1A = e−jθATZ−1A = e−jθL X = ejθX, (3.6)

where Z, L, X are real valued matrices.
Moreover, the cost function (3.5), can be rewritten as:

J(qC) =
cos θ
|u0|2

(
qTCXCC qC + 2qTC̄XC̄C qC

)
. (3.7)

The matrix XCC (together with XCC) is, in general, positive semidefinite. However,
under the following assumption, we will show that XCC > 0.

Assumption 4. The set of compensators does not contain the PCC node, i.e.: 0 /∈ C.
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We suppose Assumption 4 holds in the following chapters, because it simplify our
analysis: in fact, the result in the following proposition is guaranteed.

Proposition 5. Let Assumption 4 hold. Then XCC > 0.

Proof. We have to show that yTXCC y > 0 for each y 6= 0.
If there exist a ŷ 6= 0 such that ŷTXCC ŷ = 0, then there would exist also a vector ỹ

such that:

ỹTX ỹ =
[
0 ŷT

] [XC̄C̄ XC̄C
XCC̄ XCC

][
0
ŷ

]
= ŷTXCC ŷ = 0.

This implies that ỹ ∈ kerX, according to Proposition 32 in Appendix D.
But this is absurd, because we have obtained a vector ỹ 6= 10 in kerX (10 is the

only vector in kerX according to the definition of the matrix X).
Notice that if the node 0 were a compensator, then the absurd could not occur.

It is worth noticing that the results we will present in the following chapters hold
also in absence of the Assumption 4, provided that the inverse matrices of XCC are
replaced with the corresponding generalized inverse matrices. In fact we can state, with
abuse of language, that XCC is actually positive definite ”in the subspace defined by
the constraint”, because, if 0 ∈ C, then q0 could be removed from the set of decision
variables thanks to the constraint 1T q = 0 and the optimization problem be expressed
as:

min
1T qC′=−1T qC̄−q0

cos θ
|u0|2

(
qTC′X

M
CC qC′ + 2qTC̄X

M
C̄C qC′

)
,

where XM
C̄C and XM

CC > 0 are obtained from the matrix XCC after eliminating the column
and the row and the column corresponding to node 0 respectively, whereas C′ = C \ {0} .

In Chapters 6 and 7 these considerations will be confirmed, as simulations will be
presented including the PCC node among the compensators.

3.2 Gradient estimation

In the following chapter, we will present an algorithm to solve the quadratic optimization
problem (3.4), which requires the knowledge of the gradient of the cost function (3.7):

∇J(qC) =
2 cos θ
|u0|2

(XCCqC +XCC̄qC̄)

=
2 cos θ
|u0|2

[
0 I

] [XC̄C̄ XC̄C
XCC̄ XCC

][
qC̄
qC

]

=
2 cos θ
|u0|2

Im
(
X̂s
)
,

(3.8)

where we have defined X̂ =
[
XC̄C̄ XC̄C

]
X.

22



3.2 Gradient estimation

The cost function J(qC) and its gradient ∇J(qC) depend on the grid parameters
(matrix X or parts of it) and the power demand (vector qC) of the whole compensators
of the microgrid. As described in Section 1, the agents of a smart microgrid (nodes
of the graph G) usually have only a partial knowledge of this information and so we
exclude that agents are able to retrieve all these data or there exists a centralized agent
capable to collect all the necessary information.

In this section we try to calculate an estimate of the gradient (3.8), depending only
on the information of a subset of agents C′ ⊆ C.

By (2.11) and (2.28):

uC = ejθX̂i+ u01

≈ ejθ X̂s̄
ū0

+ u01,

where uC denotes the vector of voltages of the nodes belonging to the set C.
It follows that:

X̂s̄ ≈ e−jθū0(uC − u01)

and:
Im[X̂s̄] ≈ Im(e−jθū0uC − e−jθ|u0|21).

It is unlikely that the value of u0 is known and so it must be estimated. A possible
choice is to replace it with the average voltage of the nodes belonging to C′, so that:

Im[X̂s] = − Im[X̂s̄] ≈ − Im(e−jθ
ūTC 1C′
|C′|

uC) + Im(e−jθ|u0|21)

= −ν + κ1,
(3.9)

where:

ν = Im
[
e−jθ

ūTC 1C′
|C′|

uC

]
. (3.10)

By substituting (3.9) into (3.8):

∇J ≈ −2 cos θ
|u0|2

ν + κ′1, (3.11)

where κ′ is a constant but unknown term.
We suppose nodes in C′ to be allowed to measure the voltages of the nodes of the

same subset (uC′) and the inductance-resistance ratio θ (local measurements), so that
they are able to compute the quantity νC′ .

Then, these nodes can obtain an estimate of their corresponding components of the
gradient (∇JC′), up to a common but unknown constant.

However, the term κ′1 is orthogonal to the subspace of feasible solutions and it is
not harmful for our analysis, as it will be shown in the next chapter.

The quality of the gradient estimation (3.11) via voltage measurements will be
validated via simulations in Section 7.1.
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CHAPTER 4

A randomized distributed

algorithm

In this chapter we will propose an algorithm in order to solve the optimization problem
(3.4), whose cost function is given by (3.7).

Owing to the characteristics of a smart microgrid and its agents, we will design a
distributed algorithm.

As described in Chapter 1, the agents of the microgrid generally have only a partial
knowledge of the system. So they have to make estimates from local measurements and
the information they gather in their neighborhood.

For this purpose, the optimization algorithm will have to alternate operations of
sensing, processing and actuating the system. This aspect of the problem is one of
the most important facts that differentiate the application of distributed optimization
methods in this framework from the ones available in literature, mainly derived for
the problem of dispatching part of a large scale optimization algorithm to different
processing units [1], [11].

The main idea of the proposed algorithm is the clustering of agents able to exchange
information, together with the decomposition of the original large minimization problem
into smaller subproblems (each one related to a specific cluster of agents). These
subproblem are solved iteratively and randomly, by using the Newton’s method because
of its good convergence features.

We think that a distributed approach is the right way of solving the problem (3.4).
However, it guarantees the convergence to the optimal solution under a reasonable
assumption on the communication graph among the nodes, as shown in the following
chapter. Moreover, compared with other possible approaches, the solutions of the
optimization subproblems explicitly contain the matrix XCC (or parts of it), so that we
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keep information on the topology of the network.

In the second part of this chapter, we will try to obtain an estimate of the minimum
time between two consecutive iterations of the algorithm. For this purpose, we will
introduce a dynamic model of the microgrid. The linearity of the considered model
will allow us to calculate the settling time of the system (and so the time needed to
attain a new steady state and the analysis of the previous and the following chapters
still holds), which is a function of the eigenvalues, the eigenvectors and the initial state
of the system.

4.1 Optimization problem decomposition

Let the compensators be divided into ` possibly overlapping sets C1, . . . , C`, with

⋃̀
i=1

Ci = C, |Ci| = NCi 1 ≤ i ≤ `.

We assume that nodes belonging to the same set are able to communicate each
other, i.e. they can coordinate their actions and sharing their measurements.

The proposed algorithm minimizes the optimization problem (3.4) by solving a
sequence of optimization subproblems (one at a time), each one related to a specific
cluster Ci. In particular, at a certain instant t, one of the clusters, say Ci, is randomly
”activated”: by using the information that the nodes belonging to the same set Ci share,
they update their states according the solution of the optimization subproblem:

arg min
∆qC∈Si

J(qC + ∆qC), (4.1)

where

Si =

q ∈ RNC :
∑
j∈Ci

qj = 0 ; qj = 0, ∀j 6∈ Ci

 .

That means that nodes belonging to Ci update their state, while the others (belonging to
C̄i = C \ Ci) keep their state constant, at the value solution of the previous minimization
subproblem (notice that it is uninfluent if the previous subproblem was related to the
same cluster or to another one).

When the subproblem related to the cluster Ci has been solved, a new cluster Cj is
(randomly) chosen and a new subproblem (related to the cluster Cj) has to be solved.

The goal is attaining the minimizer of the original problem (3.4): the existence of
such a minimizer is guaranteed, being the problem quadratic; the convergence to this
point will be demonstrated in the next chapter.
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4.2 Solving optimization subproblems

In this paragraph we define and solve the optimization subproblems faced by the nodes
belonging to the cluster Ci.

For the sake of simplicity, we introduce a block-form for XC̄C and for XCC and qC,
similarly to what done in (3.2):

qC =

[
qC̄i

qCi

]
XCC =

[
XC̄iC̄i

XC̄iCi

XCiC̄i
XCiCi

]
XC̄C =

[
Ȳi Yi

]
From (3.7)

J =
cos θ
|u0|2

([
qTC̄i

qTCi

] [XC̄iC̄i
XC̄iCi

XCiC̄i
XCiCi

][
qC̄i

qCi

]
+ 2qTC̄

[
Ȳi Yi

] [qC̄i

qCi

])

=
cos θ
|u0|2

[
qTCi
XCiCiqCi + 2qTC̄i

XC̄iCi
qCi + qTC̄i

XC̄iC̄i
qC̄i

+ 2(mT
Ci
qCi +mT

C̄i
qC̄i

)
]
.

(4.2)

where: mT
Ci

= qTC̄ Yi and mT
C̄i

= qTC̄ Ȳi and we have exploited the simmetry of matrix X.

The optimization subproblem faced by the nodes in Ci can be formulated as:

min
qCi

J(qCi) =
cos θ
|u0|2

[
qTCi
XCiCiqCi + 2(qC̄i

XC̄iCi
qCi +mT

Ci
)qCi

]
subject to 1T qCi = c.

(4.3)

where the cost function has been obtained by (4.2), keeping in mind that the minimization
is with respect to qCi and c = −1T qC̄ − 1T qC̄i

.

In order to solve the minimization problem (4.3), we use a classical tool in convex
optimization. It is a class of algoritms (called descent algorithms), which produce a
minimizing sequence {qCi(t)}, where:

qCi(t+ 1) = qCi(t) + ∆qCi(t). (4.4)

In this way, agents in Ci can attain the optimal solution by adding the step ∆qCi to qCi .

Descent algorithms include many methods which differ for the choice of the step
∆qCi ; here we will choose the Newton’s method : supposing that the Hessian matrix of
the cost function in (4.3) is completely known, it allows to obtain the fastest (1-step)
convergence (being the problem quadratic) 1.

1If the Hessian matrix is not fully known, other descent methods can be used. For example, if a

minimal knowledge is available (diagonal of the matrix), then the Steepest Descent method can be

used, but it may require a large number of iterations to converge. Otherwise, it is possible to use a

Quasi-Newton Method, which build an estimate of the inverse of the Hessian from the previous step of

the algorithm: it requires a minimal knowledge of the problem and allows a faster convergence compared

to Steepest Descent Method [2].
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According to this method (see Section A.2.2 for details):

∆qCi = −
(
∇2J(qCi)

)−1 [∇J(qCi) + 1γ] ,

where:

∇J(qCi) =
2 cos θ
|u0|2

[
XCiCiqCi +XC̄iCi

qC̄i
+mCi

]
∇2JCi(qCi) =

2 cos θ
|u0|2

XCiCi .

Then the following proposition holds.

Proposition 6. The solution of the constrained optimization problem (4.3) is given by
(4.4) where:

∆qCi =
|u0|2

cos θ

[
−
X−1
CiCi

2
∇JCi +

1TX−1
CiCi
∇JCi

1TX−1
CiCi

1

X−1
CiCi

2
1

]
,

assuming the matrix XCiCi fully known.

Proof. We have to show (see Section A.1):

• qCi(t+ 1) is feasible:

1T qCi(t+ 1) = 1T qCi(t) +
|u0|2

cos θ

[
−1T

X−1
CiCi

2
∇JCi +

1TX−1
CiCi
∇JCi

1TX−1
CiCi

1

1TX−1
CiCi

2
1

]

= c+
|u0|2

cos θ
1T
X−1
CiCi

2
∇JCi

[
1TX−1

CiCi
1

1TX−1
CiCi

1
− 1

]
= c

(4.5)

• the gradient ∇JCi is orthogonal to the constraint:

∇JCi(qCi(t+ 1)) = 2
cos θ
|u0|2

[
XCiCi(qCi(t) + ∆qCi(t)) +XC̄iCi

qC̄i
(t) +mCi(t)

]
= ∇JCi + 2XCiCi

[
−
X−1
CiCi

2
∇JCi +

1TX−1
CiCi
∇JCi

1TX−1
CiCi

1

X−1
CiCi

2
1

]

= ∇JCi −∇JCi +
1TX−1

CiCi
∇JCi

1TX−1
CiCi

1
1

=
1TX−1

CiCi
∇JCi

1TX−1
CiCi

1
1 ∈ Im1.

(4.6)

As said before, nodes usually have a partial knowledge of the system, and so the
gradient of the cost function may be unknown.

By sensing the network voltages and calculating the quantity νCi , the nodes of the
cluster Ci can estimate ∇JCi according to (3.11).
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Nodes in Ci can therefore solve their corresponding optimization subproblem by
performing the update

∆qCi = qCi(t+ 1)− qCi(t)

=
|u0|2

cos θ

[
−
X−1
CiCi

2
∇JCi +

1TX−1
CiCi
∇JCi

1TX−1
CiCi

1

X−1
CiCi

2
1

]

=
|u0|2

cos θ

[
−
X−1
CiCi

2

(
−2 cos θ
|u0|2

νCi + κ′1
)

+
1TX−1

CiCi

1TX−1
CiCi

1

(
−2 cos θ
|u0|2

νCi + κ′1
)
X−1
CiCi

2
1

]

= X−1
CiCi

νCi +
|u0|2

cos θ
κ′
X−1
CiCi

2
1−

1TX−1
CiCi

νCiX
−1
CiCi

1

1TX−1
CiCi

1
+
|u0|2

cos θ
κ′

1TX−1
CiCi

1X−1
CiCi

1

1TX−1
CiCi

1

= X−1
CiCi

νCi −
1TX−1

CiCi
νCi

1TX−1
CiCi

1
X−1
CiCi

1

It can be noticed that now the update law depends only on the matrix XCiCi together
with the inductance-resistance ratio θ and the voltage measurements of the nodes
belonging to a same subset Ci (according to (3.10)).

As said in Section 3.2, the term κ′1, depending on the possibly unknown voltage u0,
is canceled from the expression of ∆qCi .

We conclude this section summarizing the operations of the proposed algorithm. It
consists of the following, repeated steps:

1. a set Ci is randomly chosen according to a sequence of symbols η(t) ∈ {1, . . . , `};

2. agents in Ci sense the network and obtain an estimate of the gradient;

3. agents in Ci determine a feasible update step that minimizes the given cost function,
coordinating their actions and communicating;

4. they actuate the system by updating their state (the injected reactive power).

The iterated algorithm will then results in the following discrete time system for q

qC(t+ 1) = Tη(t)[qC(t)] := arg min
∆qC∈Sη(t)

J(qC(t) + ∆qC), (4.7)

with initial conditions q(0) such that 1T qC(0) = −1T qC̄(0).

In the following chapter we will show that the proposed algorithm exhibits good
characteristics: it converges to the optimal solution of the optimization problem under
an assumption on the communication constraints of the compensators; moreover we
will say something about the speed of convergence, at least for specific topologies of the
grid.

Before, we consider another question, related to the time between two consecutive
iterations of the proposed algorithm.
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4.3 Time between consecutive iterations

In this section, we want to say something about the interval time between consecutive
iterations of the distributed algorithm proposed in 4.2.

When a subproblem is solved, the amount of reactive power injected by the com-
pensators (the state of the system) is updated. It affects the grid voltages, which are
subject to a transient period. We need to understand how long after changing the
vector q, the grid voltages reach a new steady state value: the following iteration of the
algorithm cannot start before it occurs.

We aim at obtaining a model capable of describing the dynamic behaviour of the
measured voltages as a function of the injected complex power.

A static model, such as the one introduced in Chapter 2, is unlikely for such a task.
Thus, in the following paragraphs, we will introduce a dynamic network model. Instead
of using a simulative tool, we will derive it analytically: in this way, we will able to have
a model in which the effects of the network topologies and parameters are recognizable.

The approximate version of the aforementioned model will allow us to use the
classical tools of the linear systems; in particular, it will be possible to estimate the
settling time of the system, being also related to the largest of its eigenvalues, and then
to bound the interval time between consecutive iterations of the algorithm.

Also in this section we will use a phasorial notation, even though the phasors should
rigorously be used for steady state behavior only. This is however acceptable if the
typical transient duration that we are considering is longer than the fundamental period
of the signals [19].

4.3.1 Dynamic network model

In this paragraph we deduce a dynamic model for a microgrid. Simplifying the scenario,
we can say that the dynamics of a microgrid are mainly due to:

• the power lines;

• the inverters, related to compensators or loads.

The dynamics due to the power lines are generally considered negligible after a
fundamental period of the signals, because the lines’ characteristic resistance and
inductance have usually values so that the time constant L/R is small.

As to the nodes, we build a model which keeps into account the assumptions on the
typologies of the microgrid introduced in Section 2.

We still model the node 0, corresponding to the PCC, as a constant voltage generator;
for the other nodes (loads and compensators) we now adopt the following dynamic
model:

τv
di(v)
dt

= −i(v) +
s̄(v)
ū(v)

, v = 1, . . . , N, (4.8)
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where τv is the characteristic time constant, and s(v) is the constant reference complex
power.

The choice of such a model comes from the fact that the steady state of (4.8) is

i(v) =
s̄(v)
ū(v)

,

i.e. a static constant power model, like in Section 2.
In this way, we assume that loads and compensators behave as constant power loads

with a first-order dynamic.
The model (4.8) corresponds to the widely adopted model introduced in [21], [22],

[23] on the basis of experimental data. According to the literature, it describes quite
well the behavior of the vast majority of microgeneration devices [24], [25], and is also a
good approximation for many industrial and residential loads.

The time constant τv can differ a lot from node to node: it is generally large for loads
and small for compensators. This is because the dynamics of compensators are fast
compared to the ones of loads, so we could neglect them and consider the steady state
relation (2.2) for compensators and the dynamic model (4.8) for loads. As said before,
we instead use the dynamic model (4.8) for all the nodes (loads and compensators);
this choice does not affect our results because, setting the time constants very small for
compensators (τv ≈ 0), then:

τv
di(v)
dt

= −i(v) +
s̄(v)
ū(v)

≈ 0 ⇒ i(v) ≈ s̄(v)
ū(v)

,

which is an approximation of the steady state relation (2.2).
So, the dynamic model proposed for the microgrid is the following:

Lu = i, 1T i = 0

u(0) = u0

τv
di(v)
dt

= −i(v) +
s̄(v)
ū(v)

, v ∈ V \ {0}

(4.9)

As the voltages and the currents of the PCC are trivially defined by:

u(0) = u0 i(0) = −
∑
v 6=0

i(v),

we continue the analysis only for the other nodes.
Let us define the N -vectors U , J and S, obtained from u, i and s respectively, after

eliminating the first element (indexed by 0):

U =


u(1)

...
u(N)

 , J =


i(1)

...
i(N)

 , S =


s(1)

...
s(N)
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and the matrix XM as the matrix obtained from X after eliminating the first row and
the first column.

Let be ε = 1
ū0

; by (2.12), the dynamics described by (4.8) can be written as:

τv
di(v)
dt

= hv(J ; ε), v ∈ V \ {0} (4.10)

where:

hv(J ; ε) = −i(v) +
s̄(v)
ū(v)

= −i(v) +
s̄(v)ε

ε1Tv X̄M J̄ + 1
, v ∈ V \ {0}. (4.11)

The model (4.10) is a N -dimensional nonlinear dynamic system, in which the state of
the system corresponds to the currents injected by the nodes, and the coupling between
the individual nodes is due to the matrix XM in the denominator. It is a nonlinear
input-output relation between power references s(v) and node voltages u(v).

4.3.2 Approximate model

The model introduced in the previous paragraph is nonlinear: as it can be very hard
working with nonlinear models, we now derive an approximate model by linearization
of (4.11).

By using the quadratic Taylor expansion of hv’s about the point ε = 0:

hv(J ; ε) ≈ hv(J ; 0) +
∂hv(J ; ε)

∂ε

∣∣∣∣
ε=0

ε+
1
2
∂2hv(J ; ε)

∂ε2

∣∣∣∣
ε=0

ε2 (4.12)

where:

hv(J ; ε)|ε=0 = −i(v)

∂hv(J ; ε)
∂ε

∣∣∣∣
ε=0

=
s̄(v)

[
ε1Tv X̄M J̄ + 1

]
− ε s̄(v)1Tv X̄M J̄(

ε1Tv X̄M J̄ + 1
)2

∣∣∣∣∣
ε=0

= s̄(v)

∂2hv(J ; ε)
∂ε2

∣∣∣∣
ε=0

=
−2 s̄(v) (ε1Tv X̄M J̄ + 1)1Tv X̄M J̄(

ε1Tv X̄M J̄ + 1
)4

∣∣∣∣∣
ε=0

= −2 s̄(v)1Tv X̄M J̄

Then, by (4.12), the dynamics of each node are approximated with:

τv
di(v)
dt
≈ −i(v) + ε s̄(v)− ε2 s̄(v)1Tv X̄M J̄ .

While the first and the second term depend only on the current and power reference
of each node, the third term models the coupling between all the grid nodes via the
matrix XM .

Then, the approximate system is the following:

T
dJ
dt

= −J + ε S̄ − ε2 diag(S̄) X̄M J̄
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where:

T =



τ1 0 · · · · · · 0
0 τ2 0 · · · 0
...

. . . . . . . . .
...

...
. . . . . . . . .

...
0 · · · · · · 0 τN


.

In order to obtain a linear system in a state-space form, we augment the state and
the input, obtaining a 2N -dimensional system:[

T 0
0 T

]
d
dt

[
J

J̄

]
= Γ

[
J

J̄

]
+ Φ

[
S

S̄

]
(4.13)

where

Γ =

[
−I −ε2 diag(S̄)X̄M

−ε̄2 diag(S)XM −I

]
and Φ =

[
0 εI

ε̄I 0

]
.

This system is a linear, time-varying system, as the input S is also present in the
state update matrix Γ. However, if we assume that power references change slowly
compared to the transient of the system, then we can assume that diag(S̄) is a constant
matrix and (4.13) becomes a linear, time-invariant system.

It is worth noticing that the proposed approximate model (4.13) explicitly presents
the network topology (matrix XM ) and the power demands (vector S): it allows to
understand how these parameters affect the dynamic behaviour of the model.

4.3.3 Eigenvalue analysis

In the previous paragraph we have built the dynamic model described by (4.13): it is
an approximate version of the exact model (4.9).

In Section 7.3, we will show how the model (4.13) approximates well the behaviour
of the original nonlinear system.

Owing to this characteristic, we will use the approximate model: being a linear
system, we are able to study its dynamic behaviour by using the classical tools of linear
systems, for example the eigenvalue analysis.

It can be shown that the eigenvalues of the state update matrix Γ can be approxi-
mated, for small values of ε as:

Λ(Γ) =
{
− 1
τv
± |ε||s(v)||[XM ]vv|

τv

}
. (4.14)

Expression (4.14) shows that eigenvalues of the system depend on the time constant
of each node v, its power demand and the element of the matrix XM in position (v, v).

If the dominant eigenvalue of the system were much larger than all the others, than
a simple expression for the settling time could be given by:
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ts ≈ −
3
p
,

where p is the position of the dominant eigenvalue.
Nevertheless, this expression for the settling time does not hold in general. What we

can say is that the settling time of a system of large order is a function of the dominant
eigenvalue, together with other many factors (eigenvalues, eigenvectors and initial state).

A possible approach to obtain a formula for the settling time could be the use of
reduced-order system.

However, by the positions of the dominant eigenvalues, we can have an idea of the
possible settling time of the system (see simulations in Chapter 7).

Then, when we know the settling time of the system (i.e. the time ∆t in order that
the system reaches a new steady state value after changing the commanded reactive
power at the compensators), we can conclude that the interval time between consecutive
iterations of the algorithm must be larger than the settling time ∆t.
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CHAPTER 5

Analysis of the algorithm

In this chapter we will show that the algorithm introduced in the previous chapter
has good convergence characteristics: we will give a sufficient and necessary condition
(related to the communication constraints among the compensators) for the convergence
to the optimal solution of the minimization problem (3.4).

Then, we will study the speeed of convergence of the algorithm, obtaining a convenient
upper bound for the rate of convergence.

Before discussing about the convergence results, a new set of matrices is introduced;
it will be useful in the rest of the thesis.

5.1 Matrix Ωi and its properties

Define the NC ×NC matrices

Ωi = ICi −
1
|Ci|

1Ci1
T
Ci

1 ≤ i ≤ `, (5.1)

where |Ci| is the cardinality of the set Ci and ICi is the diagonal matrix having diagonal
entries 1 in positions belonging to Ci and zero elsewhere.

It is easy to verify that the set of matrices Ωi, defined in (5.1) can be also expressed
as:

Ωi =
1

2|Ci|
∑
h,k∈Ci

(1h − 1k)(1h − 1k)T (5.2)

Proposition 7. The matrix Ωi is a symmetric projector, i.e. it satisfies the following
properties:

1. simmetry: Ωi = ΩT
i ;
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2. idempotency: Ωi = Ω2
i

The two previous properties are easily proved by applying the definition (5.1).
It is possible to state another property of Ωi, related to its Moore-Penrose generalized

inverse (Section C.1 in Appendix C):

Ωi = Ω]
i.

In fact, by using the properties of the matrix Ωi and the properties of the generalized
inverse of a matrix (Definition 30), we can state that:

Ω]
i = Ω]

iΩiΩ
]
i

=
(
Ω]
iΩi

)
Ωi

(
ΩiΩ

]
i

)
=
(
Ω]
iΩi

)T
Ωi

(
ΩiΩ

]
i

)T
= Ωi

(
Ω]
iΩiΩ

]
i

)
Ωi

= ΩiΩ
]
iΩi = Ωi

where we have used also the fact that:
(
Ω]
i

)T
=
(
ΩT
i

)].
The following proposition state some properties of the matrix (ΩiMΩi) and its

pseudoinverse, which will appear in the following.

Proposition 8. Let be Ωi the matrix defined in (5.1) and M ∈ RNC×NC a symmetric
positive definite matrix; it holds:

1. ker(ΩiMΩi)] = ker(ΩiMΩi) Im(ΩiMΩi)] = Im(ΩiMΩi)

2. ker(ΩiMΩi) = kerΩi

3. (ΩiMΩi)] = (ΩiMΩi)]Ωi = Ωi(ΩiMΩi)]

Proof. Let show separately the three properties:

1. From Proposition (C.2), it results that:

ker(K]) = ker(KT ) Im(K]) = ImK ∀K. (5.3)

In particular, (5.3) holds for K = (ΩiMΩi) = (ΩiMΩi)T .

2. It easy to show that if y ∈ ker Ωi, then it also holds: y ∈ ker(ΩiMΩi).

Vice versa, if y ∈ ker(ΩiMΩi), then: yT (ΩiMΩiy) = 0.

By defining: ỹ = Ωiy, as M > 0, it results:

ỹTMỹ = 0 ⇔ ỹ = Ωiy = 0.
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3. We will show that:

(ΩiMΩi)]y = (ΩiMΩi)]Ωiy ∀y ∈ CNC

The vector y can be written as the sum of a vector in the subspace ker Ωi of CNC

and a vector in its orthogonal complement ker Ω⊥
i = Im Ωi:

y = α1Ci + Ωiy;

so:

(ΩiMΩi)]y = (ΩiMΩi)](α1Ci + Ωiy)

= (ΩiMΩi)]Ωiy

where we have exploited the fact that, according to the previous properties:

1Ci ∈ ker Ωi = ker(ΩiMΩi) = ker(ΩiMΩi)]

5.2 Convergence results

In this section we analyze the algorithm proposed in Section 4.1.
We give a condition for the convergence of the algorithm to the optimal solution of

the convex problem (3.4), whose existence is guaranteed by the fact that the problem is
quadratic.

We also show that the condition for the convergence corresponds to a requirement
on the clusters Ci, i = 1, . . . , `.

For this purpose we give a more general definition of graph.

Definition 9. An hypergraph H is a pair (V, E) in which edges (hyperedges) are subsets
of V of arbitrary cardinality.

By Definition 9, the subset Ci, i = 1, . . . , ` introduced in Section 4.1 can be inter-
preted as the edges of a hypergraph defined over the set of nodes C.

5.2.1 Equivalent optimization problem

In this paragraph we introduce an equivalent optimization problem which allows to
express the solution of the subproblems as a linear system.

Let define a variable x = qC − qopt
C ∈ RNC , where qopt

C is the solution of the
optimization problem (3.4).
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Proposition 10. The optimization problem (3.4) with cost function (3.7) is equivalent
to:

min
x

V (x) = xTMx

subject to 1Tx = 0,
(5.4)

where M = cos θ
|u0|2XCC > 0.

Proof. Consider the problem (3.4). As to the constraint, by substituting qC = x+ qopt
C :

1T qC = 1T
(
x+ qopt

C

)
= 1Tx− 1T qC̄ ,

(5.5)

where we have used the fact that the constraint is satisfied by the optimal solution.
Comparing (5.5) and the constraint in (3.4), it results:

1Tx = 0. (5.6)

Then, by expressing the cost function (3.7) as a function of x and defining m =
2 cos θ
|u0|2 XCC̄qC̄ :

J(qC) = qTCMqC +mT qC

=
(
x+ qopt

C

)T
M
(
x+ qopt

C

)
+mT

(
x+ qopt

C

)
= xTMx+

(
qopt
C

)T
Mqopt

C + xTMqopt
C +

(
qopt
C

)T
Mx+mTx+mT qopt

C .

As the cost function has to be minimize with respect to x, we neglect the terms
independent by x; it means that minimizing J(qC) is equivalent to minimize:

V (x) = xTMx+ xT
(
2Mqopt

C +m
)

= xTMx+ xT∇J
(
qopt
C

)
= xTMx+ γxT1 = xTMx

(5.7)

where we have used (5.6) and the fact that ∇J(qopt
C ) = γ1 according to (4.6).

From (5.7) and (5.6), we can conclude that the optimization problem (3.4) with cost
function (3.7) is equivalent to (5.4).

The formulation (5.4) of the optimization problem implies that the subproblems
described in the Section 4.1 are equivalent to the subproblems:

min
∆x

V (x+ ∆x)

subject to ∆x ∈ Im Ωi.
(5.8)

being: Si = Im Ωi.
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5.2 Convergence results

Proposition 11. Consider the optimization subproblem (5.8). It is possible to express
its solution as a linear time-varying system (corresponding to the system (4.7)), described
by:

x(t+ 1) = Fη(t)x(t), Fη(t) = I − (Ωη(t)MΩη(t))]M ∈ RNC×NC . (5.9)

Proof. For the sake of clarity, let assume that at the instant t we are considering η(t) = i,
i.e. the cluster we are considering is Ci.

In order to show that x(t+ 1) = Fix(t) is a solution of the subproblem (5.8) (i.e. it
is a constrained optimal point for the subproblem), we have two verify two properties,
similarly to what done in the proof of Proposition 6:

• the constraint is satisfied:

1Tx(t+ 1) = 1T
[
I − (ΩiMΩi)]M

]
x(t)

= 1Tx(t)− 1T (ΩiMΩi)]Mx(t)

= 1Tx(t)− 1TΩi(ΩiMΩi)]Mx(t) = 0

where we have used the third property in Proposition 8, the constraint (5.6)
(holding for x(t)) and the fact that 1 ∈ ker Ωi.

• the gradient is orthogonal to the constraint:

Ωi [2Mx(t+ 1)] = 2ΩiMFix(t)

= 2ΩiM
[
I − (ΩiMΩi)]M

]
x(t)

= 2ΩiMx(t)− 2ΩiMΩi(ΩiMΩi)]ΩiMx(t)

(5.10)

where the results in Proposition 8 have been used.

As:

ΩiMx(t) ∈ Im Ωi = Im(ΩiMΩi) ⇒ ∃w |ΩiMx(t) = ΩiMΩiw

then:

ΩiMΩi(ΩiMΩi)]ΩiMx(t) = ΩiMΩi(ΩiMΩi)](ΩiMΩiw)

= ΩiMΩiw = ΩiMx(t)
(5.11)

where we have used the properties of the generalized inverse in Definition 30.

By substituting (5.11) into (5.10), it results:

Ωi [2Mx(t+ 1)] = 0.

The matrices Fi, i = 1, . . . ` satisfy the following properties:
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Chapter 5. Analysis of the algorithm

• they are projection operators:

F 2
i =

[
I − (ΩiMΩi)]M

] [
I − (ΩiMΩi)]M

]
= I − 2(ΩiMΩi)]M + (ΩiMΩi)]M(ΩiMΩi)]M

= I − 2(ΩiMΩi)]M + (ΩiMΩi)]ΩiMΩi(ΩiMΩi)]M

= I − 2(ΩiMΩi)]M + (ΩiMΩi)]M

= I − (ΩiMΩi)]M = Fi

where we have used the properties of the generalized inverse in Definition 30.

• they are orthogonal projections with respect to the inner product 〈·, ·〉M defined
as 〈x, y〉M := xTMy; in other words:

〈Fix, Fix− x〉M = xTF Ti M(Fix− x)

= −xTM(ΩiMΩi)]Mx+ xTM(ΩiMΩi)]ΩiMΩi(ΩiMΩi)]Mx

= −xTM(ΩiMΩi)]Mx+ xTM(ΩiMΩi)]Mx = 0

• they are self-adjoint matrices with respect to the inner product 〈·, ·〉M , i.e.:

uTF Ti Mv = uTMFiv ∀u, v;

owing to: F Ti M = MFi; it follows that Fi’s have real eigenvalues.

5.2.2 Necessary condition for the convergence of the algorithm

The following result characterizes the uniqueness of the equilibrium for all maps Fix.

Lemma 12. Consider the family of linear transformations {Fi} as described in (5.9).
Consider the set of the points in ker1T , which are invariant for all Fi’s:

W =
{
x ∈ ker1T |Fix = x, ∀i = 1, . . . , `

}
.

Then:
W = {x̄ = 0} ⇔ Im[Ω1 . . .Ω`] = ker1T .

Proof. Let us prove the reverse implication first. Let consider an arbitrary point x ∈ W ;
as W is a subset of ker1T :

Im[Ω1 . . .Ω`] = ker1T ⇒ x =
∑
i

Ωiyi. (5.12)

Moreover, as in W it holds: Fix = x for all i, then:

ΩiMx = ΩiMFix

= ΩiM
[
I − (ΩiMΩi)

]M
]
x

= ΩiMx− ΩiMΩi (ΩiMΩi)
] ΩiMx = 0

(5.13)

40



5.2 Convergence results

where, in the last equation, we have done similarly to (5.11); so it results: Mx ∈ ker Ωi.
Since M is positive definite, we can conclude:

xTMx =
∑
i

yTi ΩiMx = 0 ⇔ x = x̄ = 0.

Suppose conversely that

kerHT = {x̄ = 0} with HT =


1T

I − F1

...
I − F`

 . (5.14)

From equation (5.14), it results that kerHT contains only the vector 0 and it implies
that HT is a full rank matrix. By a theorem from Linear Algebra, H is a full rank
matrix if and only if the linear system Hy = b has one and only solution y, for any
given b.

In particular, choosing b = Mx̄, there exsists a vector y such that:

b = Mx̄ = Hy

= 1y0 +
∑̀
i=1

(I − Fi)T yi

= 1y0 +
∑̀
i=1

M(ΩiMΩi)]yi

Then:

x̄ = M−11y0 +
∑̀
i=1

(ΩiMΩi)]yi

As 1T x̄ = y01TM−11 and M−1 is positive definite, then y0 = 0 and so x̄ ∈ Im[Ω1 . . .Ω`].
The converse inclusion is trivial: if x̄ ∈ Im[Ω1 . . .Ω`], (5.12) holds. Then:

1T x̄ =
∑
i

1TΩiyi = 0 ⇒ x̄ ∈ ker1T .

The condition expressed in Lemma 12 corresponds to a necessary condition for the
convergence of the algorithm, and can be also expressed as a connectivity requirement
on the hypergraph H.

Proposition 13. The condition Im[Ω1 . . .Ω`] = ker1T , which is a necessary condition
for the convergence of algorithm (4.7) to the solution qoptC of the optimization problem
(3.4), holds if and only if the hypergraph H is connected.
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Proof. Consider the undirected graph GH, defined as a weighted graph having the
compensators (nodes of set C) as nodes and weights on the edge {h, k} equal to the
number of the sets Ci which contain both h and k.

It is quite easy to see that the hypergraph H with edges Ci is connected if and only
if GH is a connected graph.

Let us define δCi : C → {0, 1} as the characteristic function of the set Ci, namely
a function of the nodes that is 1 when the node belongs to Ci and is zero otherwise.
Consider then the Laplacian matrix LH of GH:

LH =
∑
h,k∈Ci

(1h − 1k)(1h − 1k)T
∑̀
i=1

δCi(h)δCi(k)

=
∑̀
i=1

∑
h,k∈Ci

(1h − 1k)(1h − 1k)T =
∑
i

2|Ci|Ωi

= [Ω1 . . .Ω`] diag{2|C1|I, . . . , 2|C`|I}[Ω1 . . .Ω`]T .

The condition Im[Ω1 . . .Ω`] = ker1T is equivalent to the fact that LH + 11T is positive
definite; this is a characterization of connectivity of GH, i.e.:LH1 = 0

LHy 6= 0 ∀y = α1 + y⊥

In fact:

• LH + 11T > 0 ⇒ yT
(
LH + 11T

)
y > 0, ∀y.

In particular, it holds for: y = α1 + y⊥; so:

yT (LH + 11T )y = yTLHy + (α1T + yT⊥)11T (α1 + y⊥)

= yTLHy + α2N2 > 0

As LH ≥ 0, this relationship holds if and only if LHy 6= 0 (Proposition 32).

• Vice versa: LHy 6= 0 ∀y = α1 + y⊥ ⇒ yTLHy > 0.

The hypotehesis LHy 6= 0 implies that also:

yTLHy + yT11T y = yT (LH + 11T )y > 0.

5.3 Bound on the rate of convergence

For the study of the rate of convergence of the proposed algorithm, we introduce the
following assumption of the random sequence η(t).
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5.3 Bound on the rate of convergence

Assumption 14. The sequence η(t) is a sequence of independently, uniformly distributed
symbols in {1, . . . , `}.

We consider the following performance metric:

R = sup
x(0)∈ker1T

lim sup v(t)1/t

where v(t) = E [V (x(t))]. R describes the exponential rate of convergence to zero of v(t)
and so also the exponential rate of convergence of qC(t) to the optimal solution qopt

C .
Let define the matrix

Ω = I − 11T

N
; (5.15)

observing that Ωx(t) = x(t) and using (5.9):

v(t) = E
[
x(t)TMx(t)

]
= E

[
x(t)TΩM Ωx(t)

]
= E

[
x(t− 1)TF Tη(t−1) ΩM ΩFη(t−1)x(t− 1)

]
= x(0)TE

[
F Tη(0) · · ·F

T
η(t−1) ΩM ΩFη(t−1) · · ·Fη(0)

]
x(0).

Let us then define

∆(τ) = E
[
F Tη(t−τ) · · ·F

T
η(t−1) ΩM ΩFη(t−1) · · ·Fη(t−τ)

]
.

Via Assumption 14, the sequence η(τ) is a sequence of independent symbols and so
we can derive the following linear system:

∆(τ + 1) = E
[
F T∆(τ)F

]
= L(∆(τ)), ∆(0) = ΩMΩ

Ξ(τ) = Ω ∆(τ) Ω.
(5.16)

whose state is the matrix ∆.
It is worth noticing that the expected cost function can now be expressed as

v(t) = E [V (x(t))] = E
[
x(t)TΩMΩx(t)

]
= x(0)TΞ(t)x(0). (5.17)

Being a linear system, the analysis of convergence of the system (5.16) (and so, by
(5.17), also of the algorithm (5.9)) is studied by eigenvalues and eigenvectors.

We define the function
λL(i) : {1, . . . , N2

C} → R

that returns the i-th eigenvalue of L; we assume that it is monotonically non increasing.
We can represent this map as a N2

C -vector

Λ(L) = [λL(1) · · ·λL(N2
C )]T with λL(i) ≥ λL(i+ 1) ∀i

where repetitions are possible.
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Chapter 5. Analysis of the algorithm

Moreover, let be ∆L(i) an eigenvector (but it is a matrix) associated with the
eigenvalue λL(i):

L(∆L(i)) = λL(i)∆L(i).

In order to simplify the study of the system (5.16), we translate it into a classical
system whose state is a vector. It is possible by introducing a vector δ(τ) = vec(∆(τ))
and a (N2

C ×N2
C )-matrix F associated with the linear transformation L:

F = E
[
F T ⊗ F T

]
where symbol ⊗ denotes the Kronecker product (see Appendix B for definition and
properties of this operator).

Then, the system (5.16) is equivalent to the following:

δ(τ + 1) = Fδ(τ). (5.18)

By using the properties of the Kronecker product (Proposition 27) and the fact that
FiM

−1 = M−1F Ti , it results:

FT (M−1 ⊗M−1) = E
[
(F ⊗ F )(M−1 ⊗M−1)

]
= E

[
(FM−1)⊗ (FM−1)

]
= E

[
(M−1F T )⊗ (M−1F T )

]
= E

[
(M−1 ⊗M−1)(F T ⊗ F T )

]
= (M−1 ⊗M−1)F

and it allows to say that F is self-adjoint with respect to the inner product 〈·, ·〉M−1⊗M−1 ,
and therefore it has real eigenvalues.

Moreover:

F δF(i) = λF(i) δF(i),

where λF(i) = λL(i) ∈ R and δF(i) = vec(∆L(i)), i = 1, . . . , NC2 .
By decomposing ΩMΩ into

∑
i αi∆L(i),we can then express the convergence rate R

as:

R = max {|λL(i)| | αi 6= 0, ∆L(i) /∈ O} , (5.19)

i.e. the largest eigenvalue of F, which is reachable from ∆(0) and whose related
eigenvector is observable, being the non-observable space for the system (5.16)

O = {∆ ∈ RNC×NC |Ω∆Ω = 0}. (5.20)

The following proposition proves a result which guarantees the convergence of the
algorithm (5.9).

Proposition 15. Let Im[Ω1 · · ·Ω`] = ker1T . Then R < 1.
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5.3 Bound on the rate of convergence

Proof. Let define the linear transformation Li(∆) = F Ti ∆Fi. The N2
C eigenvalues of

Li are the eigenvalues of F Ti ⊗ F Ti and they belong to set {0, 1}, as follows from the
property about the eigenvalues of the Kronecker product (Proposition 28).

As, for the 2-norm of each matrix equals its largest eigenvalue:

max{λL(i)} = ||F|| = ||E
[
F T ⊗ F T

]
|| ≤ E

[
||F T ⊗ F T ||

]
= 1, (5.21)

being ||F Ti ⊗ F Ti || = max{λFT
i ⊗FT

i
} = 1.

Consider the eigenvalue λL(i) such that |λL(i)| = 1 and let be y = δF(i) the
corresponding eigenvector of F; we have:

||y|| = ||Fy|| ≤ ||F||·||y|| = ||E
[
F T ⊗ F T

]
||·||y|| ≤ E

[
||F T ⊗ F T ||

]
·||y|| = ||y||, (5.22)

where we have exploited (5.21) in the last passage.
It follows that the relations in (5.22) must hold as equalities and so:

||y|| = ||Fy|| = E
[
||F T ⊗ F T ||

]
· ||y|| = ||F Ti ⊗ F Ti || · ||y||, ∀i.

The matrix F Ti ⊗ F Ti is a projector and so:

||F Ti ⊗ F Ti || ⇒ F Ti ⊗ F Ti , ∀i.

As said before, F Ti ⊗ F Ti has only 0 and 1 as eigenvalues and v(i)
h ⊗ v

(i)
k as eigenvectors

(v(i)
h and v(i)

k are right eigenvectors of F Ti ). Therefore:

y = vh ⊗ vk with ΩT
i vh = ΩT

i vk = 0, ∀i.

As:
Im[Ω1 · · ·Ω`] = ker1T ⇒

⋂
i

ker ΩT
i = Im1,

we have vh = vk = 1 and therefore the only eigenvector of L corresponding to an
eigenvalue of norm 1 is ∆L(1) = 1 ⊗ 1 = 11T . As Ω11TΩ = 0, the eigenvector 11T

is not observable and, according to definition of R in (5.19), we can conclude that
R < 1.

Proposition 15 states that all the eigenvalues of interest (the reachable and observable
ones) of L are inside the unitary circle. This guarantees the asymptotic stability (and,
in particular, the convergence) of the dynamics of (5.16). Then, by (5.17):

E [V (x(t))] = E
[
x(t)TMx(t)

]
→ 0

and, as M > 0, it results the convergence in variance of x(t) to zero.
By Proposition 13, Lemma 12 and Proposition 15, we can conclude that the proposed

algorithm (4.7) is guaranteed to converge to the optimal solution qopt
C of the optimization

problem (3.4), under the (reasonable) assumption that each clusters has (at least) a
node in common with another cluster.
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Computing R as defined in (5.19) is in general not simple.
In the following, we will derive an upper bound for R that can be computed from

F̄ = E [F ]. In order to prove them, we state three lemmas.

Lemma 16. Let P,Q ∈ RNC×NC and P ≥ Q. Then Lk(P ) ≥ Lk(Q) for all k ∈ N∪{0}.

Proof. From the definition of L in (5.16), we have

xT [L(P )− L(Q)]x = xT
[
E
[
F TPF

]
− E

[
F TQF

]]
x

= E
[
xTF T (P −Q)Fx

]
≥ 0.

By iterating these steps k times we then obtain Lk(M) ≥ Lk(N).

Lemma 17.
ΩLt(Ω∆Ω)Ω = ΩLt(∆)Ω, ∀∆.

Proof. Proof is by induction:

• Base case: we have to show that the statement holds for t = 0:

ΩL0(Ω∆Ω)Ω = Ω2 = Ω.

• Inductive step: we have to show that, if the statement holds for some t (inductive
hypotesis), then the statement also holds when t+ 1 is substitued for t:

ΩLt+1(∆)Ω = ΩL(Lt(∆))Ω

= ΩL(ΩLt(∆)Ω)Ω

= ΩL(ΩLt(Ω∆Ω)Ω)Ω

= ΩL(Lt(Ω∆Ω))Ω

= ΩLt+1(Ω∆Ω)Ω.

Lemma 18. Let F̄ = E [F ]. If Im
[
Ω1 · · ·Ω`

]
= ker1T , then all the eigenvalues of F̄

have absolute value not larger than 1, and its only eigenvalue on the unitary circle is
λ = 1, with associated left eigenvector 1 and right eigenvector M−11.

Proof. The fact that all eigenvalues lie inside or on the unit circle follows from:

|λj(F̄ )| ≤ |λmax(F̄ )| = ||F̄ || = ||E [F ] || ≤ E [||Fi||] = 1, ∀j = 1, . . . , NC ,

being ‖Fi‖2 = 1 for all i’s.
Consider then an eigenvector y such that ‖y‖ = ‖F̄ y‖. We have

‖F̄ y‖ ≤ ‖F̄‖ · ‖y‖ = ||E [F ] || · ||y|| ≤ E [‖Fi‖] · ||y|| = ‖y‖,
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5.3 Bound on the rate of convergence

and therefore ‖Fiy‖ = ‖y‖ for all i’s.
As Fi are projection matrices, it means that Fiy = y and then My ∈ kerΩT

i ,∀i as
shown in (5.13). Similarly to what done in Proposition 15:

Im[Ω1 · · ·Ω`] = ker1T ⇒
⋂
i

ker ΩT
i = Im1,

and so: My ∈ kerΩT
i = Im1. It implies that the eigenvector of F̄ , related to the

eigenvalue 1, is y = M−11.
By inspection we can verify that the left eigenvector corresponding to the same

eigenvalue is 1T .

The following theorem provides an upper bound for R, defined by:

β = max{|λ| | λ ∈ Λ(F̄ ), λ 6= 1}. (5.23)

Theorem 19. Let be Im[Ω1 · · ·Ω`] = ker1T . Consider the linear system (5.16) and the
rate of convergence R defined in (5.19). Then R ≤ β.

Proof. Let us first prove that ΩL(ΩMΩ)Ω ≤ β ΩMΩ. Indeed, we have, for all y:

yTΩL(ΩMΩ)Ω y = E
[
yTΩF TΩMΩFΩ y

]
= E

[
yTΩF TMF Ω y

]
= yTΩM1/2E

[
M1/2FM−1/2

]
M1/2Ω y,

where we use the fact that ΩFi Ω = Fi Ω and that F Ti MFi = MFi.
The matrix E

[
M1/2FM−1/2

]
is real and symmetric, in fact:(

E
[
M1/2FM−1/2

])T
= E

[
M−1/2F TM1/2

]
=
∑̀
i=1

piM
−1/2

[
I −M(ΩiMΩi)]

]
M1/2

=
∑̀
i=1

piM
1/2
[
I − (ΩiMΩi)]M

]
M−1/2

= E
[
M1/2FM−1/2

]
where we have used the definition of Fi’s in (5.9).

Moreover, by Lemma 18, the matrix E
[
M1/2FM−1/2

]
= M1/2F̄M−1/2 has only

one eigenvalue on the unit circle (precisely in 1), with eigenvector M−1/21, being:

(M1/2F̄M−1/2)(M−1/21) = (M1/2F̄M−1/2)M1/2M−11

= M1/2F̄M−11

= M1/2M−11

= M−1/21.
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As the matrix M1/2F̄M−1/2 is self-adjoint, then its eigenvalues are real and its eigen-
vectors are linearly independent and each vector can be written as a linear combination
of these eigenvectors:

z =
NC∑
j=1

αjzj = α1M
−1/21 +

NC∑
j=2

αjzj , ∀z

where zj ’s denote the eigenvectors of M1/2F̄M−1/2.
Then, an upper bound of the Rayleigh quotient ρ can be found:

ρ =
zT (M1/2F̄M−1/2)z

zT z
=
zT (M1/2F̄M−1/2)(α1M

−1/21 +
∑NC

j=2 αjzj)
zT z

=
zT (α1λmaxM

−1/21 +
∑NC

j=2 λjαjzj)
zT z

≤ λmax

zT (α1M
−1/21 +

∑NC
j=2 αjzj)

zT z
= 1,

(5.24)

being λmax = λmax(M1/2F̄M−1/2) = 1.
As (5.24) holds for all z, in particular it holds for z = M1/2Ω y; moreover, as

M1/2F̄M−1/2 has only one eigenvalue in 1 and the others are smaller:

yTΩL(ΩMΩ)Ω y = yTΩM1/2E
[
M1/2FM−1/2

]
M1/2Ω y ≤ β yTΩM Ω y.

From this result, using Lemmas 16 and 17, we can say that:

ΩLt(ΩMΩ)Ω = ΩLt−1 (L(ΩMΩ)) Ω

= ΩLt−1 (ΩL(ΩMΩ)Ω) Ω

≤ ΩLt−1 (βΩMΩ) Ω

= βΩLt−1 (ΩMΩ) Ω

≤ · · · ≤ βtΩMΩ

(5.25)

and therefore R ≤ β.

We now state a result that allows us to compute R when the spectra of L and F̄

are available.
Before we show that the convergence rate R equals the rate:

RO = max{|λL(i)| : ∆L(i) /∈ O}. (5.26)

Proposition 20. Let R and RO be defined by (5.19) and (5.26) respectively. Then
R = RO.

Proof. For any eigenvector ∆L(i) andM > 0, there exists a γ > 0 such that ∆L(i) ≤ γM .
Then we have ΩLt(∆L(i))Ω ≤ γΩLt(M)Ω and therefore λL(i)Ω∆L(i)Ω ≤ γΩLt(M)Ω.

If ∆L(i) /∈ O, then we must have λL(i) ≤ R, therefore RO ≤ R. As of course
RO ≥ R, we conclude that RO = R.
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Let be Λ(L) ∈ RN2
C and Λ(F̄ ) ∈ RNC the ordered vectors of possibly repeated

eigenvalues of L and F̄ ; we can then state the following result.

Theorem 21. Let be Im[Ω1 · · ·Ω`] = ker1T .
The eigenvalues of L are the eigenvalues of F̄ , each one taken twice (except for the

first one λL(1) = λF̄ (1) = 1, which appears only once in the vector Λ(L)).
The convergence rate R is the (NC +1)-th element of the vector Λ(L), i.e. the largest

of the elements in the vector Λ(L), after eliminating a number of elements equals to the
cardinality of the set Λ(F̄ ) .

Proof. Via Lemma 17 it is possible to show that the non-observable space O defined in
(5.20) is an invariant set:

ΩL(∆)Ω = ΩL(Ω∆Ω)Ω ∀∆ ∈ O.

By exploiting the properties of the Kronecker product (see Appendix B):

rank(Ω⊗ Ω) = (rankΩ)(rankΩ) = (N2
C − 1)2 dim(ker[Ω⊗ Ω]) = 2NC − 1.

So the dimension of O is 2NC − 1, thus there must esist 2NC − 1 eigenvectors of L in O.
These eigenvectors can be constructed from the eigenvectors of F̄ T . Indeed, consider
NC linearly independent eigenvectors y1, . . . , yNC such that:

F̄ T yi = µiyi with 1 = µ1 > µ2 ≥ · · · ≥ µNC

where we have used the results from Lemma 18 and the fact that eigenvalues of F̄ are
real, being F̄ a self-adjoint matrix.

For all i, it results:

L(1yTi ) = E
[
F T1yTi F

]
= 1yTi F̄ = µi1yTi

L(yi1T ) = E
[
F T yi1TF

]
= F̄ T yi1T = µiyi1T ,

i.e. 1yTi and yi1T are eigenvectors of L related to the eigenvalue µi. For these eigenvec-
tors, it results:

ΩL(1yTi )Ω = µiΩ1yTi Ω = 0

ΩL(yi1T )Ω = µiΩyi1TΩ = 0,

being 1 ∈ ker Ω.
We therefore constructed a basis of 2NC−1 linearly independent eigenvectors of L in

O. One of them, ∆L(1) = 11T , corresponds to the eigenvalue λL(1) = 1. The remaining
(2NC − 2) eigenvectors correspond to the eigenvalues λF̄ (2), . . . , λF̄ (NC) taken twice.

According to Proposition 20, then R is the largest among the eigenvalues left when
removing (twice) [λF̄ (2) . . . λF̄ (NC)]

T from
[
λL(2) . . . λL(N2

C )
]T .
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CHAPTER 6

Optimal strategy

In this chapter we will show that the best performance of the proposed algorithm can
be achieved when the graph representing a microgrid is a tree and a nearest-neighbor
clustering strategy has chosen.

We will confirm this result, computing analytically the bound β (which will be shown
to be a tight bound of the rate of convergence R) for the same and other topologies of
the network, and we will express it as a function of the number of compensators of the
grid.

In the following chapter the rate of convergence will be studied numerically and
compared with simulations for more general cases (as to the topology of the network or
decomposition choices).

6.1 Nearest-neighbor gossip

Consider the case in which the compensators are divided into ` clusters C1, . . . , C`, each
one containing exactly two nodes, i.e.:

Ci = {h, k |h, k ∈ C}, 1 ≤ i ≤ `. (6.1)

Owing to this structure, we will refer to these subsets also with Ch,k (h, k ∈ C), where the
indices explicitly show the nodes they contain. Thus we will denote the set containing
the compensators h and k with Ci or Ch,k indifferently. The same for the matrices
related to the clusters; for example we will indicate the projector related to the cluster
Ci indifferently with Fi or Fh,k.

Theorem 22. Consider the hypergraph H defined over the set of nodes C and suppose
H to be a connected graph. Let assume an arbitrary value for the triggering probabilities
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pi’s associated to the related clusters Ci = Ch,k (according to the notation introduced
before).

Then the bound β on the convergence rate of the algorithm satisfies:

β ≥ 1− 1
NC − 1

. (6.2)

Proof. Let consider the matrix F̄ = E [F ]; it can be expressed as:

F̄ = [I − (ΩiMΩi)]M ] = I − Ē (6.3)

where Ē = E
[
(ΩiMΩi)]M

]
. It follows that:

λj(F̄ ) = 1− λNC−j+1(Ē), 1 ≤ j ≤ NC . (6.4)

In this case in which all the clusters have cardinality 2, the matrix Ωi (related to
the cluster Ci = Ch,k) can be expressed in the following simple way, according to (5.2):

Ωi =
(1h − 1k)(1h − 1k)T

2
. (6.5)

Expression (6.5) is useful to calculate the trace of Ē:

NC∑
j=1

λj(Ē) = Tr(Ē) = Tr

[∑̀
i=1

pi(ΩiMΩi)]M

]

= Tr

[∑̀
i=1

pi

(
(1h − 1k)(1h − 1k)T

2
M

(1h − 1k)(1h − 1k)T

2

)]
M

]

= Tr

[∑̀
i=1

pi

(
1
2
(1h − 1k)

(1h − 1k)TM(1h − 1k)
2

(1h − 1k)T
)]
M

]

= Tr

[∑̀
i=1

pi
2

(1h − 1k)TM(1h − 1k)

(
(1h − 1k)(1h − 1k)T

2

)]
M

]
.

(6.6)

Using (6.5) and the facts: Ω]
i = Ωi and Tr(ABC) = Tr(CAB) = Tr(BCA):
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NC∑
j=1

λj(Ē) = Tr

[∑̀
i=1

pi
2

(1h − 1k)TM(1h − 1k)
Ωi

]

=
∑̀
i=1

pi
2

(1h − 1k)TM(1h − 1k)
Tr
[
(1h − 1k)(1h − 1k)T

2
M

]

=
∑̀
i=1

pi
1

(1h − 1k)TM(1h − 1k)
Tr
[
(1h − 1k)M(1h − 1k)T

]
=
∑̀
i=1

pi
1

(1h − 1k)TM(1h − 1k)
(1h − 1k)M(1h − 1k)T

=
∑̀
i=1

pi = 1.

(6.7)

As the hypergraph H is connected, then Im [Ω1 · · ·Ω`] = ker1T (Proposition 13).
Then, the hypotesis of Lemma 18 is satisfied and we can state:

Λ(F̄ ) = [λ1(F̄ ) · · ·λNC(F̄ )]T with 1 = λ1(F̄ ) > λ2(F̄ ) ≥ · · · ≥ λNC(F̄ ).

Then, by (6.4):

Λ(Ē) = [λ1(Ē) · · ·λNC(Ē)]T with 0 = λNC(Ē) < λNC−1(Ē) ≤ · · · ≤ λ1(Ē). (6.8)

By (6.7) and (6.8)

1 =
NC∑
j=1

λj(Ē) ≥
NC∑
j=1

λNC−1(Ē) = λNC(Ē) +
NC−1∑
j=1

λNC−1(Ē) = (NC − 1)λNC−1(Ē)

and by (5.23) and (6.4):

β = λ2(F̄ ) = 1− λNC−1(Ē) ≥ 1− 1
NC − 1

.

In the following proposition we will present the case in which β assumes the smallest
possible value (equation (6.2) in Theorem 22 holds as equality). This optimal perfor-
mance is achieved by a nearest-neighbor clustering choice, i.e. each cluster has the form
Ce = Ch,k = {h, k | (h, k) = e ∈ E} .

We assume that the graph G which represents the microgrid is a tree and C = V 1:
the latter assumption simplifies the definition of neighbors among compensators but
does affect the results: it is possible to add passive nodes among compensators, without
affecting the convergence rate analysis R, depending only on XCC .

1From now on, we remove Assumption 4; as said in Section 3.1, it only simplifies the analysis,

allowing the use of the inverse matrix of XCC instead of the corresponding generalized inverse, but does

not affect the results obtained before.
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Proposition 23. Let the graph G be a tree and the set of compensators coincide with
the entire set of nodes (C = V). Assume a nearest-neighbor clustering choice.
Suppose that each cluster Ce has the same triggering probability pe = 1/NE . Then:

β = 1− 1
NC − 1

. (6.9)

Proof. As before, we can define the matrix:

Ē = E
[
(ΩeMΩe)]M

]
= E

[
(ΩeXΩe)]X

]
,

where we have exploited the hypotesis of this proposition. By (6.5):

Ωe =

[
1σ(e) − 1τ(e)

] [
1σ(e) − 1τ(e)

]T
2

and, by (2.13):[
1σ(e) − 1τ(e)

]T
X
[
1σ(e) − 1τ(e)

]
= e−jθz(e) = |zeff(e)| = z(e),

where z(e) = |z(e)| and we have exploited the fact that G is a tree.
As:

(ΩeXΩe)] =

([
1σ(e) − 1τ(e)

] [
1σ(e) − 1τ(e)

]T
2

X

[
1σ(e) − 1τ(e)

] [
1σ(e) − 1τ(e)

]T
2

)]

=

(
1σ(e) − 1τ(e)

2
z(e)

1σ(e) − 1τ(e)
2

T
)]

=
2
z(e)

([
1σ(e) − 1τ(e)

] [
1s(e) − 1τ(e)

]T
2

)]
=

2
z(e)

Ω]
e =

2
z(e)

Ωe

and the triggering probability pe = 1
NE

= 1
NC−1 ,∀e ∈ E , then:

Ē = E
[
(ΩeXΩe)]X

]
=
∑
e∈E

pe(ΩeXΩe)]X

=
1

NC − 1

∑
e∈E

2
z(e)

ΩeX

=
1

NC − 1

∑
e∈E

1
z(e)

[
1σ(e) − 1τ(e)

] [
1σ(e) − 1τ(e)

]T
X

=
1

NC − 1
ATZ−1AX =

1
NC − 1

LX

=
1

NC − 1
(I − 11T0 ).

(6.10)

By (6.10) and definition of β:

β = 1− λNC−1(Ē) = 1− λNC−1

(
I − 11T0
NC − 1

)
= 1− 1

NC − 1
.
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6.2 Case studies

In this section we will derive the parameter β, used as a reliable metric for the evaluation
of the algorithm performance, for some simple topologies of electrical networks (i.e.
different structures of graphs).

We will see that the first step is giving an analytical expression to the matrix X,
necessary in order to obtain the matrices Fi’s, F̄ and its eigenvalues. This is a not
easy step, because it does not exist a general procedure, but it is strictly related to the
structure of the graph.

In particular, we will consider the case in which G is a line: we will confirmed the
statement of Proposition 23 and we will be able to say something more.

Then, we will consider the case in which the edges of the graph G form a circular
path. We will show that the result in Proposition 23 can be extended also to this
configuration, under a proper assumption.

6.2.1 Tree structure

As hinted before, the starting-point for the calculus of β is to find an analytical expression
for the matrix X. Here we exploit the characteristics of the tree structure of the network.
Before starting, a definition of tree is recalled; it is given from the definition of graph.

Definition 24. Consider a graph G = (V, E). Then G is a tree if:

1. there exists the following relationship bewteen the number of nodes and the
number of edges of G: |E| = |V| − 1;

2. G is connected, i.e. for each pair of nodes v, w ∈ V there exists exactly one path
connecting them.

From definition 24, it follows that no cycles can be possible.

Let consider the tree G = (V, E), with |V| = N + 1 and |E| = NE = N . Consider an
edge e = (v, w) ∈ E and suppose to remove it from G. From definition 24, G results
divided into two subgraphs (see Figure 6.1): Ḡe = (V̄e, Ēe), the subtree whose root is
the node w, and Ge = (Ve, Ee), the subtree whose root is the node 0, with Ve = V \ V̄e
and Ee = E \ Ēe \ {e}; so:

Ve ∪ V̄e = V Ve ∩ V̄e = ∅.

Let define the matrix B ∈ RN×(N+1) as follows:

[B]ev =

−1 if v ∈ V̄e
0 if v ∈ Ve.
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0

v

w

e

Ḡe = (V̄e, Ēe)

Ge = (Ve, Ee)

Figure 6.1: Subtrees Ge and Ḡe of G.

For any ẽ ∈ E , ẽ 6= e:

N∑
v=0

[A]ev[B]ẽv = [B]ẽ,τ(e) − [B]ẽ,σ(e) = 0

N∑
v=0

[A]ev[B]ev = [B]e,τ(e) − [B]e,σ(e) = 1

 ⇒ ABT = IN (6.11)

being A the incidence matrix defined in (2.6).
Let define the matrices:

Ã =

[
A

1T0

]
B̃ =

[
B

1T

]
,

so that:

ÃB̃T =

[
A

1T0

] [
BT 1

]
=

[
ABT A1
1T0B 1T0 1

]
=

[
IN 0
0 1

]
= IN+1.

For the uniqueness of the inverse of a matrix: Ã−1 = B̃T and so:

IN+1 = B̃T Ã =
[
BT 1

] [A
1T0

]
= BTA+ 11T0 .

It follows that:

BTA = IN+1 − 11T0 ⇒ ATB = IN+1 − 101T . (6.12)

Let now define the (N + 1)× (N + 1) matrix:

Y = BTZB. (6.13)

Then, by (6.11) and (6.12):LY = (ATZ−1A)(BTZB) = ATB = IN+1 − 101T

Y 10 = BTZB10 = 0.
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It results that the matrix Y defined in (6.13) satisfies the properties in Lemma 1,
and so we have found a characterization for the matrix X (in the following we will
indicate X = BTZB).

By this result, we can directly obtain the elements of the matrix X. It is easy to
verify that, given two nodes h and k

Xh,k = [BTZB]h,k =
∑

e∈P0,h∩P0,k

z(e) (6.14)

where P0,h and P0,k are the paths connecting the PCC to the nodes h and k respectively.
In particular, P0,0 is empty and it confirms the fact that the first row and the first
column of X are zero.

Line structure

Consider the case of a 1-dimensional graph, i.e. an electrical network consisting in one
single line with compensators equally distributed at unitary distances along the line
(Z = I). We assume, without loss of generality: C = V. As said before, loads can be
connected everywhere in the line because their presence does not influence the Hessian
matrix M .

We start by calculating the matrix X; being the line a special case of a tree, we can
exploit (6.14):

X = BTB =



0 0 0 · · · 0
0 1 1 · · · 1
0 1 2 · · · 2
...

...
0 1 2 · · · N


. (6.15)

Two different decompositions of the optimization problem are considered, corre-
sponding to different clustering of the nodes into subsets. In all of them we assume that
compensators are allowed to update their state in pairs, i.e. |Ci| = 2, 1 ≤ i ≤ `; for this
particular structure, these subsets will be indicated as:

Ch,k = {h, k |h, k ∈ C}

and also the matrices Fi and Ωi introduced in the previous chapters will follow this
notation.

We consider the following clustering choices (Figure 6.2):

• nearest-neighbor (or 1-step) case: nodes able to communicate are the pairs of
adjacent ones in the electric line:

Ch,k = {h, k | (h, k) = e ∈ E} = {h, k | 0 ≤ h ≤ N − 1, k = h+ 1};
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0 1 2 N 0 1 2 N

Figure 6.2: nearest-neighbor (or 1-step) and circle clustering choices illustrated by the corre-
sponding hypergraphs H (dashed lines).

• circle case: nodes able to communicate are the pairs of adjacent ones in the electric
line together with the pair constituted by the first and the last agent:

Ch,k = {h, k | 0 ≤ h ≤ N, k = (h+ 1) mod(N + 1)}.

For the 1-step case, the h-th element of Fh,k ∈ R(N+1)×(N+1) corresponds to the
subproblem in which node h and node k = h+ 1 are allowed to update their state.

As shown in (6.6), the matrix Fh,k may be expressed as follows, being |Ch,k| = 2
(notice we use the matrix X instead of M owing to the assumption C = V):

Fh,k = I − (1h − 1k)(1h − 1k)TX
(1h − 1k)TX(1h − 1k)

(6.16)

where:

(1h − 1k)TX = [0 · · · 0︸︷︷︸
h

−1︸︷︷︸
k

· · · − 1] (1h − 1k)TX(1h − 1k) = 1.

Then:

Fh,k =



1
. . .

1 · · · · · · · · · 1
0 −1 · · · −1

1
. . .

1



← h

← k (6.17)

By Assumption 14, pi = ph,k = 1
N for all 1 ≤ i ≤ ` = N (or, equivalently:

0 ≤ h ≤ N − 1, k = h+ 1) and:

F̄ = E [F ] =
N−1∑
h=0

Fh,k ph,k with k = h+ 1

=
1
N



N 1 1 · · · 1
0 N − 1 0 · · · 0
...

. . . . . . . . .
...

0 · · · 0 N − 1 0
0 · · · · · · 0 N − 1
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The matrix F̄ results to be a triangular matrix and so its eigenvalues are easily computed
as they are the elements on the diagonal:

ΛF̄ =
[
1,
N − 1
N

, · · · , N − 1
N

]T
;

then:
β = λ2(F̄ ) =

N − 1
N

.

In this specific case, it easy to analytically express the matrix F associated with
the linear transformation L, because it results to be a triangular (N + 1)2 × (N + 1)2

matrix; its eigenvalues are:

ΛL =

[
1,
N − 1
N

, · · · , N − 1
N︸ ︷︷ ︸

3N

,
N − 2
N

, · · · , N − 2
N︸ ︷︷ ︸

N(N−1)

]T
.

For the analysis of the previous chapter, we can conclude:

β = R = 1− 1
N
.

Consider now the case in which the hypergraph H is a circle. In this case, as

Ch,k = {h, k | 0 ≤ h ≤ N, k = (h+ 1) mod(N + 1)},

the set of matrices {Fh,k}, includes the Fh,k’s of the 1-step case (0 ≤ h ≤ N−1, k = h+1),
together with:

FN,0 = I − (1N − 10)(1N − 10)TX
(1N − 10)TX(1N − 10)

where:

(1N − 10)TX =
[
0 1 · · · N

]
(1N − 10)TX(1N − 10) = N ;

so:

FN,0 =



1 1
N

2
N · · · N−1

N 1
0 1 0 · · · · · · 0
...

. . . . . . . . .
...

. . . . . . . . .

0 · · · · · · 0 1 0
0 − 1

N − 2
N · · · −N−1

N 0


(6.18)

By Assumption 14, pi = ph,k = 1
N+1 for all 1 ≤ i ≤ ` = N + 1 (or, equivalently:

0 ≤ h ≤ N − 1, k = (h+ 1) mod(N + 1)) and:

F̄ =
1

N + 1



N + 1 1
N + 1 2

N + 1 · · · N−1
N + 1 2

0 N 0 · · · · · · 0
. . .

. . .

0 · · · · · · 0 N 0
0 − 1

N − 2
N · · · −N−1

N N − 1


(6.19)
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where k = (h+ 1) mod(N + 1), and its eigenvalues can easily be calculated:

Λ(F̄ ) =
[
1,

N

N + 1
, · · · , N

N + 1
,
N − 1
N + 1

]T
(6.20)

and therefore:

β = 1− 1
N + 1

.

In this case, ΛL cannot be easily expressed analytically as we did for the 1-step case.
However, we have computed R numerically and we have found that R 6= β in this case,
but however β is a tight bound for R (see Section 7.2).

In both cases (1-step and circle) the parameter β does not depend on the length of
the electric paths between adjacent compensators. In fact, if Z = diag(z(1), . . . , z(N)),
with z(e) > 0 (and at least an edge ẽ ∈ E such that z(ẽ) 6= 1):

X = BTZB =



0 · · · · · · · · · · · · 0
0 ψ1 ψ1 ψ1 · · · ψ1

0 ψ1 ψ2 ψ2 · · · ψ2

0 ψ1 ψ2 ψ3 · · · ψ3

...
...

0 ψN ψN ψN · · · ψN


(6.21)

where:

ψj =
j∑
e=1

z(e) 1 ≤ j ≤ N.

Now:

(1h − 1k)TX = z(e) · [0 · · · 0︸︷︷︸
h

−1︸︷︷︸
k

· · · 1], (1h − 1k)TX(1h − 1k) = z(e),

for 0 ≤ h ≤ N − 1, k = h+ 1, (h, k) = e ∈ E : they differ from the corresponding
vectors in the case with Z = I only for the factor z(e); then the matrices Fh,k are the
same obtained in (6.17).

In the circle case, besides we need also FN,0; as:

(1N − 10)TX =
[
0 ψ1 · · · ψN

]
(1N − 10)TX(1N − 10) = ψN ,

FN,0 =



1 ψ1

ψN

ψ2

ψN
· · · ψN−1

ψN
1

0 1 0 · · · · · · 0
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
0 · · · · · · 0 1 0
0 − ψ1

ψN
− ψ2

ψN
· · · −ψN−1

ψN
0


.
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It is not equal to (6.18), but the resulting F̄ has a structure similar to (6.19):

F̄ =
1

N + 1



N + 1 ψ1

ψN
+ 1 ψ2

ψN
+ 1 · · · ψN−1

ψN
+ 1 2

0 N 0 · · · · · · 0
. . .

. . .

0 · · · · · · 0 N 0
0 − ψ1

ψN
− ψ2

ψN
· · · −ψN−1

ψN
N − 1


.

The eigenvalues are:

Λ(F̄ ) =

[
1,

N

N + 1
, . . . ,

N

N + 1
,
N − 1
N + 1

]T
and:

β =
N

N + 1
.

Thus, this paragraph has confirmed the results of Proposition 23: when the graph
describing a microgrid is a line and a nearest-neighbor clustering choice has taken, then
β assumes its smallest value:

R = β = 1− 1
N

and so we can conclude that this clustering strategy is the optimal one for the problem,
at least with respect to β.

Other choices lead to worst results: this is the case of the circle strategy, which
exhibits a larger value for β.

6.2.2 Circular structure

Resistance matrix

Consider an electrical network represented by a graph G = (V, E), with |V| = N + 1 and
|E| = NE . Assume that all the nodes in G are connected to form a circular path.

The incidence matrix has the following form:

A =



−1 1 0 · · · 0

0
. . . . . . . . .

...
...

. . . . . . . . . 0
...

. . . . . . . . . 1
1 · · · · · · 0 −1


We assume that the nodes are equally distributed at unitary distances along the

circle (Z = I).
The Laplacian matrix is:
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L = AT A =



2 −1 0 · · · 0 −1
−1 2 −1 0 · · · 0

0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 0
0 · · · 0 −1 2 −1
−1 0 · · · 0 −1 2


(6.22)

For the calculus of the matrix X, we cannot exploit the results of the previous
paragraph, because the graph is not a tree and properties of Definition 24 which allow
to write X by (6.14) are not satisfied.

Here we will infer the matrix X by using the notion of resistance distance. Let
consider a connected graph associated to an electrical network and replace each edge of it
with a resistor of unit resistance. Then the resistance distance rh,k between two vertices
h and k of the graph is the effective electrical resistance between the corresponding two
nodes of the associate network. By (2.13):

rh,k = Xh,h +Xk,k − 2Xh,k. (6.23)

As G has a circular form, it results:

rh,k =
dh,k (N + 1− dh,k)

N + 1
0 ≤ h, k ≤ N (6.24)

where dh,k represents the length of the path between the nodes h and k in G.
The resistance distance satisfies the following properties:

rh,k = rk,h rh,k = r(h+1)mod(N+1), (k+1)mod(N+1) 0 ≤ h, k ≤ N ; (6.25)

moreover, the elements along the main diagonal are equal to zero (as dh,h = 0).
A resistance matrix R can be introduced, whose elements are rh,k’s: owing to (6.25),

the matrix R is symmetric and circulant. For example, the resistance matrix related to
a graph of 4 nodes (Figure 6.2.2) has the following form:

R =


0 a b a

a 0 a b

b a 0 a

a b a 0

 =


0 3

4 1 3
4

3
4 0 3

4 1
1 3

4 0 3
4

3
4 1 3

4 0

 .
The following result allows to express the matrix X in terms of the resistance matrix,

inspired by results in [26]:

Theorem 25. The matrix X can be written as the sum of three terms as:

X = −1
2
(
RΩ +RY − 11T0R

)
, (6.26)
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where Ω is the matrix defined in (5.15), whereas:

Y =
1
N


1−N · · · · · · 1−N

1 · · · · · · 1
...

...
1 · · · · · · 1

 . (6.27)

Proof. We first prove the following identity:

LRL = −2LXL : (6.28)

[LRL]h,k =
N∑
m=0

N∑
n=0

Lh,mrm,nLn,k

=
N∑
m=0

N∑
n=0

Lh,m(Xm,m +Xn,n − 2Xn,m)Ln,k

=
N∑
m=0

Lh,mXm,m

(
N∑
n=0

Ln,k

)
+

N∑
n=0

Ln,kXn,l

(
N∑
m=0

Lh,m

)
− 2

N∑
m,n=0

Lh,mXm,nLn,k

= −2
N∑
m=0

N∑
n=0

Lh,mXm,nXn,k

where we have used the fact that 1 ∈ kerL and so
∑N

n=0 Ln,k =
∑N

m=0 Lh,m = 0.
By Lemma 1

(XL)R(LX) = (I − 11T0 )R (I − 101T ) = R−R101T − 11T0R (6.29)

as 11T0R101T = r0011T0 = 0.
By multiplying (6.28) by X from both left and right, it results:

X(LRL)X = −2X(LXL)X

= −2(XL)X(LX)

= −2(I − 11T0 )X(I − 101T )

= −2X

(6.30)

and comparing (6.29) and (6.30):

X = −1
2
[
R−R101T − 11T0R

]
. (6.31)

In order to obtain (6.26), we express:

101T =
11T

N
− Y ; (6.32)

by remembering that Ω = I − 11T /N and by substituting (6.32) into (6.31):

X = −1
2

[
R
(
I − 11T

N

)
+RY + 11T0R

]
= −1

2
(
RΩ +RY − 11T0R

)
.
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0

1

N

Figure 6.3: Electrical grid represented by a graph with a circular structure (continuous lines
represent the electrical lines). All the nodes are assumed to be compensators; in dashed lines
are represented the pairs of nodes allowed to communicate.

Computation of β

Consider an electrical network represented by a graph G = (V, E), with |V| = N + 1
and |E| = NE = N + 1 and suppose that C = V . Assume that all the compensators in G
are connected by one edge, in order to form a circular path and that they are equally
distributed at unitary distances along the circle.

We consider the optimization problem where each cluster contains only two com-
pensators, which are adjacent (nearest-neighbor strategy); here we will use the same
notation of the previous paragraph:

Ci = Ch, k = {h, k | 0 ≤ h ≤ N, k = (h+ 1) mod(N + 1)},

and the same for the indices of the involved matrices.

As |Ci| = 2, 1 ≤ i ≤ ` = N + 1, then the expression (6.16) for Fh,k can be used and
now we calculate the numerator and the denominator of its second addendum.

Notice that we will use the matrix X instead of the Hessian matrix M thanks to
the assumption C = V.

By (6.26):

(1h − 1k)TX = −1
2
(1h − 1k)T [RΩ +RY − 11T0R] = −1

2
(1h − 1k)T [RΩ +RY ]

(6.33)
where we have used the fact that 11T0R is a matrix in which each column contains
elements of the same value, and so (1h − 1k)T (11T0R) = 0.

Let define X ′ = −1
2RY : this is a matrix in which each row contains elements of the

same value given by:

X ′
i,j = −1

2
[RY ]i,j = −1

2

1−N
N

ri,0 +
1
N

∑
n6=0

ri,n

 0 ≤ i, j ≤ N ;
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then (1h − 1k)TX ′ is a vector whose elements are all equal to:

[(1h − 1k)TX ′]j = −1
2

(1−N)(rh,0 − rk,0) + (rh,N − rh,0)
N

=
rh,0 − rk,0

2
, 0 ≤ j ≤ N,

where we have used (6.25).
The vector (1h− 1k)TRΩ can be calculated by exploiting the definition of Ω, whose

elements are:

[Ω]i,j =

N−1
N i = j

− 1
N i 6= j

0 ≤ i, j ≤ N.

It implies that X ′′ := −1
2RΩ has the same structure of R (it is symmetric and circulant),

and, by using again (6.25):

[(1h − 1k)TX ′′]j = X ′′
h,j −X ′′

k,j = −1
2

([RΩ]h,j − [RΩ]k,j)

= −1
2

N − 1
N

rh,j +
(
− 1
N

)∑
m6=j

rh,m −
N − 1
N

rk,j −
(
− 1
N

)∑
m6=j

rk,j


= −1

2

(
N − 1
N

(rh,j − rk,j) +
1
N

(rh,j − rk,j)
)

=
rk,j − rh,j

2
.

By (6.33):

(1h − 1k)(1h − 1k)TX = −1
2
(1h − 1k)(1h − 1k)T (RΩ +RY )

= (1h − 1k)(1h − 1k)T (X ′′ +X ′)

= (1h − 1k)1TΓh,k +
rh,0 − rk,0

2
(1h − 1k)1T

where Γh,k = 1
2 diag{rk,0 − rh,0, . . . , rk,N − rh,N}.

The denominator of the second addendum in (6.16) is given by:

(1h − 1k)TX(1h − 1k) = −1
2
(1h − 1k)T [RΩ +RY ](1h − 1k)

= (1h − 1k)T [X ′ +X ′′](1h − 1k)

= (1h − 1k)TX ′′(1h − 1k)

= X ′′
h,h −X ′′

k,h − (X ′′
h,k −X ′′

k,k)

= 2(X ′′
h,h −X ′′

h,k)

= 2(X ′′
0,0 −X ′′

0,1) = r0,1 =
N

N + 1

(6.34)

where we have exploited the structure of the matrix RY described before (all rows are
equal and so: RY (1h−1k) = 0), the fact that RΩ is a symmetric and circulant matrix
and the properties in (6.24) and (6.25).
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We can now construct the matrices Fh,k’s as:

Fh,k = I − (1h − 1k)(1h − 1k)TX
(1h − 1k)TX(1h − 1k)

= I − 1
r0,1

(1h − 1k)(1h − 1k)T (X ′ +X ′′)
(6.35)

and, by Assumption (14), which implies pi = ph,k = 1
N+1 , 1 ≤ i ≤ ` = N + 1 (or,

equivalently: 0 ≤ h ≤ N, k = (h+ 1) mod(N + 1)):

F̄ = E [F ] =
1

N + 1

N∑
h=0

Fh,k

=
1

N + 1

N∑
h=0

[
I − 1

r0,1
(1h − 1k)(1h − 1k)T (X ′ +X ′′)

]
= I − 1

N + 1
1
r0,1

(F̄ ′ + F̄ ′′),

(6.36)

where:

F̄ ′ =
N∑
h=0

(1h − 1k)(1h − 1k)TX ′ F̄ ′′ =
N∑
h=0

(1h − 1k)(1h − 1k)TX ′′.

It can be noticed that:

F̄ ′′ =
1
2


rN,0 − 2r0,0 + r1,0 rN,1 − 2r0,1 + r1,1 · · · rN,N − 2r0,N + r1,N

r0,0 − 2r1,0 + r2,0 r0,1 − 2r1,1 + r2,1 · · · r0,N − 2r1,N + r2,N
...

...
rN−1,0 − 2rN,0 + r0,0 rN−1,1 − 2rN,1 + r0,1 · · · rN−1,N − 2rN,N + r0,N


(6.37)

while:

F̄ ′ = −1
2


rN,0 − 2r0,0 + r1,0 rN,0 − 2r0,0 + r1,0 · · · rN,0 − 2r0,0 + r1,0

r0,0 − 2r1,0 + r2,0 r0,0 − 2r1,0 + r2,0 · · · r0,0 − 2r1,0 + r2,0
...

...
rN−1,0 − 2rN,0 + r0,0 rN−1,0 − 2rN,0 + r0,0 · · · rN−1,0 − 2rN,0 + r0,0.


(6.38)

By exploiting the properties (6.24) and (6.25) of the resistance distance, we can
write the elements of matrices F̄ ′ and F̄ ′′ as combinations of elements of the only first
row of R, i.e. elements such as r0,j , 0 ≤ j ≤ N .

Neglecting the factor 1
2 , F̄ ′ and F̄ ′′ contain elements:

r(i−1) mod(N+1),j − 2ri,j + r(i+1)mod(N+1),j = rj,(i−1) mod(N+1) − 2rj,i + rj,(i+1)mod(N+1)

=



r0,1 + r0,N i = j

r0,i−j−1 − 2r0,i−j + r0,i−j+1 j < i, j 6= 0 ∨ i 6= N

r0,N+1(i−j)−1 − 2r0,N+1+(i−j) + r0,N+1+(i−j)+1 j > i+ 1

r0,N−1 − 2r0,N + r0,0 otherwise
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with 0 ≤ i, j ≤ N .
By (6.24):

r(i−1) mod(N+1),j − 2ri,j + r(i+1)mod(N+1),j =

{
− 2
N+1 i 6= j

2N
N+1 i = j.

(6.39)

It means that matrix F̄ ′′ has all elements equal to − 1
N+1 , except from the main diagonal,

whose elements are N
N+1 ; the matrix F̄ ′ has the elements in the first row equal to − N

N+1

and all the others are 1
N+1 .

Thus, by (6.36), (6.37), (6.38) and (6.39):

F̄ = I − 1
N + 1

1
r0,1

(F̄ ′ + F̄ ′′)

= I − 1
N



0 −1 −1 · · · −1
0 1 0 · · · 0
...

. . . . . . . . .
...

...
. . . . . . 0

0 · · · · · · 0 1


=

1
N



N 1 1 · · · 1
0 N − 1 0 · · · 0
...

. . . . . . . . . 0
...

. . . . . . 0
0 · · · · · · 0 N − 1


.

As the matrix F̄ is triangular, its eigenvalues can be easily deduced as the elements
along its main diagonal:

Λ(F̄ ) =
[
1,
N − 1
N

, · · · , N − 1
N

]T
and, according to (5.23):

β =
N − 1
N

.

Summarizing, in this paragraph we have tried to extend the results of the Section
6.2.1 to a more complicated topology of the network: a graph consisting of a set of
nodes distributed along a circle.

We have analytically shown that the results of Proposition 23 still hold, provided
that the compensators are equally distributed at unitary distances along the circle (i.e.
it must be Z = I: in Section 7.2 we will show that this result does not hold if this
assumption is not satisfied, differently from the case of the line topology):

β = 1− 1
N
,

like when nodes were distributed along the line.
It is a further confirmation that the nearest-neighbor clustering choice is the optimal

strategy for our problem, at least with respect to β, which will be shown to be a tight
bound of R in Section 7.2.

Moreover, we will consider more general topologies for the grid and we will see that
the nearest-neighbor strategy is still a good choice for the problem by simulations.

67





CHAPTER 7

Simulations

and numerical results

In this section we present numerical simulations to validate both the models presented
in the previuos chapters and the randomized algorithm proposed in Chapter 4.

7.1 Validation of the static model

We considered the microgrid sketched in Figure 7.1. We assumed the following parameter
values:

• nominal voltage at the PCC node (v = 0): 230 V;

• nominal operating frequency: f0 = 50 Hz;

• lines’ characteristic resistance: 0.16 mΩ/m

• lines’ characteristic inductance: 1 µH/m;

• length of the lines: uniformly distributed between 50 m and 200 m;

• injected powers: s(v) = |s(v)|ejφ(v), with s(v) uniformly distributed between −10
kW and 0 kW, and cosφ uniformly distributed between 0.7 and 1.

We estimated the quality of the linear approximate model proposed in Section 2.2,
comparing the node voltages obtained by solving the nonlinear system (2.7) and the
ones computed via (2.11) by using the approximation (2.28).

As shown in Figure 7.2, the approximation error results to be negligible, and it holds
even in the case in which voltage drops get close to the maximum that is generally
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0

i j

Figure 7.1: Graph describing the microgrid used for the validation of the model. Circled nodes
represent compensators, the others denote loads.
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Figure 7.2: Comparison between the network state (node voltages) computed via the exact
model in (2.7) (circles), and the approximate model induced by (2.28) (stars).

allowed in power distribution networks (with smaller voltage drops, the approximation
becomes even more accurate).

On the same testbed we then validated the quality of the estimate (3.11) in Section
3.2 for the gradient of the cost function that we want to minimize.

We considered the microgrid in Figure 7.1, where only 3 nodes (the white ones) can
be commanded to inject the desired amount of reactive power C = {0, i, j}. One of
them is the PCC (v = 0): because of the constraint 1T q = 0, we are left with only 2
degrees of freedom, so we choose q(i) and q(j) as decision variables and we let that the
PCC node has a reactive power such that it satisfies the constraint.

In Figure 7.3 we reported, in thick line, the contour plot of the power distribution
losses in the microgrid, computed according to the exact nonlinear model. As a thin
line, we overlaid the contour plot of the (numerically computed) function whose gradient
corresponds to the gradient estimate in (3.11). The optimum obtained by zeroing the
estimated gradient practically corresponds to the solution of the exact optimization
problem.
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Figure 7.3: Contour plot of the exact distribution losses (thick line) and of the cost function
whose gradient is given by the voltage measures, according to (3.11) (thin line).

7.2 Performance of the proposed algorithm

In this section, we simulate the behavior of the algorithm proposed in Chapter 4, and
the performance of different clustering choices.

In particular, we confirm and extend numerically the results obtained in the previous
chapter.

We considered a tree with 33 nodes and an average of 2.4 children for each internal
node (not leaves), of height 6. We supposed that only nodes that are neighbors on the
tree are allowed to communicate (nearest neighbor clustering choice).

We obtained numerically that Proposition 23 holds, being:

β = 1− 1
32

= 0.9688,

and moreover: R = β.
If we make another clustering choice (complete clustering choice: each pair of nodes

is allowed to communicate), then the results are different; for the aforementioned tree:

β = 0.9967 R = 0.9937.

The same occurs when we consider a line topology for the grid: the nearest-neighbor
strategy returns exactly the smallest possible value for β and so we can state that it is
the optimal clustering choice for the problem.

In these cases, we can say that enabling communication among agents placed in
distant points of the grid is detrimental for the convergence speed of the algorithm,
whereas the optimal strategy consists in choosing a hypergraph H which resembles the
graph describing the physical interconnections of the network.

At the moment, we do not know if the result of Proposition 23 holds also when G
is not a tree. In Section 6.2.2, we have considered the case in which nodes are equally
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N = 10 N = 50 N = 100

β R β R β

Line topology

nearest-neighbor 0.8889 0.8889 0.9796 0.9796 0.9899
circle 0.9000 0.8943 0.9800 0.9798 0.9900

complete 0.9687 0.9480 0.9984 0.9972 0.9996

Circular topology

nearest-neighbor 0.8889 0.8889 0.9796 0.9796 0.9899
star 0.9877 0.9760 0.9996 0.9992 0.9999

complete 0.9603 0.9336 0.9979 0.9960 0.9994

Table 7.1: Exact convergence rate R and bound β for different network lengths and
different grid and communication topologies.

distributed at unitary distances along a circle. We have found that, if we assume a
nearest-neighbor clustering choice, it still holds:

R = β = 1− 1
N
.

Notice that it is true if we assume that Z = I: the result does not hold if we choose
a random diagonal matrix as Z. For example, if:

Z = diag(0.6432, 0.0501, 0.3064, 0.0586, 0.8447, 0.8683, 0.4044, 0.8980, 0.9415, 0.5731),

then:

β = 0.8990 6= 1− 1
N

= 0.9.

Table 7.1 contains the values of R and β for the topologies of the network analyzed
in the previous chapter (line and circular topologies). It can be noticed that the values
of R and β are very similar and so we can say that β is really a tight bound for R. This
justifies the choice of including the case of a larger network, for which the problem of
computing R could be numerically intractable.

Finally, we considered a network of 30 nodes, 11 of which are compensators (see the
top part of Figure 7.5). We chose line impedances and loads similar to the ones in the
previous section, and we considered the two following clustering choices:

• nearest-neighbor gossip: based on the result stated in Proposition 23, we enabled
pairwise communication between nodes whose distance in the electric grid is lower
than a given threshold; notice however that the hypotheses of Proposition 23 are
not precisely verified, as the graph is not a tree;
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0

Figure 7.4: Graph of a network: compensators are in white, loads in gray. The dashed line
represents the hypergraph H when a nearest-neighbor clustering choice has taken.
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Figure 7.5: Simulation of the behavior of the algorithm, when applied to the network in Figure
7.4. The algorithm behavior (averaged over 103 realizations) has been plotted for two different
clustering choices: nearest-neighbor gossip (solid line) and star topology (dashed). The dotted
line represent the best possible performance.

• star topology: clusters are in the form Ci = {0, v} for all v ∈ C. The reason of
this choice is that, as 0 is the PCC, the constraint 1T q = 0 is inherently satisfied:
whatever variation in the injected reactive power is applied by v, it is automatically
compensated by a variation in the demand from the transmission grid via the
PCC.

The results of simulations are plotted in the bottom of Figure 7.5, together with the
best achievable performance as given in Theorem 22.

The performance of the nearest-neighbor gossip algorithm still confirm to be better
than the star topology, as Proposition 23 suggests.
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Figure 7.6: Graph describing a microgrid based on the IEEE37 test feeder. Circled nodes
represent compensators, the others denote loads.

7.3 Dynamic model

In this section we validate the approximation that yielded to the linear dynamic model
(4.13), by comparing its behavior with the nonlinear dynamics described by (4.9).

For this analysis, we used the microgrid in Figure 7.3: it is a 4.8 kV testbed
inspired from the standard test feeder IEEE37 [28]. We however assumed that loads
are balanced, and therefore all currents and signals can be described in a single-phase
phasorial notation.

Following the modeling proposed in Section 4.3.1, we assumed that every node (but
the PCC) behaves as a constant-power device with a first order dynamic. A quite short
time constant of 1.6 ms has been chosen to describe the fast dynamic behavior of the
compensators inverters, while the time constants of the loads have been distributed
between 200 ms and 10 s.

A step change of 60 kVAR in the reference for the injected reactive power has been
commanded to the compensator corresponding to node 30.

The first graph in Figure 7.7 shows how the voltage at the same node (30) exhibits
a rich dynamic behavior, due to the coupling of many nonlinear systems. Indeed, even
though the inverter dynamic response is very fast, the slower behavior of the loads affect
the voltage response: after an initial quick rise, the voltage approaches its steady state
value quite slowly.
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Figure 7.7: Voltage at node 30, after a step change in the reactive power injected by node 30.
The dashed in the second and third panel is the output of the approximate linear model.
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The dotted line in the same graph shows the value of the voltage uss
30, which is the

voltage corresponding to the solution of the static power flow equations. The second
and third panel in Figure 7.7 show the absolute value and the angle of the error between
u30 and uss

30. The dashed line corresponds to the linear approximate model (4.13), which
appears to be extremely close to the output of the nonlinear model.

In Figure 7.8, the same quantities have been plotted for another node (22), which
kept its power reference constant while node 30 was actuating the system. This figure
shows how the effect of actuation in one point of the microgrid propagates to other
nodes, causing similar transients in the voltage measurements of other nodes. It also
shows how the approximated linear model correctly describes this behavior.

Figure 7.9 shows how the same step change in the reactive power injected by node
30 affects the amount of reactive power flowing into the microgrid from the PCC.

7.3.1 Eigenvalue analysis

In this paragraph, we show the position of the eigenvalues of the linear model proposed,
for the grid shown in Figure 7.3.

From Figure 7.10 we can state that the global system has a worse dynamic behaviour
than each single node, in fact the position of the dominant eigenvalue of the state update
matrix Γ in (4.13) lies at the right of all the eigenvalues − 1

τv
(corresponding to the ideal

case in which u0 =∞).
In the same figure, the dominant eigenvalues of the system are shown when the

nominal voltage has changed: obviously, decreasing the value of u0, the dominant
eigenvalues move towards the imaginary axis. It is possible that they become positive,
because the nominal voltage is not sufficient to support the burden of the network.
However, it does not necessarily mean that the system is unstable, in fact we are
analyzing the eigenvalues of a linear approximate version of the exact model, even
though it surely means that the system is ”less stable”.

In Figure 7.10 we analyze the position of the dominant eigenvalues of the system
when increasing the number of the nodes of the network. Adding a little number of
nodes does not affect the position of the eigenvalues; when the dimension of the grid
becomes very different than the original network, then the scenario can deeply change,
even though this fact is strongly dependent on the parameters of the grid.
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Figure 7.8: Voltage at node 22, after a step change in the reactive power injected by node 30.
The dashed in the second and third panel is the output of the approximate linear model.
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Figure 7.9: Reactive power flowing through the PCC, after a step change in the reactive power
injected by node 30.
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Figure 7.10: Positions of the dominant eigenvalue of the model (4.13) related to the network in
Figure 7.3, for different values of u0.
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Figure 7.11: Positions of the dominant eigenvalue of the model (4.13) related to a network of
different dimensions. In purple it is represented the dominant eigenvalue of the model related to
the grid in Figure 7.3; the others have been obtained by adding nodes distributed along a line
to the node 35.
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CHAPTER 8

Conclusions

In this thesis we have considered the problem of optimal reactive power compensation
in smart microgrids. It has been formulated as a quadratic optimization problem and
this fact simplifies the studies: robust solvers are available for such problems and
performance analysis becomes tractable.

In order to solve this problem, a randomized distributed algorithm, has been proposed:
we have chosen such an algorithm owing to the typical characteristics that a smart
microgrid could present.

The idea of the algorithm is the decomposition of the minimization problem into
optimization subproblems, each one related to a subset of compensators (cluster); the
agents belonging to a cluster are the ones able to communicate with each other: in fact
we assume them to have only local knowledge of the system structure and the state (this
is the reason we think a distributed algorithm is a preferable choice for our problem).

When a cluster is randomly selected, agents belonging to it solve their corresponding
optimization subproblem by the Newton’s method, which guarantees a fast (1-step)
convergence to its optimum; the resolution of this subproblem allows these agents to
update the amount of reactive power they inject, while the agents belonging to the
other clusters keep their states constant.

Thus, each iteration of the algorithm make the state of the system change. This
variation in the amount of reactive power injected at compensators affects the grid
voltages, which are subject to a transient interval time. So we have proposed also a
dynamic model of the microgrid: it allows an input-output relation between the complex
power references commanded to compensators and their voltage measurements.

An approximation of this model has led to a linear system, which allows to employ
tools such as eigenvalue analysis, transfer function, etc. In particular, by the position of
the dominant eigenvalue of the system, it is possible to have an estimate of how long
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after changing the vector q the grid voltages attain a new steady state, and so we obtain
a lower bound on the interval time between consecutive iterations of the algorithm.

For the analysis of the designed algorithm, we have proposed a metric for the
performance of the algorithm, for which we are able to provide a bound on the best
achievable performance. We have found that, when the graph representing the microgrid
is a tree, clustering agents which are close in the network is the optimal strategy for the
speed of convergence of the algorithm.

Similar results (but in this case it is necessary taking some assumptions more) have
been obtained when the agents are distribuited to form a circular path and a short-range
communication is imposed again.

However, simulations suggest the nearest-neighbor strategy is better than other
choices also for other topologies of the network.

Future investigation could study other configurations of the grid, in order to confirm
and extend analytically these issues.

Moreover, a next step could be validating the dynamic model with more detailed sim-
ulators or experimental testbeds, with loads having different steady-state characteristics
and different dynamic behaviours.
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APPENDIX A

Convex optimization problems

An optimization problem is a problem of the form:

min f(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

(A.1)

where x ∈ Rn is the optimization variable, f : Rn → R is the objective function,
fi : Rn → R are the inequality constraint functions and hi : Rn → R are the equality
constraint functions.

The goal is finding a x that minimizes f(x) among all x satisfying the m + p

constraints.
The optimal value of the problem (A.1) is defined as:

popt = inf{f(x) | fi(x) ≤ 0, i = 1, . . . ,m; hi(x) = 0, i = 1, . . . , p}

and it is achieved if the problem is solvable, i.e. there exists a (globally) optimal
point xopt such that xopt is feasible (i.e. xopt satisfies all the constraints in (A.1)) and
f(xopt) = popt.

It can be very hard to find optimal points; tipically it is easier determining locally
optimal points.

A point x∗ is locally optimal if there exists a ε > 0 such that:

f(x∗) = inf{f(x) | fi(x) ≤ 0, i = 1, . . . ,m; hi(x) = 0, i = 1, . . . , p, ‖x− x∗‖2 ≤ ε}.

Each global optimal point (if there exists) is also a locally optimal point, but the
contrary is not generally true. However, there exist particular classes of optimization
problems (i.e. convex optimization problems) in which each locally optimal point is also
a globally optimal point.
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Appendix A. Convex optimization problems

A convex optimization problem is one of the form (A.1), where the functions
f, f1, , . . . , fm are convex and the equality constraint functions hi(x) = aTi x− bi are
affine. An important property is that the feasible set, i.e. the set of all feasible points

X = {x | fi(x) ≤ 0, i = 1, . . . ,m; hi(x) = 0, i = 1, . . . , p} ,

results to be convex.
Moreover, for convex optimization problems, any locally optimal point is also

(globally) optimal.
So, we can state the following optimality criterion, whose proof can be found in [16].

Proposition 26. Consider a convex optimization problem and let be the objective
function f differentiable. Then the point x is optimal if and only if:x ∈ X∇f(x)T (y − x) ≥ 0 ∀y ∈ X

(A.2)

A.1 Convex optimization problems with equality con-

straints only

Let consider the convex optimization problem (A.1), where there are equality constraints
but no inequality constraints; it can be expressed as follows:

min f(x)

subject to Ax = b, A ∈ Rp×n

Let assume that the feasible set X is nonempty (otherwise the problem is unfeasible).
The optimality condition (A.2) for a feasible x can be expressed saying that

∇f(x)T (y − x) ≥ 0 ∀y ∈ X (A.3)

must hold for all y such that Ay = b.
If x is feasible, each feasible y has the form y = x+ v with v ∈ kerA. So (A.3) can

be expressed as:
∇f(x)T v ≥ 0 ∀v ∈ kerA.

If a linear function is nonnegative on a subspace, then it must be zero on the subspace.
So:

∇f(x)⊥ kerA.

As (kerA)⊥ = Im(AT ), then the (A.3) can be expressed as ∇f(x) ∈ ImAT , i.e.
there exists a ρ ∈ Rp such that:

∇f(x) +ATρ = 0.
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So, considering a convex optimization problem with equality constraints only like (A.3),
the optimality condition (A.2) can be expressed by:Ax = b

∇f(x) +ATρ = 0,∃ ρ ∈ Rp
(A.4)

A.2 Descent methods

In this section we will describe a numerical method for solving convex optimization
problems, i.e. finding a solution of (A.2).

Solving this optimality system analytically can be very hard, so usually the opti-
mization problems are solved by an iterative algorithm which computes a sequence of
point x(0), x(1), . . . ∈ domf with f(x(k))→ p∗ as k →∞. The algorithm is terminated
when f(x(k))− p∗ ≤ ε where ε > 0 is a specified tolerance.

In particular, these algorithms produce a sequence x(k) such that:

x(k+1) = x(k) + t(k)∆x(k),

where k denotes the iteration number, ∆x is a vector called step direction and t(k) ≥ 0
is a scalar called step size.

Here we present methods called descent method, i.e.:

f(x(k+1)) < f(x(k)),

except when x(k) is optimal. They are characterized by the calculus of the step direction
and step size. For example, there exist the Newton’s Method, the Gradient Method, the
Steepest Descent Method etc.

In the next paragraph we will present one of the most important algorithms for
the optimization problems: Newton’s Method. In particular, it is considered the pure
Newton’s Method, where a fixed step size t(k) = t = 1 is used.

A.2.1 Newton’s method for unconstrained problems

Consider a convex optimization problem:

min f(x).

The vector
∆x = −[∇2f(x)]−1∇f(x)

is called Newton step of f at x. It can be interpreted and motivated in several ways.
Consider the second-order Taylor approximation of f at x:

f̂(x+ v) = f(x) +∇f(x)T v +
1
2
vT∇2f(x)v;
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Appendix A. Convex optimization problems

it is a convex quadratic function of variable v and it is minimized by v = ∆x.
Thus, ∆x is what should be added to x in order to minimize the second-order

approximation of f at x. So, if f is quadratic, then x + ∆x is the exact minimizer
of f , and, intuitively, if f is nearly quadratic, then x+ ∆x is a good estimate of the
minimizer of f .

Newton’s method presents many advantages over other Descent Methods, which
makes it one of the most important algorithms for the optimization problems. In fact,
Newton’s Method presents a rapid convergence (in partcular, a quadratic convergence
near xopt); moreover it scales well with problem size.

The main disadvantage is the cost of forming and storing the Hessian and computing
the Newton step, which reqires solving a set of linear equations. However, in many cases
it is possible to exploit the problem structure in order to reduce the cost of computing
the Newton step.

A.2.2 Newton’s method for equality constrained problems

In order to derive the Newton step ∆x for the equality constrained problem (A.3) at
the feasible point x, we replace the objective function f with its second-order Taylor
approximation near x; the obtained problem is the following:

min f̂(x+ v) = f(x) +∇f(x)T v +
1
2
vT∇2f(x)v

subject to A(x+ v) = b.
(A.5)

This is a convex quadratic optimization problem of variable v with equality constraints
only, and can be solved analytically.

We define ∆x as the solution of (A.5) (i.e. ∆x minimizes f̂ under the constraint
A(x+ v) = b): similarly to what said for the unconstrained case, ∆x is what must be
added to x to solve the problem when the quadratic approximation is used in place of f .

Remembering the optimality conditions (A.4), ∆x is characterized by:[
∇2f(x) AT

A 0

][
∆x
w

]
=

[
−∇f(x)

0

]
.

Solving this system, we can define the Newton step as:

∆x = −(∇2f(x))−1[∇f(x) +ATw]

with the constraint A∆x = 0.
As in Newton’s method for unconstrained problem, when f is exactly quadratic, the

Newton update x+ ∆x exactly solves the equality constrained minimization problem;
when f is nearly quadratic, x+ ∆x should be a very good estimate of the solution xopt.

It can be shown that applying Newton’s method with equality constraints is exactly
the same as applying Newton’s Method to the reduced problem obtained by eliminating
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the equality constraints. So the good properties of convergence of Newton’s Method for
unconstrained problems can be extended to Newton’s Method for equality constrained
problems.
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APPENDIX B

Kronecker product

B.1 Definition

Consider two matrices A ∈ Rm×n and B ∈ Rp×q. The Kronecker product of A and B is
defined as:

A⊗B =


a11B a12B · · · a1nB

a21B · · · · · · a2nB
...

am1B · · · · · · amnB

 ∈ Rmp×nq.

The same definition holds also if A and B are complex-valued matrices.
The Kronecker product of two vectors x ∈ Rm and y ∈ Rn is defined as follows:

x⊗ y = [x1y
T · · · xmyT ]T = [x1y1, · · · , x1yn, x2y1, · · · , xmyn]T ∈ Rmn

and
x⊗ yT = [x1y · · · xmy]T = xyT ∈ Rm×n.

B.2 Properties

An important result concerns the product of two matrices which are defined as the
Kronecker product of matrices.

Proposition 27. Given four matrices A ∈ Rm×n, B ∈ Rr×s, C ∈ Rn×p and D ∈ Rs×t,
the product

(A⊗B)(C ⊗D) = AC ⊗BD ∈ Rmr×pt.
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Proof. It easy to verify that:

(A⊗B)(C ⊗D) =


a11B a12B · · · a1nB

a21B · · · · · · a2nB
...

am1B · · · · · · amnB



c11D c12D · · · c1pD

c21D · · · · · · c2pD
...

cn1D · · · · · · cnpD



=



n∑
k=1

a1kck1BD · · ·
n∑
k=1

a1kckpBD

...
n∑
k=1

amkck1BD · · ·
n∑
k=1

amkckpBD


= AC ⊗BD.

By exploiting the definition of Kronecker product and the result in Proposition 27,
it easy to verify the following properties:

• (A⊗B)T = AT ⊗BT ; it follows that, if A and B are symmetric square matrix,
then A⊗B is a symmetric matrix ;

• (A⊗B)(A−1 ⊗B−1) = I ⊗ I = I, provided that A and B are square nonsingular
matrix; it follows that (A⊗B)−1 = A−1 ⊗B−1.

It can also be shown that:

rank(A⊗B) = rank(A)rank(B) = rank(B ⊗A).

The following proposition states an important result about eigenvalues and eigen-
vectors of Kronecker product of two matrices.

Proposition 28. Consider two matrices A ∈ Rn×n and B ∈ Rm×m. Let be λi, i =
1, . . . , n the eigenvalues of A and µj , j = 1, . . . ,m the eigenvalues of B. Then the mn
eigenvalues of A⊗B are: λ1µ1, . . . , λ1µm, λ2µ1, . . . , λ2µm, . . . , λnµm.

Moreover, let be x1, . . . , xp the linearly independent right eigenvectors of A corre-
sponding to λ1, . . . , λp, p ≤ n, and y1, . . . , yq the linearly independent right eigenvectors
of B corresponding to µ1, . . . , µq, q ≤ m. Then xi ⊗ yj ∈ Rmn are linearly independent
right eigenvectors of A ⊗ B corresponding to the eigenvalues λiµj , i = 1, . . . , p; j =
1, . . . , q.

Proof. The basic idea of the proof is the following:

(A⊗B)(xi ⊗ yj) = Axi ⊗Byj
= λixi ⊗ µjyj
= λiµj(xi ⊗ yj).
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APPENDIX C

Generalized inverse

Each nonsingular matrix A has a unique inverse A−1, such that:

AA−1 = A−1A = I.

In some recent years, numerous areas of applied mathematics required an expression
for the ”inverse” of matrices that are singular or rectangular.

It is possible via the concept of generalized inverse of a matrix A, i.e. a matrix B
associated in some way to A such that:

• it exists for a class of matrices larger than the class of nonsingular matrices;

• it has some of the properties of the usual inverse;

• it reduces to the usual inverse when A is nonsingular.

Definition 29. Given a matrix (m× n)-matrix A, B is a generalized inverse of A if it
is a (n×m)-matrix such that:

ABA = A. (C.1)

Typically, the generalized inverse exists for an arbitrary matrix. However, expression
(C.1) does not characterize uniquely the matrix B: unlike the case of nonsingular
matrices, there are many generalized inverses for different purposes.

For example, the matrix X defined in Lemma 1, is a generalized inverse of the
Laplacian matrix L, because it satisfies (C.1), being:

LXL = L(I − 11T0 ) = L;

in addition, it satisfies another condition, which guarantees that also L is a generalized
inverse of X, being:

XLX = (I − 11T0 )X = X.

89



Appendix C. Generalized inverse

C.1 Moore-Penrose generalized inverse

As said before, it is possible to add conditions to the Definition 29 of a generalized
inverse, in order to have always a unique generalized inverse (under the additional
conditions).

Definition 30. Given a (m× n)-matrix A, the matrix A] is the Moore-Penrose gener-
alized inverse of A if it is the unique matrix such that:

• A]A = A];

• AA]A = A;

• (AA])T = AA];

• (A]A)T = A]A;

More issues about the generalized inverses of a matrix can be found in [27].
Here we show a result, used in the proof of Proposition 8.

Proposition 31.

ker(A]) = ker(AT ) Im(A]) = ImA ∀A (C.2)

Proof. Let show the first relation before.
Let suppose y ∈ ker(A]); then it also holds y ∈ ker(ATAA]).
By using the properties of the Moore-Penrose pseudoinverse:

ATAA] = AT (AA])T = AT (A])TAT = (AA]A)T = AT

and so:
y ∈ ker(A])⇒ y ∈ ker(ATAA]) = ker(AT ).

Vice versa, if y ∈ ker(AT ), then y ∈ ker(A](A])TAT ). As:

A](A])TAT = A](AA])T = A]AA] = A],

then:
y ∈ ker(AT )⇒ y ∈ ker(A](A])TAT ) = ker(A]).

By the relationship kerA⊥ = ImAT , it holds also:

ImA] = ImAT ∀A. (C.3)
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APPENDIX D

Quadratic forms

A quadratic form involving n real variables x1, . . . , xn is given by:

F (x1, . . . , xn) =
n∑

i,j=1

ai,jxixj , ai,j ∈ R, 1 ≤ i, j ≤ n. (D.1)

The quadratic form F (x1, . . . , xn) is said:

1. positive definite if F (x1, . . . , xn) > 0 for all (x1, . . . , xn) 6= 0;

2. negative definite if F (x1, . . . , xn) < 0 for all (x1, . . . , xn) 6= 0;

3. positive semidefinite if F (x1, . . . , xn) ≥ 0 for all (x1, . . . , xn) ∈ Rn and exists a
(x1, . . . , xn) 6= 0 such that F (x1, . . . , xn) = 0;

4. negative semidefinite if F (x1, . . . , xn) ≤ 0 for all (x1, . . . , xn) ∈ Rn and exists a
(x1, . . . , xn) 6= 0 such that F (x1, . . . , xn) = 0;

5. indefinite if F (x1, . . . , xn) is positive for some values of (x1, . . . , xn) and negative
for other ones.

Given the quadratic form in (D.1), it can be expressed as:

F (x) = xTAx,

where x =
[
x1 · · · xn

]T
and A is a real symmetric matrix whose elements are ai,j .

The matrix A associated to the quadratic form F is said positive definite (or positive
semidefinite, etc) if the quadratic form F (x) is positive definite (or positive semidefinite,
etc).

It can be shown that F is positive (negative) definite if and only if the eigenvalues
of the associated matrix A are all positive (negative), whereas it is positive (negative)
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semidefinite if and only if the corresponding matrix A has (at least) an eigenvalue in
zero and all the others are positive (negative).

Proposition 32. Let be A ∈ Cn×n a positive semidefinite matrix. Then:

A > 0 ⇔ kerA = {0}.

Proof. If there exists a vector v ∈ kerA, then it is trivial:

Av = 0 ⇒ vTAv = 0, v 6= 0.

Vice versa, if kerA = {0}, then

w = Av 6= 0, ∀v 6= 0. (D.2)

As each vector in Cn can be written as the sum of a vector belonging to a subset of
Cn and a vector belonging to its orthogonal complement: w = αv + w⊥, α 6= 0. Then:

wTw = wTAv = αvTAv + (w⊥)TAv = αvTAv, α 6= 0;

as wTw 6= 0 by (D.2), then vTAv 6= 0 for all v 6= 0, i.e. A > 0.
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