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0.1 Abstract

Every nice story needs a good setting, Batman wouldn’t be who he is if it was
not for Gotham or The Lord of the Rings without the Middle Earth. Our story
is about a vote and the setting is a multidimensional chess board that enlarges as
time passes. It sounds monstrous but it isn’t. We will call it Torus Λ(N) of Zd of
side of length N.
Every pivot of the board has a person on it, who starts with an opinion, which can
be black or white, Democrat or Republican, Pandoro or Panettone, or, in our case,
0 or 1. We will call them voters. As the time advances every voter can check one
of its neighbourhoods and align with its opinion, if it differs from its own.
What we would like to know is if on the enlarging board we will ever have a con-
sensus and, if this happens, how its law can be characterized.
We know from Liggett [11] that if this situation would happen on infinite chess
board, i.e. Zd , we wouldn’t have a moment in time where all the voters agree, but,
as time advances, every one would take an opinion with a probability that depends
on the initial distribution. Instead, if we were to work on a fixed finite board, we
would easily find out that the consensus time is finite and it depends on the size of
the board and the initial distribution.
What we want to study is a situation in between the two of them. If we were to
start on a finite board that enlarges to the infinite one, how does the consensus time
increase with respect to the side of the board? What is its asymptotic behaviour?
To be able to study this voter model we read our story, in our strange setting, by
turning the book upside down and starting from the end. By doing so we will
actually read another story, the story of some people walking around the board,
who, when they meet on a pivot, unite into one.
The second model we are referring to is called Coalescing Random Walks. We
start with some symmetric random walks on the Torus that, as time advances,
move around. The only rule of this model is that, when two of them meet, they
coalesce into one and go on together.
As incredible as it may seem, if we draw graphically these two models, we can
see that one behaves like the other but with the time inverted. In particular, the
event for the voter model "By time t0 everyone’s opinion is the opinion initially
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held by person k" is exactly the same as the event for the coalescing random walk
process "All particles have coalesced by time t0, and the walk is at k at time t0".
By noticing this duality, we have an easier way to answer our previous questions.
We will just study the second model, which is easier to work on.
We will start by studying the behaviour of just two random walks on the enlarging
Torus. We will discover that to have them to meet, we will need two mathematical
techniques. The first one is that the two walks have to bound a succession, and the
second one is that we need to rescale the time in a way that the result is not trivial
and it accelerates the walks.
With these hypotheses we get that, as the board enlarges to infinity, the law of the
time of coalescence goes to an exponential law.
The second result is about multiple coalescing random walks and we will need
the same hypotheses and scaling procedures to have informations about the time
when they will all meet. It will also converge to an exponential law, which will
depend on the number of starting walks too. Moreover we will be able to charac-
terize the time when a fixed amount of walks have remained.
As we have characterized the time of coalescence, we can define the stopping
times that check the minimum time to have a certain amount of random walks
left. What we will learn is that they also converge weakly and in average to a
stopping time asymptotically.
Now that we have read our story backwards and learning a lot, we wish to trans-
late this knowledge to the actual story. Luckily, we have a Rosetta stone, a duality
identity, that helps us to move the result from one model to the other.
The first result, that we get out of it, is also about a stopping time, in particular
it is the consensus time, our first objective. We have that, with the same scaling
used for the Coalescing Random Walks, this stopping time converges weakly and
on average to a random variable whose law can be explicitly characterized
From this huge result we can also start to ask ourselves other questions. The first
one is how does the ’percentage’ of voters behave as the torus enlarges? The an-
swer is quite surprising, as it converges to a well known diffusion process, called
Wright-Fisher process, with the usual scaling hypotheses. The second one is about
the law of the voter model, which we will be able to describe in some particular
case.
This story could have many other chapters, like giving the voters more than just
two opinions, or with a different graph setting, but we will stop here.
The first chapter will focus on the basic theory of Markov process, with a partic-
ular focus on symmetric random walks. The second chapter will be dedicated to
the study of the Coalescing Random Walks, with every section focused on just
one of the theorems presented previously. The last chapter presents all the results
concerning the voter model, the duality and the density process.



Chapter 1

Basic Theory

1.1 Markov process

1.1.1 Discrete-time Markov process
Let S be a set at most countable.

Definition 1.1. A sequence (Xn)n≥0 of S-valued random variables is a Markov
chain if for each n≥ 1 and x0, x1, , . . . ,xn+1 ∈ S

P(Xn+1 = xn+1| Xn = xn, . . . , X0 = x0) = P(Xn+1 = xn+1| Xn = xn). (1.1)

If P(Xn+1 = xn+1| Xn = xn) does not depend from n, we say that the chain is
time-homogeneous. In this case the transition matrix is defined as

P := (pyx)y,x∈S, pyx = P(Xn+1 = x | Xn = y). (1.2)

The entries are probabilities, and since a transition from any state y must be to
some state, it follows that

0≤ pyx ≤ 1 ∀x ∈ S, ∑
x∈S

pyx = 1.

The random variable X0 is called the initial state, and its probability distribution
ν ,

ν(i) = P(X0 = i)

is the initial distribution. We shall abbreviate P(A | X0 = i) as Pi(A) if we want
to fix the initial state, and Pν( · ) the probability given that the initial state is
distributed according to ν . In particular Pν(A) = ∑i∈S ν(i)Pi(A), with A being an
event. From Bayes’s rule and in view of the homogeneous Markov property,

P(Xk = ik, . . . , X1 = i1, X0 = x0) = ν(i0)pi0i1 · · · pik−1ik .
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In particular, if νn(i) := P(Xn = i),

ν
T
n = ν

T
0 Pn

Definition 1.2. A probability distribution π satisfying

π
T = π

T P

is called a stationary distribution of the transition matrix P or of its corresponding
homogeneous Markov chain.

Definition 1.3. A stationary Markov chain with initial distribution π is reversible
if, for all i, j ∈ S,

π(i)pi j = π( j)p ji. (1.3)

The last equation is called the detailed balance equation. Clearly, if a distribu-
tion π satisfies (1.3), then π is a stationary distribution of P.

Definition 1.4. A stopping time with respect to a stochastic process (Xn)n≥0 ia
random variable τ taking values in N∪{+∞} and such that, for all integers m≥ 0,
the event {τ = m} can be expressed in terms of X0, X1, . . . , Xm.

An example of stopping time is the return time at a state i, defined as

τi = inf{n > 0 : Xn = i}

Definition 1.5. A state i ∈ S is called recurrent if

Pi(τi < ∞) = 1,

and otherwise it’s called transient. A recurrent state is called positive recurrent if
Ei[Ti]< ∞, else it’s called null recurrent.

An important result states that i ∈ S is recurrent if and only if

∑
n≥0

pn(i, i) = ∞, (1.4)

where pn(i, j) = Pi(Xn = j).
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1.1.2 Continuous-time Markov process
Definition 1.6. A random point process on the positive half-line is a sequence
(Tn)n≥0 of non-negative random variables such that, almost surely,

τ0 = 0, 0 < τ1 < τ2 < · · · , lim
n→+∞

τn = ∞.

For any interval (a, b]⊂ R+,

N(a, b] := ∑
n≥1

1(a, b](τn)

is an integer-valued random variable counting the events occurring in the time
interval (a, b]. For t > 0, let N(t) := N(0, t]. The family of random variables
N = (N(t))t≥0 is called the counting process of the point process (τn)n≥0.

Definition 1.7. A counting process N on the positive half-line is called an homo-
geneous Poisson process (HPP) with intensity λ > 0 if

• For all times ti, i ∈ {1, . . . , k}, such that 0≤ t1 ≤ ·· · ≤ tk, the random vari-
ables N(ti, ti+1], i ∈ {1, . . . , k−1}, are independent.

• For any interval (a, b] ⊂ R+, N(a, b] is a Poisson random variable with
mean λ (b−a).

In particular, for all k ≥ 0,

P(N(a, b] = k) = e−λ (b−a) [λ (b−a)]k

k!
.

In this sense, λ is the the average density points.
The sequence Sn = Tn−Tn−1 is called the interevent sequence of an HPP and it is
i.i.d, with exponential distribution of parameter λ . In particular

P(Sn ≤ t) = 1− e−λ t , E[Sn] = λ
−1.

The following two results are useful to understand the HPPs.

Theorem 1.1.1. Let (Ni)i≤1 be a family of independent HPPs with respective pos-
itive intensities (λi)i≥1.

• Two distinct HPPs of this family have no points in common.

• If ∑i≥1 λi = λ < ∞, then

N(t) := ∑
i≥1

Ni(t)

defines a counting process of a HPPs with intensity λ .
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Theorem 1.1.2. With the same hypothesis of the previous theorem, in particular
that ∑i≥1 λi = λ < ∞, denote by Z the first event time of N = ∑i≥1 Ni and by J the
index of the HPP responsible for it. Then

P(J = i, Z ≥ a) = P(J = i)P(Z ≥ a) =
λi

λ
e−λa. (1.5)

It follows that J and Z are independent, P(J = i) = λi
λ

, and Z is exponential with
mean λ−1.

Definition 1.8. The S-valued process (Xt)t≥0 is called a continuous-time Markov
chain if for all i, j, i1, . . . , ik ∈ S, all t, s≥ 0, and all s1, . . . ,sk ≥ 0, with sl ≤ s for
all l ∈ {1, . . . , k},

P(Xt+s = j | X(s) = i, Xs1 = i1, . . . , Xsk = ik) = P(Xt+s = j | Xs = i), (1.6)

whenever both sides are well-defined. This continuous-time Markov chain is
called homogeneous if the right-hand side of the equation is independent of s.

An equivalent definition involving the σ -algebra of the random variables is:

Definition 1.9. Let (Xt)t≥0 be S-valued random variables and Ft :=σ(Xs : s≤ t).
Then

P(Xt = x |Fs) = P(Xt = x | Xs).

Let
P(t) = (pi j(t))i, j∈S

where pi j(t) := P(Xt+s = j | Xs = i). The family (P(t))t≥0 is a semigroup, called
transition semigroup of the continuous-time HMC. This process has similar prop-
erties to the discrete one. That is

P(t + s) = P(t)P(s), P(0) = I.

The distribution at time t of Xt is the vector ν(t)= (νi(t))i∈S, where νi(t)=P(Xt =
i). It is obtained from the initial distribution, as in the discrete form, by the formula

ν(t)T = ν(0)T P(t).

For example, let N be an HPP on the positive half-line with intensity λ > 0. The
counting process (N(t))t≥0 is a continuous-time HMC. For f : S→ R and t ≥ 0,
we can define St f : S→ R by

St f (y) := E( f (Xt) | X0 = y) = ∑
y∈S

f (x)P(Xt = x | X0 = y).

In particular St1 = P(t).



1.1. MARKOV PROCESS 9

Definition 1.10. Let (Xn)n>0 be a discrete-time HMC with transition matrix K
and let (τn)n≥1 be an HPP on R+ with intensity λ > 0 and associated counting
process N. Suppose that (Xn)n≥0 and N are independent. The S-valued process,
defined by

X(t) = XN(t)

is called a uniform Markov chain. The Poisson process N is called the clock, and
the chain (Xn)n≥0 is called the subordinated chain.

The transition semigroup is

P(t) = ∑
n≥0

e−λ t (λ t)n

n!
Kn

Theorem 1.1.3. Let (P(t))t≥0 be a continuous transition semigroup on S. For any
state i, there exists

qi = lim
h→0

1− pii(h)
h

∈ [0, +∞],

and for any pair i, j ∈ S, there exists

qi j = lim
h→0

pi j(h)
h
∈ [0, +∞).

This theorem allows us to construct the following definition

Definition 1.11. The quantities qi j are called the local characteristics of the semi-
group. The matrix

L = (qi j)i, j∈S, qii :=−qi

is called the infinitesimal generator of the semigroup.

Equivalently, if t→ P(t) is continuous,

lim
t→0

St− I
t

= L

exists and P(t) = etL, with L satisfying the algebraic rule Lyy = −∑x 6=y∈S Lyx. In
particular, letting πt(x) := P(Xt = x), we have

πt(x) = ∑
y∈S

pyx(t)π0(y)

therefore
πt = π0P(t) ⇐⇒ π̇t = πtL.

Then a stationary distribution π for the chain satisfies πL = 0.
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1.2 Random Walks

1.2.1 Symmetric Random Walks

We now study some simple cases of random walks and we try to explore the
concepts of recurrent and transient states. We will often use the identity (1.4).
We will study firstly the 1-dimensional case. Let X0 be a random variable with
values in Z. Let {Zn}n≥1 be a sequence of i.i.d random variables, independent
of X0, taking the values +1 or -1, and with the probability distribution P(Zn =
+1) = p, where p ∈ (0,1). The process (Xn)n≥1 defined by Xn+1 = Xn +Zn+1 is
an homogeneous Markov chain, and it’s called the random walk on Z.
The nonzero terms of its transition matrix are

pi, i+1 = p, pi, i−1 = 1− p.

We can easily notice that all the states are connected, so if one state is recurrent,
then all of them are, and vice-versa. We study the origin. The first observation
we need to take is that p00(2n+1) = 0, because, if the walk starts in the origin, it
needs an even amount of steps to come back. Then

p00(2n) =
(2n)!
n!n!

pn(1− p)n

because for every step in one direction, the walk has to take one in the other way
to come back.
By Sterling’s equivalence formula n!∼ n

e

√
2πn we get

p00(2n)∼ (4p(1− p))n
√

πn
.

The nature of the series ∑
∞
n=0 p00(n) depends on p. If p= 1

2 , then the sum diverges
and the origin is a recurrent state. If p 6= 1

2 , in which case 4p(1− p)< 1, the sum
converges and then the origin is a transient state.
Similarly the 2-dimensional case has a recurrent the origin. We just consider the
case in which the jumps in a neighbourhood state happen with probability p = 1

4 ,
called symmetric random walk. We use the identity (1.4). Again p00(2n+1) = 0,
but

p00(2n) =
1

42n

(
2n
n

) n

∑
k=0

(
n
k

)(
n

n− k

)
and by using Sterling’s identity p00(2n)∼ 1

πn . Then the origin is a recurrent state
for the symmetric random walks.
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The 3-dimensional case differs from the previous ones. The not null-terms of the
transition matrix are given by

px, x±ei =
1
6
.

Clearly, p00(2n+1) = 0 for all n≥ 0, and

p00(2n) = ∑
0≤i+ j≤n

(2n)!
(i! j!(n− i− j)!)2

(
1
6

)2n

.

This can be rewritten as

p00(2n) = ∑
0≤i+ j≤n

1
4n

(
2n
n

)(
n!

i! j!(n− i− j)!

)2(1
3

)2n

.

Using the trinomial formula

∑
0≤i+ j≤n

n!
i! j!(n− i− j)!

(
1
3

)n

= 1,

we obtain the bound

p00(2n)≤ Kn
1
4n

(
2n
n

)(
1
3

)n

where Kn = max0≤i+ j≤n
n!

i! j!(n−i− j)! .
By maximizing Kn the values we can get

p00(2n)∼ n!
(n/3)!(n/3)!22nen

(
2n
n

)
.

By Stirling’s equivalence formula, then

p00(2n)∼ 3
√

3
2(πn)3/2

so it’s the general term of a divergent series. Then state 0 is therefore transient.
What we can conclude then it’s that for d = 1, 2 all the states are recurrent for the
symmetric random walks, i.e. the walk will pass through every state an infinite
amount of times, while for d ≥ 3 all the states are transient, i.e. the walk will be
in each state just few times.
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1.2.2 Brownian Motion
We now want to show how to construct a Brownian motion by using the symmet-
ric random walks. We seek this result just to see the potential of the symmetric
random walks.
We consider a family of i.i.d random variables {Xk}k≥0 such that P(Xk = 1) =
P(Xk =−1) = 1

2 and let Sn = ∑
n
k=1 Xk, ∀n ∈ N, with S0 = 0. Clearly

Sn =

{
0, elsewhere(n

k

)
2−n, for |k| ≤ n.

We consider, for each n ∈ N, the process

Y n
t =

S[nt]√
n
+

nt− [nt]√
n

X[nt]+1

for t ∈ R+, where [·] is the integer part of a real number.
The succession {Y n

t }n is a linear interpolation of points of Sn with a rescaling of
time n and space

√
n.

We know that
Sn√

n
→d N(0, 1),

by the central limit Theorem, then

S[nt]√
n
=

S[nt]√
nt
·
√

t→d √t ·N(0, 1) =d N(0, t),

with the last equivalence being on distribution. Moreover

nt− [nt]√
n

X[nt]+1→p 0,

as n→ ∞, since the scalar term ’wins’ over the random variables.
We state a useful lemma

Lemma 1.2.1. Let {Xn}n and {Yn}n be successions of random variables with val-
ues in the same probability space. If Xn →d X and Yn →p 0 as n → ∞, then
Xn +Yn→d X.

Proof. See [3].

By this lemma we then have that

Y n
t →d N(0, t).

We recall the definition of a Brownian motion Bt , that is a stochastic Gaussian
process with average µt = 0, co-variance k(s, t) = min{s, t} and continuous tra-
jectories a.e..
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Theorem 1.2.2. For every t1, . . . , tk ∈ Rk, k ∈ N

(Y n
t1 , . . . , Y n

tk )→
d (Bt1, . . . , Btk)

as n→ ∞.

Proof. See [3].

This results states that, as we see the random variables as processes with re-
spect to the time, we have convergence of the finite dimensional law.
To check the convergence of processes we just need the tightness, as it follows
from Prokorov’s Theorem. The final result is

Theorem 1.2.3. The law of (Y n
t )t≥0 converges to the law of (Bt)t≥0.

Proof. See [3].

We now can understand the potentiality and the complexity of the object we
are about to use, this little introduction will helps us to have a better image of the
symmetric random walk.

1.3 Voter model on Zd

We state a result in the case of the voter model on Zd . We write η
µ

t the model at
the time t with initial distribution µ , with L(ηµ

t ) being the law of η
µ

t .
We denote F as the set of invariant probability measures for ηt . F is a convex
set with respect to the sum of measures and multiplication with scalars, and we
denote Fe as the set of extreme points, i.e., the set of elements of F which are not
a linear combination of other two elements.
For 0 ≤ θ ≤ 1 let µθ be the product measure with density θ , i.e., µθ ({η(x) =
1}) = θ for all x ∈ Zd . We have

Theorem 1.3.1. If d ≤ 2, then Fe = {µ0, µ1} and L(ηµθ

t )⇀ (1−θ)µ0 +θ µ1, as
t→ ∞. If d ≥ 3, then there are probability measures νθ , such that Fe = {νθ , 0≤
θ ≤ 1} and L(ηµθ

t )⇀ νθ as t→ ∞.

Proof. See Theorem V.1.8 in [11].

This Theorem shows that, on the whole Zd , we don’t have a moment in time
where all the voters agree almost surely, but instead every one of them would have
an opinion with a probability based on the measure νθ , which depends solely on
θ ∈ [0. 1]. As we will see later on, working on the torus of Zd , not only we will
have consensus in a finite amount of time, but also we will be able to find a law.



Chapter 2

Coalescing random walks

In this chapter we will work on the set S := Zd with d ≥ 2. We will consider a se-
quence of finite systems by taking Λ(N) =Zd∩ [−N/2, N/2)d, N = 2, 4, . . . . The
set Λ(N) is regarded as a torus and we write pN(x,y) for the transition function of
simple symmetric random walk on Λ(N). That is, given two states,

pN(x,y) = ∑
z∈Zd

p(x,z)1(y≡z mod(N)).

We need to define

sN =


N2, d = 1,
N2 logN, d = 2,
Nd, d ≥ 3,

(2.1)

a rescalating system that will appear often throughout the proves.

2.1 Case of two Coalescing Random Walks

2.1.1 Definitions and useful quantities
The coalescing random walk system ξt has as state space the sets of parts of Zd

and ξt(A) is the set of occupied sites at time t when the initial state is A⊂ Zd .
Each particle independently executes simple symmetric rate 1 continuous random
walk on Zd , that means the walk has equal probability to move to a neighbourhood
state with the jump distributed as exp(1).
When a particle lands on a site already occupied they coalesce into one. We define
ξ N

t the process restricted to Λ(N). The behavior of this object on a finite system
obviously differs from a infinity one; for example, if d ≥ 3, in the first case all
the walks are eventually bound to meet, but it doesn’t happen in the second case,

14
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essentially because the random walks on Zd are transient, as we have seen in the
previous chapter.
We define the constant

G =


1
6 , d = 1,
2
π
, d = 2,

∑n≥0 pn(x, y), d ≥ 3.
(2.2)

Where pn(x, y) is the n-th iterate of p(x, y). It’s interesting to know the nature of
this constant for d ≥ 3, it is generated by a particular case of the Green’s function.
Let Xn be a random walk on Zd , and x, y ∈ Zd . We define the Green’s generating
function to be the power series in ξ ∈ C

G(x, y; ξ ) :=
∞

∑
n=0

ξ
nPx(Xn = y) =

∞

∑
n=0

ξ
n pn(x, y)

that is absolutely convergent for |ξ | < 1. There is a particular interpretation of
the sum for ξ ≤ 1. Suppose T is a random variable independent from Xn with a
geometric distribution,

P(T = j) = ξ
j−1(1−ξ ), j = 1, , . . .

We think of T as a ’killing time’ for the walk, where 1− ξ is the killing rate. At
each time j, if the walker has not already been killed, the process is killed with
that probability, independently from the position of the walker. If the random walk
starts at the origin, then the expected number of visits to x before being killed is
given by

E

[
∑
j<T

1(X j=x)

]
= E

[
∞

∑
j=0

1(X j=x, T> j)

]

=
∞

∑
j=0

P0(X j = x, T > j)

=
∞

∑
j=0

p j(x,0)ξ j = G(x, 0; ξ ).

Clearly a random walk is transient if and only if G(0, 0; 1) < ∞, from (1.4), in
which case the escape probability is G(0, 0; 1)−1. For a transient random walk,
we then define the Green’s function to be

G(x, y) := G(x, y; 1) =
∞

∑
n=0

pn(x, y).
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As we are working with a symmetric random walk, G(x, y) = G(y, x), and also
G(x, x) = G(0, 0) for any x, y ∈ Zd . In particular, G is independent from the
states x, y ∈ Zd; indeed, thanks to the previous observations, we just need to see
G(0, 0) = G(0, e1). So

G(0, 0) =
∞

∑
n=0

pn(0, 0) =
∞

∑
n=1

pn(0, 0) =
∞

∑
n=0

pn(0, e1) = G(0, e1)

since the probability of coming back to the origin in the first step is null, and

pn+1(0, x) = ∑
y∈Zd

p(0, y)pn(0, x− y)

where we choose x = 0. In fact

pn(0, 0) = ∑
y=±ei, i∈{1,...,d}

1
2d

pn(0, y) = pn(0,e1)

because pn(0, ei) = pn(0, e j) for i, j ∈ {1, . . . ,d}.

2.1.2 Convergence in law of the coalescing time
We start by simplifying the object of the study. Let XN

t , t ≥ 0, be a simple sym-
metric rate 1 continuous time random walk on the torus Λ(N) and let HN be the
hitting time of the origin. In particular HN = inf{t > 0 | XN

t = 0}.

Theorem 2.1.1. Assume aN → ∞ and aN = o(N) as N → ∞. For d = 2 assume
in addition that aN

√
logN/N → ∞. Then, uniformly in t ≥ 0 and x ∈ Λ(N) with

|x| ≥ aN , then
Px(HN/sN > t)→ exp(−t/G).

For x1, x2 ∈ Λ(N), we may see ξ N
t (x1)− ξ N

t (x2) as a rate 2 random walk on
Λ(N) until the time that the random walks meet. The theorem implies that

P(|ξ N
tsN

({x1, x2})|= 1) = Px1−x2(H
N/sN > 2t)→ 1− e−

2t
G , (2.3)

as N→∞, provided that |x1−x2| ≥ aN . Indeed, if we have two random walks, and
their difference, as a process, hits 0, this means they have met and, as consequence,
coalesced.
This theorem explains also the nature of sN . On the torus, the average time, as N
grows, of first passing through the origin converges to GsN , because the sequence
of random variables converges in distribution to an exponential. Then sN is the
only rescaling that gives a non-trivial limit. We could see it as an acceleration on
time that the system needs to not converge to a trivial situation.
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2.1.3 Useful results

Lemma 2.1.2. If tN → ∞, then

lim
N→∞

sup
u≥tNN2

sup
x∈Λ(N)

Nd|pN
u (x, 0)−N−d|= 0. (2.4)

For d = 2, if aN → ∞ and aN = o(N) as N→ ∞, then there is a finite constant K
such that

limsup
N→∞

sup
u≥1

sup
|x|≥aN , x∈Λ(N)

a2
N pN

u (x, 0)≤ K. (2.5)

Proof. We first prove (2.4).
It is not reductive to consider tN a sequence of integers, then it suffices to prove

lim
N→∞

sup
x∈Λ(N)

Nd|pN
tNN2(x, 0)−N−d|= 0.

For if u≤ tNN2 and x ∈ Λ(N),

Nd|pN
u (x, 0)−N−d|= Nd

∣∣∣∣∣∑y
pN

u−tNN2(x, y)
(

pN
tNN2(y, 0)−N−d

)∣∣∣∣∣
≤ sup

y
Nd|pN

tNN2(y, 0)−N−d| → 0

since we are working with stochastic transitions.
By a Corollary 2.2.3 of [2], applied around p1(x, y), we have for t = 1, 2, . . . ,

pt(x, 0) =
(

d
2πt

)d/2

exp
(
−d|x|2

2t

)[
1+

d

∑
r=1

t−r/2Br

(
x√
t

)]
+ e(x, t) (2.6)

where each Br is a polynomial, depending on d, of degree at most r and

td/2
∑

x∈Zd

|e(x, t)| → 0 as t→ ∞.

We are essentially approximating the behaviour of the distribution starting in x
and passing in 0 with a Gaussian distribution, which depends on some polynomial
terms that decrease to null as the time goes to infinity.
Since pN

u (x, 0) =∑z∈Zd pu(x, Nz) because we are working on a torus and by using
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the previous expression, it follows that

Nd pN
u (x, 0) = Nd

(
d

2πu

)d/2

∑
z∈Zd

exp
(
−d|x−Nz|2

2u

)

+Nd
(

d
2πu

)d/2

∑
z∈Zd

exp
(
−d|x−Nz|2

2u

) d

∑
r=1

u−r/2Br

(
x−Nz√

u

)
+Nd

∑
z∈Zd

e(x−Nz, u).

(2.7)

We consider u = tNN2 and we analyze the three parts of this expansion.
For the first term, fix R > 0, let I = [−1

2 ,
1
2 ]

d and x′ = x/N. Then we expand again
the expression

Nd
(

d
2πu

)d/2

∑
z∈Zd

exp
(
−d|x−Nz|2

2u

)
= Nd

(
d

2πu

)d/2

∑
|z|≤R

exp
(
−dN2|x′− z|2

2u

)

+Nd
(

d
2πu

)d/2

∑
|z|>R

∫
I+z

exp
(
−dN2|x′− z|2

2u

)
dy,

from the basic
∫

I+z dy = (z+ 1
2− z+ 1

2)
d = 1d = 1. Then for some constant C, the

first sum in the right-hand side above is bounded from above by

CNdRd

ud/2 =
CR2

td/2
N

→ 0

as N→ ∞ for a fixed R, moreover the series is surely finite because it has a finite
amount of addends.
For the second sum, observe that x′ ∈ I, with N big enough, and we can choose κR
such that 0 < κR < 1, κR→ 1 as R→ ∞ and

κR ≤
|y|
|x′− z|

≤ 1
κR

with |z| ≥ R and y ∈ I + z. Then

Nd
(

d
2πu

)d/2

∑
|z|>R

∫
I+z

exp
(
−dN2|x′− z|2

2u

)
dy

≤ Nd
(

d
2πu

)d/2

∑
|z|≥R−1

∫
I+z

exp
(
−dN2κ2

R|y|2

2u

)
dy

≤ Nd
(

d
2πu

)d/2(∫ +∞

−∞

exp
(
−dN2κ2

Rr2

2u

)
dr
)d

=
1

κd
R
→ 1 as R→ ∞.
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by first summing on the whole Zd and using Fubini-Tonelli, and then substituting
the variable in the Gaussian integral.
On the other hand, using the other side of the previous inequality,

Nd
(

d
2πu

)d/2

∑
|z|>R

∫
I+z

exp
(
−dN2|x′− z|2

2u

)
dy

≥ Nd
(

d
2πu

)d/2 ∫
|y|>R+1

exp
(
−dN2|y|2

2uκ2
R

)
dy

= κ
d
R(2π)−d/2

∫
|y|>cN

exp(−|y|2/2)dy,

where, from the substitution of variable,

CN = (R+1)

√
dN2

κ2
Ru

= (R+1)

√
d

κ2
RtN
→ 0

as N→ ∞ for a fixed R. Hence

liminf
n→∞

Nd
(

d
2πu

)d/2

∑
|z|>R

∫
I+z

exp
(
−dN2|x′− z|2

2u

)
dy

= κ
d
R(2π)−d/2

∫
|y|>cN

exp(−|y|2/2)dy

= κ
d
R.

Since κR→ 1 as R→ ∞, we have proved

Nd
(

d
2πtNN2

)d/2

∑
z∈Zd

exp
(
−d|x−Nz|2

2tNN2

)
→ 1.

Since each Br is a polynomial and considering always u = tNN2, the upper limit
of the second term of (2.7) is finite, as the exponential takes over. It implies

lim
N→∞

Nd
(

d
2πtNN2

)d/2

∑
z∈Zd

exp
(
−d|x−Nz|2

2tNN2

)
d(tNN2)−r/2Br

(
x−Nz√

tNN2

)
= 0

For the third term of (2.7), by the definition of e(x, t),

Nd
∑

z∈Zd

e(x−Nz, tNN2)→ 0
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So, by choosing wisely the steps of the time, we have proven that the first limit
(2.4) does converge to 0.
For the second inequality (2.5) it suffices to prove that

limsup
N→∞

sup
k≥1

sup
|x|≥aN , x∈Λ(N)

a2
N pN

k (x, 0)≤ ∞

where k is a positive integer. Indeed, if k ≤ t ≤ k+1, then

pN
k+1(x, 0)≥ pN

t (x, 0)pN
k+1−t(0, 0)

≥ pN
t (x, 0)pk+1−t(0, 0)

≥ c0 pN
t (x, 0),

where c0 = inf{ps(0, 0) | 0≤ s≤ 1}> 0.
Let x′ = x/N as before. We expand a2

N pN
k (x, 0) as in (2.7) and the main contribu-

tion is

a2
N

πk ∑
z∈Zd

exp
(
−|x−Nz|2

k

)
=

a2
N

πk

[
exp
(
−|x|

2

k

)
+ ∑

z6=0
exp
(
−N2|x′− z|2

k

)]
.

The first term above is bounded, and for some finite constant C it holds

a2
N

πk
exp
(
−|x|

2

k

)
≤

a2
N

πk
exp
(
−

a2
N
k

)
≤C

since we consider |x| ≥ aN , for all k and N.
For the second term we use the same trick of the integral of the previous inequality,
in particular

a2
N

πk ∑
z 6=0

exp
(
−N2|x′− z|2

k

)
=

a2
N

πk ∑
z 6=0

∫
z+I

exp
(
−N2|x′− z|2

k

)
dy

≤
a2

N
πk ∑

z 6=0

∫
z+I

exp
(
−

N2κ2
1 |y|2

k

)
dy

≤
a2

N
πk

∫
R2

exp
(
−

N2κ2
1 |y|2

k

)
=C

a2
Nκ2

1
N2 → 0 as N→ ∞.

This proves that

limsup
N→∞

sup
k≥1

sup
|x|≥aN , x∈Λ(N)

a2
N

πk ∑
z∈Zd

exp
(
−|x−Nz|2

k

)
< ∞

The other two errors terms behave as in the previous inequality so their analysis
is omitted.
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The goal now is to prove Theorem (2.1.1). Let pN
t (x, y) = Px(XN

t = y), and
let FN and GN be the Laplace transforms

FN(x, λ ) =
∫

∞

0
e−λ tPx(HN ∈ dt), (2.8)

GN(x, λ ) =
∫

∞

0
e−λ t pN

t (x, 0)dt.

defined for λ > 0 and x ∈ Λ(N). The following identity emerges

GN(x, λ ) =
∫

∞

0
e−tλ

∫ t

0
Px(HN ∈ du)pN

t−u(0, 0)dt

that is the Laplace transform of the probability that the random walk hits two times
the origin starting from the state x, and from this one may derive the fundamental
relation

FN(x, λ ) =
GN(x, λ )

GN(0, λ )
.

The characteristic function of discrete time random walk on Zd is
φ(θ) := ∑

x∈Zd

eix·θ p(0, x)

=
1

2d

d

∑
j=1

eiθ j + e−iθ j

=
1
d

d

∑
j=1

cos(θ j), θ ∈ Rd

(2.9)

since the jumps can reach only to the neighbourhood states of the center.
In this model the relation between the characteristic function and the Laplace
transform previously defined is

GN(x, λ ) =
1

Nd ∑
y∈Λ(N)

ei2πx·y/N

1+λ −φ(2πy/N)
, (2.10)

see [12] for the proof. This identity is used to find some interesting results.
We want to study

Ex[e−λHN/sN ] = FN(x, λ/sN) =
GN(x, λ/sN)

GN(0, λ/sN)
.

For d = 2, sN = N2 logN,

GN(0, λ/N2 logN)

logN
= λ

−1 +
1

N2 logN ∑
06=y∈Λ(N)

1
1+λ/N2 logN−φ(2πy/N)

∼ λ
−1 +

1
N2 logN ∑

06=y∈Λ(N)

1
1−φ(2πy/N)

,
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where the λ−1 appears from the origin component of the sum and the symbol ∼
means that, given f (N) and g(N), F(N)/G(N)→ 1 as N→ ∞. We wish to study
the convergence of the series as N→ ∞. We define

ϕN :=
1

N2 ∑
06=y∈Λ(N)

1
1−φ(2πy/N)

=
4

N2

[(N−1)/2]2

∑
y1=1, y2=1

1
1− 1

4(cos(2πy1/N)+ cos(2πy2/N))

where we transpose the sum just on the first positive quadrant, and we always
consider N = 0, 2, 4, . . . . As N → ∞ the sum alone approaches a divergent in-
tegral, since 1− φ(2πy/N) becomes small rapidly as (2πy/N)→ 0 . One can
approximate φ by

φ(2πx/N)∼ 1− (2π
2/N2)(x2

1 + x2
2)+ . . .

See [13] and [12]. The range of the summation is then divided into two parts; the
first part containing those (x1, x2) such that (x2

1 + x2
2)

1/2 < αN, where α small
enough so that the approximation is good for all those points, and the second con-
taining the remaining. The contribution of the second set to ϕ remains bounded
as N→ ∞, as the first set grows with N, so we don’t consider it. Then

ϕN =
4

N2 ∑
1≤(y2

1+y2
2)

1/2<αN

N2

2π2(y2
1 + y2

2)

as N→∞, the sum is well approximated by the following integral, express in polar
coordinates

∑
1≤(y2

1+y2
2)

1/2<αN

1
(y2

1 + y2
2)
∼
∫

αN

1

2πr
r2 dr = 2π logαN.

Hence
lim

N→∞

ϕN

logN
=

2
π
= G, with d = 2,

for a fixed α .
For d ≥ 3, sN = N−d , and I = [−1/2, 1/2]d instead

GN(0, λN−d) = λ
−1 +

1
Nd ∑

06=y∈Λ(N)

1
1+λ/Nd−φ(2πy/N)

∼ λ
−1 +

1
Nd ∑

06=y∈Λ(N)

1
1−φ(2πy/N)

→ λ
−1 +

∫
I

1
1−φ(2πθ)

dθ
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As we consider the limit on N on every component of 1
Nd and the sum converging

to the integral on the enlarging torus, that then shrinks to I by substituting the
variable.
If X = (X1, . . . , Xd) is a Zd-valued random variable with characteristic function
φ , then for every x ∈ Zd ,

P(X = x) =
1

(2π)d

∫
[−π, π]d

φ(θ)e−ix·θ dθ .

Indeed
φ(θ) = E[eiX ·θ ] = ∑

y∈Zd

eiX ·θ P(X = y),

and then ∫
[−π, π]d

φ(θ)e−ix·θ dθ = ∑
y∈Zd

P(X = y)
∫
[−π, π]d

ei(y−x)·θ dθ .

By the dominated convergence we can interchange the sum and the integral, and
if x, y ∈ Zd ∫

[−π, π]d
ei(y−x)·θ dθ =

{
(2π)d, y = x,
0, y 6= x.

More, if a Zd-valued random process is i.i.d with characteristic function φ , and let
Sn = ∑

n
i=1 Xi then, for all x ∈ Zd

P(Sn = x) =
1

(2π)d

∫
[−π, π]d

φ
n(θ)e−ix·θ dθ .

Now

G(0, x, ξ ) =
∞

∑
n=0

ξ
n pn(0, x) =

∞

∑
n=0

ξ
n 1
(2π)d

∫
[−π, π]d

φ
n(θ)e−ix·θ dθ

=
1

(2π)d

∫
[−π, π]d

∞

∑
n=0

(ξ φ(θ))n e−ix·θ dθ

=
1

(2π)d

∫
[−π, π]d

1
1−ξ φ(θ)

e−ix·θ dθ .

The interchange is again possible thanks to the dominated convergence. For ξ = 1,
finally,

lim
N→∞

GN(0, λN−d) =
1
λ
+G (2.11)

for d ≥ 3.
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2.1.4 Proof of the main Theorem

Now everything we need to prove the Theorem is ready 2.1.1.

Proof Theorem 2.1.1. It suffices to show that for any fixed λ > 0, uniformly in
|x| ≥ aN ,

Ex

[
exp(−λHN

sN
)

]
→ 1

1+λG

as N → ∞. Since for each N the left side is a monotone function of λ and the
right side is continuous in λ , it follows that the convergence must hols uniformly
in λ ≥ 0. The uniformity and continuity imply that for any bounded continuous
function f on [0, ∞), uniformly in |x| ≥ aN ,

Ex[ f (HN/sN)]→ G−1
∫

∞

0
f (v)e−v/G dv

as N→ ∞. By using an approximation of the identity function that, for any fixed
t > 0, uniformly in |x| ≥ aN , the monotonicity implies that

Px(HN/sN > t)→ e−t/G, N→ ∞

must hold uniformly in t ≥ 0.
We recall that

Ex[e−λHN/sN ] =
GN(x, λ/sN)

GN(0, λ/sN)

and that

GN(0, λN2 logN)→ 1
λ
+G, d = 2

GN(0, λN−d)→ 1
λ
+G, d ≥ 3.

Thus it remains to prove that, uniformly in |x| ≥ aN ,

1
logN

∫
∞

0
e−λ t/N2 logN pN

t (x, 0)dt→ λ
−1, d = 2∫

∞

0
e−λ t/Nd

pN
t (x, 0)dt→ λ

−1, d ≥ 3.

CCCaaassseee ddd === 222. We assume aN = o(N) and aN
√

logN/N→ ∞ as N→ ∞. Let tN ≤
aN
√

logN/N such that tN → ∞ and tN = o(logN) and break the integral in two



2.1. CASE OF TWO COALESCING RANDOM WALKS 25

parts. The first is

1
logN

∫ tNN2

0
e−λ t/N2 logN pN

t (x, 0)dt ≤ 1
logN

(
1+

∫ tNN2

1

K
a2

N
e−λ t/N2 logN dt

)

≤ 1
logN

(
1+

KN2 logN
λa2

N
(1− e−λ tN/ logN)

)
≤ 1

logN

(
1+

KN2tN
a2

N

)
→ 0

as N→ ∞, by using (2.5) and the hypothesis on tN . The second part is

1
logN

∫
∞

tNN2
e−λ t/N2 logN pN

t (x, 0)dt ≤ 1+o(1)
N2 logN

(∫
∞

tNN2
e−λ t/N2 logN dt

)
=

1+o(1)
λ

exp
(
− λ tN

logN

)
→ λ

−1

as N→ ∞, where we used (2.4).
CCCaaassseee ddd ≥≥≥ 333. We need another estimate to continue

P(|Xt | ≥ t1/2 log t)≤C/t2, t ≥ 0.

This comes from Markov’s inequality P(X ≥ a) ≤ E[X ]
a , in the exponential form,

with X positive random variable. In particular

P(|Xt | ≥ a) = P(eλ |Xt | ≥ eλa)≤ E[eλ |Xt |]

eλa
.

By substituting a = t1/2 log t, λ = 2/t1/2, and C = E[eλ |Xt |], we get the estimate,
noticing that the mean of the exponential is finite. For any finite set Γ ⊂ Zd we
have

pN
t (x, 0) = ∑

z∈Zd

pt(x, Nz)

≤ |Γ∩ (x+NZd)|pt(0, 0)+ ∑
z6∈Γ

pt(0, x+Nz).

Since pt(0, 0)≤C/td/2, the choice Γ = [−t1/2 log t, t1/2 log t]d gives

pN
t (x, 0)≤ C

td/2

(
t1/2 log t

N

)d

+P(|Xt | ≥ t1/2 log t)

≤C

((
log t
N

)d

+
1
t2

)
.
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Now we break the integral in two parts.

0≤
∫ N2 logN

0
e−λ t/Nd

pN
t (x, 0)dt

≤
∫ N2 logN

0
pN

t (x, 0)dt

≤ T sup
|x|≥aN

sup
0≤t≤T

pN
t (x, 0)+C

∫ N2 logN

T

(
(log t)d

Nd +
1
t2

)
dt

= T sup
|x|≥aN

sup
0≤t≤T

pN
t (x, 0)+C

[
t

Nd

d

∑
k=0

(−1)d−k d!
k!
(log t)k− 1

t

]∣∣∣N2 logN

T

→ C
T

as N→∞ for a fixed T , since pN
t (x, 0)→ 0 for an escaping state x in a finite time.

And then for T → ∞

lim
N→∞

∫ N2 logN

0
e−λ t/Nd

pN
t (x, 0)dt = 0.

Now, using (2.4) the second part is∫
∞

N2 logN
e−λ t/Nd

pN
t (x, 0)dt =

(1+o(1))
Nd

∫
∞

N2 logN
e−λ t/Nd

dt→ λ
−1

as N→ ∞, by substituting the variable. This completes the proof.

2.2 Multiple Coalescing Random Walks
As we have studied the case of two random walks and we have estimated their time
of coalescence, it’s time to consider n starting random walks and their behaviour.
We define the functions:

qn, k(t) =
n

∑
j=k

(−1) j+k(2 j−1)( j+ k−2)!
(n

j

)
k!(k−1)!( j− k)!

(n+ j−1
j

) exp
(
−t
(

j
2

))
. (2.12)

q∞, k(t) =
∞

∑
j=k

(−1) j+k(2 j−1)( j+ k−2)!
k!(k−1)!( j− k)!

exp
(
−t
(

j
2

))
. (2.13)

This two quantities are tied to the distributions of a Markov chain Dt defined on
the positive integers, fixing the initial state. In particular, a state n goes in the state
n−1 at (exponential) rate

(n
2

)
. Then Pn(Dt = k) = qn, k(t).

Now we can state:
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Theorem 2.2.1. Assume d ≥ 2, T>0 and n≥ 2, and aN satisfies the assumptions
of Theorem 2.1.1. Then, uniformly in 0 ≤ t ≤ T and AN = {x1, . . . , xn} ⊂ Λ(N)
with |xi− x j| ≥ aN for i 6= j,

P(|ξ N
tsN

(AN)|= k)→ qn, k(2t/G) (2.14)

for 1≤ k ≤ n.

Proof. We first define some object that will help during this proof

τ
N(i, j) := inf{t ≥ 0 : |ξ N

t ({xi, x j})|= 1},

τ̂
N := min

i6= j
τ

N(i, j),

HN
t (i, j) := {τN(i, j)≤ tsN},

FN
t (i, j) := {τ̂N = τ

N(i, j)≤ tsN},

Then the relation between these objects can be expressed as

P(HN
t (i, j)) = P(FN

t (i, j))

+ ∑
{k, l}6={i, j}

∑
yα , yβ

∫ tsN

0
P(τ̂N = τ

N(k, l) ∈ du,ξ N
u (xi) = yα , ξ

N
u (x j) = yβ )·

·P(|ξ N
tsN−u({yα , yβ})|)

(2.15)

This is the probability that the random walks starting from the states i, j are ac-
tually the first to coalesce plus the probability that all the other random walks do
not do the same, considering the adjustment on the time.
We want to assume that |yα − yβ | ≥ aN , if not then the integral converges to 0 as
N→ ∞. In particular

εN :=
∫ T sN

0
P(τ̂N = τ

N(k, l) ∈ du, |ξ N
u (xi)−ξ

N
u (x j)| ≤ aN)→ 0

as N→ ∞ and with tNN2 ≤ T sN .
There are two case to consider; let XN

u (x), x ∈ Λ(N), be independent random
walks, with XN

0 (x) = x. We must show, as N→ ∞,∫ T sN

0
P(τ̂N = τ

N(1, 2) ∈ du, |ξ N
u (x3)−ξ

N
u (x4)| ≤ aN)→ 0∫ T sN

0
P(τ̂N = τ

N(1, 2) ∈ du, |ξ N
u (x3)−ξ

N
u (x1)| ≤ aN)→ 0
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where, without losing generality, we choose to fix the two random walks that meet
first.
The only difference between the two integrals is the walks it considers, in the first
case the two walks are the ones that don’t coalesce, in the second case one does.
We need to study both for generality. Luckily, we just need to prove the second
limit as the other one behaves similarly; from the independence of random walks
XN

u (x), as x varies, we have∫ T sN

0
P(τ̂N = τ

N(1, 2) ∈ du, |ξ N
u (x3)−ξ

N
u (x1)| ≤ aN)

≤ P(τN(1, 2)≤ tNN2)+
∫ T sN

tNN2
P(τN(1, 2) ∈ du, |XN

u (x3)−XN
u (x1)| ≤ aN)

= P(τN(1, 2)≤ tNN2)+ ∑
y∈Λ(N)

∫ T sN

tNN2
P(τN(1, 2) ∈ du, XN

u (x1) = y)P(|XN
u (x3)− y| ≤ aN),

where we have denoted by τN(1, 2) the coalescing time of XN
u (x1) and XN

u (x2).
Without loss of generality choose tN such that tN → ∞ and tN/ logN → 0. Then
the right-hand side of the previous equation is bounded from above by

Px1−x2(H
N ≤ 2tNN2)+C

ad
N

Nd P(τN(1, 2) ∈ [tN , T sN ])

≤ Px1−x2

(
HN

sN
≤ 2tNN2

sN

)
+C

ad
N

Nd → 0

where we use Theorem 2.1.1 and (2.4), and the hypothesis tNN2/sN → 0.
So, from now on, |yα − yβ | ≥ aN , and y := yα − yβ . In this case

P(|ξ N
tsN−u({yα , αβ})|= 1) = Py(HN ≤ 2(tsN−u))

= 1− exp
[
−2
(

t− u
sN

)
/G
]
+ εN

by Theorem 2.1.1.

∑
yα , yβ

∫ tsN

0
P(τ̂N = τ

N(k, l) ∈ du,ξ N
u (xi) = yα , ξ

N
u (x j) = yβ ) ·P(|ξ N

tsN−u({yα , yβ})|)

=
∫ tsN

0
P(τ̂N = τ

N(k, l) ∈ du)
(

1− exp
[
−2
(

t− u
sN

)
/G
])

+ εN

=

[
P(FN

u (k, l))
(

1− exp
[
−2
(

t− u
sN

)
/G
])]∣∣∣t/sN

0
+

2
G

∫ t

0
P(FN

u′ (k, l))e−2(t−u′)/G du′+ εN

=
2
G

∫ t

0
P(FN

u′ (k, l))e−2(t−u′)/G du′+ εN
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where we integrate by parts and notice that the distribution and the exponential
are 0 in 0 and t/sN respectively, and then we substitute the variable u′ = u/sN .
Since

P(HN
t (i, j))→ 1− e−2t/G

and by using (2.15)

1− e−2t/G = P(FN
t (i, j))+

2
G ∑
{i, j}6={l, k}

∫ t

0
P(FN

u (k, l))e−2(t−u′)/G du+ εN .

A summation over i, j gives(
n
2

)
(1−e−2t/G) = qN(t)+

2
G

((
n
2

)
−1
)

e−2t/G
∫ t

0
qN(u)e2u/G du+εN (2.16)

considering
qN(t) = P(τ̂N ≤ tsN).

The solution of the equation (2.16) converges to the solution of(
n
2

)
(1− e−2t/G) = q(t)+

2
G

((
n
2

)
−1
)

e−2t/G
∫ t

0
q(u)e2u/G du (2.17)

as N → ∞, uniformly in AN and t, we call such solution qN(t) and q(t). So, we
define αN(t) = qN(t)−q(t) and it satisfies

|αN(t)| ≤
2
G

((
n
2

)
−1
)

e−2t/G
∫ t

0
|αN(u)|e2u/G du+εN ≤C

∫ t

0
|αN(u)|e2u/G du+εN

by subtracting one of the previous equation to the other. We can now use the
Gronwall’s Lemma and we get

|αN(t)| ≤C′εN → 0

as N→ ∞.
The solution of (2.17) is

q(t) := 1− exp
(
−2t

(
n
2

)
/G
)
,

it can be seen by just substituting the function in the equation.
We conclude the proof by induction. The induction hypothesis is that for aN
satisfying the assumptions, uniformly for [0, T ] and AN = {x1, . . . , xn} ⊂ Λ(N)
such that |xi− x j| ≥ aN for i 6= j,

P(|ξ N
tsN

(AN)|= k)→ qn, k(t), 1≤ k ≤ n.
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We have already studied the special cases k = 1, n. The induction step is to prove
that uniformly for t ∈ [0, T ] and BN = {y1, . . . , yn+1} ⊂Λ(N) such that |yi−y j| ≥
aN for i 6= j,

P(|ξ N
tsN

(BN)|= k)→
(

n+1
2

)
2
G

∫ t

0
exp
(
−2u

(
n+1

2

)
/G
)

qn, k(t−u)du

= qn+1, k(t), 1≤ k ≤ n.

To prove this let σN = inf{t ≥ 0 : |ξ N
t (BN)|= n} and fix k ≤ n. Then

P(|ξ N
tsN

(BN)|= k) = ∑
CN

∫ tsN

0
P(σN ∈ du, ξ

N
u (BN) =CN)P(|ξ N

tsN−u(C
N)|= K),

where CN = {z1, . . . , zn} ⊂ Λ(N), as we have already seen∫ tsN

0
P(σN ∈ du, ξ

N
u (BN) = {z1, . . . , zn}, |zi− z j| ≤ aN for some i 6= j)→ 0,

and so, by using the induction hypothesis, we obtain

P(|ξtsN
N(BN)|= k)

= ∑
CN

∫ tsN

0
P(σN ∈ du, ξ

N
u (BN) =CN)

(
qn, k(t−u/sN)+ εN

)
+ εN

=
∫ tsN

0
P(σN ∈ du)qn, k(t−u/sN)+ εN

→
(

n+1
2

)
2
G

∫ t

0
exp
(
−2u

(
n+1

2

)
/G
)

qn, k(t−u/sN)du

as required. This completes the proof.

2.3 Mean of the coalescing times
We state the main Theorem

Theorem 2.3.1. Let ξ N
0 = Λ(N) and let σN

j = inf{t ≥ 0 : ξ N
t = j}. There are

random variables σ j such that for j = 1, 2, . . . as N→ ∞,

σ
N
j /sN ⇀ σ j and E[σN

j /sN ]→ E[σ j] (2.18)

If d ≥ 2, then

P(σ j ≤ s) =
j

∑
k=1

q∞, k(2s/G), s≥ 0, (2.19)

and E[σ1] = G.
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2.3.1 Useful Lemmas
To tackle the proof of this theorem we need a series of lemmas. First we define

gN(t) =


N/
√

t, d = 1,
N2 log(1+ t)/t, d = 2,
Nd/t, d ≥ 3,

that will help in the estimates.

Lemma 2.3.2. If B⊂ A⊂ Λ(N) and hs(A) = minx, y∈Λ(N)Px−y(HN ≤ s), then

E[|ξs(N)(B)|]≤ |B|− (|B|−1)hs(A). (2.20)

Proof. We can assume that |B| ≥ 1, so fix x0 ∈ B and define

Zs = ∑
x∈B−{x0}

1(ξ N
s (x)=ξ N

s (x0))
,

that is the number of walks that coalesce with the walk starting at x0. For sure

|ξ N
s (B)| ≤ |B|−Zs

and
E[Zs]≥ (|B|−1)hs(A)

then we just take expectation and we get the final result.

Lemma 2.3.3. If t ≤ r≤ r+ s≤ 2t, 1
2E[|ξ N

2t |]≥ 4−dE[|ξ N
t |]≥ 2d and At is a cube

in Λ(N) of side [8N/E[|ξ N
t |]1/d], where [t] denotes the greatest integer less or

equal to t, then

E[|ξ N
r+s|]≤ E[|ξ N

r |](1−
1
2

hs(At))≤ E[|ξ N
r |]exp(−1

2
hs(At)). (2.21)

Proof. Let Bi, 1 ≤ i ≤ n(t), be disjoint cubes covering Λ(N), each Bi no larger
than At , with

n(t)≤

(
NE[|ξ N

t |]1/d

8N
+1

)d

≤

(
E[|ξ N

t |]1/d

4

)d

=
E[|ξ N

t |]
4d ≤ 1

2
E[|ξ N

2t |]≤
1
2

E[|ξ N
r |].

If we ignore the coalescence of particles starting in different Bi’s, then the Markov
property implies

E[|ξ N
r+s|]≤ ∑

Ci⊂Bi, 1≤i≤n(t)
P(ξ N

r ∩Bi =Ci)∑
j

E[|ξ N
s (C j)|].



32 CHAPTER 2. COALESCING RANDOM WALKS

Using the previous lemma and writing hs for hs(At) we have

∑
i

E[|ξ N
s (Ci)|]≤∑

i
[|Ci|− (|Ci|−1)hs]

= (1−hs)∑
i
|Ci|+hsn(t)

≤ (1−hs)∑
i
|Ci|+

1
2

hsE[|ξ N
r |].

And combing the estimates we obtain the result

E[|ξ N
r+s|]≤ ∑

Ci⊂Bi, 1≤i≤n(t)
P(ξ N

r ∩Bi =Ci)

(
(1−hs)∑

j
|C j|+

1
2

hsE[|ξ N
r |]

)

= (1− 1
2

hs(At))E[|ξ N
r |].

As for the exponential form we use the simple consideration (1 + x) ≤ ex for
x ∈ R.

Lemma 2.3.4. If fN(t) = E[|ξ N
t |]/gN(t), then there exist finite constants Md such

that

fN(t)≤Md, 0≤ t ≤ 4, N = 2, 4, . . . ,
fN(2t)≤max{Md, fN(t)}, t ≥ 0, N = 2, 4, . . . .

Proof. If t ≤ 4, then since |ξ N
t | ≤ Nd , the first inequality holds with Md = 4. Now

if cannot apply (2.21), then either

E[|ξ N
t |]≤ 8d

or
E[|ξ N

2t |]≤ 2 ·4−dE[|ξ N
t |]

and in either case, for all d the second inequality holds with Md = 8d . So we may
assume that the result of the previous lemma is true, in which case iteration of
(2.21) gives

E[|ξ N
2t |]≤ E[|ξ N

t |]exp
(
−1

2

[ t
s

]
hs(At)

)
.

If B is a square of side b≥ 8, then there are positive constants αd such that

hb2(B)≥


α1, d = 1,
α2/ logb, d = 2,
α3/bd−2, d ≥ 3.
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by Lemma 5 of [4]. We can see that the nature of this object is similar to the one
of sN , rescaled.
We now let s depend on t by setting s to be the square of the side At , so s = st :=
(8N/E[|ξ N

t |]1/d)2. We may assume that st ≤ t/2, else

fN(t) =
E[|ξ N

t |]
gN(t)

<
128d/2Nd

td/2Ndkd(t)
= 128d/2k′d(t)≤ 128d/2

because t/2 < (8N/E[|ξ N
t |]1/d)2 and where kd(t) is the temporal part of gN(t) and

one can see easily that 0 < k′d(t) := 1/td/2kd(t)< 1 for t ≥ 2. With this choice we
have [

t
st

]
≥ t

2st
≥ tE[|ξ N

t |]2/d

128N2

and

hb2(B)≥


α1, d = 1,

α2/ log
(

8N
E[|ξ n

t |]1/2

)
, d = 2,

α3/
(

8N
E[|ξ n

t |]1/2d

)d−2
, d ≥ 3.

We now consider the cases d = 1, d = 2 and d ≥ 3 separately.
(d = 1): Utilizing what we have done till now

fN(2t) =

√
2tE[|ξ N

2t |]
N

≤
√

2tE[|ξ N
t |]

N
exp
[
−1

2
tE[|ξ N

t |]2

128N2 α1

]
= fN(t)exp

(
log
√

2− α1

256
f 2
N(t)

)
then the result holds and M1 = max{

√
128,

√
128log2/α1}.

(d = 2): As the previous case we have

fN(2t) =
2tE[|ξ N

2t |]
N2 log2t

≤ 2tE[|ξ N
t |]

N2 log2t
exp
[
−1

2
tE[|ξ N

t |]2

128N2
α2

log(8N/(E[|ξ N
t |]1/2))

]
= fN(t)

(
log t

log2t

)2

exp

(
log2− α2

256
fN(t)

log t
log(8

√
t/
√

log t)− 1
2 log fN(t)

)
≤ fN(t)exp

(
log2− α2

256
fN(t)

)
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unless
log t

log(8
√

t/
√

log t)− 1
2 log fN(t)

≤ 1.

Since the denominator is positive ( fN(t)≤ t/ log t this can happen only if

log fN(t)≤ 4
(

log
8
√

t√
log t
− log t

)
≤ 4log8,

and putting all of the pieces together we have the inequality with M2 = {128, 256log2/α2}.
(d ≥ 3): As above,

fN(2t) =
2tE[|ξ N

2t |]
Nd

≤ 2tE[|ξ N
t |]

Nd exp

−1
2

tE[|ξ N
t |]2/d

128N2 αd

(
E[|ξ N

t |]1/d

8N

)d−2


= fN(t)exp
(

log2− αd

4 ·8d fN(t)
)

and so the inequality for d ≥ 3 holds with Md = max{128d/2, 8d log2/αd}.

Lemma 2.3.5. There are finite constants cd such that

E[|ξ N
t |]≤ cd max{1, gN(t)} (2.22)

for t > 0 and N = 2, 4, . . . .

Proof. We first fix t > 0 and N = 2, 4, . . . . Because of the previous lemma

fN(2t)≤max{Md, fN(t)}, t ≥ 0, N = 2, 4, . . . .

where fN(t) = E[|ξ N
t |]/gN(t). If fN(t)≤Md then

E[|ξ N
2t |]≤MdgN(2t)

and we just need to rescale the time. Else

E[|ξ N
2t |]≤

gN(2t)
gN(t)

E[|ξ N
t |]≤ E[|ξ N

t |]

with gN(2t)
gN(t)

≤ 1 for t > 0, N = 2, 4. Since the t is arbitrary we have, in this
case, that E[|ξ N

t |] decreases with respect to time, as we could expect. Then 0 ≤
E[|ξ N

t |]≤C. We take the maximum of the two and we get the result.

This theorem gives a scale of the maximal value of E[|ξ N
t |] with respect to

time and to the increasing of the torus.
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2.3.2 Proof of the main Theorem

Proof Theorem 2.3.1. We first prove the first convergence. Fix t > 0, j ≥ 1 and
aN as in Theorem 2.1.1. Now fix n ≥ 2 and select AN = {x1, . . . , xn} ⊂ Λ(N),
|xα − xβ | ≥ aN for α 6= β . Then since ξ N

t (AN)⊂ ξ N
t (Λ(N)),

P(|ξ N
tsN

(Λ(N))| ≤ j)≤ P(|ξ N
tsN

(AN)| ≤ j)→
j

∑
k=1

qn, k(e−2t/G)

as N→ ∞ by Theorem 2.2.1. Letting n→ ∞ we obtain

limsup
N→∞

P(|ξ N
tsN

(Λ(N))|)≤
j

∑
k=1

q∞, k(e−2t/G).

For the reverse inequality fix M and δ1, δ2 > 0. By Markov’s inequality and by
lemma 2.3.5

P(|ξ N
δ1sN

(Λ(N))| ≥M)≤
E[|ξ N

δ1sN
|]

M
≤ cd

δ1M
.

As in the proof of the Theorem 2.2.1 and the usual construction with random
independent random walks that, uniformly in k ≤M and {y1, . . . , yk} ⊂ Λ(N),

P(ξ N
δ1sN

(Λ(N)) = {y1, . . . , yk}, ∃ z1 6= z2 ∈ ξ
N
δ2sN

(Λ(N)), |z1−z2| ≤ aN) = εN→ 0.

Combining these remarks with the Theorem 2.2.1 applied to ξ N
(t−δ2)sN

(ξ N
δ2sN

(Λ(N)))

and letting

Al(z1, . . . , zl) := {ξ N
δ2sN

(Λ(N)) = {z1, . . . , zl}, |zα − zβ | ≥ aN for α 6= β},

we have

P(|ξ N
tsN

(Λ(N))| ≤ j)≥
M

∑
l=1

P(|ξ N
(r−δ2)sN

({z1, . . . , zl})| ≤ j | A(z1, . . . , zl))

×P(Al(z1, . . . , zl) | |ξ N
δ1sN

(Λ(N))| ≤M)×P(|ξ N
δ1sN

(Λ(N))≤M)

≥
(

1− cd

δ1M

) M

∑
l=1

(
j

∑
k=1

ql, k(e−2(t−δ2)/G)+ εN

)
×P(Al(z1, . . . , zl) | |ξ N

δ1sN
(Λ(N))| ≤M)

≥
(

1− cd

δ1M

)( j

∑
k=1

q∞, k(e−2(t−δ2)/G)

)
+ εN .
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If we first let N→ ∞, then M→ ∞ and then δ1, δ2→ 0, we obtain

liminf
N→∞

P(|ξ N
tsN

(Λ(N))| ≤ j)≥
j

∑
k=1

q∞, k(e−2t/G).

Then
lim

N→∞
P(|ξ N

tsN
(Λ(N))|= j) = q∞, j(e−2t/G).

which is enough to prove the weak convergence.
The moment convergence follows from the weak convergence provided that the
sequence σN

j /sN is uniformly integrable, from Vitali’s theorem. Since

P(σN
j ≤ 1) = P(|ξ N

tsN
(Λ(N))| ≤ j)→

j

∑
k=1

q∞, k(e−2/G)

as N→ ∞, there exists δ j such that for all N = 2, 4, . . . we have

P(σN
j /sN ≤ 1)≥ δ j.

Now for any A⊂ Λ(N), since ξ N
t (A)⊂ ξ N

t (Λ(N)), we must also have that for all
N = 2, 4, . . . ,

P(σN
j /sN ≤ 1 | ξ N

0 = A)≥ δ j.

Then, the Markov property and iteration lead to

P(σN
j /sN ≥ n)≤ (1−δ j)

n,

and since this limit vanishes as N→ ∞, we have the uniform integrability.



Chapter 3

Voter Model

3.1 Duality

3.1.1 Voter model and duality
We imagine that at the initial moment every point on the torus is a person with
either the opinion 0 or 1. As the time advances every person can check one of its
neighbourhoods and align with its opinion, if it differs from its own. So the state
space is {0, 1}Λ(N), where we indicate ηN

t (x) is the state of the component at site
x at time t on the torus Λ(N). The transitions are

η
N
t → 1−η

N
t (x), at rate ∑

y∈Λ(N)

pN(x, y)1({ηN
t (x)6=ηN

t (y)}).

In this case, each voter waits a random time which is exponential with parameter
1, then selects a neighbourhood voter according to pN and adopts its opinion.
We write A⊂ ηN for A⊂ Λ(N) and ηN ∈ {0, 1}Λ(N) to mean A⊂ {x : ηN(x) =
1}. The first duality equation we need is

PηN (B⊂ η
N
t ) = P(ξ N

t (B)⊂ η
N) (3.1)

where PηN indicates that the voter model ηN
t starts with ηN

0 = ηN .
We try to understand the duality of the two models just by ’picturing’ it, and actu-
ally we don’t need much more. The explanation is that the two processes can be
seen by looking to the same situation in two different ways.
In the voter model, we interpret time as increasing left-to-right from 0 to t0, and
we see an arrow j→ i as time t as meaning that person j adopts i’s opinion at time
t. In the coalescing random walk model, we interpret time as increasing right-to-
left from 0 to t0, and we see an arrow j→ i at time t as meaning that the walk at
state j at time t jumps to state i, and coalesces with the cluster at i, if any it’s there.

37
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For fixed t0, we can regard both processes as constructed from the same Poissan
process of arrows. For any vertices i, j, k the event for the voter model "The
opinions of the people i and j at time t0 are both the opinion initially held by k" is
exactly the same as the event for the coalescing random walk process "The walks
starting at i and at j have coalesced before time t0 and their cluster is at vertex k
at time t0".

In the particular case of the previous picture, the horizontal lines indicate part
of the trajectories. In terms of the coalescing random of the coalescing random
walks, the particles starting at 5 and 7 coalesce, and the walk is at 4 at time t0. We
can see that exactly three of the initial opinions survive, i.e that the random walks
coalesce into three walks.
In particular, the event for the voter model "By time t0 everyone’s opinion is the
opinion initially held by person k" is exactly the same as the event for the coalesc-
ing random walk process "All particles have coalesced by time t0, and the walk is
at k at time t0".
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3.1.2 Consensus time convergence
As we start ηN

t in product measure with density θ , the previous identity leads to
the second duality equation

P(B⊂ η
N
t ) = E

[
θ
|ξ N

t (B)|
]
. (3.2)

Indeed

P(B⊂ η
N
t ) = ∑

ηN⊂Λ(N)

PηN (B⊂ η
N
t ) ·P(ηN)

= ∑
ηN⊂Λ(N)

P(ξ N
t (B)⊂ η

N) ·P(ηN) = E
[
θ
|ξ N

t (B)|
]
.

We define also
τ

N = inf{t ≥ 0 | ηN
t ≡ 0 or 1 on Λ(N)}, (3.3)

which is clearly a stopping time on the torus.

Theorem 3.1.1. There are random variables τ depending on the dimension d such
that as N→ ∞,

τ
N/sN ⇀ τ and E[τN/sN ]→ E[τ].

If d ≥ 2, then

P(τ ≤ s) =
∞

∑
k=1

[θ k +(1−θ)k]q∞, k(2s/G), s≥ 0,

and E[τ] = G[θ logθ +(1−θ) log(1−θ)+1].

Proof. Fix t ≥ 0. Then

P(τN ≤ tsN) = P(ηN
tsN
≡ 1 or 0)

= E
[
θ
|ξ N

tsN
(Λ(N))|

]
+E

[
(1−θ)|ξ

N
tsN

(Λ(N)))|
]

→
∞

∑
k=1

[θ k +(1−θ)k]q∞, k(−2t/G)

by Theorem (2.3.1). To obtain the moment convergence we note that

P(τN > t) = 1−E
[
θ
|ξ N

tsN
(Λ(N)))|

]
+E

[
(1−θ)|ξ

N
tsN

(Λ(N))|
]

=
∞

∑
k=2

[θ k +(1−θ)k]P(|ξ N
t (Λ(N))|= k)

≤ P(|ηN
t (Λ(N))| ≥ 2) = P(σN > t),



40 CHAPTER 3. VOTER MODEL

which means that τN is stochastically smaller than σN
1 and since σN

1 /sN is uni-
formly integrable, so is τN/sN . This is enough to have the convergence of expec-
tations. For the explicit calculation the computation is∫

∞

0
P(τ > t)dt =

∞

∑
k=2

[θ k +(1−θ)k]
∫

∞

0
P∞(D2t/G = k)dt

=
∞

∑
k=2

[θ k +(1−θ)k]
G
2

E[holding time in state k]

=
∞

∑
k=2

[θ k +(1−θ)k]
G
2

(
k
2

)−1

= G
∞

∑
k=2

[θ k +(1−θ)k]

k(k−1)

= G
∞

∑
k=2

(
θ

θ k−1

k−1
+(1−θ)

(1−θ)k−1

k−1
− θ k

k
− (1−θ)k

k

)
= G

(
−θ log(1−θ)− (1−θ) logθ −

∞

∑
k=2

(
θ k

k
+

(1−θ)k

k

))

= G

(
−θ log(1−θ)− (1−θ) logθ −

∞

∑
k=1

(
θ k

k
+

(1−θ)k

k

)
+θ +(1−θ)

)
= G(−θ log(1−θ)− (1−θ) logθ + logθ + log(1−θ)+1)
= G(θ logθ +(1−θ) log(1−θ)+1).

using the following Taylor expansion around 0

log(1− x) =−
∞

∑
n=1

xn

n

for x ∈ (0,1).

3.2 Density process

3.2.1 Coalescing Random Walk with different starting time

Before going ahead we need to establish another coalescing random walk result,
where we consider random walks that start moving at different times. For t1 <
· · · < tk and Ai ⊂ Λ(N) let ηN

t (A1, t1; . . . ; Ak, tk) denote a coalescing random
walk system in which random walks start each point of Ai at time ti (they are
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frozen until this time) and then execute the coalescing random walk motion. For
t > tk and positive integers m, ni define

qn1, m(t1, t) = qn1, m(t− t1),

qn1,..., nk, m(t1, . . . , tk, t) =∑
l1

· · ·∑
lk−1

qn1, l1(t2− t1)qn2+l1, l2(t3− t2)

×·· ·×qnk−1+lk−2, lk−1(tk− tk−1)qnk+ll−1, m(t− tk).

Hence

qn1,..., nk, m(t1, . . . , tk, t)

= ∑
l

qn1,..., nk−1, l(t1, . . . , tk−1, tk)qnk+l, m(t− tk)

= ∑
l

qn1, l(t2− t1)ql+n2, n3,..., nk, m(t2, . . . , tk, t).

Theorem 3.2.1. Assume d ≥ 2, fix T > 0, k > 0, n1, . . . , nk, let aN→∞, an = o(N)

as N → ∞. Then for fixed 0 ≤ t1 < · · · < tk < t, uniformly for Ai = {x j
i , j =

1, . . . , ni} ⊂ Λ(N) such that |xα
i − xβ

i | ≥ aN for all i and α 6= β ,

P(|ξ N
tsN

(A1, t1sN , . . . , Ak, tksN)|= m)→ qn1,..., nk, m(2t1/G, . . . , 2tk/G, 2t/G).

Proof. The k = 1 result follows from Theorem 2.2.1, so we assume now that
k ≥ 2 and proceed by induction. We will run the system until time t2sN and look
at ηN

tsN
(A1, t1sN) = {y1, . . . , yl}. By constructing independent random walks we

can see

P(∃ yα , yβ ∈ ξ
N
t1sN

(A1, t1sN), yα 6= yβ and |yα − yβ | ≤ aN)≤Cad
N/Nd

P(∃ yα ∈ ξ
N
t1sN

(A1, t1sN), xβ ∈ A2 with |yα − xβ | ≤ aN)≤Cad
N/Nd

as in the proof of Theorem 2.2.1. Thus

P(|ξ N
tsN
|= m) = εN +∑

l
∑

y1,..., yl

P(ξ N
tsN

(A1, tsN) = {y1, . . . , yl})

×P(|ξ N
tsN−t2sN

(A2∪{y1, . . . , yl}, 0, A3, t3sN− t2sN , . . . , Ak, tksN− t2sN)|= m)

→∑
l

qn1, l(2(t2− t1)/G)×qn2+l, n3,..., nk, m(0, 2(t3− t2)/G, . . . , 2(tk− t2)/G, (t− t2)/G)

= qn1, ,n2,..., nk, m(2t1/G, . . . , 2tk/G, 2t/G).

where the sum on the yi is over |yα − yβ | ≥ aN and |yα − xβ | ≥ aN , with xβ ∈
A2. We have the result by using Theorem 2.2.1, the induction hypothesis and the
previous observations.
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By using this theorem and the duality equation (3.1), we get

Pη(Bi ⊂ ηti, 1≤ i≤ k) = P(ξtk(Bk, 0, Bk−1, tk− tk−1, . . . , B1, tk− t1)⊂ η)

for 0≤ t1 ≤ ·· · ≤ tk. In particular, using the equation (3.2), we see

Pη(Bi ⊂ ηti, 1≤ i≤ k) = E
[
θ
|ξtk (Bk, 0, Bk−1, tk−tk−1,..., B1, tk−t1)|

]
. (3.4)

3.2.2 The Wright-Fisher diffusion process
Now we introduce the Wright-Fisher diffusion Yt . We know study the discrete
case that will bring us to the continuous one, which will appear in a further result.
The Wright-Fisher model assumes that the total population remains at a constant
level N and focuses on the changes in the relative proportions of the different
types.
Fluctuations of the total population, provided that they do not become too small,
result in time-varying rates in the Wright-Fisher model but do not change the main
qualitative features of the conclusions.
The classical model is a discrete time model of a population with constant size N
and types E = {1, 2}. Let Zn be the number of type 1 individuals at time n. Then
Zn is a Markov chain with state space {0, . . . , N} and transition probabilities:

P(Zn+1 = j | Zn = i) =
(

N
j

)(
i
N

) j(
1− i

N

)N− j

, j = 0, . . . , N.

We interpret that at generation n+1 this involves binomial sampling with proba-
bility p = Xn

N , that is, the current empirical probability of type 1. It’s easy to find
the moment generating function, the mean and the variation

M(θ) =
(

peθ

)N
, E(X) = N p, Var(X) = N p(1− p).

Now we will the passage from the discrete time to the continuous time process.

Theorem 3.2.2. Assume that N−1XN
0 → p0 as N→ ∞.Then

(pN(t))t≥0 ≡ (N−1XN
[Nt])t≥0→ (p(t))t≥0

where (p(t))t is a Markov diffusion process with state space [0, 1] and with gen-
erator

G f (p) =
1
2

p(1− p)
d2

d p2 f (p) (3.5)

if f ∈C2([0, 1]). This is equivalent to the pathwise unique solution of the SDE

d p(t) =
√

p(t)(1− p(t))dB(t), p(0) = p0.
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Proof. See Theorem 5.2 on [8].

We define the Wright-Fisher diffusion process Yt as the one generated by the
equation (3.5) in the previous Theorem.
There are two very important equations which connect the Wright-Fisher diffusion
Yt and the death process Dt . They are

Eθ [Y m
t ] = Em[θ

Dt ] =
m

∑
j=1

θ
jqm, j(t) (3.6)

and

Eθ

[
k

∏
i=1

Y mi
ti

]
= ∑

j≥1
θ

jqnk,..., n1, j(0, tk− tk−1, . . . , tk− t1, tk). (3.7)

The first equation can be studied in [15] at chapter 5.
The equation (3.7) is an iteration of (3.6). Indeed, for k≥ 2, by using the Markov
property of our process

Eθ

[
k

∏
i=1

Y mi
ti

]
= Eθ

[
EYtk−1

[Y mk
tk ]Y m1

t1 · · ·Y
mk−1

tk−1

]
= ∑

j≥1
qnk, nk−1, j(0, tk− tk−1, tk)Eθ

[
Y m1

t1 · · ·Y
mk−1+ j

tk−1

]
...

= ∑
j≥1

θ
jqnk,..., n1, j(0, tk− tk−1, . . . , tk− t1, tk)

where 0≤ t1 ≤ ·· · ≤ tk.

3.2.3 The density process
We want to study the density process, that is

∆
N
t =

1
Nd ∑

x∈Λ(N)

η
N
t (x).

It represents the ’percentage’ of voters with still opinion 1 on the torus Λ(N) at
the time t. The following result shows that the particle density on Λ(N) fluctuates
like the Wright-Fisher diffusion with the time scale sN .

Theorem 3.2.3. If d ≥ 2, then as N→ ∞,

∆
N
tsN

⇀ Y2t/G (3.8)

as processes.
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As we may see ∆N
tsN

a sequence of random variables with values in C([0, ∞))
with the relative distributions, to converge weakly as processes means that the se-
quence of laws converges to the law of a random variable.
As consequence of Prohorov’s Theorem, it is equivalent to have the weak conver-
gence of finite-dimensional distributions, and tightness. In this particular case we
will study the first property and, by noticing that the density process is actually a
martingale, conclude with the help of a Preposition in [1].

Proof. We first prove that, as we fix t ≥ 0 and m≥ 1, we have

∆
N
tsN

⇀ Y2t/G

by showing that
E
[(

∆
N
tsN

)m
]
→ Eθ [Y m

2t/G]

as N→ ∞.
We define aN as in Theorem 2.1.1 and

E
[(

∆
N
tsN

)m
]
= N−md

∑
x1,..., xm∈Λ(N)

P(ηN
tsN

(xi) = 1, 1≤ i≤ m)

= N−md
∑

x1,..., xm∈Λ(N)
|xα−xβ |≥aN , α 6=β

P(ηN
tsN

(xi) = 1, 1≤ i≤ m)+ εN

= N−md
∑

x1,..., xm∈Λ(N)
|xα−xβ |≥aN , α 6=β

E
[
θ
|ξ N

tsN
({x1,..., xm})|

]
+ εN

= N−md
∑

x1,..., xm∈Λ(N)
|xα−xβ |≥aN , α 6=β

m

∑
j=1

θ
jqm, j(e−2t/G)+ εN

→
m

∑
j=1

θ
jqm, j(e−2t/G) = Eθ [Y m

2t/G]

by using (3.6).
Now we can prove the weak convergence of finite-dimensional distributions. Fix
k ≥ 2, mi ≥ 1 and 0≤ t1 < · · ·< tk. We need to see

E
[
((∆N

t1sN
)m1 · · ·(∆N

tksN
)mk
]
→ E

[
Y m1

2t1/G · · ·Y
mk
2tk/G

]
which is enough to prove(

∆
N
t1sN

, . . . , ∆
N
tksN

)
⇀
(
Y2t1/G, . . . , Y2tk/G

)
.
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Using the previous computation

E
[(

∆
N
t1sN

)m1 · · ·
(
∆

N
tksN

)mk
]

= N−d(m1+···+mk) ∑
x1,..., xk

xi=(xi
1,..., xi

m), xi
j∈Λ(N)

P(ηN
tisN

(xi
j) = 1, 1≤ i≤ k, 1≤ j ≤ mi)

= Σ1 +Σ2

where Σ1 contains all the terms x1, . . . , xk such that |xi
α − xi

β
| ≥ aN , α 6= β , and

Σ2 contains all the other terms. As in the proof of Theorem 2.2.1, Σ2 = εN → 0 as
N→ ∞ and by the equation (3.4), with Bi = {xi

j, 1≤ j ≤ mi}, a term of Σ1 is

P(ηN
tisN

(xi
j) = 1, 1≤ i≤ k, 1≤ j ≤ mi)

=E
[
θ
|ξ N

tksN
(Bk, 0, Bk−1, tk−tk−1,..., B1, tk−t1)|

]
→∑

m
θ

mqnk,..., n1, m(0, 2(tk− tk−1)/G, . . . , 2(tk− t1)/G, tk)

=E
[
Y m1

2t1/G · · ·Y
mk
2tk/G

]
by (3.7).
Proposition 1.2 of [1] states that if a process is a martingale, which converges
weakly for every finite-dimensional distribution, the limit is continuous and for
each t ≥ 0 the process is uniformly integrable, then it converges weakly as process.
We notice that MN(t) := ∆N

tsN
is clearly bounded and measurable, so uniformly

integrable. Moreover Yt is continuous in t and we have already proved that the
finite-dimensional distributions converge weakly. We then just need to prove that
MN(t) is a martingale. For a fixed N and for ηN

t = η , we have that

r(η) = ∑
x, y∈Λ(N)

η(x)(1−η(y))pN(x, y)

then |ηN
t | → |ηN

t |+ 1 at rate r(η) and |ηN
t | → |ηN

t | − 1 also at rate r(η). We
study the easier case whit discrete steps. As the rate of having a voter moving
from opinion 1 to 0 and viceversa is the same, we get that

E
[
∆

N
(n+1)sN

−∆
N
nsN
| ∆N

nsN

]
=

1
Nd r(η)(1−1) = 0,

and we conclude.
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3.2.4 Approximation of the Law of the Voter Model

Theorem 3.2.4. Assume d ≥ 3, A ⊂ Zd is finite and ζ is fixed. If tN → ∞ and
tN/Nd → t ∈ [0, ∞] as N→ ∞, then

P(ηN
tN (x) = ζ (x), x ∈ A)→

∫
[0,1]

P(Y2t/G ∈ dθ
′)νθ ′(η(x) = ζ (x), x ∈ A).

Proof. We are going to show first that

P(ηN
tN (x) = 1, x ∈ A)→

∫
[0,1]

P(Y2t/G ∈ dθ
′)νθ ′(η(x) = 1, x ∈ A), (3.9)

and we assume firstly that tN/Nd → t ∈ (0,+∞). To prove (3.9) ....
Let η∞(A) := limt→∞ |ηt(A)| and let pn(A) = P(η∞(A) = n). By Theorem 1.3.1
and the duality equation (3.1),

νθ (η(x) = 1, x ∈ A) = lim
t→∞

P(ηt(A) = 1)

= lim
t→∞

E
[
θ
|ξt(A)|

]
=
|A|

∑
n=1

pn(A)θ n

=
|A|

∑
n=1

pn(A)En

[
θ

D(2t/G)
]
.

by using the duality equation (3.6) on the last passage. This and an application of
duality to the left-hand side of (3.9) show that it suffices to prove

E
[
θ
|ξ N

tN
(A)|
]
→
|A|

∑
n=1

pn(A)En

[
θ

D(2t/G)
]
.

We introduce a collection of independent random walks on Zd , {Xt(x), x ∈ Zd},
where X0(x) = x. If TN → ∞, TN = o(Nd) and aN → ∞, aN = o(N) as N→ ∞, we
have for all x ∈ A, ε > 0

P(|Xt(x)| ≤ N1−ε , 0≤ t ≤ TN)→ 1,

which it’s equal to show

P( sup
t∈[0, TN ]

|Xt(x)|> N1−ε)→ 0.
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By squaring and, thanks to it, using the Doob’s inequality on the first term, we get

P( sup
t∈[0, TN ]

|Xt(x)|> N1−ε)≤ E[X2
t (x)]

N2−2ε
.

But E[X2
TN
(x)] = dE[(X1

TN
(x))2] = dVar(X1

TN
(x)) = TN , where we consider X1

TN
as

the first component of the random walk Xt and since the symmetric random walk
is actually a martingale.
We now take a TN smaller than N2−2ε , like N2−3ε , and then

P( sup
t∈[0, TN ]

|Xt(x)|> N1−ε)≤ E[X2
t (x)]

N2−2ε
≤ N2−3ε

N2−2ε
→ 0

as N→ ∞. We also need to see

P(|XTN (x)| ≤ aN)→ 0.

We use a Gaussian approximation

P(|XTN | ≤ aN)∼ P(|N(0,1)| ≤ aN√
TN
≤ ε,

where we have to use the same TN as before but we can choose a aN that suits our
needs, like aN = N1−2ε .
Now we define random walks on Λ(N) as XN

t (x) = (Xt(x) modN)−N/2. Us-
ing the Xt(x) and XN

t (x) it’s clear that we can construct the processes ξt(A) and
ξ N

t (A) such that ξt(A) = ξ N
t (A) for all t ≤ γN , where γN := inf{t ≥ 0 : |ξt(x)| ≥

N1−ε for some x ∈ A}.
Let B := {x1, . . . , xn} ⊂ A, we have

E
[
θ
|ξ N

tN
(A)|
]
=
|A|

∑
n=1

∑
|B|=n

P(ξ N
TN
(A) = B)E

[
θ
|ξ N

tN−TN
(B)|
]

=
|A|

∑
n=1

∑
|B|=n

P(ξTN (A) = B)E
[
θ
|ξ N

tN−TN
(B)|
]
+ εN

=
|A|

∑
n=1

∑
|B|=n, x j, xi∈B,
|xi−x j|≥aN for i 6= j

P(ξTN (A) = B)E
[
θ
|ξ N

tN−TN
(B)|
]
+ εN

=
|A|

∑
n=1

P(ξTN (A) = n)En

[
θ

D(2tN/GNd−2TN/GNd)
]
+ εN

→
|A|

∑
n=1

pN(A)En

[
θ

D(2t/G)
]

as required.



48 CHAPTER 3. VOTER MODEL

3.3 Multiple voter model
In the view of modelizing an election situation, considering just two opinions
could be seen as restricting. We consider d ≥ 2. Given Λ ⊂ Zd and κ < ∞, we
define the κ-type voter model ηt on Λ with transition matrix pΛ with the state
space {0, 1, . . . , κ−1}Λ and transitions

η
Λ
t (x)→ i at rate ∑

y∈Λ

pΛ(x, y)1({ηΛ
t (y)=i})

for i 6= ηΛ
t (x). As before, for θ = (θ1, . . . , θκ−1) let µθ denote product measure

on {0, 1, . . . , κ−1}Λ, µθ (η(x) = i) = θi.
As we go through with the proves and definitions of Theorems 2.3.1 and 3.2.3,
we can notice they don’t relay heavily on the algebraic properties of our first voter
model’s opinion, so 0 and 1. Then, we could expect that the extension to more
opinions should give similar results. And indeed it is so.
Let τN

j be the time it takes the process to reach exactly j types, i.e.

τ
N
j := inf{t ≥ 0 : ∃A⊂ {0, 1, . . . , κ−1}, |A|= j, η

N
t (x) ∈ A for all x ∈ Λ(N)}

and let ∆N
t be the κ-vector (∆N

t (0), . . . , ∆N
t (κ−1)), where, as before,

∆
N
t (i) :=

1
Nd ∑

x∈Λ(N)

1({ηN
t (x)=i})

Let Yt be the κ-type Wright-Fisher diffusion, which has generator

G f (p) =
1
2

κ−1

∑
i, j=0

pi(δi j− p j)
∂ 2

∂ pi∂ p j
f (p)

and lives on the state space {p = (p0, . . . , pκ−1) : pi ≥ 0, ∑i pi = 1}. The gen-
erator is constructed in a way such that, if κ = 2, we have the previous case. We
remember how we used the discrete time case to construct the Theorem 3.2.2 with
the state space of just two elements. Here, similarly, we start with a state space
of κ elements and we define the neutral κ-allele Wright-Fisher model, which is a
Markov chain Zn with state space E = {e1, . . . , eκ} and transition probabilities

P(Zn+1 = (β1, . . . , βκ) | Zn = (α1, . . . ,ακ)) =
N!

β1! · · ·βκ !

(
α1

N

)β1
· · ·
(

ακ

N

)βκ

.

By this model we get the generator previously defined as in Theorem 3.2.2.
If ηN

t has initial distribution µθ , then there are random variables τ j such that

τ j

sN
⇀ τ j, E

[
τ

N
j /sN

]
→ E[τ j]
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and
∆

N
tsN

⇀ Y2t/G, Y0 = (θ0, . . . , θκ−1)

as processes.
The proof of these results can be find on [6], it relies on the fact that one needs to
show that for any A⊂ {0, . . . , κ−1}

P(∀x ∈ Λ(N), η
N
tsN
6∈ A)→

∞

∑
j=1

[
∑
i 6∈A

θi

] j

q∞, j(2s/G),

and then, by using the inclusion-exclusion, get an explicit representation for the
distribution of τ j. One also needs to extend the duality equation to the κ-allele
Wright-Fisher process situation.
The number of opinions could be extended to infinity and, using some precautions,
the results would be similar. If one is interested, check [6].

[7][5][14][9] [10]
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