
Università degli Studi di Padova

Dipartimento di Ingegneria

dell'Informazione

Corso di Laurea Magistrale in Ingegneria Informatica

Tesi di Laurea

How a Robot can Learn to Throw a Ball

into a Moving Object through

Visual Demonstrations

Advisor: Prof. Enrico Pagello Student: Michael Masiero
Co-Advisor: Dott. Ing. Stefano Michieletto

21 09 2015

Anno Accademico 2014/2015

2

Abstract

The objective of this thesis is to extend a known probability model for Imi-
tation Learning. Thanks to this model we can teach to a robot how to learn
simple tasks, like throwing a ball into a basket, so that it can take into ac-
count initial informations related to the surroundings, i.e. the position of the
basket can change in time. The objective is to train the probability model
through human demonstrations. A RGB-D dataset has been collected by
using low cost 3D cameras. This procedure is less accurate with respect to
other techniques usually adopted in the �eld, such as the kinaesthetic motion
of the robot. Nevertheless, the selected approach is closer to situations that
could append in the everyday behaviours of a service robotic platform. This
thesis derives from a previous work based on Robot Learning from Failure
(RLfF), where one of the considered parameters was �xed, in particular the
basket was positioned in a �xed spot. Once built the new extended proba-
bility model, we verify if the model adapts well to the introduced changes,
facing the problems that can occur, thanks to a robot (a manipulator robot
in our case) too.

2

Contents

1 Introduction 5

1.1 State of Art . 6
1.1.1 Reasons behind the choice of RLfF on RLfD 9
1.1.2 Robot Learning from Failure 10

2 Building the probability model 12

2.1 Dataset . 13
2.2 Gaussian Mixture Model . 13

2.2.1 K-means and Extimation Maximization 14
2.3 Donut Mixture Model . 16
2.4 Optimization . 18

3 Communication with the robot 20

3.1 Reaching the robot . 20
3.1.1 Actions . 21
3.1.2 JointTrajectory messages 22
3.1.3 Sending an action . 22
3.1.4 Receiving an action and getting to the goal 23

4 Application 24

4.1 Preliminary study . 24
4.1.1 Input data . 24
4.1.2 First positioning of the Gaussian Components 24
4.1.3 Optimization phase . 26

4.1.3.1 Output . 26
4.2 Collecting real demonstrations 28

4.2.1 Problems with the data recorded 33
4.2.1.1 Post extraction software elaboration 33

4.3 Donut Mixture Model based on real data 35
4.3.1 Preliminary analysis on the raw dataset 35

4.3.1.1 DMM on raw data 36

3

4 CONTENTS

4.3.2 Analysis of the improvement of the model alongside
the re�nement of the initial dataset 38

4.3.3 Further data elaboration 44
4.3.4 Analysis on the elaborated dataset with two DoFs . . . 48
4.3.5 Conclusive analysis on the model with three DoFs . . . 51
4.3.6 Limits of the model . 54

4.3.6.1 Cope with visual data extrapolation and elab-
oration . 55

4.3.6.2 Manage the data shape and variability 56
4.3.6.3 Limitation imposed from the input data . . . 57

4.4 Robot application . 58

5 Conclusion and future development 60

References 62

Chapter 1

Introduction

This thesis of Autonomous Robotics aims to study and analyse an approach
of Robot Learning from Failures (RLfF), applied to a new and extended situ-
ation compared to those already treated. The Robot Learning �eld, starting
from demonstrations, tries to extract autonomously actions and behaviours
so that a robot can learn them by itself. RLfF di�ers from Robot Learning
from Demonstrations because it starts from incorrect demonstrations and it
tries to distance from them (RLfD does the exact opposite, starting from
correct demonstration, it tries to stick to them). Both techniques, pursuing
the same objective, are included in the wider �eld of Machine Learning.

This is an evolution of a precedent work from Rizzi1[1], that is based on
two papers of Grollman and Billard [2] [3]. The previous work was focused
on studying and implementing the Donut Mixture Model, the probability
model introduced in the �rst paper of Grollman and Billard, verifying the
robustness by teaching a simple action to a robot. Our work starts from
here and extend his studies by applying the technique to a more complex
situation.

In particular, during this thesis, we worked with a robotic arm (Comau
Smart5 SiX2 [4] [5] [6]) so it can learn how to throw a ball into a basket
positioned in a variable spot. This means that, starting from a teaching
phase, the robot learns how to change its launches (the positions and the ve-
locities of his joints in time) accordantly to the position of the basket. This
behaviour comes from a generated position-velocity trajectory made through
the probability model where the information related to the basket position
is an input variable. In Rizzi's work, the basket spot was �xed and the base

1Alberto Rizzi, Robot learning from human demonstrations: confronto fra DMM e
GMM

2Comau Smart5 SiX, http://www.comau.com

5

6 1.1. State of Art

teaching concept was applied to a humanoid robot (Aldebaran NAO3).

This evolution is interesting for three reasons:

• The described technique could not work with more than two degrees of
freedom;

• Three degrees of freedom expand the perspective, introducing new lim-
its to be overcome;

• The interaction with a complete di�erent robot could change the point
of view (introducing new issues too) for this robot learning technique.

Our work, like it is described in the following chapters, starts from the
study and the re-elaboration of the Donut Mixture Model, applied to three
degrees of freedom, using synthetic data. Then the research is applied to a
real situation, where, starting from collected real data, we teach to the robot
how to learn to throw the ball correctly in the basket. To do this, we also
need to control the robot in velocity, implementing a plug-in to do so.

1.1 State of Art

One of the most complex cognitive process done from the human beings is
the comprehension of what is happening into an environment. This process
consists in the abstraction of the situations that are occurring in a speci�c
moment, so the various parts involved in the action can be identi�ed and the
informations, useful to understand a new action or to improve the knowledge
of a known one, can be extracted. The learning provides the skill to represent
in an abstract manner the necessary informations for doing a task correctly,
even in case of the appearance of di�erent situations from the ones already
seen.

For the robot programming, this is translated into the possibility of adapt-
ing a speci�c behaviour (a movement) to the available information on the real
world (the arrangement of the objects in the surroundings). It is necessary to
be able to change dynamically the actuation of the commands, maintaining
intact a set of limitations that characterize the action in a signi�cant manner.

The Robot Learning from Demonstration (RLfD) [7] [8], known as Im-
itation Learning too, it is the discipline that take up the actuation of this
process through the use of demonstrations. The robot is able to learn a task
through a set of demonstrations, usually done by humans. The Imitation

3Aldebaran Robotics,https://www.aldebaran.com

1.1. State of Art 7

Learning is born as an instrument to help the automatization of the manual
robot programming in the manufacturer �eld. The complexity of manual
robot programming and the progressive growth of the scienti�c research in
the �elds of arti�cial intelligence and robotics have lead to the creation of
new learning tools and techniques. They are more e�cient, less complex and
allow a better interaction between human and machine.

With this perspective the learning radically changes:

• the user is able to teach a new behaviour through initial demonstra-
tions, i.e. moving directly the robot or controlling it by remote;

• the robot has to understand the task starting from the demonstration
dataset to achieve the desired target;

• the learning is based on perception and action and their interaction;

• the relationship between the human and the machine is restricted to
an initial phase of learning and building of the cognitive model and to
a following phase where the learnt behaviour is checked.

Starting from this point, it is natural to question about what to imitate
(learning a skill), how to imitate (encoding a skill), when to imitate and who
to imitate.

The study and the analysis of these questions produced various com-
mon approaches, and di�erent behaviour encoding, learning models and tech-
niques. The techniques introduced in literature change accordantly to how
the limitations are identi�ed and the demonstration represented.
Schaal et al. [9] used a set of elementary movements, known as movement
primitives, that applied serially and combined together formed a more com-
plex movement [10] [11] [12]. The success of those techniques is bonded to
the choice of a good set of movement primitives and to the "grammar" used
to combine them [13] [14] [15]. Akgun et al. [16] extracted speci�c frames
from records, that will form a set of key points of a sequence. This sequence
is used to model correctly a given ability, obtained exploring in order the
points of the created model, in a similar way for what happens with the
cinematographic sequences. Calinon et al. [17] proposed a probabilistic ap-
proach to represent the information relying on the Hidden Markov Model
(HMM) for coding the movements and on the Gaussian Mixture Regression
(GMR) to generalize in a robust way the action. The use of a state model,
like HMM, it is particularly adapt for generalizing in a robust manner the
variability of a set of demonstrations keeping in consideration the execution
time [18] [19] [20]. At the same time, this approach needs a major number

8 1.1. State of Art

of states compared to other situations where the model was applied, so the
use is more complex [21] [22] . Grollman et al. [2] [3], instead, proposed
to extract the informations from wrong demonstrations of the task through
the Donut Mixture Model (DMM). This model allows to explore the space
formed by the set of recorded demonstrations and it adapts �exibly to the
variability of the data.

A second fundamental aspect for the RLfD is how the demonstrations are
recorded. A �rst distinction is about the availability of the data: having the
whole dataset from the start (batch learning) in opposition with an interac-
tive approach (iterative learning). A more fundamental di�erence is related
to the techniques used for collecting data. In kinaesthetic teaching [23] [24]
[25], a human teacher guides physically the robot in the entire execution of a
speci�c task, moving each joint along the desired trajectories. A similar tech-
nique is based on the execution of the movements through di�erent simulated
sessions of the task until there is the certainty that there are not dangers in
the execution of the real task. The use of IMU devices applied to the joints
of the body related to the movement [26] permits to collect information on
position, velocity and acceleration of the person during the task execution,
so we can apply the recorded data to a robot with similar characteristic,
like a humanoid one. Another analogue technique provides to apply visual
markers on the subject performing the action to record the demonstrations
through Motion Capture techniques so that the person movement can be
recognized [27] [28]. Recently force sensors are widely used on the robots
and it is now possible to utilize atypical devices to collect information about
necessary forces and movements to complete a task [29]. All these techniques

Figure 1.1: Example of teaching techniques. Kinaesthetic teaching on the
left, Full Motion Capture on the right.

have the advantage to be very accurate and controlled, so the use of data
for learning applications is simple and reliable. To the other side this is the
biggest limitation of RLfD, because all this expensive accurate devices are

1.1. State of Art 9

not always available. In fact, they can only be bought in large companies or
in some research lab, into economic robots available to the masses. The use
of cheap widespread devices, like cameras or 3D sensors could lead to a lot
of advantages to RLfD, and some preliminary studies [1] show that exist a
wide margin to improve the state of the art under this aspect [30].

This thesis is developed starting from this last statements, choosing to
use a low cost camera to collect data. It is certainly a less accurate way to
operate, but it is closer to real situations for service robotics.

1.1.1 Reasons behind the choice of RLfF on RLfD

Like we said before, the RLfD principle consists on starting from correct
demonstrations and, sticking to them, �nding the overall right behaviour.
It is fundamental that during this process only correct demonstrations are
used, because wrong one could lead to wrong results. At �rst impact this
process may seem very simple, but it carries with it some disadvantages:

• the time needed for the user to learn a task and to teach it to the
robot, is variable from user to user and it is directly proportional to
the di�culty of the task itself;

• the user need to know perfectly the task that he want to teach. This
is not crucial for simple actions, but it is necessary with more complex
ones, i.e. for humanoid walking or pick and place situations. In these
cases common users are not su�cient and professional ones are required;

• some tasks could be out of range of human skills for their complexity.

For softening these limitations, we can add to the model incorrect demon-
strations. This can be done in an improvement phase for the model, to adjust
the learning policy. From this point of view, the robot can learn from his
errors, but always after that the main model based on correct demonstrations
is built.
If we start from incorrect demonstrations, we can take in account the human
nature of the users and the possibility to do some mistakes learning phase.
Within his work, Grollman has demonstrated that a lot of information can
be collected also from the failure attempts. Failures are examples of what
the robot does not have to do, they give us information related to the inter-
pretation from the user of how the task has to be done and they constitute
an exploration space where the right solution can be found.

10 1.1. State of Art

1.1.2 Robot Learning from Failure

To teach to the robot what is right and what is wrong to accomplish its
task, an autonomous system that learns from failures can be created. The
approach is related to Robot Learning from Demonstration (RLfD) and it
perfectly suits this situation.

The general steps of this technique are the following:

1. Collect a �rst set of demonstrations;

2. Build the model;

3. Reproduct the behaviour through the model;

4. Update the model.

The main di�erences are found on the choice of the model and how it is used.
It is fundamental to keep low the probability of following wrong behaviours
and to have good exploration skills in the space generated from the various
demonstrations.

Adapting to these di�erences modify the general steps as follows (illus-
trated in Figure 1.2):

1. Collect a �rst set of failed demonstrations;

2. Build the model;

3. Generate a new attempt that explores around the known demonstra-
tions ;

4. Execute the new generated attempt and update the model;

The last two steps are repeated until we reach a success. In a �rst moment
we followed the �rst three phases, starting from a synthetic data set through
a simulation of the model, then we collected real data and completed each
steps of the algorithm.

On practical level, independently from the starting dataset (synthetic or
real one), we followed these steps for generating a new attempt:

1. Read the formatted data from �le;

2. Generate a Gaussian Mixture Model through an initial phase of KMeans
followed from Expectation Maximization;

3. Estimate the exploration factor and create the corresponding Donut
Mixture Model from a point of the �rst mixture;

1.1. State of Art 11

Figure 1.2: Steps for the learning from failures

4. Search for a point that will be part of the new attempt from a tuned
slice of the generated DMM.

Repeating the last two steps for every X point of the model and putting to-
gether the results will lead to a new way of exploring the data (the trajectory
that will be sent to the robot).

Chapter 2

Building the probability model

This chapter is focused on describing the various steps necessary for the
building of the probability model, core of the learning system. To describe
what has been done, each of the following sections concentrates on a speci�c
aspect.

Our work is focused on extending the Donut Mixture Model and the
related formulas from two to three degrees of freedom. To be more speci�c,
we added the information related to the position of the basket as a third
degree of freedom.

In particular they describe:

• the collection of the initial dataset;

• the Gaussian Mixture Model and its role when creating the DMM;

• the Donut Mixture Model, why it has been chosen for our purposes and
how we extracted the exploration trajectory.

Before proceeding with the description of the model, it is important to
underline that, although the we are working with a 3-Dimensional model, it
is not always signi�cant to show the 3D representation of what we are talking
about, in favour of the associated 2D version with one degree of freedom �xed.
This second way of representation it is more intuitive because allows to focus
on the current steps without the presence of unnecessary information. In
addiction, if we want to represent the model with the associated probability
function, we will have to cope with a graphic in 4 dimensions.

We chose to �x the basket position in favour of the other two variables
(joint position and joint velocity). In this way we will look at the model from
a more interesting perspective than if we chose the basket position as one
of the two not �xed variable. Although we used discrete sampled data, the

12

2.1. Dataset 13

variability of the basket position is a lot more limited than other variables
(there are holes between di�erent values) and it is not signi�cant to slice the
dataset in other directions because the trajectories associated to the action
grow in the position-time or position-velocity domains. In addiction the
output is retrieved �xing the basket position at the beginning.

2.1 Dataset

As we said before, the main di�erence with respect to the precedent works
is the additional information of the position of the basket next to the pairs
position-velocity associated to the movement. Starting from these data, we
aim to �nd the velocity a joint of the robot has to assume for each angle
value crossed during the throwing, related to a particular basket position.

Formally, the dataset Ξ = {τs}Ss=1 = {ξt, z, ξ̇t}Nn=1 is composed from a
collection of trajectories τs , formed by triplets, composed by respectively ξt
position (angle) of the joint, z position of the basket and ξ̇t velocity of the
joint. N =

∑S
s=1 Ts is the number of data points in the data set.

As we can see in Figure 2.1 and as we just described, we have three rows,

Figure 2.1: Example of a portion of a dataset

each one associated to one degree of freedom. The �rst one is the angle,
expressed in radians. The second one is the basket position, the distance of
the basket from the base of the robot, expressed in meters. The last one is
the velocity, expressed in radians per second.

In our case we use only one joint of the robot, so we do not need to do
distinctions from this point of view. In the end the dataset contains the
informations related to various throws to various distance of the basket.

2.2 Gaussian Mixture Model

The Gaussian Mixture Model θ = {K, {ρk, µk,Σk}Kk=1} is the �rst used and
it is formed from a set of Gaussian component that will be positioned across
the data. Respectively each parameters stands for:

• K is the number of Gaussian Component;

14 2.2. Gaussian Mixture Model

• ρ stands for prior, the weight associated to each component (real posi-
tive,

∑K
k=1 ρ

k = 1);

• µ is the mean of each component (three dimensional vector);

• Σ is the covariance matrix associated to each component (3x3 positive
matrix).

The Gaussian Mixture Model is chosen because we can considerate the re-
lationship between each data point (ξ, z, ξ̇) like a non-linear function ξ̇ =
fθ(ξ, z) represented from the model itself. In particular, we can write the
associated probability function as follows

PGMM(ξ, z, ξ̇|θ) =
K∑
k=1

ρkN(ξ, z, ξ̇|µk,Σk) (2.1)

Figure 2.2: Example of Gaussian Mixture Model. The Gaussian Component
are placed around the datapoints of the dataset.

In order to correctly build the model, we need to choose the best number
of components to estimate each component parameters. On practical side, µ
is the center of a Gaussian component and Σ is his extension.

2.2.1 K-means and Extimation Maximization

To obtain the model, we use two algorithms for the positioning of the Gaus-
sian components and the computation of their parameters.

The �rst one is the K-means algorithm, through which we can do a �rst
positioning of the components, assigning an initial value to each parameters
of the model. Thanks to this phase the accuracy of the next step is improved.
The initial clusterization can be made in a lot of di�erent ways: the default
one is based on random positioning that put all around the area where the

2.2. Gaussian Mixture Model 15

data could be sparse the various components. For our purpose, because the
trajectories concentrate data points along some lines and not uniformly in
all the area, it is preferable to choose a positioning that �ts better called PP-
CENTERS. In this way we avoid the positioning of Gaussian components in
an area where there is no data points.

Figure 2.3: K-means algorithm for di�erent values of K.

Next to K-means, we use a second algorithm called EM (Expectation
Maximization) that allow to determine the best values for the model between
all the possibility (the model that better �ts the initial dataset). EM can
be divided in two parts: the former (E-step) verify through the calculation
of probability if the work of K-means was done well, then with the latter
(M-step) the parameters of the model are recalculated using the information
from the �rst step.

Figure 2.4: EM algorithm for di�erent values of K.

After these two algorithms we have the GMM fully initialized. It is im-
portant to point out that this phase can be done with di�erent numbers of
Gaussian components. Usually more components means more accuracy for
the model, but there is a limit over that we could occur in over-�tting. In
addition, as we can see in the Application chapter, there is a chance that

16 2.3. Donut Mixture Model

if the model has too many components, they could interact too much by
themselves.

To estimate the best numbers of components for a dataset, we can use
the BIC algorithm (Bayesian Information Criterion), based on

BIC = −2 ∗ ln(L) +K ∗ ln(n) (2.2)

a function dependent from log-likelihood L and the number K of chosen
components (n is the number of data points). With this criterion we need
to �nd the minimum value of the function, associated to a K value. It is
important not to use an high value of K because it may induce to a situation
of over-�tting.

Built this �rst model, it is possible to calculate the velocity associated to
each position of the joint and of the basket, conditioning respect of them.
The model is modi�ed as follows:

PGMM(ξ̇|ξ, z, θ) =
K∑
k=1

ρ̃k(ξ, z, θ)N(ξ̇|µ̃k(ξ, z, θ), Σ̃k(θ)) (2.3)

µ̃k(ξ, z, θ) = µk
ξ̇

+ Σk
ξ̇(ξ,z)

Σk−1
(ξ,z)(ξ,z)((ξ, z)− µk(ξ,z)) (2.4)

Σ̃k(θ) = Σk
ξ̇ξ̇
− Σk

ξ̇(ξ,z)
Σk−1

(ξ,z)(ξ,z)Σ
k
(ξ,z)ξ̇

(2.5)

ρ̃k(ξ, z, θ) =
ρkN(ξ, z;µk(ξ,z),Σ

k
(ξ,z)(ξ,z)∑K

k=1 ρ
kN(ξ, z;µk(ξ,z),Σ

k
(ξ,z)(ξ,z))

(2.6)

This new model is a Gaussian Mixture Model too, with di�erent parameters
from the �rst one {µ̃k, Σ̃k, ρ̃k} but derived from them and joint position and
basket position dependant. It is possible to use this model in case of learning
from success, because it guaranteed a smooth movement without a lot of
oscillations.

2.3 Donut Mixture Model

The model based only on simple Gaussian components, as we will see soon,
does not �t with our objective, because it does not generate new exploratory
trajectories.
We need to introduce a new model, called Donut Mixture Model, described
by the di�erence between two Normal distributions

D(~x|µα, µβ,Σα,Σβ, γ) = γN(~x|µα,Σα)− (γ − 1)N(~x|µβ,Σβ) (2.7)

2.3. Donut Mixture Model 17

With −→x we refer to the triplet formed by the three variables of the model.
For our purpose we set the value of γ to 2 (γ > 1) and we generate a Donut
component from the di�erence of the same Gaussian one (µa = µb) (see

1 for
further details).
Thanks to these assumptions we can introduce rα and rβ (obtaining Σα =
1

r2α
Σ and Σβ =

1

r2β
Σ) to parametrize the model as follows

D(~x|µ,Σ, rα, rβ, γ) = γN(~x|µ,Σ/r2α)− (γ − 1)N(~x|µ,Σ/r2β) (2.8)

Accordantly to this, we can swap each Gaussian component of the condi-
tioned distribution with a Donut function. The probability of the Donut
Mixture Model becomes

PDMM(ξ̇|ξ, z) =
K∑
k=1

ρ̃kD(ξ̇|µ̃k, Σ̃k, ε) (2.9)

where ε is the exploration factor (0 < ε < 1), related to the variance of the
model.

There is a link between the variance of the initial dataset and the explo-
ration of the space joint position-basket position-joint velocity

• ε = 1 correspond to the maximum exploration for areas with high
variability

• ε = 0 correspond to the minimum exploration for areas with low vari-
ability (the behaviour is similar to the Gaussian Mixture Model)

In relation of the input data, the exploration factor ε can be estimated so
the model can �t better.

To estimated it, taking into account the conditioning from the joint po-
sition and the position of the basket, we can follow the next formulas:

ε = 1− 1

1 + ||Ṽ [ξ̇|ξ, z, θ]||
(2.10)

Ṽ [ξ̇|ξ, z, θ] = −Ẽ[ξ̇|ξ, z, θ]Ẽ[ξ̇|ξ, z, θ]T +
∑
k

ρk(µkµ
T
k + Σk) (2.11)

If we want to compare the two introduced probability models, as we see
in Figure 2.5, we can put along together a Gaussian component and a family
of Donut components, generated changing the value of the exploration factor
ε.

1Alberto Rizzi, Robot learning from human demonstrations

18 2.4. Optimization

Figure 2.5: Comparison of a Gaussian component with a family of Donut
components generated from various value of the exploration factor ε.

The choice of the model fell on DMM because our objective is to generate
exploratory trajectories around the initial data (dotted lines in Figure 2.6).
When �t to failure data, the mean (solid line in Figure 2.6) may no longer
be an appropriate response (output of GMM).

Figure 2.6: We want to mimic the human in areas of high con�dence (green)
and explore in areas of low con�dence(red).

2.4 Optimization

Built the probability model, we need to extract the exploration trajectory
that represents the learnt behaviour. The objective of this step is to �nd the

2.4. Optimization 19

set of points, for each value of joint position, corresponding to the maximum
of the PdF (the basket position was �xed from the start). The points set
that we obtain from the reiteration of this phase forms the trajectory (new
exploration line) that will be send to the robot.

In input to this phase we use a slice generated from the conditioning of
the Donut Mixture Model with the �xed basket position and the position of
the joint (variable but �xed in each iteration). To �nd each maximum value
we use an optimization algorithm that has as core another algorithm called
BGFS2 (e�cient version of Broyden-Fletcher-Goldfard-Shannon (BFGS) al-
gorithm). There are a lot of techniques to do this job, but this �ts better
with our data2 .

We start to optimize from the mean value because if we start from zero
we will arrive (in the major cases) to a local stationary point (that is not
interesting). In addiction, usually if we start from the tails of the distribution
that are very �at, we incur in a low gradient that block our research. Anyway,
we set up a control to check around the initial position, so we do not get stuck
onto a wrong value. The optimization algorithm will stop when the di�erence
between successive gradient values are under a tolerance.

Figure 2.7: View of the PdF from above. We are interest in points with the
highest PdF (hotter colors) for each value of joint position.

2Alberto Rizzi, Robot learning from human demonstrations

Chapter 3

Communication with the robot

This chapter is focused on describing how we interact with the robot, from
how we communicate to how the informations received are processed.
The communication can be summarized as we see in Figure3.1 .

Figure 3.1: Communication scheme

3.1 Reaching the robot

The communication with the simulated robot arm is based on a plug-in de-
veloped by IAS Lab. This plug-in allows to visualize the robot in a simulated
test space (Gazebo or RViZ) or to communicate directly with the real one.

In ROS, the communication can be done in three ways: by topics, by
services or through actions.

With the �rst method (topic) the client writes speci�c messages on a
topic where the server is listening (subscribed). This method should be used
for continuous data streams (like sensor data or robot state). In our case
the server is represented by the robot arm. For every new message read on
server side (published from the client), the plug-in translates it to the robot
so it can move. The subscribed callbacks in the server can receive data once
it is available because is the client that decide when data is sent.

The second method (service) is based on the paradigm request/reply. A
client can request a service and then wait the reply. Services are de�ned by
srv �les, that are �les where it is wrote the message format. Services should

20

3.1. Reaching the robot 21

be used for remote procedure calls that terminate quickly (like querying the
state of a node). It is not meant to be used for longer running process. This
method does not �t well our case because it is based on blocking calls and
it does not make sense for the server to be stuck on a request sent from the
client when some other request could arrive.

With the third method (action) the client sends an action (basically a
request message, like it happen with services) to the server that can capture
it using callbacks. The di�erence is that sometimes, if the service takes too
long to execute, the user might want to cancel it. So with this method the
service can be pre-empted. This last method permits a better control of the
robot because can provide feedback during execution.

More details regarding communication in ROS can be found at
http://wiki.ros.org/ROS/Patterns/Communication.

At the beginning the topic method was the only way to communicate
with the Comau, and with only a particular message format (only JointPose
messages). With this thesis it was implemented a new mode to communicate
with the robot arm, using the action method and choosing a message format
through which we can have a direct control of the velocity of the joint.

3.1.1 Actions

The communication by actions can be represented with the scheme of Figure
3.2.

Figure 3.2: Scheme of the action interface

As we said before, the client can send either a goal message or a cancel
one, to interrupt what the server is doing. Each time a message is received by
the robot (server side), the informations contained were extracted and elabo-
rated by the plug-in and sent to the robot controllers, so that the robot (real

22 3.1. Reaching the robot

or simulated) could move the chosen joint following the computed trajectory,
formed by point with informations of the joint position and the computed
velocity, related to the position of the basket. In addition, the server commu-
nicate through the result if the message was received correctly. In a second
time, if it is succeeding to get to the goal, it writes a feedback with its actual
state.

3.1.2 JointTrajectory messages

For a direct control of the velocity of the joints of the robot, the choice fell
on an approach based on Joint Trajectory Action.

A Joint Trajectory message has this format:

Header header

string[] joint_names

JointTrajectoryPoint[] points

It is described from a header, from a string vector with the names of the joints
inside and a vector of points (each one related to a joint and positioned in
the same order like in the joint names vector). Each point has this format:

float64[] positions

float64[] velocities

float64[] accelerations

float64[] effort

duration time_from_start

As we see a JointTrajectoryPoint is described from a set of one or more posi-
tions, with velocities, accelerations and/or e�ort associated. To a trajectory
can be added the information related to the execution time. The dimension
is the same for each vector.

3.1.3 Sending an action

For our purpose and for what is elaborated through the estimation max-
imization and optimization phase, we need to send to the robot only the
information related to the position and the velocity of the joint. The other
parameters of a joint trajectory message remain unused. For a single mes-
sage sent to the server we �ll the joint names string vector with the six
name related to each joint of the robot and the vector points. Each point of
the trajectory has only one position and one velocity. For our purpose the
information related to unused joints remains constant.

3.1. Reaching the robot 23

3.1.4 Receiving an action and getting to the goal

On server side, when a message is received, it is not directly sent to the
robot, but it is �rst processed, so the evolution of the trajectory of the joint
becomes smooth and controlled step by step.
The �rst thing that the plug-in does is to extract the informations just re-
ceived through the message. After the extraction, each point of the trajectory
sent is re-published following a particular rate, so the informations can be
processed in order without any loss. Thanks to the callback that is listening,
the information is caught, elaborated and sent to the robot.
The elaboration consist in a sort of interpolation between a point and its pre-
decessor, so the robot can move smoothly. As we will see in the next chapter,
the used joint moves in accord to every couple of joint position - joint ve-
locity. At the end of the trajectory, the joint assume a velocity proximal to
zero.

Chapter 4

Application

This chapter is focused on display the results obtained with our implemen-
tation. Step by step we will touch each single passage described before.

4.1 Preliminary study

The �rst section is dedicated to the preliminary studies done before the work
with the real data. We started using synthetic demonstrations to verify the
correctness of the extended model.

4.1.1 Input data

We decided to gave in input to the model 11 di�erent trajectories. Each one
is composed by 50 points and derives from the base one

y =
−x2 + 10x

2
(4.1)

by a di�erent multiplication factor. Each trajectory has associated a constant
value of the position of the basket. For the �rst one z is equal to 1u (symbolic
unit). For the others we increment the value of z of one unit, so every
trajectory has a position of the basket associated of one units more than the
units of the trajectory directly under it.

4.1.2 First positioning of the Gaussian Components

After various tests related to the input data, we estimated by BIC that 2
and 3 is good numbers of components for building the model.
Applying the K-Means and Estimation-Maximization algorithms we obtain

24

4.1. Preliminary study 25

Figure 4.1: Initial synthetic dataset formed by 11 trajectories

a distribution of the 2 and 3 Gaussian Components like in Figure ?? (from
joint position - joint velocity perspective)

Figure 4.2: Distribution of two Gaussian components around initial data.

Figure 4.3: Distribution of three Gaussian components around initial data.

26 4.1. Preliminary study

4.1.3 Optimization phase

On this phase, chosen a value of the position of the basket, it is iterated
the same optimization algorithm for every value of ξ that the joint can as-
sume. Before every new iteration of optimization, the �rst GMM calculated
is adapted to a DMM after the estimation of the exploration factor ε.
In Figure 4.4 we can see an extended photograph of the PdF associated to
our model. Each iteration scans a line (represented by red) along which is
applied the optimization algorithm.

Figure 4.4: Search the maximum value of pdf for ξ=5 and z=8.5

4.1.3.1 Output

The entire algorithm, at his conclusion, create in output a �le with the points
of the new experimental trajectory and the associated PdF found.

Figure 4.5: Output from the optimization phase, with z = 8.5 units

The associated output, starting from using 2 or 3 Gaussian components,
it is a good result but we obtain something better. If we add some other

4.1. Preliminary study 27

Gaussian components, although the BIC estimator increases, we can obtain
a smoother and more accurate result, as we see in Figure 4.6. This is possible
because in this moment we are working with synthetic data, but probably
we cannot take actions lightly in the same way with real data.

Figure 4.6: Output from the optimization phase, with z = 8.5 units

To �gure out if the model created behave well, we compared more output,
each one derived from a di�erent starting position of the basket. As we see in
Figure 4.7 everything go in accord with what we expected. Each generated
trajectory grows if the distance of the hypothetical basket increases. It is
important to underline that the model behave very well in situation not
included in the initial data, as we see in the third graph (in the initial data
the maximum distance for the basket is 11 units). At the same time we are
aware that this is an ideal situation, because each trajectory is equidistant
from the others and has the same rescaled shape. With the real data it is
important to keep in mind this observations if some problems come out.

Figure 4.7: Various output related a di�erent position of the basket, respec-
tively 4.5 , 8.5 and 12.5 units.

For every trajectory generated, it is possible to see, if the plugin is active,
how the robot moves respecting the value of position (angle assumed) and
velocity sent.

28 4.2. Collecting real demonstrations

Figure 4.8: Gazebo plugin with the Comau model

For this practical trial we chose the joint number 2, but the model is free
to be applied to each joints, always respecting his limits. In addiction, in the
real situation we have to give to the robot a starting positioning suitable for
throwing.

4.2 Collecting real demonstrations

From the results of the precedent chapter, we can now plan how to do the
recording.

Keeping in mind that we need variability in terms of basket positioning
and at least ten throws for a single distance for our dataset, we setted up an
environment like in Figure 4.9. The red circle represent the throwing spot
where the user throws the balls, the green circles are the baskets and the
black bars are Microsoft Kinect1.

As we can see in Figure 4.10, we chose to place 12 baskets around a
throwing spot. Each basket is on a di�erent line (0, 30, 60 or 90 degrees)
and has a di�erent height. These other variables are added for future works,
for our purpose we considered only the distance in the throwing.
The maximum distance is chosen following the limits imposed by the cameras.
The recording web is setted up by four Kinect1 connected all together in a pri-
vate network. Before the recording of each throws, thanks to OpenPTrack1,
each camera knows where the others are so, if necessary, the data collected
can be uni�ed.

1http://openptrack.org/

4.2. Collecting real demonstrations 29

Figure 4.9: Placement of baskets and cameras in the recording environment

The distance of the twelve baskets are 1.0m, 1.5m, 2.0m, 2.25m, 2.5m,
2.75m, 3.0m, 3.25m, 3.5m and 4m. There are three baskets positioned at a
distance of 2 meters and with di�erent heights, but, like we said before, it is
recorded for future applications.
We asked to 10 users to do four throws for each basket, for a total of 48
throws per user. The only restriction imposed is how the throws need to be
done, that is, like in Figure 4.11 from above the shoulder and with the right
arm.

To record the movement we choose to listen to three Kinect topics:

• /camera/rgb/camera_info

• /camera/rgb/image_color/compressed

• /tf

The �rst one gives informations related to the recordings but it is not
fundamental. Recording the second one provides compressed image from the
video stream that help us in the next elaboration to divide each throws. The
last one carries the informations strictly related to the throws, in particular
about every joint of the user. For this purpose we need to start a tracker
before the start of the recording, that maps the joint of the user from the
informations received from the Kinect stream. In this case it is used Nite2Tf,
a tool developed by IAS-Lab.

30 4.2. Collecting real demonstrations

Figure 4.10: Photo of the recording environment

Figure 4.11: Correct movement for the throw

Extracting and elaborating the tf related to the right arm joints allows
us to reconstruct the interested movement. In the end it is important to
retrieve informations about the orientation of the shoulder, of the elbow and
of the hand. As we see in Figure 4.14, from the pairs Shoulder - Elbow and
Elbow - Hand we can de�ne two vectors: calculating the rotation in a instant
of the �rst one on the second one gives us the measure of the angle at that
time. Thanks to the timestamp associated to each tf message, reiterating this
computation for every moment of the throws, provide us of angle-time pairs
that forms the entire movement. From the position and the time associated
we can now extract the velocity of the arm at that time too.

We recorded all the throws per each line in one bag �le. To help the
successive elaboration it is simpler to subdivide in smaller �les each throw.

4.2. Collecting real demonstrations 31

Figure 4.12: Visualization inside the tool rqt_bag of a single throw

Figure 4.13: Change of the angle during the throw

It is important to de�ne what we considered as a throw. We can choose
to consider the full movement (from the starter position to the full extension
of the arm) or cut the bag �le (the format used in ROS to record data
from topics) in correspondence of when the ball is left from the hand. For
our purpose the second method it is better, but for a more complete initial
dataset we choose the �rst one and delayed the cutting of the trajectories to
a second moment.

32 4.2. Collecting real demonstrations

Figure 4.14: Rotation of one vector on the other for angle estimation

Figure 4.15: Frames of three di�erent instants (start, mid and end of a throw)
for each orientation. Each recording has its light condition and di�erent
re�ex, for example. In addition, each user throws in a di�erent way.

4.2. Collecting real demonstrations 33

4.2.1 Problems with the data recorded

The utilization of visual demonstrations, like we said in the introduction,
brings together with his advantages various problems:

• the camera, and in result the tracker too, could not always recognize the
user skeleton (the mapping can disappear or can �icker). The reasons
are related to the distance of the camera and to the brightness of the
environment. This can be resolved before the start of the recording.

• during the recording the user tracking could be lost or could appear a
new skeleton, simply caused from light e�ects, like re�ects or shadows.
The solution for both cases is to do again the recording or to elaborate
the extracted informations to delete the errors.

• sometimes because of visual obstruction it is not always possible to
track all the joints of the user. This is caused from environment obstacle
or simply from the user himself (his same body obstructs for example
one side). To overcome this situation we need to record the movement
from a di�erent angle.

In addition to these problems, some other casualties could appear and we
need to face them after the data extraction. If the post-extraction software
elaboration does not lead to an acceptable result, thanks to the high number
of recordings we can simply decide to discard some throws.

4.2.1.1 Post extraction software elaboration

To create the initial dataset and try to overcome to the various errors we
applied some elaboration on software side:

1. Second skeleton �lter: after the circumscribing of this phenomena, we
inserted a barrier that �lter the values assumed and that discard points
which create a big discontinuity in the trajectory (like high variation
of the velocity);

2. Extraction of values between the global maximum and the global min-
imum: at the start and at the end of the movement could be some
oscillation in the trajectory, caused from human errors during the sep-
aration of the various throws (it is not simple, due to limitations of the
recording instrument too, to cut perfectly from the start to the end of
a throw without leaving some spurious data). With this extraction we
are sure to include the entire throw, from the minimal to the maximal
extension of the arm.

34 4.2. Collecting real demonstrations

3. Search of the local maxima and local minima: although we are sure to
have included the entire movement, the data extracted until this mo-
ment could contain other �uctuations. We need to �nd the stationary
points since the desired trajectory is certainly include between a local
minimum and a local maximum.

4. Extraction of the interval with the highest number of points: between
all the intervals found, we can assume that the trajectory is surely the
dataset with more points (it is not like that we found a �uctuation so
big that has more points of the entire trajectory).

5. Acceptance of the trajectories with more than a �xed number of points:
we cannot create a dataset with very sparse data points trajectory. For
the correct building of the model we need to have a minimum number
of points for each trajectory used, so we discard each trajectory with
less than a chosen number of points.

After all this elaboration, we limit the number of trajectories associate to
each basket distance to ten (for balancing reasons of the dataset), although
we can have more than those.

At this time we have built a dataset with the same format presented in
the Section 2.1. In the following sections we present how the model is built
starting from real data and the choices done to overcome the problems that
will come out.

Figure 4.16: Initial dataset with the collected trajectories.

4.3. Donut Mixture Model based on real data 35

4.3 Donut Mixture Model based on real data

The objective of this section is to verify how the model behaves with real
data and, as we see in the following paragraphs, why we need to do various
re�nement for tuning the data to come closer to the ideal situation of the
synthetic data. In each paragraph, alongside the analysis, we show how the
model is built and how is the output trajectory. Thanks to the preliminary
study we proceed using a value of K equal to 2 or 3, because they are associ-
ated to the minimum value of BIC. Until we reach a good result, we choose
to keep �xed the input value related to the basket position to 2.5 meters.

4.3.1 Preliminary analysis on the raw dataset

We start from the dataset that came out from the mapping elaboration on
the recordings. Before we build a �rst model, it is interesting to compare side
by side the actual real data with the synthetic ones (speci�cally re-adapted
for a signi�cant comparison) .

Figure 4.17: Initial dataset from two di�erent point of view.

As we see in Figure 4.17 and Figure 4.18, we can identify straight away
some di�erences (the synthetic dataset is adapted to the real values so the
comparison can make sense):

• the shapes of the real trajectories are not symmetric. Someone tends to
a parabolic shape, but the right side (points past the vertex) is far more
inclined. In addiction, for how a person throws the ball and �nishes
the movement, the trajectory can instantaneously interrupt without a
decreasing side;

36 4.3. Donut Mixture Model based on real data

Figure 4.18: Comparison between real data (blue) and synthetic one (red).

• the number of data points for the real data are a lot fewer than in the
synthetic dataset;

• in the synthetic dataset the trajectories �nish all with zero velocity and
all in the same position. The variability is concentrated on the center of
the curves. In the real case every trajectory has a di�erent behaviours
and the variability is shifted more to the right side.

Taking into accounts all this things will be very important in the next
paragraphs to improve the dataset.

In the next paragraphs we place only two or three Gaussian components
on the dataset. This choice derives from noticing that with the real data the
components are arranged not in a symmetric way and interact too much by
themselves. To limit this behaviour we decided to reduce to the minimum
the various intersections using only a limited number of components (two
and three).

4.3.1.1 DMM on raw data

In Figure 4.19 and 4.20 we can see how the Gaussian components are placed
on the dataset with the real data collected.

The �rst thing that we can notice, for the asymmetric shape and the
widespread overall variability, concentrated in particular on the �nal part, is
that the one Gaussian component covers a wider area and the shape of the
smaller is more concentrated.

The output (Figure 4.21) is not what we expect and it is very di�erent
from the ideal one. This is caused by what we just highlighted. We need to

4.3. Donut Mixture Model based on real data 37

Figure 4.19: Gaussian components positioning on initial dataset (K=2)

Figure 4.20: Gaussian components positioning on initial dataset (K=3)

Figure 4.21: Output associated to the initial dataset for a distance z=2.5m
(K=2 on the left, K=3 on the right).

intervene to �x the various causes of this result. What impact the most the
model is surely the high �nal variability, because as we see the red Gaussian
component is a lot di�erent from the others for both values of K used. In

38 4.3. Donut Mixture Model based on real data

addiction, the components intersect themselves a lot and this is re�ected on
the evaluation of the pdf on the optimization phase. Because of the high
ending variability of the data, the model cannot learn the right behaviour.

Like we said in the preliminary analysis of the raw data, in the followings
paragraphs we try to cut the distance between the real data and the synthetic
one.

4.3.2 Analysis of the improvement of the model along-

side the re�nement of the initial dataset

This section is dedicated to the evolution of the initial dataset alongside
various solutions adopted.

We start limiting the high variability of the real data in two ways:

• adding a new �nal point to each trajectory with zero velocity (ordinate).
We decided to choose as position associated a value of 10% more than
the last position value of a trajectory.

• re-scaling each trajectory so each one can ends in the same point, as
in the synthetic data. There are various options for the choice of the
rescaling point, as the minimum or the maximum between all trajecto-
ries. We opted for the mean one.

Applying these �rst two solution changes the dataset as in Figure 4.22.

Figure 4.22: Rescaled initial dataset.

As we see the trajectories behaviours are more con�ned and less variable
than in the �rst case. This should change and improve the components po-
sitioning but it is still not su�cient to reach a good output.

4.3. Donut Mixture Model based on real data 39

Using this data in the model building gives a positioning as in Figure 4.23
and 4.24.

Figure 4.23: Gaussian components positioning on data scaled (K=2)

Figure 4.24: Gaussian components positioning on data scaled (K=3)

Giving more regularity to the data it is still not su�cient to overcome
the limitations of the initial raw data. The addition of the last point it is
not so e�ective because the dataset remains very sparse. In addition, adding
an isolated point at the end of each trajectory compromise the positioning
of the Gaussian components, in�uencing too much and anchoring the entire
model, as we see from the output (Figure 4.25) too.

This adjustment is surely important for the improvement of the real data,
but for this step we obtain a better result considering only the rescaling of
the trajectories (Figure 4.26).

The Gaussian components are better positioned than before and the
weight of each one is a bit more balanced. With the overall variability im-
proved, the output regained a bit of sense but the �nal behaviour is still not

40 4.3. Donut Mixture Model based on real data

Figure 4.25: Output associated to the scaled dataset for a distance z=2.5m
(K=2 on the left, K=3 on the right).

Figure 4.26: Rescaled initial dataset without the add of an ending point.

Figure 4.27: Gaussian components positioning on data scaled (K=2)

learned.

4.3. Donut Mixture Model based on real data 41

Figure 4.28: Gaussian components positioning on data scaled (K=3)

Figure 4.29: Output associated to the scaled dataset without the add of an
ending point for a distance z=2.5m (K=2 on the left, K=3 on the right).

To cope with the limited number of points of each trajectory ant to link
the last added point to the others, it is necessary to increment them in some
way. A solution is to choose an interpolation that works well with this kind
of data. Between the various interpolation method, our choice fell on the one
that uses for the interpolant splines, a particular polynomial method based
on the use of interpolation curves preferred to standard polynomial methods
for his small interpolation error even when using low degree polynomials.

Using the spline interpolation the dataset change as in Figure 4.30. The
interpolation bring us to lose the initial points of the raw dataset, since the
new points belong to a function. To extract the new trajectories, we need to
choose a step by which we inspect the associated velocity.

However the side e�ect of using a curve based interpolation, although we
resolved the sparse points problem, is that increases in variability. To solve
this new problem it is necessary to insert new anchoring points in the dataset
before the interpolation, so the interpolation curve is forced to go through

42 4.3. Donut Mixture Model based on real data

Figure 4.30: Rescaled initial dataset interpolated using splines.

them without wide arch from a point to the next one. We choose to add
three average points between each pairs of raw points, in correspondence of
1/4, 1/2 and 3/4 of the position and the velocity of them.

The dataset changes as in Figure 4.31.

Figure 4.31: Rescaled initial dataset interpolated using splines and with the
adding of new points to limit the oscillation of the interpolating functions.

We achieved a state where we overcame the variability problem and the
sparse problem. At this point the Donut Mixture Model and the correspond-
ing output looks as in Figure 4.32, 4.33 and Figure 4.34.

The output has surely a smoother behaviour but the high slope of the right
side of the trajectories still in�uence too much the model, making di�cult to
extrapolate the overall tendency. This is con�rmed from the positioning of
the red Gaussian component, tighter that the others and stick to the ending
side. Starting from this last problem, in the next paragraph we try to take

4.3. Donut Mixture Model based on real data 43

Figure 4.32: Gaussian components positioning on data interpolated through
spline (K=2)

Figure 4.33: Gaussian components positioning on data interpolated through
spline(K=3)

Figure 4.34: Output associated to the scaled interpolated dataset for a dis-
tance z=2.5m (K=2 on the left, K=3 on the right).

44 4.3. Donut Mixture Model based on real data

some new solutions to surpass it.

4.3.3 Further data elaboration

In this paragraph our objective is to �nd new solutions of di�erent type
from what we have already done. Initially we tried to act on the dataset to
improve the overall data shape. Achieved a good result, the next step is to
do further analysis in terms the intrinsic characteristic of the re-elaborated
data. It is important to underline and to recall that at the start of this
work we chose to considerer the movements in their entirety and not until
the ball is left. This was a good choice on theoretical side for trying to give
to the model a tending symmetrical balanced data (to help the Gaussian
components positioning too), but for the shape of this particular dataset it
is not so relevant also because the weight of the �rst positioned Gaussian
component makes it too much predominant.

From these initial considerations we can now proceed to give to the model
only a part of the entire dataset to verify if from only the �rst part it can learn
the right behaviour without any problems. We return to a situation where
the last point of the trajectory is e�ectively correspondent to the instant that
the ball is left.

Figure 4.35: Two frame of a throw: when the ball is left and at the end of
the movement.

To choose the cutting point from which we eliminate the second part we
can proceed with an arbitrary point, with the mean one or we can do some
considerations about when, according to the velocity and the acceleration of
the trajectories, the ball is probably left.

In a �rst moment we can choose an arbitrary point, with further elabo-
rations this choice could be more accurate. Cutting in correspondence of 0.9
radians (near the mean) the dataset becomes as in Figure 4.36.

Starting from this new group of input trajectories, the Donut Mixture
Model results as in Figure 4.37 and Figure 4.38.

4.3. Donut Mixture Model based on real data 45

Figure 4.36: Same re-elaborated data as 4.31 cut at 0.9 radians.

Figure 4.37: Gaussian components positioning for the elaborated data cut at
0.9 radians (K=2).

Figure 4.38: Gaussian components positioning for the elaborated data cut at
0.9 radians (K=3).

The associated output for a distance of the basket of 2.5 meters is as in

46 4.3. Donut Mixture Model based on real data

Figure 4.39.

Figure 4.39: Output associated to the cut data for a distance z=2.5m (K=2
on the left, K=3 on the right).

This �rst result with this new dataset it is good for three Gaussian com-
ponents. To �nd out if the model works well, we try to change the basket
position so we can at the same time verify the smoothness of the output and
if the model learns the right wanted behaviour.

Figure 4.40: Output associated to di�erent basket distances with two (top)
and three (bottom) Gaussian components (respectively from left to right 1.5,
2.35, 3.25 and 4 meters).

As we see in Figure 4.40 we are close to a good result but there are still
some problems, so we need to do some other steps further. The discontinuity
gaps are still too wide and the output change too much if we change the
basket position or simply the number of Gaussian components.

The last thing that is left to considerate in this elaboration is the correla-
tion between the trajectories associated to di�erent distances. If take them

4.3. Donut Mixture Model based on real data 47

singularly, as in Figure 4.41, we can see that there are not any particular
overall di�erences (aside the �uctuation related to the spline interpolation).

Figure 4.41: Trajectories for some distance (respectively 1.5m, 2.5m and
3.5m).

What we can expect is that to further distances are associated trajectories
in a proportional way. In general as we see this statement is respected and
taking for example the set of trajectories in correspondence of 2.25 meters
and 3.5 meters, the second one are generally over the �rst one (Figure 4.42).

Figure 4.42: Trajectories associated to 2.25m (blue one) and to 3.5m (red
one).

The problem is that this consideration is not respected for all of them.
We can highlight two di�erent situations:

• singularly the behaviour is correct but di�ers from the overall trajec-
tories trend. It is the case of the trajectories for the distance of 2.75
meters. The trajectories around are gradually growing but for 2.75
meters there is a drop of the average velocity/position ratio.

48 4.3. Donut Mixture Model based on real data

• the behaviour associated to a distance follows the global trend but
di�ers too much, for external factor too, from the other trajectories. It
is the case of the trajectories of 1, 1.5 and 4 meters. In our case this
can be caused from external di�culties related to the throws itself. For
example, the baskets at 1 and 1.5 meters are too close to the throwing
spot and it is not simple to do a full movement like with the other
distances.

In front of this last considerations we can try to remove from the re-
elaborated dataset this trajectories set to see if the Gaussian components
positioning improves. The new dataset results as in Figure 4.43.

Figure 4.43: Re-elaborated data with some trajectories removed.

As we see the result is globally homogeneous and, as showed in paragraph
4.3.5 where we go deeper with the analysis, the model behaves well.

4.3.4 Analysis on the elaborated dataset with two DoFs

The actions that we took to elaborate furthermore the dataset are strictly
related to try to achieve our objective with three degrees of freedom. What
we achieved till now, excluding the last consideration related to the distance
that have to be excluded, is the results of elaborations done on single set of
trajectories associated to a value of basket position. So we can surely assume
that at this point Donut Mixture Model behaves well with two degrees of
freedom. As follows we present the study parallel for each input basket
distance.

The dataset, subdivided for distance, is presented like in Figure 4.44.
As we can see, each trajectories set has a semi-parabolic shape and di�ers

only for the grade of its variability. Using them separately into the DMM

4.3. Donut Mixture Model based on real data 49

Figure 4.44: Data points elaborated subdivided for each single distance
recorded.

gives a similar result for everyone, with a tighter �rst Gaussian component
and a wider one associated to the second part of each set (using two Gaussian
components), like we see in Figure 4.45.

For each distance we can see that the �rst of the two Gaussian compo-
nents is usually less variable and more close to the data points. The second
one instead wraps around the variability. We tested how three Gaussian
components are positioned too but we saw that two are su�cient and that
there are not any improvements. If we add a third component the position-
ing variate between each set but it does not add anything signi�cant on the
output side. The associated output that comes from the optimization phases,
as we see in Figure 4.46, is smooth and it is what we expect.

50 4.3. Donut Mixture Model based on real data

Figure 4.45: Gaussian components positioning for 2 DoFs (K=2)

Figure 4.46: Set of output associated to each individual set of data elaborated
for every distance.

4.3. Donut Mixture Model based on real data 51

4.3.5 Conclusive analysis on the model with three DoFs

This last created dataset is the result of numerous actions on the raw data.
They can be recapped in the following list:

1. addition of a new �nal point for each trajectory with zero velocity;

2. re-scaling of all the trajectories to the average �nal position, so each
one can �nish at the same time;

3. interpolation of the data points of each trajectory through spline, so
the probability model can work with more informations to extract the
behaviour;

4. addition of average points, so the oscillations of the curve generated by
with the interpolation are limited;

5. cut in half of the complete trajectories, so the probability model can
stood better to the correct behaviour;

6. deletion of trajectories associated to some basket distances, so the data
points of the dataset can be more homogeneous disposed as possible.

As we saw the last two operations was required to evolve the dataset so the
model can be applied to three degrees of freedom. Starting from this, we
proceed as we did with the synthetic starting dataset.

Using two and three Gaussian components, their positioning appear like
in Figure 4.47 and 4.48.

Figure 4.47: Positioning of two Gaussian components in the last elaboration
of the initial dataset.

52 4.3. Donut Mixture Model based on real data

Figure 4.48: Positioning of three Gaussian components in the last elaboration
of the initial dataset.

As we see from the side it is very similar to the positioning with only two
degrees of freedom, with the di�erence that the wider components wrap all
the data points and not only the last more variable set.

The output associated, always with a distance of 2.5 meters (as we kept
in the previous steps) it is smooth (there are only some little discontinuities
that do not in�uence the entire trend) and stick well in its exploration around
the data (see Figure 4.49).

Figure 4.49: Output associated to the last dataset with a distance of 2.5m.

At this point we can now proceed to evaluate if the model has learnt the
input behaviour and can adapt well to di�erent input basket position values.

Figure 4.50 con�rms that the model has absorbed well the wanted be-
haviour: to a further distance of the basket corresponds a trajectory with
an higher interception with the y-axis and an higher velocity/position ratio.
There are still some points of discontinuity, but what is important is that the
overall behaviour has sense. In addition we can see that the model adapts
well in unknown situations too (without initial information when the model

4.3. Donut Mixture Model based on real data 53

Figure 4.50: Output for two (left side) and three (right side) Gaussian com-
ponents for distance respectively of 2.35m, 3.25 and 4 m.

is built), like for 2.35 and 4 meters.

This result it is not trivial: if we take the initial raw dataset cut on
0.9 radians and we compare the initial Gaussian component positioning and
the output from that dataset with what we obtained we can see the huge
di�erences and, more important, that every subsequent elaboration has lead
to a good result that we could not achieve from the start.

If we compare the Gaussian components positioning (Figure 4.47 and 4.48
for the re-elaborated data and Figure 4.51 and 4.52 for the initial dataset) it
is immediate to see that in the former case the components are less variable
and the single positioning it is better. This is re�ected on the output side

54 4.3. Donut Mixture Model based on real data

Figure 4.51: Positioning of two Gaussian components on half of initial
dataset.

Figure 4.52: Positioning of three Gaussian components on half of initial
dataset.

(Figure 4.47 and 4.48 for the re-elaborated data and Figure 4.51 and 4.52 for
the initial dataset).

In particular it is important to underline that changing the input basket
distance do not determine any interesting e�ect with the raw data. The
model cannot achieve to learn any behaviour and that is con�rmed looking
at the random variation in the output. On the other side, with the elaborated
data, the output trajectory change in height and increase with the associated
distance.

4.3.6 Limits of the model

This study has lead to various elaborations in front of various problems that
came out. Facing all these matters brought to extrapolate some di�erent
thoughts.

4.3. Donut Mixture Model based on real data 55

Figure 4.53: Output for two (left side) and three (right side) gaussian com-
ponent for distance respectively of 2.35m, 3.25 and 4 m. for the raw dataset.

4.3.6.1 Cope with visual data extrapolation and elaboration

The main di�culty working with data extracted from videos is the condition
of the information: although it could be correct, usually is dependant to the
sampling rate of the camera and, like in our case, it can be very sparse or it
can contain informations that we need to discard (noise in the data or simply
incorrect informations). In both cases it is necessary to elaborate in some
way the initial dataset.

This elaboration is not trivial and human intervention can be needed. It
is not immediate to isolate the wrong behaviours, although it is possible to
come out with some elaboration, like an estimation of what is correct on the

56 4.3. Donut Mixture Model based on real data

base of the general trend. In our case we found manually that, for example,
the second skeleton (produced by the shadow or a re�ection or from the
environment itself) sticks its tf associated values around the zero and that
one of his point can make a huge variation in velocity terms.

Aside all this limitations, a human-like perspective remains the core for
future evolutions. For the moment we can eventually use more cameras and
melt and compare their signals, in the future the evolutions need to proceed
in hardware terms and on the initial automatic elaboration side.

With the next sections, we suppose that all the extraction informations
are correct, focusing on problems from a di�erent angle.

4.3.6.2 Manage the data shape and variability

Extracted the trajectories, we took actions to evaluate the data in their
entirety, both for a single basket distance and globally with the other cases.

In the �rst situation the problem was related to which shape was the right
one to use. In particular, like in Figure 4.54, both trajectories are smooth
and can be associated to a throw, but the robot still cannot decide, during
the teaching phase, which one it has to use. A choice is required because
the probability model can have some di�culties if we submit to it data with
too di�erent shape that limits the learning of the right behaviour. To solve
this situation it is possible to try to estimate the shape by a comparison
of all the trajectories, choosing the most common one. If the data points
of a trajectory are too far from the common shape, the trajectory can be
discarded.

Figure 4.54: Two di�erent kind of trajectories recorded in the collecting
phase.

4.3. Donut Mixture Model based on real data 57

In the second situation, estimated the right shape of the behaviour, it is
not instantaneous to accept all of the �ltered data. Like it happened with the
distance of 2.75 meters, the shape it is the same of the other distances but
it does not cope with the overall trend, being lower than what we expected.
We cannot accept that trajectories because they can interfere on the learning
on the third dimension.

Figure 4.55: Comparison between the trajectories associated to 2.5m and 3m
(color blue) and 2.75m (color red).

At the same time subtracting all that block of trajectories it is not ideal,
particularly because we create an hole in the middle of the learning dataset.

Either in the two situations, the actions took for the moment were too
human dependant. Our objective was related to verify the correctness of the
Donut Mixture Model on the third dimension, so at this time it is not very
important. In future work there is wide space for improvement on this side.

4.3.6.3 Limitation imposed from the input data

For a correct learning process we need to submit to the probability model
dataset that are not very sparse. For the �rst two dimension this is not a
problem and we resolved, if we have limitation on recording side, with an
interpolation. On the third dimension the solution is not automatic. Aside
of the fact that we can in some way create an interpolation on that side too,
for the moment we need to use demonstrations associated to various distance.
In addition, together of a discrete number of them, we need to be sure to
have (for dimension after the second one) data points not so far from each
other.

In our case we created an hole in the middle of the dataset but thanks
to the good shape and the good number of data around it, we did not have
to face problem in this way. At the same time, for the reasons we have just

58 4.4. Robot application

listed, we needed to remove the trajectories associated to 1.0, 1.5 and 4.0
meters too.

4.4 Robot application

Obtained the functioning model, we can now test the entire cycle sending to
the robot the resulting trajectories. Thanks to the implemented plug-in, we
can send to the robot the entire resulting trajectory to see if it moves how
we want.

On simulation side, this is veri�ed inside Gazebo.

Figure 4.56: Photo of the simulated environment during the movement
through a trajectory.

Working with the real robot introduce new problems, in terms of adapt-
ing the various dimension (joint position and joint velocity) so there can be
a correspondence between the output from the model based on the recorded
data and the executed movement. For limitations related to the actual ver-
sion of the software installed on Comau Smart5 SiX, we need to re-elaborate
the trajectory using the velocity not in a direct way but in terms of percent-
age of a linear joint velocity. In addiction a workaround is needed to send the
change of velocity in every instant (point of the output trajectory). To do
so we need to make some modi�es to the main program and to the message
that we send through a python script.

Because of software limitations, we need to sacri�ce an information related
to a speci�c joint to insert the velocity of the joint that we are going to use.
As we want to use only one joint, we can take advantage of the information,
for example of the last joint, inserting in its turn the percentage related to the
set linear velocity associated to a joint position. In the main program that
receive the message we set the position of the joint sacri�ced to a constant
value. The script containing the message has the following informations:

4.4. Robot application 59

Figure 4.57: Photo of the real robot during the movement through a trajec-
tory.

coord_type = "-j"

... (coord_type,'0','-65','-25','0','90','0',...)

... (coord_type,'0','-65','-37.2006','0','90','12.37',...)

.

.

.

Initially we need to specify how the robot is controlled. In our case we send
joint information and we do not control the robot in Cartesian coordinates.
Each instant has associated a row where there are six numbers. The third is
to change the position of the joint 2 and the sixth is used for the velocity.

For a correct movement we position the robot in a convenient state before
moving the interested joint. In addiction, it is important to underline that
if we use a real robot (in particular a non-humanoid one) it is necessary an
initial tuning to its movement because there is not a direct correspondence
between with ours. In this case this problem it is translated to a proportion
between the values of the trajectories that we send and the limit values of
the joint 2 and to some tries to �nd a correspondence between the velocity
of the trajectory associated to a speci�c basket distance and how e�ectively
the robot moves and throws for that distance.

Chapter 5

Conclusion and future

development

With the work described in this thesis we presented an Imitation learning
model, how this model and the associated input data have been adapted to
manage a situation where the degrees of freedom are more than the initial
one and they evolved during the time. In particular, we started from a pre-
vious study where the objective was to teach through visual demonstrations
a simple task by looking at two DoFs and we proceeded extending the situ-
ation with another input variable. At the end of this path we can see that
the extended approach is applicable and gives us good result that con�rm
the right behaviour can be learn.

As we introduced during the various elaboration steps, there are a lot
space for future extensions. Mainly, we can divide the extensions in two
felonies:

• the �rst one is related to taking into account more complicated tasks,
where for example it is taken into consideration the basket motion not
only in one direction but all around the throwing spot. In addiction
the basket can change in height too;

• the second one is related to �nding a more independent way to manage
the dataset singularities than human intervention. As we saw our work
concentrated in particularly on this topic.

In addiction, the natural conclusion of our elaboration, as we introduced
in the �rst chapter, is related to the last step of the Robot Learning from
Demonstrations/Failures, that is the updating step. This phase is important

60

61

to tune the model perfectly to the robot that we are using, so it can learn
not only from human demonstrations but also from its own errors.

Last but not least, with a future version of the software for the spe-
ci�c robot that we used there will be the possibility to control it directly in
position-velocity, so it can leave space for a more accurate mapping of the
model output trajectory.

References

[1] S. Michieletto et al. Robot learning by observing humans activities
and modeling failures. IROS workshops: Cognitive Robotics Systems
(CRS2013), 2013.

[2] D. H. Grollman et al. Donut as i do: Learning from failed demon-
strations. IEEE International Conference on Robotics and Automation,
2011.

[3] D. H. Grollman et al. Robot learning from failed demonstrations. In-
ternational Journal of Social Robotics, 2012.

[4] S. Michieletto et al. Ros-i interface for comau robots. Simulation, Mod-
eling, and Programming for Autonomous Robots, 2014.

[5] E. Tosello et al. A learning from demonstration framework for ma-
nipulation tasks. ISR/Robotik 2014; 41st International Symposium on
Robotics, 2014.

[6] S. Michieletto et al. Learning how to approach industrial robot tasks
from natural demonstrations. IEEE Workshop on Advanced Robotics
and its Social Impacts (ARSO2013), 2013.

[7] B. D. Argall et al. A survey of robot learning from demonstration.
Robotics and Autonomous Systems, 2009.

[8] A. Billard et al. Robot programming by demonstration. Handbook of
Robotics, 2008.

[9] S. Schaal et al. Learning movement primitives. Robotics Research, 2005.

[10] A. Ijspeert et al. Trajectory formation for imitation with nonlinear dy-
namical systems. IEEE International Conference on Intelligent Robots
and Systems (IROS 2001), 2001.

62

REFERENCES 63

[11] A. Ijspeert et al. Learning attractor landscapes for learning motor prim-
itives. Advances in Neural Information Processing Systems 15, 2003.

[12] A. Ijspeert et al. Movement imitation with nonlinear dynamical sys-
tems in humanoid robots. International Conference on Robotics and
Automation (ICRA 2002), 2002.

[13] S. Schaal. Is imitation learning the route to humanoid robots? Trends
in Cognitive Sciences, 1999.

[14] S. Schaal. Learning robot control. The handbook of brain theory and
neural networks, 2nd Edition, 2002.

[15] S. Schaal. Arm and hand movement control. The handbook of brain
theory and neural networks, 2nd Edition, 2002.

[16] B. Akgun et al. Keyframe-based learning from demonstration. Interna-
tional Journal of Social Robotics, 2012.

[17] S. Calinon et al. Handling of multiple constraints and motion alterna-
tives in a robot programming by demonstration framework. Humanoid
Robots, 2009.

[18] T. Inamura et al. Acquiring motion elements for bidirectional computa-
tion of motion recognition and generation. Experimental Robotics VIII,
2003.

[19] D. Kulic et al. Incremental learning, clustering and hierarchy formation
of whole body motion patterns using adaptive hidden markov chains.
Intl Journal of Robotics Research, 2008.

[20] L. Rozo et al. Force-based robot learning of pouring skills using para-
metric hidden markov models. In Proc. of the IEEE-RAS Intl Workshop
on Robot Motion and Control (RoMoCo), 2013.

[21] S. Calinon et al. Incremental learning of gestures by imitation in a
humanoid robot. In Proc. ACM/IEEE Intl Conf. On Human-Robot
Interaction (HRI), 2007.

[22] S. Calinon et al. Statistical learning by imitation of competing con-
straints in joint space and task space. Advanced Robotics, 2009.

[23] P. Kormushev et al. Upper-body kinesthetic teaching of a free-standing
humanoid robot. Proc. of the IEEE Intl Conference on Robotics and
Automation (ICRA 2011), 2011.

64 REFERENCES

[24] P. Kormushev et al. Imitation learning of positional and force skills
demonstrated via kinesthetic teaching and haptic input. RSJ Advanced
Robotics, 2010.

[25] M. Hersch et al. Dynamical system modulation for robot learning via
kinesthetic demonstrations. IEEE Transactions on Robotics, 2008.

[26] A. C. Cifuentes et al. Human-robot interaction based on wearable imu
sensor and laser range �nder. Journal Robotics and Autonomous Systems
October, 2014.

[27] C. Stanton et al. Teleoperation of a humanoid robot using full-body
motion capture,example movements, and machine learning. In Proc. of
Australasian Conference on Robotics and Automation, 2012.

[28] H. Dang et al. Robot learning of everyday object manipulations via
human demonstration. In Proc. of IROS 2010, 2010.

[29] L. Rozo et al. Robot learning from demonstration in the force domain.
Aliht, 2011.

[30] M. Munaro et al. An evaluation of 3d motion �ow and 3d pose estima-
tion for human action recognition. RSS Workshops: RGB-D: Advanced
Reasoning with Depth Cameras, 2013.

Thanks

The conclusion of this work marks the end of another important path of my
life. It was not always easy and steady, there were a lot of moment where I
was uphill, but I am sure that if I could go back in time I would choose it
again.

I want to thank all the people that accompanied me over these years,
starting from my mum that was always by my side and that allowed me to
continue to this route. Thanks to anyone's life put me close, who endured
my stubbornness and that allowed me to grow as a person and as a future
engineer.

In particular I want to thank the IAS-Lab, my advisor prof. Enrico
Pagello and my co-advisor dott. Ing. Stefano Michieletto that allowed me to
passionate to the beautiful �eld that is Autonomous Robotics and that took
the time to help me with my work and my curiosity.

65

	Introduction
	State of Art
	Reasons behind the choice of RLfF on RLfD
	Robot Learning from Failure

	Building the probability model
	Dataset
	Gaussian Mixture Model
	K-means and Extimation Maximization

	Donut Mixture Model
	Optimization

	Communication with the robot
	Reaching the robot
	Actions
	JointTrajectory messages
	Sending an action
	Receiving an action and getting to the goal

	Application
	Preliminary study
	Input data
	First positioning of the Gaussian Components
	Optimization phase
	Output

	Collecting real demonstrations
	Problems with the data recorded
	Post extraction software elaboration

	Donut Mixture Model based on real data
	Preliminary analysis on the raw dataset
	DMM on raw data

	Analysis of the improvement of the model alongside the refinement of the initial dataset
	Further data elaboration
	Analysis on the elaborated dataset with two DoFs
	Conclusive analysis on the model with three DoFs
	Limits of the model
	Cope with visual data extrapolation and elaboration
	Manage the data shape and variability
	Limitation imposed from the input data

	Robot application

	Conclusion and future development
	References

