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Abstract 

 

 

Carbon fiber Running Specific Prostheses (RSPs) have allowed athletes with lower extremity 

amputations to recover their functional capability of running. RSPs are designed to replicate the 

spring-like nature of biological legs: they are passive components that mimic the tendons elastic 

potential energy storage and release during ground contact.  

The knowledge of loads acting on the prosthesis is crucial for evaluating athletes’ running 

technique, prevent injuries and designing Running Prosthetic Feet (RPF).  

The aim of the present work is to investigate a method to estimate forces acting on a RPF based 

on its geometrical configuration. Firstly, the use of kinematic data acquired with 2D videos was 

assessed, to understand if they can be a good approximation to the golden standard represented 

by motion capture (MOCAP). This was done by evaluating steps acquired during two running 

sessions (OS1 and OS3) with elite paralympic athletes. Then, the problem was formulated using 

a deep learning approach, training a neural network over data collected from in vitro bench 

tests, carried out on a hydraulic test bench. Two models were built: the first one was trained 

over data from standard procedures and validated on two steps of OS1; then, in order to 

improve the performance of the prototype, a second model was built and trained with data from 

newly studied procedures. It was validated on three steps from OS3. 
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Chapter 1: Introduction 

 

 

 

1.1 HISTORY OF PROTHESES 

The inability to walk or move properly has been, since ancient times, an heavy burden for 

everyone who was affected by the loss of a lower limb (Hobara, 2014). Still, men and women 

have tried to help these people by creating artificial substitutes for the missing legs or feet. The 

earliest example of prosthesis ever discovered is a wooden toe belonging to an Egyptian 

noblewoman, dated 950-710 B.C.E. 

 

 

 

 

 

Figure 1.1. Egyptian toe, first example of a prosthesis ever discovered. 

 

Prostheses were meant to hide the missing leg and, most importantly, to make the amputee 

able to walk again comfortably. For this matter, the design of artificial lower limbs has evolved 

in a direction that pursues functionality and comfort for the amputee. The most important 

progress in these fields was seen during the American Civil War, where the demand for 

prostheses terribly rose. In this period of humongous loss of limbs and lives, Hanger Inc. was 

born: it was a company founded by James Edward Hanger (1843-1912), an American engineer 

whose leg was amputated during the war. He spent his convalescence designing a prosthetic leg 
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that would later go down in history as the “Hanger Limb”. His company is, to this day, leader in 

the industry. 

 

 

Figure 1.2. The “Hanger Limb”, developed by James Hanger and patented in 1873. 

 

Despite the terrible consequences of the World Wars, the prosthetics field did not develop 

accordingly. In the late 1950s, the Solid Ankle and Cushion Heel (SACH) model was invented and 

set the standard for prosthetic design. For the next 20-30 years prosthesis’ design and materials 

would remain approximately the same until, in the 1980s, advances in composite materials 

tremendously improved the development of the industry. In particular, carbon composite 

materials brought substantial improvements in the lightness and durability of prosthetic 

components such as feet, pylons, and sockets. In 1984 Van Philips, an American inventor of 

prostheses, created the “Flex Foot®”: the carbon graphite of which it was made allowed the 

elastic energy to be stored and released during the ground contact phase of the gait. 
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Figure 1.3. SACH foot (left) and schematics of the Flex Foot (right). 

 

The Flex-Foot was the first Running Specific Prosthesis (RSP) and made its appearance in elite 

sport during the 1988 Paralympic Games. Four years later, the heel component was absent in 

some athletes, creating the first sprint prostheses. This change in design was first seen in the 

Flex Sprinter I designed by Össur (Reykjavik, Iceland), the first specialized RSP. Also, the stiffness 

configuration was changed with the layup sequence of carbon fibers while still maintaining the 

J-shape outline of the carbon forefoot.  

 

Figure 1.4. A: Flex-Foot® (Modular III; Össur), B: Flex-Sprint II (Össur), C: Flex-

Sprint I (Össur), D: Flex-Sprint III® (Cheetah; Össur), E: Flex-RunTM (Össur), F: 

Symes-Sprint (Össur), G: Cheetah Xtreme®, H: Cheetah Xtend®, I:1E90 (Sprinter, 

Ottobock), J: 1C2 (C-Sprint®), K: Nitro (Freedom Innovation), L: CatapultTM 

(Freedom Innovation), M: SP1100 (KATANA, IMASEN Engineering Corp), N: 

Rabbit (IMASEN Engineering Corp). 

There are now several different sprint foot designs available. These new carbon fibers 

prostheses allow people with lower amputation to walk, run and jump as they could never 

imagine before. There are now many amputee athletes who can join competitions with able 

bodied athletes. The latest advancements are strictly connected with the new technologies, for 

example microprocessors knees allow a prosthetic to adapt its flexion and extension for 
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different environments. Moreover, 3D printed prosthetics have sparked a renaissance of cost-

effective DIY prosthetic design and production. 

 

Figure 1.5. 3D-printed titanium limb. 

 

 

 

1.2 RSP COMPONENTS  

As seen in figure 1.6, running specific prostheses are built out of various components. The main 

ones are listed below:  

- Socket: the portion of the prosthesis that fits around and envelopes the athlete’s stump and 

to which the connective components are attached. In later years, sockets have been often 

obtained with 3D printing techniques, in order to ensure maximum compatibility with the 

athlete’s residual limb and to make the system lighter. 

- Connecting components: they can be fixed for transtibial amputees or with some degrees 

of freedom for transfemoral athletes (for example, the prosthetic knee). 

- Sport Knee Joint: It is a cylindrical, hydraulic joint that connects the socket to the RPF in 

transfemoral amputee. The lower leg of the prosthesis swings through freely to an angle of 

about 60° in the flexion direction. Even at high stride rates, a smooth extension stop is 

ensured by extension damping applied along the entire extension movement, which 

increases significantly shortly before reaching the end position. Flexion and extension 

damping can be adjusted separately and individually. 

- Running prosthetic foot: carbon-fibre blade. 

- Spiked sole: Sole that is used during sprinting and jumping competitions, that provides a 

specialized traction that has been optimized for the blade. The spikes ensure grip with the 

Tartan surface, in which the athletics tracks are made. 
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Figure 1.6. RSPs main components. 

 

There are two main types of connecting components: 

- Ottobock® pyramid attack: the pyramidal attack consists of a pyramid receiver and a pyramid 

adapter in titanium. This system allows to quickly change the foot and allows adjustment of the 

angles of alignment in the sagittal plane and in the frontal plane, acting on the four screws. This 

method is usually implemented for C-shaped feet.  

- Direct connection of the blade to the socket by screws: this method is only applied on J-shaped 

prostheses. It is lighter because no adapter is necessary, but less adjustments can be made: 

sometimes angular wedges are put between the socket and the J-foot to vary the inclination 

angle in the sagittal plane.  
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Figure 1.7. Pyramidal attack (left) and fixing screws (right). 

 

 

 

1.3 BIOMECHANICS OF RUNNING WITH A RSP 

RSPs are designed to replicate the spring-like behavior of biological legs. To describe this, the 

whole body is often modelled with a spring-mass model: it consists of a massless spring and a 

particle that represents the athlete’s center of mass. During the first part of the stance phase, 

the compressed spring stores potential energy, which is given back with a certain efficiency in 

the second part of the stance phase.  

 

Figure 1.8. Spring mass-model schematization of a running gait. 

Using this model, leg stiffness is defined as the ratio between the maximum vertical Ground 

Reaction Force and the maximum leg compression (Sano et al., 2017).  

𝐾𝑙𝑒𝑔 =
𝑣𝐺𝑅𝐹𝑝𝑒𝑎𝑘

𝛥𝐿
 

To be able to consider different athlete’s weight, the leg stiffness can be made dimensionless by 

multiplying it by the ratio of 𝐿0 and body weight BW. 
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𝐾𝑙𝑒𝑔 = 𝑘𝑙𝑒𝑔 (
𝐵𝑊

𝐿0
) 

It has been demonstrated that this parameter remains constant over a wide range of speeds. 

𝛥𝐿 is calculated following Farley and using the length of the leg spring at the touchdown, which 

was estimated to be equal to the standing leg length L0, and half of the angle swept by the leg 

spring while the foot was on the ground (ϑ). 

𝛥𝐿 = 𝛥𝑦 + 𝐿0(1 − 𝑐𝑜𝑠𝜗) 

This linear spring model doesn’t exactly replicate the behavior of biological legs: in fact, the 

structure of human lower limbs is viscoelastic, and only a portion of the potential energy stored 

can be returned. The mechanical energy lost is the hysteresis cycle, needed in order to keep a 

constant speed during running, is provided by muscular force. The magnitude of said additional 

force is inversely related to leg stiffness and is influenced by the magnitude and orientation of 

the external forces. 

As previously explained, RSPs are made by carbon fiber composites materials that are 

characterized by great energy storing capabilities. Therefore, this material can recreate the 

tendons’ storage of mechanical energy and its return during ground contact. The main 

difference with biological legs is that ankles can generate mechanical power while RSPs cannot, 

and so the energy that is given back during a RSP running step goes only from 63% to 95%. 

Moreover, prosthesis stiffness cannot change during running. Stiffness and other parameters 

such as the length of leg or the vertical landing velocity directly influences the contact time and, 

consequently, the stride frequency of the steps.  Thus, RSP’s stiffness is a parameter that must 

be carefully designed in order to increase the athletes’ performances. 

Y. Sano et al. demonstrated that, in transfemoral amputees, 𝐾𝑙𝑒𝑔 of the prosthetic leg was 

approximately 12% smaller than that of the intact leg. These results are congruent with previous 

finding demonstrating that transtibial amputees wearing RSP have bilateral asymmetry in 𝐾𝑙𝑒𝑔 

during running: 𝐾𝑙𝑒𝑔 in transtibial amputee sprinters remained constant or increased with 

speed in intact limbs, while it remained constant or decreased in limbs using RSPs.  
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Figure 1.9. Typical examples of vGRF-COM displacement curves recorded from one 

subject for the intact (left) and prosthetic leg (right). Note the bilateral differences 

in vGRF. (Sano et al., 2017) 

These studies, along with the previous data, suggest that bilateral asymmetry in spring-like leg 

behavior may be a common biomechanical characteristic among lower extremity amputees 

wearing the RSPs while running. Although Y. Sano and al. observed that there was no difference 

in 𝛥𝐿, 𝑣𝐺𝑅𝐹𝑝𝑒𝑎𝑘 was significantly greater in the intact leg than in the prosthetic leg. These 

results indicate that asymmetric spring-like leg behavior in transfemoral amputees with RSP is 

mainly due to the bilateral differences in 𝑣𝐺𝑅𝐹. 

 

 

 

1.4 RUNNING GAIT ANALYSIS TERMINOLOGY 

Gait analysis is the general framework for this project. For a better understanding of the 

following chapters, here is proposed a summary of the main concepts of running gait analysis. 

One of the fundamental concepts of gait analysis is the gait cycle, which is the period from initial 

contact of one foot to the next initial contact of the same foot (Dugan & Bhat, 2005). In normal 

walking, there are two phases of gait – stance and swing. During one gait cycle in walking, stance 

phase represents 60% of the cycle while swing phase represents the remaining 40%. Double 

support, when two limbs are in contact with ground, occurs during the first and last 10% of a 

particular stance phase. Single limb support is equal to the swing time of the opposite limb.  

The running gait cycle, instead, can be divided into stance phase, swing phase, and float phase. 

The first half of the stance phase is concerned with force absorption, whereas the second half is 

responsible for propulsion. Stance phase can be divided into subphases of initial contact (also 

called heel strike) to midstance, and midstance to toe-off. To understand the biomechanical 

events during running, stance phase can be furtherly divided into three major components: 
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initial contact to foot flat, foot flat to heel-off, and heel-off to toe-off. Swing phase during 

running can be divided into initial swing and terminal swing; float phase occurs at the beginning 

of initial swing and the end of terminal swing. 

 
Figure 1.10. Schematic representation of walking gait (A) and running gait (B). 

 

 

 
Figure 1.11. Visual representation of running gait (Dugan & Bhat, 2005). 

 

The terminology explained in this section, along with the overview reported in the chapter, are 

meant to serve as an introduction to the work carried out during this thesis in the estimation of 

forces on Running Prosthetic Feet (RPF), as described in detail in the following chapters. 
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Chapter 2: Context of the work 

 

 

 

2.1 PROJECT OLYMPIA 

This thesis was done at University of Padua in collaboration with Centro Protesi INAIL (Istituto 

Nazionale per l'Assicurazione contro gli Infortuni sul Lavoro) in Vigorso di Budrio, as a part of 

project Olympia. Said project has the objective of developing innovative technologic solutions 

to enhance paralympic athletes’ performances and safety during sports competitions and 

training. In particular, the research poses its focus on prostheses and orthoses designed for 

running and jumping, and on prostheses and monoskis used in alpine skiing.  

The work described in this paper was carried out with the aim of trying to develop a simple and 

standardized method which uses deep learning for the evaluation of the forces acting on a 

running prosthetic foot based on video acquisitions of track tests and performances. 

 

 

 

2.2 RELATED LITERATURE AND EARLIER THESIS WORK 

Over the years, many students at University of Padua have worked for project Olympia as part 

of their thesis work.   

For his thesis project, Gianfabio Costa (Costa, 2018) developed an hydraulic test bench able to 

reproduce as closely as possible the biomechanics of the running, in order to evaluate in detail 

and in a complete way the mechanical performances of RPF. Said test bench, named Colossus, 

will be described in detail later.  

Gianmario Foscan (Foscan, 2018) developed and validated a method to apply strain gauges on 

RPFs to evaluate ground reaction forces and loads on the sockets during in-vivo applications, 

without the need of dedicated load cells or force platforms. 

Antonio Gri (Gri, 2019) evaluated the effect of different socket alignments on the performance 

of elite Paralympic athletes during running and long jump thanks to an instrumented running 

prosthetic foot.  

Leonardo Bonato (Bonato, 2020) used Colossus test bench to create a method to characterize 
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prostheses’ behavior in terms of stiffness and studied its variation during a step. He discovered 

that the main parameters to consider are the orientation of the foot to the ground (𝜃𝐺) and the 

combined effect of the two forces acting in the sagittal plane (𝜌=𝐹𝑥/𝐹𝑦). He also developed a 

mathematical model called Virtual Stiffness Map that, from a reasonable number of tests, can 

determine the elastic behavior of an RPF starting from the 𝜃𝐺 and 𝜌 values and validated it on 

an in-vivo test. 

Alessandro Luisi (Luisi, 2020) defined a method for developing 3D FEM models of running 

specific prostheses, through which it was possible to predict and study the mechanical behavior 

of the foot for different constraint and load conditions. 

Taking further Luisi’s work, Antonio Martellato (Martellato, 2022) carried out a mechanical 

characterization of a specific foot and developed a finite elements model that could simulate its 

behavior both during tests on Costa’s Colossus and during in-vivo applications. The model was 

able to successfully predict the load response of the foot during in-vitro conditions not tested 

on the Colossus and to predict the load response of the RPF based solely on its cinematics, 

acquired from an in-vivo test. 

 

 

 

Figure 2.1. 2D (left) and 3D (right) FEM models of Ottobock Runner Standard CAT 4 

developed by Antonio Martellato. 

 

There are also many works of scientific literature that try to investigate RSPs’ behavior. For 

example, Shepherd et al. (Shepherd et al., 2019) proposed a simple custom FEM model 

developed on MATLAB that uses a linear correlation between forces and displacements.  

Petrone et al. (Petrone et al., 2020) developed two wearable instrumented running prosthetic 

feet starting from commercial RPFs, suitable for load data collection on the track thanks to strain 
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gauge bridges, that is are able to transmit data via Wi-Fi to a base station for real-time 

monitoring. 

Beck et al. (Beck et al., 2016) evaluated the stiffness of a great number of RPF of different models 

and categories, in order to have a more accurate classification following performance based 

metrics instead of subjective stiffness, as it is currently recommended by prosthetic 

manufacturers.  

Migliore et al. (Migliore et al., 2021) carried out an explorative study on an elite transfemoral 

Paralympic athlete to test the response to an innovative alignment based on able-bodied 

athletes. The new alignment allowed the prosthetic side hip to work in a more comfortable 

range, increase the horizontal propulsion, decrease the running effort, avoid knee buckling, 

while not increasing the braking forces at the sound side. Moreover, the biomechanical evidence 

appeared to be highly related to the subjective perceptions of the elite athlete tested in the 

study. 

 

 

 

Figure 2.2. Instrumented Ottobock Runner CAT 4, developed by Petrone et al.  
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2.3 AIM AND STRUCTURE OF THIS WORK 

The work presented in this paper aims to investigate whether it is possible to estimate the clamp 

reaction forces acting on a running prosthetic foot with the sole use of kinematic data obtained 

with 2D videos.  

This is done by preliminarily understanding if videos are a reliable source of kinematic data by 

comparing them with the current golden standard, that is optical motion capture. This first task 

was accomplished by acquiring both video and motion capture data of the same track runs and 

comparing them. 

The second and most important objective was to find a method to univocally correlate the 

kinematic configuration of a RPF and the clamp forces acting on it at a given moment.  This has 

been done by carrying out some preliminary analysis to understand if the problem could be 

solved with deterministic methods; then, a deep learning approach was deemed to be more 

optimal. The latter was applied by building and training a Neural Network that, taking the 

coordinates of the markers on the RPF as input, could predict the forces acting on it. 

In chapter 3, the theoretical background of deep learning is reported, as well as the description 

of the type of model used. 

Chapter 4 describes the test bench used to collect training data for the network. 

In chapter 5 a running session to acquire in vivo data is reported; moreover, the confrontation 

between video and MOCAP data is described. 

Chapter 6 reports the standard procedure for in vitro tests, the preliminary analysis, and the 

construction and validation of a first neural network. 

Finally, chapter 7 is concerned with the study of new in vitro testing procedures for the training 

of an improved model. The validation of said model is then described. 

 

Figure 2.3 represents a descriptive flowchart of the work.  
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Figure 2.3. Flowchart of this thesis. 
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Chapter 3:  Introduction to deep learning 

theory 

 

 

 

 

3.1 INTRODUCTION TO DEEP LEARNING 

In recent years, deep learning has become ubiquitous in the world of scientific research thanks 

to its wide range of applications (Razavi, 2021). Its minimalistic approach requires the sole use 

of big quantities of data to create accurate predictive models, which is possible thanks to the 

boom in computational power and the emergence of big data sources, associated data storage, 

and sharing technologies. Recent remarkable applications include unprecedented performance 

in various fields, such as image generation and processing, image recognition, natural language 

processing, sequence prediction, and reinforcement learning. 

Specifically, Deep Learning (DL) is a branch of Machine Learning (ML), which falls under the 

umbrella of the field of Artificial Intelligence (AI). ML is nowadays concerned with developing 

machines that improve their own performance in carrying out a given task over time by 

“learning” from examples, with minimal human efforts to instruct the machines how to do so. 

However, Deep Learning techniques can be applied simply with limited expertise of ML, making 

them very accessible and versatile: DL frameworks are now available for most widely known 

scripting and programming languages, such as the Pytorch framework for Python and the Deep 

Learning Toolbox for MATLAB.  

The defining models of Deep Learning are Artificial Neural Networks (ANN), which, by applying 

many possible algorithms, recognize underlying relationships in a set of data. The intuitive 

functioning of these models is that after they’ve been trained with a sufficient amount of data, 

which in the supervised learning case (as explained in section 2.2) is intended as pairs of inputs 

and their respective outputs, they can accurately predict the output for unseen examples. The 

algorithms that allow this behavior will be explained in the case of the Multilayer Perceptron, 

which is the model used in this work. 

A fundamental property of ANNs is that they have been proven to be universal approximators 

(Hornik et al., 1989). This proof indicates that even basic Neural Networks would be able to 

https://www.sciencedirect.com/topics/computer-science/big-data
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approximate any function with any desired level of accuracy, provided that quantity of available 

training data and complexity of the model match the complexity of the problem. This is 

especially important because it allows DL models to be applied to problems with an enormous 

number of variables, which would be too complex to be identified and processed through purely 

deterministic methods.  

Since this groundbreaking discovery in the late 1980s, the “universal function approximation 

theorem” has been the fundamental driver of interest in Neural Networks across a variety of 

disciplines and applications, as stated before.  

 

 

3.2 STATISTICAL LEARNING 

Statistical learning (SL) is the general framework for machine learning, drawing from the fields 

of statistics and functional analysis (Cognolato & Testolin, 2021) (Razavi, 2021). SL can be both 

supervised and unsupervised: unsupervised learning refers to a process where a model learns 

some kind of structure in the data from “unlabeled” examples, which are inputs with no 

associated output; this is as opposed to supervised learning where the objective is to predict 

some quantity from an input set of data. Here examples are “labeled”, meaning the output 

associated with each input is known. In this work, only supervised learning models have been 

used. 

When dealing with a supervised problem, the purpose of statistical learning can be formulated 

as follows: based on a given set of observations S = {(x1, y1) , (x2,y2), …, (xn, yn)}, the aim is to 

find a model y = f(x) that approximates an unknown function y ~ F(x), with x ∈ X and y ∈ Y 

sampled with probability p(x,y) from an unknown data distribution D defined over the possible 

inputs and outputs of X and Y. A loss function 𝑙 can be defined as the measure of the distance 

between the model’s prediction and the ground truth sampled from D. 𝑙  is also called unreduced 

loss function, because no operation of averaging has been performed on it. The model has to 

minimize the expected risk 𝐸𝐷[𝑙], where 𝐸[∙] is the expected value, defined over the entire 

distribution D. Since such quantity is unknown, the model must rely on a proxy measure defined 

only on the dataset S, called empirical risk:  

𝐿(𝑆)  =  𝐸𝑠[𝑙]  =  
1

𝑛
∑ 𝑙(𝑓(𝑥𝑖), 𝑦𝑖)

𝑛

𝑖=1

 



19 
 

𝐸𝑠[𝑙] is the expected value of the loss over the observations in the dataset. 𝐿(𝑆) is the reduced 

loss function, which from this point onwards will be referenced as loss function or just loss for 

more concise language. 

The scope is to find a fitting model f through a search procedure. In the case of Artificial Neural 

Networks, the model will be found through a learning procedure. 

DL (and ML in general) can be used to approach a huge range of complex applications, but most 

of them consist in solving the combination of two types of problems: regression and 

classification. The main goal of regression is to estimate a continuous mapping function with 

input and output values, while classifications is a predictive model that approximates a mapping 

function from input variables to identify discrete output variables, which can be classes or 

categories. As explained further in section 3.5, The problem considered in this paper is a typical 

regression problem, where an ANN tries to estimate the clamp reaction forces on a RPF based 

on the configuration of the markers placed on it.  

Since statistics offers limited solutions to complex regression problems such as the estimation 

of non-linear functions, DL can be considered as a tool to further investigate problems that 

would be too difficult to solve analytically.  

 

 

 

3.3 MULTILAYER PERCEPTRON 

Artificial Neural Networks are a family of statistical learning models whose functioning 

intentionally resembles the one of neurons. The base operative unit of every ANN is in fact called 

neuron: similarly to how brain cells work in their context of the body, ANN’s neurons constitute 

a simple linear model which produce a positive or negative output given the input x and a set of 

weights w: 

𝑓(𝑥, 𝑤)  =  ∑ 𝑥𝑖𝑤𝑖

𝑛

𝑖 = 1

 

 They work through the layering of linear combinations followed by non-linear functions. The 

most basic model is the Perceptron, developed by Frank Rosenblatt in 1958. It is a binary 

classifier taking an input vector x and computing the output class y through a simple linear 

relationship:  
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y = f(Wx + b) = {
1   𝑖𝑓 𝑊𝑥 + 𝑏 >  0 
0            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

W and b are learnable parameters called respectively weights and biases. They can be fine-tuned 

following an optimization algorithm that minimizes the empirical risk. The function f is called 

activation function and, in a generic model, can be any non-linear function. In the case of the 

Perceptron f corresponds to the Heaviside function, also called “step function”. So, at its core, 

the Perceptron corresponds to a linear regression model usable for both regression and 

classification. By stacking a higher number of layers and using more complex activation 

functions, the model can be generalized to a Multilayer Perceptron and can be used to 

approximate highly non-linear functions. 

 

 

Figure 3.1 Perceptron (a) and Multilayer Perceptron (b). 

 

The Multilayer Perceptron belongs to the category of Feedforward Neural Network models. 

These types of Neural Networks are named after the feedforward path, where data is 

progressively transformed in a forward fashion. The structure of Multilayer Perceptron, as 

illustrated in figure 3.2, is the following:  

- Input layer: the first layer, where the input data x is received by the Neural Network. From this 

point, data is transformed through the hidden layers in order to compute the output. 

- Hidden layer(s): hidden layers are optional intermediate layers which increase the complexity 

and the depth of the network. Each hidden layer composed of neurons, as shown in fig. 3.1, 

receives the output from the previous hidden or input layer and returns the input for the next 

hidden or output layer.   
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- Output layer: the last layer, where the output y is computed. 

 

Figure 3.2 Architecture of a generic Multilayer Perceptron with one hidden layer 

and n neurons (Carolina Bento, 2021). The computation of the output prediction y 

is the result of the feedforward path. 

 

3.3.1 Feedforward path 

The mechanism that enables the Multilayer Perceptron to actually learn is the combination and 

iteration of two processes: the feedforward path and the backpropagation. A single iteration of 

the process over the whole dataset takes the name of epoch. 

The feedforward path is the path followed by the input data that results in the output. The input 

x is received by the input layer and linearly combined with weights and biases for every neuron 

in the first hidden layer. The result of this operation, called linear activation, has to pass through 

the activation function, which returns the output of the hidden layer. The process is repeated 

for every hidden layer. The computational process of an hidden layer takes the name forward 

pass: the feedforward path is the composition of every layer’ forward pass. The output layer 

operates a dimensionality change in order to fit the number of dimensions of the output. Then, 

the loss function is finally computed, measuring the distance between the network predictions 

𝑦 and the actual data �̅�, the ground truth. Different loss functions can be used, but in simple 

x1 

x2 

xn 
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regression applications such as the one seen in the present work, the Mean Square Error (MSE) 

is the most applied. For two generic vectors 𝑎 ∈  ℝ𝑛 and 𝑏 ∈  ℝ𝑛 , the MSE is the 𝐿2 norm of the 

difference between the two vectors. It is computed as follows:  

𝑀𝑆𝐸(𝑎, 𝑏)  =  
1

𝑑
∑(𝑎𝑖  −  𝑏𝑖)2

𝑑

𝑖=1

 

The MSE is the result of the feedforward path and the point from which backpropagation 

starts. 

 

3.3.2 Backpropagation 

Backpropagation is the learning mechanism that allows the Multilayer Perceptron to iteratively 

adjust the weights in the network, with the goal of minimizing the loss function. All the main 

techniques used in the state of the art today are based on an iterative method called Gradient 

Descent (GD). The main idea is to move the parameters (weights and biases) in the direction 

where the loss function 𝐿 decreases, which is the one given by the negative gradient of 𝐿 with 

respect to the parameters, computed on the predictions and ground truth on the dataset S. In 

each iteration, after the weighted sums are forwarded through all layers, the gradient of 

the MSE is computed across all input and output pairs. Then, to propagate it back, the weights of 

the first hidden layer are updated with the value of the gradient. This way, the weights’ gradient 

is “backpropagated” to the starting point of the neural network. The partial derivatives of the 

loss function with respect to each layer’ parameters are computed through the chain rule of 

derivation. 

 In general, the gradient iteration at step t+1 is computed with the following update: 

Δ𝑤𝑡+1  =  Δ𝑤𝑡  −   𝜂𝐿(𝑤𝑡)  

𝜂 is a hyperparameter known as learning rate.  

A common improvement that can be made is to use a subset of samples B ⊂ S instead of the 

entire dataset, called batch or minibatch. This improves computational performances and 

introduces noise which may be beneficial for the learning process by approximating the full 

gradient with a partial gradient, noisy due to the sampling of B ⊂ S. The new update rule takes 

the name of Stochastic Gradient Descent (SGD).  

Common alternatives to SGD are its momentum variant (Rumelhart et al., 1986) and the Adam 

optimizer (Kingma & Ba, 2017). SGD with momentum takes inspiration from physical 
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momentum: a fraction of the “movement” from the previous iteration is retained in the next 

one. The parameters at iteration t+1 are thus: 

 

Δ𝑤𝑡+1  =  Δ𝑤𝑡  −   𝜂𝐿(𝑤𝑡)  +   𝛼Δ𝑤 

 

This technique allows to get over local minima, where regular SGD would otherwise get stuck. 

Adam is a state-of-the-art optimizer which computes the running averages of both the first and 

second moments of the gradient, being respectively the mean and the uncentered variance. The 

update rule is then: 

𝑤𝑡+1  =  𝑤𝑡  −  𝜂
𝑚

√𝑣  +  𝜖
 

 

where m and v are the unbiased first and second moments. 𝜖 is typically a very small scalar. The 

advantage of using Adam over SGD is that it combines two useful characteristics: firstly, it 

maintains a per-parameter learning rate that improves performance on problems with sparse 

gradients; secondly, it also maintains a per-parameter learning rate component that is adapted 

based on the magnitude of change in the weight, improving the solution of problems with high 

amounts of noise.   

 

Since the update rule requires the derivative of the error regardless of the optimizer, a hard 

requirement for every Neural Network is that the activation function in every layers must be 

differentiable. 

The optimizing process goes on until the network reaches satisfactory performances on the 

problem, where the model is considered converged.  

 

3.3.3 Activation functions 

For a better understanding of the training process, it is important to briefly describe the typical 

activation functions used for regression problems. As previously stated, an activation function 

can be any non-linear function that takes the linear activation as input. The most common 

functions are: 

- Sigmoid: is an element-wise function that produces values in the interval [0, 1]. 

𝜎(𝑥)  =  
1

1 + 𝑒−𝑥
 

The sigmoid was used as the main activation function for neural networks together with the 

hyperbolic tangent tanh(x), but both have been replaced in most uses by rectified linear units 
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(ReLUs) and its variants. Despite the success of ReLUs, both functions still maintain some uses 

in specific applications: for example, the sigmoid function is widely used in the output layer of 

binary classificators. 

 

Figure 3.3 Sigmoid. 

 

- Hyperbolic tangent: is an element-wise function that produces values in the interval [-1, 1]. 

𝑡𝑎𝑛ℎ(𝑥)  =  
𝑒𝑥  −  𝑒−𝑥

𝑒𝑥  +  𝑒−𝑥
 

 

Figure 3.4 Hyperbolic tangent. 

 

- Rectified Linear Unit (ReLU): is an element-wise function which outputs the input if positive, 

otherwise it outputs zero. 

𝑅𝑒𝐿𝑈(𝑥) = 𝑥+ = 𝑚𝑎𝑥(𝑥, 0) 

It is a simple yet effective function that’s very easy and versatile both in the feedforward path 

and in the backpropagation. Due to its simplicity, it has replaced the sigmoid and the hyperbolic 

tangent in the hidden layers of modern neural networks. It is important to notice that since 

activation function must be differentiable, the derivative in x=0 (where the function is non-

differentiable) is set to be null. 
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Figure 3.5 Rectified linear unit. 

 

 

 

3.4 OVERFITTING 

Given the high level of flexibility of ANNs, a common problem that may arise during the training 

phase is overfitting, which refers to a situation where a model fits the noise in the training data 

rather than the underlying function. Before describing the possible solutions to this problem, it 

is important to understand how a generic dataset S is typically split in a Neural Network 

application.  

The available data are usually divided into three sets, commonly referred to as training, 

validation, and testing datasets (Razavi, 2021). Training datasets, as the name suggests, are used 

for the training of the network, as described previously; testing sets are instead used to provide 

an unbiased evaluation of a final model fit on the training data set. The validation dataset is 

needed to leash the hyper-flexibility of the network while training. Validation sets are not 

mandatory for the technical functioning of the training process; however, their use is advisable 

in order to prevent overfitting. This set is used to approximate the generalization loss at every 

iteration, to verify the model’s performance on unbiased data. The simultaneous use of training 

and validation datasets during ANN training may be best described with the early-stopping 

strategy: in this approach, the quality of fit to the validation dataset is evaluated after each 

training iteration, that is an optimization iteration trying to minimize the loss function on the 

training data. Empirically speaking, as the training error decreases over time, the validation error 

decreases as well. However, at some particular epoch, the validation error may begin to increase 

while the training error keeps decreasing. This epoch marks the beginning of overfitting; thus, 



26 
 

after a set number of iterations with this behavior, the training process is stopped. This strategy 

is therefore called early stopping in the sense that the training is stopped before it can further 

improve the fit to the training dataset, which will lead to overfitting.  

When the training process stops, the performance of the final model is assessed through the 

test dataset. In general, it is important for the testing dataset to not include samples from the 

training set, as having overlapping samples could lead to false conclusions over the accuracy of 

the trained network. 

 

 

Figure 3.6 Schematic representation of overfitting in ANNs. Overfitting happens 
when the training distribution fits perfectly on the model, which is not able to 

generalize to out of distribution samples. 
 
 

Another commonly used strategy to put a leash on the hyper-flexibility of ANNs is regularization. 

Unlike early stopping, this strategy tries to minimize a regularization function during training, 

which is added to the loss function. A traditional regularization function in the ANN context is 

the sum of the square of all network parameters, based on the notion that the smaller the 

parameters of a neuron, the less complex it is. In the context of Deep Learning, this technique 

takes the name of weight decay. The final objective be minimized becomes the sum of the main 

loss function and the squared 𝐿2 norm: 

𝐿 =  𝐿𝑚𝑎𝑖𝑛 + 𝜆‖𝑝(𝑤, 𝑏)‖2
2 

The hyperparameter 𝜆 is called regularization coefficient and determines a tradeoff between 

the main loss function and the regularization term. In general, each regularization term is 

weighted by a coefficient, and the best values are found through hyperparameters searching. 
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3.5 APPLICATION TO THE ESTIMATION OF FORCES 

Having explained the theoretical background to DL, it is now possible to formulate more 

precisely the problem considered in the present work. The rigorous description of the 

architecture of the network, the training process, and the results of the analysis are found in 

chapter 6 and 7. 

The aim is to build a Neural Network that takes the coordinates of the markers placed on a 

prosthesis as input and computes the clamp reaction forces acting on it as output. As 

anticipated, the model used is a simple Multilayer Perceptron with 2𝑛 + 1 inputs and 2 outputs, 

n being the number of markers on the prothesis: for each marker, an (𝑥, 𝑦) couple of 

coordinates is used. The additional input parameter is represented by the ground angle 𝜃. The 

two outputs correspond to the reaction forces 𝐹𝑥 and 𝐹𝑦 in the clamp coordinate system, often 

referenced, respectively, as F2 and F1. 

 

 

 

Figure 3.7 Graphic visualization of the variables of the network. 

 

The dataset for the training and testing of the network is carried out considering input-output 

couples acquired during tests on Colossus hydraulic test bench: the markers’ configuration is 

acquired with optical motion capture technology, while the forces are acquired through load 

cells.  
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Chapter 4: Hydraulic bench for RSP testing 

 

 

 

 

4.1 TEST BENCH COLOSSUS MACHINE 

Colossus test bench was designed by Gianfabio Costa in a previous work of thesis (Costa, 2017). 

The aim of the test bench is to determine the RSPs stiffness, applying a known vertical force and 

measuring the corresponding reaction forces. In this work, it has been used to collect kinematic 

and dynamic data to train the Neural Network. 

 

 

 

Figure 4.1. Colossus test bench machine. 

 

Two hydraulic actuators are used to apply the forces F1 and F2 and execute the displacements 

C1 and C2. Cylinders were manufactured by MTS Systems Corporation and can produce a 

maximum force of 14700 N, by the oil control system composed of MOOG servo-valves. The 

control software and control station are produced by MTS Systems Corporation as well, which 

operates feedback control on the servo-valves.  
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Figure 4.2. Colossus machine control system. 

 

The movement of the pistons can take place under force control with a uniaxial force transducer, 

placed on the head of the steam or displacement control using a potentiometer inside the 

cylinder. A double portal has been designed using structural aluminium profiles that hold up the 

hydraulic actuators. This is a very flexible solution because it allows to easily change the project 

configuration. The aluminium profiles have a square section with unified T-slot on each side, to 

allow the insertion of the fixing nuts. The internal slots are designed to minimize weight while 

maintaining a high moment of inertia of the section. The portal height is about 3 m to have 

enough space for the vertical actuator, the vertical slide, the prosthesis, and the horizontal slide. 

The width is instead set to 500 mm, so that the horizontal slide can comfortably accommodate.  

 

 

 

Figure 4.3. Colossus frame and vertical cylinder attachment. 
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A horizontal beam was placed on the slide, so that the prosthesis could be moved upwards and 

backwards to align the Centre of Pressure (COP) with the plane identified by the two axes of the 

rails. 

The horizontal slide, made with the same profile of the vertical one, was positioned on two 

cylindrical bars where it could slide backwards and forward. On the top of the slide was put an 

aluminium plate which can be covered with Tartan, the material in which athletics tracks are 

made. If the prosthesis being tested have a rubber sole instead of a spiked one, the aluminium 

plate is covered with sandpaper to minimize the sliding between the two surfaces. 𝜃𝐺 angles, 

that will be discussed in detail in the following paragraph, were set by inclining the surface 

around a hinge. Because of the high loads acting on the RSPs tested, a flange was assured by 

friction to keep constant a certain angle. Initially, there were two couple of flanges holed at 

prefixed angles, the first one at -45°, -30°, -15°, 0°, 15°, 30°, 45°, the second one at -37.5°, -22.5°, 

-7.5°, 7.5°, 22.5°, 37.5°. The flanges are connected to the sledge with screwed pins that are 

inserted in the holes to replicate the desired 𝜃𝐺. During the course of this thesis, one more 

couple of flanges was used, with a continuous fissure. This was done to reproduce a wider array 

of angles, without being limited to an interval of ±7.5. 

 

 

 

Figure 4.4. Horizontal sledge connected to the holed flange to replicate the angles 

of ϑSH. 

 

As seen in the picture below, the system has three degrees of freedom: two translations exerted 

by the hydraulic actuators and one rotation of the inclined sledge. Obviously, the translational 

ones are continuous, while the rotational is discrete. 



32 
 

 

 

Figure 4.5. Colossus’ degrees of freedom. 

 

During the tests, the prosthesis is hooked using to the vertical cylinder with a pyramidal joint for 

C-shaped prosthesis or with a system made by an aluminium plate and 4 bolts for J-shaped feet. 

 

 

 

4.2 INSTRUMENTATIONS 

The Colossus machine, besides the uniaxial load cells and the potentiometer on the cylinder, is 

also provided of two multiaxial load cells: a triaxial one that measures reaction ground forces 

(FXG, FYG and FZG) and is located under the contact plate, and a 6-axes one that measures forces 

and moments (FxC, FyC, FzC, MxC, MyC and MzC) between the clamp and the vertical sledge frame. 

Nevertheless, because the aim of the tests on the Colossus is typically the measurement of axial 

forces, displacements and calculation of the centre of pressure, only the uniaxial load cells, the 

potentiometers and the 6-axis load cell are used. 

All data were acquired during the tests by the SoMat eDAQ-lite acquisition unit to which all the 

load cells and the potentiometer, even the ones on the cylinders, were connected. 
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Figure 4.6. SOMAT acquisition unit. 

 

The SoMat eDAQ-lite is a microprocessor-based data acquisition system designed for portable 

data collection in a variety of test environments. It is a sealed stand-alone data acquisition 

system and has the capacity to perform signal conditioning and on-board data processing. Input 

power for the system operates in a wide range from 10 to 55 volts DC for the ELCPU-PLUS 

processor or from 10 to 18 volts DC for the ELCPU processor and internal back-up batteries 

protect it from unplanned power losses or low voltage events. 

The eDAQ-lite consists of one base processor layer and a variable number of optional add-on 

layers: 

• ELCPU  

1. ELCPU: base processor 

2. ELCPU-PLUS: base processor with extended voltage 

• ELHLS: high level analog layer 

• ELBRG  

1. ELBRG-350: bridge layer for 350-Ohm 

2. ELBRG-120: bridge layer for 120-Ohm 

• ELDIO 

1.   ELDIO-B: digital input/output layer 

2.    ELDIO-5HZGPS: digital input/output layer with GPS 

• ELNTB: non-isolated thermocouple layer 

• ELBAT: battery layer 
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The SoMat eDAQ-lite is designed to be connected to an adequate power supply: the ELCPU-PLUS 

processor supports nominal 12-, 24- and 42-volt vehicle battery systems and the ELCPU 

processor supports nominal 12-volt vehicle battery systems only. 

After planned the test and installed the various gages, sensors, load cells and cables required for 

the test, is important to connect the transducer cables to the appropriate eDAQ-lite layer or the 

measure will be compromised. 

The TCE software used to manage the SoMat permits to fully define the desired test and verify 

that the transducers and data channels are operating as expected using TCE channel display 

options. 

Before starting the tests, it is necessary to initialize it and after that, multiple test runs during a 

single test session can be performed. The system collects data at the desired sampling rate (0,1 

Hz-100 kHz) from transducers and other input sources and stores them in a variety of formats 

analyzable with InField or MATLAB or Excel software. 

 

 

 

4.3 PROSTHESES TESTED AND INAIL ASSEMBLY INDICATIONS 

Different RPFs were tested on the Colossus machine over the time in order to evaluate their 

strength and stiffness. Every RFP is identified by a stiffness category that is related to the body 

weight of the athlete. 

Even the same model of foot (same shape) can be bought in different categories, because the 

prosthesis brands, with the same moulds, manufacture various composite layups in order to 

obtain different stiffnesses. 

However, it is not easy to define the stiffness of a RPF in an universal way due to the fact that 

its values changes also in function of the way the prosthesis is assembled: all the experimental 

tests that have been carried out took in consideration manuals indication, together with 

practical technicians’ experience. 

The picture below shows the indications that must be taken in account during the foot 

mounting, both in the in-vitro and in-vivo experimental tests. INAIL technicians during in-vivo 

applications, mark an Alignment Axis with a plumb line or a laser bubble. This axis has to pass 

through the Hip Joint Centre, approximated with the position of the greater trochanter, and the 

Knee Joint Centre. When the residual limb or the RPF are in a maximum extension position, the 

distance between this axis and the tip of the RPF is called tap, and it is the reference parameter 

that is regulated in-vivo. 
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In the Colossus test bench, the alignment axis coincides with the axis of the vertical cylinder. 

Therefore, for C-shaped prosthesis, the tap can be replicated in the machine by acting on the 

pyramidal joint that connects the clamp to the Colossus; for J-shaped feet, both tap and socket 

tilt are reproduced by some aluminium spacers and a pyramidal joint. 

 

 

Figure 4.7. INAIL assembly indications for RPFs. 

 

4.3.1 Reference systems 

There is no standard reference frame for RSPs in literature, so it is necessary to explain the ones 

adopted to evaluate forces, displacements, and angles. The main ones are listed in figures 4.8 

and 4.9. 

 

Figure 4.8. Different reference systems for C shape RPFs. (Petrone et al., 2020) 
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Figure 4.9. Different reference systems for J shape RPFs. (Petrone et al., 2020) 

 

The reference frames seen in the previous figures are described as follows: 
 
- Ground (or Absolute) Reference System (XG, YG, ZG): the origin of the reference frame G is 

located at a fixed point of the ground. The XG axis is parallel to the ground in the sagittal plane 

with a posterior-to-anterior direction, the YG axis is orthogonal and directed upwards. The ZG 

axis derives from the right-hand rule. 

- Foot Reference System (xF, yF, zF): the origin of the reference frame F is located right before 

the main curvature of the foot. The xF axis is parallel to the blade, while the yF axis is 

orthogonal. The ZF axis derives from the right-hand rule. 

- Clamp Reference System (xC, yC, zC): in C-shaped prostheses, the origin of the reference 

system C is the geometric center of the base of the pyramidal attachment. The yc axis is the 

axis of the pyramidal attachment. For J-shaped prostheses, the origin is the medial point 

between the screws. The yc axis is the axis of the proximal straight stretch, while the xc. For 

both types of prostheses, the xc is orthogonal to the yc with a posterior-to-anterior direction 

and the zc axis derives from the right-hand rule.   

- Socket (or Shank) Reference System (xS, yS, zS): the origin of the reference frame S is the 

same as in the foot reference system. Approximating the shape of the socket to an 

axisymmetric solid, the YS axis is the axial-symmetry axis of the socket. The XS axis is 

orthogonal to the YS axis with a posterior-to-anterior direction. The ZS axis derives from the 

right-hand rule.  
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If the RPF is aligned correctly on the test bench the Socket Reference System has the same 

orientation of the Clamp Reference System and they are both inclined by an angle equal to 𝜃𝐺 

with respect of the Ground Reference System.  

The Clamp Reference System, during the in-vitro tests will have his X and Y axis coinciding with 

the vertical and horizontal cylinders. On the other hand, during in-vivo tests the Clamp RF will 

follow shank rotation with its Y-axis coinciding with the alignment one, thus it will be inclined 

with respect of the Ground RF by an angle equal to 𝜃𝐺.  

 

 

 

Figure 4.10. Colossus Reference System. 

 

4.3.2 Shank angle 

Another important definition is the absolute leg angle ϑSH: it is defined as the angle between 

the socket axis YS and the normal to the ground. Of course, this angle is not constant during the 

step. Setting the relative orientation between the Clamp reference System and the ground is the 

same as reproducing the relative orientation 𝜃𝐺.  

F2 

C2 
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Figure 4.11. Platform inclination angle convention. 

 

If the socket frame is considered to be fixed, the absolute leg angle can be obtained by simply 

inclining the slope. So, during the in-vitro tests, the ground surface is rotated to recreate 

different contact frames. This angle will often be called 𝜃𝐺 because the platform is the rotating 

element of the bench system. Negative values of 𝜃𝐺 are referred to the first braking phase of 

the step, while positive angles are connected to the final propulsive phase of the step. 

 

 

 

4.4 RUNNING STEP ANALYSIS 

In literature, for example in Nicola Petrone’s work (Petrone et al., 2020), there are many 

diagrams that show the trend of the Ground Reaction Forces both in Ground and Clamp 

Reference Systems. 

The Clamp Reference System, as described in the previous paragraph, is the one with the Y-axis 

coinciding with the alignment axis. The latter is swinging during the step and its angle between 

the vertical axis is 𝜃𝐺. 

Its trend can be calculated during an in-vivo test through High Frequency Video analysis or 

through Motion Capture acquisition. 

Knowing the trend of 𝜃𝐺 is the only way to transform the GRFs from the Ground Reference 

System to the Clamp Reference System through a rotation matrix following the expression: 

 

{
𝐹𝑥𝐶

𝐹𝑦𝐶
} = [

𝑐𝑜𝑠𝜗𝐺 −𝑠𝑖𝑛𝜗𝐺

𝑠𝑖𝑛𝜗𝐺 𝑐𝑜𝑠𝜗𝐺
] ∙ {

𝐺𝑅𝐹𝑥
𝐺𝑅𝐹𝑦

} 
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The two forces 𝐹𝑥𝐶  and 𝐹𝑦𝐶  are those imposed on the Colossus to replicate the real loads for a 

certain angle 𝜃𝐺. Once the forces in the Clamp Reference System have been calculated, a new 

parameter can be evaluated: 

𝜌 = 𝜌𝐶 =
𝐹𝑥𝐶

𝐹𝑦𝐶
 

 

Three examples of running steps of different athletes in different conditions are reported in the 

following graphs: on the left the GRFs in the Ground Reference System and the trends of 𝜃𝐺 are 

presented; on the right, the GRFs in the Clamp Reference System and the 𝜌 trends are shown. 

 

 

 

 

Figure 4.12. Left: Simone Manigrasso, Transtibial Amputee, J-shaped RPF. The Clamp RF in the 

picture is named SH. Right: Martina Caironi, Transfemoral Amputee, C-Shaped RPF. The Clamp 

RF in the picture is named L. 

 

 

Figure 4.13. Simone Manigrasso Session4_Run2 Ground (Left) and Clamp (Right) reference 

systems. 
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Figure 4.14. Monica Contrafatto Session3_Run2 Ground (Left) and Clamp (Right) reference 

systems. 

 

 

 

Figure 4.15. Martina Caironi Session11_Run7 Ground (Left) and Clamp (Right) reference 

systems. 

 

The first step is Simone Manigrasso's (65kg) one and was done on a transtibial J-shaped Ossur 

Cheetah Extreme CAT 5 on the track; the second one is done by Monica Contrafatto (52kg) on a 

transfemoral C-shaped Ottobock Runner Standard CAT 3 on the track; the last is a step of 

Martina Caironi (58kg) on a transfemoral C-shaped Ottobock Runner Standard CAT 4 on a 

treadmill in Japan. 

From the graphs it can be observed that the trends of the forces, 𝜌 and 𝜃𝐺 changes with the 

reference systems and as a function of the % of the stance phase. 

Frome the ranges of variation of these variables, some standard parameters for the tests 

performed on the Colossus can be established in order to create a test protocol for the RSPs that 

can reflect their real experimental load conditions. 

Here are reported the peaks and valleys value of the 3 steps: 
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Athlete 𝐹𝑥𝐺𝑚𝑖𝑛 𝐹𝑥𝐺𝑀𝐴𝑋 𝐹𝑦𝐺𝑀𝐴𝑋 𝜃𝐺𝑚𝑖𝑛 𝜃𝐺𝑀𝐴𝑋 𝐹𝑥𝐶𝑚𝑖𝑛 𝐹𝑥𝐶𝑀𝐴𝑋 𝐹𝑦𝐶𝑀𝐴𝑋 𝜌𝐶𝑚𝑖𝑛 𝜌𝐶𝑀𝐴𝑋 

Manigrasso -257 460 2298 -6,7 46,1 -954 0 2117 0,49 0 

Contraffatto -56 273 1602 -16,8 31,7 -159 100 1601 -0,13 0,11 

Caironi -299 330 1990 -10,7 32,8 -466 0 1955 -0.25 0 

 

Table 4.1. Significant Values of Loads, 𝜃𝐺 and 𝜌 from 3 In-vivo Steps. 

 

The fluctuation of the values between different athletes, but also between different steps of the 

same subject, is significant, therefore it is difficult to determine a test method that could 

replicate all the possible load conditions to which a RPF can be subjected. 

Therefore, seven different 𝜃𝐺 that could best fit the in-vivo variation ranges without requiring a 

huge number of tests on the same RPF, were initially selected as standard test parameters from 

the possible slope adjustments: -22.5°, -15°, -7.5°, 0°, +7.5°, +15°, +22.5°.  

In a similar way 3 different 𝜌 values were set as standard: -0.2, 0, 0.2. 

Since Neural Networks require a big set of data to acquire good precision of prediction during 

the training phase, for the sake of this thesis more angles and values of 𝜌 of were considered: a 

new flange with a continuous fissure was used to reproduce more the angles and 0.1 and -0.1 

were used as values for 𝜌. Moreover, procedures with a variable value of 𝜌(𝑡) were considered 

for the bench tests carried out on the Colossus. 
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Chapter 5: In vivo running tests 

 

 

 

 

This chapter’s purpose is to give a detailed description of the acquisition of data from in-vivo 

track tests carried out at Padua’s Palaindoor with elite paralympic athlete Ambra Sabatini, gold 

medalist at Tokyo 2020 Olympics, during the OS3 session. The Palaindoor is a building that hosts 

various sports equipment and tracks, among which an Olympic running ring and a 100m sprint 

track are present. The tests were performed using the latter.  

A brief description of the tests from a previous session (OS1) with athlete Martina Caironi will 

also be given, since its data have been used in this work. 

The kinematic data, acquired with both optical motion capture and regular cameras, will be 

confronted in this chapter. The kinetic data, which were acquired with a 6-axial load cell placed 

on the prosthesis’ clamp, will be used for the validation of the Neural Network model, as seen 

in later chapters. 

 

5.1 INSTRUMENTATION  

The tests were carried out on an instrumented track, composed of: 

- System of 25 cameras Vicon Vero v2.2, 2 cameras Vicon Vantage v16, 1 camera Vicon 

Vantage v5. 

- System of 7 cameras Vicon Vue, used for markerless Motion Capture. 

- 2 high-speed cameras: dynamic video acquisition in the sagittal plane from the left and 

steady in the frontal plane from the front.  

- 1 slow motion camera for steady video acquisition in the sagittal plane. 

- DTS Slice Nano; DTS 6DX PRO-A (Triaxial accelerometer + triaxial gyrometer), acquisition 

frequency 2000 Hz; 6-axis load cell SRI M3564F1, acquisition frequency 2000 Hz. 

- Dynamometric Starting Blocks equipped with load cells (Gefran CU K5D and CU K1C), 

acquisition frequency 1000 Hz. 

- Optical system for movement detection OptoGait. 

- 3-Axis Logging Accelerometer AX3 Axivity, acquisition frequency 200 Hz. 
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Two types of tests were conducted:  

1) Track steady state running (TSSR): TSSR consists in starting from standing, outside the 

acquisition volume and reaching a constant speed, equivalent to the 60% of the personal 

maximum speed. This speed is maintained in the acquisition volume. 

2) Start: As regards START tests, the athlete started from the blocks, placed in the acquisition 

volume, and reached the 60% of the personal maximum speed.  

The athlete is a transfemoral amputee (category T63). She used a single configuration of 

prosthetic elements for all the tests, consisting of: 

- Socket S3 with flexion angle approximately 15°; 

- Ottobock 3S80 prosthetic knee; 

- Ottobock Runner Standard foot CAT 3.5, tap approximately 5 cm. 

 

 

Figure 5.1. Prosthetic leg used during the tests. 

 

In the following sections, the instrumentation used for the scope of this thesis will be described. 
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5.1.1 Vicon Nexus  

The instrumentation used for the acquisition of kinematic data for these tests is the Vicon Nexus 

optical motion capture system. Optical motion capture (generally abbreviated in MOCAP) 

consists in the process of capturing and reconstructing body movements with the use specific 

hardware and software. MOCAP is used in a variety of fields, ranging from gait analysis for 

medical purposes to computer animation.  

In particular, the Vicon Nexus system is an optoelectronic system that makes use of infrared 

cameras able to track the movement of body segments. The tracking often exploits the use of 

markers, which are spherical reflective objects accurately placed on the athlete’s body to 

highlight the key anatomical landmarks. Several protocols for the placement of markers exist, 

such as the Davis protocol (20 markers) and the Helen Heyes protocol (15 markers). For 

paralympic athletes, the placement of the markers on the prosthetic elements is done 

depending on the type of amputation, socket, and blade.  

More technically advanced systems allow for markerless acquisition, tracking body surfaces 

instead: 

 

Figure 5.2. Vicon Vero camera. 

 

For the purpose of these tests, Vicon cameras were placed on the sides of a whole running lane. 

Seven Vicon Vue cameras, used for markerless acquisition, were placed at the beginning of the 

acquisition volume, while the rest of the cameras were Vicon Vero and Vicon Vantage cameras 

used for regular markered tracking. Approximately halfway through the lane, a metal frame was 

placed to hold cameras at a higher level from the ground.  
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Figure 5.3. Instrumented track. The cameras were placed on several tripods to 

covers the full distance of the lane; in the left picture, the metal frame holding 

cameras above the track can be seen.   

 

Once the cameras were placed on the tripods, pan and tilt needed to be regulated for a proper 

orientation. Then the system could be turned on and the optical parameters of the cameras, 

being aperture, zoom, and focus, were regulated on a fixed subject. 

Then, the system has to be calibrated: during this procedure, cameras detect a set of axes which 

is the common reference system. This is done by placing a triad of perpendicular wands inside 

the acquisition volume, that cameras will recognize as the absolute reference system. 

 

 

5.1.2 Slow-motion camera 

A fixed camera with the slow-motion feature (240 fps) was placed halfway through the track. 

The placement of this camera was studied to capture a single gait both in TSSR tests and in START 

tests, with the stance phase acquired in the center of the framing to minimize distortion. The 

setting of the camera was done following some quality rules, apt to have an easier tracking 

process during the elaboration phase: 

1) The camera was set up on a tripod, as stable and fixed as possible, to minimize errors from 

its movement. 

2) The camera’s plane was aligned with the plane of motion, to have the camera’s optical axis 

orthogonal with the running lane. 
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3) The camera was placed at a proper distance from the running lane to the scene to minimize 

distortion. 

4) A non-distorting lens was chosen. 

5) Four pieces of red tape were placed on the edge of the running lane, two at the left and two 

at the right, at a known distance. They were used as the calibrating objects during the video 

tracking, in order to set the dimensional scale.  

6) The camera’s flash was kept on during every test to clearly highlight the markers. This made 

the markers easier to follow on screen, leading to a more accurate tracking. 

 

 

5.1.3 DTS Slice Nano 

The DTS Slice Nano is an ultra-small (26x31 mm), low-power, high-shock-rated data acquisition 

system. It consists in a standalone system with microprocessor, memory, sensor excitation and 

signal conditioning. Its structure is similar to SoMat’s one, since both are built with operative 

slices with different functions.  

In the track tests, this instrument was held in a running backpack while connected to the 6-axial 

load cell placed in the prosthesis’ clamp and used to register the forces acquired by the cell. A 

low-voltage battery was also held in the backpack to supply power to the Slice Nano. A custom-

made controller was built to comfortably start and stop the acquisition on every test. 

The data were acquired with the use of the DTS SLICEware software. 

 

 

Figure 5.4. DTS Slice Nano (left) and its custom-built controller (right). 
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5.1.4 Load cell 

The SRI M3564F1 is a thin 6-axial load cell used for the acquisition of forces and torques during 

these tests. Load cells are acquisition units that make use of particular configurations of strain 

gauges to sense forces and torques. A six axial load cell, as implied by its name, is a cell that has 

six channels. The linear combination of the channels gives the forces acting on the cell: the 

matrix containing all the coefficients needed to obtain all the forces and torques is called 

calibration matrix. 

 

 

 

Table 5.1. Load cell specifics. 

 

During the tests, the cell was placed between the prosthetic knee and the RPF in series with 

other connective elements. From top to bottom, the elements constituting the pylon were: 

- Ottobock pyramid attack; 

- Load cell; 

- Steel connective plate; 

- Custom holed plexiglass thickener.  

 

 

 

Figure 5.5. Detail of prosthesis’ markers and pylon from the front (left) and rear (right).  
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5.2 IN-VIVO TESTS 

 

5.2.1 Preliminary operations 

Once all the acquisition systems were placed in the proper position, the following operations 

were carried out in preparation to the test: 

1) Preparation of the motion capture system. Once placed, the cameras needed to be masked 

to prevent the tracking of external objects. Then, they were calibrated with an active wand 

and, subsequently, with a triad to set the global reference system. 

2) Placement of the anatomical markers: this process consists in the placement of markers on 

set anatomical landmarks. Based on their position, technical markers are placed after a static 

acquisition.  

3) Static acquisition of the athlete to capture anatomical poses. 

4) Placement of the technical markers and removal of the ones not used during the running 

tests. During this step, the backpack containing the DTS Slice Nano was put on by the athlete. 

5) Static acquisition of the final running configuration of the markers. 

The markers placed on the athlete’s body can be seen in detail in figure 5.6, while the ones on 

the prosthesis are reported in figure 5.5. 

    

Figure 5.6. athlete AS on the sagittal and frontal plane with backpack on. 

 

5.2.2 Testing procedure 

As anticipated, two types of tests were performed by the athlete. The testing procedure for both 

is reported here. 

1) Start of MOCAP recording procedure with Vicon Nexus. 
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2) Start of video acquisition with the slow-motion camera. 

3) Activation of Optogait system. 

4) Activation of DTS Slice Nano and start of the acquisition via the controller. 

5) Start of the run. In the case of START tests, the athlete started the sprint from the 

instrumented running blocks positioned in the acquisition volume; for TSSR tests, the athlete 

started standing outside the acquisition volume and gradually accelerated until reaching a 

constant speed equivalent to the 60% of the personal maximum speed. 

 

 

Figure 5.7. Examples of TSSR (left)  and START (right) tests. 

 

 

 

5.3 ELABORATION OF MOCAP AND VIDEO DATA 

Three steps have been selected to be analyzed, one belonging to a steady state running test 

(TSSR04) and the other two being taken from start tests (START02 and START03). They were 

chosen because, for all these steps, the entirety of the stance phase was properly captured by 

the slow-motion camera in the center of its framing, leading to an easier and more accurate 

tracking process.  

 

5.3.1 Video tracking 

The tracking was done using the video-tracking software Kinovea. The video was preventively 

flipped with respect to the vertical axis, in order to match the orientation of the reference frame 

of the data obtained from the Colossus machine (as seen in later chapters).  The steps followed 

for the tracking are now listed: 

1)  Upload of the flipped video. 
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2) Placement of a perspective grid with vertices coincident with the calibration objects placed 

on the ground. The perspective grid was then calibrated with the real distances between the 

tape pieces: they formed a rectangle long 100 cm on the sides coincident with the edges of 

the running lanes and 127 cm on the orthogonal sides. 

3) Placement of a line object to use as the horizontal axis of the reference system. The line was 

placed in the middle of the running lane, where the athlete placed its RPF during the stance 

phase, parallel to the perspective grid. The line was then calibrated (with a length of 100 cm) 

and set as the horizontal axis of the linear reference frame. Kinovea automatically choses the 

center of the system as the first point of the line and sets the vertical axis orthogonally to the 

horizontal one. 

 

 

 

 

 

Figure 5.8. Red tape on the running lane (top); calibration grid, line and reference 

frame (bottom). 

 

4) Isolation of the stance phase using the square brackets command. This command limits the 
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tracking to start on the frame corresponding to the initial contact and to end at the frame 

corresponding to the toe off.  

5) Placement of visual markers on the real-life markers: in Kinovea, markers are point objects 

that, after enabling the “start tracking” command, track the real-life object over which they 

were placed. The name and color of the markers was changed to follow them easier during 

the tracking process. 

6) Start of the tracking: after enabling the “start tracking” command, the visual markers will 

start to follow the real-life markers frame by frame. If the position of a visual marker is not 

correctly overlaid on the real-life marker, it needs to be manually adjusted in every frame. 

Having followed the guidelines seen in section 5.1.2, the software could properly identify the 

real-life markers as the objects to track and thus the visual markers did not need much frame-

by-frame correction. 

 

 

 

Figure 5.9. Tracking of the virtual markers. 

 

7) Once the tracking is finished, meaning the toe off frame has been reached, the 

coordinates can be exported in a .csv data file using the “linear kinematics” tool. This 

file contain the xy coordinates of all the markers frame-by-frame, with respect to the 

reference system defined as in figure 5.8.  

 

5.3.2 MOCAP tracking 

The tracking of the motion capture data has been done with the Vicon Nexus software. The first 

step was to analyze the first frame and to create segments between markers. Each segment 
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needs three points to be defined in such way it is possible for the software to also identify the 

rotation of the segment around its axis.  

When the segments needed for the analysis had been created and labelled (for instance arm, 

forearm, shank etc.), the markers associated with a segment could be relabeled as preferred. 

Markers and segments can be colored to simplify the visual interpretation. 

 

 

 

Figure 5.10. Reconstruction of body segments through the position of markers on 

the Vicon Nexus software. 

 

Once all markers and segments had been identified and labelled for the first frame, the protocol 

could be saved in order to use the same connections path and labelling for the other tests of the 

same session. The protocol was be saved in a .vst file.  

Then, all the other frames could be analyzed one by one. It is probable that a marker will 

disappear and appear again after a few frames: in that case, the software could lose its label and 

it has to be reassigned manually. To help identify these large gaps on the signal it is useful, to 

check the markers trajectory on each axis over time.  

When all the large gaps were filled and each marker was correctly labelled during all the run, 

some smaller gaps remained. These gaps were repaired with the specific gap filling tool that 

uses various interpolating algorithm depending on the case.  
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Figure 5.11. Gap filling tool. 

 

Moreover, some spikes in the signal were generated. It was necessary to remove the 

problematic frames of the specific markers and reconstruct their trajectory with the gap filler 

tool.   

Finally, events were created to identify the most interesting instants of the test, for instance 

heel strike and toe off events for both affected and unaffected leg were identified. 

At the end, all the trajectory of the markers were exported in .c3d format to be analyzed in 

MATLAB. 

 

 

 

 

5.4 MOCAP VS VIDEO 

Having obtained all the data from videos and MOCAP, the two were confronted for the selected 

steps.  

 

5.4.1 Data extraction 

A MATLAB script was prepared following these steps: 

1) Extraction from the .c3d files using the custom function btkReadAcquisition: this 

function takes a .c3d file as its input argument and stores the data in a scalar 𝑎. 
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2) Extraction of the markers from the scalar obtained from btkReadAcquisition with the 

custom function btkGetMarkers: this function takes 𝑎 as its input argument and returns a 

vector containing two struct objects. The first one contains 𝑚 − 𝑏𝑦 − 3 matrices, 

corresponding to the 𝑚 markers; the second one contains a scalar and a nested struct, the 

first being the frequency of acquisition and the second containing a sequence of strings that 

report the measurement units corresponding to the coordinates reported in the first struct. 

Since the information contained in the second struct is known, its output was suppressed by 

using a ~. 

 

3) Extraction and labeling of the markers in 𝑡 − 𝑏𝑦 − 2 matrices, t being the number of frames 

of the effective acquisition, cutting the frames to consider only the stance phase (from heel 

strike to toe off). These matrices have two columns because only the coordinates on the 

sagittal plane are taken into consideration. 

4) Loading of the video data from the .csv files with the load function. 

5) Storing of the data in labelled matrices corresponding to the markers’ name. 

 

5.4.2 Data analysis 

The comparison between the two acquisition methods was carried out considering the tip-to-

tip distance, being the distance from the proximal tip to the distal tip. This was done because it 

is the most variable measurable quantity in the foot deformation process; moreover, the tips 

are easy to track even from markerless acquisitions (from both videos and MOCAP), making their 

distance an easy variable to consider and analyze. 

The analysis was computed following these steps: 

1) Calculation of the tip-to-tip distance for both MOCAP and video data using Pythagoras’ 

theorem: 

𝐷 =  √(𝑥𝑑  −  𝑥𝑝)2 + (𝑦𝑑  −  𝑦𝑝)2 

With the subscript d and p referring respectively to the distal and proximal tip. 

2) Resampling of the distance obtained via video using the resample function. This was done 

because the vectors had different lengths and thus were not comparable in every instant.  

3) Smoothing of the resampled vector using the smooth function. The resample function uses 

an antialiasing lowpass filter, which can lead to discontinuity points after the resampling 

operation. To fix this, the variable was smoothed with a moving average filter.  

4) Scaling of the distances based on the ground through of the undeformed distance. A scaling 
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factor was calculated as the ratio between the undeformed distance in data and the one 

real one measured on the RPF; then, the data were scaled accordingly.  

 

These operations were carried out for all three steps taken into consideration, and for two other 

steps acquired during a previous session (OS1) done with paralympic athlete Martina Caironi. 

OS1 was performed entirely on an instrumented treadmill at UNIPD’s sports and rehabilitation 

engineering laboratory, before the start of this thesis’ project. 

 In the graphs below, the red line is the distance calculated via MOCAP while the blue line is the 

distance calculated via video. 

 

OS3  

OS3 is the session discussed in the previous pages. The three steps considered are TSSR04, 

START02 and START03. 

 

OS3 TSSR04: this step was taken from the fourth steady state run. It is the nineth steps the 

athlete takes with the affected limb. 

 

 

Figure 5.12. tip-to-tip distance for the selected step of TSSR04. 

 

OS3 START02: this step was taken from the second start test and is the second step the athlete 

takes with the affected limb. In this step, the RPF was rotating on the longitudinal axis during 

the first part of the stance phase, leading to a less precise bidimensional tracking since part of 
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the motion takes place in the frontal plane. 

 

Figure 5.13. tip-to-tip distance for the selected step of START02. 

 

OS3 START03: this step was taken from the third start test and is the second step the athlete 

takes with the affected limb. 

 

 

Figure 5.14. tip-to-tip distance for the selected step of START03. 
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OS1  

The acquisition during this session were done with the following instrumentation: 

- Technogym SkillRun Treadmill. 

- BTS Smart Capture-DX 6000 motion capture system (acquisition frequency 250Hz), with 7 

cameras. 

- Two high frequency cameras placed on the left and right of the treadmill. 

- Four P 6000 BTS force platforms placed under the treadmill. 

 

 

 

Figure 5.15. Tracking of Martina Caironi’s treadmill run. 

 

Athlete Martina Caironi is a transfemoral amputee (category T63) with the prosthetic leg on her 

left side. For these tests, she used an Ottobock Runner Standard CAT4 with various sockets. The 

forces were acquired via force platforms so the pylon didn’t have a load cell as in OS3 and was 

a regular Ottobock pyramidal attack. 

Although the placement of the markers on the RPF was done following a different protocol than 

in OS3, the proximal and distal tips both had markers with no significant changes from OS3. 

The kinematic data acquired during this session have been elaborated during this thesis for two 

steps. It is important to notice that the videos captured with high frequency cameras, albeit 

smooth, present an insufficient illumination and thus make the image blurry and the tracking 

process more difficult and less precise overall.  The guidelines reported in section 5.2.1 were, in 

fact, written to improve the tracking of data acquired with video cameras.  

The steps recorded by the cameras are the last 5 taken by the athlete for every run. The steps 

analyzed here belong to steady state running tests, conducted at the constant speed of 16 km/h 
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as set on the treadmill, and are both taken from a video of the same run (SSR14) recorded from 

the left side. 

 

 

OS1 SSR14 step 1: this step is the first step of SSR14 recorded with high-speed cameras, meaning 

it is the first of the last five steps.  

 

Figure 5.16. tip-to-tip distance for the first step of SSR14. 

 

OS1 SSR14 step 2: this step is the second step of SSR14 recorded with high-speed cameras, 

meaning it is the second of the last five steps.  

 

Figure 5.17. tip-to-tip distance for the second step SSR14. 
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5.4.3 Discussion 

The percentage error between the two measures frame by frame can be computed as: 

 

%𝑒𝑟𝑟 =  100
|𝑑𝑣𝑖𝑑𝑒𝑜 − 𝑑𝑀𝑂𝐶𝐴𝑃|

𝑑𝑀𝑂𝐶𝐴𝑃
 

 

Statistical parameters referring to the percentage error for every step are reported in table 5.2. 

 

 TSSR04 START02 START03 SSR14 s1 SSR14 s2 Mean 

Mean %err 1.34 2.66 0.60 1.19 2.12 1.58 

STD %err 0.84 1.30 0.53 0.93 1.03 0.92 

Max %err 2.83 7.92 2.76 3.53 4.61 4.33 

 

Table 5.2. Statistical parameters of the percentage error for every step. 

 

As anticipated, START02 is the step with the greater discrepancy between the two measurement 

systems because the athlete was rotating her foot during the first half of the stance phase. This 

is thus to be considered and outlier among all the steps considered, and something to take into 

account when using video data for kinematic analysis.  

Considering the mean error, there is not a high statistical difference between the five steps. 

Every step has an average error of less than 3% and, excluding START02 for the aforementioned 

reasons, a maximum error of less than 5%. It is important to notice that the steps belonging to 

OS1 have a maximum error higher than the ones belonging to OS3: this can be motivated by the 

fact that the video tracking process for OS3 was easier and more accurate thanks to proper 

lighting of the scene.  For the same reason, the shape of the curve for OS3 steps is smoother and 

have less overall discontinuity.  

Given these results, it is reasonable to state that kinematic data acquired with high-frequency 

or regular cameras give a good approximation of the data acquired with optical motion capture 

technology for the steps analyzed in this chapter.  The fact that the data from OS1 sessions, 

where the setting of the camera was not optimal, did not exceed the 5% threshold on the 

percentage error is a good indicator of this fact.   

A proper setting of the scene could lead to even more accurate results: improvements to the 

guidelines followed in OS3 would require the presence of a large opaque surface to place behind 

the scene of action, in order to enhance the contrast between the markers and the rest. 

Moreover, an external source of light behind the camera, like a fixed lamp, could furtherly 
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improve the results.  

 

 

 

 

5.5 KINETICS 

The kinetic data were acquired using the 6-axial load cell through the DTS Slice Nano. 

Specifically, the DTS acquires the six channels of the load cell individually: to obtain the kinetic 

quantities it is necessary to use a calibration matrix: 

 

𝐾 =  𝑀⦁𝑐 

 

K being the vector of kinetic quantities (Fx, Fy, Fz, Mx, My, Mz) and c being the vector of channels 

(c1, …, c6). Consequently, M is a 6-by-6 matrix of scalars. Typically, calibration matrices are found 

in the documentation of the load cells. 

For this thesis, the quantities of interest were the horizontal and vertical forces in a clamp 

reference system, being the ones that the model had to predict, as well as their ratio. Said 

quantities have been reported in figure 5.13 for the steps analyzed of OS3 and in figure 5.14 for 

the ones of OS1. 

Typical values of ρ during steady state running do not exceed 0.2, except for the initial contact 

and the toe off regions. For start tests, the athlete accelerates and thus the horizontal force 

assumes greater values: as can be seen in the graphs reported for START02 and START03, F2 is 

mostly positive, being even higher than F1 in some regions. 
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Figure 5.13. Clamp reaction forces of selected steps of OS3. 

0 

0 
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Figure 5.14. Clamp reaction forces of selected steps of OS1. 

 

In chapters 6 and 7 two models are built and used to predict forces of the selected steps for OS1 

and OS3. The kinetic data will be used as means of confrontation to understand the performance 

of the models on data acquired from in-vivo tests. Moreover, as will be explained in detail in 

chapter 7, the preventive study of kinetic data was useful to understand the range of forces 

corresponding to the ground angles, information that have been used to adjust the rethink the 

loading procedures for loading conditions that were more representative of forces acting on the 

foot during running. 
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Chapter 6: Construction of a Neural 

Network prototype 

 

 

 

 

The first Neural Network was built and trained over data collected from bench tests carried out 

on Colussus machine on a Ottobock Runner Standard CAT 4. Although this network couldn’t be 

validated in its full potential due to a mismatch between the markerset used during in-vivo tests 

and the one used for the training of the network, it served as a prototype on which several tests 

were carried out in order to optimize the parameters relative to the training process, without 

occurring in overfitting.   

In this chapter, a detailed overview of the process is reported. 

 

6.1 BENCH TEST PROCEDURE AND MEASURED QUANTITIES 

For the solution of the problem proposed in this thesis, several tests have been carried out on 

the Colossus machine to acquire kinematic and dynamic data to work with. Since the tests 

consist in custom variations of a standard protocol to better fit the deep learning approach 

followed in this work, the latter is reported for ease of understanding. 

 

 

6.1.1 Measured quantities 

 

Acquisition frequency [Hz]: The maximum acquisition frequency of the load cells on the 

Colossus test bench equal to 100 Hz is also the one adopted. Because of the static nature of 

the test the data is subsampled from 100 to 1 Hz.  

 

Tap [mm]: Distance between the clamp axis and the tip of the prosthesis. This magnitude can 

be reached by adjusting the Ottobock pyramidal joint.  
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Clamp position: for some C or CS shaped feet also the clamp position can be adjusted by sliding 

the pyramid joint forward or rearward thanks to a special groove at the top of the foot. This 

further degree of freedom permits a ±4° rotation of the foot and influences its stiffness.  

 

Angle θG [°]: Slope angle from the ground of the platform connected to the horizontal cylinder. 

It is the first dependent variable in function of which the RPF stiffness will be defined in the next 

paragraphs. It is necessary to test different angles to replicate different load conditions during 

various instants of the contact between the foot and the ground. Typically, during in-vivo tests 

on transfemoral amputee subjects with a RPF, from the heel strike to the toe off, the angle 

between the ground and the clamp axis varies from -30° to +30°. Between these two extremes, 

there are seven equally spaced standard angles considered for tests. As previously anticipated, 

in the later tests done for this work more angles were considered in order to thicken the rose of 

angles for the training of the Neural Network.  

 

Standard angles Additional angles 

0° ±11.25° 

±7.5° ±18.75° 

±15°  

±22.5°  

 

Table 3.1. Platform angles used for bench tests. 

 

𝐹𝑥𝐶 AND 𝐹𝑦𝐶 forces [N]: Vertical and horizontal forces read by cylinder’s load cells. These are the 

force components in the clamp reference system that, if the RPF is aligned correctly, coincide 

with the socket reference system. In previous works such as Antonio Martellato’s one, the 

standard values of the force ratio 𝜌 were 0 and ±0.2.  
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Figure 6.1. Ottobock Runner Standard Cat 3 with three different clamp positions marked. 

 

6.1.2 Standard test protocol  

The standard protocol, used in previous works of thesis, makes the following assumption: 

referring to a running step, the 𝐹𝑦𝑀𝐴𝑋 corresponding approximately to midstance phase (𝜃𝐺=0) 

is in the range of 3 to 3.5 times body weight. Thus, this convention is adopted: for 𝜃𝐺=0, 𝐹𝑦𝐶𝑀𝐴𝑋 

equals to the nearest multiple of 500 N to 3,5∙𝐵𝑊 [𝑁]. In general, the inclinations follow a 

conventional linear relationship:  

𝐹𝑦𝑀𝐴𝑋  =  3.5𝐵𝑊 −  500
θ𝐺

7.5
 

 

The prosthesis model and stiffness category depend on the athlete’s body weight. Since tests 

are non-destructive, the RPFs are not loaded beyond 2500N. 

 

BW [kg]  40-50  50-60  60-70  70-80  80-90  90-100  100-120  

Ossur xcel  1  2  3  4  5  6  7  

Ossur 
xceed  

1  2  3  4  5  6  7  

Ossur 
xtreme  

1  2  3  4  5  6  7  

Ossur 
xpance  

1  2  3  4  5  6  7  

Ottobock 
runner  

2  3  4  5  5  6  /  

Ottobock 
sprinter  

1  2  3  3  4  5  /  

Table 6.2. Recommended body weight for all prosthesis by INAIL. 
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Once the maximum load to which test the prosthesis is determined, from the table just seen, 

the following procedure is applied for each 𝜃𝐺 adjustment.  

1) Movement of the cylinder near limit switch to create enough space to mount the RPF.  

2) Mounting of the prosthesis, controlling alignment to the axis of the vertical actuator and 

regulating the TAP by acting on the pyramids.  

3)  Placement of the clamp guide in such a way that the prosthesis, once loaded, has the sole 

distributed on the central part of the platform, not to generate a high 𝑀𝑧 moments on the 6 

axial load cell. This must be done taking into consideration that when the load increases, the 

sole will roll backwards. 

4) Setting of the station limits based on the maximum force of the test. This is done for safety 

in the case of an error in the loading procedure: if the load exerted by the cylinders exceeds 

the station limits, the procedure is immediately stopped. 

5) Zeroing of the forces. 

6) Lowering of the vertical actuator in position for the start of the loading procedure, with a 

preload on the vertical actuator. To ensure the contact between the sole and the platform 

and to allow the horizontal actuator to properly calibrate at 0N, an arbitrary preload is given. 

In the tests carried out for this thesis, this value was set to 25N. 

7) Start of the loading procedure on the MTS station manager.  

 

As seen in chapter 4, the angle of the platform must be changed manually between each test. 

 

 

 

 

6.2 PRELIMINARY ATTEMPTS  

In the early stages of this project, some preliminary attempts to solve the problem have been 

carried out to understand if a deterministic approach could lead to satisfactory results.  Since 

none of these could be used to effectively solve the problem, a deep learning approach has been 

ultimately developed; anyway, this chapter presents an overview of the other ideas that were 

initially followed and developed. 

The core of the problem, approached from a deterministic point of view, consists in the 

identification of a number of geometric parameters (at least two) that can identify a unique 

geometric configuration of the prosthesis, and that allows the evaluation of the forces acting on 
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it. Thus, the research focus has been put on finding an ideal set which consists of two decoupled 

parameters, mutually independent, with one proportional to the horizontal force and the other 

to the vertical one.  

 

 

6.2.1 Bench tests 

In order to investigate further on these considerations, a set of in-vitro tests was carried out on 

the hydraulic bench test Colossus on an Ottobock Runner CAT 4 prosthesis. The prosthesis’ 

notable geometrical points were highlighted with optical markers and all the tests have been 

filmed with a phone camera fixed in front of the Colossus machine.  

More precisely, three markers were placed on the proximal zone, one on the main curvature 

and two on the distal end, for a total of 6 markers. The configuration is shown in figure 6.2. 

 

 

 

Figure 6.2. Markers placed on Ottobock Runner Standard CAT 4 for the first set of 

tests. 

 

The tests were carried out following the standard protocol previously described on the seven 

standard angles (±22.5°, ±15°, ±7.5°, 0°). For each angle, three tests were carried out, 

corresponding to the three standard values of 𝜌 (±0.2, 0), for a total of 21 tests. The acquisition 

frequency of the load cell was set to 100Hz. 

 

Referring to table 6.2, the foot used for this set of tests belongs to the range of a BW of 60-70 

kg. Thus, the maximum load 𝐹𝑦𝑀𝐴𝑋 is 2500N for 0° and decreases by 500N for every step of 7.5°. 

FP1 

FP2 

FP3 

FM1 

FD2 

FD1 
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Every test of this set was performed with the same order of operations, here reported for a 

maximum load of 2500N: 

1) Linear load of F1  =  500N, F2 = 𝜌 𝐹1 𝑁 (60s) 

2) Linear load of  F1  =  2500N, F2 = 𝜌 𝐹1 𝑁 (60s) 

3) Hold at maximum load for 2s 

4) Linear unload of  F1  =  100N, F F2 = 𝜌 𝐹1 𝑁 (60s) 

5) The previous steps are automatically repeated for the values of 𝜌 considered. The prosthesis 

is then completely discharged from the platform. 

 

Figure 6.3. Graphic visualization of the standard procedure. 

 

The recording phone was positioned at a distance sufficient to capture the process in action 

without distortion of the lens (approximately 1.5 m). Moreover, the camera was set in time-

lapse mode: this is because the tests were quasi-static, with an average duration of 14 minutes 

to complete the three tests on a given angle. The frame rate used was 10 frames per second. 

Behind the camera, a lamp was placed for a better lighting of the scene, as explained in chapter 

5. 

The video data were extracted with Kinovea and elaborated with MATLAB. 

 

ρ = 0.2 ρ = 0 

ρ = -0.2 



71 
 

 

 

Figure 6.4. Experimental setup. Note the two markers on Colossus’ frame. 

 

 

6.2.2 Approaches tested 

Several approaches have been tested to solve this problem, each with its pros and cons.  

 

Trial and error 

The first method tested was trying to find the parameters with an intuitive trial and error 

approach, basing the choices on geometrical relationships between the parameters in order to 

find combinations that would eliminate the dependence to one of the forces. Based on 

geometrical properties, the focus was first put on quadrilateral constituted by the markers FP1-

FP2-FD1-FD2, being the respectively the first two proximal and the last two distal markers in the 

marker set shown in figure 6.2. For example, the first attempts were done considering the 

relationships between the diagonals of said quadrilateral by trying to find a constant relationship 

with respect to one of the forces. 

Several tests have been carried out, though none with satisfactory results. Still, they were 

fundamental for a better understanding of the problem and the relationships between the 

various parameters; also, they helped with the formulation and formalization of other 
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approaches to be tested. Some of these tests are reported below. For clearer reference, here is 

a legend explaining the quantities considered: 

d1: distance between FP1 and FD1 (right side of the quadrilateral). 

d2: distance between FP1 and FD2 (minor diagonal of the quadrilateral). 

d3: distance between FP2 and FD1 (major diagonal of the quadrilateral). 

dx: horizontal position of FD1 with reference to the vertical line passing in FP1. 

dy:  vertical displacement of FD1 from its position in the undeformed configuration. 

 

 

Figure 6.5. FP1-FP2-FD2-FD1 quadrilateral (left) and visual representation of dx 

and dy (right). 

 

Now, a compendium of the tests is reported using the same nomenclature for shortness. 

 

 

FD1 

FD2 

FP1 FP2 

d1 

d3 

d2 
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Figure 6.6. Graphs of various tests. 

|   | 
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Calibration matrix 

Having identified numerous linear parameters with the first approach, the next step was to 

formulate the problem with the following relationship: 

(
𝑝1

𝑝2
)  =  (

𝐴 𝐵
𝐶 𝐷

) (
𝐹𝑦

𝐹𝑥
) 

Having p1 and p2 as two linearly variable parameters and A, B, C, and D as calibration 

coefficients. As anticipated, the same approach was followed in the development of a FEM 

model by Shepherd et al.  

Written this way, the problem leads back to the determination of the matrix. The equation can 

be explicated through the system of two equations: 

{
𝑝1 = 𝐴𝐹𝑦 + 𝐵𝐹𝑥
𝑝2 = 𝐶𝐹𝑦 + 𝐷𝐹𝑥

  

As previously described, the bench tests have been carried out with three different values of ρ 

(being -0.2, 0, and 0.2). Therefore, A and C can be determined using the results from the tests 

with ρ = 0 (since Fx is null); B and D can then be calculated using either of the remaining data 

from the bench tests. Now knowing the calibration matrix, it is possible to compute the forces 

from any geometrical configuration of the parameters p1 and p2.  

The main advantage of this approach is its intrinsic simplicity. Though, it has some flaws: 

- The bench tests do not give symmetric results. This means that plotting p1 or p2 against Fx 

does not give symmetrical results when considering positive and negative values, since the 

slope of the two functions is not equal in modulus. The direct consequence is that two 

calibration matrices are needed, since the values of B and D may vary from the ρ = 0.2 case 

to the ρ = -0.2 one.  

- The calculation of Fx and Fy only works if the value of ρ is 0 or ±0.2. Since the matrix has been 

calibrated with values from these specific bench tests, and knowing that the results are not 

symmetrical for ρ = ±0.2, different values of ρ might lead to wrong results of the forces. The 

force ratio varies significantly during a gait in vivo, and is rarely stationary on ±0.2.  

 

Statistical analysis: PCA and ICA 

Another approach that has been tested is the reduction of the complexity of the problem 

through statistical analysis. Both PCA and ICA have been tested, with different results. 

The focus behind PCA was obtain orthogonal parameters that carried good statistical 

significance. Carrying out PCA on 4 variables resulted in the first score having 99% of statistical 

significance and the remaining 3 splitting the remaining 1%. This is due to the fact that the 

parameters analyzed all share a similar behavior during the deformation process of the 
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prosthesis. Anyhow, PCA analysis could be useful in the building of a force-geometry database 

(approach n.4), as it can significantly reduce the dimensionality of the problem.  

ICA was carried out on the same 4 variables, with two independent parameters as output. This 

analysis gave mixed results:  

- the algorithm correctly predicted the behavior of the “source variables” (being the 

displacement generated independently by the forces) for the cases of ρ = ±0.2, but not for 

the remaining case of ρ = 0. This is most likely because the algorithm was programmed to 

give out two independent parameters, and thus it predicted both to be non-null for all the 

cases. 

- The predicted independent variables may vary when performing two subsequent analyses, 

giving rise to inconsistency on repetition. Though the qualitative behavior is almost always 

correct, this makes it impossible to predict appropriate scaling and shifting factors to match 

the forces. 

 

Database 

Probably the simplest of the approaches proposed, this method does not identify two variables 

from which it is possible to compute the forces. Instead, it relies on the building of a database 

of variables that identify a unique geometrical configuration. Having tested the prosthesis, the 

forces acting on a given configuration are known; by coupling them with the geometric 

parameters, the database is built. Though, in order to build an accurate and complete database, 

it is mandatory to discriminate every configuration. This requires extensive testing on the 

prosthesis. Moreover, the database is only reliable for configurations that have been tested. This 

approach can be combined with a PCA analysis to reduce the dimensionality of the problem, so 

that less parameters need to be associated with each force combination. 

Since none of these approaches gave satisfactory results, a deep learning approach was deemed 

to be more optimal. A new set of tests was carried out on the same RPF in order to acquire data 

for the training of a Neural Network model. 
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6.3 ACQUISITION OF THE TRAINING DATA 

The training data were collected from several bench tests on the Colossus machine:  forces were 

acquired through a load cell placed right over the foot, while the position of the markers was 

acquired via MOCAP. 

 

6.3.1 Markerset 

Markers were applied to the prosthesis following a custom protocol studied to maximize the 

visualization of the regions of interest without using too many markers. Nine markers were 

chosen, as can be seen in figure 6.3. 

 

 

 

Figure 6.7. Markers on Ottobock Runner Standard for the second set of tests. 

 

The position of the markers was chosen to highlight specific points, summarized here (top to 

bottom): 

- FP1: proximal tip of the foot 

- FP2: clamp base 

- FP3: edge of the undeformed zone, right before the prosthesis’ curvature 

- FM1: foot curvature 

FP1 

FP2 

FP3 

FM1 

FM2 

FM3 

FD3 

FD2 

FD1 



78 
 

- FM2: foot curvature, 75 mm from FM1 

- FM3: foot curvature, 75 mm from FM2 

- FD3: end of the curvature and beginning of the distal region, 75 mm from FM3 

- FD2: center of the distal region 

- FD1: distal tip of the foot 

The positioning of the markers was chosen taking into account that the prosthesis used is an 

instrumented foot, so the surface was not fully available.  

 

 

 

6.3.2 Acquisition of the data 

The kinematic data were acquired with the Vicon Nexus motion capture system, using five Vicon 

Bonita cameras positioned around the Colossus machine on four tripods. The disposition of the 

cameras was studied to capture the full motion of the foot during the tests, having at least two 

cameras follow every marker. To fulfill this requirement, no camera was placed behind the plane 

of action, as can be seen in figure 6.4: four cameras were placed on the sagittal plane and one 

on the frontal plane. 

 

 

 

Figure 6.8. Positioning of the optical cameras around the bench (top) and their 

corresponding configuration in the Vicon Nexus software (bottom). 

 

After the placement of the cameras, the acquisition was prepared with the following procedure: 

1) Installation of the RPF with markers on. 

2) Tuning of the optical parameters (aperture, zoom, focus) using the foot as reference. 

This is done by regulating three screw tuners placed on top of the cameras. 

3) Removal of the RPF from the aluminum frame and masking of the cameras, to prevent the 
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tracking of undesired reflective objects that cameras might capture. In Vicon Nexus, the 

masking process is activated using the option “mask cameras” and then stopping when the 

volume has been entirely masked.  

4) Calibration of the acquisition volume using a passive wand. The wand is a T shaped rod with 

three markers placed on the distal extremities. In the software, the calibration is done by 

using the “calibration” option with the “auto-stop” checkmark. After enabling this process, 

the wand has to be waved in the acquisition volume until the software stops the calibration. 

 

 

 

Figure 6.9. Calibration wand. 

 

5) Setting of the global reference frame using the XY physical frame. The frame was placed on 

the aluminum platform where the sole of the foot would contact during the tests. The X axis 

was aligned with a laser spirit level. After the placement of the physical frame, the software 

sets it as the global reference system by using the “set reference frame” option. 

 

 

Figure 6.10 Alignment of the reference frame with laser spirit level. 
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6) Removal of the physical frame and installation of the foot with alignment from the frontal 

and sagittal plane. The alignment on the sagittal plane was done by setting a tap of 4 cm. As 

in the previous step, a laser spirit level was used to have a precise alignment. 

7) Creation of the database where the kinematic data will be saved. 

8) Acquisition of a short calibration recording. This first acquisition, typically of 300-500 ms, is 

done to create the virtual segments and markers to assign on subsequent recordings done 

on the same database. 

 

This preparation procedure was deemed to be standard and replicated for the tests described 

in chapter 7, adjusting the parameters to the appropriate values. 

 The acquisition frequency of both the MOCAP system and the load cell was set to 100Hz: this 

was done in order to have synchrony between the kinematic and the dynamic data, to minimize 

the need of sampling in the preprocessing phase of training.  

 

The loads were applied to the prosthesis following the standard procedure with the addition of 

two values of 𝜌, being ±0.1. This was done to have a wider range of 𝜌, since generally Neural 

Networks work better with more varied data. Due to this choice, the procedures were 

approximately 14 minutes long (instead of the average 9 minutes only using the standard values 

of 𝜌). 

 

After the loading procedure was finished, the acquisitions were stopped. In the Vicon Nexus 

software, the data need to be processed using the core processor (“run core processor” option). 

This process may take several minutes, depending on the sampling rate and number of markers. 

After this operation, the markers were labelled using the set defined during the calibration 

acquisition. 

The MOCAP data were saved as .c3d files, while the dynamic data obtained from the SoMat 

were saved in .mat format. 

In figure 6.11 are reported, for visualization purposes, the plots of the markers in undeformed 

configuration and in the moment of maximum load. 
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Figure 6.11. Plotting of the markers at maximum deformation for various values of ρ (top) and 

detail for ρ = 0.2 (bottom) at 𝜃𝐺 =  0. 
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6.4 COSTRUCTION OF THE NEURAL NETWORK 

The Neural Network model was built on MATLAB with the use of the Deep Learning Toolbox, the 

Statistical Toolbox, and the Signal Processing Toolbox. 

 

6.4.1 Extraction of the data 

The data were extracted in MATLAB following these steps: 

1) Loading of the data using the load function. 

2) Extraction from the .c3d files using the custom function btkReadAcquisition: this 

function takes a .c3d file as its input argument and stores the data in a scalar 𝑎. 

 

3) Extraction of the markers from the scalar obtained from btkReadAcquisition with the 

custom function btkGetMarkers: as explained in the previous chapter, this function takes 

𝑎 as its input argument and returns a vector containing two struct objects. The first one 

contains 𝑚 − 𝑏𝑦 − 3 matrices, corresponding to the 𝑚 markers; the second one contains 

a scalar and a nested struct, the first being the frequency of acquisition and the second 

containing a sequence of strings that report the measurement units corresponding to the 

coordinates reported in the first struct. Since the information contained in the second struct 

is known, its output was suppressed by  using a ~. 

 

4) Extraction and labeling of the markers in 𝑡 − 𝑏𝑦 − 2 matrices, t being the number of frames 

of the effective acquisition, cutting the frames before the beginning and after the end of 

the loading procedure. These matrices have two columns because only the coordinates on 

the sagittal plane are taken into consideration. 

5) Storing of the markers matrices in a single matrix labelled as the corresponding angle. 

6) Loading of the forces from the .mat file using the load function. 

7) Extraction of the arrays corresponding to the forces of the two actuators. 

8) Storing of the force arrays in a single matrix labelled as the corresponding test angle. 

After repeating this procedure for every test set, the data were ready to be preprocessed for 

the training of the network. 

 

6.4.2 Preprocessing 

The preprocessing of the data consists in the operations needed to have tabular data optimized 

for training, testing and validation. The preliminary operation, done before creating sets, was to 

perform the standardization on both the markers’ and forces’ matrices, resulting in a dataset 
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with null mean and standard deviation equal to one (making the assumption that the data fit a 

Gaussian distribution). This is done using the formula: 

 

𝑥𝑠  =  
𝑥 −  𝜇

𝜎
 

 

Having 𝜇 and 𝜎 respectively as the mean and standard deviation of the dataset x. The 

implementation in MATLAB makes use of the normalize function. 

Standardization of the input datasets is usual in ML because it makes data more compatible with 

the structure of the model, leading to a more stabile training process since the model won’t 

have to consider the statistical features of the data. Moreover, in the case of Neural Networks, 

activation functions typically have threshold points in the [-1, 1] interval, and having very distant 

data from those values will lead to an ineffective training. Standardization of the output is useful 

because the network won’t have to learn the statistical features of the values used for 

confrontation, making the training faster and more stable and preventing the MSE to assume 

inconsistent values. 

The coordinates of the markers were also changed to be in the clamp reference system, using 

the marker FP2 as its center. 

The second step for the preparation of the data was to concatenate a column array of 

normalized angles to the markers’ matrix, corresponding to the 𝜃𝑔 angle of the test. 

Normalization, similarly to standardization, is a scaling operation used to make the data more 

fit for training. It was applied setting the boundaries of the angles to be in the [-1, 1] interval: 

this way, the maximum value (being 22.5°) was scaled to 1 and all the other angles were scaled 

accordingly. The normalization formula in the interval [-1, 1] is:  

 

𝑥𝑛  =  2
𝑥 −  𝑥𝑚𝑎𝑥

𝑥𝑚𝑎𝑥  −  𝑥𝑚𝑖𝑛
 –  1 

 

After these operations, the data were split in training and testing sets applying a 80/20 

percentage split. Two methods were applied: 

1) Method 1: the data were divided in three sets applying an 80/10/10 percentage split to the 

matrix containing all the observations. The first set, containing 80% of the observations, was 

used as the training set while the remaining observations constituted the testing and 

validation sets. The observations for every set were picked randomly using the datasample 

function.  
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2) Method 2: In this case, the testing set was constituted by the observations corresponding to 

one angle, while the training and validation set were extracted with a 90/10 percentage split 

of the remaining observations. This was repeated for every angle excluding the boundary 

ones, being ±22.5°. This operation, apt to understand the generalization properties of the 

model and prevent overfitting, is called k-fold cross validation, k being the number of 

validation sets. In general, k-fold cross validation is performed dividing the dataset in k 

subsets and using k-1 sets as the training set and the remaining set, called holdout set, for 

testing. Since the observations in the dataset considered are already classified by angle, the 

latter was used as the discriminating factor. 

The application of these two methods was done to understand how overfitting could occur 

and affect the model in its predictions. Moreover, since the final scope of the model is to be 

tested on in vivo tests where the angle is a continuous function, it was desirable to 

understand how well the model can perform on angles it was not trained over. 

 

 

6.4.3 Neural Network architecture 

The network was built as a simple Multilayer Perceptron with 19 inputs, being two coordinates 

per 9 markers plus one angle, and 2 outputs, being the forces. The network has one input layer, 

three hidden layers and one output layer. The activation function for every layer is the rectified 

linear unit (ReLU). Every layer has 128 neurons, following the customary rule of having the 

number of neurons equal to a power of two (in this case, 27). 

The code used is the following: 

 

This network uses the syntax of the Deep Learning Toolbox. For ease of understanding, here is 

reported an explanation of every layer (see chapter 3 for an in depth explanation): 

featureInputLayer: the input layer, takes the number of input variables as its argument. 

fullyConnectedLayer: a hidden layer constituted by the neurons. Takes the number of neurons 
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as its argument. 

reluLayer: defines the activation function to be ReLU for the previous fullyConnectedLayer. 

regressionLayer: sets the output as the solution of a regression problem. This is also the layer 

where the loss function is defined: if no function is specified, the loss is automatically set to be 

the MSE. 

 

6.4.4 Training 

Several training tests were performed to understand the optimal parameters. The quality of the 

trained network was evaluated based on the percentage error between in the prediction and 

the ground truth during the testing: 

%𝑒𝑟𝑟 =  100
|𝐹𝑝𝑟𝑒𝑑 − 𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑|

|𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑|
 

 

The configuration of parameters chosen, able to achieve the lowest error, is the following: 

Optimizer: adam. 

Initial learn rate: it is the learning rate at the start of the training process. It was set to 0.005. 

Maximum epochs: the maximum number of epochs that the training can undergo if not stopped 

before. It was set to 50. 

Size of mini batch: 256 

Learn rate drop factor: it was chosen to adopt a decaying learn rate strategy, to overcome local 

minima in the early stages of the training and to stabilize at a lowest loss value when the training 

process is ending. The learn rate drop factor is the number by which the current learning rate is 

multiplied at a given epoch. It was set to 0.5. 

Learn rate drop period: it is the number of epochs after which the learning rate drops by the 

value of the learn rate drop factor. It was set to 5, meaning the learning rate drops every 5 

epochs. 

Validation patience: this parameter regulates the number of epochs without significant changes 

in the validation loss that the training process undergoes before stopping early, as described in 

chapter 3.4. It was set to 15, meaning that if the loss computed over the validation set remains 

stale or gets worse for 15 iterations, the training stops.  
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In MATLAB, the training of DL models is handled by the functions trainingOptions and 

trainNetwork. The first one is used to implement the desired options and parameters for the 

training, while the second one is responsible for the actual training. MATLAB allows for the live 

tracking of the training process, displaying the general loss and the validation loss for every 

epoch, as well as other useful training parameters, using the ‘Verbose’ option.  

 

 

 

Figure 6.12. Training process as displayed on MATLAB Command Window. 

 

 

6.4.5 Testing 

The testing is done by using the trained model to make predictions on the testing set. This set 

must be entirely constituted by observation that the model hasn’t seen during the training 

process, to prevent bias.  

The percentage error was evaluated by comparing the prediction with the smoothed signal of 

the forces, using a moving average filter. This was done because the model was trained on a 

wide array of data (approximately 600000 observations) with the natural gaussian noise derived 

by the acquisition source. As explained in chapter 3, noise is actually beneficial for the training 

of DL models because it allows the network to be able to learn to discriminate between the 

actual value of the prediction and its noise component. 

𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑  =  𝐹𝑟𝑒𝑎𝑙 + 𝜀 

This way, the network will only predict an approximation of 𝐹𝑟𝑒𝑎𝑙  and not 𝜀, the noise 

component. 



87 
 

In other applications, gaussian noise is introduced to the training data for this very purpose. 

However, here it wasn’t necessary because noise was already present due to the vibration and 

micro adjustments of the actuators during the loading procedure. 

The percentage error was also evaluated only for F1 > 250N and |F2| > 25N. This was done 

because the initial phases of the loading procedure use very small loads, and a misclassification 

error of few newtons can lead to a great rise in the percentage error.  

Since the dataset was standardized, the predictions were rescaled to match the original scale of 

the testing output. 

 

Method 1 

The first model, trained with method 1 (without cross validation), was able to achieve the 

precision of prediction reported in table 6.3. 

 

 F1 > 250N |F2| > 25N 

Average % error 1.3 3.1 

  

Table 6.3. Average percentage error of the model trained with method 1. 
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Figure 6.13. Testing results of F1 (top) and F2 (bottom). Qualitatively, prediction 

and output are almost perfectly matching. 

 

 

 

Figure 6.14. Details of F2 = 0 (left) and F1 peak (right). The reason why the 

prediction has a higher value than the output on the peaks is because the moving 

average filter used on the output to smooth the data cuts on the peak values. 

 

Given these results, it is now easy to see that the average percentage errors decrease drastically 

when excluding small forces. This is especially true for F2, which is observed to be more difficult 

to predict. Overall, both predictions have a percentage error inferior to 5%: while the model can 

predict forces very well, an error so low could also mean it overfits over the angles it was trained 

over since the validation set and the training set have homogenous observations.  
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Method 2 

The model, with the same specifics as in method 1 except for L2 regularization factor, was tested 

following a k-fold cross validation on every angle (excluding the boundary ones). As previously 

explained, this was done to verify the consistency of prediction over untrained angles. A 

regularization factor of 0.001 was added to improve the generalization capabilities and to 

prevent overfitting. 

The results in terms of percentage error are reported in table 6.4.  

 

 0° 7.5° -7.5° 15° -15° 

F1 > 250N 6.6 5.6 4.9 4.8 7.2 

|F2| > 50N 18.5 16.0 10.3 12.7 16.8 

 

Table 6.4. Average percentage errors for k-fold cross validation sets. The angles on 

the columns refer to the holdout set over which the network is tested. 

 

Expectedly, the error is higher than in the set trained with method 1 because the network is 

tested over untrained angles. Though, considering the limited number of angles, the error values 

for each training are still reasonably low: the average errors never exceed 10% in F1 and 20% in 

F2.  

 

 

 

 

6.5 VALIDATION 

The model was validated over the steps of OS1 analyzed in the previous chapter. Though, since 

the markerset adopted during that session is different from the one the network was trained 

over, the model was adapted to work with only four markers: 

- FP1 (proximal tip of the foot) 

- FP2 (center of the reference system) 

- FD1 (distal tip of the foot) 

- FD2 (behind FD1) 

FP2, being the center of the reference system, has null coordinates, so the actual markers used 

are three.  As to be expected, the network trained over only these three markers performs 

worse, with errors of 6.2% for F1 > 250N and 10.5% for |F2| > 25N. For small forces, the error is 

well over 100% for both. This is to attribute to the lack of the necessary markers. 
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The kinetic and kinematic data acquired during OS1 were transported to the clamp reference 

frame, which rotates during the gait motion by an angle is equal to 𝜃𝑆𝐻. The results are reported 

in figure 6.8. 

 

Figure 6.15. Clamp reaction forces predictions for step 1 (top) and step 2 (bottom) 

of OS1 SSR14. 
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The markers’ coordinates were standardized with respect to the mean and standard deviation 

used for the training set. 

 

 Step 1 Step 2 

Average % error F1 > 250N 35.6 16.3 

Average % error |F2| > 25N 68.6 74.8 

 

Table 6.5. Average percentage error of prediction against real value of the force. 

 

 

6.5.1 Discussion 

As can be seen in figure 6.8 and table 6.5, the predictions are imprecise and unreliable, with a 

very high mean percentage error. Still, the shape of the curve for F1 is partially correct, which is 

a sign that the model does not overfit on the trained angles and have good generalization 

capabilities.  

There are a few reasons why the model is so unreliable. The first one is the presence of only 

three markers, with one of which (FP1) having almost constant coordinates throughout the 

motion, and thus not contributing much to the predictions. The small number of markers makes 

it difficult for the network to learn and, consequently, to make accurate predictions. In all 

likelihood, the full model (with 19 inputs instead of 5) would have shown better performance. 

Another factor that may be a cause of the imprecision of these predictions is the fact that the 

model was trained over constant values of 𝜌, being 0, ±0.1 and ±0.2, making it difficult to 

generalize on different force configurations. A more varied set of data would have been 

beneficial for the generalization capabilities of the model.  

For F1, the prediction is more accurate. Qualitatively, the function follows a “bell curve” except 

for the peak, where it changes concavity. This is due to the fact that the input data, being the 

ones obtained from the high frequency cameras as described in chapter 5, had some 

inaccuracies in the region of maximum compression of the foot. 

Regarding F2, the prediction is very inaccurate. Other than the reasons previously discussed, 

another cause may be that the forces to predict are small, and the model can’t predict them 

accurately even for data homogeneous to the training set.   

 

Given all these considerations, a new procedure was studied to build an improved model. Said 

model was built and tested on the target steps of OS3 reported in chapter 5. The process and its 

results are described in the next chapter.  
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Chapter 7: Construction of an improved NN 

model 

 

 

 

 

 

7.1 STUDY OF A NEW LOADING PROCEDURE 

In order to achieve a higher precision of prediction, a new network was built trying to solve the 

problems of the first prototype. The new model was built and trained over data collected from 

the Ottobock Runner Standard CAT 3.5 prosthesis that Ambra Sabatini used during OS3 session, 

using the same markerset (reported in chapter 5).   

The first step in building the model was to rethink the loading procedures, to address the 

problem of having too few values of 𝜌. Moreover, the study was done focusing on the values 

the forces take in vivo. The result is a procedure that reproduces a neighborhood of possible 

values of a real step, with 𝜌 assuming continuous values. 

 

 

Figure 7.1. Graphic visualization of the new procedure. The procedure from 100 to 

400N was reported, for ease of visualization. 
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Every procedure was studied specifically for one or more angles, with maximum range of force 

F1 of 800N.  

Here are reported the steps of the procedure in the range 1400-2200N: 

1) Linear load of 𝐹1  =  1400N, 𝐹2 hold at 0N (60s) 

2) Linear load of  𝐹2 =  𝜌𝑚𝑎𝑥𝐹1, 𝐹1 ℎ𝑜𝑙𝑑 𝑎𝑡 1400𝑁 (40s) 

3) Hold for 2s 

4) Linear load of  F2 =  −ρmaxF1,  F1 hold at 1400N (80s) 

5) Hold for 2s 

6) Linear unload of 𝐹2  =  0𝑁,  F1 hold at 1400N (40s) 

7) Linear load of 𝐹1 =  1500𝑁, 𝐹2 ℎ𝑜𝑙𝑑 𝑎𝑡 0𝑁 (20s) 

 

The procedure then repeats steps 2, 3, 4, 5, and 6 iteratively with Δ𝐹1  =  100𝑁 for every step 

until it completes the steps at 2200N, after which both cylinders are unloaded to 0N. After that, 

a procedure with constant values of 𝜌 (±0.2, ±0.1) is launched. 𝜌 =  0 is not needed since it is 

already present in the first procedure: when F1 is incremented, F2 is always null.  

Each of the new procedures was split in two parts, one that covered the first four steps of  Δ𝐹1 

and the other one for the last five. This was done for the acquisition process to be more 

manageable and to have an easier debugging in case of errors. Each half of the procedure lasted 

approximately 15 minutes, while the last part (with ρ kept constant) lasted around 12 minutes. 

 

The values of 𝜌𝑚𝑎𝑥 were chosen based on the real values that 𝜌 assumes during the steps of 

OS3, with a reasonable margin to cover possible outliers. The values of 𝜌𝑚𝑎𝑥 and the ranges of 

F1 for each angle are reported in table 7.1, as well as the maximum load used during the standard 

procedures at 𝜌𝑐𝑜𝑠𝑡. 

 

 0° ±7.5° ±11.25° ±15° ±18.75° ±22.5° 

𝝆𝒎𝒂𝒙 0.2 0.2 0.2 0.2 0.3 0.3 

F1 range for 
ρ(t) 

1400-
2200 

1400-
2200 

1000-
18000 

1000-
1800 

500-1300 100-800 

F1max at 𝝆𝒄𝒐𝒔𝒕 2000 2000 2000 2000 1500 1000 

 

Table 7.1. Significant parameters of the procedures divided by angle. 

 

For these tests, a higher number of angles was considered. It was particularly important to have 

at least one more angle between 15° and 22.5°, since it’s a region where, for forces acquired 

during in vivo tests, the slope of the F1 curve becomes progressively more nonlinear. Thus, two 
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other more angles were tested, being 11.5° and 18.5°. They were reproduced with a flange 

presenting a hole in the shape of a semicircle. The calibration of the angle was done using a laser 

caliber.  

Another change made for these tests is the value of the maximum force used at ±15° and ±7.5°. 

Specifically, the forces used for these angles are higher than the ones resulting when computed 

with the formula reported in chapter 6. This choice is justified by the values that the force 

assumes during the stride: at said angles, the values computed with the formula are lower than 

the ones found from in vivo data. Since the model must necessarily be trained over the boundary 

values to make accurate predictions, the force values were risen.  

 

 

Figure 7.2. Clamp forces plotted with 𝜃𝐺. 

 

 

 

 

7.2 ACQUISTION OF THE TRAINING DATA 

The training data were acquired from several bench tests using the newly studied loading 

procedure. As in the previous test session, the kinematic data were acquired via optical motion 

capture; the forces were acquired with a 6 axial load cell connected to the DTS Slice Micro, using 

the same system described in chapter 5. The RPF used is the Ottobock Runner Standard that was 

used during OS3. 
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7.2.1 Markerset 

The placement of the markers was done to reproduce as accurately as possible the markerset 

used during OS3 session. The reconstruction of the markers’ coordinates on the RPF was done 

using the Vicon Nexus software to extract the relative positions.  The markers with the same 

positions on the sagittal plane were substituted with a single marker to ease the tracking and 

the acquisition.  

 

 

Figure 7.3. Markered Ottobock Runner Standard CAT 3.5 during OS3 (left) and 

mounted on Colossus (right). 

 

A total of 10 markers was placed on the foot: 

- FPA: proximal tip of the foot. 

- CLL: center of the clamp reference system in the sagittal plane. 

- FPP: behind the clamp. 

- FP1: first marker of the triad. 

- FP2: second marker of the triad. 

- FP3: third marker of the triad. 

- FM1: main curvature of the blade. 

- FM2: end of curvature and beginning of the distal region. 

- FM3: approximately in the middle of the region between the two curvatures. 

- FD2: center of the distal region. 

- FD1: distal tip of the foot. 

FPA 

CLL 

FPP 

FP1 

FP2 

FP3 FP1 

FM3 

FM2 

FD1 

FD2 
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Two markers were placed on the slab where the sole of the foot contacts, in order to be able to 

track the possible variability of 𝜃𝐺 during the whole loading procedure. Moreover, it allowed to 

have more accurate angles for the training of the model.   

As for the positioning of the foot on the bench, its alignment was adjusted with a spirt level on 

the sagittal and frontal plane. the tap was set to 5 cm, using the same value of OS3. 

 

7.2.2 Acquisition of kinematic data 

Similarly to what was done for the previous set of tests, the kinematic data were acquired 

placing 5 Vicon Bonita cameras around the testing machine. Four were placed on the sagittal 

plane and 1 on the frontal plane. The operations carried out to prepare the Vicon acquisition 

system were done following the standard procedure, reported in section 6.3.2.  

The acquisition frequency was lowered to 50Hz in order to have more manageable data, since 

the procedures to be tested were much longer than in the previous session.  

 

 

 

Figure 7.4. Position of the cameras around the test bench. 

 

7.2.3 Acquisition of dynamic data 

The dynamic data were acquired using the same load cell and the same system used in OS3. The 

load cell was in fact placed in series with the other constituting elements of the pylon, as 

described in chapter 5.  

The procedure to acquire data with DTS Slice Nano is the following: 

1) Connection of the base slice to controller and to power supply; 
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2) Connection of the first and second bridge slices, both holding 3 channels, to the computer 

that manages the DTS SLICEware software; 

3) Setting of the frame rate (here set 50Hz to match the one of the MOCAP system) and of the 

region of interest (ROI) on the software interface; 

4) Powering of the DTS Slice Nano by turning on the controller; 

5) Arming of the acquisition system is the software interface; 

6) Start of the acquisition with the controller; 

7) When the acquisition is finished, the “start” button on the controller is turned off and the 

red button is pushed to save the data. 

 

The resulting procedure for the acquisition of the data and the launch of the loading test is then: 

1) Setting of the angle 𝜃𝐺; 

2) Arming of the DTS Slice Nano; 

3) Positioning of C2 in the appropriate spot (50mm for low angles); 

4) Start of the acquisition for Vicon Nexus and DTS; 

5) Imposition of a preload of 25N on C1; 

6) Start of the loading procedure. 

 

When the loading procedure is finished, both acquisitions are stopped. The MOCAP data are 

processed by the core processor, labelled, and saved in .c3d files; the dynamic data are saved in 

.CHN and .DTS files, which can be easily converted in .csv files in the SLICEware interface.  

 

 

 

7.3 COSTRUCTION OF THE NEURAL NETWORK 

The network was built in MATLAB using the same toolboxes of the prototype. Since the model 

studied to address the problems of the prototype did not give optimal results, other models 

were tested to investigate the possible reasons of its poor performance. The most interesting 

and best performing models are now reported; the value of percentage error for every model, 

evaluated as explained in chapter 6, is reported at the end of this section in table 7.2. 
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7.3.1 Model 1 

The data were first extracted in the same way reported in the previous chapter; then they were 

preprocessed. Similarly to the prototype model, the first model was built and trained over the 

markers’ coordinates and the ground angle 𝜃𝐺. The latter was computed using the coordinates 

of the markers placed on the ground slab, taking into account the possible sliding. 

 The preprocessing was done following these steps: 

1) Setting of the coordinates in the clamp reference frame using the marker CLL as its center.  

2) Interpolation of the data. Since the matrix containing the coordinates of the markers and the 

one containing the forces were not perfectly synchronous due to the limitations of the 

acquisition setup, the least numerous in every set was thickened using the interpft 

function. MATLAB offers several functions for interpolation: however, this function was the 

one that allowed to achieve the highest precision of prediction. 

3) Scaling of the data. As explained in the previous chapter (see section 6.4.2), in DL applications 

it is good practice to scale the input and output data for a better training process. The first 

attempt was done by standardizing the data with null mean and unitary variance, but this 

gave terrible results during the training: the loss function converged on very high values 

(around 0.1), giving rise to severe underfitting on both validation and testing sets. The 

problem persisted even in tests carried out on high numbers of layers and neurons, which 

would normally be prone to overfitting the training data. It is not clear why this happened; 

however, the problem was solved by normalizing all the data in the [-1, 1] interval.  

 

The whole data set was then split into three sets (training, testing, and validation) using the 

datasample function. 

The most performing architecture was the same used for the prototype, constituted by 3 

hidden layers with ReLU as the activation function and 128 neurons per layer.  
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The configuration of parameters chosen, able to achieve the lowest error, is the following: 

Optimizer: adam 

Initial learn rate: 0.005 

Maximum epochs: 15 

Size of mini batch: 256 

Learn rate drop factor: 0.1 

Learn rate drop period: 3 

Validation patience: 20 

L2 regularization factor: 0.001 

 

The training process was always stopped by the validation criterion for all the models 

considered, and never reached the maximum number of epochs. 

 

 

 

The network was trained and then its performance was evaluated on the testing set using the 

mean percentage error. Given the premises, the performance was underwhelming: the 

predictions of F1 > 250N had an error of ~13%, while for |F2| > 25N the error was ~41%.  

Several attempts of tweaking the network’s parameters have been made to both decrease the 

convergence value of the loss function on the training set and of the percentage error on the 

testing set, all with unsatisfactory results. Increasing the number of neurons and layers, which 

is the most straightforward approach to increase performance, made the training slower but did 

not lower the training and the validation losses. Other attempts concerned the tuning of the 

hyperparameters, the use of SGD and SGDM as optimizers, the use of different activation 

function, and the simplification of the model.  

The possible reasons why this network was outperformed by the prototype will be discussed 

later; now, another attempt made using a more heterogenous training set is reported. 
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7.3.2 Model 2: introduction of new variables 

The second model was built to understand if considering a training set with more variables could 

improve the performance. This was done calculating the by calculating the Euclidean distance 

of every pair of markers and adding it to the training set as inductive bias. 

The combination of all the couples of markers can be calculated using the following formula: 

 

𝐶(𝑛, 𝑘)  =  
𝑛!

𝑘! (𝑛 − 𝑘)!
 

 

 Having n as the number of markers (10) and k as the number of markers in each group (2). The 

result is 45 more variables, being all the distances. These variables were all added to the dataset. 

The reason for this choice lies in the nature of DL applications: by design, a Multilayer Perceptron 

can only approximate functions. The hypothesis made here was that it could be beneficial for 

the training process to feed the network the exact value of nonlinear functions that might be 

helpful for the approximation of the overall function that links the coordinates of the markers 

to the forces acting on the RPF. 

The model was trained both by standardizing and normalizing the variables, giving better results 

when applying standardization. This result is interesting when compared to the previous case, 

where standardization of the data led the model to converge on very high values of training loss.  

The architecture and training specifics were kept the same as in the first model, and they were 

verified to be the most performing with a set of tests. 

 

The performance of this model was better than the one of the first one, but still not optimal: the 

percentage error was 11% for F1 > 250N and 31% for |F2| > 25N.  

The introduction of new variables was beneficial but did not give satisfactory results. The next 

step attempted was to try to move in the opposite direction and investigate if a substantial 

simplification of the training set, replicating the one used in the prototype, could lead to better 

results.   

 

 

7.3.3 Model 3: simplification of the training set 

The third model was studied to understand if the data used were too complex and could lead to 

ambiguity in the prediction. Thus, the training data were simplified to match the level of 

complexity of the ones used for the prototype:  
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- Only data from tests at constant values of ρ were used, ignoring the ones acquired from the 

new procedures; 

- A lower number of markers was used.  

 

Several tests have been carried out, using the same training specifics as the other models 

previously described. The set of markers able to achieve the best performance is constituted by 

FPA, FPP, FM1, FD2, and FD1 (reported in figure 7.5 in top to bottom order), although other 

configurations gave results just slightly worse. 

 

 

 

Figure 7.4. Best performing set of the markers for model 3. 

 

As for model 2, the data were standardized with null mean and unitary variance without 

stumbling in the problem seen in the first model. The performance of this model was 

significantly better than the previous two: the average percentage error was equal or inferior to 

10% for both forces, being specifically 5% for F1 > 250N and 10% for |F2| > 25N.  

An additional test was carried out, using the data acquired from the new procedures with the 

same simplified set of markers. Here, the model returned to perform poorly with errors of 10% 

and 27% respectively. This drop in performance clearly indicates that the reason for the poor 

performance of the other models lies in the data collected from the new procedures: the 

possible issues will be discussed in the next section. 

A summary of the performances of the various models discussed is proposed in table 7.2, with 

the inclusion of other tests carried out to completely unwrap the doubts arose with the first two 

models. In particular, two tests are reported where the number of markers was inferior to model 
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3, with the sole use of 2 (FM1, FD1) or 3 (FM1, FD1, FD2) markers. This was done following the 

geometric reasoning of the preliminary tests (see section 6.2.2), to verify: 

- The minimum number of markers. During the initial trial and error experiments, it was 

presumed that the variation of the geometry of the foot could be expressed through 

functions derived by the triangle with vertices in CLL-FM1-FD1. Here, it is clear that an higher 

number of markers improves the performance of the model, suggesting the three markers 

considered are not sufficient for a full expression of the geometry of the prosthesis. 

- The significance of the marker FD2 in the estimation of the forces. FD2 is the marker placed 

in the distal region behind FD1, which is placed on the tip. It appears that the presence of 

FD2 makes a significant difference, improving the performance of the model especially in the 

estimation of F1. This could be justified by the fact that its presence allows to better 

characterize the orientation of the distal region.   

It is also worth noticing that the inclusion of the Euclidean distances for the third model 

increases the performance just slightly. 

 

 

Table 7.2. Summary of the performances of the models. 

Model 
Training set 

characteristics 
Markers 

Average % error 
F1 > 250N 

Average % error 
|F2| > 25N 

1 
ρ = cost 
ρ = ρ(t) 

Full set 13 40 

2 

ρ = cost 
ρ = ρ(t) 

Inclusion of 
Euclidean distances 

Full set 11 31 

3 ρ = cost 
FPA, FPP, FM1 

FD1, FD2 
5 10 

3, test 1 ρ = cost FM1, FD1, FD2 7 11 

3, test 2 ρ = cost FM1, FD1 11 15 

3, test 3 
ρ = cost 
ρ = ρ(t) 

FPA, FPP, FM1 
FD1, FD2 

10 27 

3, test 4 
ρ = cost 

Inclusion of 
Euclidean distances 

FPA, FPP, FM1 
FD1, FD2  

5 9 
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7.3.4 Discussion  

The tests carried out on the previous models gave rise to interesting considerations. Several 

reasons were found for the less complex model to be the best performing, and for the data 

collected with the new procedures to give such underwhelming results.  

 

Correlating function: the first issue to address lies in the fundaments of the problem analyzed 

in this work, being the function 𝐶 which correlates the geometric configuration of the foot, 

expressed through the coordinates of the markers, to the forces acting on it.  

 

𝐹 =  (𝐹1, 𝐹2)  =  𝐶(𝑚1, 𝑚2, . . . , 𝑚𝑛) 

 

Said function is what the Neural Network seeks to approximate. During all the analysis carried 

out in this paper, one key assumption was made, being that the correlating function was 

bijective. This means that every geometric configuration of the foot corresponds to one and one 

only one couple of forces:  

 

(𝐹1, 𝐹2)  ↔  (𝑚1, 𝑚2, . . . , 𝑚𝑛) 

 

The results obtained with the construction of these models lead to consider that there may be 

ambiguity when considering variable values of ρ, having two or more couples of forces resulting 

from the same geometric configuration of the foot, thus disproving the assumption of bijectivity. 

Though, these considerations cannot be fully proven from the information gathered in this paper 

without further investigations. 

 

Markers protocol: the correlating function 𝐶 is directly dependent from the set of markers used. 

This means that the effectivity of the network in the approximation of 𝐶 depends on how well 

the markers can represent the geometric configuration of the foot at a given time. The results 

of the tests performed on the third model, along with the results of the validation test of the 

prototype, lead to consider that there is an optimal number and placement of markers that can 

describe the cinematic behavior of the prosthesis with good approximation and with little 

ambiguity, and that it directly influences the performance of the network.  

 

Model type: another issue to consider is the type of model used. For all the tests the model was 

a MLP with variable number of neurons and layers; the best performance was always given by 

three hidden layers with 128 neurons per layer. It is possible that these configurations of MLP 
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may not be best suited for the problem when considering more complex datasets. More refined 

ML models, such as the ones that can be built with the XGBoost library, may perform better. 

Moreover, the implementation of a more elaborated architecture could also be beneficial. 

 

 

7.4 VALIDATION 

Being the best performing model, model 3 was validated over the same three steps of OS3 

analyzed in chapter 5. The markers considered were the ones that allowed the network to 

achieve the optimal performance during the testing phase (reported in figure 7.4). The markers’ 

coordinates were standardized with respect to the mean and standard deviation used for the 

training set.  
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Figure 7.5. Clamp reaction forces predictions for TSSR04 (top), START02 (middle), 

and START03 (bottom) of OS3 session. 

 

Overall, the prediction tends to be more accurate for F1, particularly in the region of maximum 

load. Observing the graphs referring to the START tests, there are regions where the predictions 

can clearly reproduce the trend of the real curve, indicating good sensibility to small changes. 

Though, in the case of F2, the value is often noticeably off. This is a shared characteristic with 



107 
 

the prototype, which reflects the difficulty in the prediction of F2 even during the testing of the 

model.  

It is important to notice that the predictions are most unreliable in the regions where they refer 

to angles outside of the boundary ones, over which the model has not been trained. These 

regions, corresponding to |𝜃𝐺| > 22.5, have not been considered in the computation of the error, 

since they do not reflect the capabilities of the model. There are also areas where the real value 

of the force exceeds the maximum one of the loading tests for the corresponding angle, again 

leading the network to predict outside its training boundaries. 

In the region of peak vertical force the curves match for START tests, while for TSSR04 the 

prediction seems to drop in accuracy in the area corresponding to the propulsive phase. It is not 

clear why this happens; the reason could lie in imprecisions of the video data.  

In table 7.3 the values of the average percentage error are reported for all three steps, as well 

as the ones of OS1 as means of confrontation. 

 

 

Table 7.3. Average percentage error of prediction against real value of the force 

for OS1 and OS3. 

 

It is interesting to notice that the error for F2 is lower for the steps of OS1, even though the two 

models had a similar testing performance. This can be justified by the fact that the prototype 

was trained over sets of tests with ρ=0, which were not present for model 3 (since they were 

incorporated in the new procedures, not included for the training of model 3). Still, the error is 

very high for both models and the prediction for F2 are completely unreliable. 

As for F1, model 3 just slightly exceeds a 20% error on TSSR04, while for the prototype it is well 

over 30% for step 1 and close to 15% for step 2. This could indicate that the third model predicts 

the vertical force better, but statistically motivated assessments cannot be made because the 

number of samples is too low.  

 

 

 OS1 OS3 

Step 1 Step 2 TSSR04 START02 START03 

Average % 
error F1 > 

250N 
35.6 16.3 21.8 10.0 16.4 

Average % 
error |F2| > 

25N 
68.6 74.8 114.3 140.7 172.6 
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7.5 FINAL CONSIDERATIONS AND POSSIBLE IMPROVEMENTS  

The model described in this chapter was built with the intention of improving the first prototype. 

It is not entirely clear why the prototype had a significantly better performance for F2 and a 

worse one for F1. Anyway, both models could approximate the shape of the real force curves, 

although not always with exact values. This indicates good sensitivity and generalization 

capabilities of the models. 

Moreover, the training of the latest model using the new procedures was beneficial to shed light 

on the correlation between the geometric configuration of the RPF and the corresponding 

forces, indicating a possible non-bijectivity of the correlating function. It would be ideal to 

perform an in-depth statistical analysis to furtherly investigate this matter, as well as studying a 

protocol for the optimal placement of markers, to eliminate possible ambiguity and still well 

represent the geometric configuration of the foot.  

As for the overall approach followed, it can be concluded that AI can be used to address the 

problem studied in this thesis. Still, there is a need for major improvements, especially with the 

experimentation of different and more powerful ML models. Moreover, training data with wider 

boundaries would significantly improve performance. 
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Conclusions 

 

 

 

The work described in this thesis was carried out to answer two different research questions. 

1) Are kinematic data obtained from 2D videos a good approximation of MOCAP data when 

analyzing a RPF during running? 

2) Is it possible to derivate the forces acting on a RPF solely from its geometric configuration? 

The first question was addressed by using data collected from two running sessions, OS1 and 

OS3, with two elite paralympic athletes. The same steps were captured using optical motion 

capture and video cameras, and the confrontation was carried out by evaluating the difference 

of the tip-to-tip distance over the whole step. It was observed that the percentage error 

between the two acquisition systems never exceeds 3%, although the video data are more 

susceptible to actions on the frontal plane, whose magnitude cannot be fully evaluated. 

Moreover, it was observed that setting the scene with proper illumination and minimizing 

distortion effects makes a drastic difference in the tracking of video data, leading to a much 

more accurate process. 

For the second question, the problem was first addressed with analytical and statistical 

considerations. Kinematic and dynamic data were acquired from a set of in vitro tests, carried 

out on hydraulic test bench Colossus, and analyzed from a geometrical standpoint. Since this 

approach didn’t lead to satisfactory results, the problem was formalized using Deep Learning: a 

first Neural Network was built, in the form of a Multilayer Perceptron, to correlate kinematic 

and dynamic data in the form of a regression problem. The model was then trained and tested 

over data collected from a second set of tests, performed with seven different angles and five 

force ratios. This model served as a prototype to understand the optimal characteristics, in terms 

of architecture and training parameters, to achieve a low error without incurring in overfitting. 

The best performing model achieved a percentage error of 1% for the vertical force and 3% for 

the horizontal one (with respect to a clamp reference system), though k-fold cross validation 

showed that the error on untrained angles was higher for both forces. It was then validated on 

two steps taken from OS1, using a lower number of markers. Its performance was 

underwhelming, achieving a precision of prediction not inferior to 15% for the vertical force and 

to 65% to the horizontal one. 
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A second model was then built to try to address the problems of the first one. A new set of 

testing procedures, studied to collect more varied data, was carried out, with the inclusion of 

the standard procedures used for the prototype. The collected data were used to train a new 

model: surprisingly, the data obtained from the new procedures were responsible for a 

significant drop in precision on the testing set, achieving errors of 13% and 40% for the two 

forces respectively. To investigate these results, some experiments were performed. It was 

concluded that there is a possibility that the new data introduced ambiguity in the training set, 

having the same geometrical configurations of the foot corresponding to different pairs of 

forces. The drop in performance could also depend by the set of markers and by the type of 

model. 

The best performing model, only trained over the standard tests, was then validated on three 

steps of OS3. Its performance was acceptable for the estimation of the vertical force (with an 

error no greater than 20%) but very poor for the horizontal one (with errors well over 100%). It 

was not fully understood why it was outperformed by the prototype, but still its construction 

gave useful insight on the correlation between the geometry of the foot and the forces acting 

on it.  

In the end, it was concluded that an AI approach can be used for the estimation of forces, but it 

needs major improvements. Future goals should focus on deeply studying the problem from a 

statistical standpoint and experimenting with different ML models. 
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