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Abstract

L’obiettivo dello studio è stato quello di testare la calibrazione di un modello a parametri

concentrati per lo sviluppo di un sistema BEMS (Building Energy Managment System) basato

su MPC (Model Predictive Control), che ottimizzi il funzionamento di una pompa di calore

accoppiata con moduli fotovoltaici. L’ottimizzazione, basata su approccio predittivo, perme-

tte di aumentare la flessibilità dell’edificio spostando i consumi energetici nelle finestre di

maggior convenienza economica, minimizzando i costi.

La calibrazione viene effettuata con il metodo PSO (Particle Swarm Optimization), un algo-

ritmo euristico ispirato al comportamento degli sciami, che sfrutta tecniche di apprendimento

automatico (Machine Learning) per minimizzare lo scarto quadratico medio tra il profilo di

temperature misurate nell’edificio e quelle calcolate dal modello 5R1C.

Per prima cosa il codice di calibrazione è stato applicato al laboratorio pilota dell’RSE di

Piacenza, testandolo in tre dataset differenti e osservandone il comportamento al variare dei

periodi di training e testing.

Dopodiché tramite il software EnergyPlusTM, sono state simulate alcune strutture per testare

la calibrazione in strutture di tipo residenziale con diversi isolamento e capacità termica.

Dopo aver validato il modello EnergyPlus, il codice di calibrazione è stato applicato alle

strutture simulate, confermando quanto dimostrato dalle prove sul laboratorio reale e per-

mettendo di effettuare alcune ulteriori considerazioni sull’effetto di isolamento e capacità

termica dell’involucro edilizio.

I risultati mostrano come sia conveniente effettuare la calibrazione con frequenza giornaliera

e su un periodo di training compreso tra 2 e 4 giorni. Inoltre, è emerso che l’accuratezza

dell’algoritmo è maggiore in strutture più massive e con maggior isolamento termico.

Infine si è indagato sul senso fisico dei parametri del modello RC a valle della calibrazione,

dimostrando come non ci siano differenze sostanziali in termini di RMSE nei risultati ottenuti

con i parametri iniziali scelti pari a quelli nominali corretti e in quelli con parametri iniziali

scelti a caso in un intorno fisicamente coerente.
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Introduction 1
1.1 Motivation and backgrounds

Buildings like homes, workplaces, schools, hospitals, libraries and public buildings in gen-

eral are the largest energy consumer in the EU and one of the major contributors to CO2

emissions. Overall, EU buildings and their constructions together account for 40 % of energy

consumption and 36 % of energy-related greenhouse gas emissions annually [1].

Improving the energy efficiency of buildings is therefore crucial to achieving the ambitious

carbon neutrality target by 2050, as defined in the European Green Deal [2].

Moreover, the European Directive 2018/44 requires to reduce greenhouse gas emissions

by at least 40 % by 2030, with the aim of encouraging the construction of zero-emission

buildings and promoting the use of home automation and intelligent technologies [3].

In recent years many research groups have worked with the aim of improving the energy

efficiency of buildings, focusing not only on the retrofitting and modernization, but also on

the application of advanced control systems. In particular, building energy management

systems (BEMS) based on predictive control (MPC) are becoming increasingly attractive in

both academy research and industry.

Building energy management systems can help to improve the energy performance of

buildings by providing some flexibility to the building side, finding a compromise between the

thermo-hygrometric comfort in the indoor environment, the integration of local renewable

sources, the reduction of consumption and costs of the energy used by the end-user.

The energy management system usually consists of a hardware part, which receives signals

from the building and a software part that develops solutions that coordinate the operation of

heating systems, domestic hot water production, cooling and dehumidification installations

and mechanical ventilation installations if present. This supervision and coordination activity

carried out by BEMS therefore acts on a higher level than the controllers (actuators, relays,

inverters, thermostats, etc.) of the individual plants and they must be able to receive signals

from BEMS and react appropriately. These systems can also consider other electrical loads

such as lights and other equipments and also any photovoltaic systems or other local thermal

or electricity generation systems. They can also be coupled with shading devices to control

the solar radiation incident on the building.

BEMS carries out this coordination activity by pursuing a certain objective, which can be

either a local objective or a system objective. In the first case, the objective is linked to the

1



2 CHAPTER 1. INTRODUCTION

building in which the BEMS is installed, that could be the minimization of energy costs; in

the second case, the interests of actors outside the building in question are considered. An

example of this could be the provision of an auxiliary service to the electricity distribution

network to which the building is connected.

BEMS control strategies can be in general resumed in two categories [4]: rule-based controls

(RBC) and Model Predictive Control (MPC). Rule-based controls are simple methods which

generally have the form ‘if (condition is verified), then (action is made)’. RBC usually control

a specific parameter (PV power, room temperature) on which a threshold value has been

fixed. When the threshold is reached, the operation of the heat pump is changed, according

to the predefined strategy. On the other hand, Model Predictive Control is a more complex

strategy, which relies on a model of the building to projectits behavior in the future. These

systems, to make optimal decisions, are based on forecasts of what will happen in the next few

hours, so as to intervene in advance according to the forecasts of local energy demand and

production in the next few hours. The signals received by BEMS MPC-based, come therefore

both from the internal environment and from the outside, because it may be necessary to

use information provided by third parties, such as weather forecasts. This makes it necessary

to connect the BEMS not only to a local communication network to receive the signals of the

sensors installed at the building, but also to the internet network through which the signals

provided by third parties can arrive.

1.2 Overview and objectives

The research work concerns the development of an energy management system that will be

tested in the RSE Laboratory of Piacenza. The aims of the research project are to analyze

and exploit the potential of energy flexibility for different buildings, according to their

construction characteristics, installations and their intended use (residential, commercial

buildings, etc.).

In the pilot building of Piacenza, the plant will be managed in such a way as to ensure the

comfort of indoor environments, where the heating energy in winter and cooling energy

in summer are produced by an air-water heat pump. The core of the BEMS is the control

algorithm of the heat pump developed in Python, based on a lumped capacitance model

of the laboratory and able to decide autonomously the time windows of greater economic

convenience, maximizing the self-consumption of electricity produced by a photovoltaic

system. Continuous monitoring of the internal thermo-hygrometric conditions and weather

forecast, will allow the self-calibration of the model parameters through machine learning

techniques. The model parameters (resistances and thermal capacities) are first estimated

from a limited number of information about the building and are then ‘learned’ during

operation through the so-called calibration. The control system will then make autonomous

decisions, based on weather forecast, users behavior and preferences [5].
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The present study focuses on the calibration process, where the parameters of a lumped

capacitance model are calibrated using Particle Swarm Optimization (PSO) iteratively to

reproduce the average indoor air temperature pattern. In fact, Building Energy Managements

Systems (BEMS) based on Model Predictive Control (MPC) must be calibrated periodically in

order to accurately reproduce the dynamic thermal behavior of buildings [6]. The calibration

process avoids that the actual indoor air temperature diverge from that predicted by the

underlying building model, in order to have a more efficient optimization.

In the first part the study case will be described and the fundamental principles of BEMS

systems based on predictive control will be illustrated, such as grey box concept, lumped

capacitance models and PSO algorithm.

In the second part the experimental part will be carried on, where the code will be

practically applied.

The investigation included the most appropriate length of the training period used by the

PSO algorithm to produce the best indoor air temperature pattern.

The laboratory has been modeled through the software EnergyPlus and used to produce

additional data for calibration, assuming heavyweight structures (masonry with external

insulation as usual in nowadays building practice) instead of lightweight prefabricated

structures. The combination of results from the real and simulated buildings, allowed to

generalize the results. Finally, some considerations about the RC model parameters physical

meaning have been made.
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Study case 2
2.1 Laboratory description

The laboratory is property of RSE S.p.A (Ricerca sul Sistema Energetico) and is located in

Piacenza industrial area. It consists of a prefabricated building oriented on the North-South

axis. Experimental rooms are rooms A, B, C and D, with windows facing South. Rooms E

and F will be used for other purposes. The net plan area of the considered rooms is 59.2 m2.

Tables 2.1 and 2.2 summarize the stratigraphy of the construction elements and their thermal

transmittances. The layers are indicated from the outside in.

The perimeter walls and the roof are made up of polyurethane prefabricated panels with a

declared conductivity of 0.021 W/(m K). This value was increased to 0.030 W/(m K) to take

account of the ageing process of the material.

The net height of the rooms is 2.70 m, and they are separated from the attic by a false ceiling

made by mineral fiber panels.

The laboratory is heated and cooled through an air-water heat pump and 4 fancoils, one for

each room.

Figure 2.1: RSE laboratory in Piacenza.

5



6 CHAPTER 2. STUDY CASE

LAB

External wall
Thickness Conductivity Density Specific heat Resistance
[m] [W/(m K)] [kg/m3] [kJ/(kg K)] [(m2 K)/W]

Polyurethane 0.1 0.03 120 1.00 3.33
Plasterboard 0.025 0.19 660 1.00 0.132

Ground floor
Thickness Conductivity Density Specific heat Resistance
[m] [W/(m K)] [kg/m3] [kJ/(kg K)] [(m2 K)/W]

PVC floor 0.005 0.21 1300 1.45 0.024
Screed 0.05 1.4 2200 1.05 0.036
XPS insulation 0.05 0.037 40 1.45 1.35
Polyethylene
sheet

0.001 0.4 90 1.00 0.003

Light concrete 0.07 0.1 520 1.05 0.7
Concrete base 0.15 2.3 2000 1.00 0.065

Roof
Thickness Conductivity Density Specific heat Resistance
[m] [W/(m K)] [kg/m3] [kJ/(kg K)] [(m2 K)/W]

Polyurethane 0.1 0.03 120 1.00 3.33

False ceiling
Thickness Conductivity Density Specific heat Resistance
[m] [W/(m K)] [kg/m3] [kJ/(kg K)] [(m2 K)/W]

Panels 0.1 0.03 120 1.00 3.33

Internal wall
Thickness Conductivity Density Specific heat Resistance
[m] [W/(m K)] [kg/m3] [kJ/(kg K)] [(m2 K)/W]

Polyurethane 0.1 0.03 120 1.00 3.33

Table 2.1: RSE laboratory stratigraphy.

Total LAB
transmittances [W/(m2 K)]

External wall 0.277
Roof 0.288
Ground floor 0.393

Fixture LAB
transmittances [W/(m2 K)]

Windows 2.29
Door 1.539

Table 2.2: Envelope and fixtures U values.
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2.1.1 Laboratory floor plan and views

Figure 2.2: RSE laboratory views.

Figure 2.3: RSE laboratory floor plan.
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2.2 Monitoring and control system

The monitoring and control system that has been realized is aimed to control the main

plant components and real time detection of operating parameters and from these, to the

evaluation of the energy performance of both the entire plant and individual most significant

components. The designed monitoring system is made by field sensors and data related

transducers, data collection and acquisition system, a personal computer dedicated to local

and remote management of the data acquisition system and a UPS sized to feed the monitoring

system. In order to achieve the monitoring objectives, the plant has been equipped with

many measure probes to check the parameters of the plant components, the heat pump and

the indoor and outdoor environment.

In this study the interest goes to the acquisition of environmental data and the calculation of

fancoils power, therefore only the instruments and monitoring system used for our purposes

will be explained.

The plant has equipped with:

• electromagnetic induction flow meters for the measurement of water flow rates in

various circuits, mounted to insertion in the pipes, with an accuracy of 0.5 % of the

bed value (fancoil distribution system) and with an accuracy of 0.8 % for the other

circuits;

• platinum resistance thermometers for temperature measurement of fluids, with 1/5

platinum probes;

• 1/3 DIN platinum resistance thermometers for measuring ambient air temperature at

center of each of the four premises of the laboratory;

• weather station composed by:

- a pyranometer for the measurement of global horizontal solar radiation;

- a pyranometer with shading ring for the measurement of diffuse solar radiation;

- instruments for the measurement of temperature and humidity outside air.

The fancoils heating power is then given by:

P = q · cp ·∆T [W ] (2.1)

where:

- q = water flow [kg/s];

- cp = water specific heat [J/(kg K)];

- ∆T = temperature difference [K].
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Table 2.3 shows the main features of the used instruments and data acquisition modules.

For the acquisition of the data collected from the instruments and the control of the plant,

has been realized a special software in National Labview environment based on a personal

computer and acquisition modules Advantech ADAM 5000 and 4000. The communication

architecture uses field buses Modbus ASCII and Modbus RTU over RS485 network. The ac-

quisition program provides both the on-line presentation of measured data with a frequency

of 1 minute in tabular and graphic form. At the end of each day the file is closed and stored

on the hard disk; another copy is then opened automatically, assigning it an identifying name

with the date to which it refers. The system also allows to view the synoptic pages of the

devices/plants monitored with real-time indication of the values of the most representa-

tive quantities, measured directly or calculated from the data acquired as shown in Figure 2.6.

measure instrument instrument model

water flow electromagnetic E&H Promag P50

water temperature RTD Pt100 4wire 1/5DIN Italcoppie TRM

solar global radiation thermopile pyrometer Kipp&Zonen CMP11

solar diffuse radiation photodiode sensor Delta-T Device BF5

outdoor air temperature Pt100 4wire Siap+Micros

indoor air temperature Pt100 4wire, 1/3DIN Itsensor

data acquisition module DA&C system Advantech ADAM 4/5000

Table 2.3: Features of main instruments.

Figure 2.4: Water temperature probes (Pt100) of the fancoils system (left and center) and indoor
temperature probe (right).
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Figure 2.5: Data acquisition modules Adavntech ADAM 5000 and 4000.

Figure 2.6: Synopsis panel of the HVAC system.
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3.1 Grey box models

The performance of the BEMS control requires a system reliable and a computationally light

building model. According to ASHRAE, there are two different ways to model the building:

‘forward’ and ‘data-driven’ [7]. Forward models are also known as white box models or

detailed dynamic models, which require a high knowledge of building parameters to be

implemented, as they are based on purely physical equations. Programs like EnergyPlus

and Trnsys are based on this type of approach [8]. These models are not used for control

systems, because to be precise they require the manual insertion of a very large amount of

data, often incompatible with the information coming from the sensors. This is usually too

time consuming and not effective in terms of cost to collect such information [9].

Data driven models assume that there are some mathematical relationships between inputs

and outputs but there is no interest in physical equations [10]. They are divided into ‘black

box’ and ‘grey box’. The black-box approach is based on statistical methods that are applied

to the available data (energy consumption and temperatures) without any explicit reference

to the equations that govern their energy balance. In these data-driven models appropriate

algorithms are trained to describe the functioning of the considered system through a learning

period. This method has been widely used in many areas and allows to learn the optimal

functioning of a system based on the measured data, without the need to use equations

that describe its physical principles. In this sense the machine ‘learns’ from the surrounding

Figure 3.1: Required level of experimental modeling for different model types.

11
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environment the best way to behave, this is called machine learning (ML). Grey box can be

considered a hybrid between black box and white box, because they are based both on data

and physical knowledge.

They consist of simplified physical models whose parameters are initially imposed thanks to

the knowledge of physical processes. They are then calibrated during the operation of the

systems, learning how to operate through interaction with the environment. These hybrid

models therefore retain the typical learning phase of ML, but benefit from an approximate

knowledge of the system in which they will operate.

3.1.1 Simplified models

The models most used by this type of approach are resistance and capacity models that exploit

the electrical analogy with resistance R and capacitance C to describe the thermal behavior

of the building. Capacitance represents the thermal capacity while resistance represents

thermal resistance.

The temperature of the air, surfaces and structures are discretized in a set of nodes connected

by thermal resistances and capacities that represent the parameters of the model. Their main

advantage is that once their parameters are identified, such temperatures can be determined

by the resolution of a simple linear system, with a very low cost in computational terms and

avoiding convergence problems typical of non-linear systems that use complex numerical

schemes. Since each thermal capacitance of the equivalent circuit corresponds to a state

variable of the model, the number of thermal capacitances (nodes) leads to the order of

the model. Reducing the model order curtails the number of parameters to be identified,

thus achieving the objective of describing the building dynamics with a simple model. The

values of R and C are estimated based on samples of inputs and outputs by applying an

identification algorithm which typically minimizes a norm of either simulation errors or

prediction errors [11].

The boundaries on the parameters in the identification process are normally estimated from

a rough description of the building geometry and materials.

3.1.2 Lumped capacitance building model

The International Standard ISO 13790 [12], describes the simple hourly method to calculate

the building’s energy use with one hour time intervals.

The method is based on a RC circuit, made by 5 resistance and 1 capacity (5R1C) as shown

in Figure 3.2. The heating and/or cooling need is found by calculating for each timestep, the

need for heating or cooling power, ΦHC (positive for heating and negative for cooling), that

needs to be supplied to or extracted from, the internal air node, θair , to maintain a certain

temperature. The Standard distributes the heat gains due to internal sources, Φint and the

heat gain due to solar heat sources, Φsol , between the three temperature nodes of the thermal
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network: Φi to the indoor air temperature node (θi), Φs to the surface temperature node

(θs) and Φm to the thermal mass temperature (θm) node. The latter temperature represents

the average temperature in the building structure. The corresponding thermal capacitance

Cm, calculated in accordance with the ISO 13786 Standard [13], is used to reproduce the

dynamic thermal behavior of the building. The other building parameters are the ventilation

heat transfer coefficient Hve, the coupling conductance between internal air and surface

node Ht r,is, the thermal transmission coefficients of the windows Ht r,w and of the opaque

building components Ht r,op. The latter is divided into two components Ht r,em and Ht r,ms.

The model is also able to calculate the energy needs due to de-humidification of the indoor

environment during the cooling season, by setting the internal relative humidity and per-

forming the hygrothermal balance of the indoor air volume.

Figure 3.2: Electric analogy.

The resulting heating-cooling load ΦHC is determined by solving the following linear system:

Hve(θsup−θi)+Ht r,is(θs−θi)+Φi+ fconvΦHC = 0 (3.1)

Ht r,w(θe−θs)+Ht r,is(θi−θs)+Ht r,ms(θm−θs)+Φs+(1− fconv)ΦHC = 0 (3.2)

Ht r,em(θe−θ τm)+Ht r,ms(θs−θ τm)+Φm+
Cm

∆t
(θ τ−∆τm −θ τm) = 0 (3.3)
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Where θs is the air supply temperature due to infiltration and/or ventilation (equal to the

external air temperature θe in case there is no mechanical ventilation system) and fconv is a

parameter used to model different radiative and convective contributions of HVAC terminals

(example: fconv = 1 for fancoils, fconv = 0.5 for radiators).

Another considered modification is the parameter fgc which is a coefficient that multiply

Φsol .

Thermal flows from internal and solar heat sources Φint and Φsol , are divided between the

air node, θair , and the internal nodes, θi , θm, as follows:

Φi = 0.5Φint (3.4)

Φm=
Am

At
(0.5Φint +0.5Φsol fgc) (3.5)

Φs = (1−
Am

At
−

Ht r,w

9.1At
)(0.5Φint +0.5Φsol fgc) (3.6)

Where At is the surface area [m2] and Am is the effective mass area [m2] which represents

the thermal capacitance of the building in terms of surface area and calculated as shown in

Figure 4.3.

In this study the model does not consider the internal heat gains contribute, so Φint = 0.

The solar heat gain Φsol includes here not only the solar radiation entering through external

windows but also the short-wave radiation absorbed by the external walls and the long-wave

radiation emitted by the external surfaces to the outdoor environment:

Φsol = Fso(asRseUop)Isol− FrΦr (3.7)

Φr = RseUopAopαrad∆θer (3.8)

The first term is the short-wave radiation absorbed by opaque building components, where

Fso is the shading reduction factor for the external obstacles, Isol the solar irradiance, Uop and

Aop the thermal transmittance and the projected area of the opaque building components, as

and Rse their absorption coefficient and the surface heat resistance, respectively. All these

variables refer to the external surface of the exterior walls and must be considered separately

for each orientation.

The second term is the extra heat flow due to the thermal radiation to the sky, where Fr is

the form factor between the building element and the sky (0.5 for vertical walls), αrad is

the radiative heat transfer coefficient and ∆θer is the difference between the external air

temperature and the apparent sky temperature.

The linear system includes four independent variables, the temperatures at the three nodes
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(θi, θs, θm ) and the heating-cooling load ΦHC . Therefore, there are two ways to solve the

system [14]:

• ΦHC fixed: in this case, the heating-cooling load is set and, consequently, the air

temperature of the thermal zone is calculated; this is how the RC model is used in this

study;

• θi fixed: with this option the thermal zone heating-cooling load for the specified

setpoint θi is calculated.

Figure 3.3: 5R1C model: physical scheme and equivalent electrical network.

3.2 Detailed dynamic building model

For the reasons already explained, the white box models are not the most suitable for the

control of a building. However, by modeling the building in EnergyPlus we can provide

some preliminary information about is thermal behavior such as the energy consumptions

and internal temperature trend. If the simulated behavior is sufficiently similar to the real

one, we can use the software to test the calibration also on other types of structures without

necessarily that they physically exist and without the need to install expensive sensors, saving

money and time.

3.2.1 EnergyPlus

The EnergyPlus program is a collection of many program modules that work together to

calculate the energy required for heating and cooling a building using a variety of systems

and energy sources. It does this by simulating the building and associated energy systems

when they are exposed to different environmental and operating conditions. The core of the

simulation is a model of the building that is based on fundamental heat balance principles.

EnergyPlus has its roots in both the BLAST and DOE-2 programs. BLAST (Building Loads

Analysis and System Thermodynamics) and DOE–2 were both developed and released in the
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late 1970s and early 1980s as energy and load simulation tools. Their intended audience

is a design engineer or architect that wishes to size appropriate HVAC equipment, develop

retrofit studies for life cycling cost analyzes, optimize energy performance, etc. Like its parent

programs, EnergyPlus is an energy analysis and thermal load simulation program. Based on

a user’s description of a building from the perspective of the building’s physical make-up,

associated mechanical systems, etc., EnergyPlus will calculate the heating and cooling loads

necessary to maintain thermal control setpoints, conditions throughout an secondary HVAC

system and coil loads, and the energy consumption of primary plant equipment as well as

many other simulation details that are necessary to verify that the simulation is performing

as the actual building would. Many of the simulation characteristics have been inherited

from the legacy programs of BLAST and DOE–2. Below is list of some of the features of the

first release of EnergyPlus. While this list is not exhaustive, it is intended to give the reader

and idea of the rigor and applicability of EnergyPlus to various simulation situations [15]:

• integrated, simultaneous solution where the building response and the primary and

secondary systems are tightly coupled (iteration performed when necessary);

• sub-hourly, user-definable time steps for the interaction between the thermal zones

and the environment; variable time steps for interactions between the thermal zones

and the HVAC systems (automatically varied to ensure solution stability);

• ASCII text based weather, input, and output files that include hourly or sub-hourly

environmental; conditions, and standard and user definable reports, respectively;

• heat balance based solution technique for building thermal loads that allows for

simultaneous calculation of radiant and convective effects at both in the interior and

exterior surface during each time step;

• transient heat conduction through building elements such as walls, roofs, floors, etc.

using conduction transfer functions;

• thermal comfort models based on activity, inside dry bulb, humidity, etc..

This study exploits only a very small part of the potential of EnergyPlus to determine the

energy demand of the RSE laboratory under various conditions and to reproduce the indoor

temperature trend in some simulated buildings with the aim of developing the BEMS system

and testing the calibration.
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3.3 Heuristic methods and evolutionary algorithms

Often the determination of the optimal solution of an optimization problem can be too

onerous in terms of calculation time, and in a industrial context, linked for example to

production processes, control or logistic, the specifications on the execution times of a given

algorithm are many times more restrictive than the specifications on the optimality of the

solutions found. When dealing with real optimization problems in fact, all the theoretical

aspects related to the rigid formulation of the problem, the verification of conditions necessary

for the use of exact methods and the related validation of results obtained, are sacrificed in

favor of the efficiency with which the solution is calculated; this fact is essentially due to a

series of factors [16]:

• many of the parameters in real applications are estimates that may be subject to error,

so it is not worth waiting too long to have a solution whose value is of uncertain

evaluation; under consideration in order to quickly assess work scenarios;

• often works in real time, so it is necessary to have a good acceptable solution in very

short times (minutes or seconds of time calculation);

• sometimes real applications have many constraints of a difficult nature, that is difficult

to model with full linear programming models.

All these aspects explain why in real applications, it is very widespread the use of approxi-

mated or heuristic algorithms (from the greek heuriskein = discover), that is algorithms that

do not guarantee to obtain the optimal solution, but in general they are able to provide a

‘good’ acceptable solution for the problem.

Among the most used heuristic algorithms, are mentioned:

• greedy algorithm;

• local research algorithm;

• Simulated Annealing;

• evolutionary algorithm such as PSO (Particle Swarm Optimization) or Genetic algo-

rithm.

The evolutionary algorithms are therefore computer techniques inspired by biology that are

based on a metaphor, how an individual of a population of organisms should be adapted to

the environment to survive and reproduce, so a possible solution must be adapted to solve

the problem. The problem is the environment in which a solution lives, within a population

of others possible solutions; the solutions differ in quality, that is in cost or merit, which are

reflected in the assessment of the objective function, as well as individuals in a population of

organisms differ in degree adaptation to the environment.
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3.3.1 PSO: Particle Swarm Optimization

Figure 3.4: Flocks of bird in the sky.

The collective behavior of groups of animals is a natural phenomenon from always very

fascinating. Particularly interesting from the point of view of scientific research is the case

of those aggregations of animals that self-organize in precise forms and complex dynamics.

Examples of these behaviors are swarms of insects, flocks of birds or schools of fish. Under-

stand from which assumptions emerge a collective behavior, is currently a transversal target

and in recent years has fueled interest in those methods that are called PSO algorithms,

heuristic techniques of research that belongs to the category of evolutionary algorithms. The

basic idea is linked to the concept that each individual (one possible solution in the research

set) of a population swarm, goes in search of an excellent solution to a certain optimization

problem, with a dynamics affected by memory of one’s best position and best location of the

global swarm. In addition to an individual behavior what emerges is a collective behavior

that lends itself well to the resolution of different optimization problems. Reynolds [17],

proposed a behavioral model in which each agent follows three rules:

• separation: each agent tries to move away from its neighbors if they are too close;

• alignment: each agent steers toward of its neighbors;

• cohesion: each agent tries to go towards the average position of its neighbors.

From an algorithmic point of view, these ideas are taken up in the model that describes the

individual’s dynamics in the simplest and primitive PSO method version.



3.3. HEURISTIC METHODS AND EVOLUTIONARY ALGORITHMS 19

Given a particle population in a n-dimensional space, looking for a (sub-)optimal solution of

a optimization problem, each individual x(t) = [x1(t), x2(t), . . , xn(t)] iteratively moves as

follows:

x (t +1) = x (t )+ v(t +1)∆t (3.9)

v(t +1) = w v(t )+ c1ρp(xp,best − x (t ))+ c2ρg(xg,best − x (t )) (3.10)

where the vector v(t) = [v1(t), v2(t), . . , vn(t)] is the coming velocity vector updated

linearly also in iterative way, influenced by different factors: it depends on the speed at the

previous step xv(t) (inertia), from best location xp,best and best overall location xg,best. The

latter are updated as soon as find better ones.

The coefficient w weighs the inertia of the system, c1 and c2 weigh the cognitive and social

component, while ρp and ρg are random uniform distribution coefficient U[0, 1] of the two

personal and global components respectively.

More specifically, the components to upgrade the velocity are analyzed:

• Previous speed v(t) acts as memory of the previous direction of movement (in the

immediate past). This term can be seen as a moment that prevents the sudden change

of direction of the particle;

• Cognitive componentρp(xp,best−x (t )) quantifies the dynamics of the particle relative

to the performances of the past (not immediate). In a sense it represents the individual

memory of the particle, and model the tendency of individuals to go back to their own

best positions. Kennedy and Eberhart also refer to the term nostalgia of the particle

[18];

• Social component ρg(xg,best− x (t ) quantifies the dynamics of particle relative to the

performance of nearby particles (or of all swarm particles in general); each particle

tends to move also in the direction of the best location of the swarm. In literature

there are different variations, always inspired by social behavior observed in nature.

The inertial coefficient w is introduced as a control mechanism of the process of global and

local exploration of space. In this sense such parameter adjusts tradeoff search from global to

local: high values of inertia feed global research, increasingly lower values facilitate the local

one, until completely eliminating the individual’s ability to search. For w = 1 the velocity

increases with each iteration leading to the instability of the system (the swarm diverges);

for w < 1 the particles decelerate until the speed completely cancels. Given therefore a

population of particles, we can find the following analogies between generic operators of

evolutionary algorithms and operations of PSO algorithms: each particle represents an
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individual, that is a possible solution to an arbitrary problem; the mutation operator can be

seen as the process of perturbation of the position of each individual through the stochastic

coefficients ρp and ρg ; the recombination operator is instead identified in the way the total

behavior of the particle emerges from three components of the speed, always due to the

randomness of the parameters.

Figure 3.5: Sequence of images showing the evolution of a 50-particle swarm in search of the maximum
of an ‘alpine’ function, characterized by numerous peaks and minimum locals. It can be noticed in green
the best positions personal and global, used by the algorithm to compute the speed vector.



Methodology 4
4.1 BEMS code description

The building energy management system (BEMS) for the RSE laboratory has been developed

in Python with the logic of object programming (OOP). In this way is possible to define

classes or modules, associated with activities such as plant control, model calibration and

weather forecast acquisition. Within each class, the variables are first initialized according to

the parameters assigned by the user. Once initialized, classes are able to perform operations.

For example, the calibration class will be able to update the parameters used by the optimizer.

In the optimizer class, it will be possible to build the equations that define the optimization

problem, the objective function, and finally launch the optimization to find the optimal

operation of the heat pump.

The BEMS must coordinate the system and therefore must perform these tasks sequentially.

Figure 4.1: Qualitative block diagram illustrating BEMS architecture.

21



22 CHAPTER 4. METHODOLOGY

Four tasks are then defined which are essential for the operation of BEMS, each of which

must be performed with a certain frequency:

• data acquisition from plant, internal and external environment;

• weather forecast and photovoltaics producibility data acquisition;

• calibration of model parameters;

• optimization of the heat pump.

4.1.1 Calibration of model variables

Calibration is the numerical process by which parameters describing the dynamic thermal

behavior of the building in Equations 3.1 - 3.3, are initially estimated by an approximate

knowledge of the building and then recalculated to ensure that the mathematical model

matches as closely as possible to the physical quantities measured.

This operation is carried out by PSO, the optimization algorithm that minimizes the difference

between the temperature profile measured in the building/laboratory and the temperature

calculated by the RC model, in which the thermal power ΦHC is set.

The objective function of the calibration minimizes the RMSE, which measures the differences

between values predicted by a hypothetical model and the observed values. In other words,

it measures the quality of the fit between the actual data and the predicted model.

It is one of the most frequently used statistic measures of the goodness of fit for machine

learning models:

RMSE =

⌜

⃓

⎷

∑︁N
i=1(x i− x i,meas)2

N
(4.1)

where:

i = variable i;

N = number of data points;

x i = actual observation time series;

x i,meas = estimated times series.

The objective function to minimize during the calibration is therefore:

min

⌜

⃓

⎷

∑︁T
t=1(θ

i
t (x)−θ

i,meas
t )2

T
(4.2)

where x is the parameters array to determine shown in Table 4.1, where the variables of the

lumped capacitance model are described in 3.1.2.
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x[n] Variable Unit

0 C_m J/K

1 H_tr_em W/K

2 H_tr_is W/K

3 H_tr_ms W/K

4 H_tr_w W/K

5 H_ve W/K

6 k_conv -

7 fgc -

Table 4.1: RC model variables.

PSO application in BEMS

Normally, this type of algorithms is initialized by assuming a random particle distribution

within the domain in which the solution is sought. In this application, the parameters of

the RC model can then take any value within the domain set by the user. The process is

described in Figure 4.2:

• the user inserts in the BEMS, during installation, a series of information and physical

characteristics of the building: heated area, perimeter or base lengths of the building

divided by orientation, number of heated floors, transmittance of walls (external

vertical walls), window transmittance, roof transmittance (attic, air layer and roof

cover), floor to floor transmittance and window area divided by orientation, type of

structure and type of plant;

• with this initial information, the model parameters are estimated as proposed by the

Standard UNI ISO 13790;

• calibration module sets the domain as a range around the nominal parameters, ±DW

% (domain width);

• the PSO algorithm is initialized and run to find parameters that minimize the target

function 4.2;

• the optimal parameter set is the new midline of the domain;

• the PSO algorithm is run to find the optimal parameters in the new domain. The

last two points of the process are repeated n times, as specified in the calibration
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parameters. This approach, known as successive zooming, allows to deal with large-

scale problems by first looking for interesting regions within the domain, and then to

look for the best within these regions, doing precisely the next zooms. The goal of this

approach is to look for solutions that maintain the physical sense of the model making

however all the parameters of the model vary, which increases the size of the domain.

Figure 4.2: Calibration of parameters logical sequence.

Once the parameters have been calibrated, the linear system described in Equations 3.1 -

3.3 represents the first block of constraints of an optimization problem to determine the

optimal operation of the heat pump. The optimization problem is outside the scope of this

study, however being interesting to understand how the calibrated parameters are used in

the optimization process, the working principle is described in Appendix A.

4.1.2 Calibration settings and parameters

The calibration function run_calibration requires information to be passed to it to initialize

the parameters and calculate the optimal ones:

def run_calibration (building_properties, loc_settings, cali_settings, logs)

Where loc_settings, cali_settings, building_properties are called dictionaries. Dictionaries (dict)

are a built-in, mutable and unordered type that contains elements (items) formed by a key

and a value. Once the dictionary is created and valued with a set of <key, value> pairs, the

key (which must be unique) can be used to get the corresponding value.

Building_properties

In building_properties are provided information about the building in order to calculate the

RC model initial parameters of Table 4.1.

The idea is that the information supplied in building_properties are those that the hypothetical

user goes to insert in the BEMS in initial phase through a graphical interface in order to

initialize the RC model variables by calculating them as suggested by the UNI ISO 13790.
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First of all, information about the envelope are provided, such as opaque and glazed elements

transmittances and geometries. The calculation of the thermal capacity Cm is made following

the simplified method described by the Standard UNI ISO 12379, as shown in the Standard

Table 12 in Figure 4.3.

Then it is necessary to specify the type of terminal used for heating or cooling, being able to

choose between fancoils, radiant surfaces and radiators that will determine the corresponding

initial value of k_conv.

Figure 4.3: Cm parameter calculation UNI ISO 12379.

building_properties

A_heated Piacenza surface heated [m2]
perimeter 45.0477 perimeter length [m]

n_floors 1 floors heated

U_walls 0.277 external wall transmittance [W/(m2 K)]

U_windows 2.29 windows transmittance [W/(m2 K)]

U_roof 0.288 roof transmittance [W/(m2 K)]

U_ground 0.393 ground transmittance [W/(m2 K)]

A_windows 0, 0, 2.3, 0, 7.3, 0, 0, 0 windows surface for orientation [m2]

ACR 0.2 air change rate [vol/h]

weight light type of building

HVAC fancoils HVAC type

Table 4.2: Building_properties definition.
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Cali_settings

In cali_settings are set the PSO parameters for the simulation and some preliminary informa-

tion. The chosen simulation timestep τ is 900 s. This means that the dataset with a minute

timestep are resample with a quarter of an hour timestep, which is a good compromise

between accuracy and simulation time.

The RC parameter Tm0 is set equal to the mean of the four locals indoor temperature.

PSO parameters, described in 3.3.1, have been set as shown in Table 4.3, where Population

represents the swarm particle number [19]. Maxiter and maxloops are set to make the

algorithm doing 5 iteration 6 times. For each loop the domain is upgraded according to the

DW thus increasing the search width and making the algorithm more exploring.

The heating season depends on the period of cooling or heating.

cali_settings

τ 900 timestep of the simulation

training days variable days of the training period

testing days variable days of the testing period

Tm0 mean of locals indoor temperature parameter for the RC model [°C]

population 100 particles number

c1 1.05 individual coefficient

c2 1 social coefficient

w 0.8 inertial coefficient

DW 0.2,0.5,0.1,0.1,0.5,0.5,0.2,0.5 domain width

maxiter 5 max iterations number

maxloops 6 loop number

season h heating season

Table 4.3: Cali_settings definition.

Loc_settings and solarProcessor

In loc_settings information about the location and the time zone are provided to create

datasets and make solar calculations.

The solar load Φsol contributes have been calculated using the function solarProcessor based

on the Python library pvlib, which exploit the Ineichen and Perez clearsky model [20] to

calculate the irradiances (W/m2) on the opaque and glazed oriented surfaces of the building.

sp = solarProcessor(loc_settings, date_rng, bdf_ext)
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The model requires longitude, latitude and altitude of the location (loc_settings), date and

time (date_rng) and the global solar horizontal radiation (bdf_ext) measured by the weather

station1.

loc_settings

city Piacenza name

lat 45.0477 latitude [°]

lon 9.7004 longitude [°]

alt 45 altitude [m]

tz Europe/Rome time-zone

Table 4.4: Loc_settings definition.

Logs

The argument logs calls the function read_logs used to create the dataset:

def read_logs(logs_folder, ndays, loc_settings)

Where logs_folder opens the folder with saved data in csv format and n_days is the number

of days of the dataset to consider. Every csv dataset is made by 8 columns, which report with

a minute timestep the values of:

• date/time, [yy-mm-dd hh:mm:ss];

• t_ext: outdoor temperature [°C];

• ghi: global horizontal radiation [W/m2];

• ti_a: thermal zone A indoor temperature [°C];

• ti_b: thermal zone B indoor temperature [°C];

• ti_c: thermal zone C indoor temperature [°C];

• ti_d: thermal zone D indoor temperature [°C];

• q_fc: sum of the fancoils power [W].

Data are provided by the weather station and measures from the laboratory instruments and

probes as described in 2.2.

q_fc represents ΦHC and is given by the sum of each fancoil thermal power.

1For the reader interested in going into greater details about the pvlib library: https://pvlib-python.
readthedocs.io/en/stable

https://pvlib-python.readthedocs.io/en/stable
https://pvlib-python.readthedocs.io/en/stable
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4.2 Training and testing length

4.2.1 Machine Learning dataset

The grey box models are the most interesting in MPC-oriented models, however these require

a high attention in their implementation for various reasons [21].

The first reason concerns the accessibility of data. The problem concerns all phases of data

acquisition: sensing, transmitting and storing.

The second challenge of identifying MPC-oriented models is calibrating them to real building

operation. The accurate calibration of parameters is an example of Machine Learning. Since

the scope is to predict the internal temperature, once is given to the model the nominal

starting parameters, is necessary to give a dataset to ‘train’ the algorithm to match the

objective function.

The machine learning procedure is composed by the following steps as shown in Figure 4.4:

• splitting dataset into training and testing;

• using training data to train the model;

• producing the model;

• testing the model and determine the accuracy.

Training data is kind of labeled data set used to train the machine learning algorithm to

make it learn from such data sets and increase the accuracy while predating the results.

After using the training data sets, each machine learning model needs to be tested to check

the accuracy and validate the model prediction, this is made exploiting the testing dataset.

Figure 4.4: Machine Learning dataset splitting.
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4.2.2 Training and testing length analysis

The scope of the experimental tests is to analyze the calibration accuracy on different training

and testing periods. Three dataset from measures have been used to test the calibration in

the heating season:

• Winter 1: from 09/11/2020 to 17/11/2020;

• Winter 2: from 08/12/2020 to 16/12/2020;

• Winter 3: from 20/01/2021 to 28/01/2021.

The choice of training days is important to verify the learning of the model, while the duration

of testing period is interesting to understand with what frequency it will be appropriate to

perform the calibration for practical purposes.

Through the Python code in cali_settings, it is possible for each dataset to chose the fraction

of data dedicated to train and the fraction dedicated to test the model, starting from the last

data of the dataset. So if a dataset is made by 30 days, if 15 days of training and 2 of testing

are chosen, only the last 17 days of the dataset will be considered.

The parameter of the function run_calibration are set as shown in Table 4.2, Table 4.3 and

Table 4.4. The Standard UNI ISO 12379 does not specify how to define the type of building,

however being the laboratory a prefabricated structure, it has been chosen to consider it as

‘light’. The considerations on the choice of these parameters and their effect in the calibration

were subsequently analyzed and described in 5.5.

The calibration is made with a 15 minutes timestep.

Is important to take into account that being PSO an heuristic algorithm, by the nature of the

model each run could potentially be different from the previous and the next.

For this reason every test has been performed 10 times through a for cycle, then it has been

calculated the mean (Mn) and median (Me) RMSE and the standard deviation (σ).

When observing the standard deviation of the results, it was considered that 10 tests were

enough to consider the results to be reliable.

Due to a significant number of outliers in some results, which result from convergence to

local minimum during model identification, we focus mainly on the analysis of medians

instead of means. However, the spread of data are discussed and presented as well in some

case.

It has been chosen to test the calibration for every dataset always on 1 and 2 days of testing.

This is because the forecast accuracy is optimal in a range of 1 or 2 days, therefore for

practical uses is not interesting to extend the testing range.
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4.3 EnergyPlus validation

Before proceeding with energy demand calculation an to extend the calibration tests in

simulated buildings, it is important to verify the effectiveness of the software used. In fact,

for the tests to have a practical validity, it is necessary that EnergyPlus will be actually able

to predict the effective indoor temperature trend of the real building with sufficient accuracy.

If the difference between the real indoor temperature and the simulated is sufficiently low,

then the model can be used to calculate the energy demand and the design thermal power

of the heat pump and the calibration code can be tested in various virtual environments of

different characteristics and allows to extend the research field to real building typologies.

To validate the model, a period of 7 days has been chosen. That means that the indoor

temperature measured from the laboratory is logged in a period of time of 7 days, in order

to compare the results with the software simulation.

The best validation period has been find after many trials and finally, the one in which the

boundary conditions were best known has been chosen.

4.3.1 Model setting

First of all the building has been drawn in Sketch Up (Figure 4.5) by reference to the

geometrical characteristics described in Chapter 2. Here the main structures that divide the

various thermal zones of the building are designed.

The thermal model shall consider as a heated zone that consists of rooms A, B, C and D.

Rooms E and F shall constitute an adjacent zone not heated.

• Thermal zones A, B, C, D: rooms of RSE laboratory, heated and were measurement

probes are placed;

• Thermal zones E, F: adjacent locals; belong to the same structure, but controlled by

other people; because the use and the position of the two rooms are similar, they have

been considered as a single thermal zone called Thermal zone EF;

• Attic: thermal zone between the roof and the ceiling tiles; not heated.

Once the building has been drawn and the thermal zones are matched, it is possible to upload

the model in OpenStudio, which is a software tools to support the building energy modeling

in EnergyPlus.

To generate the idf file and to edit it with the EnergyPlus editor is in fact necessary to run

before the simulation in Openstudio.

In the period considered the laboratory was heated intermittently through 4 fancoils,

arranged one for each thermal zone, controlled through a thermostat set to maintain the

temperature between 20 °C± 2 °C. The power of each fancoil have been inserted in EnergyPlus

in the section Schedule:file, through which it is possible to create a schedule in csv format
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Figure 4.5: SketchUp model, South-East view.

Figure 4.6: Thermal zones rendering, South-East view.

with the power values hour by hour, to be assigned to the internal load, defined in the section

Other Equipments.

To make the test more accurate, so as not to have transients that could have influenced the

evaluation, before the start of the validation period a setpoint equal to the actual temperature

measured in rooms A, B, C and D has been set. For the adjacent thermal zone EF, on the basis

of the information provided by the users, a constant setpoint of 17 °C has been set. These

setpoints were then eliminated at the beginning of the validation at 10 am on 21 January to

allow the temperature to vary in the rooms.

The logic used in the insertion of the various parameters of the model and the boundary

conditions, was as follows: first of all, the parameters relating to the data actually measured

or present in the technical reports as weather file, materials data and fancoils power has
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inserted; after that, some modifications has made to the model in order to make it as much

‘real’ as possible.

In the next section are resumed all main parameters settings and choices that have been

made to implement the boundary conditions.

4.3.2 Boundary conditions

Boundary conditions are the most important and critical aspect at the same time, because

the more are carefully considered and set, the accurate will be the final result.

Let’s see the parameters considered for the validation.

• weather conditions: air temperature, solar radiation, ground temperature, air humid-

ity;

• internal heat gains: presence of people or electric equipments;

• thermal envelope: thermal and physical features of the glazing and opaque elements

of the envelope;

• shading devices: presence and use of shading curtains.

Weather conditions

Weather conditions are accurately known thanks to the weather station of the lab; the

Piacenza epw from EnergyPlus website has been edited thanks to the opensource software

Elements2, with those data that had the greatest influence on the internal temperature,

which are:

• external temperature, Te;

• global horizontal radiation, GHi;

• external relative humidity, RHe.

To these is added the radiation diffused on the horizontal, automatically obtained through

Elements internal algorithm, who keeps preserved the psychrometrics and solar relationship

between the variables.

The temperature of the ground is set in the object Site:GroundTemperature:BuildingSurface

constant at 18 °C, how suggested by EnergyPlus.

2https://bigladdersoftware.com/projects/elements

https://bigladdersoftware.com/projects/elements
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Figure 4.7: Elements tool interface.

Thermal envelope

Thermal and physical characteristics of the glazed and opaque elements has been obtained

by the technical report of the building project. The stratigraphy with physical and thermal

characteristics of the materials is reported in Table 4.6. In EnergyPlus is possible to provide

additional information about the materials. To make the model more accurate, the solar

absorbance value of the vertical external walls and of the roof has been corrected. EnergyPlus

provides a default value of 0.7. As the cover is very dark, this value has been increased to

0.8; while the solar absorbance of the vertical external walls has been reduced to 0.2, these

being white. In addition, to take into account the presence of the internal support structure

consisting mostly of wood and steel beams, the density of the internal wall polyurethane,

and of the ceiling panel has been increased respectively to 3000 kg/m3 and to 2300 kg/m3.3

Shading devices

The various internal contributions and the effective positions of the shading curtains has been

decided and recorded by users and technicians of the laboratory. As the curtains remained in

such a position to offer almost total window shading, to implement that, the glazed surfaces

were assigned a coefficient shg equal to 0.1.

3This modification is the result of several tests, trying to make the inertia of the model more similar to the
real one.
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Internal gains and infiltrations

The only internal load in the rooms during the period considered was given by fancoils. The

power of each fancoil is set in a csv file as a fraction of 1000 W. In this way is possible to set

a fractional schedule as required by EnergyPlus and assign it to an hypothetical equipment

with a design power of 1000 W. After many tries, it has been chosen appropriate to set a

radiant fraction of 35 %.

No household appliance, light bulb or electronic appliance was turned on, just as no person

entered and used the laboratory. The infiltrations have been kept low, equal to 0.3 for all

the thermal zones as the windows and the doors have always remained closed during the

validation.

The run period goes from 01/15 to 01/29, with a hourly timestep, while the valida-

tion period goes from 01/21 10:00 to 01/28 14:00. This difference is set to avoid the

inaccuracy due to the possible initial transient, as explained in the previous section.

Figure 4.8: EnergyPlus fancoils load setting.
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4.4 Laboratory energy demand

Once the model has been created and validated, to calculate the energy needs in heating

season and cooling season, the set points and internal loads have been set through the

schedules of Openstudio.

All the boundary conditions related to the model and previously seen have remained un-

changed except for the internal loads that have been set following the indications of the

Standard EN 16798 [25]. The Standard reports the parameters of environmental comfort,

lighting and acoustic for design conditions and energy assessment. In the Appendix C (infor-

mative) of the norm they come brought back parameters and set-points with the relative

profiles of use. The environments considered are: school, kindergarten, department store,

meeting room, office, single office, restaurant, residential apartment and single-family resi-

dential house. For each type of environment are defined: the time of use, internal loads and

set-points. For internal loads, the occupancy density, the thermal loads due to the occupants,

the thermal loads due to the equipment, the production of steam and carbon dioxide are

specified. As for setpoints, the values for operating temperature, ventilation rate, relative

humidity and carbon dioxide concentration are defined. As for the residential sector, the

Standard EN 16798 covers two categories: the apartment and the single-family house. In

this case it has been chosen to refer to a residential apartment.

Below, the description of the internal loads and setpoints.

Thermostat setpoint

Piacenza is located in italian climatic Zone E, where the heating season lasts form 15 October

to 15. The regulation actually provides a constant setpoint of 20 ºC, while the cooling

setpoint has been set constant to 26 °C.

Internal load

Internal loads are given by people and electric equipments and they have been set as indicated

in Table 4.5. The Figure 4.11 shows the daily building occupation during the week and the

equipments use in percentage of the total power.

The sensible fraction in the 67 % of the total while de radiant fraction has ben set equal to

30 % of the total power.

The air changes are set to 0.3 vol/h for all rooms while the solar factor of the windows is set

to 0.6. In the validation period this value has been reduced to take into account the actual

use of the building during that period when the shading curtains where set to offer almost

total window shading. In this case we are interested in an average behavior during the year,

for which a higher solar factor is more appropriate.
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Internal loads

People 28.3 m2/person

People (total) 4.2 W/m2

People (sensible) 2.8 W/m2

Equipments 3 W/m2

Table 4.5: EN 16798 apartment internal loads.

Figure 4.9: Heating setpoint.

Figure 4.10: Cooling setpoint.
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Figure 4.11: People occupancy time profile.

Figure 4.12: Equipments use time profile.
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4.5 Simulated building structures application

After the analysis of the optimal length of training and testing period from the real measures

of the laboratory, the aim is to deepen the study to other types of building in order verify the

the behavior of the calibration and to extend the results.

Two types of building are considered, lightweight and heavyweight. The first type involves

the RSE laboratory as it is and the RSE laboratory with a lower insulation. It has been chosen

to run the simulation also for the laboratory in order to create a simulated environment also

for the case study and to make some comparison with heavyweight structures with the same

boundary conditions.

The heavyweight buildings have been chosen to represent typical situations of a single

family houses built in different years and with different transmittance values. Therefore five

different building type for the simulations have been set. Each code refers to a different

stratigraphy of the envelope:

• lightweight structures:

- BLAB refers to the RSE laboratory;

- BLAB_ni refers to the RSE laboratory, but with a lower insulation;

• heavyweight structures:

- B70 refers to a typical single family house in Italy, built between 1976 and 1990;

- B90 refers to a typical single family house in Italy, built between 1991 and 2005;

- BN refers to a typical single family house in Italy, built recently; where "N" stands

for new.

Tables 4.6, 4.7, 4.8 and 4.9 show the stratigraphy of walls and horizontal surfaces for the

buildings used in the simulations. In Table 4.11, the total transmittances of the opaque and

glazed elements are shown. The values of the stratigraphy and the transmittances, except

for the laboratory, has been chosen from Tabula Web tool 4. Obviously, the more recent is

the building, the lower will be the transmittance of the structure, mainly due to an increase

of the insulating layer. The use of the thermal coat allows BN to have an external wall U

value lower than 0.28 W/(m2 K), which is the maximum admitted in climatic zone E in 2021

[26]. In Table 4.10 is also possible to see the fixtures U values. The same door for all the

three type of building has been considered.

After validating the model, these stratigraphy are assigned to the same structures of the

laboratory previously seen. The building geometry and all the boundary conditions are the

same as before, except for the materials of the layers and for the weather. In this case the

simulations have been carried out with epw file is Piacenza TRY, from EnergyPlus website.

4http://webtool.building-typology.eu/#bm

http://webtool.building-typology.eu/#bm
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BLAB_ni

External wall
Thickness Conductivity Density Specific heat Resistance
[m] [W/(m K)] [kg/m3] [kJ/(kg K)] [(m2 K)/W]

Board formwork 0.02 0.14 500 2.52 0.143
Plasterboard 0.025 0.19 660 1.00 0.132
Board formwork 0.02 0.14 500 2.52 0.142

Ground floor
Thickness Conductivity Density Specific heat Resistance
[m] [W/(m K)] [kg/m3] [kJ/(kg K)] [(m2 K)/W]

PVC floor 0.005 0.21 1300 1.45 0.024
Screed 0.05 1.4 2200 1.05 0.036
XPS insulation 0.05 0.037 40 1.45 0.135
Polyethylene
sheet

0.001 0.4 90 1.00 0.003

Light concrete 0.07 0.1 520 1.05 0.7
Concrete base 0.15 2.3 2000 1.00 0.065

Roof
Thickness Conductivity Density Specific heat Resistance
[m] [W/(m K)] [kg/m3] [kJ/(kg K)] [(m2 K)/W]

Polyurethane 0.1 0.03 120 1.00 3.33

False ceiling
Thickness Conductivity Density Specific heat Resistance
[m] [W/(m K)] [kg/m3] [kJ/(kg K)] [(m2 K)/W]

Panels 0.1 0.03 120 1.00 3.33

Internal wall
Thickness Conductivity Density Specific heat Resistance
[m] [W/(m K)] [kg/m3] [kJ/(kg K)] [(m2 K)/W]

Polyurethane 0.1 0.03 130 1.00 3.33

Table 4.6: Simulated laboratory with a lower insulation.
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B70

External wall
Thickness Conductivity Density Specific heat Resistance
[m] [W/(m K)] [kg/m3] [kJ/(kg K)] [(m2 K)/W]

External plaster 0.015 0.9 1800 0.91 0.017
Solid brick 0.2 0.608 1800 0.84 0.329
Air gap 0.05 0.151
Hollow brick 0.08 0.36 1200 0.84 0.223
Internal plaster 0.015 0.7 1200 1.01 0.021

Internal wall
Thickness Conductivity Density Specific heat Resistance
[m] [W/(m K)] [kg/m3] [kJ/(kg K)] [(m2 K)/W]

Internal plaster 0.015 0.7 1200 1.01 0.021
Hollow brick 0.08 0.36 1200 0.84 0.222
Internal plaster 0.015 0.7 1200 1.01 0.021

Ceiling
Thickness Conductivity Density Specific heat Resistance
[m] [W/(m K)] [kg/m3] [kJ/(kg K)] [(m2 K)/W]

Screed 0.05 0.21 1300 1.45 0.24
Light concrete 0.07 0.1 520 1.050 0.7
Wooden boards 0.02 0.16 500 1.7 0.125

Roof
Thickness Conductivity Density Specific heat Resistance
[m] [W/(m K)] [kg/m3] [kJ/(kg K)] [(m2 K)/W]

Cement mortar 0.06 0.619 1.200 1.00 0.097
Screed 0.05 0.21 1300 1.45 0.238
Polyethylene
sheet

0.002 0.35 950 1.40 0.006

Slab 0.22 0.742 1800 0.920 0.296
Internal plaster 0.015 0.7 1.200 0.9 0.021

Ground floor
Thickness Conductivity Density Specific heat Resistance
[m] [W/(m K)] [kg/m3] [kJ/(kg K)] [(m2 K)/W]

Gravel 0.2 0.7 1500 0.85 0.286
Bitumen 0.002 0.23 1400 1.00 0.009
Concrete base 0.15 2.3 2000 1.050 0.065
Light concrete 0.07 0.1 520 1.050 0.7
Cement mortar 0.06 0.619 1.200 1.00 0.097
Ceramic tile 0.015 1.2 2300 1.00 0.013

Table 4.7: 1976 to 1990 building stratigraphy.
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B90

External wall
Thickness Conductivity Density Specific heat Resistance
[m] [W/(m K)] [kg/m3] [kJ/(kg K)] [(m2 K)/W]

External plaster 0.015 0.9 1800 0.91 0.017
Solid brick 0.2 0.608 1800 0.84 0.329
External insula-
tion

0.04 0.053 20 1.45 0.755

Hollow brick 0.08 0.36 1200 0.84 0.222
Internal plaster 0.015 0.7 1200 1.01 0.021

Internal wall
Thickness Conductivity Density Specific heat Resistance
[m] [W/(m K)] [kg/m3] [kJ/(kg K)] [(m2 K)/W]

External plaster 0.015 0.9 1800 0.91 0.016
Hollow brick 0.08 0.36 1200 0.84 0.222
Internal plaster 0.015 0.7 1200 1.01 0.021

Ceiling
Thickness Conductivity Density Specific heat Resistance
[m] [W/(m K)] [kg/m3] [kJ/(kg K)] [(m2 K)/W]

Screed 0.05 0.21 1300 1.45 0.24
Light concrete 0.07 0.1 520 1.050 0.7
Wooden boards 0.02 0.16 500 1.7 0.125

Roof
Thickness Conductivity Density Specific heat Resistance
[m] [W/(m K)] [kg/m3] [kJ/(kg K)] [(m2 K)/W]

Cement mortar 0.06 0.619 1.200 1.00 0.097
Screed 0.05 0.21 1300 1.45 0.238
XPS insulation 0.03 0.037 40 1.450 0.81
Polyethylene
sheet

0.002 0.35 950 1.40 0.006

Slab 0.22 0.742 1800 0.920 0.296
Internal plaster 0.015 0.7 1.200 0.9 0.021

Ground floor
Thickness Conductivity Density Specific heat Resistance
[m] [W/(m K)] [kg/m3] [kJ/(kg K)] [(m2 K)/W]

Gravel 0.2 0.7 1500 0.85 0.286
Bitumen 0.002 0.23 1400 1.00 0.009
Concrete base 0.15 2.3 2000 1.050 0.65
Light concrete 0.07 0.1 520 1.050 0.7
XPS insulation 0.01 0.037 40 1.450 0.27
Polyethylene
sheet

0.002 0.35 950 1.40 0.006

Cement mortar 0.06 0.619 1.200 1.00 0.097
Ceramic tile 0.015 1.2 2300 1.00 0.013

Table 4.8: 1991 to 2005 building stratigraphy.
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BN

External wall
Thickness Conductivity Density Specific heat Resistance
[m] [W/(m K)] [kg/m3] [kJ/(kg K)] [(m2 K)/W]

External plaster 0.015 0.9 1800 0.91 0.017
External insula-
tion

0.16 0.053 20 1.45 3.00

Hollow brick 0.16 0.36 1200 0.84 0.444
Internal plaster 0.015 0.7 1200 1.01 0.021

Internal wall
Thickness Conductivity Density Specific heat Resistance
[m] [W/(m K)] [kg/m3] [kJ/(kg K)] [(m2 K)/W]

External plaster 0.02 0.9 1800 0.91 0.022
Hollow brick 0.08 0.36 1200 0.84 0.222
Internal plaster 0.02 0.7 1200 1.01 0.029

Ceiling
Thickness Conductivity Density Specific heat Resistance
[m] [W/(m K)] [kg/m3] [kJ/(kg K)] [(m2 K)/W]

Screed 0.05 0.21 1300 1.45 0.238
Light concrete 0.07 0.1 520 1.050 0.7
Wooden boards 0.02 0.16 500 1.7 0.125

Roof
Thickness Conductivity Density Specific heat Resistance
[m] [W/(m K)] [kg/m3] [kJ/(kg K)] [(m2 K)/W]

Cement mortar 0.06 0.619 1.200 1.00 0.097
Screed 0.05 0.21 1300 1.45 0.238
XPS insulation 0.09 0.037 40 1.050 1.351
Polyethylene
sheet

0.002 0.35 950 1.40 2.43

Slab 0.22 0.742 1800 0.920 0.296
Internal plaster 0.015 0.7 1.200 0.9 0.021

Ground floor
Thickness Conductivity Density Specific heat Resistance
[m] [W/(m K)] [kg/m3] [kJ/(kg K)] [(m2 K)/W]

Gravel 0.2 0.7 1500 0.85 0.286
Bitumen 0.002 0.23 1400 1.00 0.009
Concrete base 0.15 2.3 2000 1.050 0.065
Light concrete 0.07 0.1 520 1.050 0.7
XPS insulation 0.08 0.037 40 1.050 2.16
Polyethylene
sheet

0.002 0.35 950 1.40 0.006

Cement mortar 0.06 0.619 1.200 1.00 0.097
Ceramic tile 0.015 1.2 2300 1.00 0.013

Table 4.9: Recent building stratigraphy (from 2006).
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heavyweight structures

Total B70 B90 BN
transmittances [W/(m2 K)] [W/(m2 K)] [W/(m2 K)]

External wall 1.175 0.687 0.277
Roof 1.291 0.631 0.312
Ground floor 0.751 0.622 0.286

Fixture B70 B90 BN
transmittances [W/(m2 K)] [W/(m2 K)] [W/(m2 K)]

Windows 2.29 2.29 1.530
Door 1.539 1.539 1.539

Table 4.10: Envelope and fixtures U values.

Lightweight structures

Total BLAB BLAB_ni
transmittances [W/(m2 K)] [W/(m2 K)]

External wall 0.277 1.432
Roof 0.288 0.288
Ground floor 0.393 0.393

Fixtures BLAB BLAB_ni
transmittances [W/(m2 K)] [W/(m2 K)]

Windows 2.29 5.67
Door 1.539 1.539

Table 4.11: Envelope and fixtures U values.

There are 4 types of simulated buildings for which the calibration has always been tested

in the same period. The chosen period goes from 23-01 to 31-01 of the Test Reference Year.

The data useful for the training of the model have been extracted from the epw file with 1

hour timestep and uploaded to Python in order to be read by the calibration code. The data,

as previously seen, concern the solar radiation, external temperature, indoor temperature of

the thermal zones and the power provided by fancoils to environments.

The fancoils heating power is extrapolated from the data logs of the laboratory measurements

in that period. In this way the internal temperature of the rooms assumes a behavior similar

to the real one.
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4.6 RC model physical parameters

In 3.1 have been described the advantages of using a grey box model in practical applications.

These models, thanks to the data for machine learning, allow to reach a discreet precision

despite a brief knowledge of the physical and thermal characteristics of the structures. What

makes these models interesting and differentiates them from black boxes and purely statistical

models is that they retain the physical sense of optimized parameters that minimize the

objective function, reproducing the dynamic behavior of the building with a smaller number

of data.

The code has been developed to make the user insert the nominal parameters of the building

into an hypothetical graphical interface of a computer. However, physical parameters, correct

transmittances, thermal capacities and solar factors are not always easy to calculate with high

precision. The purpose of the investigation is therefore to determine whether the accuracy

of the initial parameters influences calibration.

For these tests the initial parameters were set in 3 different ways and for each set 100 tests

were carried out (run):

• NOM: the initial parameters are set equal to the nominal parameters (parameters

calculated on the basis of the real transmittances and capacity of the building) as in

the calibration tests;

• RNDDW: the initial parameters are set at each run randomly within a range defined by

the previously defined DW; in this way the physical sense and the order of magnitude

of the parameters is conserved;

• RND100: the initial parameters are set completely randomly by multiplying the values

by a random number between 0 and 100; in this way the order of magnitude and

physical sense of the parameters are deliberately lost.

All the simulation have been carried out with 4 days training and 1 day testing on the BN

structure, which has shown the best calibration results and stability.

The average RMSE over the training and testing period and the standard deviation were

calculated for each test set. By adimensioning the parameters, it was then possible to

calculate the RMSE_parameters, which indicates for each run how much the optimized

parameters differ from the nominals.



Results 5
5.1 Training and testing length

Winter 1, 1-21 training days, 1,2 testing days

First of all the dataset Winter 1 has been considered.

The survey started by analyzing for 1 and 2 days of testing, the optimal duration of the

training period up to 21 days of training.

As expected, Table 5.1 and Figure 5.1 show that lower RMSE values are found in training

periods. The trend of RMSE in the training period is increasing with the training days. The

RMSE for 1 day testing is almost always lower than for 2 days testing. The trend is similar

for both periods of testing, that is after high initial values the RMSE seems to lower and

then return to rise as the training rounds increase. This result is consistent with [21] and

therefore suggests to continue the tests focusing on shorter periods, limiting the training

period to 1 week.

The standard deviation is also higher for 2 days testing, and lower for the training results.

1 day testing

ndTR MeTR MeTE MnTR MnTE σTR σTE TeTR TeTE
n. °C °C °C °C °C °C °C °C

1 0.64 0.8 0.63 0.78 0.01 0.09 11.08 8.2

2 0.65 0.74 0.65 0.72 0.02 0.1 11.27 8.2

3 0.65 0.62 0.65 0.64 0.02 0.07 11.29 8.2

5 0.68 0.71 0.68 0.74 0.03 0.08 11.2 8.2

7 0.66 0.72 0.67 0.74 0.03 0.13 10.82 8.2

10 0.7 0.8 0.7 0.79 0.01 0.08 10.85 8.2

14 0.76 1 0.76 0.97 0.02 0.13 11.42 8.2

21 0.87 0.93 0.88 0.94 0.02 0.18 11.72 8.2

45
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2 days testing

ndTR MeTR MeTE MnTR MnTE σTR σTE TeTR TeTE
n. °C °C °C °C °C °C °C °C

1 0.64 0.82 0.64 0.8 0.01 0.13 11.47 9.64

2 0.65 0.69 0.65 0.7 0.02 0.06 11.39 9.64

3 0.63 0.6 0.64 0.61 0.03 0.04 11.21 9.64

5 0.66 0.74 0.66 0.73 0.01 0.07 10.78 9.64

7 0.66 0.81 0.66 0.83 0.01 0.11 10.99 9.64

10 0.7 0.99 0.7 0.98 0.02 0.15 10.98 9.64

14 0.87 0.71 0.88 0.79 0.02 0.14 11.36 9.64

21 0.83 0.94 0.84 0.95 0.02 0.14 11.84 9.64

Table 5.1: Winter 1, 1-21 training, 1,2 testing

Figure 5.1: Winter 1, 1-21 training, 1,2 testing.
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Winter 1, 1-7 training days, 1,2 testing days

Always considering the dataset Winter 1, Table 5.2 and Figure 5.2 show how the model

behaves by testing it for 1, 2, 3, 4, 5, 6 and 7 days of training and 1 and 2 of testing.

The median values of RMSE have decreased compared to the previous case. This suggests

that it makes no sense to push the training beyond 7 days. The results at 1 test day seem to

be more interesting than those at 2 days. The training trend is always increasing with the

days, while the test has always the tendency to lower to a minimum and then grow with

oscillations.

There is a certain recurrence in trends; it seems that from 1 day of training the RMSE value

is lowered to a minimum between 2 and 4 days, and then rises with oscillations. As before

the standard deviation is lower in the training periods and higher values are given in testing

results with 1 day of training.

1 day testing

ndTR MeTR MeTE MnTR MnTE σTR σTE TeTR TeTE
n. °C °C °C °C °C °C °C °C

1 0.63 0.77 0.63 0.77 0.01 0.12 11.08 8.2

2 0.65 0.64 0.65 0.67 0.02 0.09 11.27 8.2

3 0.65 0.63 0.65 0.68 0.01 0.08 11.29 8.2

4 0.64 0.57 0.65 0.59 0.01 0.04 11.18 8.2

5 0.67 0.77 0.67 0.77 0.02 0.09 11.2 8.2

6 0.65 0.69 0.66 0.73 0.03 0.08 10.83 8.2

7 0.68 0.66 0.7 0.68 0.04 0.11 10.82 8.2
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2 days testing

ndTR MeTR MeTE MnTR MnTE σTR σTE TeTR TeTE
n. °C °C °C °C °C °C °C °C

1 0.65 0.82 0.65 0.82 0.01 0.09 11.47 9.64

2 0.63 0.63 0.64 0.66 0.01 0.07 11.39 9.64

3 0.65 0.63 0.65 0.63 0.02 0.03 11.21 9.64

4 0.66 0.81 0.66 0.81 0.02 0.05 11.23 9.64

5 0.66 0.84 0.66 0.81 0.02 0.08 10.78 9.64

6 0.68 0.7 0.68 0.72 0.03 0.08 10.78 9.64

7 0.66 0.76 0.66 0.8 0.02 0.15 10.99 9.64

Table 5.2: Winter 1, 1-7 training, 1,2 testing.

Figure 5.2: Winter 1, 1-7 training, 1,2 testing
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Winter 2, 1-7 training days

Table 5.3 and Figure 5.3 show that for this dataset the RMSE values are quite higher than

before, this is maybe due to an higher variability of weather conditions or operating conditions,

probably due the presence of people in the building. However the trends seems to be the

same as seen before. In fact, as before, the RMSE values are lower for one day testing and

the curve has a minimum between 2 and for days of training.

1 day testing

ndTR MeTR MeTE MnTR MnTE σTR σTE TeTR TeTE

n. °C °C °C °C °C °C °C °C

1 1.08 1.22 1.09 1.21 0.03 0.1 3.46 6.5

2 0.91 0.96 0.92 0.96 0.03 0.04 2.05 6.5

3 0.96 0.99 0.96 1 0.03 0.05 2.11 6.5

4 0.94 0.97 0.94 0.98 0.02 0.03 2.67 6.5

5 0.97 1.09 0.97 1.09 0.04 0.1 2.84 6.5

6 1.16 1.47 1.16 1.41 0.03 0.16 3.37 6.5

7 1.18 1.55 1.19 1.59 0.03 0.14 3.57 6.5

2 days testing

ndTR MeTR MeTE MnTR MnTE σTR σTE TeTR TeTE

n. °C °C °C °C °C °C °C °C

1 0.78 1.09 0.78 1.09 0.02 0.13 0.65 4.98

2 0.86 1.03 0.86 1.05 0.02 0.06 1.43 4.98

3 0.9 1.11 0.9 1.12 0.03 0.05 2.4 4.98

4 0.92 1.25 0.93 1.23 0.03 0.12 2.68 4.98

5 1.09 1.63 1.1 1.68 0.05 0.18 3.36 4.98

6 1.13 1.75 1.13 1.75 0.02 0.16 3.59 4.98

7 1.17 2.27 1.17 2.21 0.02 0.15 3.65 4.98

Table 5.3: Winter 2, 1-7 training, 1,2 testing.
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Figure 5.3: Winter 2, 1-7 training, 1,2 testing.



5.1. TRAINING AND TESTING LENGTH 51

Winter 3, 1-7 training days

This datset is the earlier available from the laboratory measures.

Table 5.4 and Figure 5.4 show the lower RMSE values of the datasets until now. The

prediction is in this case very accurate, with a minimum testing RMSE of 0.5 °C with 1 day

testing and 4 of training. The RMSE value as before are lower with one day testing, and also

the trend is quite similar.

Also in this case there is a high RMSE for 1 day of training, then the value stay low until 4-5

days and then starts increasing.

1 day testing

ndTR MeTR MeTE MnTR MnTE σTR σTE TeTR TeTE
n. °C °C °C °C °C °C °C °C

1 0.48 0.61 0.48 0.5 0.02 0.03 2.65 3.16

2 0.58 0.6 0.58 0.87 0.03 0.16 3.69 3.16

3 0.6 0.6 0.61 0.6 0.03 0.06 3.59 3.16

4 0.61 0.51 0.61 0.51 0.02 0.02 3.79 3.16

5 0.59 0.5 0.6 0.51 0.03 0.03 4.1 3.16

6 0.61 0.62 0.61 0.62 0.02 0.04 3.91 3.16

7 0.75 0.9 0.75 0.9 0.02 0.04 3.66 3.16

2 days testing

ndTR MeTR MeTE MnTR MnTE σTR σTE TeTR TeTE
n. °C °C °C °C °C °C °C °C

1 0.5 0.73 0.5 0.85 0.03 0.24 4.73 2.91

2 0.59 0.61 0.59 0.62 0.03 0.06 4.06 2.91

3 0.58 0.7 0.58 0.73 0.02 0.12 4.17 2.91

4 0.56 0.86 0.56 0.85 0.01 0.08 4.47 2.91

5 0.56 0.94 0.57 0.93 0.02 0.13 4.16 2.91

6 0.7 1.08 0.7 1.1 0.01 0.08 3.83 2.91

7 1.18 1.81 1.18 1.81 0.01 0.07 3.43 2.91

Table 5.4: Winter 3, 1-7 training, 1,2 testing.
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Figure 5.4: Winter 3, 1-7 training, 1,2 testing.
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5.1.1 Interpretation

The purpose of the survey was to identify the best training and testing periods to minimize

RMSE and achieve a better calibration process.

Analysis of the results shows that:

• the best RMSE are reached in training periods; this is an expected result that demon-

strates a proper basic operation of the algorithm. The model is trained on the basis of

training period data and for this reason it is expected that in that period the RMSE is

better;

• training period RMSE increases with training length; this is because with each addi-

tional training day, the parameters are estimated for an average day instead of any

one particular day;

• compare to 1 and 2 days, the best RMSE results are obtained with 1 day of testing; on

average it was more convenient to have 1 day of testing for the algorithm;

• the trend of RMSE in the testing period seems to be similar for 1 and 2 days; the trend

generally seems to be a curve that from 1 training day drops to reach a minimum value

between 2 and 4 days and then return to rise.

In conclusion it can be said that for practical purposes, it seems to be convenient to carry out

the calibration daily. In fact, for 1 day of testing, you get better results in terms of RMSE.

The training of the predictive algorithm should instead be done for a period of time between

2 and 4/5 days.

It is difficult in this case to decree a precise number of days, because it strongly depends on

the variability of the boundary conditions in that given period.

Training the algorithm with too many days is likely to take into account even days with

average temperatures and average solar radiation very different from the testing period and

this is because the training period RMSE increases with training length.

This also proves that the algorithm works well if the boundary conditions in the training

period are similar to those in the test period. This applies both to weather conditions and to

operations inside the building.

Predictive models typically need a high number of data and the higher the number of data

the greater the accuracy. This is true within certain limits due to ‘overfitting’.

Overfitting refers to a model that models the training data too well. It happens when a model

learns the detail and noise in the training data to the extent that it negatively impacts the

performance of the model on new data. This means that the noise or random fluctuations in

the training data is picked up and learned as concepts by the model.

Overfitting is more likely with nonparametric and nonlinear models that have more flexibility

when learning a target function.
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In a model of this kind training the algorithm with too many days or with days in periods of

change season where the conditions are very variable from day to day can cause a loss of

accuracy.

It has generally been seen as the best results have been obtained for dataset Winter 3. This

is reasonable because in this period there was no people in the building, no internal loads

have been activated, the setpoint of the building has been set at a constant interval and the

weather conditions have been repeated with more regularity in the periods. Obviously, the

more is the control over the boundary conditions, the more the prediction will be accurate.

Also opening the windows randomly, activating an internal electrical load or even just the

presence of an extra person inside the building can create an ‘anomaly’ or imbalance in the

learning process.

To show this, it is possible to compare the indoor temperature trends for two different

datasets. The Figure 5.5 shows the mean indoor temperature in training and testing for the

dataset Winter 1, while the Figure 5.7 shows the indoor temperature for the dataset Winter

3.

In Winter 1 with 10 days of training and 2 of testing the median RMSE is equal to 0.99 °C as

shown in Figure 5.6 and the accuracy is quite bad, due to some noisy data and to a different

thermostat setting for a different handling of the building during the periods.

In the second case, as shown in Figure 5.8, the average trend of the indoor temperature is

very similar in the two periods, due to similar boundary condition, in fact in this case the

RMSE is equal to 0.51 °C.

Figure 5.5: Mean indoor temperature in Winter 1 in training (10 days) and testing period (2 days).
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Figure 5.6: Calibration accuracy in Winter 1 testing period (2 days).

Figure 5.7: Mean indoor temperature in Winter 3 in training (4 days) and testing period (1 day).

Figure 5.8: Calibration accuracy in Winter 3 testing period (1 day).
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5.2 EnergyPlus validation

Validating the model means verifying that this closely behaves as the real building, matching

the indoor temperature. Therefore in this part, the goal was to create a model of the

laboratory as close to reality as possible in order to use it to make some energy demand

consideration and to use it to extend the results to other building typologies. All the boundary

conditions that could influence the internal temperature have been therefore implemented

in detail.

The best result led to a significantly low RMSE equal to 0.75 °C.

Such a low value of RMSE means that the building is well modeled. Is it important to say

that has been possible to reach this results thanks to the geometrical and physical simplicity

of the building and thanks to the elevate knowledge and control of the boundary conditions.

Moreover in the period form 21/01 to 28/01 there was not presence of people in the building

and all electric loads were turned off; this obviously helps the accuracy of the model.

The small gap between the two curves shown in Figure 5.9 probably depends on the different

thermal inertia of the structures, which is the most critical parameter to implement. This is

because EnergyPlus is not optimized to model the internal frame of the building made of

wood and steel beams. To take this into account, the density of internal structures has been

arbitrarily raised to increase inertia and reduce RMSE.

Figure 5.9: Indoor temperature comparison between measured and simulated by EnergyPlus.
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5.3 Laboratory energy demand

5.3.1 Internal loads

The first simulation has been made with these boundary conditions:

• heating setpoint 20 °C; cooling setpoint 26 °C, latent + sensible;

• Internal loads Standard EN16798;

• windows solar heat gain = 0.6;

• ACR = 0.3 vol/h;

• heating season 15 October - 15 April;

• weather: Piacenza TRY from EnergyPlus website.

Table 5.5 shows heating and cooling energy demand and the peak power.

Figure 5.10 and 5.11 show the trend of the indoor temperature of the thermal zones and the

timestep energy demand during the whole year.

Heating season Cooling season

Energy demand Peak power Energy demand Peak power

[kWh/m2] [kW] [kWh/m2] [kW]

68.3 2.22 13.1 1.71

Table 5.5: RSE lab energy demand, internal loads

Figure 5.10: Zone air temperatures, internal loads
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Figure 5.11: Heating and cooling timestep energy demands, internal loads

5.3.2 NO internal loads

The second simulation has been made with the same boundary conditions as before, but this

time with no internal loads:

• heating setpoint 20 °C; cooling setpoint 26 °C, latent + sensible;

• Internal loads = 0;

• windows solar heat gain = 0.6;

• ACR = 0.3 vol/h;

• heating season 15 October - 15 April;

• weather: Piacenza TRY from EnergyPlus website.

Table 5.6 shows the heating and cooling energy demand and the peak power. Figure 5.12

and 5.13 show the trend of the indoor temperature of the thermal zones and the timestep

energy demand during the whole year.

Heating season Cooling season

Energy demand Peak power Energy demand Peak power

[kWh/m2] [kW] [kWh/m2] [kW]

82.4 2.42 6.3 1.48

Table 5.6: RSE lab energy demand, NO internal loads
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Figure 5.12: Zone air temperatures, NO internal loads

Figure 5.13: Heating and cooling timestep energy demands, NO internal loads
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5.4 Simulated buildings training and testing

BLAB, 1-7 training, 1,2 testing

The first dataset is obtained by running the simulation on EnergyPlus with the laboratory

model.

As for all the previous calibrations with real data, Table 5.7 and Figure 5.14, show lower RMSE

values are reached in training periods and for 1 day of testing. Also the trend similar: one

day is high to give accurate results, but then the median RMSE goes down in correspondence

of the range 2 - 4 training days and then returns to rise.

The lower RMSE value reached in this simulation in testing period is 1.06 °C.

1 day testing

ndTR MeTR MeTE MnTR MnTE σTR σTE TeTR TeTE
n. °C °C °C °C °C °C °C °C

1 0.67 2.05 0.68 2.09 0.03 0.14 2.35 2.1

2 0.51 1.08 0.51 1.07 0.03 0.23 3.65 2.1

3 0.78 1.15 0.78 1.13 0.01 0.15 3.45 2.1

4 0.66 1.29 0.68 1.32 0.03 0.25 2.46 2.1

5 0.95 1.29 0.95 1.22 0.01 0.21 1.71 2.1

6 0.75 1.5 0.74 1.52 0.03 0.4 1.65 2.1

7 0.84 1.62 0.84 1.55 0.03 0.26 1.86 2.1

2 days testing

ndTR MeTR MeTE MnTR MnTE σTR σTE TeTR TeTE
n. °C °C °C °C °C °C °C °C

1 0.27 2.1 0.27 2.19 0.03 0.3 4.94 2.23

2 0.66 1.44 0.66 1.4 0.02 0.14 4 2.23

3 0.56 1.6 0.56 1.67 0.02 0.31 2.5 2.23

4 0.87 1.45 0.87 1.41 0.01 0.13 1.55 2.23

5 0.62 1.6 0.63 1.61 0.02 0.19 1.51 2.23

6 0.77 1.68 0.77 1.65 0.01 0.19 1.77 2.23

7 0.45 1.67 0.45 1.62 0.01 0.32 2.47 2.23

Table 5.7: BLAB, 1-7 training, 1,2 testing.
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Figure 5.14: BLAB, 1-7 training, 1,2 testing.
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BLAB_ni, 1-7 training, 1,2 testing

Table 5.8 and Figure 5.15 show the results of the simulation of the laboratory with a lower

insulation.

As expected, better results are given in training and with 1 day testing. The gap between the

results is this time higher than before, with the RMSE in 2 days testing simulation that stay

always above 2 °C. The trends is similar to the previous simulations.

1 day testing

ndTR MeTR MeTE MnTR MnTE σTR σTE TeTR TeTE
n °C °C °C °C °C °C °C °C

1 0.6 1.59 0.6 1.64 0.02 0.17 2.35 2.1

2 0.62 0.94 0.62 0.96 0.03 0.13 3.65 2.1

3 0.54 0.89 0.55 0.87 0.03 0.15 3.45 2.1

4 0.65 1.19 0.66 1.27 0.03 0.18 2.46 2.1

5 0.88 1.14 0.89 1.13 0.02 0.13 1.71 2.1

6 0.75 1.71 0.75 1.75 0.04 0.28 1.65 2.1

7 0.94 1.89 0.95 2.01 0.05 0.36 1.86 2.1

2 days testing

ndTR MeTR MeTE MnTR MnTE σTR σTE TeTR TeTE
n °C °C °C °C °C °C °C °C

1 0.38 2.89 0.38 2.93 0.01 0.2 4.94 2.23

2 0.32 2.56 0.32 2.57 0.02 0.2 4 2.23

3 0.44 2.36 0.44 2.36 0.01 0.34 2.5 2.23

4 0.79 2.03 0.8 1.97 0.01 0.29 1.55 2.23

5 0.61 2.5 0.61 2.45 0.01 0.22 1.51 2.23

6 0.86 2.48 0.86 2.45 0.01 0.17 1.77 2.23

7 0.47 2.61 0.46 2.46 0.02 0.29 2.47 2.23

Table 5.8: BLAB_ni, 1-7 training, 1,2 testing.
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Figure 5.15: BLAB_ni, 1-7 training, 1,2 testing.
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B70, 1-7 training, 1-2 testing

Table 5.9 and Figure 5.16 show the results of the simulation for the layer B70, the high-weight

structure with the lowest insulation.

What can be immediately noticed are the low standard deviation values that are found in

both training and testing with values very close to 0. In previous tests the standard deviation

was lower in training, but in testing had never been found values so low.

Trends are similar to the previous for lightweight structures.

1 day testing

ndTR MeTR MeTE MnTR MnTE σTR σTE TeTR TeTE
n °C °C °C °C °C °C °C °C

1 0.52 2 0.52 1.99 0.02 0.18 2.35 2.1

2 0.4 0.73 0.4 0.74 0.01 0.05 3.65 2.1

3 0.39 0.38 0.39 0.38 0 0.04 3.45 2.1

4 0.45 0.97 0.45 0.98 0 0.04 2.46 2.1

5 0.53 1.03 0.53 1.03 0 0.07 1.71 2.1

6 0.46 1.2 0.46 1.18 0.01 0.08 1.65 2.1

7 0.44 1.11 0.44 1.09 0 0.08 1.86 2.1

2 days testing

ndTR MeTR MeTE MnTR MnTE σTR σTE TeTR TeTE
n °C °C °C °C °C °C °C °C

1 0.27 2.17 0.27 2.17 0.01 0.19 4.94 2.23

2 0.38 0.73 0.38 0.74 0 0.08 4 2.23

3 0.38 1.05 0.38 1.05 0 0.04 2.5 2.23

4 0.48 1.16 0.48 1.16 0 0.03 1.55 2.23

5 0.39 1.11 0.4 1.12 0.01 0.07 1.51 2.23

6 0.38 1.05 0.38 1.07 0.01 0.11 1.77 2.23

7 0.32 1.02 0.32 1.03 0.01 0.07 2.47 2.23

Table 5.9: B70, 1-7 training, 1,2 testing.
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Figure 5.16: B70, 1-7 training, 1,2 testing.
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B90, 1-7 training, 1,2 testing

Table 5.10 and Figure 5.17 show the results of the simulation for the layer B90.

RMSE values have become on average even lower, with standard deviation values very close

to 0 except for the first simulation. RMSE for one day testing is always lower than one day

and this time the values stay very low also for higher training days.

The standard deviation of results is low except for one day of training.

1 day testing

ndTR MeTR MeTE MnTR MnTE σTR σTE TeTR TeTE
n °C °C °C °C °C °C °C °C

1 0.44 1.61 0.44 1.61 0.02 0.17 2.35 2.1

2 0.27 0.51 0.27 0.51 0.01 0.06 3.65 2.1

3 0.45 0.38 0.45 0.37 0 0.03 3.45 2.1

4 0.42 0.8 0.42 0.79 0 0.05 2.46 2.1

5 0.5 0.72 0.5 0.72 0 0.05 1.71 2.1

6 0.41 0.78 0.41 0.78 0 0.08 1.65 2.1

7 0.4 0.79 0.4 0.81 0 0.07 1.86 2.1

2 days testing

ndTR MeTR MeTE MnTR MnTE σTR σTE TeTR TeTE
n °C °C °C °C °C °C °C °C

1 0.16 1.74 0.16 1.69 0.01 0.26 4.94 2.23

2 0.41 0.67 0.41 0.66 0 0.05 4 2.23

3 0.36 0.84 0.36 0.84 0 0.03 2.5 2.23

4 0.45 0.81 0.45 0.81 0 0.05 1.55 2.23

5 0.35 0.79 0.35 0.78 0.01 0.05 1.51 2.23

6 0.34 0.74 0.34 0.74 0.01 0.04 1.77 2.23

7 0.3 0.77 0.3 0.76 0 0.06 2.47 2.23

Table 5.10: B90, 1-7 training, 1,2 testing.
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Figure 5.17: B90, 1-7 training, 1,2 testing.
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BN, 1-7 training, 1,2 testing

Table 5.11 and Figure 5.18 show the results of the simulation for the layer BN.

The simulation run with the more insulating structure shows the lowest RMSE values both

for training and testing. The trend of the RMSE is similar to the previous tests but the value

stays always below 0.6 °C.

1 day testing

ndTR MeTR MeTE MnTR MnTE σTR σTE TeTR TeTE
n °C °C °C °C °C °C °C °C

1 0.39 1.46 0.39 1.43 0.02 0.13 2.35 2.1

2 0.21 0.41 0.22 0.42 0.02 0.06 3.65 2.1

3 0.4 0.44 0.4 0.45 0 0.06 3.45 2.1

4 0.36 0.54 0.36 0.54 0 0.07 2.46 2.1

5 0.42 0.46 0.42 0.47 0 0.04 1.71 2.1

6 0.32 0.62 0.32 0.59 0 0.08 1.65 2.1

7 0.31 0.52 0.31 0.56 0 0.1 1.86 2.1

2 days testing

ndTR MeTR MeTE MnTR MnTE σTR σTE TeTR TeTE
n °C °C °C °C °C °C °C °C

1 0.12 1.2 0.12 1.24 0 0.18 4.94 2.23

2 0.35 0.55 0.35 0.55 0 0.04 4 2.23

3 0.3 0.58 0.3 0.57 0.01 0.05 2.5 2.23

4 0.37 0.57 0.37 0.58 0 0.02 1.55 2.23

5 0.27 0.55 0.27 0.55 0.01 0.05 1.51 2.23

6 0.26 0.56 0.27 0.56 0.01 0.06 1.77 2.23

7 0.24 0.66 0.24 0.64 0.01 0.1 2.47 2.23

Table 5.11: BN, 1-7 training, 1,2 testing.
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Figure 5.18: BN, 1-7 training, 1,2 testing.
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5.4.1 Interpretation

After testing the calibration algorithm on the basis of data from the laboratory sensors, the

tests were extended to more massive buildings simulated via Energyplus. Five stratigraphy

were simulated divided into two groups, lightweight and heavyweight, and applied to the

laboratory model. For each stratigraphy, tests were carried out with 1 and 2 days of testing

for a training period between 1 and 7 days.

First of all it has been observed that the results have a similar tendency to the previous tests,

from real data.

It is confirmed that:

• training RMSE increases with training length;

• best results are achieved with one day of testing;

• best results are achieved with a training period between 2 and 4 days;

To compare the results, the Figures 5.19, 5.20, 5.21 and 5.22 show for each group of

structure the mean value of the RMSE obtained between 1 and 2 days of testing. The most

interesting result is that lower RMSE are obtained for heaviest and better insulated structures.

The external driving forces that have the greatest effect on the internal temperature are the

solar radiation and the air temperature, while the internal driving forces are in this case

given only by the thermal power provided by fancoils. In general it has been seen as such

power, reaching peak values of 2300 W during the ON periods, has an important effect on

the internal temperature and is preponderant compared to the external driving forces. This

statement is the truest, the more insulated the building is. For badly insulated and light

buildings there is a contrary tendency.

This leads to think that for more insulated structures the calibration becomes less effective

because of the greater oscillations on the internal temperature due to thermal power. In

reality, on equal thermal capacity, the tests show the opposite, namely that the greater the

insulation of the structure, the greater the accuracy of the calibration. This is probably due

to the fact that the trend of the thermal power supplied by fancoils is cyclical as shown in

Figure 5.23, with values that are repeated periodically with the same hourly power in the

period analyzed. This cyclicity of the predominant driving force facilitates machine learning

of the algorithm and allows the achievement of better results in testing periods. For badly

insulated buildings instead the external driving forces are predominant and as these are

subject to greater variability, and worsen the quality of learning.

Also the standard deviation of results is lower for heaviest structure, which indicates more

stability of the calibration.

It can then be said that on equal insulation the calibration is better for buildings more

massive, as observed by comparing the LAB with BN in Figure 5.24. These two structure

have a different thermal capacity but similar transmittances as described in Tables 4.10 and
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4.11. This is because in buildings with a lower thermal capacity both internal and external

driving forces cause more temperature fluctuations making calibration less accurate. Figure

5.23 shows how the indoor temperature in the BLAB structure is more affected by the solar

radiation than in BN.

Figure 5.19: Lightweight median testing RMSE, 1 testing day.

Figure 5.20: Lightweight median testing RMSE, 2 testing days.
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Figure 5.21: Heavyweight median testing RMSE, 1 testing day.

Figure 5.22: Heavyweight median testing RMSE, 2 testing days.
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Figure 5.23: Heavyweight BN and Lightweight BLAB indoor temperature comparison; external and
internal driving force influence.

Figure 5.24: Heavyweight BN and Lightweight BLAB; 1 day testing RMSE comparison.
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5.5 RC model physical parameters

The purpose of the investigation was to determine if the accuracy of the initial parameters

influences the calibration.

So 3 different simulations has been made: NOM, RNDDW and RND100 each with a different

setting of the initial parameters.

The results of the tests are shown in Figures 5.26, 5.27 and 5.28 and resumed in Table 5.12

and Figure 5.25 where the RMSE on calibration and RMSE are resumed.

RMSE_parameters RMSE_train RMSE_test

NOM
mean 0.422 0.359 0.545

σ 0.166 0.004 0.062

RNDDW
mean 0.404 0.359 0.547

σ 0.155 0.004 0.055

RND100
mean 46.000 0.931 1.406

σ 18.840 0.840 0.945

Table 5.12: Means and standard deviations RMSE for RNDDW, RND100 and NOM.

Figure 5.25: Results comparison.
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Figure 5.26: 1 day testing NOM, RMSE on variables and testing.

Figure 5.27: 1 day testing RNDDW, RMSE on variables and testing.

Figure 5.28: 1 day testing RND100, RMSE on variables and testing.
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RNDDW and NOM simulations show very similar results on both parameters and calibra-

tion, with equal averages RMSE and standard deviations. RND100 instead, where the initial

variables do not respect at all the order of magnitude of the parameters, shows completely

different and unsatisfactory results and RMSE much higher than in previous cases. The

simulations show that the PSO, despite a small error in the initial parameters, it still manages

to achieve the best results thanks to the nature of the algorithm itself and to the continuous

updating of the limits of the domain to every iteration that makes it particularly exploratory.

A low RMSE on the parameters indicates that the optimal solution and therefore the global

minimum of the objective function is achieved preserving the physical sense of the parame-

ters. If the error on the initial parameters is very high, the error on the optimal parameters

will be very high to, and the calibration will be affected in accuracy.
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The objective of the study was to develop and test the calibration of a lumped capacitance

model for the prediction of buildings indoor temperature. The reproduction of the thermal

behavior of the building is the first block of constraints of an optimization problem that

aims to minimize the energy costs while maintaining the comfort of the indoor environment.

The aim of the research project is to apply this optimization on the RSE pilot laboratory of

Piacenza in order to develop a BEMS based on predictive control (MPC).

The calibration is the numerical process by which the parameters describing the dynamic

thermal behavior of the building are initially estimated by an approximate knowledge of the

building and then recalculated to ensure that the mathematical model matches as close as

possible to the physical quantities measured. This operation is done by using the heuristic

evolutive PSO, that minimizes the difference between the temperature profile measured in

the building and those calculated by the RC model.

The greater the accuracy of the calibration, the greater the accuracy in the prediction of the

internal temperature and the better the reliability and stability of the optimal controller.

First, the calibration code was applied to the RSE pilot building in Piacenza, using data

from the sensors and the weather station installed in the laboratory. The results from the

implementation of the code in three different periods, have shown that the best training

period is between 2 and 4 days. Calibration yielded better results in the Winter 3 dataset,

in which greater control and cyclicity of boundary conditions led to a better learning, with

a minimum RMSE achieved with 4 days of training and 1 of testing equal to 0.51 °C. In

general, a low training period avoids that the boundary conditions differ significantly from

those of the testing period. On the other hand, a higher number of training days avoids

problems caused by anormal, repentine change in weather conditions. In fact, the variability

of the boundary conditions such as the random opening of a window or the activation of an

electric load can lead to an anomaly in the data that can cause overfitting, thus resulting in a

loss of accuracy. This observation suggests to incorporate indicators related to the boundary

conditions in the numerical procedure of the calibration.

Then, in order to generalize these results, different structures has been simulated using

EnergyPlus to test the calibration in buildings with different insulation and thermal capacity.

The structures have been divided into light and heavy structures and include the simulated

laboratory itself, a typical structure of the 70s, one from the 90s and a recent one with higher

thermal insulation. The different structures were applied to the geometries of the building

77
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modeled on the basis of the laboratory of Piacenza. Before proceeding with the process,

the model was validated by verifying the internal temperature error in a 7 day interval,

demonstrating a fair accuracy with an RMSE of 0.75 °C.

The application of the calibration code to simulated structures confirmed the evidence from

the actual laboratory tests and prompted some further considerations. Better results have

been obtained on the most insulated and massive building. In particular the most insulated

haevyweight structure (BN) has reached a minimum median testing RMSE of 0.41 °C. This

is because the periodical trend of the internal dominant driving force represented by the

fancoils power, allowed an optimal learning of the algorithm. On the contrary, in lightweight

and low insulated structures, external driving forces likes solar radiation and air temperature,

become more important and their variability and uncontrollability leads to a worst learning

of the algorithm. In fact the best testing RMSE achived by the structure BLAB is 1.08 °C.

In general, tests have shown that BEMS systems for minimizing energy costs, are well suited

to be used in newly designed structures, very insulated and high thermal capacity.

In particular, this system has shown a high accuracy especially in cases where there was

greater control and repetitiveness of the internal boundary conditions.

Finally, a further investigation was carried out to understand how the accuracy of the initial

parameters influences the calibration. All tests were conducted on the BN structure with four

training days and one testing day, setting into three different ways the initial parameters:

initial parameters equal to the correct nominal parameters, initial parameters randomly in a

physically meaningful domain so as to maintain the physical sense of the parameters and

randomly multiplying the initial parameters by a number between 0 and 100 deliberately

losing the order of magnitude and the physical sense of the parameters. The results showed

that there are no substantial differences in terms of RMSE in the results obtained with the

initial parameters equal to the correct nominal and those with the initial parameters randomly

selected in a coherent physical neighborhood. In these cases, the average accuracy achieved

by the calibration process and its variance are both unaltered. Conversely, unsatisfactory

results were obtained by setting completely random parameters. Therefore, thanks to the

exploratory nature of the PSO algorithm, a summary knowledge of the physical characteristics

of the building is sufficient to obtain good results, which is a strong practical implication for

the implementation of the proposed optimal controller as a commercial product.

The next step of the research work consists in quantifying the influence of the calibration

accuracy throughout the whole optimization process. In fact, one of the biggest limitations of

this work was the lack of a benchmark to compare the results, which did not make it possible

to make deeper consideration about the calibration accuracy on the overall performance of

the BEMS.

It might then be interesting to compare the grey box model with a neural network based

black box model, which fully exploits the amount of data coming from the laboratory sensors.



Optimization problem description A
The current version of the BEMS controls only the heat pump and the circulation pump

of the secondary water loop (see Figure 2.6). The core of the BEMS is a mixed integer

linear programming (MILP) problem solved in a rolling horizon scheme. This means that the

optimization is repeated with a predetermined sample time. At each step, the operation of

the HVAC system is planned for the next H hours, where H is the horizon of the optimization

problem. The planning consists in determining the state of the heat pump, which consists of

an on/off signal and a frequency signal communicated to the inverter-driven compressor.

The optimization problem consists in the minimization of the economic objective function:

min
∑︂

t

(λb
t wb

t −λ
s
t w

s
t)+
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γ(δ↑t +δ
↓
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Where λb
t and λs

t are respectively the purchase and sale price of electricity; wb
t and ws

t are

the quantities of electricity purchased and sold from/to the grid, and the second summation

is a penalty that is introduced to limit the events in which the air temperature comes out of

comfort limits. The variable δ↑t quantifies the difference between the air temperature and

the maximum temperature allowed when this limit is exceeded. The same happens with δ↓t
when the temperature drops below the minimum allowed temperature. The γ parameter

serves only to weigh appropriately the penalty of the thermal discomfort compared to the

economic objective function. The quantities of electricity bought and sold shall be in line

with the electricity balance obtained by using the POD as the interface between the building

and the electricity distribution network:

wb
t +wpv

t =ws
t +whp

t +wod
t (A.2)

Equation A.2 expresses the equality between the energy entering the building, the result of

the sum of energy bought from the grid and energy produced locally by the photovoltaic

system wpv
t , and the energy coming out of the building that is the sum of the electricity

absorbed by the heat pump whp
t and the other devices wod

t and the one sold to the grid. The

indoor air temperature θ i
t is always between the minimum limit θ i,min

t and the maximum

θ
i,max
t , except when there are breaches by the limits of comfort δ↓t and δt↑.

Two equations are then defined to define these variables:

θ
i,min
t −δ↓t ≤ θ

i
t (A.3)
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θ i
t ≤ θ

i,max
t +δ↑t (A.4)

The temperature overruns so defined shall be positive or zero. The amount of energy absorbed

by the heat pump should therefore be defined. Note that normally the electrical energy

absorbed by the compressor is expressed as the ratio of the thermal energy released by the

condenser and the COP of the machine. Here it is expressed instead as a product between

the thermal energy yielded by the condenser φhc
t and a factor Fhp

t equal to the inverse of

the COP, as shown in Equation A.5. This way of expressing the COP allows to preserve the

linearity of the constraint and therefore of the optimization problem. The factor Fhp
t is then

expressed as a function of the external temperature θ e
t as shown by Equation A.6.

whp
t = Fhp

t φ
hc
t (A.5)

Fhp
t = k0+k1θ

e
t (A.6)

The heat released by the heat pump to the φhc
t plant must always be less or equal to the

nominal heat pump output and coincides, in this model, with the heat released by the

plant to the building. The set of equations and inequalities constitutes the constraints of

the optimization problem and must be repeated for each step within the horizon, that is

∀t ∈ [1,H].

Objective function Minimizing energy costs and dis-
comfort penality

Equation A.1

1st block of constraints RC model of the building Equations 3.1 - 3.3

2nd block of constraints Electric energy balance Equation A.2

3rd block of constraints Thermal comfort limits Equations A.3 - A.4

4th block of constraints Heat pump performance Equation A.5

Table A.1: Objective function and optimization problem constraints.
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