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Abstract

This thesis underlines the importance of the alignment of optical instruments
as necessity for observing the Sky and scientific research. Since Newton’s
rings play a relevant role in the procedure of centration, my thesis focuses on
the displacement of it caused by decentering of a lens. A procedure which
connects this two factors is presented and verified in laboratory. In this way
this thesis is a confirmation that Newton’s rings are useful during alignment.
Ultimately, since we know that the minor error of centration we make the best
performance we get, the centering precision of the mounted lens is calculated.

In detail, Chapter 1 gives only the prerequisites useful for the understand-
ing of the entire thesis. Chapter 2 is an excursus of actual telescopes and
satellites, such as the Large Binocular Telescope and PLAnetary Transits and
Oscillations of stars, whit a short description of alignment of their optical
components. The formation of Newton’s rings is explained in Chapter 3 both
in its historical terms and as interference of two reflections.
In the laboratory, we reproduced an optical setup in order to see Newton’s
rings and confirm the linear relation between the decentering of a lens and
the displacement of Newton’s rings: this is discussed in Chapter 4. Moreover,
the images and results taken with a Charge-Coupled-Device are also reported.
Thanks to the data collected, in Chapter 5, we assess that the lens is aligned
within a certain precision and we give future persective.
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Chapter 1

Optics for astronomy

Before having the central discussion, we will review some results from
geometrical optics.
Geometrical optics adopts a ray theory of light, ignoring many of its wave
and all of its particle properties.

1.1 Rays in dielectric media

The speed of light in a vacuum is a constant, c. Experiments shows that
the phase velocity of light waves in transparent dielectrics like air, water, or
glass, is always less than c. The index of refraction measures the degree to
which a particular material reduces the speed of light wave. If v is the actual
speed of light in a medium (the phase velocity), then the index of refraction
of the material is:

n(λ) =
c

v(λ)
(1.1)

In general, n is an optical property that describes how light propagates through
a material and depends on the chemical and physical (e.g. temperature)
properties of the medium, as well as on wavelength. The change in index of
refraction with wavelength is known as dispersion.

1.2 Laws of geometrical optics

The main laws that describe how rays propagate in a medium are the law
of reflection and the Snell’s law of refraction.

1
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1.2.1 Law of reflection

Consider a reflected surface with a perpendicular axis and a ray propa-
gating toward it at an incidence angle θi, conventionally measured from the
normal of the interface. The ray is reflected at an angle of reflection, θr, given
by the law of reflection:

θi = θr (1.2)

Figure 1.1: Law of reflection

1.2.2 Snell’s law

With regard to refraction, Snell’s law shows us that rays travelling from
a lower index medium to a higher index medium will bend toward the
perpendicular to the interface. Call the lower index of refraction n1, the
higher one n2 and the angle of refraction θR. Snell’s law states:

n1senθi = n2senθR (1.3)

Figure 1.2 illustrates Snell’s law.
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Figure 1.2: Snell’s law

1.3 Spherical surface

An important result in geometrical optics describes reflection and refraction
at a spherical surface.

1.3.1 Reflection from a spherical surface

We examine a concave spherical surface of radius R whose center is at C.
The axis of symmetry of the system is called optical axis and it is marked
in Figure 1.3 as horizontal dotted line. We set up a conventional Cartesian
coordinate system, where z-axis is coincident with the optical axis, ad the
origin is at the vertex of the mirror - point V in the figure (the intersection
of the optical axis and the mirror surface). The y-axis goes upwards on the
page, the x-axis outwards.

We assume paraxial approximation: all incident rays are nearly parallel to
the optical axis and all angles of reflection are small. This latter assumption
means that the diameter of the mirror is small compared to its radius of
curvature. In the figure the ray, that originates at the object at point O on
the optical axis, is reflected to reach the image point I. Note that p = ŌV is
the object distance and q = ¯IV is the image distance. After some calculation
we get the paraxial equation for mirrors :

2

R
=

1

p
+

1

q
(1.4)
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Figure 1.3: Reflection from spherical surface

The distance R/2 is termed the focal length of the mirror, and is often
symbolised by f , so the above equation is usually written as:

1

f
=

1

p
+

1

q
(1.5)

Remark that if p→∞, then q → f . In other words, the mirror reflects every
ray arriving parallel to the optical axis to a common point.

Figure 1.4: The focal point of a concave spherical mirror
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More specifically, the Figure 1.4 illustrates this: a concave mirror gathers
electromagnetic radiation coming from infinity and concentrate it at common
focus F. Note that F̄ V = f .

Figure 1.5: The focal point of a convex spherical mirror

On the other hand, a convex mirror, illustrated in Figure 1.5, has a positive
f , meaning that the focal point lies to the right of V . Clearly, convex mirror
disperses, rather than gathers, parallel rays.

1.3.2 Refraction at a spherical surface

Figure 1.6 illustrates a ray refracted at a spherical interface between media
of differing indices of refraction. The paraxial equation for refraction is:

n2

q
+
n1

p
=

(n2 − n1)

R12

(1.6)

Note that R12, q and p are positive and n1 < n2.
As in the case of mirror, take the focal length, f2, to be the value of q

when p→∞:

f2 =
n2R12

(n2 − n1)
(1.7)

Viceversa, if q →∞, then p = f1

f1 =
n1R12

(n2 − n1)
(1.8)

Figure 1.7 shows the focal length of a convex interface; in the same way we
can illustrate the focal length of a concave surface.
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Figure 1.6: Refraction at spherical interface

1.4 Reflectance

With regard to an incident beam travelling from a medium of a given n1

to a medium of a given n2, the Fresnel’s formula describes what fraction of
the light is reflected and what fraction is refracted.
The reflectance, r, at normal incidence (θi = 0), is given by

r =

(
n2 − n2

1

n2 + n2
1

)2

(1.9)

So, when light incides to a spherical surface (assuming that its index of
refraction is 1.5) the reflectance is 4%. We recall Figure 1.3. By prolonging
back the reflected ray a virtual source appears; this is called ghost source.
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Figure 1.7: The focal length of a convex interface between media of differing index of
refraction

1.5 Thin lenses

Two surfaces in succession (both spherical or one flat and the other
spherical) that separate a media of n1 and a media of n2 constitutes a lens.
A lens is called thin lens if the thickness (the distance along the optical axis
between the two surfaces) is negligible with respect to the radii of curvature,
the focal length and the object, image distances. In other word, we ignore
what happens inside the lens.
Two types of lens exist and are illustrated in the Figure 1.8:

• convergent lens such as double convex lens, plano convex lens, convergent
meniscus

• divergent lens such as double concave lens, plano concave lens, divergent
meniscus.

The paraxial equation for a thin lens can be derived easily by imposing two
paraxial equations for each surface. Call the radii of the first surface, R12 and
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the radii of the second surface, R23. We get:

1

q
+

1

p
= (n2 − n1)

(
1

R12

− 1

R23

)
(1.10)

As we did before, if p→∞, then all rays converge to the same common point
and q = f ′. Therefore the focal length:

1

f ′
= (n2 − n1)

(
1

R12

− 1

R23

)
(1.11)

It is intuitive that the focal length of a thin lens is only one. For a convergent
lens f ′ > 0, R12 > 0, R23 < 0; on the contrary, for a divergent lens f ′ <
0, R12 < 0, R23 > 0. In a convergent meniscus R23 > R12 > 0, f ′ > 0 and
in a divergent meniscus 0 < R23 < R12, f

′ < 0. Definitely, the paraxial or
Gaussian formula for thin lens is:

1

q
+

1

p
=

1

f ′
(1.12)
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Figure 1.8: Different type of lenses: convergent and divergent.

1.6 Image quality: the Airy disk

The wave properties of light set a fundamental limit on the quality of an
optical system’s image. Wavefronts from a point source arrive at a parabolic
mirror as parallel surfaces. The parabolic shape of the mirror converts the
incoming flat wavefronts into reflected spherical wavefronts. These spherical
wavefronts converge at the focal point of the mirror. If the mirror was perfect,
diffraction did not exist, the focal point would be infinitesimally small. We
recall Figure 1.4.

Indeed we know that no perfect mirror without imperfections exist. When
light meets the edge of an optical component, specifically a concave mirror,
some of the energy tries to bend round it as in Figure 1.9. The diffraction
of a plane wavefronts happens at the edges of the mirror. So, the diffracted
wavefronts will interfere as in Figure 1.10.

Despite the fact that the source is a point, its image will have a finite size:
the majority (84%) of the light focuses into a spot or ”disk”. Concentric bright
rings, whose brightness decreases with distance from the center, surround the
very bright central spot, the Airy disk. The angular diameter of the dark ring
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Figure 1.9: Diffraction by the edge of a mirror.

that borders the Airy disk (in the figure 1.10 the blue dotted lines) is:

αA =
2.44λ

D
[radians] (1.13)

where D is the diameter of the mirror and λ is the wavelength of the incoming
light.

In conlusion, we would like to underline that this phenomena occur even
with a lens. We have already marked that a lens is composed of two surfaces.
The first surface causes the interference and the Airy disk forms.
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Figure 1.10: Interference of two diffracted wavefronts.



Chapter 2

The importance of alignment

Finding out new astronomical objects, answering to the questions about the
Universe is one of the most fascinating thing for human being. Telescopes play
a crucial role in order to pursue this goal: lenses have to be good fabricated
and perfectly aligned in an optical system. AIV, Assembly Integration and
Verification includes the procedure of alignment. During this procedure
Newton’s rings appear, so they can be used to achieve the best performance
for a telescope.
We wil give some example of optical systems, such as:

• the Large Binocular Camera, LBC, installed at the prime focus station
of the Large Binocular Telescope;

• the Telescope Optical Unit, TOU, installed in the PLAnetary Transits
and Oscillations of stars.

2.1 LBT

LBT is the result of an Italian, German and American collaboration. The
telescope is located on mount Graham, in Arizona at 3192 m of altitude. The
LBT Scientific Advisory Committee (SAC) has developed the following list
of observational priorities to guide the telescope design:

• Interferometric Imaging 0.4 to 400 µm

• Infrared Imaging / Photometry 2.0 to 30 µm

• Wide Field Multi-object Spectroscopy 0.3 to 1.6 µm

• Faint Object / Long Slit Spectroscopy 0.3 to 30 µm

12
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• High Resolution Spectroscopy 0.3 to 30 µm

It can observe the Universe from the earliest epochs of galaxy formation and
so, it can learn about processes of star formation and faint galaxy evolution.
It can also provide a study of exo-solar planets with the possibility of life
outside our solar system.

2.1.1 Structure and movement

The short focal length of the primary mirrors (F/1.142 1) permits a
compact, quite stiff telescope structure. The base is a concrete pier 20 meters
high and 14 meters in diameter, resting on the mountain bedrock. The
telescope mass is approximately 580 metric tons. The telescope in Figure
2.1 is an altitude-azimuth 2 design: it uses an elevation over an azimuth
mounting. It addresses any point on the sky by tipping to the correct angle

Figure 2.1: Structure of LBT

between zenith and horizon, and rotating around its vertical axis to the
correct heading. So, this type of mounting requires a movement in both axes

1focal ratio is the ratio of the focal length of the telescope related to its aperture. It’s
calculated by dividing the focal length by the aperture. So in our case the focal lenght of
the primary mirror is 9.6 m.

2Azimuth is the angular distance measured clockwise from nord; altitude is the angular
distance measured from the horizon toward zenith.
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to follow the scientific object, but it is not able to chase any target at zenith.
The elevation optical support structure moves on two large C-shaped rings
and the compact azimuth platform transmits the loads directly down to the
pier.

2.1.2 Optical components

The Large Binocular Telescope uses two 8.4 m, F/1.142 primary mirrors
to provide a collecting area equivalent to an 11.8 meter circular aperture. By
having both the primary mirrors on the same mounting (binocular arrange-
ment), the telescope is able to have a resolving power corresponding to a
22.8-meter telescope, or 10 times sharper than the Hubble Space Telescope.

2.1.3 The primary mirrors

The features of the primary mirros are described in the table below:

Features of primary mirrors
Number of primary mirrors 2

Primary spacing 14.417 m center-to-center
Primary physical diameter 8.417 m

Primary focal ratio F/1.142
Central hole physical diameter 0.889 m

Primary figure Parabolic
Primary construction Cast borosilicate honeycomb

28 mm faceplate thickness
Edge thickness 894 mm, plano-concave

Primary Mirror Mass ' 16 metric tons each

The main feature of borosilicate honeycomb primary mirror are:

• relatively low coefficient of thermal expansion.

• the coefficient of thermal expansion (CTE) is 2.8 · 10−6/C.

• the working point is low enough that we can mold it into the complex
honeycomb structures at temperatures which are easy to obtain.

• a good resistance to attack by chemicals. This property is important
because the polished glass surface is recoated with a fresh coating of
aluminum every one to three years. Strong acids and/or bases are
used to dissolve the previous coating and contaminants. The mirrors
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must survive this cleaning process dozens of times without requiring
the precise surface to be re-polished.

Figure 2.2: Honeycomb primary mirror

These primary mirrors were mounted and aligned in the telescope atop
Arizona’s Mt. Graham in 2004. In 2005, a thin coating of aluminum was
applied making them highly reflective and ready for capturing images.

2.1.4 Adaptive secondary mirror

In 2010 Adaptive Optics, AO was incorporated into the design of the LBT.
The telescope AO system compensates for the blur of the Earths atmosphere
that causes the distortion of the wavefront coming from the source. It uses two
innovative key components, namely an adaptive secondary mirror and a high-
order pyramid wavefront sensor. The mirror surface changes shape typically
1000 times a second. Notice that having the telescopes secondary mirror
serve as the AO deformable mirror avoids the introduction of substantial
thermal background noise. It is controlled by 672 electromagnetic actuators,
with magnets glued directly onto its back surface. With AO, LBT surpassed
Hubble sharpness (at certain light wavelengths), achieving a Strehl ratio of
60− 80% rather than the 20− 30% of older adaptive optic systems, or the
1% typically achieved without adaptive optics for telescopes of this size.
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Figure 2.3: Adaptive secondary mirror

2.1.5 Optical Path Configurations

Each telescope is a Gregorian one: it has characterized by a primary
parabolic concave mirror and a secondary ellipsoid concave mirror. LBT has
different focal stations: Prime focus, Direct Gregorian focus, Bent Gregorian
focus through the terziary mirror (or Nasmyth focus).

• Prime focus : the light rays hit the primary mirror, they converge to a
focus, F , before they are reflected by the secondary mirror. See Figure
2.4.

• Gregorian focus : the reflected beam focuses to a second point G, through
a hole in the centre of the primary. Hence the image forms behind the
primary mirror as in a Cassegrain telescope, but it is an upright image.
See Figure 2.5.

• Bent Gregorian focus : the reflected beam from the secondary mirror is
deviated by a flat tertiary mirror inclinated of 45 with respect to the
optical system axis. Hence the light diverts to Bent Gregorian foci, the
so called Nasmyth focus in the very center of the telescope structure.
See Figure 2.6.

Instruments mounted on swing arms above the mirrors can be used to quickly
change the configuration of the telescope, to switch the telescope from one
mode of observation to another very quickly.
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Figure 2.4: Prime focus of LBT

Figure 2.5: Gregorian focus of LBT.

2.1.6 Supplementary instruments

The following facility instruments are implemented on the baseline tele-
scope:
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Figure 2.6: Bent gregorian focus of LBT.

• LBC: Large Binocular Cameras.

• LUCIFER: Lbt Utility Camera (and Spectrograph) Imaging Fields for
Extragalactic Research.

• MODS: Multi-Object Double Spectrograph.

• PEPSI: Potsdam Echelle Polarimetric and Spectroscopic Instrument.

• LBTI: Large Binocular Telescope Interferometer.

• LINC-NIRVANA: Lbt Interferometric Camera/Near-IR and Visible
Adaptive interferometer for Astronomy.
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These instruments makes the LBT versatile and permits to pursue the principal
goals defined by SAC.

2.1.7 LBC

The Large Binocular Camera is a double Charged-Couple-Device, CCD
imager, installed at the prime focus stations of the two 8.4m telescopes of
LBT, able to obtain deep and wide field images in the whole optical spectrum
from UV to NIR wavelengths. The two channels, called Blue and Red, are
optimized for the UB and VRIZ bands respectively and are characterized
by two optical correctors with very fast focal ratio (F/1.45), specifically a
modified Wynne corrector.
The Wynne scheme consists in a system of two afocal spherical lenses which
are able to correct the spherical aberration and coma, and of a positive
spherical lens, which is able to correct astigmatism caused by the previous
lenses.
For LBC, this optical corrector balances the aberrations induced by the focal
ratio (F/1.14) parabolic primary mirror of LBT. Each corrector uses six lenses
with the first having a diameter of 80 cm. Two filter wheels allow the use of 8
filters; both narrow and broad band filters are available. Figure 2.7 illustrates
the optical design: two meniscus, a plano concave, a plano-convex, a biconvex
lens, the filter and a meniscus in sequence. The optical prescription data

Figure 2.7: The corrector for LBC.

of the Blue channel prime focus corrector are listed in Table 2.8: The lens’
surfaces are all plano or spherical with the exception of L3 characterised
by an aspherical surface on its concave part. In effect L3 has an ellipsoidal
surface which presents an edge deviation from a spherical surface of about 0.7
mm: Figure 2.9 shows this deviation. The two channels have similar optical



CHAPTER 2. THE IMPORTANCE OF ALIGNMENT 20

Figure 2.8: The optical features of Blue LBC; the units are mm.

Figure 2.9: Aspherical surface of L3.

designs satisfying the same requirements, but differ in the lens glasses: fused
silica for the ”blue” arm and BK7 for the ”red” one.

Main parameters of the optical corrector for Blue LBC
Focal length 12180 mm
Focal ratio F/1.45
Pixel size 0.23′′

Unvignetting FoV 3 27′

The increasing of the focal ratio with respect to the focal ratio of the primary
mirror is greater than what we expected from Wynne scheme. This increasing
of the focal length (the optical corrector) allows a better Point Spread Function
sampling (PSF), assuring that the 80% of the PSF encircled energy falls inside
a single CCD pixel (13.5 µm in size) for more of the 90% of the field.
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In conclusion, it is necessary to align all these six lenses in order to get the
best performance for LBC and LBT.

The alignment of LBC

A detailed analysis has been performed to assess the alignment tolerances
that must be fulfilled in order to have a performance degradation (in terms
of root mean square, RMS spot size) within 10% from the nominal value.
The tightest tolerances are:

• ± 0.035 mm on the decenter of lens no. 2

• ± 18′′ on the tilt of lens no. 1.

The first step in the system alignment is the selection of the optical axis: a
suitable choice is represented by the mechanical axis of the derotator bearing,
which may be materialized by a laser beam. Then the optical axis of each
lens has to be aligned with the instrument optical axis, keeping the tilt and
decenter errors within the specified tolerances. Each lens is mounted into a
cell starting from the smallest (lens no. 6) to the largest (lens no. 1): in this
step it ca be aligned with respect to tilt, measuring the misalignment errors
by mechanical methods. Then the cell is fixed to the hub 4. The remaining
decenter error may be measured and then corrected referring to the laser
beam which defines instrumental optical axis. In particular ghost reflections
of the laser beam on the lens surfaces can be used. Moreover the shape of
the resuting Newton’s rings can be used to detect decentering and tilt errors.
Notice that when one element is aligned, a new lens is mounted. The laser
beam materializing the optical axis crosses all the lenses mounted up to a
given point; in this way the misalignment errors are not indipendeten and
we may state that the alignment of each lens tendo to correct the alignment
errors of the revious lenses.

2.2 PLATO

PLATO is a space mission. In februar 2014, it has been selected as M3
- the third medium-class mission in ESA’s Cosmic Vision Programme. Its
scientific objectives are:

• find and study a large number of extrasolar planetary system

4The hub is the structural component of the instrument. It allows to connect the lens
mounting frames into a single unit,on which the field rotator is mounted.
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• detect terrestrial exoplanets in the habitable zone around solar-like stars
and characterise their bulk properties

• provide the key informations needed to determine the habitability of
these new worlds: planet radii, mean densities, stellar irradiation, age
of planet host star and architecture of planetary systems.

PLATO is planned to be lunch in 2022 and the operation will start in Sun-
Earth Lagrangian point, L2. The mission life time is expected to be longer
than 6 years.
PLATO is based on a multi-instruments approach: it is composed by 32
cameras, which are defined as ”Normal Cameras”, observing in a very broad
band (500− 1000 nm) and 2 specialized cameras, which are defined as ”Fast
Cameras”, observing with high cadency in two broad bandpasses (blue and
red). The disposition of the cameras on the optical bench has been optimized
for the overlapping line of sight strategy. See Figure 2.10. The 32 cameras

Figure 2.10: the overlapping line of sight scheme of PLATO

have been divided in four subsets of eight cameras. The Focal Plane Array,
FPA is composed by four detectors. Each subset looks at the same circular
Field of View, FoV. The line of sight of the four subsets are misaligned in such
a way that the overlapping FoV areas guarantee the required number of stars
at given noise level and the required number of stars at given magnitude (the
overall FoV is 2180 degree). Look at Figure 2.11. Moreover, the overlapping
line of sight strategy allows continuous observation of the same sky area with
90 degrees field rotation every 3 months. A s result, it will be cover the 50% of
the sky. Each Camera is made by a Telescope Optical Unit, TOU, assembled
with a Focal Plane Unit, FPU. The optical concept of the TOUs is based
on a design with 6 fully centred, spherical lenses, except the first one which
features an aspheric face. A front window protects the lenses form radiations
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Figure 2.11: The multi telescope PLATO

and limits the sensitivity of the telescope to the thermal environment. The
inner pupil, which limits the measured photometric flux, is well delimited by
a circular diaphragm. Each telescope is equipped with a baffle around the
front window lens. A summary of the requirements for the optical design are
reported in Table.

Requirements and Drivers for the Optical Design of TOU
Spectral range 500− 1000 nm

Entrance pupil diameter 120 mm
FoV > 1000 degrees

Detector format 4510× 4510 pixels
Pixel size 18 µm
FPA size 164 mm

Weight (lenses) < 6 Kg

Figure 2.12 shows the opto-mechanical design of TOU and Figure 2.13 illus-
trates the specifications of its lenses: An amount of 10% vignetting 5 at
edge of the Field of View has been considered to be acceptable: tacking into
account that 3% vignetting is due to the solid angle under which the pupil is
seen at the edge of the field, the aperture of the first lens has been reduced
in order to have a 7% vignetting at the edge of the field.

5Vignetting is the term used to describe a situation in an optical system where the field
of view is not fully illuminated at the edges.
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Figure 2.12: The optical design of TOU

Figure 2.13: The main Parameters of the TOU optical design.

The alignment of TOU

A prototype of one telescope unit has been built initially to show the
alignment feasibility and to get the decenter and tilt misalignment sensitivity.
The lenses mounted on this prototype, should have, as much as possible, the
same curvature of the final design lenses. The Figure 2.14 illustrates the
TOU prototype alignment setup. The detectors are conveniently mounted on
linear stages which can move along the optical axis, in order to position them
in correspondence of the position where the transmitted and back-reflected
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spots shall focus. A variable diameter iris is inserted on the collimated beam,
to maximize the transmitted and back-reflected spot sharpness and visibility.

Figure 2.14: the TOU prototype alignment setup.

By using Airy and Newtons rings both of the back reflected and of the
transmitted light (introducing one lens at a time) the alignment procedure of
the TOU prototype will be performed. From the test setup it can be learnt
that the final alignment tolerances are:

• centering sensitivity is always below 50 µm

• tip-tilt sensitivity is always below 50′′

So if TOU is mounted with this decentering and tip-tilt sensitivity, it will
pursue the best performance. Furthermore, the second step is to perform
the real final alignment procedure and test in cold and warm conditions the
optical performance of the system.
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Newton’s rings

In 1717, Isaac Newton first analyzed an interference pattern caused by
the reflection of light between a spherical surface and an adjacent flat sur-
face. Although first observed by Robert Hooke in 1664, this pattern is called
Newton’s rings, as Newton was the first to analyze and explain the phenom-
ena. Newton’s rings appear as a series of concentric circles centered at the
point of contact between the spherical and flat surfaces. When viewed with
monochromatic light, Newton’s rings appear as alternating bright and dark
rings.

3.1 The standard setup to observe Newton’s

rings

Consider a spherical lens placed on the top of a flat 1 glass surface. A
thin air film is formed between the plate and the lens. The lens plate system
is illuminated with monochromatic light falling on it normally.

Figure 3.2 shows how the incident ray, ray 1 propagates into the described
system: it gets partially reflected (ray 2) at the bottom curved surface of the
lens, and part of the transmitted ray is partially reflected (ray 3) from the
top surface of the plane glass plate. Since the splitted rays are coherent 2

interference occurs. We remember that the path length difference between the
two reflected rays is Λ = 2n2t cos θi; since ray 1 incides normally, θi = 0, then
Λ = 2n2t. Furthermore, the phase difference is related to the path length

1A surface is considered to be flat when its distortion is less than lamda/4 with respect
to a perfect flat surface

2This means that the waves from the sources must maintain a constant phase relation.
For example, if two waves are phase shifted by ϕ = π,this phase shift must not change
with time.
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Figure 3.1: The experimental setup to observe Newtons rings.

difference by the relation δ ∼ Λ ± π. At the point of contact of the lens
with the glass plate the thickness of the air film is very small compared to
the wavelength of light therefore the path difference introduced between the
interfering waves is zero. Consequently, the interfering waves at the centre
are opposite in phase (π radians out of phase) and interfere destructively.
The condition of destructive interference is given by:

2n2t = mλ (3.1)

where m is called the order number, m = 0,±1,±2, .. and n2 is the index of
refraction of the lens. Thus a dark spot is produced.

On the contrary, the condition for constructive interference is given by:

2n2t = (m+
1

2
)λ (3.2)

In this case, the reflected waves are in phase with one another and they
create a bright fringe.

In other word, the thin film has a varying thickness, so we have different
interference conditions at different thicknesses. This leads to the alternating
fringes of constructive interference (bright rings) and destructive interference
(dark). For this reason rings are called fringes of equal thickness. We can use
these rings to determine the radius of curvature of the lens surface. With
reference to the Figure NRformation.jpg the relation between the distance r
and t is r2 = R2 − (R− t)2 = 2Rt− t2. Since R >> t we get:

r2 = 2Rt (3.3)
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Figure 3.2: The formation of Newton’s rings by a spherical lens in contact to a plate
glass.

Then, by using the condition of interference, the radius of the mth dark ring
is given by:

rm =
√
mRλ (3.4)

and the radius of the mth bright ring is:

rm =

√
(m+

1

2
)Rλ (3.5)

Notice that the outer rings are spaced more closely than the inner ones
because the slope of the curved lens surface increases outwards.

3.2 A modern view of Newton’s rings

Until now, we have seen that light, reflecting from only one surface of a
lens, generates an Airy disk; we recall Figure 1.10.

Indeed, if we consider a thin lens with its two surfaces and its optical axis
coinciding with a laser beam, the lens undergoes a reflection from each surface.
Figure 3.3 illustrates this phenomena by neglecting what happens inside the
lens. Therefore the two reflections interfere and Newton’s rings appear. A
lens is considered aligned when Newton’s rings are perfectly concentric.
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Figure 3.3: Interference of two reflections due to two surfaces of a thin lens.

3.2.1 An explicit example of a biconvex lens

Let us consider a simple system, with laser and a biconvex lens; the lens
has a center thickness d = 2.2 mm, but it can be seen as a thin lens with
radii of curvature R12 = 258 mm and R23 = −271 mm. During the procedure
of mounting and alignment, a laser is mounted with respect to a system of
coordinates (x, y, z): the laser beam materializes a reference axis, parallel to
the optical table. So two coordinates (x, y) are fixed as illustrated in Figure
3.4. Then, the lens is placed mechanically, as much as possible, with its centre

Figure 3.4: The reference axis for alignment.
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in (x, y). This is the first cause of errors: by analysing the light coming
in and out, optical axis could not coincide perfectly with the reference axis.
Figure 3.5 and 3.6 shows what happens when a lens is decenter and tilt with
respect to the reference axis (laser beam). By using Newton’s rings and the

Figure 3.5: A qualitatively decentering of a lens.

Figure 3.6: A qualitatively tilt of a lens.

adjustments, the lens will be neither inclined nor decentered with respect to
a position of centration.
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In order to study how Newton’s rings originate, we consider two reflections
due to the first and second surface of our thin lens. We recall subsection 1.3.1.
Initially the laser rays hit the first surface, S1 and it reflects off S1 as in the
Figure 3.7 If we trace the reflected rays backward to a common point, the

Figure 3.7: Reflected ray from S1.

focus F acts as a virtual source, A. The distance of A from the vertex of S1

is dA and coincides with f . The formula 1.4 and 1.5 give us:

dA =
R12

2
' 129mm (3.6)
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As concern the second reflection, we decompose the biconvex lens to three
surfaces, as showed in Figure 3.8. While a part of the laser rays hitting the

Figure 3.8: A thin lens has been broken into three surfaces.

first surface reflects, another refracts. We recall subsection 1.3.2. Refraction
acts to focus all parallel rays to a point referred to as the principal focal point,
F2. The distance from the vertex of S1 to F2 is the focal length. By looking
at the Figure 3.9 it is easy to understand that the focal length coincides with
the image distance q1. By using Snell’s law we can find the refracted angle:

n1sinα = n2sinβ
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Figure 3.9: Refracted ray from S1.

Since we uses Gaussian (or paraxial) approximation, we can expand the sin
funcion up to the first order: sinα ∼ α. So the refracted angle is β = αn1

n2
.

By looking to the trigoniometry of the Figure 3.9, it is easy to obtain the
focal lenght of the S1:

R12 tanα = q1 tan(α− β)

. From

q1 =
R12α

α− β
we get:

q1 =
R12n2

n2 − n1

' 774mm (3.7)

Notice that we have found the formula 1.7.
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Now we point out the second surface, S2. The laser beam, after being
refracted from S1, reflects off S2. Look at Figure 3.10. Since the refracted

Figure 3.10: Reflected ray from S2.

beam is not perfectly parallel to the optical axis, it does not convert to a
common point, F , as expected from our considerations in subsection 1.3.1,
but in F1. In such a situation we remember the equation of conijugated point
1.4:

2

R23

=
1

p2

+
1

q2

(3.8)

where p2 = − | q1 − d |= −772 mm, because conventionally p2 is on the right
side of S2. Approximately, by remembering that R23 = −271 mm, we get
q2 ' −115 mm.
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Indeed, if we consider our model where S2 is rotated 180 degree with
respect to its vertical axis, the direction of the reflected ray will have to be
modified as illustrated in Figure 3.11 and q2 will become positive q2 ' +115
mm. (conventionally the image distance is positive on the right side of S2)

Figure 3.11: Reflected ray from S2 in our model.
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The laser rays reflecting off S2 encounter S3: the direction of these reflected
rays change by refracting. So they focuses to B as in Figure 3.12. By referring
to the formula 1.6:

n2

q3

+
n1

p3

=
(n2 − n1)

R12

(3.9)

where p3 = − | q2 − d |' −113 is negative because it is on the right side of
S3. So we get the image distance q3 ' 138 mm.
In this way the second reflection forms, by giving rise to a real image, B

Figure 3.12: Refracted ray from S3.

whose distance with respect to S1 is dB:

dB = 2d+ q3 = 142mm (3.10)
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An overview of the second reflection is illustrated in Figure 3.13.

Figure 3.13: The distance of the real image B given by the biconvex lens.
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In conclusion the interference of the two reflected rays, of A and B gives
rise to Newton’s rings and the optical system is consider to be aligned when
the series of concentric circles are centered at the spot. Figure 3.14 illustrates
the final aligned optical system.

Figure 3.14: The position of centration of a biconvex lens.

Figure 3.15: Newton’s ring

Indeed it is impossible to achieve a perfect alignment: a tolerance range for
the lens should be always taken into account.



Chapter 4

A simple verification of
decentering

By referring to the previous demonstration of the formation of the Newton’s
rings in subsection 3.2.1, if we decenter the lens, specifically if we move the
lens, from its position of centering, of the quantity ∆y, the point A and B will
move to the same quantity: ∆yA′ = ∆yB′ = ∆y. Figure 4.1 shows that. Since

Figure 4.1: The displacement of the virtual source A and the real image B

the axis of Newton’s rings is given by the projection of the line joining A and
B, even the Newton’s ring will move rigidly of ∆y. We call the displacement
of Newton’s rings from the prolungation of the intersection of A and B: ∆Ny.

We would like to see the displacement of Newton’s rings caused by the

39
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decenter of a biconvex lens. From previous discussion it is easy to understand
that, if we want to look at Newton’s ring (as interference of two reflections)
with a CCD, it is necessary a Beam Splitter to deviate the reflected rays
coming from the lens.

4.1 Optical Setup

The steps we followed are:

• mounting of the laser

• materialization of the optical axis with the laser beam

• mounting and alignment of a beam splitter

• mounting of a biconvex lens

• mounting of a CCD.

4.1.1 Mounting of laser

As first step, we mounted the He-Ne laser on its support containing x, y
displacements (green) and tip-tilt (yellow). The laser beam should be parallel

Figure 4.2: Laser support and its adjustments.

to the optical table and its height must be the one defined by centre of the
other components. We chose 25.3± 0.1 cm (ruler’s sensitivity, 1 mm). We
fixed a ruler to the optical table parallel to one side and a graph paper on a
support perpendicular to the optical table. This ”graph paper support” could
slide along the ruler fixed to the table. We placed it once far away from the
laser and perpendicular to the laser beam and once more near the laser; we
signed a cross + on the graph paper in correspondence to the height of the
axis marked by the laser beam (in our case at height of 25.3±0.1 cm). We
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adjusted the position in x, y and tilt of the laser until the laser beam hits the
cross + in the both cases (both far away and near). Once the axis was set,
we clamped the laser mount to the table. In this way the laser beam plays
the role of reference axis for the other optics.

4.1.2 Mounting of Beam Splitter

We clamped the mechanical support of the Beam Splitter, BS, along the
optical axis: it contains x, y displacements, a rotational movement along its
axis and two other adjusters for tip-tilt. We mounted the BS on it such that
the laser beam hits perpendicularly the centre of the BS’s face. Figure 4.3.
By using the back reflected, the transmitted rays and the adjustments we

Figure 4.3: Beam Splitter and the adjustments.

aligned the BS: the reflected beam has to hit the centre of the laser and the
transmitted beam has to coincide with the ”cross” + of the ”graph paper
support”. Figure 4.4.
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Figure 4.4: The alignment of BS.

4.1.3 Mounting of biconvex lens

We fixed the support of the lens on the optical table, along the optical axis,
at 246± 1 mm of distance from the BS. We call l1 this distance. The support
contains two micrometres for x, y displacement and tip-tilt. We mounted the
biconvex lens 01LDX341 on it perpendicularly to the laser beam. Figure 4.6
shows the adjustments.

Figure 4.5: Biconvex lens
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Figure 4.6: The adjustments of the biconvex lens’ support.

The Table lists the main features of the lens 01LDX341:

General Specification for 01LDX341
Material N-BK7

Focal length 200.0 mm
Radii of Curvature R12 = 258 mm, R23 = −271 mm

Diameter 25.0 mm
Thickness d = 2.2 mm

Antireflection coating Ravg < 0.5%
Surface irregularity λ/2

Surface quality 60.40
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4.1.4 Mounting of CCD

The last step is to clamp the mechanical support of the CCD on the
optical table in the position shown in Figure 4.7. We mounted the CCD on

Figure 4.7: A scheme of the final optical setup

it, turned on the CCD and connected it to the pc. Obviously, the reflected
rays has to hit the centre of the CCD such that we are able to see perfect
or deformed Newtons rings when the lens is aligned or not respectively. The
optical setup in laboratory is shown in Figure 4.8 with l1 = 246mm ± 1,
l2 = 256mm± 1 and a single pixel sixe is px = 5.2× 5.2µm.
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Figure 4.8: Final optical setup

4.2 Results in laboratory

In order to verify the theory above explained, we report some images
captured with CCD and some measurements obtained in laboratory.

Figure 4.9: The displacement of Newton’s ring caused by ∆y = 100µm.
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Figure 4.10: The displacement of Newton’s ring caused by ∆y = 200µm.

Figure 4.11: The displacement of Newton’s ring caused by ∆y = 300µm.

After mounting our optical setup as described previously, we calibrated
the adjustment of the lens: we found that one mark of the micrometre
corresponds to 10 µm± 0.1. Then, we looked at the image captured in the
pc. We marked, with the mouse, a bullet • in the centre of the Newton’s ring,
in y0. We decentered the lens by rotating the thimble of the micrometre of
100, 200, 300, 400, 500µm±0.1 always in the same direction. These decentering
of the lens, ∆y, causes a displacement of the Newton’s ring with respect to
its centre, ∆Ny: we measured these distances with the mouse by counting
the pixels as ilustrated in the Figure 4.12. In the table 4.2 are listed, for each
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decentering of the lens, these displacements of Newton’s ring in pixels; we
took 5 measures and we repeated the procedure three times.

Figure 4.12: The measurement procedure of the displacement of Newton’s ring, ∆Ny.

∆y (µm) ∆Ny (pixels) ∆Ny (pixels) ∆Ny (pixels)
100± 0.1 26 28 30
200± 0.1 56 57 57
300± 0.1 74 73 75
400± 0.1 98 96 99
500± 0.1 122 120 124

The arithmetic mean, <∆Ny> is reported in Table 4.2 with its standard
deviation.

∆y (µm) <∆Nyi>
100± 0.1 28± 2
200± 0.1 56.7± 0.6
300± 0.1 74± 1
400± 0.1 97.7± 1.5
500± 0.1 122± 2

So, we can conclude that if we decenter the lens of a ∆y = 100µm, we will
see a displacement of the centre of the Newton’s ring of about < ∆Ny >=
24.4 pixels± 4.5. Since one pixel is 5.2µm, then < ∆Ny >= 126.9µm± 23.4.
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Discussion

An ideal optical system is called ”nominal system”: we would like to get
it or, at least, to obtain the most similar one. In effect no optical system
is perfectly aligned: errors of decentering and tilt have to take always into
account.
Newton’s rings are known since 1717, but only recently they are used to align
the optical components.
We described how rays propagate in the lens used in laboratory by forming
two virtual sources that interfere and form Newton’s rings. This description
allowed us to understand the relation between a vertical displacement of
Newton’s rings and the decentering of our lens.
We should have expected that ∆Ny would correspond to ∆Ny = 100µm;
in laboratory we have found < ∆Ny >= 126.9µm ± 23.4. The variance
between the theoretical and experimental value is about 26.9µm. It is a
consistent error, which demostrates the validity of the linear relation between
the decentering of the lens and the displacement of Newton’s rings.
In this way, this thesis gives a theoretical approach to the fact that Newton’s
rings can be used for aligning all optical system.

5.1 Centering sensitivity

After having verified how the displacement of Newton’s ring works with
respect to the decentering of our lens, the latest goal of this thesis is to assess
the alignment precision that must be fulfilled.
Since we have estimated (by eyes) a displacement of < ∆Ny >= 126.9µm±
23.4 we can assert if our lens is centered with a certain precision.
So the last step is to identify how much the precision is; in other word we
would like to assess the error of centration with the method of least square.
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This method is a procedure to determine what the ”best fit” line is to the
data. The graphic 5.1 illustrates the data given in Table 4.2 and the ”best
fit” given by the linear equation (or linear regression) ∆Nyi = mx+ b.

Figure 5.1: The displacement of Newton’s ring with respect to the decentering of the
lens.

The variance, σ∆Ny , will measure how good of a fit we have that is the
mean distance of the data from the linear regression. The variance for this
data set is:

σ∆Ny =

√√√√ 1

n− 2

n∑
i=1

(∆Nyi −mx− b)
2 (5.1)

In conclusion, we get:
σ∆Ny = 2.8µm (5.2)

Therefore the precision with whom the lens can be aligned is 2.8µm.

5.1.1 Future perspective

This thesis has treated a theory about the decentering of a lens, which
is truely confirmed by an experiment in the laboratory. Indeed, a system
is referred to be aligned once both decentering and tip-tilt are adjusted. A
suggestion for further thesis is to find out a relation between the tip-tilt of a
lens and its corresponding displacement of Newton’s rings and to demonstrate
it with an optical setup similar to our.
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