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ABSTRACT

In theoretical computer science, program logics are essential for verifying the correctness of soft-
ware. Hoare logic provides a systematic way of reasoning about program correctness using precon-
ditions and postconditions. This thesis explores the development and application of an abstract
Hoare-like logic framework that generalizes the traditional Hoare program logic by using arbitrary
elements of complete lattices as the assertion language, extrapolating what makes Hoare logic sound
and complete. We also demonstrate the practical applications of this framework by systematically
deriving a program logic for hyperproperties, thus highlighting versatility and benefits of our gen-
eral framework. From the design of Abstract Hoare logic, we then define Reverse Abstract Hoare
logic, which is used to develop a proof system for backward correctness reasoning on programs.

iii





ACKNOWLEDGMENTS

Innanzitutto, vorrei ringraziare i miei relatori, Prof. Francesco Ranzato e Prof. Paolo Baldan, per
la paziente supervisione durante lo sviluppo di questa tesi e per i preziosissimi consigli. Vorrei
ringraziarli anche, assieme alla Prof.ssa Maria Emilia Maietti e al Prof. Ingo Blechschmidt, per
avermi fatto scoprire quanto sia profonda e bella l’informatica.

Un grazie speciale va a tutti gli amici che hanno reso indimenticabili i miei cinque anni a Padova.
Arrivando in questa città il primo giorno senza conoscere nessuno, non avrei mai immaginato di
trovare qui una seconda casa grazie a voi. Ogni momento trascorso insieme è stato un capitolo
prezioso e divertente della mia esperienza universitaria. Anche se le nostre strade si separeranno e
ci porteranno in posti diversi, sono certo che l’amicizia che abbiamo formato durerà per sempre.

Also, I would like to thank all the friends I made during my exchange in Amsterdam, who
made me feel at home in a place where I did not know anyone. Thank you for all the beautiful
experiences we had together. See you around the world.

Infine, vorrei dedicare un sentito ringraziamento alla mia famiglia, in particolare ai miei genitori.
Il vostro sostegno incondizionato e la vostra fiducia in me sono stati la spinta costante che mi ha
motivato a perseguire i miei sogni. I sacrifici che avete fatto per farmi studiare e crescere sono
inestimabili, e questa tesi è il risultato tangibile del vostro amore e supporto. Dedico a voi questa
tesi.

Alessio Ferrarini

“Progress is possible only if we train
ourselves to think about programs without
thinking of them as pieces of executable
code.“

Edsger W. Dijkstra

v





CONTENTS

1 Background 3
1.1 Order theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Partial Orders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3 Fixpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Abstract Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.1 Abstract Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 The abstract Hoare logic framework 9
2.1 The L programming language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Abstract inductive semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 Connection with Abstract Interpretation . . . . . . . . . . . . . . . . . . . . 13

2.3 Abstract Hoare Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.1 Hoare logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.2 Abstracting Hoare logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Instantiating Abstract Hoare Logic 21
3.1 Hoare logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 Algebraic Hoare Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.2 Abstract Interval Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.3 Abstract vs Algebraic Hoare Logic . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Hoare logic for hyperproperties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.1 Introduction to Hyperproperties . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.2 Inductive Definition of the Strongest Hyper Postcondition . . . . . . . . . . 24
3.2.3 Hyper Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.4 Inductive Definition for Hyper Postconditions . . . . . . . . . . . . . . . . . 26
3.2.5 Hyper Hoare Triples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Partial Incorrectness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Extending the proof system 29
4.1 Merge rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Backward Abstract Hoare Logic 35
5.1 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1.1 Backward abstract inductive semantics . . . . . . . . . . . . . . . . . . . . . 35
5.1.2 Backward Abstract Hoare Logic . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2 Instantiations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

vii



viii CONTENTS

5.2.1 Partial Incorrectness, Again . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2.2 Hoare Logic, Again . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6 Conclusions 39
6.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40



INTRODUCTION

The verification of program correctness is a critical and crucial task in computer science. Ensuring
that software behaves as expected under all possible conditions is fundamental in a society that
increasingly relies on computer programs. Software engineers often reason about the behavior
of their programs at an intuitive level. While this is definitely better than not reasoning at all,
intuition alone becomes insufficient as the size of programs grows.

Writing tests for programs is definitely a useful task, but at best, it can show the presence
of bugs, not prove their absence. We cannot feasibly write tests for every possible input of the
program. To offer a guarantee of the absence of undesired behaviors, we need sound logical models
rooted in logic. The field of formal methods in computer science aims at developing the logical
tools necessary to prove properties of software systems.

Hoare logic, first introduced by Hoare in the late 60s [Hoa69], provides a set of logical rules
to reason about the correctness of computer programs. Hoare logic formalizes, with axioms and
inference rules, the relationship between the initial and final states after executing a program.

Hoare logic, beyond being one of the first program logics, is arguably also one of the most influ-
ential ideas in the field of software verification. It created the whole field of program logics—systems
of logical rules aimed at proving properties of programs. Over the years, modifications of Hoare
logic have been developed, sometimes to support new language features such as dynamic memory
allocation and pointers, or to prove different properties such as equivalence between programs or
properties of multiple executions. Every time Hoare logic is modified, it is necessary to prove again
that the proof system indeed proves properties about the program (soundness) and ideally that
the proof system is powerful enough to prove all the properties of interest (completeness).

Most modifications of Hoare logic usually do not alter the fundamental proof principles of the
system. Instead, they often extend the assertion language to express new properties and add new
commands to support new features in different programming languages.

In this work, we introduce Abstract Hoare Logic, which aims to be a framework general enough
to serve as an extensible platform for constructing new Hoare-like logics without the burden of
proving soundness and completeness anew. We demonstrate, through examples, how some prop-
erties that are not expressible in standard Hoare logic can be simply instantiated within Abstract
Hoare Logic, while keeping the proof system as simple as possible.

The theory of Abstract Hoare Logic is deeply connected to the theory of abstract interpretation
[CC77]. The semantics of the language is defined as an inductive abstract interpreter, and the
validity of the Abstract Hoare triples depends on it. Since we do not use the strongest postcondition
directly, we are able to reason about properties that are not expressible in the powerset of the
program states, such as hyperproperties.

This thesis is structured as follows:

• In Chapter 1, we introduce the basic mathematical background of order theory and abstract
interpretation.

• In Chapter 2, we introduce standard Hoare logic and the general framework of Abstract
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Hoare Logic: the extensible language L, its syntax and semantics, the generalization of the
strongest postcondition, and finally, Abstract Hoare Logic and its proof system, proving the
general results of soundness and relative completeness.

• In Chapter 3, we show some notable instantiations of Abstract Hoare Logic: we demonstrate
that it is possible to obtain program logics where the implication is decidable, thus making
the goal of checking a derivation computable; we show how to obtain a proof system for
hyperproperties (and we introduce the concept of the strongest hyper postcondition); finally,
we show that it is possible to obtain a proof system for partial incorrectness.

• In Chapter 4, we show how to enrich the barebones proof system of Abstract Hoare Logic
by adding more restrictions on the assertion language or the semantics.

• In Chapter 5, we show how to reuse the idea of Abstract Hoare Logic to generalize proof
systems for backward reasoning.

• In Chapter 6, we provide a brief summary of the most important contributions of the thesis.
We discuss possible extensions to the framework of Abstract Hoare Logic and, to conclude,
we examine the relationship of Abstract Hoare Logic with other similar work.



CHAPTER 1
BACKGROUND

1.1 Order theory
When defining the semantics of programming languages, the theory of partially ordered sets and
lattices is fundamental [Grä11; Bir40]. These concepts are at the core of denotational semantics
[Sco70] and Abstract Interpretation [CC77], where the semantics of programming languages and
abstract interpreters are defined as monotone functions over some complete lattice.

1.1.1 Partial Orders
Definition 1.1 (Partial order). A partial order on a set X is a relation ≤⊆ X ×X such that
the following properties hold:

• Reflexivity: ∀x ∈ X, (x, x) ∈ ≤

• Anti-symmetry: ∀x, y ∈ X, (x, y) ∈ ≤ and (y, x) ∈ ≤ =⇒ x = y

• Transitivity: ∀x, y, z ∈ X, (x, y) ∈ ≤ and (y, z) ∈ ≤ =⇒ (x, z) ∈ ≤

Given a partial order ≤, we will use ≥ to denote the converse relation {(y, x) | (x, y) ∈ ≤} and
< to denote {(x, y) | (x, y) ∈ ≤ and x ̸= y}.

From now on we will use the notation xRy to indicate (x, y) ∈ R.

Definition 1.2 (Partially ordered set). A partially ordered set (or poset) is a pair (X,≤) in
which ≤ is a partial order on X.

We will use partially ordered sets to encode collections of program states.

Definition 1.3 (Galois connection). Let (C,⊑) and (A,≤) be two partially ordered sets, a
Galois connection written ⟨C,⊑⟩ −−−→←−−−α

γ
⟨A,≤⟩, are a pair of functions: γ : A → D and α : D → A

such that:

• γ is monotone

• α is monotone

• ∀c ∈ C c ⊑ γ(α(c))

• ∀a ∈ A a ≤ α(γ(a))

In the context of program analysis, it is common to refer to C as the concrete domain and to A
as the abstract domain, as the idea behind the use of Galois connections is to relate C to a simpler
and approximate representation of itself.
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Definition 1.4 (Galois Insertion). Let ⟨C,⊑⟩ −−−→←−−−α
γ
⟨A,≤⟩, be a Galois connection, a Galois

insertion written ⟨C,⊑⟩ −−−→−→←−−−−
α

γ
⟨A,≤⟩ are a pair of functions: γ : A → D and α : D → A such

that:

• (γ, α) are a Galois connection

• α ◦ γ = id

Galois insertions are a refinement of Galois connections. By requiring α◦γ = id, we are ensuring
that all the abstract elements a ∈ A have distinct concrete representations. It is always possible
to obtain a Galois insertion from a Galois connection by simply removing all the elements a such
that α(γ(a)) ̸= a from A.

1.1.2 Lattices

Definition 1.5 (Meet-semilattice). A meet-semilattice is a partially ordered set (L,≤) such
that for every pair of elements a, b ∈ L, there exists an element c ∈ L satisfying the following
conditions:

1. c ≤ a and c ≤ b

2. ∀d ∈ L, if d ≤ a and d ≤ b, then d ≤ c

The element c is called the meet of greatest lower bound of a and b, and is denoted by a ∧ b.

Definition 1.6 (Join-semilattice). A join-semilattice is a partially ordered set (L,≤) such that
for every pair of elements a, b ∈ L, there exists an element c ∈ L satisfying the following conditions:

1. c ≥ a and c ≥ b

2. ∀d ∈ L, if d ≥ a and d ≥ b, then d ≥ c

The element c is called the join or least upper bound of a and b, and is denoted by a ∨ b.

Observation 1.1. Both join and meet operations are idempotent, associative, and commutative.

Definition 1.7 (Lattice). A poset (L,≤) is a lattice if it is both a join-semilattice and a meet-
semilattice.

Definition 1.8 (Complete lattice). A partially ordered set (L,≤) is called a complete lattice if
for every subset S ⊆ L, there exist elements supS and inf S in L such that:

1. supS (the supremum or least upper bound of S) is an element of L satisfying:

• For all s ∈ S, s ≤ supS.

• For any u ∈ L, if s ≤ u for all s ∈ S, then supS ≤ u.

2. inf S (the infimum or greatest lower bound of S) is an element of L satisfying:

• For all s ∈ S, inf S ≤ s.
• For any l ∈ L, if l ≤ s for all s ∈ S, then l ≤ inf S.

We denote the least element or bottom as ⊥ = inf L and the greatest element or top as
⊤ = sup L.

Observation 1.2. A complete lattice cannot be empty, since it must contain at least sup ∅.

Definition 1.9 (Point-wise lifting). Given a complete lattice (L,≤) and a set A, the set of
all functions from A to L, denoted LA, is usually called the point-wise lifting of L. (LA,⊑) is a
complete lattice where f ⊑ g ⇐⇒ ∀a ∈ A f(a) ≤ g(a).
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1.1.3 Fixpoints

Definition 1.10 (Fixpoint). Given a function f : X → X, a fixpoint of f is an element x ∈ X
such that x = f(x).

We denote the set of all fixpoints of a function as fix(f) = {x | x ∈ X and x = f(x)}.

Fixpoints of function will be used to describe the semantics of programs therefore we are
interested in which conditions they exists.

Definition 1.11 (Monotone function). Given two ordered sets (X,≤) and (Y,⊑), a function
f : X → Y is said to be monotone if x ≤ y =⇒ f(x) ⊑ f(y).

The representation of program semantics as functions falls naturally in the category of monotone
functions, as different executions of the program are not supposed to influence each other. If the
semantics is not monotone, that would mean that the program is able to distinguish between the
set of executions x and y and perform different actions.

Definition 1.12 (Least and Greatest fixpoints). Given a function f : X → X,

• We denote the least fixpoint as lfp(f) and is defined as lfp(f) = a∗ ∈ fix(f) and ∀a ∈
fix(f) a∗ ≤ a.

• We denote the greatest fixpoint as gfp(f) and is defined as gfp(f) = a∗ ∈ fix(f) and ∀a ∈
fix(f) a∗ ≥ a.

Observation 1.3 (Point-wise fixpoint). The least-fixpoint and greatest fixpoint on some point-
wise lifted lattice on a monotone function defined point-wise is the point-wise lift of the function.

lfp(λp′a.f(p′(a))) = λa.lfp(λp′.f(a))

gfp(λp′a.f(p′(a))) = λa.gfp(λp′.f(a))

Theorem 1.1 (Knaster-Tarski theorem). Let (L,≤) be a complete lattice and let f : L → L
be a monotone function. Then (fix(f),≤) is also a complete lattice.

We have two direct consequences: both the greatest and the least fixpoint of f exists as they
are respectively top and bottom of fix(f).

Theorem 1.2 (Post-fixpoint inequality). Let f be a monotone function on a complete lattice
then

f(x) ≤ x =⇒ lfp(f) ≤ x

Proof. By theorem 1.1 lfp(f) =
⋀︁
{y | y ≥ f(y)} thus lfp(f) ≤ x since x ∈ {y | y ≥ f(y)}.

Theorem 1.3 (lfp monotonicity). Let L be a complete lattice, if P ≤ Q and f is monotone then

lfp(λX.P ∨ f(X)) ≤ lfp(λX.Q ∨ f(X))

Proof.

P ∨ f(lfp(λX.Q ∨ f(X))) ≤ Q ∨ f(lfp(λX.Q ∨ f(X))) [Since P ≤ Q]
= lfp(λX.Q ∨ f(X)) [By definition of fixpoint]

Thus by Theorem 1.2 pick f = λX.P ∨ f(X) and x = lfp(λX.Q∨ f(X)) it follows that lfp(λX.P ∨
f(X)) ≤ lfp(λX.Q ∨ f(X)).
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1.2 Abstract Interpretation

Abstract interpretation [CC77; Cou21] is the de-facto standard approach for designing static pro-
gram analysis. Fixed some representation of the state of the program usually denoted by S, the
specification of a program can be expressed as a pair of initial and final sets of states, Init ,Final ∈
℘(S), and the task of verifying a program C boils down to checking if JCK(Init) ⊆ Final .

Clearly, this task cannot be performed in general. The solution proposed by the framework of
abstract interpretation is to construct an approximation of J·K, usually denoted by J·K#, that is
computable.

1.2.1 Abstract Domains

One of the techniques used by abstract interpretation to make the problem of verification tractable
involves representing collections of states with a finite amount of memory.

Definition 1.13 (Abstract Domain). A poset (A,≤) is an abstract domain of S if there exists
a Galois insertion ⟨℘(S),⊆⟩ −−−→−→←−−−−

α

γ
⟨A,≤⟩.

Example 1.1 (Interval Domain). Let Int = {[a, b] | a, b ∈ Z ∪ {+∞,−∞}, a ≤ b} ∪ {⊥} be
ordered by inclusion, each element [a, b] represent the set {x | a ≤ x ≤ b} and ⊥ is used as
a representation of ∅. The structure of the lattice can be summarized by the following Hasse
diagram:

⊥

[0, 0] [+1,+1] [+2,+2][−1,−1][−2,−2] . . .. . .

[−2,−1] [−1,−0] [0, 1] [1, 2]

[−2, 0] [−1,+1] [0,+2]

[−2,+1] [−1,+2]

[−2,+2]

[−∞,−2]

[−∞,−1]

[−∞, 0]

[+2,+∞]

[+1,+∞]

[0,+∞]

[−∞,+∞]

Then, there is a Galois insertion from Int to ℘(Z) defined as:

γ(A) =

{︄
{x | a ≤ x ≤ b} if A = [a, b]

∅ otherwise

α(C) =

{︄
[min C,max C] if C ̸= ∅
⊥ otherwise

Example 1.2 (Complete sign domain). Let Sign = {⊥, < 0, > 0,= 0,≤ 0, ̸= 0,≥ 0,Z} be
ordered by following the Hasse diagram below.
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⊥

< 0 = 0 > 0

≤ 0 ̸= 0 ≥ 0

Z

Then, there is a Galois insertion from Sign to ℘(Z) defined as:

γ(A) =

⎧⎪⎨⎪⎩
{x | x op 0} if A = op 0

Z if A = Z
∅ otherwise

α(C) =

⎧⎪⎨⎪⎩
⊥ if C = ∅
op 0 if C ⊆ {x | x op 0} and op ∈ {<,>,=,≤,≥, ̸=}
Z otherwise

The fundamental goal of abstract interpretation is to provide an approximation of the non-
computable aspects of program semantics. The core concept is captured by the definition of
soundness:

Definition 1.14 (Soundness). Given an abstract domain A, an abstract function f# : A → A
is a sound approximation of a concrete function f : ℘(S)→ ℘(S) if

α(f(P )) ≤ f#(α(P ))

Hence, the goal of abstract interpretation is to construct a sound over-approximation of the
program semantics that is computable (efficiently).

Example 1.3. We can use the sign domain to construct a sound approximation of the multipli-
cation operation:

×# ⊥ < 0 > 0 = 0 ≤ 0 ̸= 0 ≥ 0 Z
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
< 0 ⊥ > 0 < 0 = 0 < 0 ̸= 0 ≤ 0 Z
> 0 ⊥ < 0 > 0 = 0 ≤ 0 ̸= 0 ≥ 0 Z
= 0 ⊥ = 0 = 0 = 0 = 0 = 0 = 0 = 0
≤ 0 ⊥ < 0 ≤ 0 = 0 ≤ 0 ̸= 0 ≤ 0 Z
̸= 0 ⊥ ̸= 0 ̸= 0 = 0 ̸= 0 ̸= 0 ̸= 0 Z
≥ 0 ⊥ ≤ 0 ≥ 0 = 0 ≤ 0 ̸= 0 ≥ 0 Z
Z ⊥ Z Z = 0 Z Z Z Z

Table 1.1: Multiplication table for Sign domain





CHAPTER 2
THE ABSTRACT HOARE LOGIC FRAMEWORK

In this chapter, we will develop the basic theory of Abstract Hoare Logic. We will formalize
the extensible language L, a minimal imperative programming language that is parametric on a
set of basic commands to permit the definition of arbitrary program features, such as pointers,
objects, etc. We will define the semantics of the language, provide the standard definition of
Hoare triples, and introduce the concept of abstract inductive semantics; a modular approach
to express the strongest postcondition of a program, where the assertion language is a complete
lattice. Additionally, we will present a sound and complete proof system to reason about these
properties.

2.1 The L programming language

2.1.1 Syntax
The L language is inspired by Dijkstra’s guarded command languages [Dij74] with the goal of being
as general as possible by being parametric on a set of basic commands. The L language is general
enough to describe any imperative non-deterministic programming language.

Definition 2.1 (L language syntax). Given a set BCmd of basic commands, the set on valid
L programs is defined by the following inductive definition:

b ∈ BCmd

L ∋ C,C1, C2 ::= 1 Skip
| b Basic command
| C1

o
9 C2 Program composition

| C1 + C2 Non deterministic choice

| Cfix Iteration

Example 2.1. Usually the set of basic commands contains a command to perform tests e? dis-
carding executions that do not satisfy the predicate e, and x := v to assign the value v to the
variable x.

2.1.2 Semantics
Fixed a set S of states (usually a collection of associations between variables names and values)
and a family of partial functions J·Kbase : BCmd → S ↪→ S we can define the denotational semantics

9
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of programs in L. The collecting semantics is defined as a function J·K : L → ℘(S) → ℘(S) that
associates a program C and a set of initial states to the set of states reached after executing the
program C from the initial states, this is also know as the predicate transformer semantics [Dij74].

Definition 2.2 (Denotational semantics). Given a set S of states and a family of partial
functions J·Kbase : BCmd → S ↪→ S the denotational semantics is defined as follows:

J·K : L→ ℘(S)→ ℘(S)

J1K def
= id

JbK def
= λP.{JbKbase(p) | p ∈ P and JbKbase(p) ↓}

JC1
o
9 C2K

def
= JC2K ◦ JC1K

JC1 + C2K
def
= λP.JC1KP ∪ JC2KP

JCfixK def
= λP.lfp(λP ′.P ∪ JCKP ′)

Where the notation JbKbase(p) ↓ is used to denote that JbKbase is defined on input p.

Example 2.2. We can define the semantics of the basic commands introduced in 2.1 as:

Je?Kbase(σ)
def
=

{︄
σ σ |= e

↑ otherwise

Where σ |= e means that the state σ satisfies the predicate e and ↑ is denoting that the function
is diverging.

Jx := eKbase(σ)
def
= σ[eval(e, σ)/x]

Where eval is some evaluate function for the expressions on the left-hand side of assignments and
then is substitute in place of x in the state σ.

Theorem 2.1 (Monotonicity). ∀ C ∈ L JCK is well-defined and monotone.

Proof. We want to prove that ∀P,Q ∈ ℘(S) and C ∈ L

P ⊆ Q =⇒ JCK(P ) ⊆ JCK(Q)

By structural induction on C:

• 1:

J1K(P ) = P [By definition of J1K]
⊆ Q
= J1K(Q) [By definition of J1K]

• b:

JbK(P ) = {JbKbase(x) ↓ | x ∈ P} [By definition of JbK]
⊆ {JbKbase(x) ↓ | x ∈ Q} [Since P ⊆ Q]
= JbK(Q) [By definition of JbK]
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• C1
o
9 C2:

By inductive hypothesis JC1K is monotone hence JC1K(P ) ⊆ JC2K(Q)

JC1
o
9 C2K(P ) = JC2K(JC1K(P )) [By definition of JC1

o
9 C2K]

⊆ JC2K(JC1K(Q)) [By inductive hypothesis on JC2K]

• C1 + C2:

JC1 + C2K(P ) = JC1K(P ) ∪ JC2K(P ) [By definition of JC1 + C2K]
⊆ JC1K(Q) ∪ JC2K(P ) [By inductive hypothesis on JC1K]
⊆ JC1K(Q) ∪ JC2K(Q) [By inductive hypothesis on JC2K]
= JC1 + C2K(Q) [By definition of JC1 + C2K]

• Cfix:

JCfixK(P )[By definition of JCfixK]
= lfp(λP ′.P ∪ JCK(P ′)) ⊆ lfp(λP ′.Q ∪ JCK(P ′))[By Theorem 1.3]

= JCfixK(Q) [By definition of JCfixK]

Clearly all the lfp are well-defined since by inductive hypothesis JCK is monotone and ℘(S)
is a complete from 1.1 the least-fixpoint exists.

Observation 2.1. As observed in [FL79] when the set of basic commands contains a command to
discard executions we can define the usual deterministic control flow commands as syntactic sugar.

if b then C1 else C2
def
= (b? o

9 C1) + (¬b? o
9 C2)

while b do C
def
= (b? o

9 C)
fix o

9 ¬b?

Observation 2.2. Regular languages of Kleene algebras [Koz97] usually provide an iteration
command usually denoted C⋆ whose semantics is JC⋆K(P ) def

=
⋃︁

n∈NJCKn(P ). This is equivalent to
Cfix, the reason why a fixpoint formulation was chosen will become clear in 2.4.

Example 2.3. Let C def
= (x ≤ 10? o

9 x := x + 1)fix + (x := 55) and P = {x = 1} then we can
compute JCK(P ) as:

JCK(P ) = J(x ≤ 10? o
9 x := x+ 1)fixK(P ) ∪ Jx := 55K(P )

= lfp(λP ′.P ∪ Jx ≤ 10? o
9 x := x+ 1K(P ′)) ∪ {x = 55}

= {x ∈ {1, ..., 10}} ∪ {x = 55}
= {x ∈ {1, ..., 10, 55}}
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2.2 Abstract inductive semantics

From the theory of abstract interpretation we know that the definition of the denotational semantics
can be modified to work on any complete lattice as long as we provide suitable function for the
basic commands. The rationale behind is the same as in the denotational semantics but instead
of representing collections of states with ℘(S) now they are represented in an arbitrary complete
lattice.

Definition 2.3 (Abstract inductive semantics). Given a complete lattice A and a family
of monotone functions J·KAbase : BCmd → A → A the abstract inductive semantics is defined
inductively as follows:

J·KAais : L→ A→ A

J1KAais
def
= id

JbKAais
def
= JbKAbase

JC1
o
9 C2KAais

def
= JC2KAais ◦ JC1KAais

JC1 + C2KAais
def
= λP.JC1KAaisP ∨A JC2KAaisP

JCfixKAais
def
= λP.lfp(λP ′.P ∨A JCKAaisP

′)

When designing abstract interpreters to perform abstract interpretation, iterative commands
are usually not expressed directly as fixpoints but by some over-approximation, as is the case for
the Cfix command. This is necessary since the goal of the abstract interpreter is to be executed
and, in general, if the lattice on which the interpretation executed run has infinite ascending chains,
its computation can diverge. In our case, the termination requirement is not necessary since we
are not interested in computing the abstract inductive semantics but using it as a reference on
which the definition of abstract Hoare logic is dependent.

As we did for the concrete collecting semantics, we need to prove that the semantics is well-
defined. In general, For this we require for A to be a complete lattice or for JbKbase to be monotone,
play an essential role as they guarantee the existence of the required least-fixpoint.

Theorem 2.2 (Monotonicity). ∀ C ∈ L JCKAais is well-defined and monotone.

Proof. We want to prove that ∀P,Q ∈ A and C ∈ L

P ≤A Q =⇒ JCKAais(P ) ≤A JCKAais(Q)

By structural induction on C:

• 1:

J1KAais(P ) = P [By definition of J1KAais]
≤ Q
= J1KAais(Q) [By definition of J1KAais]

• b:

JbKAais(P ) = JbKAbase(P ) [By definition of JbKAais]

≤ JbKAbase(Q) [By definition]

= JbKAais(Q) [By definition of JbKAais]
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• C1
o
9 C2:

By inductive hypothesis JC1KAais is monotone hence JC1KAais(P ) ≤A JC1KAais(Q)

JC1
o
9 C2KAais(P ) = JC2KAais(JC1KAais(P )) [By definition of JC1

o
9 C2KAais]

≤A JC2KAais(JC1KAais(Q)) [By inductive hypothesis on JC2KAais]

• C1 + C2:

JC1 + C2KAais(P ) = JC1KAais(P ) ∨A JC2KAais(P ) [By definition of JC1 + C2KAais]

≤A JC1KAais(Q) ∨A JC2KAais(P ) [By inductive hypothesis on JC1KAais]

≤A JC1KAais(Q) ∨A JC2KAais(Q) [By inductive hypothesis on JC2KAais]

= JC1 + C2KAais(Q) [By definition of JC1 + C2KAais]

• Cfix:

JCfixKAais(P ) = lfp(λP ′.P ∨A JCKAais(P
′)) [By definition of JCfixKAais]

[By Theorem 1.3]

≤A lfp(λP ′.Q ∨A JCKAais(P
′)) = JCfixKAais(Q)[By definition of JCfixKAais]

Clearly all the lfp are well-defined since by inductive hypothesis JCK is monotone and A is a
complete from 1.1 the least-fixpoint exists.

From now on we will refer to the complete lattice A used to define the abstract inductive
semantics as domain borrowing the terminology from abstract interpretation.

Observation 2.3. When picking as a domain the lattice ℘(S) and as basic commands JbK℘(S)base(P ) =
{JbKbase(σ) ↓ | σ ∈ P} we will obtain the denotational semantics from the abstract inductive
semantics, that is: ∀ C ∈ L ∀P ∈ ℘(S)

JCK℘(S)ais (P ) = JCK(P )

This can be easily checked by comparing the two definitions.

From this observation, we can see that Theorem 2.1 is just an instance of Theorem 2.2 since
℘(S) is a complete lattice and the semantics of the basic commands is monotone by construction.

2.2.1 Connection with Abstract Interpretation

As stated above, the definition of abstract inductive semantics is closely related to the one of
abstract semantics [CC77]. In particular, the definition of abstract inductive semantics, when the
semantics of the basic commands is sound, is equivalent to an abstract semantics.

Theorem 2.3 (Abstract interpretation instance). If A is an abstract domain and J·KAbase is
a sound over-approximation of J·Kbase, then J·KAais is a sound over-approximation of J·K.

Proof. We prove α(JCK(P )) ≤ JCKAais(α(P )) by structural induction on C:
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• 1:

α(J1K(P )) = α(P ) [By definition of J1K]

= J1KAais(α(P )) [By definition of J1KAais]

• b:

α(JbK(P )) = JbKbase(P ) [By definition of JbK]

≤ JbKAbase(α(P )) [By definition]

= JbKAais(α(P )) [By definition of JbKAais]

• C1
o
9 C2:

α(JC1
o
9 C2K(P )) = α(JC2K(JC1K(P ))) [By definition of JC1

o
9 C2K]

≤ JC2KAais(α(JC1K(P ))) [By inductive hypothesis on C2]

≤ JC2KAais(JC1KAais(α(P ))) [By inductive hypothesis on C1

and JC2KAais monotone]

= JC1
o
9 C2KAais(α(P )) [By definition of JC1

o
9 C2KAais]

• C1 + C2:

α(JC1 + C2K(P )) = α(JC1K(P ) ∪ JC2K(P )) [By definition of JC1 + C2K]

≤ α(JC1K(P )) ∨ α(JC2KAais(P ))

≤ JC1KAais(α(P )) ∨ JC2KAais(α(P )) [By inductive hypothesis on C1

and C2]

= JC1 + C2KAais(α(P )) [By definition of JC1 + C2KAais]

• Cfix:

α(JCfixK(P )) = α(lfp(λP ′.P ∪ JCK(P ′))) [By definition of JCfixK]

= α(
⋃︂
n∈N

JCKn(P ))

≤
⋁︂
n∈N

α(JCKn(P )))

≤
⋁︂
n∈N

(JCKAais)
n(α(P )) [By inductive hypothesis on C]

≤ lfp(λP ′.α(P ) ∨ JCKAais(P
′))

= JCfixKAais(α(P )) [By definition of JCfixKAais]
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This connection also allows us to obtain abstract inductive semantics through Galois insertions.

Definition 2.4 (Abstract Inductive Semantics by Galois Insertion). Let ⟨C,⊑⟩ −−−→−→←−−−−
α

γ

⟨A,≤⟩ be a Galois insertion, and let JCKCais be some abstract inductive semantics defined on C.
Then, the abstract inductive semantics defined on A with JbKAbase

def
= α ◦ JbKCbase ◦ γ is the abstract

inductive semantics obtained by the Galois insertion between C and A.

The abstract inductive semantics obtained by Galois insertion between ℘(S) and any domain
A can be seen as the best abstract inductive interpreter on A.

Observation 2.4. There are some domains where ∃ C ∈ L such that
⋁︁

n∈N(JCKAais)n(P ) ̸=
lfp(λP ′.P ∨A JCKAais(P ′)).

Example 2.4. Let C def
= (x > 1? o

9 ((even(x)? o
9 X := x + 3) + (¬even(x)? o

9 x := x − 2))fix when
performing the computation on the interval domain, if we compute C using the infinitary join:

JC⋆KAais([5, 5]) =
⋁︂
n∈N

(Jx > 1? o
9 ((even(x)? o

9 x := x+ 3) + (¬even(x)? o
9 x := x− 2))KAais)

n([5, 5])

= [5, 5] ∨ [3, 3] ∨ [1, 1] ∨ ⊥ ∨ ⊥...
= [1, 5]

Instead using the least-fixpoint:

JCfixKAais([5, 5]) = lfp(λP ′.[5, 5] ∨ Jx > 1? o
9 ((even(x)? o

9 x := x+ 3) + (¬even(x)? o
9 x := x− 2))KAais(P

′))

= [−∞,+∞]

The difference is caused by the fact that when we are computing the infinite join, all the joins
happen after executing the semantics of the loop body, instead, when using the least-fixpoint
formulation the join is performed before executing the the semantics of the body.

2.3 Abstract Hoare Logic

2.3.1 Hoare logic
Hoare logic [Hoa69; Flo93] was one of the first methods designed for the verification of programs, Its
core concept is that of partial correctness assertions. A Hoare triple is a formula {P} C {Q} where
P and Q are assertions on the initial and final states of a program C, respectively. These assertions
are partial in the sense that Q is meaningful only when the execution of C on P terminates.

Hoare logic is designed as a proof system, where the syntax ⊢ {P} C {Q} indicates that the
triple {P} C {Q} is proved by applying the rules of the proof system.

The original formulation of Hoare logic was given for an imperative language with deterministic
constructs, but it can be easily defined for our language L following the work in [MOH21].

Definition 2.5 (Hoare triple). Fixed the semantics of the basic commands, an Hoare triple
denoted by {P} C {Q}, is valid if and only if JCK(P ) ⊆ Q.

|= {P} C {Q} ⇐⇒ JCK(P ) ⊆ Q

We will use the syntax |= {P} C {Q} to refer to valid triples, ̸|= {P} C {Q} to refer to invalid
triples.

Example 2.5 (Hoare triples). We have that {x ∈ [1, 2]} x := x+1 {x ∈ [2, 4]}, is a valid triple
since from any state in which either x = 1 or x = 2, incrementing by one the value of x leads to
states in which x is either 2 or 3. Specifically, starting from x = 1 leads us to x = 2 and starting
from x = 2 leads us to x = 3.

Since the conclusion of Hoare triples must contain all the final states, the triple {P} C {⊤} is
always valid since ⊤ contains all the possible states.
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An example of an invalid triple is {x ∈ [1, 2]} x := x + 1 {x ∈ [1, 2]} since the state x = 2
satisfies the precondition and executing the program on it results in the state x = 3, which does
not satisfy x ∈ [1, 2].

Since Hoare logic is concerned only with termination, when the program is non-terminating,
we can prove any property. For example, {x ∈ [0, 10]} (x ≤ 20? o

9 x := x − 1)fix o
9 x ≥ 20? {Q} is

always a valid triple since the program is non-terminating for any x ∈ [0, 10]. The set of reachable
states is empty, thus the postcondition is vacuously true.

This is the reason why Hoare logic is called a partial correctness logic, where partial means
that it can prove the adherence of a program to some specification only when it is terminating.
The termination of the program must be proved by resorting to some alternative method.

Definition 2.6 (Hoare logic).
The rules of Hoare logic are defined as follows:

(1)
⊢ {P} 1 {P}

(base)
⊢ {P} b {JbKbase(P )}

⊢ {P} C1 {Q} ⊢ {Q} C2 {R}
(seq)

⊢ {P} C1
o
9 C2 {R}

⊢ {P} C1 {Q} ⊢ {P} C2 {Q}
(disj)

⊢ {P} C1 + C2 {Q}

⊢ {P} C {P}
(iterate)

⊢ {P} Cfix {P}

P ⊆ P ′ ⊢ {P ′} C {Q′} Q′ ⊆ Q
(consequence)

⊢ {P} C {Q}

The proof system described in Definition 2.6 is logically sound, meaning that all its provable
triples are valid with respect to Definition 2.5.

Theorem 2.4 (Soundness).

⊢ {P} C {Q} =⇒ |= {P} C {Q}

As observed by Cook [Coo78], the reverse implication is not true, in general, as a consequence
of Gödel’s incompleteness theorem. For this reason, Cook developed the concept of relative com-
pleteness, in which all the instances of ⊆ are provided by an oracle, proving that the incompleteness
of the proof system is only caused by the incompleteness of the assertion language.

Theorem 2.5 (Relative completeness).

|= {P} C {Q} =⇒ ⊢ {P} C {Q}

2.3.2 Abstracting Hoare logic
The idea of designing a Hoare-like logic to reason about properties of programs expressible within
the theory of lattices using concepts from abstract interpretation is not new. In fact, [Cou+12]
already proposed a framework to perform this kind of reasoning. However, the validity of the
triples in [Cou+12] depends on the standard definition of Hoare triples, and the proof system is
incomplete if we ignore the rule to embed standard Hoare triples in the abstract ones.

Our approach will be different. In particular, the meaning of abstract Hoare triples will be de-
pendent on the abstract inductive semantics, and we will provide a sound and (relatively) complete
without resorting to embedding Hoare logic in its proof system as [Cou+12].
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Definition 2.7 (Abstract Hoare triple). Given an abstract inductive semantics J·KAais on the
complete lattice A, the abstract Hoare triple written ⟨P ⟩A C ⟨Q⟩ is valid if and only if JCKAais(P ) ≤A

Q.

|= ⟨P ⟩A C ⟨Q⟩ ⇐⇒ JCKAais(P ) ≤A Q

The definition is equivalent to the Definition 2.5 but here a generic abstract inductive semantics
is used to provide the strongest postcondition of programs.

In Abstract Hoare logic some of the examples shown in example 2.5 still hold, in particular we
have that:

Example 2.6.
|= ⟨P ⟩A C ⟨⊤⟩

Proof.

|= ⟨P ⟩A C ⟨⊤⟩ ⇐⇒ JCKAais(P ) ≤ ⊤ By definition of ⟨·⟩A · ⟨·⟩

And since ⊤ is the top element of A we have ⊤ ≥ JCKAais(P )

2.3.3 Proof system

As per Hoare logic we will provide a sound and relatively complete (in the sense of [Coo78]) proof
system to derive abstract Hoare triples in a compositional fashion.

Definition 2.8 (Abstract Hoare rules).

(1)
⊢ ⟨P ⟩A 1 ⟨P ⟩

(b)
⊢ ⟨P ⟩A b ⟨JbKAbase(P )⟩

⊢ ⟨P ⟩A C1 ⟨Q⟩ ⊢ ⟨Q⟩A C2 ⟨R⟩
(o9)⊢ ⟨P ⟩A C1

o
9 C2 ⟨R⟩

⊢ ⟨P ⟩A C1 ⟨Q⟩ ⊢ ⟨P ⟩A C2 ⟨Q⟩
(+)

⊢ ⟨P ⟩A C1 + C2 ⟨Q⟩

⊢ ⟨P ⟩A C ⟨P ⟩
(fix)

⊢ ⟨P ⟩A Cfix ⟨P ⟩

P ≤ P ′ ⊢ ⟨P ′⟩A C ⟨Q′⟩ Q′ ≤ Q
(≤)

⊢ ⟨P ⟩A C ⟨Q⟩

The rules can be summarized as:

• The identity command does not change the state, so if P holds before, it will hold after the
execution.

• For a basic command b, if P holds before the execution, then JbKAbase(P ) holds after the
execution.

• If executing C1 from state P leads to state Q, and executing C2 from state Q leads to state
R, then executing C1 followed by C2 from state P leads to state R.

• If executing either C1 or C2 from state P leads to stateQ, then executing the nondeterministic
choice C1 + C2 from state P also leads to state Q.
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• If executing command C from state P leads back to state P , then executing C repeatedly
(zero or more times) from state P also leads back to state P .

• If P is stronger than P ′ and Q′ is stronger than Q, then we can derive ⟨P ⟩A C ⟨Q⟩ from
⟨P ′⟩A C ⟨Q′⟩.

The proofsystem is nonother than Definition 2.6, where the assertion are replaced by elements
of the complete lattice A.

Note that we denote Abstract Hoare Triples as defined in Definition 2.7 with the notation
⟨P ⟩A C ⟨Q⟩ while we denote the triples obtained with the inference rules of Definition 2.8 by
⊢ ⟨P ⟩A C ⟨Q⟩.

The proofsystem for Abstract Hoare logic is sound, as the original Hoare logic.

Theorem 2.6 (Soundness).

⊢ ⟨P ⟩A C ⟨Q⟩ =⇒ |= ⟨P ⟩A C ⟨Q⟩

Proof. By structural induction on the last rule applied in the derivation of ⊢ ⟨P ⟩A C ⟨Q⟩:

• (1): Then the last step in the derivation was:

(1)
⊢ ⟨P ⟩A 1 ⟨P ⟩

The triple is valid since:

J1KAais(P ) = P [By definition of J·KAais]

• (b): Then the last step in the derivation was:

(b)
⊢ ⟨P ⟩A b ⟨JbKAbase(P )⟩

The triple is valid since:

JbKAais(P ) = JbKAbase(P ) [By definition of J·KAais]

• (o9): Then the last step in the derivation was:

⊢ ⟨P ⟩A C1 ⟨Q⟩ ⊢ ⟨Q⟩A C2 ⟨R⟩
(o9)⊢ ⟨P ⟩A C1

o
9 C2 ⟨R⟩

By inductive hypothesis: JC1KAais(P ) ≤A Q and JC2KAais(Q) ≤A R.
The triple is valid since:

JC1
o
9 C2KAais(P ) = JC2KAais(JC1KAais(P )) [By definition of J·KAais]

≤A JC2KAais(Q) [By monotonicity of J·KAais]
≤A R

• (+): Then the last step in the derivation was:

⊢ ⟨P ⟩A C1 ⟨Q⟩ ⊢ ⟨P ⟩A C2 ⟨Q⟩
(+)

⊢ ⟨P ⟩A C1 + C2 ⟨Q⟩

By inductive hypothesis: JC1KAais(P ) ≤ Q and JC2KAais(P ) ≤ Q.
The triple is valid since:

JC1 + C2KAais(P ) = JC1KAais(P ) ∨A JC2KAais(P ) [By definition of J·KAais]
≤A Q ∨A Q
= Q
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• (fix): Then the last step in the derivation was:

⊢ ⟨P ⟩A C ⟨P ⟩
(fix)

⊢ ⟨P ⟩A Cfix ⟨P ⟩

By inductive hypothesis: JCKAaisP ≤ P

JCfixKAais(P ) = lfp(λP ′ → P ∨A JCKAais(P
′))

We will show that P is a fixpoint of λP ′ → P ∨A JCKAais(P ′).

(λP ′ → P ∨A JCKAais(P
′))(P ) = P ∨A JCKAais(P ) [since JCKAais(P ) ≤ P ]

= P

Hence P is a fixpoint of λP ′ → P ∨A JCKAais(P ′), therefore it is above the least one, lfp(λP ′ →
P ∨A JCKAais(P ′)) ≤A P thus making the triple valid.

• (≤): Then the last step in the derivation was:

P ≤ P ′ ⊢ ⟨P ′⟩A C ⟨Q′⟩ Q′ ≤ Q
(≤)

⊢ ⟨P ⟩A C ⟨Q⟩

By inductive hypothesis: JCKAais(P ′) ≤A Q′.

The triple is valid since:

JCKAais(P )JCKAais(P
′) [By monotonicity of J·KAais]

≤A Q′ [By inductive hypothesis]
≤A Q

The proof system turns out to be relatively complete as well, in the sense that the axioms are
complete relative to what we can prove in the underlying assertion language, that in our case is
described by the complete lattice.

We will first prove a slightly weaker result, where we will show that we can prove the strongest
post-condition of every program.

Theorem 2.7 (Relative J·KAais-completeness).

⊢ ⟨P ⟩A C ⟨JCKAais(P )⟩

Proof. By structural induction on C:

• 1: By definition J1KAais(P ) = P

(1)
⊢ ⟨P ⟩A 1 ⟨P ⟩

• b: By definition JbKAais(P ) = JbKAbase(P )

(b)
⊢ ⟨P ⟩A b ⟨JbKAbase(P )⟩
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• C1
o
9 C2: By definition JC1

o
9 C2KAais(P ) = JC2KAais(JC1KAais(P ))

(Inductive hypothesis)

⊢ ⟨P ⟩A C1 ⟨JC1KAais(P )⟩
(Inductive hypothesis)

⊢ ⟨JC1KAais(P )⟩A C2 ⟨JC2KAais(JC1KAais(P ))⟩ (o9)⊢ ⟨P ⟩A C1
o
9 C2 ⟨JC2KAais(JC1KAais(P ))⟩

• C1 + C2: By definition JC1 + C2Kbase(P ) = JC1Kbase(P ) ∨A JC2Kbase(P )

π1 π2 (+)
⊢ ⟨P ⟩A C1 + C2 ⟨JC1KAais(P ) ∨A JC2KAais(P )⟩

Where π1:

P ≤A P

(Inductive hypothesis)

⊢ ⟨P ⟩A C1 ⟨JC1KAais(P )⟩ JC1KAais(P ) ≤A JC1KAais(P ) ∨A JC2KAais(P ) (≤)
⊢ ⟨P ⟩A C1 ⟨JC1KAais(P ) ∨A JC2KAais(P )⟩

and π2:

P ≤A P

(Inductive hypothesis)

⊢ ⟨P ⟩A C2 ⟨JC2KAais(P )⟩ JC2KAais(P ) ≤A JC1KAais(P ) ∨A JC2KAais(P ) (≤)
⊢ ⟨P ⟩A C2 ⟨JC1KAais(P ) ∨A JC2KAais(P )⟩

• Cfix: By definition JCfixKbase(P ) = lfp(λP ′ → P ∨A JCKAais(P ′).

Let K def
= lfp(λP ′ → P ∨A JCKAais(P ′) hence K = P ∨A JCKAais(K) since it is a fixpoint, thus

– α1: K ≥A P

– α2: K ≥A JCKAais(K)

α1

K ≤A K

(Inductive hypothesis)

⊢ ⟨K⟩A C ⟨JCKAais(K)⟩ α2

⊢ ⟨K⟩A C ⟨K⟩
(fix)

⊢ ⟨K⟩A Cfix ⟨K⟩ K ≤A K
(≤)

⊢ ⟨P ⟩A Cfix ⟨K⟩

We can now show the relative completeness, by applying the rule (≤) to achieve the desired
post-condition.

Theorem 2.8 (Relative completeness).

|= ⟨P ⟩A C ⟨Q⟩ =⇒ ⊢ ⟨P ⟩A C ⟨Q⟩

Proof. By definition of |= ⟨P ⟩A C ⟨Q⟩ ⇐⇒ Q ≥A JCKAais(P )

P ≤A P

(By Theorem 2.7)

⊢ ⟨P ⟩A C ⟨JCKAais(P )⟩ Q ≥A JCKAais(P ) (≤)
⊢ ⟨P ⟩A C ⟨Q⟩



CHAPTER 3
INSTANTIATING ABSTRACT HOARE LOGIC

In this chapter, we will demonstrate how to instantiate abstract Hoare logic to systematically design
novel program logics. We will also show that our abstract Hoare logic framework is sufficiently
general to reason about properties that cannot be expressed in standard Hoare logic, notably
hyperproperties.

3.1 Hoare logic
According to Observation 2.3, the abstract inductive semantics, when using (℘(S),⊆) as domain
and JbK℘(S)base(P ) = {JbKbase(σ) | σ ∈ P and JbKbase(σ) ↓} as semantics of basic commands, turns out
to be equivalent to the denotational semantics given in Definition 2.2. Therefore Abstract Hoare
logic (Definition 2.7) in this instance coincides with Hoare logic (Definition 2.5). Hence we obtain
soundness and relative completeness for Hoare logic directly form Theorems 2.6 and 2.8.

3.1.1 Algebraic Hoare Logic
As discussed in Section 2.3, Abstract Hoare Logic was inspired by Algebraic Hoare Logic [Cou+12].
Both logics can be used to prove properties in computer-representable abstract domains.

Definition 3.1 (Algebraic Hoare triple). Given two Galois insertions ⟨℘(S),⊆⟩ −−−→−→←−−−−
α1

γ1 ⟨A,≤⟩
and ⟨℘(S),⊆⟩ −−−→−→←−−−−

α2

γ2 ⟨B,⊑⟩, an Algebraic Hoare triple, denoted by {P} C {Q}, is valid if and
only if the Hoare triple {γ1(P )} C {γ2(Q)} is valid, namely:

|= {P} C {Q} ⇐⇒ |= {γ1(P )} C {γ2(Q)}

In the definition above, Algebraic Hoare Logic is strongly related to standard Hoare Logic, and,
therefore, to the strongest postcondition of the program in the concrete domain.

Definition 3.2 (Algebraic Hoare logic proof system1).

(⊥)
⊢ {⊥1} C {Q}

(⊤)
⊢ {P} C {⊤2}

|= {γ1(P )} C {γ2(Q)}
(S)

⊢ {P} C {Q}
1Rules (∨) and (∧) in [Cou+12] are missing but will be discussed in Section 4.1

21
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P ≤ P ′ ⊢ {P ′} C {Q′} Q′ ⊑ Q
(⇒)

⊢ {P} C {Q}

This proof system highlights that a crucial part of the proof relies on rule (S), which embeds
Hoare triples in Algebraic Hoare triples. One can easily prove that the proof system is relatively
complete by leveraging the relative completeness of Hoare logic. In particular, only the rule (S) is
actually needed since all the implications in the abstract must also hold in the concrete.

3.1.2 Abstract Interval Logic
By recalling Definition 2.4 and the properties of Galois insertions, we can easily derive a similar
family of triples as those in Algebraic Hoare Logic, when pre- and post-conditions range in the
same abstract domain.

Example 3.1 (Interval logic). Applying Definition 2.4 to the Galois insertion on the interval
domain defined in Example 1.1, we systematically obtain a sound and relatively complete logic to
reason about properties of programs that are expressible as intervals.

Example 3.2 (Derivation in interval logic). Let us consider the following program:

C
def
= ((x := 1) + (x := 3)) o

9 ((x = 2? o
9 x := 5) + (x ̸= 2? o

9 x := x− 1)) .

Then the following derivation is valid:

π1 π3 (o9)⊢ ⟨⊤⟩Int C ⟨[0, 5]⟩
π1:

⊤ ≤ ⊤
(b)

⊢ ⟨⊤⟩Int x := 1 ⟨[1, 1]⟩ [1, 1] ≤ [1, 3]

⊢ ⟨⊤⟩Int x := 1 ⟨[1, 3]⟩ π2
(+)

⊢ ⟨⊤⟩Int (x := 1) + (x := 3) ⟨[1, 3]⟩
π2:

⊤ ≤ ⊤
(b)

⊢ ⟨⊤⟩Int x := 3 ⟨[3, 3]⟩ [3, 3] ≤ [1, 3]
(≤)

⊢ ⟨⊤⟩Int x := 3 ⟨[1, 3]⟩
π3:

π4 π5 (+)
⊢ ⟨[1, 3]⟩Int (x = 2? o

9 x := 5) + (x ̸= 2? o
9 x := x− 1) ⟨[0, 5]⟩

π4:

[1, 3] ≤ [1, 3]

(b)
⊢ ⟨[1, 3]⟩Int x = 2? ⟨[2]⟩

(b)
⊢ ⟨[2]⟩Int x := 5 ⟨[5]⟩

(o9)⊢ ⟨[1, 3]⟩Int x = 2? o
9 x := 5 ⟨[5]⟩ [5, 5] ≤ [0, 5]

(≤)
⊢ ⟨[1, 3]⟩Int x = 2? o

9 x := 5 ⟨[0, 5]⟩
π5:

[1, 3] ≤ [1, 3] π6 [0, 2] ≤ [0, 5]

⊢ ⟨[1, 3]⟩Int x ̸= 2? o
9 x := x− 1 ⟨[0, 5]⟩

π6 :

(b)
⊢ ⟨[1, 3]⟩Int x ̸= 2? ⟨[1, 3]⟩

(b)
⊢ ⟨[1, 3]⟩Int x := x− 1 ⟨[0, 2]⟩

(o9)⊢ ⟨[1, 3]⟩Int x ̸= 2? o
9 x := x− 1 ⟨[0, 2]⟩

The abstract post-condition [0, 5] is the best possible in the interval abstraction, because
JCKIntais(⊤) = [0, 5] holds.
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3.2.2.1 Applications

This framework, analogously to Algebraic Hoare Logic, can be used to specify how a static analyzer
for a given abstract domain should work. Since J·KAais is the best inductive abstract analyzer on the
abstract domain A, and the whole proof system is defined in the abstract domain A, we can check
that a derivation is indeed correct algorithmically, as long as we assume that implications and
basic commands can be algorithmically checked. These are usually the standard requirements for
an abstract domain to be useful in practice, that is, subject of an implementation. The same does
not hold for Algebraic Hoare Logic, since deciding the validity of arbitrary triples would require
deciding the validity of standard Hoare logic triples, and, in general, of course we cannot decide
implications between arbitrary properties.

3.1.3 Abstract vs Algebraic Hoare Logic
Clearly, Algebraic Hoare Logic can derive the same triples that are derivable by Abstract Hoare
Logic when instantiated through a Galois insertion from ℘(S) as we did in Example 3.1. From
Theorem 2.3, it turns out that J·KAais is a sound overapproximation of J·K.

Theorem 3.1 (Abstract entails Algebraic). ⊢ ⟨P ⟩A C ⟨Q⟩ =⇒ ⊢ {P} C {Q}

Proof.

⊢ ⟨P ⟩A C ⟨Q⟩ =⇒ JCKAais(P ) ≤ Q [From Theorem 2.6]
=⇒ JCK(γ(P )) ⊆ γ(Q) [From Theorem 2.3]
=⇒ ⊢ {γ(P )} C {γ(Q)} [From Theorem 2.5]

=⇒ ⊢ {P} C {Q} [From rule (S)]

However, the converse of Theorem 3.1 does not hold. The relative completeness of Algebraic
Hoare Logic is stated with respect to the best correct approximation of J·K, differently from Abstract
Hoare Logic which considers J·KAais.

Example 3.3 (Counterexample to the converse of Theorem 3.1). From Example 3.2, we
know that ⊢ ⟨⊤⟩A C ⟨[0, 5]⟩ is the best Abstract Hoare triple that we can derive. However, we
have that JCK⊤ = {0, 2}. By Theorem 2.5, we can infer ⊢ {⊤} C {{0, 2}}. Hence, by rule (S), we
can obtain ⊢ {⊤} C {[0, 2]}, which cannot be derived in Abstract Hoare Logic.

This divergence between abstract and algebraic Hoare logics arises because, through the rule
(S) rule of Algebraic Hoare logic, we are always able to prove the best correct approximation of
any program C. However, the property of being a best correct approximation is not compositional,
meaning that the function composition of two best correct approximations is not the best correct
approximation of the composition of these functions. Since in the abstract semantics the program
composition is done in “the abstract”, it is impossible to expect to be able to derive any possible
best correct approximation, except in trivial abstract domains such as the concrete domain ℘(S)
or the one-element abstraction {⊤}.

3.2 Hoare logic for hyperproperties

3.2.1 Introduction to Hyperproperties
Program hyperproperties [CS08] extend traditional program properties by considering relationships
between multiple executions of a program, rather than focusing on individual traces. This concept
is essential for reasoning about security and correctness properties that involve comparing different
executions, such as non-interference and information flow security [GM82].

Standard program properties, such as those of Hoare logic, range into the set ℘(S). By contrast,
hyperproperties range in ℘(℘(S)), as they encode relations between different executions. A typical
example is the property of a program of being deterministic. For instance, if our programs involve
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a single integer variable x, proving determinism involves an infinite number of Hoare triples of the
form: for each n ∈ N, there exists m ∈ N such that |= {{x = n}} C {{x = m}} holds. However,
determinism can be succinctly encoded by a single hyper triple as follows:

|= {{P ∈ ℘(℘(S)) | |P | = 1}} C {{Q ∈ ℘(℘(S)) | |Q| = 1}} .

Definition 3.3 (Strongest Hyper Postcondition). The strongest postcondition of a program
C starting from a collection of sets of states X ∈ ℘(℘(S)) is defined as follows:

{JCK(P ) | P ∈ X} .

Note that Definition 3.3 is justified by the requirement that we are interested in modeling the
strongest postcondition of every initial state ranging in X.

3.2.2 Inductive Definition of the Strongest Hyper Postcondition
To design a sound and relatively complete logic for hyperproperties within our framework, it is cru-
cial to define an abstract inductive semantics that precisely computes the strongest hyper postcon-
dition. This objective has been investigated in prior works [Ass+17; MP18], mostly in an abstract
interpretation-based scenario. However, existing approaches often provide an over-approximation
of the strongest hyper postcondition, which, while suitable for abstract interpretation, falls short
of maintaining relative completeness in our context.

In [Ass+17], for instance, the hyper semantics of the branching command if b then C1 else C2

from a starting hyper-state T is defined to be {Jb? o
9 C1KT ∪ J¬b? o

9 C2K | T ∈ T}, thereby lacking
inductiveness. It is worth remarking that with this noninductive definition, we have that, for any
program C, the hypersemantics of if 1 = 1 then C coincides with that of C, thus making this
hyper semantics practically meaningless for program analysis.

The fundamental issue lies in the fact that in the domain ℘(℘(S)), ordered w.r.t. the usual
subset inclusion, the least upper bound, namely set union, fails to distinguish between different
executions, as shown by the following example.

Example 3.4. Let X def
= {{1, 2, 3}, {5}}. Clearly, we have that:

J(x := x+ 1) + (x := x+ 2)K℘(℘(S))ais (X ) = {{2, 3, 4}, {6}, {3, 4, 5}, {7}},

which is obviously different from the strongest hyper postcondition {{2, 3, 4, 5}, {6, 7}}.

When applying the rule for non-deterministic choice,

JC1 + C2K
℘(℘(S))
ais (P) = JC1K

℘(℘(S))
ais (P) ∪ JC2K

℘(℘(S))
ais (P) ,

the union of outermost sets is considered rather than of the innermost sets that include actual
executions. Attempts to alter the ordering on the domain ℘(℘(S)) turned out to be unsuccessful
as each set lacks information about the generating execution, thus leading to an unavoidable loss
of precision in the definition of the union.

To the best of our knowledge, no approach has been put forward for defining an abstract
inductive semantics that exactly computes the strongest hyper postcondition. Existing works just
provide sound overapproximations, which are adequate for abstract interpreters, but are not precise
enough for verifying certain hyperproperties within Abstract Hoare logic, especially where precision
in abstract inductive semantics is compromised.

3.2.3 Hyper Domains
To address the limitations of ℘(℘(S)) discussed above, we introduce a family of domains designed
to keep track of the execution of interest across different executions. Our definition leverages an
index set K (K stands for “keys”) to enumerate individual executions, and, accordingly, define the
join operation in a manner that allows us to distinguish them.
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⊥

. . .

⊤

undef

⊥

. . .

⊤

Figure 3.1: On the left the Hasse diagram of B, on the right the Hasse diagram of B + undef

Definition 3.4 (Hyper Domain). Given a complete lattice B and a set K, the hyper domain
H(B)K is defined as follows:

H(B)K
def
= K → B + undef .

The structure of complete lattice of H(B)K is defined by lifting the pointwise lattice of B+undef,
where B + undef forms a complete lattice on B where undef is the new bottom element, meaning
that undef < ⊥B (see Figure 3.2.3).

Let us point out that the role played by the index set K in Definition 3.4 is merely that of
encoding different executions, where no specific requirements on its elements are assumed, while
K should simply have enough distinct indices to account for all the executions of interest.

Definition 3.5 (Hyper Instantiation). Given an instantiation of the abstract inductive seman-
tics on the domain B with semantics for basic commands J·KBbase, the abstract inductive semantics
for the hyper domain H(B)K is accordingly defined bu taking as semantics of the base commands:

JbKH(B)K
base (X) def

= λr.JbKBbase(X(r)) .

Hence, this notion of hyper instantiation lifts the abstract inductive semantics from the domain
B to its “hype” version, by applying the semantics of basic commands from B to each execution.
Next, we show that the abstract inductive semantics instantiated on a hyper-domain preserves
non-interference, meaning that the hyper inductive semantics yields the same results as computing
the original semantics on each execution.

Theorem 3.2 (Non-interference between executions). For all programs C, we have that

JCKH(B)K
ais (X) = λr.JCKBais(X(r)) .

Proof. By structural induction on C:

• 1:

J1KH(B)K
ais (X) = X [By definition of J·KH(B)K

ais ]
= λr.X(r) [By extensionality]

= λr.J1KBais(X(r)) [By definition of J·KBais]

• b:

JbKH(B)K
ais (X) = λr.JbKBais(X(r))



26 CHAPTER 3. INSTANTIATING ABSTRACT HOARE LOGIC

• C1
o
9 C2:

JC1
o
9 C2K

H(B)K
ais (X) = JC2K

H(B)K
ais (JC1K

H(B)K
ais (X)) [By definition of J·KH(B)K

ais ]

= JC2K
H(B)K
ais (λr1.JC1KBais(X(r1))) [By inductive hypothesis]

= λr2.JC2KBais(λr1.JC1KBais(X(r1))(r2)) [By inductive hypothesis]

= λr2.JC1
o
9 C2KBais(X(r2)) [By definition of J·KBais]

• C1 + C2:

JC1 + C2K
H(B)K
ais (X) = JC1K

H(B)K
ais (X) ∨ JC2K

H(B)K
ais (X) [By definition of J·KH(B)K

ais ]

= (λr1.JC1KBais(X(r1))) ∨ (λr2.JC1KBais(X(r2))) [By inductive hypothesis]

= λr.JC1KBais(X(r)) ∨ JC2KBais(X(r))
= λr.JC1 + C2KBais(X(r)) [By definition of J·KBais]

• Cfix:

JCfixKH(B)K
ais (X) = lfp(λψ.X ∨ JCKH(B)K

ais (ψ)) [By definition of J·KH(B)K
ais ]

= lfp(λψ.X ∨ λr.JCKBais(ψ(r))) [By inductive hypothesis]

= λr.lfp(λP.X(r) ∨ JCKBaisP ) [By definition of J·KBais]
= λr.JCfixKBais(X(r))

3.2.4 Inductive Definition for Hyper Postconditions

Our definition of hyper domains allows us to overcome the limitations of ℘(℘(S)) found in liter-
ature. On the other hand, we now use a different domain in our abstract inductive semantics.
To bridge this gap, we establish a method for converting standard hyperproperties to their hyper
domain counterparts and vice versa. This involves defining a pair of functions, referred to as con-
version pair, to make this conversion simpler. Of course, there exist infinitely many functions to
convert a standard hyperproperty into a version using hyper domains—due to the infinite repre-
sentations of the same property—and we exploit a single representative (which is an 1-1 function)
to encapsulate all these representations, so that our results will remain independent of the chosen
indexing function.

Definition 3.6 (Conversion Pair). Given a 1-1 function idx : B → K, the conversion pair
⟨α, β⟩ is defined as follows:

α : H(B)K → ℘(B)

α(X) def
= {X(r) | r ∈ K and X(r) ↓}

β : ℘(B)→ H(B)K

β(X ) def
= λr.

{︄
P ∃P ∈ X such that idx (P ) = r

undef otherwise

By instantiating the hyper domain to H(℘(S))R, we show that our abstract inductive semantics
actually defines the strongest hyper postcondition.
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Theorem 3.3 (Abstract Inductive Semantics as Strongest Hyper Postcondition).

α(JCKH(℘(S))R
ais (β(X ))) = {JCK℘(S)ais (P ) | P ∈ X}

Proof.

α(JCKH(℘(S))R
ais (β(X ))) = α(λr.JCK℘(S)ais (β(X )(r))) [By Theorem 3.2]

= {JCK℘(S)ais (β(X )(r)) ↓ | r ∈ R} [By the definition of α]

= {JCK℘(S)ais (P ) | P ∈ X} [By the definition of β and injectivity]

3.2.5 Hyper Hoare Triples

The instantiation of hyper domains provides a sound and complete Hoare-like logic for hyperprop-
erties, particularly when using the function α of Definition 3.6 on pre- and postconditions.

Example 3.5 (Determinism in Abstract Hoare Logic). As discussed in Example 3.4, we
express the determinism, up to termination, of a command by proving that the hyperproperty
{P | |P | = 1} serves as both precondition and postcondition for the command.

We assume that the language L uses single-variable assignments only, so that program states
are represented simply by integers.

The property P we use as precondition is defined as follows:

P def
= λr.

{︄
{x} ∃x ∈ S such that idx (P ) = r

undef otherwise

We prove that 1 (i.e., the skip command) is deterministic:

(1)
⊢ ⟨P⟩H(℘(S))R 1 ⟨P⟩

Since α(P) = {. . . , {−1}, {0}, {1}, . . .}, we can therefore infer that the command is determinis-
tic.

Similarly, we can prove that the increment function is deterministic as follows:

(:=)
⊢ ⟨P⟩H(℘(S))R x := x+ 1 ⟨Q⟩

where Q def
= λr.

{︄
{x+ 1} ∃{x} ∈ ℘(S) such that idx (P ) = r

undef otherwise
Clearly, we have that α(Q) = {..., {0}, {1}, {2}, ...},

thus proving determinism.
Finally, we can establish that a nondeterministic choice between two identical programs remains

deterministic by the following proof:

(:=)
⊢ ⟨P⟩H(℘(S))R x := x+ 1 ⟨Q⟩

(:=)
⊢ ⟨P⟩H(℘(S))R x := x+ 1 ⟨Q⟩

(+)
⊢ ⟨P⟩H(℘(S))R (x := x+ 1) + (x := x+ 1) ⟨Q⟩

However, different programs cannot be handled in the same way:

P ≤ P
(1)

⊢ ⟨P⟩H(℘(S))R 1 ⟨P⟩ P ≤ P ∨Q
(≤)

⊢ ⟨P⟩H(℘(S))R 1 ⟨P ∨Q⟩ π
(+)

⊢ ⟨P⟩H(℘(S))R 1+ (x := x+ 1) ⟨P ∨Q⟩

where the proof tree π is the following:
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P ≤ P
(:=)

⊢ ⟨P⟩H(℘(S))R x := x+ 1 ⟨Q⟩ Q ≤ P ∨Q
(≤)

⊢ ⟨P⟩H(℘(S))R x := x+ 1 ⟨P ∨Q⟩

Clearly, we have that α(P ∨ Q) = {..., {−1, 0}, {0, 1}, {1, 2}, ...}. Let us observe that different el-
ements within the hyper domain may correspond to the same hyperproperty, therefore reflecting
that the nondeterministic choice does not always “preserve” hyperproperties. This approach par-
allels other logics that handle hyperproperties by introducing a new disjunction operator capable
of distinguishing between different executions.

Hyper Hoare Logic [DM23] is a related Hoare-like logic that provides a sound and relatively
complete program logic for hyperproperties. While Hyper Hoare Logic was specifically designed
for this purpose, it turns out to be equivalent to the logic derived from our abstract Hoare logic
framework. Notably, it departs from using the classical disjunction connective—equivalent to the
least upper bound in ℘(℘(S))—adopting instead a peculiar disjunction operator ⊗ which is able
to distinguish different executions, similarly to the least upper bound in our hyper domain.

3.3 Partial Incorrectness
Any instantiation of the abstract inductive semantics provides a corresponding program logic, as
the semantics is parameterized by the complete lattice A, and the dual Aop of a complete lattice
A is a complete lattice as well. Therefore, we can derive the dual abstract inductive semantics on
the complete lattice Aop.

Definition 3.7 (Dual Abstract Inductive Semantics). Given an abstract inductive semantics
defined on a complete lattice A with basic commands J·KAbase, the dual abstract inductive semantics
is defined on the complete lattice Aop with basic command semantics J·KAop

base = J·KAbase.

Since the dual abstract inductive semantics is itself an abstract inductive semantics, it naturally
induces an Abstract Hoare Logic. In the dual lattice, where the partial order is reversed, operations
such as joins and meets are swapped, leading to an inversion of lfp and gfp. Hence, the dual abstract
inductive semantics, as given in the dual lattice, can be formulated as follows:

J1KA
op

ais = id = id

JbKA
op

ais = JbKA
op

base = JbKAbase
JC1

o
9 C2KA

op

ais = JC2KA
op

ais ◦ JC1KA
op

ais = JC2KA
op

ais ◦ JC1KA
op

ais

JC1 + C2KA
op

ais = λP.JC1KA
op

ais P ∨Aop JC2KA
op

ais P = λP.JC1KA
op

ais P ∧A JC2KA
op

ais P

JCfixKA
op

ais = λP.lfpAop(λP ′.P ∨Aop JCKA
op

ais P
′) = λP.gfpA(λP

′.P ∧A JCKA
op

ais P
′)

In this dual abstract inductive semantics, we observe that in the dual latticeAop, non-deterministic
choices are handled by taking the meet of two branches, reflecting certainty rather than possibility.
Instead of considering all reachable states (i.e., union of states reached by each branch), it consid-
ers the intersection of states guaranteed to be reached by both branches. This inversion similarly
applies to the fix command.

Due to the reverse order in the dual lattice, the validity of Abstract Hoare triples is accordingly
changed as follows:

|= ⟨P ⟩Aop C ⟨Q⟩ ⇐⇒ JCKAais(P ) ≤Aop Q ⇐⇒ JCKA
op

ais (P ) ≥A Q .

When deriving the dual abstract inductive semantics from the abstract inductive semantics
on ℘(S) (i.e., strongest postcondition), the dual semantics corresponds to the strongest liberal
postcondition as introduced in [ZK22] (notably in the Boolean case). These triples are referred to
as “partial incorrectness” triples, entailing that if |= ⟨Q⟩Aop C ⟨P ⟩, then P over-approximates the
states reachingQ, accounting for termination. This notion aligns with the “necessary preconditions”
investigated in [Cou+13], where the Abstract Hoare Logic provides a sound and complete proof
system for this logic.



CHAPTER 4

EXTENDING THE PROOF SYSTEM

The proof system for Abstract Hoare logic given in Definition 2.8 is rather minimalistic. The
overall objective of Abstract Hoare logic is to establish a comprehensive framework for designing
Hoare-like logics, aiming to require as few assumptions as possible on both the assertion language
and the semantics of base commands. Throughout this chapter, we explore its potential to derive
additional sound rules for the proof system by introducing more constraints either on the complete
lattice of assertions or on the semantics of base commands.

4.1 Merge rules

When designing a software verification tool, the capability to perform multiple local reasonings
and, subsequently, merge their results provides clear benefits. An example of this arises for the
conjunction rule in concurrent separation logic [BO16].

In Hoare logic, the following two merge rules turn out to be sound:

Definition 4.1 (Merge rules in Hoare logic).

⊢ {P1} C {Q1} ⊢ {P2} C {Q2}
(∨)

⊢ {P1 ∨ P2} C {Q1 ∨Q2}

⊢ {P1} C {Q1} ⊢ {P2} C {Q2}
(∧)

⊢ {P1 ∧ P2} C {Q1 ∧Q2}

Although not essential for the completeness of the proof system, the practice of performing
two distinct analyses and, subsequently, merging their results can bring advantages. As noted in
[Cou+12], the abstract versions of merge rules are generally unsound in Algebraic Hoare Logic, a
fact that also holds in Abstract Hoare logic. We will present a counterexample for the rule (∨),
which can be readily adapted to illustrate issues with the rule (∧).

Definition 4.2 (Merge rules in Abstract Hoare logic).

⊢ ⟨P1⟩A C ⟨Q1⟩ ⊢ ⟨P2⟩A C ⟨Q2⟩
(∨)

⊢ ⟨P1 ∨ P2⟩A C ⟨Q1 ∨Q2⟩

⊢ ⟨P1⟩A C ⟨Q1⟩ ⊢ ⟨P2⟩A C ⟨Q2⟩
(∧)

⊢ ⟨P1 ∧ P2⟩A C ⟨Q1 ∧Q2⟩

29
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Example 4.1 (Counterexample for the rule (∨)). Let ⟨·⟩Int · ⟨·⟩ be the Abstract Hoare logic
instantiation of Example 3.1 for the Abstract Interval Logic, and let

C
def
= (x = 4? o

9 x := 50) + (x ̸= 4? o
9 x := x+ 1) .

We have the following two derivations:

π1 π2 (+)
⊢ ⟨[3, 3]⟩Int C ⟨[4, 4]⟩

where π1 is:

[3, 3] ≤ [3, 3]

(b)
⊢ ⟨[3, 3]⟩Int x = 4? ⟨⊥⟩

(b)
⊢ ⟨⊥⟩Int x := 50 ⟨⊥⟩

(o9)⊢ ⟨[3, 3]⟩Int x = 4? o
9 x := 50 ⟨⊥⟩ ⊥ ≤ [4, 4]

(≤)
⊢ ⟨[3, 3]⟩Int x = 4? o

9 x := 50 ⟨[4, 4]⟩

and π2 is:

(b)
⊢ ⟨[3, 3]⟩Int x ̸= 4? ⟨[3, 3]⟩

(b)
⊢ ⟨[3, 3]⟩Int x := x+ 1 ⟨[4, 4]⟩

(o9)⊢ ⟨[3, 3]⟩Int x ̸= 4? o
9 x := x+ 1 ⟨[4, 4]⟩

Moreover, we have:

π3 π4 (+)
⊢ ⟨[5, 5]⟩Int C ⟨[6, 6]⟩

where π3 is:

[5, 5] ≤ [5, 5]

(b)
⊢ ⟨[5, 5]⟩Int x = 4? ⟨⊥⟩

(b)
⊢ ⟨⊥⟩Int x := 50 ⟨⊥⟩

(o9)⊢ ⟨[5, 5]⟩Int x = 4? o
9 x := 50 ⟨⊥⟩ ⊥ ≤ [6, 6]

(≤)
⊢ ⟨[5, 5]⟩Int x = 4? o

9 x := 50 ⟨[6, 6]⟩

and π4 is:

(b)
⊢ ⟨[5, 5]⟩Int x ̸= 4? ⟨[6, 6]⟩

(b)
⊢ ⟨[5, 5]⟩Int x := x+ 1 ⟨[6, 6]⟩

(o9)⊢ ⟨[5, 5]⟩Int x ̸= 4? o
9 x := x+ 1 ⟨[6, 6]⟩

Thus we can derive the following proof tree:

⊢ ⟨[5, 5]⟩Int C ⟨[6, 6]⟩ ⊢ ⟨[3, 3]⟩Int C ⟨[4, 4]⟩
⊢ ⟨[3, 5]⟩Int C ⟨[4, 6]⟩

However, this is clearly unsound because:

JCKIntais([3, 5]) = Jx = 4? o
9 x := 50KIntais([3, 5]) ∨ Jx ̸= 4? o

9 x := x+ 1KIntais([3, 5])

= Jx := 50KIntbase(Jx = 4?KIntbase([3, 5])) ∨ Jx := x+ 1KIntbase(Jx ̸= 4?KIntbase([3, 5]))

= [50, 50] ∨ [4, 6]

= [4, 50]

and we have that [4, 50] ̸≤ [4, 6].

One might claim that the issue is merely “local”, because γ([3, 3])∪γ([5, 5]) = {3, 5} ≠ {3, 4, 5} =
γ([3, 3]∨ [5, 5]), so that one could guess that requiring a local disjunctive condition such as γ(P1 ∨
P2) = γ(P1)∪γ(P2) could fix the unsoundness, since this least upper bound adds new states in the
precondition. However, this guess turns out to be incorrect. In fact, we can construct arbitrary
programs that exploit the fact that ∨ is, in general, a convex operation capable of introducing new
elements in its over-approximation.
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Example 4.2 (Counterexample for a local disjunctive rule). Consider the following rule

γ(P1 ∨ P2) = γ(P1) ∪ γ(P2) ⊢ ⟨P1⟩A C ⟨Q1⟩ ⊢ ⟨P2⟩A C ⟨Q2⟩
(∨-local)

⊢ ⟨P1 ∨ P2⟩A C ⟨Q1 ∨Q2⟩

and let ⟨·⟩Int · ⟨·⟩ be the Abstract Hoare logic instantiation to Interval Logic described in Example
3.1. Let us consider the program

C
def
= (x = 0? + x = 2?) o

9 x = 1? .

The following derivation can be inferred:

π1
(b)

⊢ ⟨[0, 0]⟩Int x = 1? ⟨⊥⟩
(o9)⊢ ⟨[0, 1]⟩Int C ⟨⊥⟩

where π1 is:

(b)
⊢ ⟨[0, 1]⟩Int x = 0? ⟨[0, 0]⟩

(b)
⊢ ⟨[0, 1]⟩Int x = 2? ⟨[⊥]⟩ ⊥ ≤ [0, 0]

(≤)
⊢ ⟨[0, 1]⟩Int x = 2? ⟨[0, 0]⟩

(+)
⊢ ⟨[0, 1]⟩Int (x = 0?) + (x = 2?) ⟨[0, 0]⟩

Also, we have that:

π2
(b)

⊢ ⟨[2, 2]⟩Int x = 1? ⟨⊥⟩
(o9)⊢ ⟨[2, 2]⟩Int C ⟨⊥⟩

where π2 is:

(b)
⊢ ⟨[2, 2]⟩Int x = 0? ⟨[⊥]⟩ ⊥ ≤ [2, 2]

(≤)
⊢ ⟨[2, 2]⟩Int x = 0? ⟨[2, 2]⟩

(b)
⊢ ⟨[2, 2]⟩Int x = 2? ⟨[2, 2]⟩

(+)
⊢ ⟨[2, 2]⟩Int (x = 0?) + (x = 2?) ⟨[2, 2]⟩

Thus, we have in turn the following proof tree:

⊢ ⟨[2, 2]⟩Int C ⟨⊥⟩ ⊢ ⟨[0, 1]⟩Int C ⟨⊥⟩
⊢ ⟨0, 2⟩Int C ⟨⊥⟩

However, its conclusion is clearly unsound because:

JCKIntais([0, 2]) = Jx = 1?KIntbase(Jx = 0?KIntbase([0, 2]) ∨ Jx = 2KIntbase([0, 2]))

= Jx = 1?KIntbase([0, 0] ∨ [2, 2])

= Jx = 1?KIntbase([0, 2])

= [1, 1]

and, obviously, [1, 1] ̸≤ ⊥.

Example 4.2 shows the actual root cause of the issue of the rule for disjunction, namely the
overapproximation introduced by the abstract join ∨, which is unrelated to the preconditions.
More precisely, consider the program

C ′
def
= (x = 1? o

9 x = 0?) + (x = 2? o
9 x = 0?) ,

where the issue does not appear. Despite the fact that C and C ′ are equivalent programs in
the concrete domain ℘(℘(S)), they differ in the Int abstract domain. Therefore, the equality
J(C1 + C2) o

9 C3KAais = J(C1
o
9 C3) + (C2

o
9 C3)KAais, in general, does not hold. In particular, we can

easily demonstrate that for a subset of the preconditions—namely, those admitting a program
capable of having them as a postcondition—requiring the validity of the distributivity rule is
equivalent to assuming that the additivity of the semantics.
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Theorem 4.1 (Equivalence between additivity and distributivity). Let C1, C2 and
C ′ be programs. Assume for all i ∈ [1, 3], there exists a corresponding program CPi

such that
∀ Q. JCPi

KAais(Q) = Pi holds. Then,

J(C1 + C2) o
9 C3KAais(P1) = J(C1

o
9 C3) + (C2

o
9 C3)KAais(P1) ⇐⇒

JC ′KAais(P2 ∨ P3) = JC ′KAais(P2) ∨ JC ′KAais(P3) .

Proof.

(⇐= )

J(C1 + C2) o
9 C3KAais(P1) = JC3KAais(JC1KAais(P1) ∨ JC2KAais(P1))

= JC3KAais(JC1KAais(P1)) ∨ JC3KAais(JC2KAais(P1))

= J(C1
o
9 C3) + (C2

o
9 C3)KAais(P1)

( =⇒ )

JC ′KAais(P1 ∨ P2) = JC ′KAais(JCP2
KAais(Q) ∨ JCP3

KAais(Q))

= J(CP2
+ CP3

) o
9 C
′KAais(Q)

= J(CP2
o
9 C) + (CP3

o
9 C
′)KAais(Q)

= JCKAais(JCP2
KAais(Q)) ∨ JCKAais(JCP3

KAais(Q))

= JCKAais(P2) ∨ JCKAais(P3)

Theorem 4.1 provides the intuition explaining why the above rule ∨ fails: in general, the abstract
inductive semantics lacks additivity, stemming from the non-additivity of the base commands.

Theorem 4.2 (Additivity of the abstract inductive semantics).
If, for all base commands b, JbKAbase(P1 ∨ P2) = JbKAbase(P1)∨ JbKAbase(P2) then, for all programs C,

JCKAais(P1 ∨ P2) = JCKAais(P1) ∨ JCKAais(P2).

Proof. By structural induction on C:

• 1:

J1KAais(P1 ∨ P2) = P1 ∨ P2 [By definition of J·KAais]
= J1KAais(P1) ∨ J1KAais(P2) [By definition of J·KAais]

• b:

JbKAais(P1 ∨ P2) = JbKAbase(P1 ∨ P2) [By definition of J·KAais]
= JbKAbase(P1) ∨ JbKAbase(P2)

= JbKAais(P1) ∨ JbKAais(P2) [By definition of J·KAais]
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• C1
o
9 C2:

JC1
o
9 C2KAais(P1 ∨ P2) = JC2KAais(JC1KAais(P1 ∨ P2))

[By definition of J·KAais]
= JC2KAais(JC1KAais(P1) ∨ JC1KAais(P2))

[By inductive hypothesis]

= JC2KAais(JC1KAais(P1)) ∨ JC2KAais(JC1KAais(P2))

[By inductive hypothesis]

= JC1
o
9 C2KAais(P1) ∨ JC1

o
9 C2KAais(P2)

[By definition of J·KAais]

• C1 + C2:

JC1
o
9 C2KAais(P1 ∨ P2) = JC1KAais(P1 ∨ P2) ∨ JC2KAais(P1 ∨ P2)

[By definition of J·KAais]
= JC1KAais(P1) ∨ JC1KAais(P2) ∨ JC2KAais(P1) ∨ JC2KAais(P2)

[By inductive hypothesis]

= JC1KAais(P1) ∨ JC2KAais(P1) ∨ JC1KAais(P2) ∨ JC2KAais(P2)

= J[C1 + C2]KAais(P1) ∨ JC1 + C2KAais(P2)

[By definition of J·KAais]

• Cfix:

JCfixKAais(P1 ∨ P2) = lfp(λP ′ → P1 ∨ P2 ∨ JCKAais(P
′)) [By definition of J·KAais]

Let Fi
def
= JCfixKbase(Pi) = lfp(λP ′ → Pi ∨ JCKAais(P ′))

We will show that F1 ∨ F2 is the lfp of the first equation.

(λP ′ → P1 ∨ P2 ∨ JCKAais(P
′))(F1 ∨ F2) = P1 ∨ P2 ∨ JCKAais(F1 ∨ F2)

= P1 ∨ P2 ∨ JCKAais(F1) ∨ JCKAais(F2)

[By inductive hypothesis]

= P1 ∨ JCKAais(F1) ∨ P2 ∨ JCKAais(F2)

= F1 ∨ F2

[By definition of Fi]

= JCfixKAais(P1) ∨ JCfixKAais(P2)

[By definition of Fi]

Now we show that this fixpoint is indeed the least fixpoint. Let P be any fixpoint, i.e.,
P = P1 ∨ P2 ∨ JCKAais(P ). Then, by definition of ∨, we have that Pi ∨ JCKAais(P ) ≤ P1 ∨ P2 ∨
JCKAais(P ). Since Fi is the least fixpoint, we have that Fi ≤ Pi ∨ JCKAais(P ), thus, in turn,
F1 ∨F2 ≤ P1 ∨ JCKAais(P )∨P2 ∨ JCKAais(P ) = P1 ∨P2 ∨ JCKAais(P ) = P . Hence, F1 ∨F2 is the
least fixpoint.
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We can provide a sufficient condition for the additivity of the abstract inductive semantics
defined through a Galois insertion:

Theorem 4.3. Let ⟨C,⊑⟩ −−−→−→←−−−−
α

γ
⟨A,≤⟩ be a Galois insertion. If J·KCais and γ are additive functions

then the abstract inductive semantics J·KAais induced by the Galois insertion is additive as well.

Proof.

JbKAbase(P1 ∨ P2) = α(JbKCbase(γ(P1 ∨ P2)))

= α(JbKCbase(γ(P1))) ∨ α(JbKCbase(γ(P1))) By additivity of γ, J·KCais and α

= JbKAbase(P1) ∨ JbKAbase(P2)

Then, by Theorem 4.2, we conclude that J·KAais is additive.

We can also prove that the additivity of the abstract inductive semantics is sufficient to ensure
the soundness of the rule (∨).

Theorem 4.4 (Soundness of the rule (∨)). IfJ·KAais be additive then:

JCKAais(P1) ≤ Q1 and JCKAais(P2) ≤ Q2 =⇒ JCKAais(P1 ∨ P2) ≤ Q1 ∨Q2 .

Proof.

JCKAais(P1 ∨ P2) = JCKAais(P1) ∨ JCKAais(P2) [By additivity of J·KAais]
≤ Q1 ∨Q2

Theorems 4.4 and 4.3 correspond to the result for Algebraic Hoare logic [Cou+12, Theorem
6] showing that the rule (∨) is sound under the condition that γ is additive. A similar argument
can be applied to ensure the soundness of the rule (∧) rule when the semantics is assumed to be
co-additive.

Abstract domains that are both additive and co-additive are extremely rare, especially for
additivity alone, although they do exist. For instance, the sign abstraction depicted in Example
1.2 is one such domain, guaranteeing the soundness of both merge rules.



CHAPTER 5

BACKWARD ABSTRACT HOARE LOGIC

When defining the semantics for L, we implicitly assumed that the abstract inductive semantics is
defined in a forward fashion, as we defined JC1

o
9 C2KAais

def
= JC2KAais ◦ JC1KAais. However, except for

the rule (o9), we never explicitly used this assumption. Thus, we can apply the theory of Abstract
Hoare logic to define a slight variation thereof, called Backward Abstract Hoare logic, describing
Hoare logics where the semantics is defined in a backward fashion.

5.1 Framework

5.1.1 Backward abstract inductive semantics

To define the backward version of Abstract Hoare logic, we first need a backward version of the
underlying abstract inductive semantics.

Definition 5.1 (Backward abstract inductive semantics). Given a complete lattice A and
a family of monotone functions J·KAbase : BCmd → A → A, the abstract inductive semantics
J·KAbais : L→ A→ A is defined as follows:

J1KAbais
def
= id

JbKAbais
def
= JbKAbase

JC1
o
9 C2KAbais

def
= JC1KAbais ◦ JC2KAbais

JC1 + C2KAbais
def
= λP.JC1KAbaisP ∨A JC2KAbaisP

JCfixKAbais
def
= λP.lfp(λP ′.P ∨A JCKAbaisP

′)

Let us remark that the only difference with the abstract inductive semantics given in Definition
2.3 concerns the sequential composition C1

o
9C2. We can prove that the backward abstract inductive

semantics is still monotone.

Theorem 5.1 (Monotonicity). For all C ∈ L, JCKAbais is well-defined and monotone.

Proof. We modify the inductive case of the proof of Theorem 2.2 by providing only the case for
JC1

o
9 C2KAbais, as all the other cases are identical.

• C1
o
9 C2:

By inductive hypothesis, JC2KAbais is monotone, hence JC2KAbais(P ) ≤A JC2KAbais(Q).

35
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JC1
o
9 C2KAbais(P ) = JC1KAbais(JC2KAbais(P )) [By definition of JC1

o
9 C2KAbais]

≤A JC1KAbais(JC2KAbais(Q)) [By inductive hypothesis on JC1KAbais]

5.1.2 Backward Abstract Hoare Logic

We can give a corresponding definition of backward abstract Hoare triple, which is the same as for
abstract Hoare triples except for the fact that the backward abstract inductive semantics is used.

Definition 5.2 (Backward Abstract Hoare triple). Given an abstract inductive semantics
J·KAbais on the complete lattice A, the backward abstract Hoare triple denoted by ⟨P ⟩←A C ⟨Q⟩ is
valid when JCKAbais(P ) ≤A Q holds, namely,

|= ⟨P ⟩←A C ⟨Q⟩ ⇐⇒ JCKAbais(P ) ≤A Q .

Intuitively now the roles of P and Q are reversed, in Hoare logic and Abstract Hoare logic P
was a precondition and Q was a postcondition, in Backward Abstract Hoare logic instead P is a
postcondition and Q a precondition.

Clearly, the proof system only needs to be modified to accommodate the new semantics for
program composition, while the other rules are unchanged.

Definition 5.3 (Backward Abstract Hoare rules).
We provide the rule for sequential composition only—all the other rules are given in Definition 2.8.

⊢ ⟨P ⟩←A C2 ⟨Q⟩ ⊢ ⟨Q⟩←A C1 ⟨R⟩
(o9)⊢ ⟨P ⟩←A C1

o
9 C2 ⟨R⟩

The above composition rule can be intuitively read as follows: If executing backward C2 from
state P leads to a state Q, and executing backward C1 from state Q leads to a state R, then
executing backward C2 followed by C1 from state P leads to the state R. We can prove soundness
and completeness of this backward proof system.

Theorem 5.2 (Soundness).

⊢ ⟨P ⟩←A C ⟨Q⟩ =⇒ |= ⟨P ⟩←A C ⟨Q⟩

Proof. We modify the inductive case of the proof of Theorem 2.6 by providing only the case for
rule (o9) as all the other cases are identical. The last step in the derivation is as follows:

⊢ ⟨P ⟩←A C2 ⟨Q⟩ ⊢ ⟨Q⟩←A C1 ⟨R⟩
(o9)⊢ ⟨P ⟩←A C1

o
9 C2 ⟨R⟩

By inductive hypothesis: JC2KAbais(P ) ≤A Q and JC1KAbais(Q) ≤A R. The triple is valid because:

JC1
o
9 C2KAbais(P ) = JC1KAbais(JC2KAbais(P )) [By definition of J·KAbais]

≤A JC1KAbais(Q) [By monotonicity of J·KAbais]
≤A R

Theorem 5.3 (Relative J·KAbais-completeness).

⊢ ⟨P ⟩←A C ⟨JCKAbais(P )⟩
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Proof. We modify the inductive case of the proof of Theorem 2.7 by providing only the case for
C1

o
9 C2, as all the other cases are identical.

By definition JC1
o
9 C2KAbais(P ) = JC1KAbais(JC2KAbais(P ))

(Inductive hypothesis)

⊢ ⟨P ⟩←A C2 ⟨JC2KAbais(P )⟩
(Inductive hypothesis)

⊢ ⟨JC2KAbais(P )⟩←A C1 ⟨JC1KAbais(JC2KAbais(P ))⟩ (o9)⊢ ⟨P ⟩←A C1
o
9 C2 ⟨JC1

o
9 C2KAbais(P )⟩

Theorem 5.4 (Relative completeness).

|= ⟨P ⟩←A C ⟨C⟩ =⇒ ⊢ ⟨P ⟩←A C ⟨Q⟩

Proof. By definition of |= ⟨P ⟩←A C ⟨Q⟩ ⇐⇒ Q ≥A JCKAbais(P ), we have that:

P ≤A P

(By Theorem 5.3)

⊢ ⟨P ⟩←A C ⟨JCKAbais(P )⟩ Q ≥A JCKAbais(P ) (≤)
⊢ ⟨P ⟩←A C ⟨Q⟩

5.2 Instantiations

5.2.1 Partial Incorrectness, Again

An abstract inductive semantics induces systematically a backward abstract inductive semantics
where the semantics of the basic commands is inverted.

Definition 5.4 (Reverse Abstract Inductive Semantics). Given an abstract inductive se-
mantics defined on some complete lattice A with basic command semantics J·KAbase, we can define the
reverse backward abstract inductive semantics as the backward inductive semantics instantiated
on the complete lattice A and with the semantics of basic commands defined by: (J·KAbase)−1.

Accordingly, the reverse abstract inductive semantics is defined as follows:

J1KAbais = id

JbKAbais = (JbKAbase)
−1

JC1
o
9 C2KAbais = JC1KAbais ◦ JC2KAbais

JC1 + C2KAbais = λP.JC1KAbaisP ∨A JC2KAbaisP

JCfixKAbais = λP.lfp(λP ′.P ∨A JCKAbaisP
′)

According to the intuition that the abstract inductive semantics is an abstract version of the
strongest postcondition, which intuitive interpretation should we give to reverse abstract inductive
semantics? This construction corresponds to the abstract version of the weakest precondition. In
fact, when the dual reverse inductive semantics is obtained from the abstract inductive semantics
on ℘(S) (i.e., the strongest postcondition), the reverse semantics becomes the weakest precondition.
Hence, from the validity of the corresponding triples, we have that:

|= ⟨P ⟩←℘(S) C ⟨Q⟩ ⇐⇒ JCK℘(S)bais (P ) ⊆ Q ⇐⇒ wp(C,P ) ⊆ Q .

This program logic has been studied in [Asc+24] under the name of NC, and it is indeed
equivalent to the logic described in Section 3.3.



38 CHAPTER 5. BACKWARD ABSTRACT HOARE LOGIC

5.2.2 Hoare Logic, Again
Following Section 3.3, we can first obtain the reverse semantics, and next the dual of the reverse
semantics. This latter semantics is therefore defined as follows:

J1KA
op

bais = id

JbKA
op

bais = (JbKAbase)
−1

JC1
o
9 C2KA

op

bais = JC1KAbais ◦ JC2KAbais
JC1 + C2KA

op

bais = λP.JC1KA
op

baisP ∧A JC2KA
op

baisP

JCfixKA
op

bais = λP.gfpA(λP
′.P ∧A JCKA

op

baisP
′)

This definition corresponds to the reverse inductive semantics obtained from the abstract induc-
tive semantics, which is the abstract version of the weakest liberal precondition. In fact, when the
dual is applied to ℘(S) (the strongest postcondition), the reverse semantics becomes the weakest
liberal precondition. This can be easily seen by looking at the definition for the non-deterministic
choice and the loop commands: if we interpret the input of the semantics as the final state, we are
computing all the states that must reach (up to termination) the final states.

Hence, from the validity of the triples we obtain:

|= ⟨P ⟩←℘(S)op C ⟨Q⟩ ⇐⇒ JCK℘(S)bais (P ) ⊇ Q ⇐⇒ wlp(C,P ) ⊇ Q

We also have that wlp(C,P ) ⊇ Q ⇐⇒ JCK(Q) ⊆ P , hence this is equivalent to Hoare logic.
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CONCLUSIONS

In this thesis, we extended the ubiquitous traditional Hoare logic by transforming it into an abstract
and versatile framework to be instantiated to design novel program logics. By following well-
known abstract interpretation principles, we developed a general methodology for reasoning about
a broader range of program properties. Our study demonstrated that multiple program logics
known in literature can be viewed as instantiations of Abstract Hoare Logic. Notably, while
constructing a program logic for hyperproperties in our general framework, we provided a novel
compositional definition of the strongest hyper postcondition. Furthermore, we showed how the
core proof principles of Hoare logic can be applied to proving an underapproximation of program
properties. In particular, this highlighted some fundamental differences with the Incorrectness
Logic proof system: the infinitary loop rule required for the relative completeness of Incorrectness
Logic:

[p(n)] C [p(n+ 1)]

[p(0)] C⋆ [∃n.p(n)]

is not due to the fact that Incorrectness Logic aims at proving an underapproximation but rather
because Incorrectness Logic is a “total correctness logic”, meaning that it inherently carries a proof
of termination. We also studied the requirements to introduce frame-like rules in Abstract Hoare
Logic and how to obtain a backward variant of this framework.

6.1 Future work
As stimulating directions of future work, we plan the investigate the following questions.

Total correctness/Incorrectness logics. We have shown how all the partial correctness/incor-
rectness triples are instances of (backward) Abstract Hoare Logic and use a very similar proof
system. To complete the picture presented in [ZK22], we are missing the total correctness and
incorrectness logics, ??? and ¿¿¿. Since their relationship is analogous to that between partial cor-
rectness and incorrectness logics, the same abstraction used to transform Hoare Logic into Abstract
Hoare Logic could be used to transform Incorrectness Logic [MOH21] into Abstract Incorrectness
Logic. By abstracting the proof system, we can obtain a sound and relatively complete proof
system for Abstract Incorrectness Logic. Then, by reusing the same technique applied here to
Abstract Hoare Logic to invert the semantics and the lattice, we can obtain all the four program
logics that are missing, therefore completing the whole spectrum of possible logics.

Hyper domains. We investigated hyper domains to encode the strongest hyper postcondition,
and, correspondingly, we obtained a Hoare-like logic for hyperproperties. We have shown how
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we can use the abstract inductive semantics to model the strongest liberal postcondition, weakest
precondition, and weakest liberal precondition. We could apply the same technique to the abstract
inductive semantics instantiated with a hyper domain of ℘(S), to study whether this would lead to
some interesting novel logics or if they are all equivalent (this could happen because hyperproperties
can disprove themselves, meaning that if a triple in hyper Hoare logic is false we can prove its
negation).

An interesting feature of the hyper Hoare logic obtained via Abstract Hoare Logic is that
the assertion language is relatively low-level, making it cumbersome to use for proving actual
hyperproperties. The proof system given in [DM23] is actually quite similar to the one obtained
with the hyper domains, but the Exist rule is missing. If the goal is that of proving the completeness
of Hyper Hoare Logic, then the Exist rule must be embedded somewhere in the rules of Abstract
Hoare Logic.

Unifying Forward and Backward Reasoning. The only difference between Abstract Hoare
Logic and Backward Abstract Hoare Logic lies in the abstract inductive semantics, where the
semantics of program composition is inverted. A potential solution would be to make the semantics
parametric on the composition JC1

o
9 C2KAais

def
= JC1KAais ⋆ JC2KAais and let P ⋆ Q = Q ◦ P for the

forward semantics and P ⋆ Q = P ◦Q for the backward semantics. However, this approach would
not be uniform when defining the command composition rule for the proof system.

6.2 Related work
The idea of systematically constructing program logics, of course, is not new. Kleene Algebra
with Tests (KAT) [Koz97] was one of the first works of this kind. In Section 4.1, we discussed
how, in general, we cannot distribute the non-deterministic choice (i.e., J(C1 + C2) o

9 C3KAais ̸=
J(C1

o
9 C3) + (C2

o
9 C3)KAais), thus violating one of the axioms of Kleene algebras. A similar al-

ternative was investigated in [MMO06], using traced monoidal categories to encode properties of
the program. For example, the monoidal structure is used to model non-deterministic choice but
imposes the same distributivity requirements as Kleene Algebras (this is caused by ⊕ being a bi-
functor). However, disregarding expressivity, the main difference lies in the philosophy behind the
approach. Abstract Hoare Logic is a more semantics-centered approach instead of being an “equa-
tional” theory like KAT. This semantics-centered approach was also pivotal in providing the idea
that abstract inductive semantics could be used not only to encode the strongest postcondition but
also the strongest liberal postcondition, weakest precondition, and weakest liberal precondition,
thereby unifying all these partial (in)-correctness Hoare-like logics.

The fundamental approach of Outcome Logic [ZDS23] is similar to that of Abstract Hoare
Logic. Like Abstract Hoare Logic, the semantics of the language in Outcome Logic is parametric
on the domain of execution, although the assertion language is fixed if we ignore the basic asser-
tions on program states. Outcome Logic originally aimed to unify correctness and incorrectness
reasoning with the powerset instantiation, and has not be conceived to be a minimal theory for
sound and complete Hoare-like logics. In fact, Outcome Logic does not bring a result of (relative)
completeness. As discussed in [DM23], Outcome Logic with the powerset instantiation is actually
a proof system for 2-hyperproperties (namely, hyperproperties regarding at most two executions).
Thus, Outcome triples can be proved in the instantiation of Abstract Hoare Logic provided in
section 3.2.1, even though it would be interesting to find a direct encoding of Outcome Logic in
terms of Abstract Hoare Logic.



BIBLIOGRAPHY

[Asc+24] Flavio Ascari, Roberto Bruni, Roberta Gori, and Francesco Logozzo. Sufficient Incor-
rectness Logic: SIL and Separation SIL. 2024. arXiv: 2310.18156 (cit. on p. 37).

[Ass+17] Mounir Assaf, David A. Naumann, Julien Signoles, Éric Totel, and Frédéric Tronel.
“Hypercollecting semantics and its application to static analysis of information flow”.
In: Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages. POPL ’17. Paris, France: Association for Computing Machinery, 2017,
pp. 874–887. isbn: 9781450346603. doi: 10.1145/3009837.3009889. url: https:
//doi.org/10.1145/3009837.3009889 (cit. on p. 24).

[Bir40] G. Birkhoff. Lattice Theory. American Mathematical Society colloquium publications
v. 25,pt. 2. American Mathematical Society, 1940. isbn: 9780821810255 (cit. on p. 3).

[BO16] Stephen Brookes and Peter W. O’Hearn. “Concurrent separation logic”. In: ACM
SIGLOG News 3.3 (Aug. 2016), pp. 47–65. doi: 10.1145/2984450.2984457. url:
https://doi.org/10.1145/2984450.2984457 (cit. on p. 29).

[CC77] Patrick Cousot and Radhia Cousot. “Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints”. In: Proceed-
ings of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages. POPL ’77. Los Angeles, California: Association for Computing Machin-
ery, 1977, pp. 238–252. isbn: 9781450373500. doi: 10.1145/512950.512973. url:
https://doi.org/10.1145/512950.512973 (cit. on pp. 1, 3, 6, 13).

[Coo78] Stephen A. Cook. “Soundness and Completeness of an Axiom System for Program
Verification”. In: SIAM Journal on Computing 7.1 (1978), pp. 70–90. doi: 10.1137/
0207005. eprint: https://doi.org/10.1137/0207005. url: https://doi.org/10.
1137/0207005 (cit. on pp. 16, 17).

[Cou+12] Patrick Cousot, Radhia Cousot, Francesco Logozzo, and Michael Barnett. “An Abstract
Interpretation Framework for Refactoring with Application to Extract Methods with
Contracts”. In: ACM SIGPLAN Notices 47 (Oct. 2012). doi: 10.1145/2384616.
2384633 (cit. on pp. 16, 21, 29, 34).

[Cou+13] Patrick Cousot, Radhia Cousot, Manuel Fähndrich, and Francesco Logozzo. “Auto-
matic Inference of Necessary Preconditions”. In: Verification, Model Checking, and Ab-
stract Interpretation. Ed. by Roberto Giacobazzi, Josh Berdine, and Isabella Mastroeni.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 128–148. isbn: 978-3-642-
35873-9 (cit. on p. 28).

[Cou21] P. Cousot. Principles of Abstract Interpretation. MIT Press, 2021. isbn: 9780262044905
(cit. on p. 6).

[CS08] Michael R. Clarkson and Fred B. Schneider. “Hyperproperties”. In: 2008 21st IEEE
Computer Security Foundations Symposium. 2008, pp. 51–65. doi: 10.1109/CSF.
2008.7 (cit. on p. 23).

41

https://arxiv.org/abs/2310.18156
https://doi.org/10.1145/3009837.3009889
https://doi.org/10.1145/3009837.3009889
https://doi.org/10.1145/3009837.3009889
https://doi.org/10.1145/2984450.2984457
https://doi.org/10.1145/2984450.2984457
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1137/0207005
https://doi.org/10.1137/0207005
https://doi.org/10.1137/0207005
https://doi.org/10.1137/0207005
https://doi.org/10.1137/0207005
https://doi.org/10.1145/2384616.2384633
https://doi.org/10.1145/2384616.2384633
https://doi.org/10.1109/CSF.2008.7
https://doi.org/10.1109/CSF.2008.7


42 BIBLIOGRAPHY

[Dij74] Edsger W. Dijkstra. “Guarded commands, non-determinacy and a calculus for the
derivation of programs”. circulated privately. June 1974. url: http://www.cs.utexas.
edu/users/EWD/ewd04xx/EWD418.PDF (cit. on pp. 9, 10).

[DM23] Thibault Dardinier and Peter Müller. Hyper Hoare Logic: (Dis-)Proving Program Hy-
perproperties (extended version). Jan. 2023. doi: 10.48550/arXiv.2301.10037 (cit. on
pp. 28, 40).

[FL79] Michael J. Fischer and Richard E. Ladner. “Propositional dynamic logic of regular
programs”. In: Journal of Computer and System Sciences 18.2 (1979), pp. 194–211.
issn: 0022-0000. doi: https://doi.org/10.1016/0022-0000(79)90046-1. url:
https://www.sciencedirect.com/science/article/pii/0022000079900461 (cit.
on p. 11).

[Flo93] Robert W. Floyd. “Assigning Meanings to Programs”. In: Program Verification: Funda-
mental Issues in Computer Science. Ed. by Timothy R. Colburn, James H. Fetzer, and
Terry L. Rankin. Dordrecht: Springer Netherlands, 1993, pp. 65–81. isbn: 978-94-011-
1793-7. doi: 10.1007/978-94-011-1793-7_4. url: https://doi.org/10.1007/978-
94-011-1793-7_4 (cit. on p. 15).

[GM82] J. A. Goguen and J. Meseguer. “Security Policies and Security Models”. In: 1982 IEEE
Symposium on Security and Privacy. 1982, pp. 11–11. doi: 10.1109/SP.1982.10014
(cit. on p. 23).

[Grä11] G. Grätzer. Lattice Theory: Foundation. SpringerLink : Bücher. Springer Basel, 2011.
isbn: 9783034800181 (cit. on p. 3).

[Hoa69] C. A. R. Hoare. “An axiomatic basis for computer programming”. In: Commun. ACM
12.10 (Oct. 1969), pp. 576–580. issn: 0001-0782. doi: 10.1145/363235.363259. url:
https://doi.org/10.1145/363235.363259 (cit. on pp. 1, 15).

[Koz97] Dexter Kozen. “Kleene algebra with tests”. In: ACM Trans. Program. Lang. Syst. 19.3
(May 1997), pp. 427–443. issn: 0164-0925. doi: 10.1145/256167.256195. url: https:
//doi.org/10.1145/256167.256195 (cit. on pp. 11, 40).

[MMO06] Ursula Martin, Erik Mathiesen, and Paulo Oliva. “Hoare Logic in the Abstract”. In:
vol. 4207. Jan. 2006, pp. 501–515. isbn: 978-3-540-45458-8. doi: 10.1007/11874683_33
(cit. on p. 40).

[MOH21] Bernhard Möller, Peter O’Hearn, and Tony Hoare. “On Algebra of Program Correctness
and Incorrectness”. In: Relational and Algebraic Methods in Computer Science. Ed. by
Uli Fahrenberg, Mai Gehrke, Luigi Santocanale, and Michael Winter. Cham: Springer
International Publishing, 2021, pp. 325–343. isbn: 978-3-030-88701-8 (cit. on pp. 15,
39).

[MP18] Isabella Mastroeni and Michele Pasqua. “Verifying Bounded Subset-Closed Hyperprop-
erties”. In: Static Analysis. Ed. by Andreas Podelski. Cham: Springer International
Publishing, 2018, pp. 263–283. isbn: 978-3-319-99725-4 (cit. on p. 24).

[Sco70] Dana Scott. OUTLINE OF A MATHEMATICAL THEORY OF COMPUTATION.
Tech. rep. PRG02. OUCL, Nov. 1970, p. 30 (cit. on p. 3).

[ZDS23] Noam Zilberstein, Derek Dreyer, and Alexandra Silva. “Outcome Logic: A Unifying
Foundation for Correctness and Incorrectness Reasoning”. In: Proc. ACM Program.
Lang. 7.OOPSLA1 (Apr. 2023). doi: 10.1145/3586045. url: https://doi.org/10.
1145/3586045 (cit. on p. 40).

[ZK22] Linpeng Zhang and Benjamin Lucien Kaminski. “Quantitative strongest post: a calcu-
lus for reasoning about the flow of quantitative information”. In: Proc. ACM Program.
Lang. 6.OOPSLA1 (Apr. 2022). doi: 10.1145/3527331. url: https://doi.org/10.
1145/3527331 (cit. on pp. 28, 39).

http://www.cs.utexas.edu/users/EWD/ewd04xx/EWD418.PDF
http://www.cs.utexas.edu/users/EWD/ewd04xx/EWD418.PDF
https://doi.org/10.48550/arXiv.2301.10037
https://doi.org/https://doi.org/10.1016/0022-0000(79)90046-1
https://www.sciencedirect.com/science/article/pii/0022000079900461
https://doi.org/10.1007/978-94-011-1793-7_4
https://doi.org/10.1007/978-94-011-1793-7_4
https://doi.org/10.1007/978-94-011-1793-7_4
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/256167.256195
https://doi.org/10.1145/256167.256195
https://doi.org/10.1145/256167.256195
https://doi.org/10.1007/11874683_33
https://doi.org/10.1145/3586045
https://doi.org/10.1145/3586045
https://doi.org/10.1145/3586045
https://doi.org/10.1145/3527331
https://doi.org/10.1145/3527331
https://doi.org/10.1145/3527331

	Abstract
	Acknowledgments
	Background
	Order theory
	Partial Orders
	Lattices
	Fixpoints

	Abstract Interpretation
	Abstract Domains


	The abstract Hoare logic framework
	The L programming language
	Syntax
	Semantics

	Abstract inductive semantics
	Connection with Abstract Interpretation

	Abstract Hoare Logic
	Hoare logic
	Abstracting Hoare logic


	Instantiating Abstract Hoare Logic
	Hoare logic
	Algebraic Hoare Logic
	Abstract Interval Logic
	Abstract vs Algebraic Hoare Logic

	Hoare logic for hyperproperties
	Introduction to Hyperproperties
	Inductive Definition of the Strongest Hyper Postcondition
	Hyper Domains
	Inductive Definition for Hyper Postconditions
	Hyper Hoare Triples

	Partial Incorrectness

	Extending the proof system
	Merge rules

	Backward Abstract Hoare Logic
	Framework
	Backward abstract inductive semantics
	Backward Abstract Hoare Logic

	Instantiations
	Partial Incorrectness, Again
	Hoare Logic, Again


	Conclusions
	Future work
	Related work

	Abstract

