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The generation of random numbers is too important to be left to chance
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Abstract

The generation of random numbers goes beyond pure academic interests: random numbers are required
for countless application, such as cryptography, simulations or gambling. However, most of these
numbers are currently generated by implementing mathematical algorithms leading to limited security,
incorrect results or predictable outcomes. Actually, true randomness is found only at microscopic level,
where Nature obeys to the laws of Quantum Mechanics. In this thesis, after an overview about the
theory of Quantum Information, the state of the art of this �led is presented. Eventually, a new
Quantum Random Number Generator protocol is proposed and its implementation is being studied in
order to get secure and reliable random strings. This work has been carried out in the framework of
the �QuantumFuture� Research Group of the University of Padua.

Sommario

La generazione di numeri casuali va oltre il puro interesse accademico: i numeri casuali sono richiesti
per innumerevoli applicazioni, come la criptogra�a, simulazioni o gioco d'azzardo. Ad ogni modo,
la maggior parte di questi numeri sono attualmente generati da algoritmi matematici che portano a
sicurezza limitata, risultati incorretti o esiti prevedibili. In realtà, la vera casualità si trova solamente
a livello microscopico, dove la Natura segue le leggi della Meccanica Quantistica. In questa tesi, dopo
una panoramica sulla teoria dell'Informazione Quantistica, viene presentato lo stato dell'arte di questo
campo. In�ne, si propone un nuovo Generatore Quantistico di Numeri Casuali e se ne studia la sua
implementazione per ottenere bit casuali sicure e a�dabili. Questo lavoro è stato realizzato nel contesto
del Gruppo di Ricerca �QuantumFuture� dell'Università di Padova.
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Chapter 1

Introduction to Quantum Information

Since the dawn of computer science and information theory in the 1940s, computers and electronics have

been becoming more and more relevant in our society. In fact, we are now living in the Information Age

characterized by the acquisition, storage and manipulation of all kind of data. Quantum information

and computation are the study of these processes and tasks that can be accomplished using quantum-

mechanical phenomena [1].

In this chapter, after a short introduction on qubits and quantum optics, the required theoretical

framework to treat these kind of quantum systems is presented. Eventually, we will be dealing with

the concept of randomness and the operative quantity used to describe it, entropy.

1.1 The Qubit

While the fundamental unit of classical information is the bit, whose value can be either 0 or 1, in

quantum information it is the qubit. The two possible states of a qubit are represented as |0〉 and |1〉,
in analogy with the classical bit; but unlike a classical system where the bit would have to be in one

state or the other, the remarkable properties of quantum mechanics allow the qubit to be in a linear

superposition of states, so that the most general state |ψ〉 can be written as:

|ψ〉 = α|0〉+ β|1〉 α, β ∈ C (1.1)

This property is fundamental to quantum computing: in this way, the state of a qubit is a vector in a

two-dimensional complex vector, where the states |0〉 and |1〉 form an orthonormal base for this space

and they are called computational basis states. However, just as the bit, the measurement of a qubit

must be either |0〉 with probability |α|2, or |1〉 with probability |β|2. Consequentially, |α|2 + |β|2 = 1

since the total probability must sum to one, and the qubit general state is therefore a unit vector. It

is because of these underlying probabilities that qubits can be used to get random numbers, exploiting

this intrinsic randomness of quantum mechanics.

Given these conditions, Eq. 1.1 can be rewritten as:

|ψ〉 = eiγ
(

cos
θ

2
|0〉+ eiϕ sin

θ

2
|1〉
)

γ, θ, ϕ ∈ R (1.2)
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1.2. POLARIZATION AND QUANTUM OPTICS CHAPTER 1. QUANTUM INFORMATION

In quantum mechanics, the global phase eiγ can be ignored since it does not result in observable e�ects

as physical states are determined by ray vectors on a Hilbert space. From Eq. 1.2 it follows that the

qubit can be geometrically represented as a point on the surface of a 3-dimensional sphere, as known

as the Bloch Sphere, shown in Fig. 1.1. This useful depiction illustrates once more that the qubit can

Figure 1.1: Qubit representation in the Bloch Sphere

span an in�nite continuous set of states, the sphere surface, and this means that in principle it could be

possible to store an in�nite amount of information. However, accessing (by measuring) this information

will cause the collapse of the state into one of its eigenstates, giving only a single-bit outcome. What

are the advantages of qubits then?

The relevant point is that until a measurement is performed, all information is preserved and the

states evolve accordingly the laws of quantum mechanics, so in manners that would not be classically

possible (counterintuitively, the measurement actually decreases information).

In practice any quantum two level system, such as the electronic spin, can be consider as a qubit. For

the sake of this work, qubits are physically implemented by single photon polarization and here the

computational basis states can be choose as the horizontal |H〉 = |0〉 and vertical |V 〉 = |1〉 polarization.

1.2 Polarization and Quantum Optics

Classically, the polarization of light is de�ned as the time evolution of the direction of the electric �eld

vector. Given a monochromatic plane wave of a certain frequency ν traveling in the z direction with

velocity c, the electric �eld vector lies in the x-y plane, it traces an ellipse and it is characterized by

the amplitude a and phase ϕ of oscillations in the two components of the polarization plane. This can

be conveniently represented in the form of a complex vector, known as Jones vector [2]:

J =

(
Ax

Ay

)
with Ai = aie

iϕ ∈ C (1.3)

Some special polarization states, their Jones vector representation and corresponding bra-ket notation

are shown in Tab. 1.1. From a quantum perspective, photons can have two helicities corresponding

2



CHAPTER 1. QUANTUM INFORMATION 1.2. POLARIZATION AND QUANTUM OPTICS

to two orthogonal quantum states |L〉 and |R〉. More generally, it can be in any superposition state

α|L〉+ β|R〉, providing the linear, circular, or elliptical polarization.

Polarization States Jones Vectors Ket Notation

Linearly pol. wave in x direction x

y 1

0

 |H〉

Linearly pol. wave in y direction x

y 0

1

 |V 〉

Linearly pol. wave at angle θ from x axis x

y

θ cos θ

sin θ

 cos θ|H〉+sin θ|V 〉

Linearly pol. wave at 45◦ with x axis x

y

1√
2

1

1

 |+〉 = 1√
2

(
|H〉+ |V 〉

)

Linearly pol. wave at −45◦ with x axis x

y

1√
2

 1

−1

 |−〉 = 1√
2

(
|H〉 − |V 〉

)

Right circularly pol. wave x

y

1√
2

 1

−i

 |R〉 = 1√
2

(
|H〉 − i|V 〉

)

Left circularly pol. wave x

y

1√
2

1

i

 |L〉 = 1√
2

(
|H〉+ i|V 〉

)

Table 1.1: Polarization states

This vectorial formalism is suitable for modeling optical system in which the polarization of the in-

coming wave is altered by polarizers or phase retarders, since they can be similarly written in matrix

notation by de�ning a 2× 2 Jones matrix T so that:

Jout = TJin (1.4)

Hence, the combination of optical devices is reduced to matrix multiplication so that one can easily

determine the �nal wave state from any given input. The following is a list of some of these simple

devices and their corresponding Jones matrices, under the assumption that the optical axis is vertical

in the considered frame of reference:

Linear Polarizers As the name suggests, these devices linearly polarize the wave along a speci�c

direction. For example, for a ideal linear horizontal (LHP) and linear vertical (LVP) polarizer
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1.3. THE DENSITY MATRIX CHAPTER 1. QUANTUM INFORMATION

the Jones matrices are respectively:

TLHP =

(
1 0

0 0

)
JLVP =

(
0 0

0 1

)
(1.5)

Quarter-wave plate QWP It converts a ±45◦ linearly polarized light into circularly polarized light

and vice versa, while for other angles the output will be elliptically polarized:

TQWP = e∓iπ/4

(
1 0

0 ±i

)
(1.6)

Half-wave plate HWP It rotates the plane of polarization by 90◦, thus transforming |H〉 into |V 〉
or |R〉 into |L〉 and vice versa:

THWP =

(
1 0

0 −1

)
(1.7)

In conclusion, if the coordinate system is not aligned with the devices optical axes, the Jones matrices

can be composed with an appropriate change of the reference system:J′ = R(θ)J

T′ = R(θ)TR(−θ)
with R(θ) =

(
cos θ sin θ

− sin θ cos θ

)
(1.8)

1.3 The Density Matrix

When doing experiments, one must take into account that the state of a physical system is often

not perfectly determined. In fact, the information about the system could be incomplete since the

experimenter does not know which particular states are being manipulated. This is a common situation

in quantum information applications, for instance we may not control the state source or if our pure

state is actually not isolated and interacts with another system.

We consider that the system is in a state taken from the ensemble

{|ψ1〉, |ψ2〉, . . . , |ψd〉} (1.9)

with probabilities {p1, p2. . . . , pd} satisfying the condition
∑

i pi = 1, so the pure states |ψk〉 constitute
what is called a mixed state with weights pk. In order to treat this within the laws of quantum

mechanics, it is necessary to introduce the density operator ρ de�ned as [3]:

ρ :=
∑
k

pk|ψk〉〈ψk| (1.10)

Given a generic orthonormal basis {|i〉}, this operator can be consistently represented as a matrix,

kmown as the density matrix, that has elements

ρij = 〈i|ρ|j〉 (1.11)
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CHAPTER 1. QUANTUM INFORMATION 1.3. THE DENSITY MATRIX

The measurement postulate of quantum mechanics states that given any observable A with eigenvalues

ai, so that A|i〉 = ai|i〉, and the mixed state 1.9, the outcome ai appears with probability

p(ai) =
∑
k

pk〈ψk|Pi|ψk〉 (1.12)

where Pi is the projection operator over the subspace corresponding to ai. The average value of the

observable is then given by

〈A〉 :=
∑
i

aipi =
∑
k

pk
∑
i

ai〈ψk|Pi|ψk〉 =
∑
k

pk〈ψk|A|ψk〉 (1.13)

and similarly, this can be computed by means of the density operator trace:

〈A〉 = Tr(ρA) =
∑
i

〈i|ρA|i〉 =
∑
i

∑
k

pk〈i|ψk〉〈ψk|A|i〉 =
∑
i

∑
k

pk〈ψk|A|i〉〈i|ψk〉 (1.14)

that is equal to Eq. 1.13 due to the completeness relation
∑

i |i〉〈i| = 1.

It can be easily shown that it is completely equivalent to describe a pure system using either the wave

function |ψ〉 and projection operators or the density matrix ρ = |ψ〉〈ψ|; but the density matrix is

especially useful for mixed states, since it completely characterizes the systems and it combines the

intrinsic quantum mechanical probabilities with the lack of information described by the weights pk.

If we expand any pure state over an orthonormal basis, |ψk〉 =
∑

i c
(k)
i |i〉, the density operator ρ

satis�es the following properties1:

1. ρ is Hermitian: ρ?ji = ρij ;

2. it has unit trace, Tr ρ = 1, and Tr ρ2 < 1 for a mixed state while Tr ρ2 = 1 for a pure state;

3. ρ is a non-negative operator, that is 〈ϕ|ρ|ϕ〉 ≥ 0 for any |ϕ〉;

4. its spectral decomposition is ρ =
∑

j λj |j〉〈j| with eigenvalues 0 ≤ λj ≤ 1. Besides,
∑

j λj = 1

and for a pure state λj̄ = 1 for just one j = j̄, λj = 0 otherwise;

5. if the weights pk follow the uniform probability distribution, i.e. pk = 1
d , the state is maximally

mixed, because it is a mixture where all states occur with the same probability. In a �nite

dimensional space, this is the same as saying that ρ is proportional to the identity 1.

This formalism can be applied to the qubit pure state 1.2 so that the corresponding density operator

is

ρ(θ, φ) = |ψ(θ, φ)〉〈ψ(θ, φ)| =

(
cos2 θ

2 sin θ
2 cos θ2e

−iφ

sin θ
2 cos θ2e

iφ sin2 θ
2

)
(1.15)

whereas the density operator for a mixed qubit state is obtain from a 2×2 Hermitian matrix, that can

be expanded over the bases {I, σx, σy, σz} of Pauli matrices, requiring that the properties of a density

matrix are satis�ed. In this case we can therefore express ρ as

ρ =
1

2
(I + xσx + yσy + zσz) =

1

2

(
1 + z x− iy
x+ iy 1− z

)
(1.16)

and the vector r = (x, y, z) corresponds to the desired point of the Bloch sphere.

1The proofs can be found in [3].
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1.4. ENTANGLEMENT CHAPTER 1. QUANTUM INFORMATION

1.4 Entanglement

Suppose we have physical systems A and B. The state space of the composite system is the tensor

product of the state spaces of the component physical subsystems H = HA⊗HB and therefore we can

express a generic state |ψ〉 ∈ H as

|ψ〉 =
∑
i,j

cij |i〉A ⊗ |j〉B =
∑
i,j

cij |ij〉 (1.17)

where {|i〉A} and {|j〉B} are basis sets for HA and HB respectively. By de�nition, a state |ψ〉 in H is

said to be entangled if it cannot be factorized as a simple tensor product of states:

|ψ〉 6= |α〉 ⊗ |β〉 |α〉 ∈ HA, |β〉 ∈ HB (1.18)

This intriguing non-classical propriety puzzled scientists such as Einstein, Podolsky and Rosen in 1935.

They showed that, assuming the locality and reality principles, quantum theory lead to contradictions.

This paradox was investigated by Bell in 1964 and he demonstrated that at least one of these assump-

tions is not correct. For these reason, entanglement is a fundamentally new resource with no classical

analogue, exploited by quantum computation and information to accomplish new tasks that would be

otherwise classically impossible.

The corresponding density operator for entangled states is given by its de�nition: ρAB = |ψ〉〈ψ| with
|ψ〉 de�ned as in 1.17. Note that in general the density matrix for the entire system is not equal to the

tensor product of the reduced density matrices ρA ⊗ ρB.
One of the reasons why the density matrix formalism is convenient is as a descriptive tool for subsys-

tems of a composite quantum system. Given a bipartite state ρAB, the reduced density operator for

subsystem A is

ρA := TrB(ρAB) (1.19)

where TrB is the partial trace over subsystem B, de�ned by

TrB(|α1〉〈α2| ⊗ |β1〉〈β2|) := |α1〉〈α2|Tr(|β1〉〈β2|) αi ∈ HA, βi ∈ HB (1.20)

In quantum information, A and B are commonly named Alice and Bob. They represent the legitimate

users opposed to Eve, the eavesdropper.

One remarkable example of the reduced density operator application and surprising results is given by

the maximally entangled state of two qubits, historically known as Bell state:

|ψ+〉 =
1√
2

(
|HV 〉+ |V H〉

)
(1.21)

This has density operator ρ = |ψ+〉〈ψ+|, so the �rst qubit is described by

ρ1 = Tr2(ρ) =
|0〉〈0|+ |1〉〈1|

2
=

1

2
1 (1.22)

that is a mixed state since Tr((1/2)2) = 1/2 < 1. Therefore, the state of the joint two qubis system

is a perfectly known pure state, whereas a single qubit is a maximally mixed state (the identity) that

encodes no information at all, since it results like a balanced coin in every base it is measured.

6
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1.5 POVM

Positive Operator-Valued Measurements (POVMs) generalize the usual projective measurement and

can be useful for many speci�c purposes. A POVM is described by a set of Hermitian non-negative

operators {Πi}, called POVM elements, that sum to the identity operator∑
i

Πi = 1 (1.23)

and if the measurement is performed on a state |ψ〉, the probability of obtaining the outcome i is

simply given by

pi = 〈ψ|Πi|ψ〉 (1.24)

The POVM formalism can also be used with mixed states ρ and in this case pi = Tr(ρΠi).

An important di�erence from projective measurements is that the elements of a POVM are not neces-

sarily orthogonal, with the consequence that the number of elements in the POVM can be larger than

the dimension of the Hilbert space they act in. In this case the POVM is said to be overcomplete.

Let us assume that a quantum system is known to be in a state drawn from a given set of pure non-

orthogonal states as in 1.9. POVMs are suitable to discern conclusively which state the system was in.

This task is called Unambiguous State Discrimination (USD) but the drawback is that there is a non

null probability of inconclusive outcomes. This impossibility of perfectly discriminating between a set

of non-orthogonal states is the basis for quantum information protocols and, as the title suggests, this

thesis.

Consider the following example, taken from [1]. It is impossible to distinguish between |0〉 and |+〉 with
projective measurements. However, this can be achieved using the following (overcomplete) POVM:

Π1 =

√
2

1 +
√

2
|1〉〈1| (1.25)

Π2 =

√
2

1 +
√

2

(|0〉 − |1〉)(〈0| − 〈1|)
2

(1.26)

Π3 = 1−Π1 −Π2 (1.27)

If Π1 clicks, the incoming state must be |+〉 since |0〉 will never cause a click in Π1. For the same

reasons, if Π2 clicks the incoming state must be |0〉, in fact p2 = 〈+|Π2|+〉 = 0. However, if Π3 clicks

nothing can be stated and therefore the outcome is inconclusive (and random).

This example reveals that even if the incoming state is fully known, an overcomplete set of POVM will

always result in a non-null set of random events and therefore this feature can be exploited to generate

secure and private randomness. In addition, this concept can be extended to generate randomness

without any assumption on the incoming state.

1.6 Entropies Measures

Quantum mechanics has revolutionized our understanding of the world. Besides entanglement, another

major di�erence from classical physics is that there are limits to the precision with which quantities can

exist in nature, thus the quantum world is inherently unpredictable. This is expressed by the famous

7



1.6. ENTROPIES MEASURES CHAPTER 1. QUANTUM INFORMATION

Heisenberg's uncertainty principle, originally formulated as σxσp ≥ ~
2 , that states the impossibility to

prepare a quantum particle for which both position and momentum are clearly de�ned. This principle

applies much more in general: for arbitrary observables X and Y it holds that

σ(X)σ(Y ) ≥ 1

2
〈ψ| [X,Y ] |ψ〉 (1.28)

so the commutator [·, ·] represents the fundamental limit to our knowledge.

The proper mathematical quantity to express uncertainty in information theory is entropy. Entropies

are functionals on random variables or quantum states that aim to quantify their inherent uncertainty.

Entropy is a natural measure of surprise or uncertainty, perhaps even more than standard deviation,

that is better suited to measure the deviation from the mean. In fact, consider the following example

(courtesy of [4]) where standard deviation has a counterintuitive behaviour: a spin-1 particle with equal

probability Pr(sz) = 1/3 of obtaining one of the three possible outcomes of Z angular momentum

sz ∈ {−1, 0, 1}. It is easy to see that the standard deviation is σ(Z) =
√

2/3. Now suppose we

gain additional information such that the spin does not take the value sz = 0, so the new probability

distribution is Pr(−1) = Pr(1) = 1/2, P r(0) = 0. In this case, the standard deviation increases,

σ(Z) = 1, even though the uncertainty is decreased since we got more information.

Formally, if we have a discrete random variable X distributed according to a probability distribution

PX that takes values x = {1, . . . , d} (entropies do not depend on the speci�c labels of the elements of

this set), the average surprise or information associated to X is given by:

H(X) :=
∑
x

−PX(x) log2(PX(x)) (1.29)

which is called Shannon entropy2. Intuitively, this works because outcomes that occur with high

probability PX give less information (and surprise) respect to events with low probability. For example,

a text containing only a string of �aaa. . . aaa� will have much less information respect the text you are

reading. So Shannon Entropy associate high information gain to low probability events (log(PX(x)))

and averages them respect the number of times they will appear (PX(x)).

In classical information theory, we can view entropy either as a measure of our uncertainty before we

learn the value of X, or as a measure of how much information we have gained after we learn the value

of X.

In recent years, entropy and the uncertainty principle have emerged as a central ingredient for new

discoveries and applications of quantum information theory, as in [5]. The uncertainty relation for

measurements of two complementary observables can be formulated by means of Shannon entropy

as well [4]. Messages in quantum information are encoded in states taken from an �alphabet�, as in

1.9, described by the density matrix ρ (1.10) and eigenvalues λj . The quantum analogue of Shannon

entropy is called the von Neumann entropy and is de�ned as

H(ρ) := −Tr(ρ log ρ) = −
∑
j

λj log λj (1.30)

Note that 0 ≤ H(ρ) ≤ log d where H(ρ) = 0 for pure states (λj̄ = 1) and H(ρ) = log d for maximally

mixed states.

2All logartihms are base-2 unless otherwise indicated.
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The amount of gained information, and hence the entropy, depends also from the information already

available to us (or some adversary). Take for example the expansion to 100 digits of e: if we don't

know that we will get the digits of e, the amount of entropy will be high since every digit is di�erent

and it is impossible to predict the next one. However, if we already have the information that we will

get the digits of e, the amount of entropy will be 0, because we will not have any surprise looking at

the output, nor we will gain any new information.

To consider this previously available information (associated with the random variable Y ), we need to

introduce the conditional entropy

H(X|Y ) := −
∑
x,y

P (X = x, Y = y) log(P (Y = y|X = x)) (1.31)

where P (X = x, Y = y) and P (Y = y|X = x) are the standard joint and conditional probabilities.

For composite quantum systems, the conditional entropy is given by

H(X|Y ) = H(ρXY )−H(ρY ) (1.32)

where ρY = TrX(ρXY ).

Anyhow, these entropies are not the proper quantity to consider for our purposes. In fact, since they

are de�ned via probability measures, the Shannon entropy can be interpreted as the average amount

of randomness available but in the asymptotic limit of an in�nite set of outcomes. This limit is thus

usually considered for an in�nite and identical repetition of a certain process (i.i.d assumption). In

our case, we deal with less ideal setting and in practice the protocol can be repeated a �nite number

of times. Therefore we need a one-shot (i.e. for a single instance of the protocol) worst-case bound for

the entropy, that is given by the conditional min-entorpy Hmin(X|Y ). This quantity can be de�ned in

many di�erent ways, depending if it is conditioned and it such conditioning is only respect classical or

quantum side information [6]. Here, we will present the most general de�nition (which is conditioned

respect quantum information E) since it gives the most conservative bound:

Hmin(X|E) := − log(Pguess(X|E)) (1.33)

pguess(X|E) := max
ÊE

x

d∑
x

PX(x) Tr
(
ÊEx ρ

E
x

)
(1.34)

Let us better discuss the terms of these equations. In the most general (and worst for Alice's security)

case, Eve controls a bipartite quantum state ρAE and her intention is to guess with a certain probability,

precisely pguess(X|E), the outcome of Alice's POVM {ΠA
X} given the quantum side information E. In

order to do that, Eve implements a POVM taken from an arbitrary set ÊEx to examine the state ρEx

held by Eve after that Alice has performed her measurements on ρAE . Alice's side is consequently

projected in the eigenstate |x〉 related to the outcome x. This post-measurement state can be written

as:

ρXE =
∑
x

Px(x)|x〉〈x|A ⊗ ρ̂Ex (1.35)

where ρEx is the same state appearing in 1.34 and it is the following reduced density matrix:

ρEx = TrA
(
(ΠA

X ⊗ 1
E)ρAE

)
(1.36)
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The state ρAE can be any state, but the one that gives Eve the most information is the one that

puri�es
∑
PX(x)|x〉〈x|, meaning that ρAE can be considered pure without loss of generality. In other

words, puri�cation is a purely mathematical procedure that allows us to associate pure state with

mixed systems: given a state ρA belonging to subsystem A, it is always possible to introduce another

system, which we denote E, and de�ne a pure state ρAE such that ρA = TrE(ρAE).

To get an idea about the de�nition in Eq. 1.34 we can think in terms of Eve optimal guessing strategy:

at the beginning of the protocol Alice and Eve hold a bipartite (pure) quantum state ρAE crafted by

Eve that sends one part to Alice, namely ρA. Then Alice uses her POVM
{

ΠA
x

}
to measure it and

gets an outcome x, projecting her state in the respective eigenstate |x〉 which now can be considered

classical. Eve's state ρE , since it was correlated with Alice's part, is also projected in ρEx depending on

Alice's outcome. Now Eve's best strategy to maximize her probability to guess Alice's outcome is to

�nd a POVM
{
EEx
}
that always clicks when ρEx is sent, meaning that it must maximize Tr

(
ÊEx ρ

E
x

)
.

The factor PX(x) takes into account how many times Alice measures with the POVM element ΠA
x .

Despite the simplicity of the de�nition for the min-entropy, the estimation of this quantity is extremely

hard since it involves the maximization over an in�nite and continuous set of POVM ÊEx , but it is

crucial to extract secure random strings, as it is further discussed in section 2.4.
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Chapter 2

Quantum Random Number Generation

What is random? One simple non-philosophical answer is that randomness is the lack of pattern

or predictability in events of any kind. In ancient history, the concepts of chance and randomness

were associate with that of fate or gods' will. It was only in the 1800s with the advent of calculus,

and with probability theory later, that randomness underwent a process of formal analysis. Although

randomness and uncertainty are often viewed as an obstacle and a nuisance, today random numbers

have an essential role in many �elds. Some of them are cryptography, gambling, scienti�c simulations

(as Monte Carlo) and research methods.

2.1 Random Number Generators

There are a lot of ways to generate random numbers. The �rst that come to mind are tossing a coin,

trowing a dice or drawing a ball from a lottery machine. These generators are common in everyday

life, where actually a small amount of randomness is required.

Nowadays computers are used to obtain random numbers. Methods that produce them from a de-

terministic algorithm are called pseudorandom number generator (PRNG). PRNGs normally take as

input a small string, the seed, and they output a long sequence simulating the discrete uniform distri-

bution, from which other distributions can be obtained by means of di�erent algorithms, such as the

inverse transform sampling. While it is clear that such a sequence cannot be truly random and it is in

fact predictable, PRNG are suited for simulations that demand just the �appearance� of randomness

and fast reproducible results.

However, for many other applications, unpredictability is a fundamental requisite. True random num-

ber generators (TRNG) measure some di�cult-to-predict physical process, such as thermal noise in

electronic circuits or quantities in chaotic systems in general, and use the results to create random

numbers. In particular, quantum random number generators (QRNG) are physical generators based

on quantum systems.

Although classical TRNGs seem more advisable than PRNGs, there are some inconveniences that one

must take into account: they have limited generation rate, the randomness relies on our ignorance

of the process description and failures are di�cult to detect. QRNGs o�er a solution to these prob-

lems: as discussed in section 1.6, the inherent randomness in quantum mechanics can be exploited for

generating true random numbers.
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2.2. QRNG CLASSIFICATION CHAPTER 2. QRNG

2.2 QRNG Classi�cation

On the basis of the degree of trustworthiness on devices, QRNG can be grouped into three categories [7].

The �rst, trusted-device QRNG, is built on fully trusted and calibrated devices and typically they have

high performances. The second category is self-testing QRNG, in which randomness can be generated

without trusting the actual implementation and it is guaranteed by quantum mechanical properties.

The third category, semi-self-testing QRNG, is an intermediate category that provides a trade-o�

between the trustworthiness on the device and the random number generation speed. The security of

QRNG will be further covered in the next section.

Let us now present a brief overview of representative QRNGs and their inner workings.

Because of the availability of high quality optical components, the relative low costs and the potential

of chip-size integration, most of today's practical QRNGs are implemented in photonic systems. Such

QRNG usually includes a an entropy source for generating well-de�ned quantum states (a laser) and a

detection systems (photon detectors), whose dead time and e�ciency are the major limit of generation

rates. One way to increase this rate is to perform a measure of the temporal or spatial mode of the

photon. Temporal QRNGs measure the arrival time of a photon emitted by a weak coherent laser pulses

such that within a chosen time period there is one detection event. This detection time is randomly

distributed within the time period providing the required random numbers. On the other hand, spatial

QRNGs measures the spatial mode of a single photon with a space-resolving detection system. For

example, a photon is sent through a beam splitter and the output position is detected. Other QRNG

are based on photon counting, attenuated pulses, vacuum �uctuation or phase noise. Besides optical

systems, there have also been proposals for QRNG based on radioactive decays or atomic quantum

systems. For a more exhaustive dissertation about the history and classi�cation of QRNG, see [8].

2.3 Security of QRNG

One of the most basic QRNG consists of diagonally polarized single photons |+〉 (or equally |−〉) going
through one Polarizing Beam Splitter (PBS) as shown in Fig. 2.1:

PBS
0

1 Z=01000101011

Figure 2.1: Example of a simple but insecure QRNG

Provided that the state is trusted and the PBS is perfectly balanced, Alice will get a true random

string since she exactly detects |H〉 or |V 〉 with probability 1/2 for every photon. On the other hand,

if a malicious eavesdropper, Eve, can access quantum side-information on the system, she could use it

to guess Alice's string within a certain amount of reliability. For example, if Eve controls the quantum

state source, she might send a maximally entangled state (as in Eq. 1.21) to exactly know every bit of

Alice's string. Besides, in this way Alice cannot know that her string is being spied on.
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PBS
0

1

01000101011

Z=01000101011

Figure 2.2: Example of an optimal attack on the simple QRNG

For this reason in critical applications, such as cryptography, randomness is required to be also private.

From the theoretical point of view attacks are possible because the measurements do not give to

Alice the possibility to estimate the purity of the incoming state, that can be, in principle, totally

mixed. For such incoming state there exists a bipartite puri�cation ρAE (in this case the maximally

entangled state 1√
2
(|00〉+ |11〉)) that gives to Eve the maximal amount of information. In order to

estimate the purity of the incoming state a full tomography approach can be used, as in [9] or a basis

switching scheme as in [5]. Having information from another basis helps to put a non trivial bound on

the secure randomness extractable, whereas the general principle behind quantum state tomography

is that by repeatedly performing many di�erent measurements on quantum systems described by

identical density matrices, frequency counts can be used to infer probabilities to determine a density

matrix which �ts the best with the observations and ultimately the randomness can be bounded with

the formula 1.33. Although in many protocols one has to trust his devices, they could misbehave or

could be manufactured/controlled by the eavesdropper himself. For security reasons one would like to

trust his devices as little as possible. A solution is o�ered by Device-Independent (DI) protocols: they

o�er the highest level of security since they are able to certify the randomness without any assumption

on the inner working of the devices. However, since they require a loophole-free violation of a Bell

inequality, their experimental realization is extremely demanding and the generation rates are too low

to be useful in any practical scenario. For this reason, Semi-DI protocols have been proposed. They

trust only part of the apparatus but they can achieve rates extremely bigger than DI.

In chapter 3 we propose a Semi-DI protocol, based on the inconclusive outcomes of overcomplete

POVM.

2.4 Randomness Estimation of the QRNG

In section 1.6 we have seen how entropies objectively quantify the amount of randomness of a random

variable or obtained from a quantum state. In practical realizations, we must additionally consider that

the measurement are subjected by experimental errors and instrumental noise, so QRNG protocols will

expect some amount of classical randomness arising from the non-ideal components. In our case, a

photonic implementation, classical noise could arise from the laser photon generation rate, the optical

�bres or the single photon detectors (SPAD). All these sources of classical noise will be inevitably

mixed with the �quantum� randomness belonging to the quantum measurements, with the di�erence

that they will bring a security �aw. Indeed, any phenomenon that can be described by the laws of

classical physics can, at least in principle, be predicted by solving the corresponding equations.
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2.5. RANDOMNESS TESTING CHAPTER 2. QRNG

There is nevertheless hope to separate the classical (and insecure) randomness from the quantum part

thanks to the Leftover Hashing Lemma (LHL) [10]. Informally this theorem a�rms that if a n-bits

string is given and we know that it contains at least m < n bits of randomness (i.e. its min-entropy

is m-bits), there exist a particular set of function, called randomness extractors, that get as input the

n-bits string and output a m-bits string which is arbitrary close to a random string (it is ε close from

a string sampled from the uniform distribution).

Figure 2.3: Representation of the randomness generation protocol

This explains why the right min-entropy estimation is crucial for the security of the protocol: if we are

able to bound the min-entropy of the string generated by the QRNG, we can always apply the LHL to

get a perfectly random string. But how can we tackle this hard problem of estimating, or bounding,

the min-entropy? We will see in 3.3 that for our speci�c case, some solutions have been proposed.

2.5 Randomness Testing

Once we generate a secure random sequence, we need to check if everything has worked correctly.

Unfortunately, there is no way to absolutely determine if a �nite sequence is truly random. For

example, considering the extreme case of a 1-bit string, it is like asking whether 1 is fundamentally

more random than 0. Anyhow, there are methods to detect suspicious sequences: while the string

11111 is just as likely as 10110, if our generator consistently outputs more ones than zeroes we have

the reason to suspect that it may be not so random but it shows some kind of pattern.

The established approach to randomness testing is using a series of statistical test to uncover these

patterns or biases. The main suit is developed by the NIST [11] and it includes di�erent tests. They

check, for instance, the frequency of zeros and one, the oscillation between them, periodic features or

correlations. The result is a p-value that indicate how likely it is for a purely RNG to produce the

tested sequence, similarly to the standard chi-squared test.

These tests, while useful to detect faulty generators, actually cannot prove that a generator produces

truly random outputs. PRNG can pass the tests but are predictable or even a perfect RNG would

statistically fail a test from time to time. In spite of that, any good QRGN should be able to pass all

the tests in any given suite.
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Chapter 3

Semi-Device-Independent QRNG:

The experiment

The idea behind this experiment came from the article �Secure heterodyne-based quantum random

number generator at 17 Gbps� [12], in which a Source Device Independent (SDI) QRNG was presented

in the framework of Continuous Variable (CV) systems. In this situation, the overcompleteness of the

POVM implemented by Heterodyne Detection ( Π̂α = 1
π |α〉〈α| ) was exploited, together with the

properties of the Husimi Q-Function, to bound the conditional quantum min-entropy Hmin(X|E) and

certify randomness without any assumption on the quantum states measured.

In this work, this concept is brought to �nite dimensional Hilbert spaces and arbitrary POVMs. In

particular, we start analysing the case of the equiangular three-state POVM. Then, by employing a

new numerical tool, it will be derived a bound of extractable randomness for an arbitrary number of

POVMs for a �xed dimension.

3.1 Three state POVM

We have seen in section 1.5 that POVM can be exploited to generate secure and private randomness

more successfully than projective measurements, as it has been experimentally proved in [13].

In a two dimensional Hilbert space, one simple overcomplete POVM is given by the following elements:

Π1 =
2

3
|V 〉〈V | =

2

3
|ψ1〉〈ψ1| (3.1)

Π2 =
2

3

(√
3

2
|H〉+

1

2
|V 〉

)(√
3

2
〈H|+ 1

2
〈V |

)
=

2

3
|ψ2〉〈ψ2| (3.2)

Π3 =
2

3

(√
3

2
|H〉 − 1

2
|V 〉

)(√
3

2
〈H| − 1

2
〈V |

)
=

2

3
|ψ3〉〈ψ3| (3.3)

This overcomplete POVM uses states that form an equilateral triangle in the X-Z plane of the Bloch

Sphere (see Fig. 3.1).

As previously said, even if the incoming state is perfectly aligned with one of the measurements

(that are not orthogonal), the probability to obtain the right outcome is less than one, in contrast
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3.1. THREE STATE POVM CHAPTER 3. THE EXPERIMENT

Figure 3.1: Visual representation of the three-state POVM (black) on the equator of the Bloch sphere. The
states |V 〉 (green), |H〉 (orange), |+〉 (blue) and |L〉 (red) are also plotted.

with projective measurement. For example, if the incoming state is |V 〉, Π1 clicks with probability

p = 〈V |Π1|V 〉 = 2/3. Since this impossibility to predict with certainty the outcomes remains valid

also for an eavesdropper that could try to obtain the same output as the legitimate user, this POVM

assures that the obtained randomness is also private.

In particular we will analyse three di�erent scenarios, which are gradually more and more paranoid:

Trusted scenario We assume to known and trust how our devices, especially the source and the

measurements, are perfectly working. In this case both the state ρ and the measurements {Π}
are known and �xed in every run of the experiment. Clearly this is the easier scenario to analyse

but also the less secure, since the security relies on the demanding assumptions and trust that

we put on the devices.

Source-Device-Independent with measurement information In this scenario we assume we have

a characterized, but not ideal, measurement station so that we can settle the POVM {Π}, but
we do not assume anything about the source, that can be even controlled by the eavesdropper

himself. In our analysis he can share both classical and quantum correlation with the system,

for example he can control a maximally entangle state. Using the information of the outcome

statistic from the POVM measurement we estimate a lower-bound on the extractable secure

randomness.

SDI without measurement information This scenario is similar to the previous, but we don't use

any information about the statistics of the outcomes. Basically the randomness is lower bounded

respect the worst state ρ that is physically allowed by quantum mechanics.
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3.2 Experimental Setup

The experimental setup is loosely based on [14] and it is shown in Fig. 3.2. Firstly, the photons

are emitted by a weak coherent pulses laser source at λ = 808 nm and they are guided through a

single mode �bre to a collimator. Secondly, the desired polarization is adjusted by means of a HWP

and a QWP. Then the POVM is implemented by using a partially polarizing beam-splitter (pPBS)

that completely transmits the the horizontal polarization and it has a re�ectivity of 66.7% for the

vertical polarization, followed by a HWP at θ = 22.5◦ and a polarizing beam splitter (PBS) that

split the incident beam into two beams of orthogonal polarization. Finally, the photons are detected

by three single photon avalanche diodes (SPAD). These detection events are time-tagged and stored

in a computer where eventually the data are analysed by means of Python programs. The LASER is

HWP PBSpPBS
Laser

HWP

QWP

POVM

Figure 3.2: Three-state POVM setup.

manufactured by Thorlabs (model LP808-SF30) and it is operated by a controller that provides extreme

precision at the current level of operation and absolute control over working temperature. The SPADs

(Excelitas Technologies' SPCM-NIR) are characterized by a dead time of 20 ns, an e�ciency of ∼ 68%

and a maximum amount of 100 dark counts/s. Lastly, the time-tagger �quTAU� made by qutools has

a resolution of 81 ps. The �nal result is shown in the following photo, where two polarizers are added

to reduce noise:

Figure 3.3: Photo of the experimental setup.
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3.3 Entropy Estimation and Results

In section 2.4 we left open the question about the estimation of the min-entropy. In this section we

analyse the three di�erent scenarios and methods to deal with this problem.

Trusted Scenario

If Alice knows for sure the incoming ρA and if she trusts her POVM, she can simply generate random

numbers by acquiring the POVM elements clicks, even though theirs security is not assured. In fact, if

her state is pure it cannot be correlated with anyone else and her results are secure, otherwise the more

her state is mixed the more it could be correlated with an adversary, since Eve could purify the system.

The classical example is if ρAE = |φ+〉 (de�ned in 1.21) or any other maximally entangled state: in this

case TrE(ρAE) = 1A, the classical min-entropy is 1.58 since the outcomes are perfectly balance among

the POVM elements. However, since the state could be puri�ed, the quantum conditional min-entropy

Hmin(X|E) is zero, leading to no secure random numbers.

With our speci�c setup, the states can be prepared by tuning the plates and checking the clicks

distribution, that can be computed beforehand with 1.24. These outcomes and the corresponding

Shannon entropy H are shown in Tab. 3.1:

Incoming State Π1 Π2 Π3 H

|H〉 0 1/2 1/2 1

|V 〉 2/3 1/6 1/6 0.58496

|+〉 1/2 1
6

(
2 +
√

3
)

1
6

(
2−
√

3
)

0.68499

|L〉 1/3 1/3 1/3 1.58446

Table 3.1: Probabilities distribution and entropy for some di�erent incoming states.

Note that |H〉 is equidistant from two POVM elements and so it gives 50% outcomes, like a fair coin

toss, whereas |V 〉 is aligned with Π1 so its clicks more frequently and the entropy is lower. Finally, |L〉
is orthogonal to the three POVM elements, as it is shown in Fig. 3.1, and for this reason they click

with the same probability so that the most randomness can be obtained, as if it were an ideal discrete

uniform distribution generator.

SDI with measurement information

In the other two scenarios the source is not trusted and the estimation of the min-entropy is harder

because the state ρAE is unknown. This issue has been elegantly solved by Coles, Metodiev, and Lütken-

haus in [15]. They proposed a new numerical method to solve this problem but due to technicalities

we will leave the details to the original article. Using the technique described there QuantumFuture
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researchers have expressed our optimization problem into an Semi-De�nite Program (SDP) which can

be e�ciently solved by computers and so we are able to lower-bound the min-entropy of our protocol.

As far as the second scenario is concerned, the pguess (1.34) must be also optimized over all the ρ

compatible with the statistics that we observe. The new quantity to estimate (or bound) can be

written as

pguess(X|E) = max
ρAE∈C

max
ÊE

x

d∑
x

PX(x) Tr
((

Πx ⊗ ÊEx
)
ρAE

)
(3.4)

where C is the set of all physical states compatible with the measurements observed:

C = {ρAE ∈ H | Tr (ΓiρAE) = γi} (3.5)

where Γi are POVM and γi are the experimental outcomes.

For experimental purposes we sent the usual states |H〉, |V 〉 and |L〉, knowing that they are not pure

because of the unavoidable experimental errors related to the (untrusted) source, so we denote them

between quotation marks (e..g “|H〉”). In Tab 3.2, there are the experimental counts probabilities

and an estimate of their errors following the Poisson distribution. The bound for the experimental

min-entropy Hexp
min has been computed with the above-mentioned numerical method that takes into

account �nite-key e�ects, namely it gives the worst case value considering the probabilities con�dence

intervals as well. Moreover, we simulated the min-entropy Hth
min for the corresponding ideally pure

states:

Incoming State Π1 Π2 Π3 Hexp
min Hth

min

“|H〉” 0.00374± 0.00001 0.49869± 0.00009 0.49757± 0.00009 0.8599 0.99983

“|V 〉” 0.66576± 0.00009 0.16639± 0.00007 0.16785± 0.00007 0.58496 0.58496

“|L〉” 0.3337± 0.0001 0.3319± 0.0001 0.3344± 0.0001 0.58496 0.58496

Table 3.2: Experimental probabilities and comparison of both numerical and theoretical Hmin lower bounds for
di�erent assumed incoming states.

Let us analyse these results thoroughly. “|H〉” has a lower numerical bound because of said experi-

mental problems and detector dark counts, that eventually make the state look mixed because there

are counts when there should not be. If Eve were to send the pure state |H〉, Alice would be able

to recognize it since Π1 never clicks and the remaining elements click with the same probability, as a

binary random variable from which no more than 1 bit of entropy can be extracted. For these reasons,

if the incoming state is |H〉, there is no di�erence between trusted and untrusted source.

Alice's worst cases are for “|V 〉” and “|L〉”. Regarding the former, Eve could take advantage of the

unbalance of “|V 〉” probabilities (her most optimal strategy would be to sent this state and bet on

Π1) whereas the latter is indistinguishable from a maximally-mixed state. Therefore, as we will see

in the next section, the entropy bound is close to its minimum and the minimization program reaches

machine precision, regardless of the probabilities error intervals.

3The correct value shoud be 1. This di�erence is due to numerical issues.
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In the end, these estimated min-entropies and the raw data are given as input to the extractor and

the requested secure random string is obtained. The size of the data sets and the generation rates are

shown in Tab. 3.3. Each of the data sets refers to slightly di�erent experimental condition and system

con�guration, this explains the discrepancy between “|V 〉” and “|L〉” generation rate, even though

they have similar entropy and acquisition time. Higher rates could be achieved by increasing the laser

intensity and with a �ner instruments calibration, although this generator is not built for this purpose.

Data Set Acquisition Time [s] Raw Data Size [MB] Extracted Data Size [MB] Generation Rate [kbps]

“|H〉” 67.3 7.06 3.08 385

“|V 〉” 64.3 5.91 1.70 223

“|L〉” 61.8 4.68 1.35 183

Table 3.3: Randomness extraction and generation rates.

The trustworthiness of the �nal data has been checked as described in 2.5. Those tests output a p-value

that is the probability that a perfect random number generator would have produced a sequence less

random than the sequence that was tested, given the kind of non-randomness assessed by the test. If a

p-value for a test is determined to be equal to 1, then the sequence appears to have perfect randomness.

On the contrary, a p-value of zero indicates that the sequence appears to be completely non-random.

A signi�cance level of α = 0.01 was chosen, i.e. one would expect 1 sequence in 100 to be rejected. A

p-value > 0.01 would mean that the sequence would be considered to be random with a con�dence of

99%. All the datasets passed the tests, thus con�rming actual randomness. To give just one example,

the results for the state “|H〉” are shown in Tab. 3.4 and Fig. 3.4.

SDI without measurement information

In the last scenario, the entropy estimation is independent from the incoming state and it coincides

with the min-entropy calculated in the most conservative case, i.e. for ρA = |V 〉. In this case we have:

Hmin = − log2(2/3) ' 0.58496 . . . (3.6)

The same happens for ρA = |L〉 or ρA = |R〉 since from the point of view they of the outcome statistics

they are like the maximally mixed state 1. In the case of ρA = |H〉, which is maximally far from two

adjacent POVM Π2 and Π3, using the full statistic can be bene�cial because it is possible to certify 1

bit of randomness for measurement instead of − log2(2/3).
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Test Name p-value

1 Monobit Frequency Test 0.54
2 Block Frequency Test 0.27
3 Runs Test 0.28
4 Longest Runs Ones 10000 0.14
5 Binary Matrix Rank Test 0.67
6 Spectral Test 0.79
7 Non Overlapping Template Matching 0.64
8 Overlaping Template Matching 0.06
9 Maurers Universal Statistic Test 0.68
10 Linear ComplexityTest 0.84
11 Serial Test 0.79
12 Approximate Entropy Test 0.36
13 Cumulative Sums Test 0.93
14 Random Excursions Test 0.16
15 Random Excursions Variant Test 0.04
16 Cumulative Sums Test Reverse 0.70

Table 3.4: Tests and corresponding p-values. For the tests which give more than a p-value, the smallest is
reported.

Figure 3.4: Summary of the results of tests e�ective in detecting defects in TRNG. All the p-values are above
the signi�cance level threshold (red).
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These results can be extended by means of a simulation: the min-entropy is plotted in Fig. 3.5 as a

function of the number of elements in the POVM for a two-dimensional Hilbert space.

5 10 15 20 25 30 35 40
Number of POVM on Alice side

0

1

2

3

4

5

Hm
in

(X
|E

)

QRNG qubit

Best case fully trusted for Y0
Best case fully trusted for BS SDI
SDI with POVM information best state
SDI without any information on the state

Figure 3.5: Min-entropy estimation as a function of the POVM elements number. Y0 corresponds to the
incoming state |L〉, eigenvalue 0 of Pauli matrix σy. The orange line stands for the Best State relative to the
SDI.

If we deem the Hilbert space dimension as a �xed resource, it is remarkable that the amount of

extractable randomness increases inde�nitely. Besides, note that, as we would expect, in the second

and third scenarios n = 2 POVM elements do not permit to get secure randomness, but indeed this

becomes possible from n > 2.

We also simulated the second and third scenarios for all the incoming states in the case of the three-state

POVM described at the beginning:

Figure 3.6: Min-entropy estimation as a function of the state. ϕ and θ stands for the polar qubit representation
(Eq. 1.2). The surface plot represents the second scenario, whereas the green layer is the unique entropy value of
the third scenario. Note that for ϕ = 0◦ the three peaks stand for equidistant states from the POVM elements,
whereas the ϕ-invariant ridge is |H〉.
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3.4 Conclusions and Further Development

This experiment has shown that just by exploiting POVM on photons polarizations it is possible to

generate high-quality true random numbers thanks to the astonishing properties of Quantum Mechan-

ics. Moreover, their security is certi�ed by a proper estimation of the min-entropy Hmin that takes

into account both unavoidable impurities of the state and any external intrusions.

This setup can be also easily improved and brought to four (or more) state POVM elements in order

to get more randomness. One scheme could be the following: the beam re�ected by the pPBS can

be split again by means of a PBS, so that the POVM elements are aligned to the states |H〉, |V 〉,
|+〉 and |−〉. In addition, with an entangled state source and a copy of this apparatus, it is possible

to reproduce the presence of Bob or even the eavesdropper herself. For example, the former can be

used in the cases of Quantum Key Distribution (QKD) applications and the latter to test the security

of random strings, all within the same experimental setup but with di�erent analysis methods. We

actually assembled this entangled version (Fig. 3.7) with the aim to study heralded qubits: Bell states

are sent as input (e.g. |HV 〉) in both branches and we know for sure that if a POVM element clicks

in one branch (|V 〉), because of entanglement the other photon is in the opposite state (|H〉) and a

click is recorded accordingly. The bene�t is that the dark counts and experimental errors are highly

reduced, thus giving a better min-entropy estimation (and again more randomness). We were able to

build, characterize the setup and collect a set of preliminary results, but unfortunately more time is

needed to �nish the analysis for a conclusive thesis work.

Figure 3.7: Photo of the entangled experimental setup.
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