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Abstract
Epilepsy is one of the most widespread globally diseases and nowadays several steps to its
classiőcation and treatment have been made.
Starting from the electroencephalogram ( EEG ) of epileptic patients, the őrst step analysis
consists of choosing those TRC őles with an effectively recording channels into a range
included between 24 and 35: the number of channels changes a lot from patient to patient, so
it is threshold to collect as much as possible quite homogeneous data.

Converting each selected őle into a dataframe, the analysis goes on with splitting them into
no-ictal and ictal phases: using Brainstorm is actually possible to extract the start and the
end events related to epileptic seizure ( ES ).
After checking that every ES is truely indipendent from the others ( this happens after 4h
from the end of the previous one ), the time data order for each no-ictal part is reversed and
every 5 seconds the signal is őrst downsampled to 256 Hz and then log-spectrogram is
computed for each channel.

Finally a őlter system composed by 1 Hz high pass, 125 Hz low pass and notch őlter to 50
and 100 Hz is applied to clean the spectrogram from noise frequencies.
If some dataframe has less then 35 channels an empty spectograms with null signal are added
in order to have 35 images for each 5 seconds time period.
As the aim of the work is to predict the ES in increasingly detailed time brackets, each
spectrogram-packet ( composed of 35 images ) is őrst labeled and then the new spectrogram
dataset is balanced between time categories.

Next, a split between the training and test set is necessary in order to train a CNN model in
supervised learning. The test set is the 10 % of the entire dataset and it’s composed by
chosen random item from the various categories: that why it’s called random test.
To better tuning the model hyperparameters a 3-fold cross validation is performed and to
boost up the accuracy both training and random test are normalized with mean and std
computed on training part.

Despite on random test an 88 % of accuracy is achieved, on the last two patients benchtest
the performance falls down near to 28 %.
So, using a dataset with unknown information about seizure type and inhomogeneous
recording channels ( both for number and type ), it’s not possible, for now, to build a model
able to predict the arrival of a generic epileptic attack with reasonable temporal precision.
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Chapter 1

Introduction

1.1 What are the epileptic seizures and epilepsy disease?

The deőnitions of seizure and epilepsy have changed during the time. The őrst meaning of
seizure was "take hold" and derives from the Greek culture.
In modern popular language, instead, people uses the word seizure to describe a sudden and
severe event ( for example, łhe had a heart seizure" ).
However in order to deőne many physical or psychological sudden events related to epilepsy
disease, the International League Against Epilepsy and the International Bureau for Epilepsy
have come to consensus deőnitions for both epileptic seizure and the epilepsy [30]:

Epileptic
Seizures

transient occurrence of signs and/or symptoms due to
abnormal excessive or synchronous neuronal activity
in the brain.

Epilepsy

disorder of the brain characterized by an enduring
predisposition to generate epileptic seizures and by
the neurobiologic, cognitive, psychological and social
consequences of this condition. The deőnition of epilepsy
requires the occurrence of at least one epileptic seizure.

Table 1.1: Deőnitions of epilepsy and epileptic seizures

1.2 Epileptic seizures

Although clinical symptoms linked to an epileptic event can never been immediately recognized,
it’s evident that each ES has a clear beginning and end.
Using the EEG and patient’s behavioral clinical analysis the physician could be able to
determine the time interval when ES happens, as shown in őgure 1.1 .
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Figure 1.1: EEG seizure recording: the ictal state is the seizure’s time window

However, discrepancies between what doctors see and what medical devices measure lead to
inaccurate time estimates.
In reality, many aspects inŕuence the presentation of seizures: location of onset in the brain,
propagation patterns, brain maturity, confounding disease processes, sleep-wake cycle,
medications, etc.

For example, it is commonly used to see a wide repertoire of jerky movements in preterm
infants, many of which are essential for normal sensory-motor development.
It can be difficult to distinguish these essential jerky movements from seizures; this often
leads to unnecessary treatment of infants with antiepileptic drugs [27].

On the other hand, some EEG patterns are neither perceived by the patient nor by the
observer ( sometimes incorrectly called subclinical seizures ) and therefore cannot be properly
deőned as epileptic seizures [30].
Therefore a simultaneous medical examination performed by directly checking the patient
reactions and the medical instrumentation could lead to a correct estimation of when and
which types of ES occurs.

1.2.1 Classiőcation

In the last classiőcation [31], seizures are classiőed according to three characteristics:

• Origin of the seizure in the brain: focal or generalized.

• Degree of awareness during the seizure: intact or impaired awareness.

• Level of body movement: motor or non-motor

According to these features, ES are classiőed into three macro-groups:

1. Focal onset seizures, also subsided into three subtypes:

(a) Retained/impaired awareness.

(b) Motor/non-motor onset.

(c) Focal to bilateral tonic-clonic.

2. Generalized onset seizures: motor or non-motor ( absence ) onset seizures.

3. Unknown onset seizures: motor/non-motor or unclassiőed [5].
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1.2.2 Focal onset seizure

Focal onset seizure or a focal seizure is when ES starts in one hemisphere of the brain and
progresses into the other. Nowadays these seizures are also be known as partial seizures.
The awareness in focal seizure varies and can be: present or absent.
If a seizure occurs when the patient is fully aware of the events occurring around him it’s
called as focal aware seizures.

However, in most cases, the patient may lose awareness of some events; when this occurs, a
focal impaired awarness takes place.
This type of event may be associated with loss of memory ( amnesia) during seizures [11].
Classiőcation based on awareness is fully optional and can be omitted, especially when it is
difficult to establish the level of awareness impairment as in sudden and brief ES [17].

On a general basis, before a seizure event happens, the patients experience a several feelings
known as aura: deja vu, a strange taste or smell, a rising sensation in the stomach,
lip-smacking and hand rubbing. In this case, the aura is also known as a focal aware
seizure [11].
Putting a focal seizure in a category is used primarily to take into account the őrst signs or
symptoms that appear at the beginning of the ES event ( the Rule of First ).
An exception occurs when it deals with impairment of awareness ( IOA ).
Only in this scenario doctors always deőne an ES as an IOA seizure although symptoms occur
in the last phase of the event.

The Rule of First is also useful to determine the area of the seizure [16, 14]: for example, a
focal seizure could be associated with jerking of a single limb ( arm or leg ), which can
progress to involve both sides of the limbs ( both arms and legs ), where it is referred to as a
focal to a bilateral tonic-clonic seizure.

1.2.3 Generalized seizures

Generalized seizures are deőned as abnormal electrical activities that start in both the right
and left cerebral hemispheres and then spread to the other brain neuronal networks [11].
They could be divided into motor or non-motor classes:

• motor seizures include tonic-clonic, clonic, tonic, myoclonic, myoclonic-tonic-clonic,
myoclonic-atonic, atonic, or epileptic spasms.

• no motor seizures are typical or atypical absence seizures or seizures with
myoclonic activity or eyelid myoclonia.

1.2.4 Unknown seizures

Seizures of unknown onset are the ones that occur either when the patient is asleep or has not
the required awareness to describe them.
Unclassiőed seizures also occur when the clinician is certain about information concerning the
seizure event but it’s not able to describe it due to incomplete information he has on it.
Therefore, the term unknown onset is just like a nickname but not the characteristic of the
seizure [12].
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1.3 Epilepsy disease

1.3.1 Epidemiological data overview

The World Health Organization ( WHO ) and its partners have recognized epilepsy as a major
public health concern affecting people of all ages, races, social classes and geographical
locations [6].
Around őfty million people worldwide are affected by epilepsy, making it one of the most
common neurological globally diseases [4].

1.3.2 Incidence

In a systematic review and meta-analysis of incidence studies, the pooled1 incidence rate2 of
epilepsy deőned as n cases during observation period

total persons−time of observation while at risk during study
was 61.4 per 100,000 person-

years ( 95 % confidence interval ( CI ) 50.7ś74.4 ) [15].
The incidence was higher in low/middle-income countries ( LMIC ) than in high-income
countries ( HIC ), 139.0 ( 95 % CI 69.4ś278.2 ) vs 48.9 ( 95 % CI 39.0ś61.1 ) .

This can be explained by the different structure of the risk populations and increased
exposure to perinatal risk factors, higher rates of central nervous system ( CNS ) infections
and traumatic brain injury ( TBI ) in LMIC.
The incidence of epilepsy is also higher in the lowest socioeconomic classes in HIC and, within
the same population, for people of different ethnic origin [8].

1.3.3 Prevalence

The prevalence3 of the epilepsy is deőned as patients at time t

population at time t
×K where K is a constant to

improve readability and it differs signiőcantly among countries depending on the local
distribution of risk and etiologic factors, the number of seizures at diagnosis and if considering
only active epilepsy ( active prevalence ) or including also cases in remission.

In Fiest et al. [15], the overall lifetime prevalence (the proportion of individuals in a
population who at some point in their life ( up to the time of evaluation) have experienced a
’case’) of epilepsy was 7.60 per 1,000 people ( 95 % CI 6.17ś9.38 ) and was higher in LMIC
( 8.75 per 1,000; 95 % CI 7.23ś10.59 ) than in HIC ( 5.18 per 1,000; 95 % CI 3.75ś7.15 ).
The point prevalence of active epilepsy was 6.38 per 1,000 ( 95 % CI 5.57ś7.30 ).
The median point prevalence of active epilepsy in LMIC was 6.68 ( 95 % CI 5.45ś8.10 ) and
in HIC was 5.49 ( 4.16ś7.26 ).

1 Pooled analysis : "A statistical technique for combining the results of multiple epidemiological studies when
individual studies are too small to allow any deőnite conclusion." http : //icrpaedia.org/Pooled analysis

2 https://sphweb.bumc.bu.edu/otlt/MPH-Modules/PH717-QuantCore/PH717-Module3-Frequency-
Association/PH717-Module3-Frequency-Association4.html

3 https : //it.wikipedia.org/wiki/Prevalenza
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Prevalence estimates also vary and tend to be higher in individuals of certain ethnicities [1],
people with poor health and socially deprived subjects [20].
Along with issues in the study design, the demographic structure of the study population, the
prevalence of environmental risk factors, the quality of health management can be
implicated [6].

1.3.4 Prognosis

Looking at the statistics of epileptic patients, up to 80 % who get medical therapies enter into
prolonged periods of seizure remission and up to 50 % continue to be seizure-free after
discontinuation of treatment [3, 36].
However, reports from several LMIC ( where treatment gap is high ) give prevalence and
remission rates overlapping to HIC [7].

The risk of relapse after a őrst unprovoked seizure in some studies was fairly consistent with
the rates of 36 to 37 % at 1 year and the rates of 43 to 45 % at 2 years [36] and in a more
systematic review, the mean risk of recurrence was 51 % (95 % CI 49ś53 % ) [9].
According to some studies [9], the probability of relapse, after an unprovoked seizure,
decreases with time;in particular about 50 % of recurrences fall within the following 6 months.

Taking into account two of the main predictors of recurrences, the etiology of the seizure and
an abnormal ( epileptiform and/or slow ) EEG, it’s possible to make a sort of risk list about
pooled 2-year recurrences:

Lowest
for an idiopathic or cryptogenic őrst seizure
with a normal EEG ( 24 %; 95 % CI 19ś29 % )

Intermediate

for a remote symptomatic seizure ( 48 %;
95 % CI 34ś62 % ) with normal EEG or an
idiopathic/cryptogenic seizure with an
abnormal EEG ( 48 %; 95 % CI 40ś55 % )

Highest
with a remote symptomatic seizure with an
abnormal EEG ( 65 %; 95 % CI 55ś76 % )

Table 1.2: Prognostic risk levels

Other potential risks of recurrence of seizures come from several factors such as interictal EEG
epileptiform abnormalities, seizures occurring during sleep, focal seizures, family history, etc.
LMIC veriőed the hypothesis that spontaneous remission of epilepsy is a common event where
epsilepsy is largely untreated ( range between 70-94 % ) [26].

For example, in Ecuador the cumulative annual incidence rate was 190 per 100,000 and the
prevalence rate of active epilepsy was 7 per 1,000, which implies a remission rate of at least
50 % [29].
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However as proposed by Sander [10], epilepsy patients can be classiőed into 4 different
prognostic groups:

Excellent

(about 20ś30 % of the total) High probability of
spontaneous remission; these include benign
focal epilepsies, benign myoclonic epilepsy in
infancy and epilepsies provoked by speciőc modes
of activation, that is, reŕex epilepsies.

Good
(about 30ś40 %) Easy pharmacological control and
possibility of spontaneous remission; these include
childhood absence epilepsy and some focal epilepsies.

Uncertain

(about 10ś20 %) Patients respond to drugs but tend
to relapse after treatment withdrawal; these include
juvenile myoclonic epilepsy and most focal epilepsies.

Poor

( about 20% ) Seizures tend to recur despite intensive
treatment; these include epilepsies associated with
congenital neurological defects, progressive neurological
disorders and some symptomatic or cryptogenic partial
epilepsies.

Table 1.3: Prognostic seizures

1.3.5 Mortality

As prevalence and incidence also, mortality depends on the precision of the information on
causes of death and the survey methods [39] . In general, epilepsy has a low mortality risk,
but differences occur taking into account factors such as age, type of seizures, incidence,
prevalence, etc. [40].
In LMIC, the lack of access to health facilities, lead the mortality ratio ( MR ) to 19.8 %
( 95 % CI 9.7-45.1 ) almost 10 times higher then HIC where MR range between 1.6 and 3.0
[40, 22]. The MR is also slightly higher in men than in women and in children and adolescents.

The sudden unexpected death in epilepsy ( SUDEP ) is the most important cause of death
due to epilepsy or ES.
The incidence of SUDEP among people with epilepsy is 1.2 per 1,000 person-years ( 95% CI
0.9ś1.5 ) and ranges from 1.1 (95% CI 0.5ś2.3 ) in children under age 16 years to 1.3 ( 95% CI
0.9ś1.8 ) in adults after the age of 50 years [37].
In particular the major risk factors include generalized tonic-clonic seizures, nocturnal
seizures, and persistence of seizures [18].

1.3.6 Classiőcation types

Today, the classiőcation framework for epilepsy takes into account a multidimensional
framework in which both the type of seizures and the etiology are needed to correctly
categorize [31, 35].
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FOCUS ON SEIZURES

Focal
Epilepsy

is a continuum of seizures ( unifocal and multifocal
disorders ) that are conőned to one hemisphere and can
present with any type of focal seizure. It is diagnosed
clinically but supported by an interictal EEG with focal
epileptiform discharges.

Generalized
Epilepsy

consists of many seizure types and a patient can present
with any type of generalized seizure: either motor or
non-motor. Diagnosis is based on generalized spike-wave
activity on EEG and clinical presentation.

Combined

generalized

and focal
Epilepsy

is a condition in which a patient has both focal and
generalized seizures ( which is usually diagnosed by
EEG ) and commonly occur in infants or children with
severe epilepsies.

Unknown
Epilepsy

is when the clinician cannot categorize seizures as either
focal or generalized, especially in a resource limiting
setting.

Table 1.4: Epilepsy based on seizures

FOCUS ON ETIOLOGY

Idiopathic
Epilepsy

epilepsy of predominately or presumed genetic
origin such that there is no gross
neuroanatomic or neuropathologic abnormality.

Symptomatic
Epilepsy

epilepsy of an acquired or genetic cause, associated
with gross anatomic or pathologic abnormalities
( and/or clinical features ) indicative of underlying
disease or condition.

Provoked
Epilepsy

epilepsy in which a speciőc systemic or
environmental factor is the predominant cause of
the seizures such that there are no gross causative
neuroanatomic or neuropathologic changes.

Cryptogenic
Epilepsy

epilepsy of presumed symptomatic nature in which
the cause has not been identiőed. The number of
such cases is diminishing, but currently this is still
an important category, accounting for at least
40 % of adult-onset cases of epilepsy.

Table 1.5: Epilepsy based on etiology4

4 A more recent epilepsy etiology classiőcation was proposed by Fisher et al [14].
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Anyway, different classiőcations exist and take into account more factors: Luders and
colleagues, for example, proposed one composed of clinical semiology, location of the disease
( epileptogenic zone ), etiology and comorbidity.

This classiőcation is called the Four-Dimensional Epilepsy Classiőcation System [25] and also
used a nonspeciőc terminology like paroxysmal events in order to give a deőnitive diagnosis.
The more complex scheme is offered by Loddenkemper et al [23]: it includes the
aforementioned four dimensions with seizure frequency as the őfth dimension. Seizure
frequency refers to the number of episodes of seizure events that occur over a given period of
time:

1. Daily : when the seizure event occurs every day.

2. Persistent : when it occurs at least once in six months but not daily.

3. Rare: when it occurs at more than six months interval.

4. Undeőned : when the frequency cannot be predicted. It includes breakthrough
seizures that occur in a well-controlled patient due to either trigger
like sleep deprivation or abrupt stopping of medications [23].

1.4 Why categorize?

The classiőcation of epilepsy and seizures gives an important advantage both for patients and
clinicians. By specifying each characteristic,the physicians are able to distinguish
medications for every type of disease and helps them choosing speciőc drugs for each case [32].

From a pharmacological point of view, this classiőcation has great relevance, since focal
seizures, regardless of the part of the brain involved, were shown to respond well to a speciőc
set of anticonvulsants. On the contrary, drugs for generalized seizures depend on their speciőc
type [24].

1.5 Related works

This study is part of a current of research that in recent years is rapidly gaining ground and
seeks to respond to the growing needs to predict the occurrence of ES with the aid of artiőcial
intelligence, in particular, with deep learning models.

In fact, although several studies have only made use of feature extraction methods such as the
Support Vector Machine ( SVM ), Random Forest, K-nearest neighbors as in the work of
Resmi Cherian, E. Gracemary Kanaga [13] or as in the work of Yanli Yang et al. [41] it has
been observed that the performance obtained is generally lower than those related to deep
learning architectures, even if the latter require a larger amount of data to be trained
correctly [34].

For example, working with preterm EEG infant, the article written by O’Shea et al. [27]
shows how an alternative deep learning approach has a more stable trend then SVM when it
tested on the preterm cohort, starting with an area under the ROC curve ( AUC ) of 93.3%
for the term-trained algorithm and reaching 95.0% by transfer learning from the term model
using available preterm data.
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Ranjan Jana and Imon Mukherjee [19] propose an efficient method of predicting seizures
using raw EEG signals linked to a channel reduction technique.
An accuracy ( correct classifications

all classifications
× 100% ) of 99.47 % has been achieved for the classiőcation

of preictal and interictal states and the method can predict seizures before 10 min with a
sensitivity ( True positive

True positive+ False Negative
× 100% ) of 97.83 % and a speciőcity

( True negative

True negative+ False Positive
× 100% ) of 92.36 %.

But this proposed method implemented a patient-speciőc seizure prediction and cannot
predict seizures efficiently for other epilepsy patients.

Also Yankun Xu at al. [19] propose an end-to-end deep learning solution using convolutional
neural network ( CNN ) to classify interictal and preictal states: one and two dimensional
kernels are adopted in the early- and late-stage convolution and max-pooling
layers,respectively. The proposed CNN model is evaluated on Kaggle intracranial and
CHB5-MIT6 scalp EEG datasets. The overall sensitivity, false prediction rate and AUC reach
93.5%, 0.063/h, 0.981 and 98.8%, 0.074/h, 0.988 in two datasets respectively.

Applying the ResNet-50, AlexNet and VGG networks ( advanced CNN models with different
layers ) the study conducted by Mehmet Akif Ozdemir, Ozlem Karabiber Cura and Aydin
Akan [33] demonstrates how to input frequency-time images, it is possible to arrive at a
binary classiőcation between inter-seizure and pre-seizure with an accuracy of 98 %.

1.6 Work’s aim

Using spectrograms, this work aims to classify the arrival of a seizure up to 2 hours by
classifying each EEG section into tranches of 30 minutes each.

The challenge is particularly demanding as we do not start from pre-packaged datasets such
as CHB-MIT or made by type of seizure/patient’s age ( as was done in the previous
articles ), but we start from EEG of patients with different ages, unknown suffered seizure
and a different number of channels in each recording.

Actually, the research point to generalize the learning models to real cases where by play-force
there is not a priori information about patient.

5 Boston Hospital Center
6 Massachusetts Istitute of Technology
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Chapter 2

Material and methods

2.1 Dataset

The dataset is provided by the Micromed company and is composed of two tranches of patients
of 20 and 18 units, respectively.
The EEG recordings in each patient refer to different time periods and for practical reasons
each recording session is divided into őles whose maximum size is equal to 2 Gb.
The Brainstorm1 software written in Matlab language was used to view the data contained in
the individual TRC őles.

Figure 2.1: Example of Brainstorm EEG visualization with channels

1 https://neuroimage.usc.edu/brainstorm/Tutorials
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As shown in the őgure 2.1 once the connection with the raw őle has been created, it is
possible to view the trend of the signals in the respective channels (shown on the left) as a
function of time.
In addition, Brainstorm also allows you to label each event and represent it on the (s, µV)
graph: in the previous example, the focus was on the beginning and the end of the ictal phase.

2.2 Preprocessing

It started with the extraction of the events: using the Brainstorm interface, it is possible to
obtain the events related to the single examined TRC őle and the instant in time in which
they occur.
It was realized that the same event can be described with different names: for example, the
end of the seizure is sometimes referred to as EZEND/ezend, other times as EGEND and
rarely presents forms of the SZEEGEND type.

Therefore, it was necessary to replace the different labels with a single one capable of uniquely
deőning the event without ambiguity: for our purposes, it was essential to establish EZEEG
as the beginning of the seizure and EZEND to indicate its end.
In this way it was easier to program a Python script able to select only the events useful to us
and consequently discard the others.

Only the data őles containing at least one seizure were taken into account: the goal of this
research is to predict an epileptic seizure with a maximum of 2 hours in advance and as each
őle has an average of 8 hours of data taking it’s not useful to hold also back the remaining
őles without signiőcant events.
In this őrst selection, attention was paid to ensure that each seizure was truly independent
from the others, setting a temporal distance of at least 4h from each other.

The effects of post ictal phase, indeed, can also spread for a long time after the EZEND event,
and therefore it is necessary to be sure that you are in a section of the EEG that is actually
not related to the others.
Among the different patients and for the same patient, there was a different number of
channels used to record brain activity and also a different sampling frequency of the signals.

Having found that the range of channels varies from a few tens to hundreds of units, it was
decided to standardize the dataset by taking only those őles whose channels vary in number
from 24 to 35: in this range, very noisy channels are also excluded because not provide useful
information about features extraction.

This second selection was a choice determined by the desire not to exclude too many őles and,
at the same time, to avoid such a marked difference between them that would have had effects
on the efficiency of the scripts.

After these two selections step, the dataset counts 32 effectively patients.
In this range of channels, a subset of 16 channels has been found to be common in all
recordings and are symmetrically distributed in the front, middle, and back of the brain.
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Figure 2.2: Common 16 channels

Once the dataset is ready,the following pipeline starts:

1. Each TRC őle is read using the neo.io.Micromed package: both the µV signals relating
to the different channels and the relative sampling frequency are extracted.

2. Once the dataframe has been built with µV values as rows and channels as columns,
many other columns ( with null signal) are added until their number is exactly 35.
This is fundamental for CNN training because it will give it the ability to feed it with
arrays of equal size.

3. Only parts of the dataframe related to the no-ictal EEG are analyzed and their temporal
order is reversed so that the őrst lines are those closest to the seizure. These parts are
then divided by a length corresponding to 5 seconds.
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4. These parts, one after the other, undergo into a process of downsampling to 256 Hz.
However, for each channel, using the spectrogram function2 ( provided by the scipy library)
the relative spectrogram is created and the amplitudes are modulated on a logarithmic
basis.The sampled frequencies undergo a system of őlters to eliminate those components
of the spectrum that would otherwise dirty the signal [2, 38, 28].
So an high pass őlter at 1 Hz, a low pass őlter at 125 Hz and a notch őlter at 50 and 100
Hz are implemented.

Figure 2.3: spectrogram visualization

5. Finally, each packet of 35 spectra (one per channel) is labeled according to the
temporal category to which it belongs. Considering the beginning of the seizure part is
deőned by EZEEG event, the labels are:

- "0" if the recording part falls between 0 s and 1800 s

- "1" between 1800 s and 3600 s

- "2" between 3600 s and 5400 s

- "3" between 5400 s and 7200 s

2.3 Processing

At this point we proceed with the processing of the dataset, evaluating how balanced it is
between the various categories.

2 https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.spectrogram.html
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Figure 2.4: Unbalanced dataset

Clearly, as was easy to guess, the "0" category is more populated than the others because
being the temporal section immediately before the epileptic event is certainly present in every
TRC while the same cannot be said for the more distant categories. So, őrst it’s mandatory
to balance the dataset.

Figure 2.5: Balanced dataset
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At this point the balanced dataset is divided into a training part and a test part, respectively
90 % and 10 % of the total. To obtain this splitting, the array-packets (with their respective
labels) are őrst mixed and then randomly selected so that the size of both parts is exactly
that indicated by the percentages. Since the choice is made randomly, the 10 % test part will
be called as random test .

As a matter of optimization of the classiőcation algorithm, the mean and standard deviation
of the training part are computed and these two parameters are used to normalize the spectra
of both the training and the random test set.

Training dataset
µ = 87.16264
σ = 44.10327

Table 2.1: Mean and std from training dataset

2.4 Model

2.4.1 Why CNN and how it works

Since the dataset is now composed by spectrograms (i.e. images ) it was decided to build a
two-dimensional convolutional network model known as CNN.
The idea is to train an architecture able to extract the intrinsic features in the training
images, memorizing the patterns found and subsequently recognizing them in new inputs
during the model testing phase.

In order to do this, CNN has internal őlters whose weights are calibrated during the training
phase thanks to a process called backpropagation error method ( BEM ).
In practice, CNN is connected to another neural network called fully connected
network (FCN) which in its last layer has a number of outputs equal to the number of
categories.

During the training phase, for each input (batch) provided, the model tries to hypothesize the
correct category to which it belongs and to evaluate the error made during this attempt.
The error also depends on the loss function chosen during the compilation phase of the model.
Regardless of the loss function chosen, CNN + FCN, by means of BEM, updates the weights
contained in the convolutional őlters and in the FCN layers in order to minimize the error
made on the training set.

Figure 2.6: Example of CNN + FCN
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To explain better BEM let be J(θ) the sum of the loss function terms L(xi, yi, θ) used: it
depends by the general weights θ, the input xi and the corrisponding output yi with i goes
from 1 to m, the number of training examples. In formula:

J(θ) =
m
∑

i=1

L(xi, yi, θ)

m
(2.1)

First the loss gradient is computed with respect to weight:

∇θJ(θ) =
m
∑

i=1

∇θL(x
i, yi, θ)

m
(2.2)

then the weights are updated:

θ ← θ − η∇θJ(θ) (2.3)

where the η is the learning rate. But using all the training set the algorithm becomes too
slow, so typically a part of the samples n < m is used:

g = ∇θJ(θ) =
n

∑

i=1

∇θL(x
i, yi, θ)

n
(2.4)

θ ← θ − ηg (2.5)

These last two methods are respectivelly called Gradient Discend (GD) and Stochastic
Gradient Discent (SGD) and they are the keystones on which BEM works. Although the SGD
aims to reach that the minimum of the loss function, in the most of the cases the parameter
landascape is just locally convex :

Figure 2.7: Non convex parameters landscape

So in order to avoid that a local minimum is reached and trapped the loss descent, some
advance optimizers are developed: AdaGrad,SGDNesterov,AdaDelta,RMSProp and Adam3.

3 https://elearning.dei.unipd.it/pluginőle.php/627867/modresource/content/1/NNDL06AdvancedOptimzation.pdf
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Figure 2.8: Optimizers performance on MNIST dataset

As shown above, Adam has the better performance then the others and it has also a very
poor training cost. In formulae Adam could be express as:

mt = β1mt−1 + (1− β1)gt (2.6)

vt = β2vt−1 + (1− β2)g
2

t (2.7)

m̂t =
mt

1− βt
1

(2.8)

v̂t =
vt

1− βt
2

(2.9)

wt = wt−1 − η
m̂t√
v̂t + ϵ

(2.10)

where gt and g2t are the őrst and the second moments of the gradients, m̂t and v̂t are the
correct estimates (unbiased) of mt and vt instead ϵ,β1 and β2 are useful parameters to
properly deőne the method .

As well as decreasing the error and reach the loss function global minimum, it’s also important
to set the best possible model conőguration tuning the so called hyperparameters.
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2.4.2 What are the CNN hyperparameters and how tune them

By hyperparameter it generally meant a variable that is determined by the user and is therefore
not intrinsically predetermined by the layer or by the model itself.
There are several types of hyperparameters, for example:

• loss function : the function to be minimized during the model training phase.

Loss function name Formula Explanation

Multi-Class Cross Entropy −
∑M

c=1 yo,clog(po,c)

• M = number of the

classes.

• y = binary indicator (0

or 1) if class label c is

the correct

classiőcation for

observation o .

• p = predicted probabil-

ity observation o is of

class c .

Binary Cross Entropy −ylog(p) + (y−1)log(1−p) as above but M = 2

RMSE

√

∑m
c=1

(h(xi)−yi)2
m

• m = number of samples.

• xi = i-th sample from

dataset.

• h(xi) = prediction for i-

th sample (thesis).

• yi = ground truth label

for i-th sample.

MSE
∑m

c=1
(ŷi−yi)2
m

as RMSE but h(xi)→ ŷi

Table 2.2: Examples loss functions

• n°epochs : how many times the model has to train on the entire dataset.

• batch size : how many inputs the model receives at a time.

• learning rate : is a parameter of the optimizer that establishes the step used
at each iteration to settle the weights to achieve the global/local
minimum of the loss function.

• őlter size : the size of the kernel’s őlters which in turn convolution on the input4.

4 https://www.jefkine.com/general/2016/09/05/backpropagation-in-convolutional-neural-networks/
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Figure 2.9: Kernel’s őlters convolution on the input

• n°őlters : the number of őlters to use.

• stride : how much the őlter shifts to the input.

Figure 2.10: Stride

• padding : how to hem the input if the őlter, moving on it, goes beyond the boundary.

Figure 2.11: the new array has a frame made of zeros
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• activation function : the function to apply to the layer before computing the őnal
output.

Activation function name Formula Plot

Rectiőed linear unit (ReLU) max(0,x)

Hyperbolic tangent (tanh)
ex−e−x
ex+e−x

Logistic, sigmoid or soft step
1

1+e−x

Identity x

Table 2.3: Examples of activation functions
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2.4.3 K-fold cross validation

A useful technique to conőgure these or other hyperparameters is certainly the k-fold cross
validation. It consists of:

1. Fix a certain set of hyperparameters5 that the user wants to evaluate with a given model
architecture.

2. Choose a combination of hyperparameters.

3. Divide the training set into k-parts and one of these is deőned as validation set while the
remaining k-1 as actual training.

4. The model is trained on the k-1 parts and tested on the k-th.

5. At the end of the last epoch, points 1-4 are repeated until each part has been used as a
validation set and the remaining one as training.

6. An average accuracy value is attributed to the just tested combination and the procedure
restarts from point 2.

Finally, within the initial set, the combination that has reached the highest accuracy value is
chosen and the model is calibrated accordingly.

Figure 2.12: Example of k-fold cross validation

5 Among them there can be one or more layers that can be added or removed
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2.4.4 Architecture implemented

Using tensorŕow library, an architecture based on three convolutional layers ( CL ) was built
and each layer is followed by a maxpooling layer useful for optimizing the recognition of
features and speeding up the training6.

In particular 128, 256 and 512 are the number of the őlters used for each CL respectively.
Each őlter size both in convolutional layer and max pooling one is 2 × 2 with unitary stride
and no-padding. The activation function used by the CL is the ReLU cause of the
non-saturation of its gradient, which greatly accelerates the convergence of SGD compared to
the sigmoid / tanh functions [21].

These 6 layers are followed by another one which aim is to ŕatten the various arrays obtained
in the three previous convolutions and make them suitable for classiőcation.
The layer chosen (also by 3-fold cross-validation) is the GlobalAveragePooling2D (Gap) as it
guarantees less information loss when passing from the matrix to the vector form7.
Connected to this architecture there is a FCN with 4 output which has the purpose of
classifying the input provided.

For this last layer the activation function is softmax : σ(z)i =
ezi

∑K
j=1

e
zj

where z is a vector of k

real numbers ( a sort of sigmoid genearalization ) to give the probabilities for each class label.
Finally, the loss function used is sparse categorical cross-entropy ( similar to multi-class cross
entropy ) because the classes are mutually exclusive.

Figure 2.13: Architecture implemented and the training
parameters for each layer involved.

6 https://www.geeksforgeeks.org/cnn-introduction-to-pooling-layer/
7 https://tree.rocks/get-heatmap-from-cnn-convolution-neural-network-aka-grad-cam-222e08f57a34
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To őnd the best possible conőguration, three hyperparameters were tested: the learning rate
η ( related to the ADAM optimizer), Gap or Flatten layer ( True or False in the next table )
and the batch size.
Dividing the training set into 3 fold, cross-validation is used to test some combination of these
3 hyperparameters. The results are synthesized in the following table:

Gap η batch size mean accuracy mean epoch
True 10−4 32 0.860604 97
True 10−4 64 0.840338 98
True 10−4 256 0.766205 95
True 5× 10−4 32 0.857468 92
True 5× 10−4 64 0.863877 86
True 5× 10−4 256 0.865406 96
True 10−3 32 0.783977 77
True 10−3 64 0.835077 96
True 10−3 256 0.840675 94
True 5× 10−3 32 0.251659 17
True 5× 10−3 64 0.255330 3
True 5× 10−3 256 0.325945 10
True 10−2 32 0.251659 3
True 10−2 64 0.252898 2
True 10−2 256 0.261448 1
False 10−4 32 0.861185 88
False 10−4 64 0.859899 99
False 10−4 256 0.823663 99
False 5× 10−4 32 0.805280 39
False 5× 10−4 64 0.837809 55
False 5× 10−4 256 0.863000 73
False 10−3 32 0.660035 32
False 10−3 64 0.759891 20
False 10−3 256 0.830850 98
False 5× 10−3 32 0.253953 4
False 5× 10−3 64 0.270595 2
False 5× 10−3 256 0.285574 1
False 10−2 32 0.253953 1
False 10−2 64 0.253877 3
False 10−2 256 0.361374 94

Table 2.4: Cross validation results with mean number of epochs
needed to achieve accuracy result

Below are the graphs related to accuracy and loss about the best conőguration achieved:
Gap = True, lr = 5× 10−4 and batch size = 256.
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Figure 2.14: Accuracy trend (left panel) and Loss trend (right panel)
for the CNN model as learning progresses.

Looking at the graphs above, it could be claimed that the model is learning : epoch by epoch
the loss continuously drops and the accuracy increases.
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Chapter 3

Results

By testing the architecture in őgure 2.13 on the random test, it was obtained a result of
approximately 88% of accuracy captured by the confusion matrix ( CM ) : each row of the
matrix represents the instances in an actual class while each column represents the instances
in a predicted class.

Figure 3.1: Confusion matrix for random test

However, if this new architecture is tested once again on new patients (in this case the last
two) there is a lowering of performance up to 28%, that is, a little higher than pure chance.
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Figure 3.2: last two patients confusion matrix

As shown above, the last two CMs are quite different from each other: looking at the left one,
a sort of slight decrease along the őrst diagonal should be noticed, but, on the contrary, on
the right side it seems that only the third category is interested by the classiőcation.
In both cases, it should be concluded that classiőcation is strongly dependent on the EEG of
the patient and could be a sign of overőtting of the model.

For completeness, the heatmaps relating to the last convolutional layer are also added to show
how the spectrum is analysed in order to extract the features from the spectrogram images.

Figure 3.3: Heatmaps on spectrogram
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Chapter 4

Conclusions and future works

Using the EEG of epileptic patients,an attempt was made to build a predictive model with
the aim of identifying the temporal distance that separates the subject from a new epileptic
seizure.
Although at őrst the results were encouraging ( 88 % accuracy in the random test ) it must
be concluded that despite the attempts made, it was not possible ( at least for the time
being) to achieve a learning threshold that goes far beyond pure chance ( approximately 28 %
in new subjects ).

Perhaps, as highlighted by the last two CMs, the model is too trained on already seen
patterns and is not able to generalize learn to new patients. In other words the model is
affected by overőtting and a possible reason could be the few ES available for some
patient ( like Bal Urb ) that imbalance too much the models weight. Moreover, some
limitations of this research can be identiőed that probably affected the őnal results:

1. On the starting datasets it’s not known which seizures have been recorded.

Without knowing the type of epileptic seizures of the patients, it is difficult to train a model
that aims to predict new epileptic seizures: their origin is probably different from those on
which the model is trained.
Segmenting each EEG into short time period like 5 s was an attempt to overcome this issue:
the idea to get more data from each TRC őle points to balance the lack of real ES patterns
with more cut time series,hoping to extract some general valid features .
Of course a real solution could be the acquisition of a larger number of patients, which would
reduce the risk of excessive ’specialization’ of training only on certain types of seizure.

2. The number and type of channels used during data recordings varies too much from patient
to patient.

As already mentioned in the preprocessing section, the fact that several patients had up to
hundreds of channels and others far fewer did not facilitate the prediction task: having the
same number and the same electrodes were maintained for all subjects, probably the
extraction of features and therefore the learning would have been deeper.
Actually it’s not enough to choose a quite homogenous data included all the TRC őles with a
n of channels belong into a short range like 24-35.
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3. EEG channels follow the same preprocessing as the no EEG ones.

Both the EEG and no-EEG channels fall into the 24-35 range used during the analysis, but
they actually followed the same pipeline as if they were of the same type. These happened for
practical reasons because no speciőc channel list is available beforehand, and so it would be
necessary to check, for each TRC, if each channel belongs to EEG class, ECG class, EMG
class, etc. Moreover, using only the EEG channels should be difficult to gain much information
because they are few. For sure, a detailed preprocessing of channel type could improve CNN
performance, maybe adding a speciőc weight to one channel class than to the other.

4. Code efficiency and more computational power.

Having to manage a large amount of data ( ∝ 104 three-dimensional arrays of size equal to
[62, 39, 35] ) a better management of the remote pc resources, made available for the project,
it would certainly have allowed a greater number of attempts and therefore better results
could have been obtained. Of course, seeing that each training takes a lot of time, using more
powerful machine or more computers could be another way to explore a more advanced deep
learning architecture.
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