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Sommario

La teoria dell’Integrazione dell’Informazione di N. H. Anderson presenta dif-

ferenti modelli cognitivi di integrazione delle informazioni, siano esse percet-

tive, psicofisiche, come pure attributive o di giudizio.

L’algebra cognitiva rappresenta lo strumento teorico capace di esprimere i

differenti processi cognitivi di integrazione attraverso una rappresentazione

matematica. L’espressione algebrica di tale processi permette di verificare

la bontà dei differenti modelli. Anderson individua tra i principali processi

integrativi quelli additivi, moltiplicativi e di media ponderata, esprimendoli

con adeguate formulazioni algebriche (cap. 1).

Particolare attenzione viene dedicata a quest’ultimo processo cognitivo, al-

gebricamente non lineare, che esprime i processi cognitivi di integrazione

tramite la coppia di parametri Importanza × Valore (cap. 2).

Nel testo vengono indicati differenti approcci metodologici che permettono

di verificare la capacità dei modelli di spiegare validamente i dati. Inoltre

viene introdotto il principio metodologico della semplicità, espresso tramite

un approccio bayesiano, al fine di formulare ed implementare un algoritmo

capace di selezionare il modello ottimale tra i diversi modelli concorrenti.

(cap. 3).

I dati provenienti da due differenti esperimenti, uno di psicofisica, inerente

la fisica ingenua, l’altro legato ai giudizi di fiducia, vengono utilizzati per
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esemplificare la metodologia precedentemente indicata, utilizzando la fun-

zione R-AVERAGE appositamente scritta in R (cap. 4). Infine vengono

presentati i risultati di un preliminare confronto tra i differenti algoritmi di

stima dei pesi e dei valori per il modello “averaging”.
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Introduction

The integration of the elements of a complex source is a general question

which crosses the domains of science. Actually, the general framework of the

Information Integration Theory (IIT) is developed only in the single domains

of science.

In neuroscience, Tononi (2004) proposes the IIT of consciousness, which

is defined as the capacity of a system to integrate information. This theory

claims that the informational relationships among the elements of a complex

determine the quality of consciousness. These relationships are specified by

the values of effective information among them. This theory accounts for

several neurobiological observations concerning consciousness.

In computational and information sciences, IIT provides some uniform query

interfaces to heterogeneous information sources; it is based on the algebraic

theory of incomplete information (Arens, Knoblock, & Shen, 1996; Ullman,

2000; Grahne & Kiricenko, 2004). This theory postulates a global schema

which provides a unifying data model for all the information sources.

In psychology, it is difficult to find a general integration theory, due to the

micro-theories which characterise the contemporary psychology (Noble &

Shanteau, 1999).
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Anderson (1981, 1982) lays out his theory of information integration in

cognitive psychology. His approach covers a large variety of psychological

fields, such as psychophysics, memory, cognitive development, social devel-

opment, and language processing. The keys to IIT can be found in the

functional perspective, cognitive algebra, and functional measurement the-

ory.

Functional perspective is based on the purposefulness of thought and ac-

tion, which are conceptualised in terms of their functions in a goal-directed

behaviour and can be captured by a value. The measurement of the value is

necessary to determine the goal objective.

Anderson develops the cognitive algebra which connects the internal, subjec-

tive variables to the overt stimuli and behaviours. He suggests that, whether

the internal variables are integrated by some algebraic rules, the pattern of

responses can be used to diagnose the form of those rules. In fact, analysing

the data graphs, there are distinct patterns which imply one of three general

algebraic rules. A pattern of parallelism implies the use of addition rules,

a linear fan pattern implies the use of multiplicative rules, and a crossover

pattern implies the use of an averaging rule.

Chapter 1 and 2 provide an introduction to the just mentioned basic ratio-

nale of IIT and to its derived scaling methodology, that is the functional

measurement.

Two general problems in cognitive algebra are dealt with in chapter 3.

One is a problem of model diagnosis, that it to distinguish among the integra-

tion rules (Singh & Bhargava, 1986). The adding, averaging and multiplying

models can similarly account for the response variability, but not with the
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same efficiency. A first approach to the model selection is qualitative, observ-

ing the factorial graph. More evidences can be provided by suitable factorial

designs and by formal statistical analyses. The analysis of variance may sug-

gest the integration rule. But only a theoretical framework for the model

selection, as the Bayesian approach, can supply some operative criteria to

solve the model uncertainty. The Bayesian methodological approach pro-

vides the capability to select the optimal model.

A second problem is specifically concerned with the numerically estimation

and comparison of the parameters for the averaging model, which is inher-

ently non-linear (Zalinski, 1987). Different procedures are presented and a

new one, the R-AVERAGE function, is implemented. This algorithm allows

to compare the progressive and to validate the assumptions which charac-

terise the averaging model.

In chapter 4 two different areas of study are chosen to examine and to

evaluate solutions to the problems outlined above. These experiments aim

at showing the functional measurement methodology applied to assess the

physical knowledge and personal judgements. The suitable methodology al-

lows for the model selection of designs with two and more factors.

Lastly, we carry out a comparison between two different algorithms which

allow to estimate the weight and value parameters for the averaging model.

Key-words Information Integration Theory, Cognitive Algebra, Bayesian

Model Selection, R project.
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Chapter 1

Information integration theory

The theory of information integration, originally proposed by Anderson (1962a,

1974a, 1974b, 1974c), aims to develop a unified, general theory of everyday

cognition. It deals with two issues: multiple determination and personal

value. Within the cognitive psychology, integration theory answers to these

two requests in the form of algebraic integration schemas. These schemas

provide the capability to measure any personal value.

1.1 Unified theory

The theory of information integration represents a unified, general theory. In

the last forty years, its generality appeared in different psychological areas,

covering psychophysics, functional memory, language processing, cognitive

development, judgement decision, moral judgement and social cognition. Its

unity appeared in the applicability of the same concepts and methods in all

these domains (Anderson, 1981, 1982).

Two axioms underlie the theory: purposiveness and integration.

• Purposiveness may be considered an axiom of psychology, since thought
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and action are basically goal oriented. Psychology requires a func-

tional perspective which conceptualises any biological and social goals

in terms of purposiveness. This last one requires a one-dimensional

representation of thought and action, manifested in the approach-and-

avoidance values. Turning value into a scientific working key, implies

a theory of measurement for psychological values. Such a functional

measurement theory was developed with the cognitive algebra.

• Integration explains that perception, thought and action depend on

multiple determinants. They operate always, in any biological or social

interaction. Each of them is assessed by a value, positive or negative,

with reference to the goal. These multiple values are then integrated

to obtain an overall net value, which governs goal-directed action.

Information integration theory has been developed to offer a solution to the

two axioms, measuring the values of separate stimuli on true psychological

scales and finding the law which governs the integration of these separate

values (Anderson, 1996, 2001b, 2004).

Integration theory is based on four interlocking concepts: stimulus inte-

gration, stimulus valuation, cognitive algebra, functional measurement.

Valuation The chain of processing which transforms the physical stimulus

into its psychological counterpart is represented by the valuation operation.

Valuation refers to the processes which extract the information from observ-

able physical stimuli, which can be potentially controlled in experimental

studies. The task instructions set some dimensions of judgement. That is,

each stimulus is assessed by some values. This value may be an immediate

sensory effect, as for example a sound, or a semantic inference, as a word.

These scale values are not enough. A concept of weight is also necessary
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for many integration tasks. The weight represents the relative salience or

importance of each stimulus in the whole response. So, a representation of

the stimulus requires two parameters, that is weight and value.

Integration theory is primarily concerned with stimuli at the psychological

level, because they are the immediate causes of thought and behaviour. In

general, the weight and value representation depends very sensitively on the

prevailing dimension of judgement and also on the momentary motivational

state of the organism. The concept of valuation takes account of the funda-

mental importance of representing individual differences within the theory.

Integration Integration theory is concerned with the study of stimulus

integration, studying how they are combined, and analysing the effective

stimuli. Virtually, every thought and behaviour is multiply caused, it is the

result of numerous co-acting factors, and the joint action of multiple stimuli.

Single causes are seldom sufficient to understand or predict. In everyday life,

the multiple causation is the rule.

Multiple causation may be examined from two related points of view: syn-

thesis and analysis. Synthesis studies the response to a complex stimulus

field, perceptual as well as social. It corresponds to the integration function

that represents how the effective stimuli combine to produce the response.

Analysis is inverse to synthesis, and tries to dissect a given response into its

causal components.

When several factors are involved, each of them pushing in its own directions,

their combined effect is not generally predictable without the aid of quanti-

tative analysis, generally in terms of psychological values of the individual.

Without such quantitative capability, many basic problems of multiple cau-

sation can hardly be touched.
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Functional measurement contributes to the analysis since it dissects the ob-

served response into its functional components. The efficacy of this approach

is connected to the fact that stimulus integration often obeys algebraic mod-

els. These ones are sufficiently common to indicate the existence of a general

cognitive algebra of multiple causation.

Cognitive algebra Writers as far back as Aristotle, in his Nicomachean

Ethics, conjectured that human judgement obeys algebraic rules in various

situations. But these ones remained conjectures; they could not be tested

without psychological measurement.

The measurement problem was solved with the methodology of functional

measurement. The essential idea of functional measurement is to establish

the algebraic rule as a simultaneous solution for all the unobservable factors.

The algebraic integration rules provide metric variables and structures for

the measurement of those variables (Anderson, 1962a; Anderson & Zalinski,

1990).

Functional measurement diagram Figure 1.1 shows how valuation, in-

tegration and cognitive algebra are interlocked in a joint solution. Physical

S1
// s1

S2
// s2 // r // R

S3
// s3

Valutation Integration Response

V-function I-function M-function
Psychophysical Law Psychological Law Psychomotor Law

Figure 1.1: Functional measurement diagram. Chain of three linked functions go
from observable stimulus field to observable response. The valuation function maps physical stimuli into
subjective counterparts. The integration function maps the subjective stimulus field into an implicit
response. The response function maps the implicit response into an observable response.

stimuli, S, have an impact on the organism and are processed by the valua-
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tion function V into their psychological values, s. These psychological stimuli

are combined by the integration function, I, into an implicit response, r. This

one is externalised by the response function, M , to become the observable

response R. The path from the observable stimulus, S, to the observable

response, R, is represented by three linked functions. These are:

Valuation function: V(S) = s;

Integration function: I(s) = r;

Response function: M(r) = R.

The observable stimuli and response are denoted by the uppercase letters, S

and R, whereas the lowercase ones, s and r, are used to indicate their unob-

servable, subjective counterparts. As a solution to the problem of measuring

the psychological values of the stimuli, the functional measurement proposes

to measure the psychological value of the response and to determine the

psychological law or integration function, I (Anderson, 1990a).

Functional measurement Functional measurement provides a unifica-

tion of ideas and methods which constitutes a general theory of psycholog-

ical measurement. The fundamental element is the integration function, I.

Its mathematical form carries implicit scales of stimulus and response vari-

ables. This functional form provides the structural frame of the scale and its

validational base. The term “functional measurement” derives from this fun-

damental property of the integration function. That is, the stimulus values

are those that are functional in the thoughts and behaviours under study.

Implicit in the notion of cognitive algebra is a numeric representation of the

stimuli. Say that two stimuli are averaged or multiplied seems to presuppose

numerical values. Accordingly, the study of any algebraic rule is integrally

bound up with the measurement of psychological values.
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The guiding principle of functional measurement is that measurement scales

derive from the substantive theory. “The logic of the present scaling tech-

nique consists in using the postulated behaviour laws to induce a scaling on

the dependent variable” (Anderson, 1962b, p. 410). In terms of the diagram

of Figure 1.1, behaviour law corresponds to the psychological law or integra-

tion function, I. Dependent variables refer to the overt response, R, which

is transformed into a linear scale; that is, a linear function of the underlying

response, r.

A key problem is the development of procedures that could ensure a valid

linear response scale. A general theory of measurement must be able to work

with monotone (ordinal) response scales. Observed response measures, in

general, will not be linear, but they will often be monotone functions of the

underlying response variable. Since the observed response is a monotone

scale, some monotone transformation will make it a linear scale. If the inte-

gration function is valid, then the desired transformation can be computed

because it is the one that makes the data fit the function form.

Since the integration function depends on two or more variables, it allows

the determination of the monotone transformation and still leaves degrees of

freedom to test whether the transformed data fit the function. If the postu-

lated integration function is not valid, then the data will not in general pass

this test. This test of goodness of fit is essential; it provides the validational

criterion of the integration function and of the derived scales. Only if alge-

braic models of stimulus integration are empirically valid this approach can

have a meaningful value.

Many technical problems arise in implementing monotone analysis. These

problems can be greatly simplified if the observed response scale can be lin-
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earized by experimental procedures rather than by statistical computation.

That is why numerical response scales have been emphasised in the experi-

mental work.

1.2 Judgement decision in multi-attribute eval-

uation

The trade-off is a characteristic of choice and judgement decisions, both in

everyday life and in the major social and economic decisions. Political com-

promise itself is a form of trade-off.

It is possible to deal with the complexity of the choice among several alterna-

tives with a simple solution: by representing each alternative with its values

for each of the several attributes, or dimensions, such as price or quality, and

by weighting each value with the importance of the corresponding attribute.

The complexity of the valuation is reduced by dealing with one attribute at a

time. The complexity of the integration of these values is reduced by apply-

ing a mechanical formula, called the weighted sum of values. Choosing the

best alternative becomes merely choosing the highest weighted sum. This

seemingly effective technique is called multi-attribute evaluation (Edwards

& Newman, 1982). Multiattribute evaluation is an optimal rule, providing a

powerful tool for decision analysis.

Beyond its simplicity, multi-attribute analysis presents a fundamental dif-

ficulty concerning the measurement. The application of the multi-attribute

formula depends critically on the measurement of weights and values. Unless

these are valid measures, the choice prescribed by the formula may be far

from optimal. In fact, the multiattribute formula requires strong measure-
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ment assumptions, which can be easily violated. Values and weights must

be on linear scales, and the weights have a known zero. Even more stringent

is the assumption of the common unit for these scales, which is essential to

add up the attribute values. There may be violations of these measurement

assumptions, so that the multiattribute formula can erroneously assign the

highest value to a less preferred alternative (Oral & Kettani, 1989; Pöyhönen

& Hämäläinen, 2001).

Most of the applications involve subjective values, which lie outside any

normative multiattribute framework. Disordinality may result from mea-

surement biases. Multiattribute analysis aims to put the best alternative in

first place. Unless the measured values and weights are veridical, the multi-

attribute formula may be incorrect, putting a less desirable alternative in

first place.

The resolution of the measurement issue requires the development of a self-

estimation methodology, in which judges estimate directly the weights and

values of several separate attributes. Therefore, in order to avoid measure-

ment biases, it is required a theory of psychological measurement (Anderson,

1996, cap. 13).

The approach of integration information theory approach seeks to determine

the cognitive integration operators. These operators provide the base and

frame for the measurement of values and weights. The measurement is basi-

cally cognitive, even in multiattribute analysis; values are, in fact, typically

personal and subjective.

A primary problem in the measurement of values is to obtain a linear

scale in which the observed values are a linear function of the underlying
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preferences. Another problem is that weights are confounded with the unit

of the value scale, and so are not generally identifiable. The multiattribute

formula has a further requirement: different attributes must be measured in

a common currency. The common unit requirement stems from the reliance

on separate measures of weight and value, essential in judgement decision or

multiattribute analysis. The functional measurement methodology seems to

provide linear equal-interval scales that are needed for multiattribute analy-

sis (Anderson & Zalinski, 1990).

The rating method can provide linear measures of values, where the ob-

servable response, R, is a linear function of the unobservable, r. The rating

method has provided an efficient solution to the problem of fundamental mea-

surement of subjective, psychological variables. Only few simple precautions,

mainly end-anchors and preliminary practice (Anderson, 1982, sect. 6.2) are

needed to avoid certain biases, setting up a stable frame of reference, where

ratings are as a true linear scale.

The self-estimation methodology can be put on a solid foundation with

functional measurement. The functional measures constitute a validity cri-

terion for the self-estimated measures. With a validity criterion, current

methods of self-estimation can be improved or discarded. If it is used an ap-

propriate factorial design, it would be obtained the overall integrated judge-

ment of each combination of the stimulus attributes, and the self-estimates

of the weight-value parameters of each separate attribute.

Functional measurement can provide separate measure of individual attributes

as well as valid scales of weights and values of the stimulus variables. This

provides a validational criterion for improving the method of self-estimation,
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especially in the fields in which no simple algebraic rule applies.

1.3 Integration models

Many works showed that psychophysics, judgement-decision theory, learning-

motivation, social-cognition and developmental psychology often follow sim-

ple algebraic models (Anderson & Cuneo, 1978a; Anderson, 1989). In many

different areas of psychology, the human organism frequently appears to aver-

age, sum or multiply the stimulus information in order to arrive at a response.

There is a psychophysical law which connects psychological sensation to the

physical stimulus, providing a practicable method for simultaneous measure-

ment of the subjective probability and utility. Various studies in psycholin-

guists, person perception and decision theory also found use for algebraic

models. These algebraic rules are generically defined cognitive algebra (An-

derson & Cuneo, 1978a).

This theme is illustrated by the parallelism theorem, according to which an

addition rule will produce in the factorial plot a pattern of parallelism, and

by the linear fan theorem, which says that a multiplication rule will produce

a linear fan pattern (Anderson, 1981).

1.3.1 Parallelism theorem

Addition can be conceptualised as a stepwise movement along a response

continuum. At each successive step, the last response is adjusted moving

sideways an amount equal to the value of the present stimulus, positive or

negative. This integration process requires a minimal cognitive capacity. The

addition rule needs that the value of any stimulus is independent from the

amount of the prior information (Anderson, 1996, pp. 65–66).
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The essential idea of the parallelism analysis is simple. It is possible to

test the hypothesis that two or more stimulus variables add together to yield

the observed response. If the hypothesis is true, manipulating the stimulus

variables in a factorial design, the factorial plot of the response data will

exhibit a pattern of parallelism, sign of an adding-type operation.

Given two physical stimuli denoted by SAi and SBj, it is possible to indicate

with sAi and sBj the subjective values of the physical stimuli. The exper-

imental conditions are pairs of physical stimuli, (SAi, SBj). In the adding

model, the subject’s implicit response is assumed to be a sum of the subjec-

tive values of the given stimuli. The implicit value of the overt response is

denoted by rij. So, the adding model may be written as

rij = sAi + sBj (1.1)

and the observable response, Rij is on a linear equal-interval scale, so that

Rij = c0 + c1rij (1.2)

where c0 and c1 are zero and unit constants. In terms of the functional mea-

surement diagram of figure 1.1, the essential assumption is that integration

function, I, is additive. Thus, the model assumes additivity at the subjective

level.

If the adding model of equation 1.1 is true, and if the observable response

is a linear equal-interval scale, then the factorial data plot will form a set of

parallel curves with no interaction. Moreover, the row means of the factorial

design will be estimate as the subjective values of the row stimuli on vali-

dated equal-interval scales and the same for the column means (Anderson,

1981, p. 15). Algebraically, the entries in every row have a constant differ-
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ence in every column. Geometrically, means from every row of data will plot

as parallel curves, as shown in figure 1.2.
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Figure 1.2: Parallelism theorem.
Hypothetical data illustrate parallelism analy-
sis. The three curves represent attractiveness
as a function of price for different levels of qual-
ity. The parallelism in the graph shows an ad-
dition schema.

The parallelism theorem provides a remarkably simple and precise way

to test the model. If either assumption is incorrect, then the parallelism will

not in general be obtained. There is, of course, a logical possibility that

non linearity in the response scale balances non additivity in the integration

rule to yield net parallelism. However, the observed parallelism supports the

adding model (equation 1.1), the linearity of the response scale (equation

1.2), providing linear scales of the stimulus variables.

The analysis of variance provides exact tests of goodness of fit. If all vari-

ables are integrated by adding-type operations, then interactions are zero in

principle and are expected to be non significant in practice.

Within functional measurement theory, both measurement problems, of

response and of stimulus, are treated as organic components of the substan-

tive rule of stimulus integration. Similar analyses are supported by algebraic

rules. Mathematically, the parallelism theorem is elementary. The most

difficult part is to establish it empirically. The fact is that deviations from
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parallelism are not infrequent; most of these deviations derives from the ubiq-

uitous averaging process, which yields the non-parallelism with differential

weighting. Many works showed the operation of a general cognitive algebra

of judgement-decision.

1.3.2 Linear fan theorem

Multiplication rules seem natural in many areas of psychology: the moti-

vation seems to act as an energiser of ability in the determination of the

performance; the expectancy of success appears to act as a proportionality

coefficient on the value of the goal; language quantifiers, such as “very”,

seem to operate as multipliers. Multiplication can be performed as a frac-

tional process. In order to judge expected value of a single probabilistic

outcome, the outcome is located on the response continuum according to its

full value. The probability fractionate this location.

Interesting complications appear in “as-if” multiplication, when linear fan

patterns can appear without any kind of multiplication.

A multiplication formula implicitly suggests that its terms correspond to

cognitive entities. The analysis of cognitive units requires the study of in-

tegration processes. The study of cognitive algebra, accordingly, requires

methods for testing and analysing multiplication rules (Anderson, 1996, pp.

66–67).

A multiplying rule of stimulus integration can be diagnosed by a linear fan

pattern. Suppose that a multiplying model holds, so that

rij = sAi × sBj (1.3)

and the observed response, Rij is on a linear equal-interval scale, so that

Rij = c0 + c1rij (1.4)
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Then the appropriate factorial graph will form a fan of straight lines, as

shown in figure 1.3. The factorial graph requires that the column stimuli be

spaced on the horizontal axis according to their subjective values. Thus, the

linear fan pattern will only be obtained if the factorial graph is constructed

appropriately. Moreover the row means of the factorial design will be esti-

mate the subjective values of the row stimuli on linear scales, and similarly

for the column means.

●

●

●

●

●

●

●

●

●

●

●

●

Incentive

A
m

ou
nt

 p
ai

d

Warm water Cold water Beer Coke

20
30

40
50

60
70

Thirstiness
Warm water
Cold water
Beer
Coke

Figure 1.3: Linear fan theorem.
Hypothetical data illustrate multiplying analysis.
The three curves represent amount paid for each
drink under different levels of motivation and in-
centive. The linear fan in the graph shows multi-
plying schema.

By the same logic as the parallelism theorem, an observed linear fan

support both assumptions of the theorem. This supports the multiplying

model (equation 1.3), the linearity of the response measure (equation 1.4),

providing linear scales of the subjective stimulus variables.

The graphical test will need a supplemental statistical test, as suggest also

by Masin (2004). The linear regression analysis can provide this capability.

The regular Row× Column interaction term is split into two components: the

linear × linear and the residual. The linear × linear component represents

the linear fan pattern; the residual represents a deviation from the linear

fan. A complete test requires a significant linear × linear component and a
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non significant residual. Details are given in Anderson (2001b, pp. 259–279,

485–505).

1.3.3 Paradoxical non-additivity

A positive experience may actually decrease the net affective state; in many

personal and social schema, adding positive information can have negative

effects, as shown recently by Girard, Mullet, and Callahan (2002) and by

Falconi and Mullet (2003). This paradoxical finding casts doubt on any kind

of adding or multiplying rule. It seems to raise doubt about any simple linear

rule of integration.

Thought and action were found to obey an averaging rule in many tasks in

which the addition rule and the multiplying rule have failed. The same pos-

itive informer could have incremental or decremental effects, depending on

what the other informer was integrated with.

According to Anderson (1990a), in virtually every domain of psychology

there is a cross-over curve that rules out the adding or the multiplying model.

In the adding model, adding an item of positive value should increase the

overall judgement regardless of the original information. That is, R2 =

w1s1 + w2s2, is always greater than R1 = w1s1 if w2s2 is positive (where

Rn is the overall judgement based on n pieces of information, si, i = 1 to n,

and the slope of R2 as a function of s1 is always w1, the same as the slope of

R1). Hence, R2(s1) is always parallel to R1(s1) for any given value of s2.

When parallelism is obtained, the interpretation is reasonably straightfor-

ward. When parallelism is not obtained, the interpretation is difficult. The

deviation from parallelism could have been produced by non-linear biases in

the response, by non-linearity in the integration operation, or by violations
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of the independence assumption of no stimulus interaction.

“No general rule can be given for the interpretation of deviations from par-

allelism” (Anderson, 1981, p. 21). Empirical contributes and integration

experiments from psychophysic, psycholinguist, developmental psychology,

comparison processes, and social schema report non-parallel observed pat-

tern. The presence of the interaction, as shown in figure 1.4, rules out the

strict adding model.
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Figure 1.4: Crossover interaction.
Typical pattern of crossover interaction re-
ported in studies supporting the averaging
model.

In 1965 Anderson started off with a more general model than equation

1.2, predicting the parallelism as well as the crossover interaction; this could

be written as

Rij = c0 + wAisAi + wBjsBj (1.5)

where wAi and wBj are the weights or importance parameters. This model

is capable to predict that R2(s1) and R1(s1) may not be always parallel. As

shown in chapter 2, the crossover interaction requires the consideration of an

essentially new rule of integration, given by the averaging model.
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1.3.4 Generalised algebraic models

The adding and multiplying models are easily generalised in order to allow

more stimulus variables and also to let both adding and multiplying oper-

ations within one model. These models may be studied experimentally by

treating each stimulus variable as a design factor.

In a multi-factor adding model the parallelism theorem, denoted by equation

1.2, may be applied directly to each and every pair of factors. Each two-way

factorial graph should be a set of parallel curves. Treating each serial posi-

tion as a design factor, the model analysis can dissect the response into its

separate serial components.

In a similar way, linear fan analysis, expressed by equation 1.4, can be gen-

eralised to handle more factors. Each and every pair of factors in a multi-

factor multiplying model should exhibit the linear fan pattern. Three factor

multiplying models arise occasionally, but no four factor multiplying model

is known. There is some evidence that subjects may simplify even a three-

factor model by adding rather than multiplying (Shanteau & Anderson, 1969,

1972; Klitzner & Anderson, 1977).

Many integration tasks, especially in judgement decision, involve both

adding and multiplying operations. Analysis of such compound models is

effortless. Linear fan analysis applies to two or more factors separated by a

multiplication sign; parallelism analysis applies to two or more factors sepa-

rated by a plus sign. The corresponding interaction tests from the analysis of

variance are applicable, providing an useful tool to diagnose the underlying

integration operations (Anderson, 1981, pp. 70–72).

Cognitive algebra looks much clearer in hindsight because much of the
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uncertainty caused by non-parallelism may be cleared up. Parallelism has

a natural interpretation as a joint support for an additive integration and a

linear response. But non parallelism is ambiguous, since it could result from

non-linearity in the response or from non-additivity in the integration, or

from some uncertain combination of both together. In fact, non-parallelism

was frequently observed. Many tasks that were hypothesised to follow an

adding rule turned out to follow an averaging rule, which yields non paral-

lelism under the condition of differential weighting, as noted by Anderson

and Zalinski (1990).
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Chapter 2

The averaging model

An outcome of the work on cognitive algebra is the prevalence of averaging

processes. For example, the job satisfaction (Zhu & Anderson, 1991) as well

as the prediction of self-efficacy (Ouédraogo & Mullet, 2001) are not added,

but averaged; many tests disprove the adding rule and support the averaging

rule (Anderson & Zalinski, 1990). The averaging model of information inte-

gration theory represents the subject’s response to a multi stimulus situation

as a weighted average.

The averaging is involved in many simplest processes, for example in serial

integration. Averaging may be represented as a normalisation process. In

any situation or group, the sum of the weights may be viewed as a normal-

ising factor for several inputs (Zalinski & Anderson, 1989; Anderson, 1996).

As well as in equation 1.5, averaging essentially differs from addition be-

cause it involves a two parameters representation of each piece of information:

the scale value, s, which represents the location of the stimulus on the di-

mension of response; and the weight, w, which represent its importance in

the integrated response. This weight and value representation is crucially
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different from the additive step-wise integration.

Unlike the addition rule, the effect of each stimulus generally depends on the

amount of prior information; also, unlike the addition rule, the same stimulus

may have opposite effects, depending on whether its scale value is greater or

lesser than the present response.

The averaging model represents the integrated response, r, as:

r =
w0s0 +

∑
wisj

w0 +
∑
wi

(2.1)

that is a weighted sum of values, divided by the sum of the weights. The

weighted average is taken over all operative information. The division by

the sum of the absolute weights,
∑
wi, normalises every relative weight,

wi/
∑
wi, so that the sum of weights is the unity within each stimulus set.

Whether this sum is the unity,
∑
wi = 1, there is no difference between

the absolute weights and the relative ones. The independence assumption

applies to the absolute weights and to the scale values. However, the relative

weights, of any stimulus depend on the other stimuli in the set.

The initial state, which is represented by the parameters w0 and s0, or,

somewhere only by the parameter c0,

c0 =
w0s0

w0 +
∑
wi

which represents the prior memorial information. This is also called the prior

belief or initial state, which plays a vital role in averaging theory. The ini-

tial state enables the averaging model to take account of the set-size effect

in which added information of equal value can produce a more extreme re-

sponse. As a consequence of the initial state, the response to a single stimulus

is not in general a linear function of its scale value.
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From equation 2.1, the response to a single stimulus Si is the average of

that stimulus and the initial state. It implies that ri is not in general a linear

function of si. Finally, although c0 can be treated as a molar unit, it is not

a unitary entity; it may be a complex field of cognitive elements, where the

parameters w0 and s0 are the resultant of some integration operation over

the internal stimulus field (Anderson, 1981, pp. 62–64).

The sum in equation 2.1 is taken over all effective stimuli. These may be

discrete stimuli manipulated by the investigator in a factorial design, or dis-

criminable attributes of a unitary stimulus, as, for example, in personal or

social judgement. The sum may include the stimuli obtained from memory

as well as external stimuli presented by the investigator. That is, each piece

of information, although complex in structure, can be treated as a molar

unit.

In spite of the fact that cognitive tasks normally involve interrelated dimen-

sions, it seems unnecessary to assume independence among the pieces of

information. In fact, unlike the linear model, the averaging model has no

strong assumption about the independence of the factors. That is, the items

have not to be always statistically independent.

The items of information used to support the averaging model may be the

kinds of items that are likely to be mutually related in the minds of subjects,

for example, personality traits, characteristics of a product, hypothetical

person’s attitudes and likely behaviours, intentions and results (Yamagishi

& Hill, 1981, 1983).

Cognitive theory often requires the averaging model, but sometimes it

may be inappropriate to determine optimal decisions, especially when the

experimental design shows a lot of uninformative information. Here other
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models or criteria, as well as the Bayesian criteria, may be more predictive

(Anderson & Zalinski, 1990).

2.1 The concept of weight

The concept of “weight” provides an interesting illustration of the inductive

mode of scientific definition. The need for such a concept begins in com-

mon sense thinking, but the concept develops its proper definition and full

meaning only within a theoretical definition; its meaning emerges gradually

as part of the scientific process, so that the concept presents accumulating

knowledge.

Intuitively, the need for a concept of weight seems clear. It seems natural

and meaningful to ask, for example, whether negative information is more

important than positive information. Under closer scrutiny, however, the

concept of weight begins to blur into the concept of scale value. Negative

information might have greater effect than positive information merely be-

cause its scale value has greater magnitude, not because of any difference in

weight. That is, the concept of scale value might be enough, and a separate

concept of weight might be unnecessary and unjustified.

Putting the concept of weight on a solid basis, therefore, must be distin-

guished from the concept of scale value at a more operational level. This is

not entirely or even primarily an empirical problem, because it depends on

the theoretical model: for example, adding models may not allow an identi-

fiable distinction between weight and scale value.

For this reason, it has sometimes been argued that the concept of weight is

unidentifiable and ought to be merged into scale value (Schönemann, Caf-
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ferty, & Rotton, 1973). This argument seems like a faith in adding and linear

models, without providing an empirical support.

At the theoretical level, each weight and scale value has a well-defined, con-

ceptual existence within the averaging theory. The reality and definition of

the concepts of weight and scale value are not merely hypothetical, because

the averaging model has an empirical support. Therefore, the concept of

weight has some claim to scientific validity (Anderson, 1981, sect. 1.6).

Weights are interesting especially for their dependence on diverse contextual

factors. From this psychological perspective, it becomes clear that weights

can not be normally required to remain constant along a given stimulus di-

mension.

Determinants of weight The weight parameter will be affected by many

experimental manipulations. According to Anderson and Zalinski (1990),

many manipulations appear to fall into four categories: reliability, quantity,

relevance, and salience of information.

• Reliability is a probabilistic concept, referring to the subjective prob-

ability that the given information is a valid indicator. Source factors

typically operate upon reliability. In the person perception, for exam-

ple, source reliability can be manipulated by specifying how well or how

long the source had known the person, or the number and variety of

occasions on which the source had observed the person. These manip-

ulations can be viewed as determinants of the subjective probability

that the source information is correct, that is, of source reliability.

• Quantity of information can be defined by experimental operations, at

least in simple cases. Thus, the set-size variable refers to the number

of equivalent stimulus items. Analogously, the weight of an extended
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message will depend upon its length and aggregate content.

• Relevance refers to the implicational relationship between the stimu-

lus information and the dimension of judgement. A given stimulus

can be important in one judgement, unimportant in another. For ex-

ample, warmth would be more relevant to judgements of sociableness

rather than honesty. Relevance appears to involve similarity compar-

isons between the stimulus adjective and the prototype. The problem

of relevance is central in the implicit personality theory.

• Salience refers to attentional factors. As an example, the dependence of

weight on serial position can be interpreted as a salience effect, at least

according to the attention hypothesis. Numerous other attentional fac-

tors, including repetition and perceptual emphasis, would also affect

salience weighting.

These categories are reducible to one. Perhaps that is not possible, as there

seems to be a clear distinction between reliability, which is a probabilistic

concept, and relevance, which does not require any notion of probability.

Nevertheless, all four categories can be subsumed under a general concept of

“informativeness”. That concept is immediate for the quantity of informa-

tion; it seems acceptable for the other three categories on the basis that a

more relevant, salient, or reliable stimulus is considered to be more informa-

tive (Anderson, 1981, pp. 271–273).

The concept of weight allow to explain the observed non parallelism.

When deviation from parallelism appears, the averaging theory, that is, the

averaged weight and value representation, provide a clear explanation. The

averaging model can provide a simple account of many empirical effects,
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considering them as special cases of differential weighting. The interaction

between factors, the observed cross-over curve, and the extremity effects

generally reflect weight parameters that are not constant, but are related

with scale value.

2.2 Differential weighting

General case In a typical application, the subject responds to a set of

stimulus variables manipulated by the experimenter. For the case of three

variables, A, B and C, the equation 2.1 may be written as:

rijk =
w0s0 + wAisAi + wBjsBj + wCksCk

w0 + wAi + wBj + wCk
(2.2)

where i, j and k index the levels of the corresponding variables, for every

subject, for every repeated session. The inclusion of the index subscripts in

the weight parameters of the equation indicate the possibility of differential

weighting.

Equal-Weight case If all levels of a factor A have the same weight, wAi =

wA, then the factor A is said to be equally weighted. If every factor is equally

weighted, then the foregoing three-factor design may be written as:

rijk =
w0s0 + wAsAi + wBsBj + wCsCk

w0 + wA + wB + wC
(2.3)

where wA, wB and wC are the weights of the three factors; index subscripts

are omitted to indicate constancy. The sum of weights in the denominator

has the same value in all cells of the design and can be absorbed into the

arbitrary scale unit. Now it is possible to write

k = wt/[w0 + wA + wB + wC ], where t = A,B,C
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Accordingly, the model has a linear form and can be written as:

rijk = k · s0 + k · sAi + k · sBj + k · sCk
= k · (s0 + sAi + sBj + sCk)

where k · st denotes gross stimulus values, as in the linear model. Essentially

all results of linear models apply direct to the equal-weight case of the av-

eraging model. The parallelism property holds, and the statistical analyses

remain the same. Thus, the averaging model is easy to control when the

equal-weight condition can be satisfied.

Overall Equal-Weight case A simpler model occurs when the weights of

all factors are equal, that is, wAi = wBj for every factor A, B, and for every

level i,j. This situation simplifies the just mentioned equation to a plain

linear form, where k = 1/[w0 + number-of-factors].

Differential-Weight case In some situations, evidences indicate that dif-

ferent levels of a given attribute may have different importance. In these

situation, it is necessary to estimate a weight for each stimulus level of one

or more factors. Instead of a single weight for each factor, a weight is es-

timated for every level of that factor. Such a model is called “differential

weighting”. An important complication concerns unequal weighting within

an attribute dimension, since differential weighting is not recognised in stan-

dard methods of multiattribute analysis, which employs a constant weight

for each attribute (Oden & Anderson, 1971).

In general, the averaging model allows each stimulus to have its own

weight as well as its own scale value. The sum of the absolute weights in

the denominator of equation 2.2 is therefore variable across the sets; the

denominator varies from cell to cell in the design and the model becomes
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inherently non linear.

This non linearity makes the weight parameters identifiable, but introduces

statistical problems, concerning bias, convergence, reliability, goodness of fit

(Zalinski & Anderson, 1990, pp. 356–358) and it also requires a suitable

methodology.

2.3 Parameters identifiability

2.3.1 Regression Approach

Regression analysis is a form of multi-attribute analysis in which an inde-

pendent criterion is available. In the regression model, non comparable pre-

dictors are converted into common weight × value effects by virtue of the

criterion variable. The analysis of variance model does the same, without

requiring prior scaling of the predictors. But this conversion into common

effects is accomplished by confounding the units of the weight and value

scale.

This unit confounding, which underlies the practical utility of regression

analysis, means that the weights themselves are not generally comparable.

It follows that regression weights are not generally valid measures of psy-

chological importance. So, the numerous attempts to interpret regression

weights as measures of psychological importance are not generally meaning-

ful (Anderson, 1976).

2.3.2 Self-estimation of the weights

An alternative to the regression analyses is to ask subjects to make numerical

self-estimates of the importance weights (Zalinski, 1987, sect. 2.2). Multi-
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attribute evaluations will clearly be better if the person’s true weights are

used rather than equal weights. If valid, such self-estimates would allow the

use of very simple experimental designs.

A main question about self-estimates concerns their validity. Subjects pro-

duce direct estimates of scale value and importance, but it is needed to assess

the validity of these estimates. Without a model or a valid criterion with

which compare the estimates, it is difficult to establish their accuracy or va-

lidity.

A popular validation technique consists in comparing the self-estimates to

the weights obtained by regression analyses. These comparisons withstand

the foregoing problems with regression analyses. Furthermore, a number of

studies found discrepancies between objective weights and subjective or self-

estimated weights (Slovic & Lichtenstein, 1971; Slovic, Fischhoff, & Lichten-

stein, 1982; Peng & Nisbett, 2000). These disagreements seem to reflect the

inadequacies of the objective criteria more than the self-estimated weights

(Reilly, 1996).

Functional measurement provides two practicable solution in order to

assess validity of self-estimated parameters, especially when an external cri-

terion is available.

At first, when both functional scales and self-estimates are available, the for-

mer provide a validational base for the latter (Shanteau & Anderson, 1972).

Authors used linear fan analysis to test the multiplying model, Subjective

Probability × Subjective Value. The model provided acceptable goodness of

fit indexes, that is, validated functional scales of both subjective probability

and subjective value. This kind of comparison provides a general basis to

develop a self-estimation methodology.
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A second way is to employ the self-estimated parameters in the model analy-

sis. If the model passes the test of goodness of fit, that provides simultaneous

support for the validity of the self-estimates. This method of joint model pa-

rameter validation is applicable especially in comparison of self-estimates

with functional parameters.

However, according to Anderson (1982, sect. 6.2), there is almost a strong

disadvantage to use self-estimates in model analysis. The results may not be

very informative when there are substantial discrepancies from prediction. In

that case, the model, the self-estimates, and the linearity of the response scale

are all in doubt. Discrepancy are generally difficult to interpret, especially

without the patterning constraints of a factorial design. Only a suitable

design can validly provide estimations of the weight and value parameters

(Anderson, 2001b).

2.3.3 Method of sub-designs

A general problem in estimation concerns identifiability and uniqueness.

Some model parameters may not be estimable from the data, and others

may have limited uniqueness. In the linear model applied to a factorial de-

sign, for example, weights are confounded with the scale units and so they

are not generally identifiable1.

With a suitable design, the averaging model can provide the common

ratio scale estimates of the weight parameters and the common linear scale

estimates of the scale parameters. On the basis of this scaling results, valid

statistical comparisons can be made among both the estimated weights and

1 For an introduction to the concept of identifiability and uniqueness, refer
to Prakasa Rao (1992) or to Hendry, Lu, and Mizon (2004).
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the estimated scale parameters. This allows a complete comparability of

weights and values, both within and between stimulus dimensions. The out-

come of these comparisons can be used as a basis for drawing conclusions

about the relative importance and value of stimulus variables which may be

qualitatively quite different (Zalinski, 1987, pp. 75–79).

However, a proper experimental design is necessary for a unique parame-

ter estimation. In fact differential weighting is not recognised in standard

methods of multi-attribute analysis, which employ a constant weight for each

attribute.

Partial designs Uniqueness may be obtained using a family of partial de-

signs, each of which includes only some of the variables. Estimation of w0

and s0 actually requires that set size or design size are varied. A chosen fam-

ily of partial designs of the same size can provide uniqueness for the design

variables themselves.

The method of sub-designs solves the problem of identifiability for the aver-

aging model (Anderson, 1982, sect. 2.3.2). This method involves the joint

use of sub-designs which omit one or more factors of the full factorial design.

In the equal weight case of equation 2.3, with data from a regular factorial

design, the averaging model becomes a linear model and the weight parame-

ters are not usually identifiable. Complete parameter identifiability may be

insured by using the factorial design. A simple factorial design, however,

can be used to obtain linear scale estimates of either the weight or the scale

parameters within each stimulus dimension.

Complete identifiability The general method to obtain the complete

identifiability of the parameters is to adjoin selected sub-designs to a full

factorial design. For example, a full three-ways, A × B × C design may be
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supplemented with the three two-ways designs (A× B, A× C, and B × C)

and by the three one-way design. Similarly, a full two-ways, A × B design

could be supplemented with the two one-way designs, corresponding to the

two single factors.

To illustrate this method, suppose that the prior belief has zero weight

equal to zero, w0 = 0, and consider three attributes. These attributes are to

be judged singularly and in pairs, by the same subject, within the same ex-

perimental task and session. From equation 2.2, the theoretical responses are:

r1 = w1s1/w1 = s1 (2.4a)

r2 = w2s2/w2 = s2 (2.4b)

r3 = w3s3/w3 = s3 (2.4c)

r12 = (w1s1 + w2s2)/(w1 + w2) (2.5a)

r13 = (w1s1 + w3s3)/(w1 + w3) (2.5b)

r23 = (w2s2 + w3s3)/(w2 + w3) (2.5c)

From equations 2.4, the values of si are given directly by the response. These

values may be substituted into equations 2.5 to solve for the weights. Since

the unit of the weight scale is arbitrary, it may be fixed by setting w1 = 1.

Equations 2.5a, and 2.5b may then be solved for the remaining unknowns,

w2 and w3. These values must also satisfy equation 2.5c which provides a

test of goodness of fit to assess whether the model is correct and the weights

are estimated validly (Wang & Yang, 1998).

Set of n stimuli Usually, in a true experimental design, there are more

than one subject, many sessions, and almost repeated measures. Equation

2.4a should thus be correctly written as:
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r1ijk
= w1ijk

s1ijk
/w1ijk

= s1ijk
(2.6)

where i refers to the subject, j refers to the session, and k to the repeated

measure2.

With suitable one-way repeated measures designs, it is possible to verify

if each subject uses the same scale value in repeated trials. If the trial factor

is no statistically significant, then this hypothesis may not be rejected. Now,

value parameters of equations 2.4 may be identified. These value parameters

of the averaging model can be validly estimated with a linear robust regres-

sion, in which the responses to sub-design stimulus sets are the dependent

variables. This approach may prove itself useful because it introduces new

information into the estimation procedure.

At this point, two-ways repeated measures designs verify whether the subject

assigns the same importance to stimuli in the repeated trials. If no significant

differences are provided, thus it seems correct to accept that each subject uses

the same scale values and assigns the same weights to experimental stimuli

between different measures. Moreover, the estimated parameters may be

considered to be the weights of the model. In fact, under some conditions, it

may be proved that these parameters are valid indicators for the averaging

model.

2 There are many articles and manuals concerning the factorial design
for the Repeated Measures ANOVA: for example, the fundamental Girden
(1992), or the more recent Weinfurt (2000). For a general introduction,
consider Max and Onghena (1999).
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Chapter 3

Criteria for model selection

Different models can explain observed data. Adding, multiplying, and aver-

aging models could take into account the response variability. This variabil-

ity, which has been neglected so far, is a serious problem in model analysis.

Even if the assumptions of the model holds, observed data will not be per-

fectly congruent. Accordingly, it is necessary to test the goodness of fit of

the analysed model; i.e., to assess whether the observed deviations from hy-

pothesis may reasonably be attributed to the prevailing response variability

or to the failure of the model assumptions.

Generally, any model can always fit the data, but it may fit poorly. The

deviations from a model could reflect residual biases in the rating response,

small stimulus interactions of no great importance, or the operation of some

further process not included in the model. The evaluation of discrepancies

between model and data is required. Unfortunately, there is no routine recipe

to decide if deviations are serious.

The simplest approach is a qualitative approach, observing the factorial
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graph. For example, in figure 1.2, the visual inspection may indicate the

parallelism and hence an adding-type rule. In figure 1.4, the crossover refuses

any addition process.

Formal statistical methods are available. Any set of data will contain noise,

so the observed factorial graph will never follow perfectly the hypothesised

model. Some deviations from the model will always be observed, and it is

necessary to assess whether they can reasonably be attributed to prevailing

noise or they reflect real disagreement with the cognitive rule.

3.1 Qualitative test

The inspection of the factorial graph provides an informal but convenient

test of goodness of fit. In every design, the factorial graph can provide a

visual index of prevailing response variability (Anderson, 1996, chapter 2).

As an illustration, the four solid curves in figure 1.4 exhibit near-parallelism

and small point-wise fluctuations from parallelism. These fluctuations may

be taken as an index of the current response variability. But, qualitative

tests are much better at disproof rather than at proof. The disproof of the

general adding hypothesis does not prove an averaging hypothesis. Only a

formal statistical test can recognise that the crossover of the blue curve is

reliable.

Anderson (2001b, sect. 21.4.1) proposes a robust qualitative test in order

to distinguish between averaging and adding hypotheses: the opposite effects

test.

The key idea is to add the same medium information to both high and

low information. That should change the response in the same direction
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Figure 3.1: Opposite effects test.
Figure (a) supports the addition theory, while figure b. promote the averaging theory. These plots are
from hypothetical data. The red dashed line represents the judgement of attractiveness as a dependent
factor, and the factor “price” as a single three level independent factor. When this factor is considered
with a new medium information, for example, “quality”, different plots may be obtained. On the left,
figure (b) shows an overall incremental effect, supporting the adding model. Instead, the crossover of
dashed and solid curves in the right graph shows that the same medium information has opposite effects.
It increases attractiveness whit a low price, decreases attractiveness whit a high price. This observed
situation support the averaging process.

according to an adding formulation, either up or down, depending on whether

the medium information is positive or negative. In contrast, an averaging

formulation implies that the addition of the medium information can make

the response less extreme in both cases, as shown in figure 3.1.

This test is qualitative. It depends only on the difference in direction, not in

its amount. This test is robust, because only a monotone response scale is

required. Furthermore, it evaluates variant forms of the adding hypothesis

that may not assume an exact addition.
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3.2 Equal weight case test

Under some conditions, the regression parameters, β̂, which can be estimated

through different approaches, are good predictors of the weights parameters

in the equal weight case of the averaging model.

Suppose that prior belief has zero weight, w0 = 0, and consider two at-

tributes. The averaging equation 2.1 may be written in a linear form, where

every weight correspond to an angular coefficient:
r = β̂1v1 + β̂2v2

r =
w1

w1 + w2

v1 +
w2

w1 + w2

v1

This system requires that the condition w1 + w2 6= 0 is satisfied.

Algebraic manipulation produces:
β̂1 =

w1

w1 + w2

β̂2 =
w2

w1 + w2

(3.1)

Under some conditions this system of linear equations is soluble, and pro-

vides reliable weight estimators for the equal weight model obtained by the

regression parameters. In fact, equation 3.1a may be written as:

w2 = w1
1− β̂1

β̂1

Its substitution into equation 3.1b produces:

β̂2(w1 + (w1
1− β̂1

β̂1

)) = (w1
1− β̂1

β̂1

)

β̂1β̂2w1 − w1(β̂1 − 1)(β̂2 − 1) = 0

w1(β̂1 + β̂2 − 1) = 0

The stated equation might be solved setting w1 = 0; but it is impossible,

because w2 = 0, and w1 + w2 = 0. Now, the unique solution for the system
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3.1 is:

β̂1 + β̂2 = 1 (3.2)

The system is still undetermined. Consider the new condition w1 + w2 = k,

and k = 1. In fact, “in the averaging model the [relative] weights must sum to

1” (Anderson, 1981, p. 119). It is now possible to solve the system, obtaining:

β̂1 = w1

β̂2 = w2

(3.3)

Equation 3.2 is the fundamental condition for the verification of the equal

weight case of the averaging model with the regression approach. If this equa-

tion is not satisfied, then the regression parameters cannot be used to obtain

the weight parameter. If this condition is satisfied, linear regression parame-

ters are good estimators for weights in the averaging model, as expressed by

the system of linear equation 3.3.

3.3 Strong inference

Although the just mentioned tests are useful, a more objective test of fit is

necessary, in order to get more evidences which can support a cognitive rule

and to discriminate correctly among different models.

The observed data will always show some outliers since the responses to the

same stimulus vary naturally from one time to another. Thus, an error theory

is needed to assess whether the non-parallelism observed in any experiment

is real or merely given by the natural response variability.

Let ε denote the deviations of individual responses in every cell of the

factorial design from the mean, or from the median, of that cell. Since all
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deviations in each cell refer to the same stimulus, their variance, σ2
ε , is a

measure of the response variability. Hence σ2
ε provides the general guideline

to assess the goodness of fit of a model. If the observed deviations from

the model are large relative to σ2
ε , they allow to reject the model. The im-

plementation of this last sentence requires one or more suitable indexes of

deviations1.

The ordinary analysis of variance provides a straightforward method.

Parallelism is the graphical equivalent of the zero interaction term in the

analysis of variance. If the parallelism theorem applies, then this statistical

interaction is zero in principle and should be non significant in practice. In a

similar way, if the linear fan theorem applies, then linear × linear component

should be significant, as seen in section 1.3.2.

The regression and anova models are useful for outcome analysis, as well

as for prediction. For process analysis, however, models based on regression

have many hidden dangers (Anderson, 2001b, sect. 20.4). The decision to

accept or to reject a cognitive model involves more than a statistical test

of goodness of fit. A good fit may be little worthy if other models make

the same prediction, involving different factors or relationship. Moreover,

in model analysis, the investigator usually wishes to accept a model, that

is, to accept the statistical null hypothesis that there are no significant dis-

crepancies between the model and the observed data. But an experiment

which lacks in power and has little value as evidence, may be masquerade as

a success (Cohen, West, Aiken, & Cohen, 1983).

1 Every statistical book discusses the most important fit indexes (F , R2,
the Residual Standard Error), as in the recent manual by Anderson (2001b),
or by Weisberg (2005).
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For example, when sample sizes are large, the significance tests are sensitive

to small deviations from the null hypothesis, so that all reasonably parsimo-

nious models may be rejected as having a statistically significant lack of fit.

Standard tests are also unsuitable for comparing non-nested models and pro-

vide little guidance for choosing between models that have not been rejected.

Such limitations of “classical” significance tests have stimulated interest in

other approaches to model selection. One common class of such alternatives

is the so-called parsimonious model selection criteria (Kuha, 2004).

3.4 The principle of parsimony as a rule for

model uncertainty

Model choice is not a merely problem of goodness of fit. It concerns with

decision making and with subjective and reliable criteria (Kadane & Lazar,

2004).

In modern science, there is a general agreement around a principle called

“principle of parsimony”. It was introduced in the Middle Ages by William

of Ockham (see appendix A), and stated that a person should always opt

for an explanation in terms of the lesser number possible of causes, factors,

or variables. He contributed a methodological principle in explanation and

theory building, especially with the formulation of a razor that bears his

name, the “Ockham’s razor”.

In its simplest form, Ockham’s Razor states that a person should make

no more assumptions than what is needed. Put into in everyday language,

it says: “Given two equally predictive theories, choose the simpler”.

Ockham’s Razor is currently considered a methodological principle, and it

is often interpreted as a preference for the simplest theory that adequately
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accounts for the data, because simplicity is desirable in itself (Thorburn,

1915; Ariew, 1976; Sober, 1982; Webb, 1996; Domingos, 1998).

Ockham’s Razor is a basic perspective for those who follow the scientific

method. It is important to note that it is like an heuristic argument that

does not necessarily give correct answers; it is a loose guide in order to

choose the scientific hypothesis which contains the least number of unproved

assumptions.

Wrinch and Jefferys (1921) proposed to codify this theory as a rule which

would automatically give an higher prior probability to laws that have fewer

parameters. This approach would lead us to try at first simpler laws, moving

to more complicated laws only when we find that the simple ones are not

adequate to represent the data (Jefferys, 1939). That is, this approach would

provide a sort of rationalised Ockham’s Razor.

A frequently encountered situation is that of fitting an empirical model to

data - a model that is not “true”, but that will be used for prediction of the

phenomenon under study. This can happen either when the “true” model

is unknown or when the “true” model is too complex to be computationally

useful. The selection among possible empirical models in this setting involves

different considerations. The accuracy of future predictions is, of course, a

major concern, but the simplicity of the model for interpretational reasons is

also highly relevant. This latter factor can lead to a parsimonious Ockham’s

razor, which chooses the simpler model for practical reasons, not because it

is true.

One of the possible Bayesian approaches to model selection is based on

comparing probabilities that each of the models under consideration is the

true model that generated the observed data. A similar to model uncertainty
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was introduced by Leamer (1978), through a Bayesian approach, to compare

the models that don’t fit the data equally well.

In behavioural science this approach was proposed by Raftery (1986) purely

as a model selection criterion, and since then, it has been widely applied to

select a single optimal model.

All results in Bayesian statistics derive directly from the definition of condi-

tional probability, the law of total probability and the posterior distribution

expressed by the Bayes’ theorem (see appendix B).

The Bayesian approach is in contrast with the concept of frequency proba-

bility where the probability is derived from observed or imagined frequency

distributions or proportions of populations. The difference has many impli-

cations for the methods with which statistics is practised following one model

or the other, and also for the way in which conclusions are expressed.

When comparing two hypotheses and using some information, Bayesian meth-

ods suggest that one hypothesis is more probable than an other or that the

expected loss associated with an hypothesis is less than the expected loss

of the other. This approach strongly differs from the frequency methods in

which the result is typically the rejection or non-rejection of the original hy-

pothesis with a particular degree of confidence (type-I error). The Bayesian

approach is like an extension of the ordinary logic to the degrees of belief in

the range between 0 and 1.

Bayesian analysis can shed new light in the choice among models with less,

more or different parameters, providing an excellent mechanisms for the selec-

tion, both for nested and for non-nested models (Hoeting, Madigan, Raftery,

& Volinsky, 1999).

Comparing two models, M1 and M2, for an observed sample of data D, the
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ratio

BF21 =
p(D|M2)

p(D|M1)
(3.4)

is known as the Bayes factor: it is the central quantity of the Bayesian ap-

proach to model comparison. The Bayes factor is a measure of the evidence

provided by the data in favor of M2 over M1. The ratio 3.4 can, in principle,

be calculated for any pair of models for D. These need not be nested and

may, in general, be completely different in form and assumptions. But, for

any two models there is an infinite number of possible prior distributions and

thus of Bayes factors (Kuha, 2004).

The driving idea behind this approach of model comparison is to examine

the complexity of the paired models together with the goodness of how they

fit the data, and to produce a measure which balances between the two.

If the observations come from a family of model whose a-priori distribution

is not known exactly, the Bayesian solution consists of selecting the model

which is most probable a-posteriori.

Schwarz (1978) introduced an approximation for the Bayes factor, known

as the Bayesian Information Criterion (BIC). The generic formula of this

criterion is:

BIC = −2 · loglik + log(n)k

Under the Gaussian error model, this becomes:

BIC =
k

n
ln(n) + ln

(
RSS

n

)
(3.5)

where k is the number of regressors, n is the number of observations and RSS

is the residual sum of squares.

In this approach, given a specified number of parameters, a likelihood ratio is
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Table 3.1: Evidence for H1
Approximate minimum t values for different grades of evidence and sample size (from Raftery, 1993, and
Fischer, 2004).

sample size
Evidence for H1 ∆BIC 30 100 1,000 10,000
Positive 2–6 1.84 2.15 2.63 3.03
Strong 6–10 3.07 3.20 3.59 3.90
Decisive >10 3.66 3.82 4.11 4.38

obtained comparing one solution with all the models. An information crite-

ria is given by penalising the models with additional parameters, following a

selection criteria based on parsimony (Raftery, 1995; Burnham & Anderson,

2004). So, this method balances the complexity and the power of a model.

The BIC methodology tries to find the minimal model that explains the data

correctly. A model with many parameters will provide a very good fit to the

data, but will have few degrees of freedom and be of limited utility. The

imposition of a penalty for including too many terms in a regression model

discourages the over-fitting. Thus, the preferred model is the one with the

lowest value of the criterion (Burnham & Anderson, 2002).

The Bayesian criterion may be used to obtain the required value of an ap-

proximate t statistic, since it represents strong or decisive evidence. The

approximate t values corresponding to different grades of evidence, and dif-

ferent sample size are shown in table 3.1.

Different grades of evidence can be useful to calibrate the diagnostic checks

to which a model is subjected and to guide the search for a better model. In

Jeffrey’s view (1939), a model should not be abandoned until, in the poste-

rior model probability sense, a better one is found.

The Bayesian approach to the model selection and accounting for the

model uncertainty overcomes almost two main difficulties: the first occurs
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when several nested and non-nested models may all seem reasonable given

the data, but nevertheless lead to different conclusions about questions of in-

terest. The second happens in large samples, where the P -value tests tend to

reject any null hypotheses almost systematically, as opposed to the Bayesian

approach.

Although a more complex modelH1 is correct, Smith and Spiegelhalter (1980,

p. 216) show that the Bayesian methodology favours the simpler model H0

only if the two models are so close that there is nothing to be lost for pre-

dictive purposes by choosing the simpler model. In this manner the BIC

approach functions as a fully automatic Ockham’s razor (Kass & Raftery,

1995).

3.5 R-AVERAGE function: a BIC-based al-

gorithm for model selection

An interesting problem is concerned with the decision making process among

models with differential or unequal weighting (sect. 2.2). In these models

each level of each factor may have its own weight and its own value. There are

several possible models which can be evaluated from simplex to complex ones.

The overall equal-weight case, wAj = k, for every A and j, consists in a

linear model. This is a very simple model, and it may be considered as the

baseline. But not necessarily does it represent the best solution, because it

does not explain the crossover effect nor considers the factorial design.

A next model introduces a little non-linearity by adding one parameter to

the model, that is, by differing the importance of a single weight, wAj, for

any A and j. The introduction of a new parameter in the model, makes the
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model itself more complex, generally providing better goodness of fit indexes,

especially for the residual sum of squares. Adding another parameter, the

overall fit may not be improved, although the complexity still increases and

the degrees of freedom decrease.

Zalinski (1987) presented the AVERAGE program suitable to the estima-

tion of the value × weight parameters for the unequal case of the averaging

model, providing reliable estimations from the full-factorial design accompa-

nied by all the sub-designs. This program allows to compute the weight and

scale value parameters for each person individually using their responses to

the stimulus configurations (i.e., information presented alone and in combi-

nation). For each participant, the program generates an absolute weight and

scale value for each level of attribute, and a single weight and scale value for

the initial impression. Parameter estimates are obtained by iteratively ad-

justing parameter values to find those that best fit the observed data by the

criterion of maximum likelihood. The iterative adjustments are handled by

the STEPIT function (Chandler, 1969) , a general algorithm for multivariate

minimisation /maximisation. This method uses only the function values (no

derivatives).

We implement the R-AVERAGE function, a program capable to provide

reliable estimations for each subject as well for the sample, both from the

full factorial design and from the only sub-designs.

In particular, our goal consists in the selection of the most suitable subset of

the weight parameters, according to the overall goodness of fit indexes and

to the complexity of the design. With the Bayesian approach, it is possible

to analyse both these conditions: to test if each single weight is important
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for the overall fit of the model, and to select the fundamental weights which

can differ from the others. In fact, the best model is nor the linear neither

the non-linear, but is the “simplex” model which better explains the data by

using the smallest number of parameters.

We use a procedure described by Raftery (1995) and by Pötscher and

Srinivasan (1994), whose criteria are similar to the forward stepwise regres-

sion criteria, as suggested by Kutner, Nachtsheim, Wasserman, and Neter

(2004). Mainly, this procedure involves:

1. the identification of the goodness of the initial equal-weight case model

with a robust parameter estimation. All the weights of this model are

fixed, wAj = k, for every A and j. Thus, no weight is estimated;

2. the iteratively “stepping”, that is a repeatedly alteration of the model

at the previous step in accordance with an algorithm which consists of:

(a) the selection of a single weight parameter to modify from the oth-

ers;

(b) the estimation of this parameter, by minimising the residual sum

of squares of the non linear model whit the L-BFGS-B algorithm

originally proposed by Nelder and Mead (1965) and implemented

by Byrd, Lu, Nocedal, and Zhu (1995);

(c) the direct models comparison, according to the BIC index;

(d) the selection of this model for the next step if the evidence for the

new model is at least positive (∆BIC > 2);

3. the search terminates when the stepping is no longer possible, given

the stepping criteria.
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The implemented R-AVERAGE function, implemented in a R program

(R Development Core Team, 2005), allows:

1. to perform the Repeated Measures ANOVA, in order to test the statis-

tical significance of the factors, before any other analysis;

2. to verify the validity of the averaging model in the equal weight case

with equation 3.2;

3. to identify the model which best explains the observed data, among

the adding, multiplying or the averaging model, according to the BIC

index;

4. to estimate the weight and value parameters, if the design is suitable

(sect. 2.3.3), both for each subject and for the sample;

5. to select the optimal subset of different weight parameters;

6. to compare the selections made by different goodness of fit indexes, i.e.

the BIC index, the AIC index (Akaike, 1976), and the RSS.

7. to summarise all the results in long and short tables and to plot the

estimated curves and the data.

The main functions of the program is in Appendix D.
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Chapter 4

Applying model selection

In this chapter two experiments are presented. In the first, the physical

knowledge is assessed with the functional measurement. The integration

process of two and three variables is evaluated with the adding, multiplying

and mixed models.

The second experiment presents a multi-attribute evaluation of some personal

profiles concerning the factor of trust. The averaging model is assessed in the

equal-weight and in the differential-weight case. The proposed methodology

for the optimal model selection is implemented.

4.1 Experiment 1: Intuitive Physics

4.1.1 Common-sense physics

The intuitive or common-sense physics is concerned with the physical knowl-

edge which operates in everyday actions, especially in motor behaviour. Ac-

cording to McCloskey (1983, p. 299), “everyone presumably has some sort of

knowledge about motion”. People have remarkably well articulated theories

of motion, often with consistencies across individuals. Typically, intuitive
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Figure 4.1: Galileo’s inclined

plane. Subjects predict the travel time
of the ball to roll down the inclined plane.

physics regards the physical principles which govern the motions of the ob-

jects in the world (Clement, 1983; Kearney, 2002).

Intuitive physics blends perception, cognition, and action. It requires the

integration of several stimulus factors, a problem to which the information

integration theory may be applied (Anderson, 1983, 1997). The guiding idea

is that the intuitive physics typically depends on multiple stimulus cues which

are integrated to determine the overt response. For example, the prediction

of the travel time of a ball in the task of the inclined plane depends on an

integration of the angle of incline and the travel distance. When subjects

predicts the ball’s behaviour in the task of figure 4.1, the personal predictive

scheme generates a functional relationship between the judgement response

and the stimulus variables.

The integration function occurs within the psychological domain as a

constructive process. Stimulus values do not reside in the stimulus, but are

constructed by the joint process of the external stimulus field and the com-

plexity of the internal background knowledge. This process is used in the

ongoing tasks for the goals of each person.

The integration function handles the multiple determination: sensations and

perceptions are the integrated resultants of multiple stimulus determinants

(Anderson, 1990b, 1992). This function implies an internal representation

which is concerned with the multi-dimensional relation among sensations

themselves.

Much of intuitive physics may be represented in terms of schemas, which
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organise the information in a multiple-stimulus field and utilise background

information for the operative task (Anderson, 1997).

A primary characteristic of intuitive physics is its dependence on previous

experiences. People learn about the motions of objects from their earliest in-

fancy. This basic role of a background knowledge contrasts with the tabula

rasa approach which seeks to minimise the role of any background knowl-

edge.

Physical judgements at all ages follow algebraic rules and these rules show a

developmental trends (Wilkening & Anderson, 1982; Wilkening, Schwarz, &

Rümmele, 1997; Jäger & Wilkening, 2001). When asked to judge the area of

a rectangle, Area = Weight × Height, adults exhibit in the factorial graph

a corresponding linear fan pattern. This pattern is the sign of a multiplying

rule, which reveals a multi-dimensional concept of quantity.

In a similar task, children’s data exhibit a pattern of parallelism. Anderson

and Cuneo (1978a, 1978b) suggest that, although children lack of the adult

conceptions of multi-dimensional quantities, they understand that a quantity

judgement may be required. They seem to possess a general purpose adding

rule which they apply in making judgements of a geometrical quantity (An-

derson, 1980).

These developmental studies are a source of evidence for the proposition that

integration rules are general-purpose functional systems and that these rules

develop with increasing age. In fact, an internal representations of intu-

itive physics appears both in children’s development and in adult learning

(Schmidt & Ackermann, 1990).

The integration function, or psychological law provides the base and frame
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for the measurement (Anderson, 2001a). In intuitive physics, psychologi-

cal measurement is even more important than in traditional psychophysics.

“The stimulus integration rules [. . . ] cannot be determined except through

the operative psychological scales. In principle, functional measurement can

determine the integration rules together with the psychological scales” (An-

derson, 1983, p. 245).

The functional measurement is capable of determining the function knowl-

edge of intuitive physics and shows that most subjects integrate some vari-

ables, following exact addition or multiplication rules (Karpp & Anderson,

1997). The hypothesis that the stimulus integrations of intuitive physics fol-

low algebraic rules can be tested with the parallelism theorem and the linear

fan theorem (sect. 1.3).

4.1.2 Modified inclined plane

In the historical task of the inclined plane (Galileo, 1744, pp. 23–88), sub-

jects estimate how long does it take a ball to roll down an inclined plane.

Experimental factors which can be varied in the factorial design, are the dis-

tance, D, and the height, H. The distance H and D are defined in figure 4.1.

With this task, Galileo proved that falling or rolling objects are accelerated

independently of their mass.

Anderson (1983, 1997) presented this task for the evaluation of the under-

lying cognitive processes. In fact, if D and H are varied in the factorial

design, the factorial graph of the physical clock times will show a linear fan

pattern. In this task subjects were asked to make intuitive guesses about the

travel times. These intuitive judgements were made without the benefit of

any book learning. The experimental question was whether these intuitive
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Figure 4.2: Task of intuitive physics.
Subjects predict the angle β (on the left) which is necessary for the ball placed in the starting point, SP, to
roll down the inclined plane for a distance, s, and to go uphill, reaching the ending point, EP. Experimental
factors are the angle α of the uphill slope, and the distance D, forming a 3×3 design, represented in the
graph by the nine points on the right.
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judgements will exhibit a pattern similar to the one found in nature.

One purpose of this experiment is to study the integration rules which

underlie the knowledge of the motion of an object in an inclined plane. Our

task is based on an experiment proposed by Bozzi (1990, pp. 296–314). Nei-

ther the travel time, nor the estimated ending point is asked to be predicted,

but the angle of the downhill slope which is necessary for an object placed in

a starting point, SP , to roll down the inclined plane for a constant distance,

s, to go uphill on an inclined plane, for some distance, D, and to reach an

ending point, EP , without passing it. The inclination of the downhill plane

is determined by the angle β, and the inclination of the uphill plane by the

angle α, as shown in figure 4.2.

Under ideal conditions, where, above all, there is no friction at all, the angle

β, required to reach EP , is physical determined by the equation:

s · sin(β) = D · sin(α) (4.1)

If D and α are varied in the factorial design, the factorial graph of the angle

β will exhibit a linear fan pattern. This is illustrate in figure 4.3.

63



Figure 4.3: Angle β as a function of distance and angle α.
Plot of the angle necessary for the modified inclined plane, as a function of the distance (curve parameter)
and of the angle α (horizontal axis).
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This task becomes more complex when introducing the new factor of fric-

tion. Friction is the force which opposes the relative motion of two surfaces

in contact. The coefficient of friction, µ, is a scalar value which describes

the ratio of the force of friction between two bodies and the force pressing

them together. This coefficient is an empirical measure and cannot be found

through calculations. Rougher surfaces tend to have higher values. Most dry

materials in combination give the friction coefficient values from 0.1 to 0.6.

It is difficult to maintain the values outside this range. A value of 0.0 means

that there is no friction at all.

In order to introduce the coefficient of friction in the equation 4.1, the fol-

lowing equation has to be solved:

s · (sin(β)− µ cos(β)) = D · (sin(α) + µ cos(α)) (4.2)

If µ is introduced in the factorial design, the factorial graph of the angle β

will still exhibit the linear fan pattern. This is illustrate in figure 4.4.
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Figure 4.4: Angle β as a function of distance, angle α, and friction.
Plots of the angle necessary for the modified inclined plane, as a function of the distance D (curve
parameter), of the angle α (horizontal axis), and of the coefficient of friction µ.
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4.1.3 Methods

Hypothesis Our hypotheses concern the form of the integration rule im-

plied in the motion knowledge. The experimental question concerns the in-

tuitive judgements, whether they exhibit a pattern similar to the one found

in nature. The peculiarity of our task is the introduction of the third factor

surface and the analysis of the changes in the integration process due to this

introduction.

According to Bozzi (1990), we expect to find the multiplying or adding pat-

tern for the integration of the factors angle and distance. With the intro-

duction of the third factor surface, we look for a full multiplying pattern,

r = A × B × C, where A, B, and C are the three factors, or some simpler

rules, which could be yielded by some heuristics. Similarly to Singh’s results

(1990, 1998), the integration rules may let both the adding and the multiply-

ing operation within the model, according to the equation r = A+ (B ×C),

or r = A× (B+C). The integration function of these factors could use only
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the adding rule, showing a pattern given by r = A+B +C. Moreover some

variables might be not considered.

Apparatus A schematic inclined plane is used. This is a rod on which a

marker can be fixed at various distances. No ball rolling occurs because the

aim is to study the structure of the knowledge possessed by the subjects, and

the specific working rules.

Design and procedure The experiment consists of three phases, similar

in purpose. The common goal is to assess the integration rules. In the first

phase three distances (19, 24, and 29 cm) and three slopes (5, 10, and 15 de-

grees of the angle α) are factorially combined to yield the nine distance-slope

stimulus configurations which are shown to the subjects. The s constant

is fixed at 24 cm. Each subject judges the configurations in two successive

replications. The task is described with the following instructions:

“You can see a trolley in a slide. If you release it, the trolley will run
downhill until the end of the slide. Then it will go uphill on the opposite
slide. You can see a marker in this second slide. Your task consists of varying
the slope of the first slide, where the trolley is situated, in order to make it
reach the marker in the opposite side.
The surface is perfectly smooth and you can imagine it as a situation in
which there is no friction at all.
Don’t use formulas or other tricks you can have learnt. But, please, try to
visualise the trolley going downhill and then uphill. Modify the angle of the
slope and try again, until you can imagine the trolley reach the marker, but
not pass it”.

The experimental trials follow immediately.

In the second step we introduce the third factor surface with three levels:

smooth, medium, rough. Thus, the subjects are asked to judge twenty-seven

configuration of the 3×3×3 design. We repeat the instruction, adding these
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words:

“In this specific situation, you have to imagine three different kinds of
surface. A smooth one, a rough one and an intermediate one, whose smoth-
ness is between the previous twos”.

The third step consists of a situation where the distanceD and the angle α

are constant (respectively 29 cm and 15 degrees). We modify the levels of the

factor surface from three (low, medium, high) to six, each one corresponding

to a different kind of surface: ice, grass, glover, asphalt, cement, and mud,

presented in a random order. Two trials are performed. The aim of this last

phase is to estimate the subjective values of the friction for these different

surfaces, and to look for some regularities, using the functional measurement.

These regularities may give further evidences for the idea that the personal

theories of motion provide adequate explanations for what we see and do.

Subjects Twenty-three subjects, eight females and fifteen males, aged from

18 to 23, mostly psychology students, take part in the experiment.

4.1.4 Results

Section I: Single subjects

Two-ways design The functional measurement shows that most of the

subjects uses an algebraic rule, either addition or multiplication, to represent

the joint effect of the two physical variables. Overall, the addition rule is more

frequent, although it is not correct for the task.

The rule assessment is made using the repeated measures analysis of variance

(ANOVA) applied separately to the data of each individual subject, using
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the α = 0.05 level of significance. As outlined in table 4.1, the functional

measurement shows that only 5 out of 23 subjects used the physically correct

distance × slope rule for the task. Of the remaining subjects, seven believe

that only distance or slope influences the trolley motion.

We perform the repeated measures ANOVA with the distance × slope

design. All subjects but three seem to correctly integrate the design factors,

showing at least one factor as statistically significant (table 4.2). We exclude

from the subsequent analyses the subjects number 19, 22 and 23, because

none of the factors is significant, and we can not classify the rule which they

use.

We analyse the goodness of fit indexes provided for the adding and multi-

plying models. Table 4.3 shows the BIC index and the R square values used

for the model comparison. In general, no strong evidences are provided for

one of the models. Subjects 1, 3, 4, 5, 6, 8, 11, 15, and 17 seem to integrate

the variables with the adding rule, while subjects 2, 7, 13, 14, and 21 with

the multiplying one.

Three-ways design The functional measurement shows that most of the

subjects integrates the three variables following some algebraic rules. Table

4.4 shows that no subjects adopt the physics multiplying rule. Six subjects

only account for two variables, without regarding the factor distance. Of

the remaining subjects, six integrate the variables with the adding rule. The

goodness of fit indexes suggest that the remaining ones adopt a mixed adding

and multiplying rule. All results for each subject are reported in tables E.1–

E.23.
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Table 4.1: Rule assessment with functional measurement theory for the two-
ways design.

Rule N Subjects
Distance only 3 12 13 18
Slope only 4 9 10 16 20
Distance + Slope 9 1, 3, 4, 5, 6

8, 11, 15, 17
Distance × Slope 5 2, 7, 13, 14, 21
Unclassified 3 19 22 23

Table 4.2: Individual results.
Repeated measures ANOVA for the two-ways design distance × slope. Table reports the F -value and the
p-value for each factor of the design, where significant.

Subject Slope Distance Interaction
F2,2 P -value F2,2 P -value F4,4 P -value

1 1e+ 32 < 0.0001 110.3 0.0008 2.6 n.s.
2 163.5 0.006 16.1 n.s. 5.4 n.s.
3 592.9 0.001 11.2 n.s. 3.4 n.s.
4 1274.3 0.001 7.8 n.s. 0.3 n.s.
5 32.3 0.030 38.2 0.0256 0.5 n.s.
6 56.7 0.017 38.9 0.0256 1.9 n.s.
7 23.2 0.041 10.7 n.s. 0.5 n.s.
8 41.6 0.023 25.8 0.037 1.6 n.s.
9 52.8 0.018 4.2 n.s. 2.9 n.s.
10 437.2 0.002 1.6 n.s. 3.1 n.s.
11 11.7 n.s. 12.0 n.s. 0.4 n.s.
12 10.9 n.s. 37.19 0.026 3.3 n.s.
13 11.9 n.s. 430.3 0.002 1.2 n.s.
14 76.4 0.013 4.9 n.s. 2.0 n.s.
15 45.9 0.021 2.3 n.s. 0.1 n.s.
16 18.2 0.05 5.6 n.s. 0.2 n.s.
17 78.1 0.012 4.3 n.s. 0.2 n.s.
18 5.1 n.s. 32.4 0.039 3.7 n.s.
19 17.3 n.s. 11.9 n.s. 4.1 n.s.
20 28.5 0.034 17.9 0.05 2.0 n.s.
21 80.9 0.012 13.4 n.s. 6.6 0.05
22 7.9 n.s. 5.1 n.s. 0.2 n.s.
23 1.6 n.s. 1.3 n.s. 0.5 n.s.
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Table 4.3: Goodness of fit indexes for the model comparison.
The adding model is compared with the multiplying one, in order to explain the rule R = f(Distance,
Slope). Table reports the BIC index and the R2 value. The lower is the value of the BIC index the better
is the model. Contrariwise, the higher is the value of R2 the better is the model. First subject.

Subject Distance + Slope Distance × Slope Evidences
BIC R2 BIC R2

1 53.0 0.95 67.3 0.89 Decisive
2 86.9 0.91 82.7 0.92 Strong
3 40.4 0.98 61.4 0.93 Decisive
4 54.2 0.97 73.6 0.91 Decisive
5 100.7 0.84 103.6 0.82 Positive
6 79.6 0.88 106.5 0.57 Decisive
7 83.6 0.77 81.4 0.79 Positive
8 101.4 0.82 114.8 0.63 Decisive
9 105.7 0.75 107.6 0.72 None
10 99.1 0.81 99.6 0.80 None
11 96.4 0.83 100.5 0.78 Positive
12 94.8 0.75 104.8 0.60 Decisive
13 93.6 0.80 89.9 0.83 Positive
14 95.7 0.76 91.1 0.80 Positive
15 76.8 0.89 89.2 0.79 Decisive
16 116.6 0.75 116.4 0.76 None
17 93.5 0.89 96.8 0.88 Positive
18 130.4 0.67 131.2 0.68 None
20 123.6 0.83 122.1 0.84 None
21 91.6 0.90 86.1 0.93 Positive

Table 4.4: Rule assessment with functional measurement theory for the
three-ways design.

Rule N Subjects
Slope + Surface 6 3 7 9 11 15 20
Distance + Slope × Surface 11 4 5 6 8 10 13

14 16 17 19 22
Distance + Slope + Surface 6 1 2 12 18 21 23
Distance × Slope × Surface 0
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Overall, the introduction of the last factor mostly changes the integration

process. That is, introducing the factor surface, the foregoing factor distance

is no more significant for six subjects (subject 3, 7, 9, 11, 15, and 20). The

other participants correctly evaluate the differences among the levels of the

factors and the three factors themselves.

We use the BIC index and the R square (R2) values for the rule assessment.

These goodness of fit indexes, reported in table 4.5, generally do not provide

any strong evidence for one model. Subjects 1, 2, 12, 18, 21, and 23 seem to

integrate the variables with the adding rule, while the others with an adding

and multiplying one.

As discussed in 1.3.4, we also look for the integration process in each and

every pair of factors. All, except subjects 5 and 14, exhibit a set of parallel

curves which may be yielded by the adding rule process. But these evidences

are weak for the lack of replication within subjects.

Surfaces We perform a repeated measure ANOVA to test the differences

among the levels of the factor surface. Table 4.6 shows that all subjects

except one recognise the different kinds of surface. That is, they increase the

needed angle β according to the smoothness of the surfaces.

Section II: All sample

Two-ways design We analyse the whole sample in order to verify if the

findings for the subjects may be applied to the sample. A repeated measures

ANOVA is performed with the distance × slope × subject design. Results

are reported in table E.24.

Figure 4.5 shows the combined effects of the factors distance and slope. On

the vertical axis there are the predicted angles β. The three curves corre-
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Table 4.5: Goodness of fit indexes for the model comparison.
The adding model is compared with the multiplying and the mixed ones for the factor distance (A), slope
(B), and surface (C). Table reports the BIC index and the R2 value. The lower is the value of the BIC
index the better is the model. Contrariwise, the higher is the value of R2 the better is the model. The
subjects are reported only when all factors are significant.

Subject Adding Multiplying Mixed
A+B + C A×B × C A+B × C
BIC R2 BIC R2 BIC R2

1 167.4 0.66 134.5 0.88 133.7 0.88
2 170.8 0.67 123.5 0.94 123.6 0.94
4 216.9 0.64 204.4 0.77 204.3 0.77
5 193.3 0.59 164.5 0.86 161.3 0.88
6 200.5 0.26 165.7 0.82 163.1 0.84
8 185.9 0.43 162.5 0.78 159.8 0.80
10 199.7 0.54 154.3 0.91 153.3 0.92
12 167.4 0.63 148.8 0.81 148.9 0.81
13 190.6 0.69 164.6 0.86 158.9 0.89
14 181.5 0.60 149.0 0.86 148.4 0.86
16 197.6 0.55 168.7 0.83 168.2 0.84
17 192.0 0.52 125.9 0.96 125.8 0.96
18 208.7 0.49 162.9 0.91 163.0 0.91
19 216.8 0.46 195.0 0.75 194.9 0.75
21 172.7 0.69 133.3 0.92 133.5 0.92
22 174.6 0.50 161.1 0.68 155.1 0.74
23 187.9 0.72 164.5 0.88 164.6 0.88
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Table 4.6: Predicted angle β for the different kinds of surface.
Table reports the angle β predicted by each subject in the third step. Where significant we report the F
and p-value of the one-way repeated measures ANOVA. Subject 3 did not complete the task.
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spond to the three degree of the angle α. All curves are ascending; the higher

the distance D, the higher the predicted angle β (F2,2 = 90.56, p = 0.011).

The curves are clearly separated; the higher the angle α, the higher the

predicted angle β (F2,2 = 204.61, p = 0.0048). As expected by the just men-

tioned single-subjects analysis, there are mean differences among subjects

(F19,19 = 20.97, p < 0.001).

Although not significant, the interaction between the factors distance and

slope (F4,4 = 5.34, p = 0.067) might evidence the multiplying integration

process just mentioned for some subjects.

Three-ways design Figure 4.6 shows the combined effects of the factors

distance, slope, and surface. The combination of these factors in the whole

sample seems to obey the general adding rule.

In each of the three panels, the curves are not at the same level on the

vertical axis. In the right panel they are higher than in the left and centre

panels; the higher the degree of roughness, the higher the predicted angle

β (F2,571 = 190.8, p < .0001). None of the interactions among factors is

statistical significative.

Surfaces We perform a repeated measure ANOVA in order to test the

differences among the levels of the factor surface and the ones of the factor

subject. According to the foregoing findings, all the factors are significant:

surface (F5,5 = 1390, p < 0.0001), subject (F21,21 = 56.69, p < 0.0001), and

the interaction (F105,105 = 14.5, p < 0.0001). These results are graphically

showed in figure 4.7.

The subjects arrange the smoothness of the different surfaces in an ap-

propriate way. The surface with low friction is the ice, followed by cement,
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Figure 4.5: R = f(Distance, Slope).
Box-plot of the observed data from the two-ways design. It shows the effect of the factors distance, and
slope on the predicted angle β. All the sample.
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Figure 4.6: R = f(Distance, Slope, Friction).
Box-plot of the observed data for all the sample from the three-ways design discussed in Experiment 1.
The plots show the effect of the factors surface, distance, and slope on the predicted angle β.
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Figure 4.7: R = f(Distance).
Box-plot of the observed data from the third step. It shows the effect of the factors surface on the predicted
angle β. All the sample.
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asphalt, grass, gravel, and mud. Although the factor surface is significant, the

subjects do not seem to differ between the level cement and asphalt (paired

t-test = -0.8521, df = 21, p-value = 0.404), and between the level grass and

gravel (t = -2.0797, df = 21, p = 0.0499). All the other paired t-test are

significant. These findings may support the general idea that common-sense

preconception in physics is not arbitrary or trivial: “every one of them was

argued by pre-Newtonian intellectuals” (Kearney, 2002, p. 53).

4.1.5 Discussion

In this experiment we evaluate the function knowledge with the single sub-

ject analysis. Only if strong evidences result from this step, it is possible to

look for some integration function for the whole sample. In fact, according to

Karpp and Anderson (1997), the Information Integration Theory can provide

a correct assessment of function knowledge especially for the single subjects

and then for the sample.

In order to improve this capability, a more suitable design may be useful.

For example, more replications may provide more robustness about the in-

tegration rule. Furthermore, the functional measurement may estimate the

psychological values using the full-factorial design with all the sub-designs.

This evaluation may refine the analysis and allow to make inferences con-

cerning the motion perception in the population.

78



4.2 Experiment 2: Evaluation of trust

4.2.1 Trust models

Trust influences interactions within and among groups (Castaldo, 2002; Mayer,

Davis, & Shoorman, 1995; Tyler & Kramer, 1996; Gambetta, 1988; Luna-

Reyes, Cresswell, & Richardson, 2004). Trust may be defined as “an ex-

pectancy held by an individual or a group that the word, promise, verbal or

written statement of another individual or group can be relied upon” (Rot-

ter, 1967). With a more recent definition, trust is “a subjective assessment

of another’s influence in terms of the extent of one’s perceptions about the

quality and significance of another’s impact over one’s outcomes in a given

situation, such that one’s expectations [. . . ] provide a sense of control over

the potential outcomes of the situation” (Romano, 2003).

In both definitions, trust is defined in terms of expectancies or beliefs, that

is, the inference about the other person’s traits and intentions. Expectancies

reflect the future orientation of trust. Beliefs reflect the critical role which

the perceptions about the other party play in trust (Yamagishi & Yamagishi,

1994; Falcone, Pezzulo, & Castelfranchi, 2003).

Based on a trust literature review, McKnight and Chervany (1995, 2002)

cluster the trusting beliefs into four attributes: benevolence, honesty, compe-

tence, and predictability.

Competence means that one believes that the other party has the ability or

power to do what one needs to be done. Benevolence means that one believes

that the other party cares about it and is motivated to act in one’s inter-

est. Honesty means that one believes that the other party makes good-faith

agreements, tells the truth, acts ethically, and fulfils promises (Bromiley &
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Cummings, 1995). Predictability means that one believes the other party’s

actions (good or bad) are consistent enough to be forecasted in a given situ-

ation.

Discussing a global model of trust, McKnight and Chervany (2002) suggest

that these believes may be cognitive integrated in the attribute of trustwor-

thiness with some weighting processes. Probably, anyone will give a high

trust judgement on the people described with the attribute of high compe-

tence. But what will happen to this evaluation, whether another attribute is

added? For example, low honesty, or moderate benevolence?

The following experiment is aimed at determining the integration rule

which underlies the multi-attribute evaluation of trustworthiness. The main

reason for distinguishing between these structures is that they have very dif-

ferent practical implications regarding the influence of various factors specific

to each case on the propensity to trust in.

In the additive model, the impact of the different factors and the direction

of the effects of the different factors (honesty, predictability, competence,

benevolence) are constant, not alterable. On the contrary, in an averaging

model each new factor may alter the impact of the previous factors, and the

direction of the effect of this factor depends on the values of the previous

factors.

For example, the presence of honesty is always a positive element even when

it assumes a very weak form. By contrast, in an averaging model, this pres-

ence can be a positive or a negative element depending on the current level

of honesty, which may be high as well as low.

The observation of such unexpected effects can be seen in the personality

impression, where in some cases the communication of positive information
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about a person can lower the general attractiveness of that person (Girard

& Mullet, 1997; Girard, Mullet, & Callahan, 2002). Consequently, the dif-

ference between the two forms of the general additive model has important

implications for the recommendations concerning trust management, both

interpersonal and organisational (Josang, Keser, & Dimitrakos, 2005).

4.2.2 Methods

Design The full factorial design is compounded by the four trust factors

(competence, benevolence, honesty, and predictability), each of them de-

scribed with three levels (low, medium, high).

In order to test the exact integration process at work, we vary the number of

the information factors given to the participants, as described in sect. 2.3.3.

That is, we study the factorial design with six two-ways sub-designs, formed

up by the combination of the four factors, and with four one-way sub-designs.

This method is similar to the one discussed by Meneghelli (2004) and Zicari

(2004).

Profiles The subjects are asked to judge the trustworthiness of potential

people, represented by multi-attribute profiles, described as situated in sim-

ilar interpersonal contexts.

The material is made up of 66 personal profiles for six interpersonal con-

texts: 12 single-attribute profiles and 54 two-attribute profiles. Each of the

12 single-attribute profiles mentions the single degree of honesty (low, in-

termediate, and high), benevolence, competence, and predictability. The 54

two-attribute profiles describe the characteristics of one person in terms of

the combination of couple of attributes: honesty × benevolence, honesty ×

competence, honesty × predictability, benevolence × competence, benevo-
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lence × predictability, competence × predictability. Each attribute has three

levels. Thus, 396 profiles are presented to the subjects.

The same question appears below each profile: “How much do you believed

trustworthy a person with these characteristics?” A 20 points Likert-type

scale appears beneath this question. The left-hand anchor is labelled “Not

at all”, and the right-hand anchor, “Completely”.

Procedure The profiles are presented in a random order. The participants

are asked to read each interpersonal context. Then, they are asked to read

each profile and to place a mark on the response scale where they believe

there is the most appropriate point. The participants worked individually,

at their own pace.

Subjects Four subjects are involved in this experiment. The data anal-

ysis is conducted both for each single subject and for the sample. In the

investigation of single subjects, “the populations to which the drawn infer-

ences are made up of instances of that subject and cannot validly transcend

him to populations of subjects [. . . ] Still, such single subject experiments

and their logically limited conclusions can be of either practical utility or

heuristic importance” (Cohen, 1988, p. 174).

Methods of analysis The analysis consists of three phases. The first

phase performs the analysis of variance on the observed data from the one-

way designs. This allows to look at the significance of the personal attribute

factor. We also verify the non-significance of the context factor, and we

look for individual differences. Moreover, with a robust regression approach

(Salibian-Barrera, 2005), we estimate the value parameters which best fit the

data. We round the values to an equally distance from the medium value,
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whenever this approximation does not lost power and informativeness.

In the second phases we analyse the data from the two-ways designs, in

order to select the integration model, among the multiplying, adding, and

averaging model.

At first, we perform the opposite effects test, associated with the equation

3.2, to verify the suitability of the averaging model. If the averaging model

holds, we proceed to estimate the weights for the equal weight case with the

equation 3.3. Furthermore, with the algorithm described in sect. 3.5, we

look for the most suitable subset of the weight parameters for the differential

weight case, according to the Bayesian goodness of fit index.

In order to improve the reliability of the selection, Burnham and Anderson

(2004) suggest to verify the reliability of the BIC index, comparing it with

the AIC index (Akaike, 1976), which is a different criterion for the model

selection, with an underlying different philosophy: these two indexes should

concord on the best model.

The third phase consists in the estimation of the overall weight and value

parameters for the whole design, which includes the one-way and the two-

ways designs. We expect to find the same value parameters, and the absolute

weight parameters for each factor. These absolute weights could predict the

integration of the factors in three-ways and four-ways factorial designs.

4.2.3 Results

The findings are presented in two main sections. In the first one, the analyses

which we carry out are exemplify for the single subject 1. The second section

focuses on the sample.
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Figure 4.8: Values from the one-way designs.
Box-plot of the observed values for the averaging model for a single subject.
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Section I: Single subject

Figure 4.8 shows the four box-and-whisker factorial plots of the observed

data collected in the four one-way designs, in which we estimate the values

of the factors. All the curves are clearly ascending, suggesting that the sub-

ject correctly differences among the three ordinal levels (low, medium, high).

Tables E.26, and E.27 show that the different levels of the factors are always

valuated with significant different values by this subject. In fact, the repeated

measures ANOVA performed on the data, reports as significant all the fac-

tors: predictability (F2,10 = 1067.3, p < 0.0001), honesty (F2,10 = 315.42,

p < 0.0001), benevolence (F2,10 = 186.67, p < 0.0001), and competence

(F2,10 = 409.36, p < 0.0001).

Moreover, we found that the model in which the levels are rounded to the

first decimal place is not significant worse than the model in which the level

values are estimated by the regression. So, we retain the rounded values

reported in table 4.7, as the values for the second step.

Figure 4.9 shows the factorial plots for each couple of factors. The three
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Figure 4.9: Estimated parameters from the two-ways designs.
Box-plot of the observed data from the two-ways designs; dashed curves show the optimal weight and
value parameters for the averaging model. Single-subject.
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dashed curves represent the model which best fit the data. Tables E.28,

E.29, and E.30 show that this subject generally uses the averaging rule to

integrate the joint effect of the attributes, with a 90% confidence interval.

This validation is obtained through the equation 3.2, which allows to verify

the suitability of the averaging model through the regression parameters.

Commonly, to assess the validity of a model, the adjusted R2 index may be

usefully used. This index measures the proportion of the variation in the

dependent variable accounted for by the explanatory variables. Unlike R2,

adjusted R2 allows for the degress of freedom associated with the sums of the

squares. We found that this index is always significant for all the analysed

models, with very high values, > 0.95. But, in our task, this index does not

allows to compare the different models. More often this index differs only at

the third or more decimal place.

Table 4.8 compares the goodness of fit indexes for the different models

for each sub-design. We report the residual sum of squares (RSS) and the

BIC index. The lower are the indexes the better is the model. The model

comparison shows that the optimal model is always obtained in the differen-

tial weight case.

In order to verify the reliability of the R-AVERAGE estimation procedure,

the AVERAGE program (Zalinski & Anderson, 1986) is applied to the mean

data of each sub-design. Comparing the goodness of fit indexes, the first

procedure provides more reliable estimations, with ∆BIC always > 6. This

difference corresponds to a strong evidence.

Table 4.9 reports the rounded estimations of the weight and value pa-

rameters for the overall design. The same procedure described in sect. 3.5
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Table 4.7: Estimated values for the levels of the factors. Single subject.

High Medium Low
Predictability 18.0 9.0 0.0
Honesty 20.0 10.5 1.0
Benevolence 20.0 10.0 0.0
Competence 19.5 10.0 0.5

Table 4.8: RSS and BIC index for the evaluated models for single-subject.
Every sub-design is evaluated in the equally weight case, wA = kA, and in the differential weight case,
wAj = kAj . The parameter estimations is also provided by the AVERAGE program. Factors are identified
by the first uppercase letter: Predictability, Honesty, Competence, Benevolence.

Adding Multiplying Averaging
wA = kA wAj = kAj AVERAGE

BIC RSS BIC RSS BIC RSS BIC RSS BIC RSS
P×H 232 174 267 357 236 188 218 115 238 166
P×B 242 208 256 291 241 207 227 127 232 163
P×C 219 136 267 356 229 163 220 111 228 139
H×B 196 89 264 339 198 92 182 59 205 98
H×C 280 422 262 328 243 212 229 132 240 202
B×C 228 163 272 392 227 160 217 106 230 144

Table 4.9: Rounded estimations of the weight and value parameters for the
overall design. Single-subject.

Values Weights
High Med Low High Med Low

Predictability 18.0 7.5 0.0 0.5 1.5 1.0
Honesty 20.5 10.0 0.5 1.0 1.5 1.5
Benevolence 19.0 9.5 0.0 1.0 1.0 1.0
Competence 19.0 9.5 0.5 1.0 1.5 1.5
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has the capability to estimate the weights from the two-ways designs and to

estimate the weights and values from the overall design.

Even though we use only one-way and two-ways designs (396 profiles), with-

out considering the three-ways sub-designs, which would require the evalua-

tion of other 648 profiles, and the full factorial one (furthermore 648 profiles),

we obtain some reliable estimations which correctly explain the observed

data. With some more suitable designs, the estimated parameters would

fit the data better, but the number of stimuli to be evaluated will increase

quickly.

Generally, the value parameters maintain the same differences and values in

all conditions. This subject does not seem to change the scale values in dif-

ferent conditions. The weight parameters suggest that the most important

levels are the medium and low levels of the factors honesty and competence.

Figures E.1, E.2, and E.3 show similar findings for the other subjects.

Section II: All the participants

Tables E.31, E.32, E.33, and E.34 show that the different levels of the fac-

tors are always valuated with significant differences by the sample. The

repeated measures ANOVA supports the significance of all the factors: pre-

dictability (F2,10 = 99.61, p < 0.0001), honesty (F2,10 = 159.70, p < 0.0001),

benevolence (F2,10 = 143.48, p < 0.0001), and competence (F2,10 = 629.37,

p < 0.0001). Individual differences among subjects appear for the factor

benevolence (F3,15 = 7.42, p < 0.003). As for the single subjects, we keep the

rounded values reported in table 4.10 for the next step.

Figure 4.10 shows the factorial plots for each couple of factors. The three

dashed curves represent the model which best fits the data. Tables E.35,
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E.36, E.37, E.38, E.39, and E.40 show that most of the subjects use the

averaging rule to represent the joint effect of the attributes.

Table 4.11 refers the estimated weights for each level of the couple of

factors. We report the absolute weights setting each minimal weight to one,

and multiplying the others for this value. This allows to compare the weights

of the levels among themselves, in order to recognise which levels or factor

are more influent in the integration process. A qualitative analysis allows

to point out that, integrating the factor predictability with the one of three

others, the subjects grant few importance to this factor against the others,

with a mean ratio of 1 : 1.90, and with a maximum absolute weight equal to

9.9. Conversely, integrating the factors competence, benevolence and honesty

in the two-ways designs, the subject give a very different value only to a bit

of weight levels, with a mean ratio of 1 : 1.19, and with a maximum of 2.7

for the low level of the factor honesty integrated with the factor benevolence.

These findings may suggest that the three factors are integrated with the

same weights and are recognised as to be equally important.

Starting from the equal weight case, in which the levels within a factor are

equal, but not the levels between the factors, the R-AVERAGE function esti-

mates the weight parameters differing the minimal number of levels, in order

to obtain the optimal set of the six parameters (three plus three weights). In

the six two-ways design we obtain that the function differs from three (2+1)

to six (3+3) parameters, with a mean equal to 4.5 (2.14 + 2). This may indi-

cate that some levels are more important than others, and especially that it

is not always necessary to consider the full differential weight case in order

to explain the averaging rule. Many time it is sufficient to consider a case in

which only one or two weight levels differ.

Table 4.12 makes a comparison among the goodness of fit indexes for the
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Table 4.10: Estimated values for the levels of the factors. All the sample.

High Medium Low
Predictability 15.5 9.0 2.5
Honesty 19.0 9.0 1.5
Benevolence 18.0 9.5 1.0
Competence 18.0 8.5 3.0

Table 4.11: Estimated weights
The table shows the estimated weights for each level of the couple of factors, estimated in the two-ways
designs by the R-AVERAGE procedure and by the AVERAGE program (in brackets). Each factor is
identified by the first uppercase letter: Predictability, Honesty, Competence, Benevolence.

1st factor 2nd factor
High Med Low High Med Low

P×H 1.0 (1.0) 1.5 (2.0) 1.0 (2.0) 1.1 (2.4) 2.5 (2.1) 3.0 (2.0)
P×B 1.0 (1.0) 3.8 (2.0) 4.3 (2.0) 6.1 (2.2) 9.9 (2.0) 2.3 (2.3)
P×C 1.0 (1.0) 1.8 (1.9) 1.0 (1.9) 1.5 (2.3) 1.5 (1.9) 3.9 (1.9)
H×B 1.0 (1.0) 1.8 (1.1) 2.7 (1.1) 1.0 (1.1) 1.0 (1.1) 1.8 (1.1)
H×C 1.0 (1.9) 1.2 (2.1) 1.2 (1.0) 1.2 (1.9) 1.2 (2.1) 1.2 (1.0)
B×C 1.0 (1.4) 1.7 (2.0) 1.5 (1.0) 1.5 (1.4) 1.5 (2.1) 1.5 (1.0)
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different models. This comparison shows that the optimal model is obtained

in the differential weight case, although for the couple of factors predictabil-

ity × competence there are not any positive evidence in order to obtain an

optimal selection. In fact, the data may be explained both by the adding

and the averaging model. Although the RSS of the averaging model is lower

than the one of the regression, the BIC index penalises the higher number of

parameters in the first model. This situation may be due to the individual

differences within the subject (F3,15 = 11.65, p < 0.0003).

Following the procedure proposed by Falconi and Mullet (2003), we ap-

ply the AVERAGE program to the mean data of each sub-design. Generally,

comparing the goodness of fit indexes, the R-AVERAGE procedure provides

more reliable estimations. Only in one sub-design this program presents bet-

ter estimations. But this performance is due to an adjustment of the scale

values, with no regarding of the whole design.

Globally, we found found that the parameter estimated for the equal

weight case accounts for the 95.55% of the variance (BIC = 1402.11). The

procedure implemented by Zalinski and Anderson (1986) accounts for the

95.79% of the variance (BIC = 1411.82) and our procedure explains the most

of the variance, R2 = 96.82% (BIC = 1348.56). The general capabilities of

these two algorithms will be discussed in sect. 4.3.

Table 4.13 reports the absolute parameters of the weight and value pa-

rameters for all the sample. Generally, the parameters which best fit the

overall design are very similar to the ones estimated in the two-ways designs.

An important result is that the value parameters maintain the same differ-
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Table 4.12: RSS and BIC indexes for the evaluated models.
Every sub-design is evaluated in the equally weight case, wA = kA, and in the differential weight case,
wAj = kAj . The parameter estimations for this last case is also provided by the AVERAGE program.
Factors are identified by the first uppercase letter: Predictability, Honesty, Competence, Benevolence.

Adding Multiplying Averaging
wA = kA wAj = kAj AVERAGE

BIC RSS BIC RSS BIC RSS BIC RSS BIC RSS
P×H 1058 1534 1140 2301 1058 1538 1052 1387 1065 1477
P×B 1010 1230 1112 2028 1012 1241 983 981 1017 1180
P×C 986 1101 1083 1766 998 1163 987 1053 984 1036
H×B 1045 1449 1060 1590 1031 1355 992 1053 1014 1221
H×C 1014 1255 1030 1386 1024 1312 972 981 983 1060
B×C 1056 1521 1102 1935 1057 1531 1024 1222 1032 1265

Table 4.13: Estimations of the weight and value parameters for the overall
design.

Values Weights
High Medium Low High Medium Low

Predictability 15.3 8.5 2.0 0.7 1.6 1.1
Honesty 19.5 9.1 0.6 1.0 2.1 1.9
Benevolence 18.2 8.6 0.4 1.1 2.4 1.6
Competence 18.3 8.6 1.5 1.1 1.9 2.1
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ences and values in all the conditions. Subjects do not seem to change the

scale values in different conditions.

The weight parameters suggest that the most important levels are the medium

levels of the factors benevolence, honesty and competence, and the low levels

of the factors honesty and competence. That is, in a trust judgement, the

subjects give a great negative importance to the people with low honesty or

low competence, while they expect that a trustworthy person will be highly

competent, honest, and benevolent.

In addition, the weights of the factor predictability are less important when

the factor predictability is integrated with the other factors. This result ac-

cords with Mayer et al. (1995), who consider predictability as an economic-

based sub-construct, excluding it from their trust typology.
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Figure 4.10: Estimated parameters from the two-ways designs.
Box-plot of the observed data from all the sample; dashed curves show the optimal weight and value
parameters for the averaging model.
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4.3 Estimation procedures comparison

The last set of analyses employes a Monte Carlo simulation technique, in

order to investigate the properties of the averaging model parameters esti-

mations with two numerical procedures.

The aim of this analyses is to verify the capability of the estimated parame-

ters to accurately define the data, and to compare the properties of the two

foregoing minimisation algorithms for the averaging model: the STEPIT al-

gorithm (Chandler, 1969) implemented in the AVERAGE program (Zalinski

& Anderson, 1986), and the L-BFGS-B algorithm (Byrd, Lu, Nocedal, &

Zhu, 1995), used for the R-AVERAGE function.

4.3.1 Methods

We follow a procedure similar to the one proposed by Zalinski (1987) and

recently implemented by Bubna and Stewart (2000). That is, we use Monte

Carlo techniques to estimate the averaging model parameters using simu-

lated data from a standard factorial design (Manly, 1997; Wichmann & Hill,

2001a, 2001b). These simulations demonstrate that accurate estimations of

the averaging model parameters can be consistently obtained from realisti-

cally simulated experiments.

Monte Carlo runs are realised by specifying the design size and true param-

eter values, by generating error-free data, by adding random normal error

to simulate real data, and then by estimating the model parameters from

these data. We analyses a 3 × 3 design, in which two different factors are

compounded in accordance with the averaging model.

For the error-free averaging model, the data values which represent the sim-
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ulated subjects’ responses, range in value from 0 to 20, while the absolute

weights range from 1 to 3. These ranges are similar to the findings of the

previous experiment.

The random errors are obtained by generating independent normal random

numbers with the algorithm proposed by Wichura (1988). We generate three

sets of random error, varying the standard deviation of the errors (SD = 1,

0.1, and 1.5).

The simulations run by estimating one hundred separate sets of averaging

model parameters for each set of data. This runs number is generally ade-

quate to establish the numerical and statistical properties of the estimations

(Gorin, Dodd, Fitzpatrick, & Shieh, 2005).

The parameters are estimated from the data using the two just mentioned

minimisation routines and the least squares minimization criterion. The same

set of bound constraints is used for each routine.

4.3.2 Results

We carry out analyses on the simulated data. In order to get a measure of

the data variability, we calculate the RSS provided by the real parameters

set, which is compounded by 3 degrees of values + 3 degrees of weights × 2

factors.

With the procedure implemented on the L-BGFS-B algorithm, we estimate

the parameters set by fitting the averaging model to all the replication data,

and we calculate the RSS. Moreover, we calculate the RSS provided by the

parameters sets estimated for each single replication.

In order to compare the different procedures, we also estimate the parame-

ters by fitting the model to the data of each replication using the AVERAGE

program in the way indicated by Zalinski and Anderson (1990). We calcu-
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late the RSS both for the sets of parameters and for the set of the mean ones.

Figure 4.11 shows the results for this simulation run, in which the stan-

dard deviation of the errors is the unity (SD = 1). The three dashed curves

represent the real parameters and the ones estimated by the two different

procedures for the differential weight case averaging model. Similar plots are

obtained for other simulation conditions, with SD = 0.1 (fig 4.12) and SD =

1.5 (fig. 4.13).

A qualitative analysis carried out on these plots does not provide very strong

results. In each upper plot, the dashed curves which represents the parame-

ters estimated with the L-BGFS-B algorithm seem to be the same as the ones

which describe the real parameters. Moreover, the curves for the parameters

estimated with the STEPIT minimisation algorithm are not so closer as it is

for the last parameters. The two bottom plots are the two normal QQ-plots

of residuals. The STEPIT algorithm seems to be more inaccurate in the pa-

rameter estimation not only for the extreme observations, the outliers, but

also for the observations outside one standard deviation. But a qualitative

analysis does not provide strong information in order to verify and to com-

pare the estimation capabilities.

Tables 4.14-4.16 quantitatively compare the residuals provided by the dif-

ferent procedures. Generally we obtain that our procedure estimates more

reliable parameters with the lowest RSS and with the highest R2 for every

simulation run. All the values parameters estimated with the L-BGFS-B

algorithm are bounded within a range of 10% from the real value, and the

weight are in the same range. The R2 index is always greater than the one

provided for the real data, showing the efficacy of the minimisation algorithm
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which allows for the data variability. When we generate a parameters set for

each replication, we obtain strong weight and value parameters. That is, in

this condition we obtain the minimal RSS and the highest R2 value. The

data variability is explained by the estimated parameters more than by the

real parameters. Estimating a single set of parameters for each replication,

the standard distribution of the parameters provided by the R-AVERAGE

function is higher than the alternative one. Thus, we encourage to perform

the parameters estimations using all the data from the factorial design at the

same time.

The weights, values and fit indexes are very different by using the alternative

algorithm. Especially the RSS grows up twice more than data variability

(RSS +84% for the first data set). The worst estimation is provided for the

second run, in which the errors are the smallest (RSS +8, 884%). Better

findings are provided for the third run, in which, due to the errors, there is

a great data variability (RSS +31%).

More analyses and data generations are needed in order to document

the statistical properties of the parameters estimated using our and different

techniques. Different starting values and settings are to be compared. In

particular, we suggest to investigate different factorial designs, varying the

numbers of factors and levels. The incomplete responses to the full factorial

design are also to be considered. Furthermore, some efficiency indexes have

to be identified and compared.
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Figure 4.11: Experiment 3: First data set (Errors SD = 1).
The three dashed curves represent the real parameters and the ones estimated for the unequal case aver-
aging model by the alternative procedures. On the botton the QQ-plot of the residuals of the parameters
estimated by the R-AVERAGE and AVERAGE functions.
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Table 4.14: Experiment 3: First data set (Errors SD = 1).
The upper table reports the estimated weight and value parameters, the R2 index, and the residual sum
of squares (RSS) estimated for all the data. The second table summaries the findings for every single
replication. The mean and the standard deviation for the estimated parameters is reported.
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Figure 4.12: Experiment 3: Second data set (Errors SD = 0.1).
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Table 4.15: Experiment 3: Second data set (Errors SD = 0.1).
The upper table reports the estimated weight and value parameters, the R2 index, and the residual sum
of squares (RSS) estimated for all the data. The second table summaries the findings for every single
replication. The mean and the standard deviation for the estimated parameters is reported.
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Figure 4.13: Experiment 3: Third data set (Errors SD = 1.5).
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Table 4.16: Experiment 3: Third data set (Errors SD = 1.5).
The upper table reports the estimated weight and value parameters, the R2 index, and the residual sum
of squares (RSS) estimated for all the data. The second table summaries the findings for every single
replication. The mean and the standard deviation for the estimated parameters is reported.
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Chapter 5

Discussion

The large applicability of the cognitive algebra to model the Information

Integration processes has been established for more than thirty years of re-

search and experimentation in Psychology. Over the last years, researchers

have been interested in the selection of the optimal algebraic model in order

to explain the cognitive functions and the goal-oriented behaviours.

The Functional Measurement Theory allows to assess the cognitive rules

especially with the support of the goodness of fit indexes. Anderson (1981,

2001b) argues that an error theory is needed to assess whether a hypothe-

sised model accounts for the observed data and how much it explains the

response variability. He suggests as statistical tools the analysis of variance

(ANOVA) and the measurement of the correlation.

Moreover, the estimation of the weight and scale parameters for the purpose

of quantitative and qualitative stimulus comparison has been completed in

many experiments, usually with the AVERAGE program implemented by

Zalinski and Anderson (1986). This program estimates the averaging pa-

rameters for a single subject, with no replications. In order to get overall

105



estimations, some central tendency indexes, as the mean or the median, have

to be used.

The present study characterises a methodology for the improvement of

the model assessment; in particular, we look for a reliable procedure for the

model selection. One of our goals was to integrate the theoretical framework

given by the principle of parsimony with some operative criteria, as the ab-

solute and comparative goodness of fit indexes (R2, F , RSS, AIC and BIC

indexes).

We attempt to find the convergence of these different indexes, in order to

select the optimal model which accounts for the data variability. The im-

plemented R-AVERAGE function provides a procedure which automatically

estimates and reports all these indexes and selects the best model.

Furthermore, we looked for obtaining an overall evaluation of the whole

factorial design, which in general is not possible if the measurements are taken

repeatedly on the same subjects. In fact, the repeated measures ANOVA,

which provides a significant test for each factor and each interaction, gen-

erally lets the residual sum to zero. The zero quantity does not allow to

estimate the likelihood indexes which are usually evaluated in a factorial de-

sign, and does not allow to compare different models.

But a cognitive model is plausible not only when its factors explain the

observed data for a single trial, but also when this model provides some evi-

dences for the whole, absolutely or at least towards other models. Thus, we

systematically evaluate the residual from each model. Following a procedure

similar to the one used by Karpp and Anderson (1997), we algebraically in-

tegrate the independent variables and than we analyse the residual between
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the predicted data and the dependent variable. We evaluate the differences

among the BIC index, the adjusted R2, the RSS, and at least, the AIC index

provided for the models, adjusting these indexes for the degrees of freedom of

every model. This adjustment is especially required for the averaging model

when comparing the equal weight case with its next ones.

A specific achievement of this research is the implemented function for

the estimation of the weight and value parameters of the averaging model.

Our findings suggest that the estimated parameters can account for the cog-

nitive integration process, providing up to strong evidences for the averaging

model, especially in the differential weight case.

Some preliminary findings could suggest the reliability of the estimation pro-

cedure and the suitability of the R-AVERAGE algorithm. This one provides

good weight and value parameters for the averaging model under different er-

ror conditions. The estimated parameters minimise the residuals more than

the ones provided by the different algorithm.

In order to estimate the model parameter, the implemented procedure does

not require to constrain the data to a central tendency index; in fact, this

procedure uses all the observations simultaneously in order to perform the

residual minimisation.

We analyse the algebraic structure of the motion knowledge in the task

of intuitive physics, and the algebraic structure of the trustworthy attribu-

tion in the task of personal judgement. Usually, we find strong evidences for

cognitive algebra, especially in the single subject analysis.

In the first task, the most important finding is the general presence of an

algebraic rule in motion knowledge. The functional measurement allows to
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asses this rule as an adding, multiplying, or a mixed model. Furthermore,

we look at the changing in the integration process due to the introduction of

a new factor. The initial results suggest that, introducing a third factor, the

integration function no longer considers one of the design factors, or it simpli-

fies the task with effortless rules, which could be yielded by some heuristics.

In this experiment we evaluate the intuitive physics knowledge with the sin-

gle subject analysis. It is correct to look for an integration function for the

sample only if the cognitive model holds for every single subject.

In the second task, supported by a suitable design, we analyse how four dif-

ferent attributes can be compounded in order to attribute a personal judge-

ment of trustworthiness. We estimate both the scale values and the weight

parameters for each of the trust attributes. We find the general presence of

the averaging rule which integrates these factors. An interesting finding is

represented by the value parameters which maintain the same values in all

conditions.

Moreover, the comparison of the weight parameters suggests that some lev-

els of the factors are more important than the others. We find that the

medium and low levels of the factors benevolence, honesty and competence

are more important than the high ones, and more important than the factor

predictability. There are very different practical implications regarding the

influence of various factors on the propensity to trust in.

The results of these experiments offer some suggestions for the researchers

who are interested in estimating and comparing the adding, multiplying or

averaging model and their parameters.

In order to improve the reliability of the estimations, a more suitable design

may be useful. Especially, more replications may provide more robust evi-
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dences about the integration rule. In fact, a way to improve the statistical

properties of the model selection and parameter estimation is to obtain more

data. One simple way to achieve this result is by running the same subject

through multiple replications of the design configuration.

Moreover, a full-factorial design with all the sub-designs may let the func-

tional measurement provide more reliable estimations. These improvements

may refine the analysis and allow to draw inferences about populations of

subjects.
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Appendix A

The Ockham’s razor

William of Ockham (ca. 1285-1349) was an English Franciscan friar and

philosopher from a small village in Surrey, in the south-west of London. As

a Franciscan, William was devoted to a life of extreme poverty. As a philoso-

pher, he is remembered as one of the greatest logicians of all centuries.

He is considered the father of modern epistemology, because of his strongly

argued position according to which only individuals exist, rather than uni-

versals, essences, or forms. He affirmed also that universals are the products

of abstraction from individuals by the human mind and have no extra-mental

existence (Charlesworth, 1956; Giorello, 1994). This is a critic of scholastic

philosophy, whose theories grew ever more elaborate without any correspond-

ing improvement in the predictive power.

Ockham introduced a methodological principle in the explanation and

theory building, especially with the formulation of a razor that bears his

name, the Ockham’s razor. The formulation of this razor is typically phrased

in Latin “entia non sunt multiplicanda praeter necessitatem”, which, approxi-

mately translated, means “entities are not to be multiplied beyond necessity”.
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There are a variety of similar phrases in Ockham, such as: “frustra fit per

plura quod potest fieri per pauciora”, “non est ponenda pluritas sine necessi-

tate”, “quando propositio verificatur pro rebus, si duae res sufficient ad eius

veritatem, superfluum est ponere tertiam”, “nulla pluralitatis est ponend nisi

per rationem vel experientiam vel auctoritatem illius, qui non potuit falli nec

errare, potest convinci” (Tornay, 1938; Fumagalli Beonio Brocchieri, 1996).

This principle inspired numerous expressions including: the “parsimony of

postulates”, and the “principle of simplicity”.

Before the 20th century it was believed that the justification for Ock-

ham’s Razor was metaphysical simplicity. It was thought that nature was,

in some sense, simple and that our theories about nature should reflect that

simplicity. With such a metaphysical justification came the implication that

Ockham’s Razor is a metaphysical principle. From the beginning of the 20th

century, these views fell out of favor as scientists presented an increasingly

complex view of the world. In response, philosophers turned away from meta-

physical justifications for Ockham’s Razor to epistemological ones including

inductive, pragmatic, likelihood and probabilistic justifications. Today it is

often invoked by learning theorists and statisticians as a justification of the

preference of simpler models rather than more complex ones.

Scientists know from experience that Ockham’s razor works, and they

reflect this experience in the choice of their prior probabilities when they

favour an hypothesis which is in accord with their experience. In fact, even

though scientists do not usually think in terms of prior probabilities when

they consider an hypothesis, they are doing actually this, that is considering

simple hypotheses before the complex ones. This approach is also consistent
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with the tentative and the step-by-step nature of science, where an hypoth-

esis is taken as a working hypothesis, and altered and refined as soon as new

data become available (Jefferys & Berger, 1992).

“When deciding between two models which make equivalent predictions,

choose the simpler one”. A main problem is concerned with the equation

“simplest is best”. The Ockham’s razor never claims to choose the “best”

theory, but it only proposes simplicity as the deciding factor in the choice

between two otherwise equal theories. Given more information, most of the

time the more complex theory might turn out to be correct. Ockham’s razor

makes no explicit claims whether or not this will happen, but prompts us

to use the simpler theory until we have reason to do otherwise (Murphy &

Pazzani, 1994). Similarly, it is possible for two different theories to explain

the data equally well, also having no relation between each other, and sharing

no same elements. Some would argue that in this case Ockham’s razor does

not suggest any preference.
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Appendix B

The Bayes’ theorem

B.1 Thomas Bayes

Thomas Bayes (ca. 1702-1761) was a British mathematician and Presbyte-

rian minister, known for having formulated a special case of Bayes’ theorem,

which was published posthumously (Bayes, 1763).

In the first decades of the eighteenth century, many problems concerning the

probability of certain events, given specified conditions, were solved. For ex-

ample, given a specified number of white and black balls in an urn, what is

the probability to draw a black ball? These are sometimes called “forward

probability” problems. The attention turned soon to such a problem: given

that one or more balls were drawn, what can be said about the number of

white and black balls in the urn? The Bayes’ essay contains his solution to

a similar problem, posed by Abraham de Moivre, author of The Doctrine of

Chances (1733): “The probability of any event is the ratio between the value

at which an expectation depending on the happening of the event ought to

be computed, and the chance of the thing expected upon it’s happening”.
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In modern utility theory, we would say that the expected utility is the

probability of an event multiplying the payoff received in case of that event.

Rearranging this definition for the probability, we obtain Bayes’ definition.

As Stigler (1983) points out, this is a subjective definition, and does not

require repeated events.

B.2 The statement of Bayes’ theorem

Bayes’ theorem is a result of the probability theory, which relates the condi-

tional distribution of probability to the marginal one. As a formal theorem,

Bayes’ theorem is valid in all interpretations of probability. Bayes’ theorem

relates the conditional and marginal probabilities1 of stochastic events A and

B:

P (A|B) =
P (B|A)P (A)

P (B)
(B.1)

In Bayes’ theorem each term has a conventional name:

• P (A) is the prior or marginal probability of A. It is “prior” in the sense

that it does not take into account any information about B.

• P (A|B) is the posterior probability of A, given B. It is “posterior” in

the sense that it is derived from or entailed by the specified value of B.

• P (B|A), for a specific value of B, is the likelihood function for A given

B.

• P (B) is the marginal probability of B, and acts as the normalizing

constant.
1 Conditional probability is the probability of an event A, given that

an other event B has already occurred. Conditional probability is written
P (A|B), and is read “the probability of A, given B”. Marginal probability
means the probability of one event, regardless of the other event.
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In order to derive the theorem B.1, we start from the definition of conditional

probability. The probability of event A given event B is:

P (A|B) =
P (A ∩B)

P (B)

and the probability of event B given event A is:

P (B|A) =
P (A ∩B)

P (A)

Combining these two equations, we obtain:

P (A|B)P (B) = P (A ∩B) = P (B|A)P (A)

Dividing both sides by P (B), providing that it is non-zero, we obtain Bayes’

theorem:

P (A|B) =
P (B|A)P (A)

P (B)

More generally, for any Ai partition of the event space, the theorem can be

stated as

P (Ai|B) =
P (B|Ai)P (Ai)∑
j P (B|Aj)P (Aj)

(B.2)

The ratio P (B|A)/P (B) is called the standardised likelihood, so the the-

orem may also be paraphrased as

posterior = standardised likelihood× prior

In this way, Bayes’ theorem can be written in terms of a likelihood ratio Λ

and odds O as

O(A|B) = O(A) · Λ(A|B)

where

O(A|B) =
Pr(A|B)

Pr(AC |B)
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are the odds of A given B,

O(A) =
Pr(A)

Pr(AC)

are the odds of A by itself, and

Λ(A|B) =
L(A|B)

L(AC |B)
=

Pr(B|A)

Pr(B|AC)

is the likelihood ratio.

B.3 Bayesian inference

Bayesian statisticians believe that Bayesian inference is the most suitable

logical basis for the discrimination between conflicting hypotheses (Fienber,

2003). It uses an estimate of the degree of belief in a hypothesis before the

advent of some evidence to give a numerical value to the degree of belief in

the hypothesis after the advent of the evidence. Because it relies on subjec-

tive degrees of belief, however, it is not able to provide a completely objective

account of induction.

The Bayes’ theorem represents a way of incorporating new data into our

understanding of the world (Stigler, 1982). Let Hi, with i = 1, 2, . . . , n, be

mutually exclusive and exhaustive hypotheses. Let P (Hi|E) represent our

personal probability that the hypothesis Hi is true, given all the relevant

prior information E that is available to us. Let D represent some new piece

of data that comes to our attention. Then Bayes’ theorem tells us that we

should update our personal probabilities according to the rule

P (Hi|E ◦D) =
P (D|Hi ◦ E)P (Hi|E)

P (D|E)
. (B.3)
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where P (D|Hi ◦ E) is the probability that we would observe D, given that

Hi is true and assuming the information E; and P (Hi|E ◦D) is our updated

personal probability that Hi is true, given both the old information E and

the new information D. The denominator is the total probability of observ-

ing the data, summed over all the mutually exclusive hypotheses.

The scaling factor P (D|Hi ◦E)P (Hi|E)/P (D|E) gives a measure of the im-

pact that the observation has on the belief in the hypothesis. If it is unlikely

that the observation is made unless we consider true the particular hypoth-

esis, then this scaling factor will be large. Multiplying this scaling factor

by the prior probability of the hypothesis, gives a measure of the posterior

probability of the hypothesis given the observation (Jefferys & Berger, 1992).
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Appendix C

A short introduction to Robust

statistical procedures

Robust statistics Since 1960, many theoretical efforts have been devoted

to develop statistical procedures which are resistant to small deviations from

the assumptions. It is well-known that classical optimum procedures behave

quite poorly under slight violations of the strict model assumptions.

Robust statistics develop themselves as an extension of the parametric statis-

tics, taking into account that parametric models are at best only approxi-

mations to reality. Robust statistics deals with deviations from ideal models

and their dangers for corresponding inference procedures. Its primary goal is

the development of procedures which are still reliable and reasonably efficient

under small deviations from the model, i.e. when the underlying distribution

lies in a neighbourhood of the assumed model.

Main aims of robust procedures Robust statistical procedures focus

on estimation, testing hypotheses and in regression models. From a data-

analytic point of view, robust statistical procedures aim at:
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• find the structure fitting best the majority of the data;

• identify deviating points (outliers) and substructures for further treat-

ment;

• in unbalanced situations: identify and give a warning about highly

influential data points (leverage points).

Fundamental concepts There is a great variety of approaches towards

the robustness problem. Among these, the procedures based on M-estimators

(and gross error sensitivity) and high breakdown point estimators (and break-

down point) play an important and complementary role. The breakdown

point of an estimator is the largest fraction of the data that can be moved

arbitrarily without perturbing the estimator to the boundary of the param-

eter space. Thus, the higher the breakdown point is, the more robust the

estimator against extreme outliers grows. However, the breakdown point is

not enough to assess the degree of robustness of an estimator. Instead, the

gross error sensitivity gives an exact measure of the size of robustness, since it

is the supremum of the influence function of an estimator, and it is a measure

of the maximum effect which an observation can have on an estimator.

References This introduction is based on a tutorial on robust statistics

presented by Bellio and Ventura (2005) at the International Workshop on

Robust Statistics and R.

There are some books on robust statistics: Huber (1981) and Hampel, Ronchetti,

Rousseeuw, and Stahel (1986) are the main theoretical ones; a book about

practical application of robust methods with S and R functions is written by

Marazzi (1993).
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Appendix D

Program implementation

D.1 Experiment 1

This is the source of the program used to analyse the observed data in Ex-
periment 1 (sect. 4.1). New classes and functions are underlined.

Listing D.1: Main function for Experiment 1.
source("fun.all.R")

# Read the observed dat
exp1← read.table("exp1ab.raw",header=TRUE)
exp1← as.matrix(exp1)
dati← NULL
for (i in 1:dim(exp1 )[1]) {

block← matrix(rep(exp1[i,4:6],3),3, byrow=TRUE)
block← cbind(matrix(exp1[i,1:3],3),

c(5,10,15), block)
dati← rbind(dati ,block) }

dati← cbind(dati[,c(1:3)] ,0 , dati[,c(4:5)])
colnames(dati)← c("y","degree","distance",

"texture","session","id")

# Data from the two -factor design
# Degree X Distance

trial ← dati[dati[,"texture"]==0,]
y ← trial[,"y"]
slope ← factor(trial[,"degree"])
distance← factor(trial[,"distance"])
rep ← factor(trial[,"session"])
id ← factor(trial[,"id"])

# ANOVA Repeated measures
arm(y~distance*slope*rep*id)
# Model selection
models(trial ,obj="y")
# Plot data
plot3x3(trial[,"y"],main="Values from trials")

# Data from the three factor design
# Degree X Distance X Texture

expA ← dati[dati[,"texture"]>0,]
y ← expA[,"y"]
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slope ← factor(expA[,"degree"])
distance← factor(expA[,"distance"])
surface ← factor(expA[,"texture"])
id ← factor(expA[,"id"])

# ANOVA Repeated measures
arm(y~distance*slope*surface*id)
# Model selection
models(expA ,obj="y")
# Plot data
y.smooth← expA[expA[,"texture"]==1,][,"y"]
y.medium← expA[expA[,"texture"]==2,][,"y"]
y.rough ← expA[expA[,"texture"]==3,][,"y"]

plot3x3(y.smooth ,main="smooth",ylim=range(y))
plot3x3(y.medium ,main="medium",ylim=range(y))
plot3x3(y.rough , main="rough" ,ylim=range(y))

x← values[,"y"]
roblm(y.smooth~x)
roblm(y.medium~x)
roblm(y.rough ~x)

D.2 Experiment 2

This is the source of the program used to analyse the observed data of each
subject in Experiment 2 (sect. 4.2). Each class or function which is under-
lined is implemented in a separate library, available from the author.

Listing D.2: Main function for Experiment 2.
source("classes.R")
source("fun.all.R")

liv← 3; trial← 6; subject← 2

# Value estimation
data.single ← readTable("one -way.raw",header=TRUE)
values ← matrix(NaN ,4,3)

for (i in 1: length(fattore )){
single ← readSingle(data.single , liv , trial ,

subject=subject , fattore=fattore[i])
show(single)

anova.value← valueAnova(single)
print(anova.value)

values← analyzeLevels(single)
draw(values)
print(values)

values[i,]← extract(values)
}

# Weights estimation
data.pair ← readTable("two -ways.raw",header=TRUE)
pair ← combination (4,2)

for (i in 1:dim(pair )[1]){
pair ← readPair(data.pair ,liv ,trial ,

subject=subject ,pair[i,])
show(pair)
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values.pair← paired(pair[i,],values)
anova.pesi← weightsAnova(pair ,values.pair)
print(anova.pesi)

weight← analyzeWeights(pair ,values.pair)
print(weight)
draw(weight)
drawOppositeTest(weight ,values.pair)
}
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Appendix E

Tables and Data plots

Here is reported the overall output of the data analysis for the first experi-
ment, described in sect. 4.1, and for the second one, discussed in sect. 4.2.

Listing E.1: Experiment 1: Results for the 1st subject
# ---------------
# Subject: 1
# ---------------
Analisi Trial
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

slope 2 225.778 112.889 1.1178e+32 < 2.2e-16 ***
distance 2 36.778 18.389 1.1033e+02 0.008982 **
rep 1 2.000 2.000
slope:distance 4 6.889 1.722 2.5833e+00 0.190172
slope:rep 2 2.02e-30 1.01e-30
distance:rep 2 0.333 0.167
slope:distance:rep 4 2.667 0.667
Residuals 0 0.000
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Fit Indexes for model without repeted factor
R2: 0.982 F(8 ,9): 60.625 AIC: 48.025 BIC: 56.929

[1] "Linear model A+B"
AIC index: 52.35711 BIC index: 55.9186 R2: 0.9541
*** Positive evidences for the model

Disegno sperimentale
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

slope 2 514.35 257.17 58.337 7.753e-09 ***
distance 2 182.00 91.00 20.643 1.722e-05 ***
surface 2 265.69 132.84 30.134 1.279e-06 ***
Residuals 19 83.76 4.41
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
R-square: 0.9199 Sigma: 1.295

[0] Testing each couple of factors
Linear model A+B (weak)
Linear model A+C
Linear model B+C
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[1] "Mixed model AxC+B"
AIC index: 129.2581 BIC index: 133.7373 R2: 0.883

[1] "Linear model A+B+C"
AIC index: 128.0060 BIC index: 134.4852 R2: 0.8794

*** Difference among models is weak

Listing E.2: Experiment 1: Results for the 2nd subject
# ---------------
# Subject: 2
# ---------------
Analisi Trial
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

slope 2 672.33 336.17 163.5405 0.006078 **
distance 2 162.33 81.17 16.0549 0.058634 .
rep 1 20.06 20.06
slope:distance 4 28.33 7.08 5.4255 0.065122 .
slope:rep 2 4.11 2.06
distance:rep 2 10.11 5.06
slope:distance:rep 4 5.22 1.31
Residuals 0 0.00
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Fit Indexes for model without repeted factor
R2: 0.956 F(8 ,9): 24.579 AIC: 85.229 BIC: 94.132

[1] "Multiplying model AxB"
AIC index: 80.07035 BIC index: 82.74146 R2: 0.9215
*** Positive evidences for the model

Disegno sperimentale
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

slope 2 739.96 369.98 191.564 2.551e-13 ***
distance 2 137.83 68.92 35.683 3.682e-07 ***
surface 2 358.75 179.38 92.876 1.554e-10 ***
Residuals 19 36.70 1.93
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
R-square: 0.9712 Sigma: 0.936

[0] Testing each couple of factors
Linear model A+B (weak)
Linear model A+C
Linear model B+C

[1] "Linear model A+B+C"
AIC index: 117.1326 BIC index: 123.6118 R2: 0.937

[1] "Mixed model AxC+B"
AIC index: 119.1448 BIC index: 123.624 R2: 0.937

*** Difference among models is weak
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Listing E.3: Experiment 1: Results for the 3rd subject
# ---------------
# Subject: 3
# ---------------
Analisi Trial
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

slope 2 263.111 131.556 592.000 0.001686 **
distance 2 8.778 4.389 11.286 0.081395 .
rep 1 0.222 0.222
slope:distance 4 1.889 0.472 3.400 0.131480
slope:rep 2 0.444 0.222
distance:rep 2 0.778 0.389
slope:distance:rep 4 0.556 0.139
Residuals 0 0.000
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Fit Indexes for model without repeted factor
R2: 0.993 F(8 ,9): 154 AIC: 31.532 BIC: 40.435

[1] "Linear model A+B"
AIC index: 39.69199 BIC index: 43.25348 R2: 0.9763
*** Positive evidences for the model

Disegno sperimentale
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

slope 2 302.635 151.317 179.8218 4.518e-13 ***
distance 2 5.844 2.922 3.4727 0.0518299 .
surface 2 25.729 12.865 15.2881 0.0001104 ***
Residuals 19 15.988 0.841
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
R-square: 0.9543 Sigma: 0.001

[0] Testing each couple of factors
Linear model A+B
Linear model A+C
Linear model B+C (weak)

[1] "Mixed model AxC+B"
AIC index: 87.71876 BIC index: 92.19795 R2: 0.9472

[1] "Linear model A+B+C"
AIC index: 86.662 BIC index: 93.14118 R2: 0.9453

*** Difference among models is weak
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Listing E.4: Experiment 1: Results for the 4th subject
# ---------------
# Subject: 4
# ---------------
Analisi Trial
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

slope 2 424.78 212.39 1274.3333 0.0007841 ***
distance 2 23.44 11.72 7.8148 0.1134454
rep 1 6.828e-31 6.828e-31
slope:distance 4 0.22 0.06 0.3333 0.8437500
slope:rep 2 0.33 0.17
distance:rep 2 3.00 1.50
slope:distance:rep 4 0.67 0.17
Residuals 0 0.00
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Fit Indexes for model without repeted factor
R2: 0.991 F(8 ,9): 126.125 AIC: 44.008 BIC: 52.912

[1] "Linear model A+B"
AIC index: 54.20138 BIC index: 57.76287 R2: 0.9691
*** Positive evidences for the model

Disegno sperimentale
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

slope 2 561.1 280.6 156.197 1.603e-12 ***
distance 2 39.2 19.6 10.917 0.0006973 ***
surface 2 6555.3 3277.7 1824.769 < 2.2e-16 ***
Residuals 19 34.1 1.8
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
R-square: 0.9953 Sigma: 1.268

[0] Testing each couple of factors
Linear model A+B (weak)
Linear model A+C
Linear model B+C

[1] "Mixed model AxC+B"
AIC index: 224.6418 BIC index: 229.1210 R2: 0.4222

[1] "Linear model A+B+C"
AIC index: 222.6430 BIC index: 229.1221 R2: 0.4222

*** Difference among models is weak
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Listing E.5: Experiment 1: Results for the 5th subject
# ---------------
# Subject: 5
# ---------------
Analisi Trial
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

slope 2 884.78 442.39 32.2389 0.03009 *
distance 2 131.44 65.72 38.1613 0.02554 *
rep 1 93.39 93.39
slope:distance 4 11.22 2.81 0.4833 0.75072
slope:rep 2 27.44 13.72
distance:rep 2 3.44 1.72
slope:distance:rep 4 23.22 5.81
Residuals 0 0.00
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Fit Indexes for model without repeted factor
R2: 0.874 F(8 ,9): 7.836 AIC: 108.944 BIC: 117.848

[1] "Multiplying model AxB"
AIC index: 100.9484 BIC index: 103.6195 R2: 0.8182

[1] "Linear model A+B"
AIC index: 100.0617 BIC index: 103.6232 R2: 0.8398

*** Difference between models is weak

Disegno sperimentale
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

slope 2 1106.66 553.33 33.5077 5.884e-07 ***
distance 2 279.67 139.83 8.4678 0.002348 **
surface 2 935.29 467.65 28.3191 1.996e-06 ***
Residuals 19 313.76 16.51
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
R-square: 0.8809 Sigma: 3.167

[0] Testing each couple of factors
Multiplying model AxB (weak)
Linear model A+C
Linear model B+C

[1] "Mixed model AxC+B"
AIC index: 156.7902 BIC index: 161.2693 R2: 0.8794

[1] "Mixed model C+AxB"
AIC index: 154.6256 BIC index: 163.1047 R2: 0.8695

*** Difference among models is weak
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Listing E.6: Experiment 1: Results for the 6th subject
# ---------------
# Subject: 6
# ---------------
Analisi Trial
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

slope 2 170.11 85.06 56.7037 0.01733 *
distance 2 363.11 181.56 38.9048 0.02506 *
rep 1 8.00 8.00
slope:distance 4 20.22 5.06 1.8958 0.27539
slope:rep 2 3.00 1.50
distance:rep 2 9.33 4.67
slope:distance:rep 4 10.67 2.67
Residuals 0 0.00
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Fit Indexes for model without repeted factor
R2: 0.947 F(8 ,9): 20.085 AIC: 80.867 BIC: 89.771

[1] "Linear model A+B"
AIC index: 78.94625 BIC index: 82.50774 R2: 0.8846
*** Positive evidences for the model

Disegno sperimentale
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

slope 2 770.75 385.38 23.0118 8.394e-06 ***
distance 2 729.21 364.60 21.7713 1.215e-05 ***
surface 2 331.92 165.96 9.9098 0.001128 **
Residuals 19 318.19 16.75
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
R-square: 0.852 Sigma: 3.637

[0] Testing each couple of factors
Linear model A+B
Linear model A+C
Linear model B+C

[1] "Mixed model AxC+B"
AIC index: 158.6689 BIC index: 163.1481 R2: 0.835
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Listing E.7: Experiment 1: Results for the 7th subject
# ---------------
# Subject: 7
# ---------------
Analisi Trial
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

slope 2 196.000 98.000 23.2105 0.04130 *
distance 2 33.333 16.667 10.7143 0.08537 .
rep 1 1.389 1.389
slope:distance 4 16.667 4.167 0.4967 0.74271
slope:rep 2 8.444 4.222
distance:rep 2 3.111 1.556
slope:distance:rep 4 33.556 8.389
Residuals 0 0.000
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Fit Indexes for model without repeted factor
R2: 0.841 F(8 ,9): 5.952 AIC: 88.165 BIC: 97.069

[1] "Multiplying model AxB"
AIC index: 78.75636 BIC index: 81.42748 R2: 0.7953

Disegno sperimentale
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

slope 2 290.881 145.440 37.0449 2.777e-07 ***
distance 2 15.542 7.771 1.9794 0.165634
surface 2 47.466 23.733 6.0450 0.009296 **
Residuals 19 74.595 3.926
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
R-square: 0.8259 Sigma: 1.481

[0] Testing each couple of factors
Linear model A+B (weak)
Linear model A+C
Linear model B+C (weak)

[1] "Mixed model AxC+B"
AIC index: 115.8922 BIC index: 120.3714 R2: 0.8221

[1] "Linear model A+B+C"
AIC index: 114.0388 BIC index: 120.5180 R2: 0.8255

*** Difference among models is weak
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Listing E.8: Experiment 1: Results for the 8th subject
# ---------------
# Subject: 8
# ---------------
Analisi Trial
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

slope 2 388.00 194.00 41.5714 0.02349 *
distance 2 490.33 245.17 25.8070 0.03730 *
rep 1 98.00 98.00
slope:distance 4 16.67 4.17 1.5625 0.33801
slope:rep 2 9.33 4.67
distance:rep 2 19.00 9.50
slope:distance:rep 4 10.67 2.67
Residuals 0 0.00
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Fit Indexes for model without repeted factor
R2: 0.867 F(8 ,9): 7.349 AIC: 107.615 BIC: 116.518

[1] "Linear model A+B"
AIC index: 101.3618 BIC index: 104.9233 R2: 0.8171
*** Positive evidences for the model

Disegno sperimentale
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

slope 2 482.93 241.47 13.1773 0.0002572 ***
distance 2 246.43 123.22 6.7242 0.0061920 **
surface 2 552.30 276.15 15.0701 0.0001201 ***
Residuals 19 348.16 18.32
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
R-square: 0.7864 Sigma: 3.115

[0] Testing each couple of factors
Linear model A+B (weak)
Linear model A+C
Linear model B+C

[1] "Mixed model AxC+B"
AIC index: 155.3328 BIC index: 159.8120 R2: 0.8034
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Listing E.9: Experiment 1: Results for the 9th subject
# ---------------
# Subject: 9
# ---------------
Analisi Trial
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

slope 2 463.44 231.72 52.7975 0.01859 *
distance 2 236.44 118.22 4.1890 0.19272
rep 1 107.56 107.56
slope:distance 4 21.22 5.31 2.9385 0.16067
slope:rep 2 8.78 4.39
distance:rep 2 56.44 28.22
slope:distance:rep 4 7.22 1.81
Residuals 0 0.00
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Fit Indexes for model without repeted factor
R2: 0.8 F(8,9): 4.507 AIC: 112.528 BIC: 121.432

[1] "Multiplying model AxB"
AIC index: 104.9315 BIC index: 107.6026 R2: 0.723

[1] "Linear model A+B"
AIC index: 105.0284 BIC index: 108.5899 R2: 0.7493

*** Difference between models is weak

Disegno sperimentale
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

slope 2 438.84 219.42 11.9171 0.0004427 ***
distance 2 87.88 43.94 2.3866 0.1189442
surface 2 162.64 81.32 4.4166 0.0265959 *
Residuals 19 349.83 18.41
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
R-square: 0.6634 Sigma: 1.991

[0] Testing each couple of factors
Multiplying model AxB
Linear model A+C
Linear model B+C

[1] "Mixed model C+AxB"
AIC index: 150.0427 BIC index: 158.5219 R2: 0.6999
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Listing E.10: Experiment 1: Results for the 10th subject
# ---------------
# Subject: 10
# ---------------
Analisi Trial
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

slope 2 631.44 315.72 437.1538 0.002282 **
distance 2 45.44 22.72 1.5792 0.387725
rep 1 5.56 5.56
slope:distance 4 92.22 23.06 3.0515 0.152692
slope:rep 2 1.44 0.72
distance:rep 2 28.78 14.39
slope:distance:rep 4 30.22 7.56
Residuals 0 0.00
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Fit Indexes for model without repeted factor
R2: 0.921 F(8 ,9): 13.11 AIC: 94.469 BIC: 103.373

[1] "Multiplying model AxB"
AIC index: 96.8967 BIC index: 99.56781 R2: 0.8017

Disegno sperimentale
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

slope 2 1527.27 763.63 56.751 9.706e-09 ***
distance 2 627.00 313.50 23.299 7.723e-06 ***
surface 2 619.57 309.78 23.022 8.369e-06 ***
Residuals 19 255.66 13.46
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
R-square: 0.9156 Sigma: 3.091

[0] Testing each couple of factors
Linear model A+B
Linear model A+C
Linear model B+C

[1] "Mixed model AxC+B"
AIC index: 148.7955 BIC index: 153.2747 R2: 0.9169

[1] "Linear model A+B+C"
AIC index: 147.7991 BIC index: 154.2783 R2: 0.9137

*** Difference among models is weak
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Listing E.11: Experiment 1: Results for the 11th subject
# ---------------
# Subject: 11
# ---------------
Analisi Trial
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

slope 2 668.11 334.06 11.7671 0.07833 .
distance 2 65.44 32.72 12.0204 0.07680 .
rep 1 20.06 20.06
slope:distance 4 12.89 3.22 0.3766 0.81641
slope:rep 2 56.78 28.39
distance:rep 2 5.44 2.72
slope:distance:rep 4 34.22 8.56
Residuals 0 0.00
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Fit Indexes for model without repeted factor
R2: 0.865 F(8 ,9): 7.208 AIC: 104.697 BIC: 113.601

[1] "Linear model A+B"
AIC index: 95.70295 BIC index: 99.26444 R2: 0.8339

[1] "Multiplying model AxB"
AIC index: 97.79057 BIC index: 100.4617 R2: 0.7771

*** Difference between models is weak

Disegno sperimentale
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

slope 2 374.88 187.44 8.5779 0.002215 **
distance 2 119.14 59.57 2.7261 0.091018 .
surface 2 336.61 168.30 7.7021 0.003551 **
Residuals 19 415.18 21.85
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
R-square: 0.6667 Sigma: 3.023

[0] Testing each couple of factors
Linear model A+B (weak)
Linear model A+C
Linear model B+C

[1] "Linear model A+B+C"
AIC index: 161.5919 BIC index: 168.0711 R2: 0.6482

[1] "Mixed model AxC+B"
AIC index: 164.0818 BIC index: 168.5610 R2: 0.6441

*** Difference among models is weak
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Listing E.12: Experiment 1: Results for the 12th subject
# ---------------
# Subject: 12
# ---------------
Analisi Trial
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

slope 2 135.111 67.556 10.8571 0.08434 .
distance 2 252.111 126.056 37.1967 0.02618 *
rep 1 14.222 14.222
slope:distance 4 68.556 17.139 3.3351 0.13508
slope:rep 2 12.444 6.222
distance:rep 2 6.778 3.389
slope:distance:rep 4 20.556 5.139
Residuals 0 0.000
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Fit Indexes for model without repeted factor
R2: 0.894 F(8 ,9): 9.495 AIC: 90.857 BIC: 99.761

[1] "Linear model A+B"
AIC index: 94.14808 BIC index: 97.70956 R2: 0.7517
*** Positive evidences for the model

Disegno sperimentale
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

slope 2 392.36 196.18 25.284 4.419e-06 ***
distance 2 183.05 91.52 11.796 0.0004673 ***
surface 2 416.33 208.17 26.829 2.924e-06 ***
Residuals 19 147.42 7.76
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
R-square: 0.8706 Sigma: 2.982

[0] Testing each couple of factors
Linear model A+B (weak)
Linear model A+C
Linear model B+C

[1] "Linear model A+B+C"
AIC index: 142.4044 BIC index: 148.8836 R2: 0.8141

[1] "Mixed model AxC+B"
AIC index: 144.4916 BIC index: 148.9708 R2: 0.8134

*** Difference among models is weak
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Listing E.13: Experiment 1: Results for the 13th subject
# ---------------
# Subject: 13
# ---------------
Analisi Trial
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

slope 2 432.11 216.06 11.8930 0.077562 .
distance 2 143.44 71.72 430.3333 0.002318 **
rep 1 0.50 0.50
slope:distance 4 41.22 10.31 1.2006 0.431807
slope:rep 2 36.33 18.17
distance:rep 2 0.33 0.17
slope:distance:rep 4 34.33 8.58
Residuals 0 0.00
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Fit Indexes for model without repeted factor
R2: 0.896 F(8 ,9): 9.705 AIC: 95.91 BIC: 104.813

[1] "Multiplying model AxB"
AIC index: 87.22562 BIC index: 89.89673 R2: 0.8333
*** Positive evidences for the model

Disegno sperimentale
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

slope 2 1285.32 642.66 35.1565 4.116e-07 ***
distance 2 262.69 131.35 7.1853 0.004745 **
surface 2 629.10 314.55 17.2074 5.437e-05 ***
Residuals 19 347.32 18.28
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
R-square: 0.8624 Sigma: 1.92

[0] Testing each couple of factors
Linear model A+B
Linear model A+C
Linear model B+C

[1] "Mixed model AxC+B"
AIC index: 154.3803 BIC index: 158.8595 R2: 0.8984
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Listing E.14: Experiment 1: Results for the 14th subject
# ---------------
# Subject: 14
# ---------------
Analisi Trial
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

slope 2 534.78 267.39 76.3968 0.01292 *
distance 2 70.78 35.39 4.9380 0.16841
rep 1 0.50 0.50
slope:distance 4 52.89 13.22 1.9833 0.26175
slope:rep 2 7.00 3.50
distance:rep 2 14.33 7.17
slope:distance:rep 4 26.67 6.67
Residuals 0 0.00
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Fit Indexes for model without repeted factor
R2: 0.931 F(8 ,9): 15.273 AIC: 88.923 BIC: 97.827

[1] "Multiplying model AxB"
AIC index: 88.40501 BIC index: 91.07613 R2: 0.803
*** Positive evidences for the model

Disegno sperimentale
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

slope 2 688.15 344.07 32.3201 7.677e-07 ***
distance 2 196.06 98.03 9.2084 0.001600 **
surface 2 353.67 176.83 16.6105 6.739e-05 ***
Residuals 19 202.27 10.65
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
R-square: 0.8595 Sigma: 2.085

[0] Testing each couple of factors
Multiplying model AxB (weak)
Linear model A+C
Linear model B+C

[1] "Mixed model C+AxB"
AIC index: 139.1617 BIC index: 147.6409 R2: 0.86

[1] "Mixed model AxC+B"
AIC index: 143.9467 BIC index: 148.4259 R2: 0.8581

*** Difference among models is weak
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Listing E.15: Experiment 1: Results for the 15th subject
# ---------------
# Subject: 15
# ---------------
Analisi Trial
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

slope 2 403.00 201.50 45.9114 0.02132 *
distance 2 4.00 2.00 2.2500 0.30769
rep 1 0.22 0.22
slope:distance 4 3.00 0.75 0.1189 0.96850
slope:rep 2 8.78 4.39
distance:rep 2 1.78 0.89
slope:distance:rep 4 25.22 6.31
Residuals 0 0.00
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Fit Indexes for model without repeted factor
R2: 0.919 F(8 ,9): 12.812 AIC: 83.558 BIC: 92.462

[1] "Linear model A+B"
AIC index: 76.11138 BIC index: 79.67286 R2: 0.8949
*** Positive evidences for the model

Disegno sperimentale
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

slope 2 536.65 268.32 53.5125 1.563e-08 ***
distance 2 24.91 12.46 2.4841 0.110058
surface 2 75.62 37.81 7.5408 0.003884 **
Residuals 19 95.27 5.01
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
R-square: 0.8699 Sigma: 0.798

[0] Testing each couple of factors
Linear model A+B
Linear model A+C
Linear model B+C (weak)

[1] "Mixed model AxC+B"
AIC index: 129.0625 BIC index: 133.5417 R2: 0.8385

[1] "Linear model A+B+C"
AIC index: 127.9438 BIC index: 134.4230 R2: 0.8359

*** Difference among models is weak
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Listing E.16: Experiment 1: Results for the 16th subject
# ---------------
# Subject: 16
# ---------------
Analisi Trial
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

slope 2 1167.44 583.72 18.2097 0.05206 .
distance 2 155.44 77.72 5.6640 0.15006
rep 1 22.22 22.22
slope:distance 4 43.56 10.89 0.1828 0.93571
slope:rep 2 64.11 32.06
distance:rep 2 27.44 13.72
slope:distance:rep 4 238.22 59.56
Residuals 0 0.00
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Fit Indexes for model without repeted factor
R2: 0.795 F(8 ,9): 4.367 AIC: 124.6 BIC: 133.504

[1] "Multiplying model AxB"
AIC index: 113.7276 BIC index: 116.3987 R2: 0.756

Disegno sperimentale
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

slope 2 1509.80 754.90 31.3583 9.577e-07 ***
distance 2 346.71 173.36 7.2011 0.004702 **
surface 2 408.51 204.25 8.4846 0.002327 **
Residuals 19 457.39 24.07
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
R-square: 0.832 Sigma: 3.711

[0] Testing each couple of factors
Linear model A+B
Linear model A+C
Linear model B+C

[1] "Mixed model AxC+B"
AIC index: 163.7544 BIC index: 168.2336 R2: 0.8445

[1] "Linear model A+B+C"
AIC index: 162.2915 BIC index: 168.7706 R2: 0.8347

*** Difference among models is weak
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Listing E.17: Experiment 1: Results for the 17th subject
# ---------------
# Subject: 17
# ---------------
Analisi Trial
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

slope 2 937.33 468.67 78.1111 0.01264 *
distance 2 70.33 35.17 4.3061 0.18846
rep 1 0.50 0.50
slope:distance 4 16.33 4.08 0.2344 0.90549
slope:rep 2 12.00 6.00
distance:rep 2 16.33 8.17
slope:distance:rep 4 69.67 17.42
Residuals 0 0.00
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Fit Indexes for model without repeted factor
R2: 0.912 F(8 ,9): 11.695 AIC: 101.676 BIC: 110.58

[1] "Linear model A+B"
AIC index: 92.79183 BIC index: 96.35331 R2: 0.8954

[1] "Multiplying model AxB"
AIC index: 94.1257 BIC index: 96.79682 R2: 0.8759

*** Difference between models is weak

Disegno sperimentale
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

slope 2 1664.29 832.14 205.2101 1.367e-13 ***
distance 2 79.31 39.65 9.7787 0.001203 **
surface 2 270.39 135.20 33.3401 6.106e-07 ***
Residuals 19 77.05 4.06
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
R-square: 0.9632 Sigma: 2.059

[0] Testing each couple of factors
Linear model A+B
Linear model A+C
Linear model B+C (weak)

[1] "Mixed model AxC+B"
AIC index: 121.3279 BIC index: 125.8070 R2: 0.9566

[1] "Linear model A+B+C"
AIC index: 119.4723 BIC index: 125.9514 R2: 0.9558

*** Difference among models is weak
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Listing E.18: Experiment 1: Results for the 18th subject
# ---------------
# Subject: 18
# ---------------
Analisi Trial
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

slope 2 1303.00 651.50 5.0744 0.16462
distance 2 586.33 293.17 32.3742 0.02996 *
rep 1 430.22 430.22
slope:distance 4 120.67 30.17 3.6689 0.11797
slope:rep 2 256.78 128.39
distance:rep 2 18.11 9.06
slope:distance:rep 4 32.89 8.22
Residuals 0 0.00
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Fit Indexes for model without repeted factor
R2: 0.731 F(8 ,9): 3.064 AIC: 137.926 BIC: 146.83

[1] "Multiplying model AxB"
AIC index: 128.5163 BIC index: 131.1874 R2: 0.6831

Disegno sperimentale
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

slope 2 2838.60 1419.30 87.2919 2.648e-10 ***
distance 2 157.63 78.81 4.8473 0.0199092 *
surface 2 441.25 220.63 13.5692 0.0002186 ***
Residuals 19 308.93 16.26
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
R-square: 0.9175 Sigma: 4.052

[0] Testing each couple of factors
Linear model A+B
Linear model A+C
Linear model B+C (weak)

[1] "Mixed model AxC+B"
AIC index: 158.4493 BIC index: 162.9285 R2: 0.9052

[1] "Linear model A+B+C"
AIC index: 156.4495 BIC index: 162.9287 R2: 0.9052

*** Difference among models is weak
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Listing E.19: Experiment 1: Results for the 19th subject
# ---------------
# Subject: 19
# ---------------
Analisi Trial
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

slope 2 382.11 191.06 17.2814 0.05470 .
distance 2 494.78 247.39 11.9383 0.07729 .
rep 1 22.22 22.22
slope:distance 4 103.22 25.81 4.0925 0.10054
slope:rep 2 22.11 11.06
distance:rep 2 41.44 20.72
slope:distance:rep 4 25.22 6.31
Residuals 0 0.00
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Fit Indexes for model without repeted factor
R2: 0.898 F(8 ,9): 9.934 AIC: 103.827 BIC: 112.73

[1] "Linear model A+B"
AIC index: 104.4259 BIC index: 107.9874 R2: 0.7823
*** Positive evidences for the model

Disegno sperimentale
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

slope 2 1538.02 769.01 34.697 4.541e-07 ***
distance 2 1072.08 536.04 24.185 5.993e-06 ***
surface 2 1743.77 871.88 39.338 1.759e-07 ***
Residuals 19 421.11 22.16
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
R-square: 0.9118 Sigma: 4.101

[0] Testing each couple of factors
Linear model A+B
Linear model A+C
Linear model B+C

[1] "Mixed model AxC+B"
AIC index: 190.3989 BIC index: 194.8781 R2: 0.7536

[1] "Linear model A+B+C"
AIC index: 188.5081 BIC index: 194.9873 R2: 0.7526

*** Difference among models is weak
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Listing E.20: Experiment 1: Results for the 20th subject
# ---------------
# Subject: 20
# ---------------
Analisi Trial
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

slope 2 2283.44 1141.72 28.5035 0.03389 *
distance 2 990.11 495.06 17.8577 0.05303 .
rep 1 53.39 53.39
slope:distance 4 272.89 68.22 2.0131 0.25733
slope:rep 2 80.11 40.06
distance:rep 2 55.44 27.72
slope:distance:rep 4 135.56 33.89
Residuals 0 0.00
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Fit Indexes for model without repeted factor
R2: 0.916 F(8 ,9): 12.295 AIC: 123.136 BIC: 132.04

[1] "Multiplying model AxB"
AIC index: 119.4774 BIC index: 122.1486 R2: 0.8411

Disegno sperimentale
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

slope 2 1937.14 968.57 20.957 1.561e-05 ***
distance 2 270.83 135.42 2.930 0.07779 .
surface 2 2698.30 1349.15 29.192 1.607e-06 ***
Residuals 19 878.13 46.22
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
R-square: 0.8482 Sigma: 5.499

[0] Testing each couple of factors
Multiplying model AxB (weak)
Linear model A+C
Linear model B+C (weak)

[1] "Mixed model AxC+B"
AIC index: 184.8931 BIC index: 189.3723 R2: 0.8319

[1] "Mixed model C+AxB"
AIC index: 181.4931 BIC index: 189.9723 R2: 0.8254

*** Difference among models is weak
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Listing E.21: Experiment 1: Results for the 21th subject
# ---------------
# Subject: 21
# ---------------
Analisi Trial
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

slope 2 836.11 418.06 80.9140 0.01221 *
distance 2 120.78 60.39 13.4198 0.06935 .
rep 1 0.50 0.50
slope:distance 4 70.89 17.72 6.6458 0.04684 *
slope:rep 2 10.33 5.17
distance:rep 2 9.00 4.50
slope:distance:rep 4 10.67 2.67
Residuals 0 0.00
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Fit Indexes for model without repeted factor
R2: 0.971 F(8 ,9): 37.91 AIC: 80.574 BIC: 89.478

[1] "Multiplying model AxB"
AIC index: 83.4 BIC index: 86.07111 R2: 0.9262
*** Positive evidences for the model

Disegno sperimentale
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

slope 2 796.41 398.20 90.2596 1.987e-10 ***
distance 2 79.70 39.85 9.0328 0.001750 **
surface 2 450.11 225.06 51.0127 2.295e-08 ***
Residuals 19 83.82 4.41
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
R-square: 0.9406 Sigma: 1.152

[0] Testing each couple of factors
Linear model A+B (weak)
Linear model A+C
Linear model B+C (weak)

[1] "Linear model A+B+C"
AIC index: 126.8536 BIC index: 133.3328 R2: 0.918

[1] "Mixed model AxC+B"
AIC index: 129.0071 BIC index: 133.4863 R2: 0.9187

*** Difference among models is weak
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Listing E.22: Experiment 1: Results for the 22th subject
# ---------------
# Subject: 22
# ---------------
Analisi Trial
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

slope 2 521.44 260.72 7.9677 0.1115
distance 2 314.78 157.39 5.0680 0.1648
rep 1 34.72 34.72
slope:distance 4 54.89 13.72 0.2426 0.9005
slope:rep 2 65.44 32.72
distance:rep 2 62.11 31.06
slope:distance:rep 4 226.22 56.56
Residuals 0 0.00

Fit Indexes for model without repeted factor
R2: 0.696 F(8 ,9): 2.58 AIC: 126.376 BIC: 135.28

[1] "Multiplying model AxB"
AIC index: 118.3831 BIC index: 121.0542 R2: 0.5324

[1] "Linear model A+B"
AIC index: 118.8774 BIC index: 122.4389 R2: 0.5492

*** Difference between models is weak

Disegno sperimentale
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

slope 2 241.11 120.56 9.4412 0.0014224 **
distance 2 333.82 166.91 13.0710 0.0002689 ***
surface 2 243.83 121.92 9.5476 0.0013486 **
Residuals 19 242.62 12.77
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
R-square: 0.7714 Sigma: 2.164

[0] Testing each couple of factors
Linear model A+B
Linear model A+C (weak)
Linear model B+C

[1] "Mixed model AxC+B"
AIC index: 150.6460 BIC index: 155.1252 R2: 0.7451
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Listing E.23: Experiment 1: Results for the 23th subject
# ---------------
# Subject: 23
# ---------------
Analisi Trial
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

slope 2 424.78 212.39 1.5598 0.3907
distance 2 112.11 56.06 1.2986 0.4351
rep 1 722.00 722.00
slope:distance 4 107.56 26.89 0.5238 0.7267
slope:rep 2 272.33 136.17
distance:rep 2 86.33 43.17
slope:distance:rep 4 205.33 51.33
Residuals 0 0.00

Fit Indexes for model without repeted factor
R2: 0.334 F(8 ,9): 0.564 AIC: 147.922 BIC: 156.826

[1] "Multiplying model AxB"
AIC index: 135.3291 BIC index: 138.0002 R2: 0.2819

Disegno sperimentale
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

slope 2 483.18 241.59 12.478 0.0003464 ***
distance 2 626.98 313.49 16.191 7.860e-05 ***
surface 2 1656.70 828.35 42.783 9.204e-08 ***
Residuals 19 367.87 19.36
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
R-square: 0.8826 Sigma: 4.878

[0] Testing each couple of factors
Linear model A+B
Linear model A+C
Linear model B+C

[1] "Linear model A+B+C"
AIC index: 158.0781 BIC index: 164.5573 R2: 0.8803

[1] "Mixed model AxC+B"
AIC index: 160.1817 BIC index: 164.6609 R2: 0.8779

*** Difference among models is weak
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Listing E.24: Experiment 1: Results for the Trial step
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

distance 2 2836.0 1418.0 90.5579 0.0109220 *
slope 2 11359.4 5679.7 204.6125 0.0048635 **
id 19 18425.5 969.8 20.9744 5.918e-09 ***
rep 1 0.025 0.025
distance:slope 4 135.4 33.9 5.3382 0.0668236 .
distance:id 38 1154.2 30.4 4.4735 5.471e-06 ***
slope:id 38 1660.8 43.7 3.0061 0.0004992 ***
distance:rep 2 31.3 15.7
slope:rep 2 55.5 27.8
id:rep 19 878.5 46.2
distance:slope:id 76 783.0 10.3 1.0766 0.3741994
distance:slope:rep 4 25.4 6.3
distance:id:rep 38 258.0 6.8
slope:id:rep 38 552.5 14.5
distance:slope:id:rep 76 727.3 9.6
Residuals 0 0.0
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Fit Indexes for model without repeted factor
R2: 0.935 F(179 ,180): 14.458 AIC: 2085.376 BIC: 2788.76

[1] "Multiplying model AxB"
AIC index: 2553.087 BIC index: 2564.745 R2: 0.347
*** Positive evidences for the model

Listing E.25: Experiment 1: Results for the Experimental step
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

distance 2 3697.3 1848.6 66.0305 < 2e-16 ***
slope 2 15753.7 7876.8 281.3471 < 2e-16 ***
surface 2 8641.1 4320.6 154.3231 < 2e-16 ***
id 19 27331.5 1438.5 51.3808 < 2e-16 ***
distance:slope 4 66.1 16.5 0.5902 0.66988
distance:surface 4 272.2 68.1 2.4310 0.04677 *
slope:surface 4 63.8 15.9 0.5695 0.68486
distance:slope:surface 8 34.9 4.4 0.1557 0.99611
Residuals 493 13802.4 28.0
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
R-square: 0.8019 Sigma: 3.467

[0] Testing each couple of factors
Linear model A+B
Linear model A+C
Linear model B+C

[1] "Linear model A+B+C"
AIC index: 3909.647 BIC index: 3931.105 R2: 0.4084

[1] "Mixed model AxC+B"
AIC index: 3911.761 BIC index: 3931.219 R2: 0.4087

*** Difference among models is weak
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Listing E.26: Experiment 2: Model selection and estimated values for the
single-subject analysis (1 of 2).
#####################################################
1 Predictability
#####################################################

Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

livelli 2 925.00 462.50 1067.3 2.204e-12 ***
trial 5 3.17 0.63
livelli:trial 10 4.33 0.43
Residuals 0 0.00
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Fit Indexes for model without repeted factor
R2: 0.992 F(2 ,15): 925 AIC: 43.323 BIC: 46.885

Optimal selection between models: Equal - Bounded
Estimation mode: B

Liv Estimate Std.Err. lim.inf lim.sup t.value p sig
1 (Intercept) 9.000 0.236 8.498 9.502 38.184 0.0000 ***
2 e 9.000 0.289 8.385 9.615 31.177 0.0000 ***

SSreg SSres Rsquare F dfk dfres p AIC BIC
1 2430.000 15.000 0.993865 1215.000 2 15 0.00000 53.8 56.47111

#####################################################
2 Honesty
#####################################################

Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

livelli 2 1009.33 504.67 315.42 9.253e-10 ***
trial 5 0.67 0.13
livelli:trial 10 16.00 1.60
Residuals 0 0.00
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Fit Indexes for model without repeted factor
R2: 0.984 F(2 ,15): 454.2 AIC: 57.696 BIC: 61.258

Optimal selection between models: Equal - Bounded
Estimation mode: B

Liv Estimate Std.Err. lim.inf lim.sup t.value p sig
1 (Intercept) 10.500 0.269 9.927 11.073 39.071 0.0000 ***
2 e 9.500 0.329 8.798 10.202 28.863 0.0000 ***

SSreg SSres Rsquare F dfk dfres p AIC BIC
1 3067.500 19.500 0.9936832 1179.808 2 15 0.00000 58.52256 61.19367
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Listing E.27: Experiment 2: Model selection and estimated values for the
single-subject analysis (2 of 2).
#####################################################
3 Benevolence
#####################################################

Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

livelli 2 1045.33 522.67 186.67 1.208e-08 ***
trial 5 17.17 3.43
livelli:trial 10 28.00 2.80
Residuals 0 0.00
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Fit Indexes for model without repeted factor
R2: 0.959 F(2 ,15): 173.579 AIC: 75.642 BIC: 79.203

Optimal selection between models: Equal - Bounded
Estimation mode: B

Liv Estimate Std.Err. lim.inf lim.sup t.value p sig
1 (Intercept) 10.000 0.451 9.038 10.962 22.156 0.0000 ***
2 e 10.000 0.553 8.822 11.178 18.091 0.0000 ***

SSreg SSres Rsquare F dfk dfres p AIC BIC
1 3000.000 55.000 0.9819967 409.091 2 15 0.00000 77.1871 79.85821

#####################################################
4 Competence
#####################################################

Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

livelli 2 1064.33 532.17 409.36 2.558e-10 ***
trial 5 7.17 1.43
livelli:trial 10 13.00 1.30
Residuals 0 0.00
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Fit Indexes for model without repeted factor
R2: 0.981 F(2 ,15): 395.826 AIC: 61.128 BIC: 64.689

Optimal selection between models: Equal - Bounded
Estimation mode: B

Liv Estimate Std.Err. lim.inf lim.sup t.value p sig
1 (Intercept) 10.000 0.279 9.406 10.594 35.857 0.0000 ***
2 e 9.500 0.342 8.772 10.228 27.813 0.0000 ***

SSreg SSres Rsquare F dfk dfres p AIC BIC
1 2883.000 21.000 0.9927686 1029.643 2 15 0.00000 59.8565 62.52761
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Listing E.28: Experiment 2: Model selection and estimated weights for the
single-subject analysis (1 of 3).
#####################################################
1 Predictability Honesty
#####################################################

Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

F1 2 525.35 262.68 113.753 1.323e-07 ***
F2 2 920.61 460.30 175.430 1.634e-08 ***
trial 5 33.05 6.61
F1:F2 4 58.31 14.58 11.022 6.904e-05 ***
F1:trial 10 23.09 2.31
F2:trial 10 26.24 2.62
F1:F2:trial 20 26.45 1.32
Residuals 0 0.00
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Fit Indexes for model without repeted factor
R2: 0.933 F(8 ,45): 77.747 AIC: 211.09 BIC: 230.98

AdjR2 RSS df AIC BIC c0 Model AIC BIC
RLS 0.97 174.7 3 224.6 232.6 -1.17 0.42 0.57 NaN NaN NaN NaN a+b=1
w A=B 0.93 287.0 3 251.5 259.4 0.00 1.00 1.00 1.00 1.00 1.00 1.00
w x2 0.95 188.1 3 228.6 236.6 -0.68 1.00 1.00 1.00 1.00 1.00 1.00
w x6 0.96 115.9 5 206.5 218.4 -0.31 1.00 1.00 1.00 0.71 1.55 2.09 AIC BIC
AVERAGE 0.95 166.6 5 226.1 238.0 -0.46 1.00 1.75 1.75 2.09 1.75 1.75
conj. 0.92 342.0 5 264.9 276.9 -0.94 2.00 2.00 1.00 3.00 3.00 2.00
AxB 0.93 357.3 2 261.3 267.3 4.39 0.84 NaN NaN NaN NaN NaN

#####################################################
2 Predictability Benevolence
#####################################################

Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

F1 2 572.76 286.38 259.645 2.407e-09 ***
F2 2 674.40 337.20 131.453 6.606e-08 ***
trial 5 48.67 9.73
F1:F2 4 83.23 20.81 12.759 2.562e-05 ***
F1:trial 10 11.03 1.10
F2:trial 10 25.65 2.57
F1:F2:trial 20 32.61 1.63
Residuals 0 0.00
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Fit Indexes for model without repeted factor
R2: 0.919 F(8 ,45): 63.437 AIC: 215.442 BIC: 235.332

AdjR2 RSS df AIC BIC c0 Model AIC BIC
RLS 0.96 208.8 3 234.3 242.2 -0.42 0.50 0.40 NaN NaN NaN NaN a+b=1
w A=B 0.92 354.5 3 262.9 270.8 0.00 1.00 1.00 1.00 1.00 1.00 1.00
w x2 0.94 207.2 3 233.9 241.8 -0.83 1.00 1.00 1.00 1.00 1.00 1.00
w x6 0.95 127.5 6 213.6 227.6 -0.37 1.00 3.00 2.50 1.50 2.00 2.00 AIC BIC
AVERAGE 0.94 163.4 4 223.0 233.0 -0.60 1.00 1.39 1.39 1.39 1.39 1.39
conj. 0.90 341.0 4 262.8 272.7 -0.84 2.00 2.00 1.00 2.00 2.00 2.00
AxB 0.94 292.0 2 250.4 256.3 4.35 0.79 NaN NaN NaN NaN NaN
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Listing E.29: Experiment 2: Model selection and estimated weights for the
single-subject analysis (2 of 3).
#####################################################
3 Predictability Competence
#####################################################

Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

F1 2 413.82 206.91 163.256 2.317e-08 ***
F2 2 820.18 410.09 106.650 1.801e-07 ***
trial 5 11.78 2.36
F1:F2 4 42.80 10.70 6.163 0.002119 **
F1:trial 10 12.67 1.27
F2:trial 10 38.45 3.85
F1:F2:trial 20 34.73 1.74
Residuals 0 0.00
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Fit Indexes for model without repeted factor
R2: 0.929 F(8 ,45): 73.561 AIC: 205.226 BIC: 225.116

AdjR2 RSS df AIC BIC c0 Model AIC BIC
RLS 0.97 136.6 3 211.4 219.3 -0.57 0.42 0.49 NaN NaN NaN NaN a+b=1 BIC*
w A=B 0.92 304.7 3 254.7 262.6 0.00 1.00 1.00 1.00 1.00 1.00 1.00
w x2 0.95 163.9 3 221.2 229.1 -0.81 1.00 1.00 1.00 1.00 1.00 1.00
w x6 0.96 111.2 6 206.2 220.2 -0.58 1.00 2.00 1.50 1.50 2.00 2.00 AIC
AVERAGE 0.96 139.5 5 216.5 228.4 -0.73 1.00 1.85 1.85 1.93 1.85 1.85
conj. 0.93 247.3 5 247.4 259.4 -1.03 2.00 2.00 1.00 3.00 3.00 2.00
AxB 0.92 356.9 2 261.2 267.2 4.30 0.79 NaN NaN NaN NaN NaN

#####################################################
4 Honesty Benevolence
#####################################################

Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

F1 2 1024.00 512.00 1440.000 4.960e-13 ***
F2 2 589.35 294.68 239.357 3.587e-09 ***
trial 5 9.78 1.96
F1:F2 4 54.70 13.68 12.768 2.550e-05 ***
F1:trial 10 3.56 0.36
F2:trial 10 12.31 1.23
F1:F2:trial 20 21.42 1.07
Residuals 0 0.00
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Fit Indexes for model without repeted factor
R2: 0.973 F(8 ,45): 199.351 AIC: 165.825 BIC: 185.715

AdjR2 RSS df AIC BIC c0 Model AIC BIC
RLS 0.98 89.2 3 188.3 196.3 -1.37 0.58 0.42 NaN NaN NaN NaN a+b=1
w A=B 0.95 231.7 3 239.9 247.9 0.00 1.00 1.00 1.00 1.00 1.00 1.00
w x2 0.98 92.1 3 190.1 198.0 -0.71 1.50 1.50 1.50 1.00 1.00 1.00
w x6 0.98 59.1 5 170.2 182.1 -0.43 1.50 2.00 2.00 1.00 1.50 1.50 AIC BIC
AVERAGE 0.97 98.6 4 195.8 205.7 -0.31 1.00 1.11 1.11 1.11 1.11 1.11
conj. 0.97 124.4 4 208.3 218.3 -0.66 1.50 1.50 1.00 1.00 1.00 1.00
AxB 0.94 339.2 2 258.5 264.4 4.81 0.79 NaN NaN NaN NaN NaN
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Listing E.30: Experiment 2: Model selection and estimated weights for the
single-subject analysis (3 of 3).
#####################################################
5 Honesty Competence
#####################################################

Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

F1 2 810.04 405.02 133.197 6.199e-08 ***
F2 2 697.93 348.96 128.365 7.407e-08 ***
trial 5 35.70 7.14
F1:F2 4 80.19 20.05 12.014 3.872e-05 ***
F1:trial 10 30.41 3.04
F2:trial 10 27.19 2.72
F1:F2:trial 20 33.37 1.67
Residuals 0 0.00
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Fit Indexes for model without repeted factor
R2: 0.926 F(8 ,45): 70.526 AIC: 219.284 BIC: 239.174

AdjR2 RSS df AIC BIC c0 Model AIC BIC
RLS 0.94 422.6 3 272.3 280.3 -0.71 0.69 0.35 NaN NaN NaN NaN a+b=1
w A=B 0.93 291.9 3 252.4 260.3 0.00 1.00 1.00 1.00 1.00 1.00 1.00
w x2 0.94 212.4 3 235.2 243.2 -0.61 1.00 1.00 1.00 1.00 1.00 1.00
w x6 0.96 132.5 6 215.7 229.6 -0.08 1.00 2.00 2.00 1.00 1.50 2.00 AIC BIC
AVERAGE 0.94 202.5 3 232.6 240.6 -0.09 1.00 1.00 1.00 1.00 1.00 1.00
conj. 0.92 324.5 5 262.1 274.0 -0.75 1.50 1.50 1.00 1.50 1.50 1.00
AxB 0.95 328.9 2 256.8 262.8 5.12 0.79 NaN NaN NaN NaN NaN

#####################################################
6 Benevolence Competence
#####################################################

Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

F1 2 541.03 270.52 81.047 6.625e-07 ***
F2 2 952.16 476.08 206.593 7.368e-09 ***
trial 5 26.08 5.22
F1:F2 4 53.48 13.37 14.748 9.170e-06 ***
F1:trial 10 33.38 3.34
F2:trial 10 23.04 2.30
F1:F2:trial 20 18.13 0.91
Residuals 0 0.00
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Fit Indexes for model without repeted factor
R2: 0.939 F(8 ,45): 86.453 AIC: 206.86 BIC: 226.75

AdjR2 RSS df AIC BIC c0 Model AIC BIC
RLS 0.97 163.2 3 221.0 228.9 -0.44 0.44 0.53 NaN NaN NaN NaN a+b=1
w A=B 0.94 250.6 3 244.1 252.1 0.00 1.00 1.00 1.00 1.00 1.00 1.00
w x2 0.96 160.2 3 220.0 227.9 -0.48 1.00 1.00 1.00 1.50 1.50 1.50
w x6 0.97 106.2 6 203.7 217.7 -0.13 1.00 2.50 2.00 2.00 2.00 2.50 AIC BIC
AVERAGE 0.96 144.1 5 218.2 230.2 -0.11 1.00 1.11 1.11 1.19 1.11 1.11
conj. 0.95 198.7 4 233.6 243.6 -0.43 1.00 1.00 1.00 1.50 1.50 1.00
AxB 0.93 392.3 2 266.3 272.3 5.30 0.76 NaN NaN NaN NaN NaN
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Listing E.31: Experiment 2: Estimated values for the factor predictability.
All the sample.
#####################################################
1 Predictability
#####################################################

Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

livelli 2 1741.58 870.79 99.6139 2.494e-07 ***
id 3 10.50 3.50 0.3391 0.797390
trial 5 7.50 1.50
livelli:id 6 132.08 22.01 4.4150 0.002594 **
livelli:trial 10 87.42 8.74
id:trial 15 154.83 10.32
livelli:id:trial 30 149.58 4.99
Residuals 0 0.00
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Fit Indexes for model without repeted factor
R2: 0.825 F(11 ,60): 25.736 AIC: 353.673 BIC: 383.269

Optimal selection between models: [3] Equal - Bounded

[1] Equal values model X=[-1, 0,1]

Estimation mode: RLS

Liv Estimate Std.Err. lim.inf lim.sup t.value p sig
1 (Intercept) 8.889 0.265 8.361 9.416 33.605 0.0000 ***
2 object@x 6.612 0.374 5.866 7.359 17.665 0.0000 ***

SSreg SSres Rsquare F dfk dfres p AIC BIC
1 7787.587 561.658 0.9327295 478.355 2 69 0.00000 358.2315 365.0615

[2] Different values model X=[1,0,0, 0,0,-1]

Estimation mode: RLS

Liv Estimate Std.Err. lim.inf lim.sup t.value p sig
1 (Intercept) 8.497 0.494 7.512 9.482 17.207 0.0000 ***
2 object@xd1 7.216 0.822 5.576 8.857 8.775 0.0000 ***
3 object@xd2 6.042 0.612 4.822 7.262 9.880 0.0000 ***

SSreg SSres Rsquare F dfk dfres p AIC BIC
1 7803.456 562.268 0.932789 314.580 3 68 0.00000 360.3097 369.4163

>> Bic difference between models: Positive

[3] Approximate equal values model

Estimation mode: B

Liv Estimate Std.Err. lim.inf lim.sup t.value p sig
1 (Intercept) 9.000 0.335 8.331 9.669 26.830 0.0000 ***
2 e 6.500 0.411 5.680 7.320 15.822 0.0000 ***

SSreg SSres Rsquare F dfk dfres p AIC BIC
1 7860.000 559.000 0.9336026 485.098 2 69 0.00000 357.8900 364.7199

>> Bic difference between models: Weak
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Listing E.32: Experiment 2: Estimated values for the factor honesty. All the
sample.
#####################################################
2 Honesty
#####################################################

Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

livelli 2 3374.2 1687.1 159.7042 2.578e-08 ***
id 3 19.4 6.5 4.7684 0.01579 *
trial 5 2.6 0.5
livelli:id 6 43.1 7.2 3.1247 0.01686 *
livelli:trial 10 105.6 10.6
id:trial 15 20.4 1.4
livelli:id:trial 30 69.0 2.3
Residuals 0 0.0
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Fit Indexes for model without repeted factor
R2: 0.946 F(11 ,60): 94.837 AIC: 303.041 BIC: 332.638

Optimal selection between models: [4] Different - Bounded

[1] Equal values model X=[-1, 0,1]

Estimation mode: RLS

Liv Estimate Std.Err. lim.inf lim.sup t.value p sig
1 (Intercept) 9.962 0.201 9.562 10.362 49.622 0.0000 ***
2 object@x 8.959 0.173 8.614 9.304 51.800 0.0000 ***

SSreg SSres Rsquare F dfk dfres p AIC BIC
1 10998.171 304.439 0.9730647 1246.347 2 69 0.00000 314.1371 320.9671

[2] Different values model X=[1,0,0, 0,0,-1]

Estimation mode: RLS

Liv Estimate Std.Err. lim.inf lim.sup t.value p sig
1 (Intercept) 9.113 0.324 8.467 9.759 28.141 0.0000 ***
2 object@xd1 10.203 0.456 9.293 11.113 22.374 0.0000 ***
3 object@xd2 7.643 0.438 6.769 8.518 17.434 0.0000 ***

SSreg SSres Rsquare F dfk dfres p AIC BIC
1 10999.920 278.396 0.9753158 895.599 3 68 0.00000 309.6985 318.8052

>> Bic difference between models: Positive

[4] Approximate different values model

Estimation mode: B

Liv Estimate Std.Err. lim.inf lim.sup t.value p sig
1 (Intercept) 9.000 0.405 8.191 9.809 22.209 0.0000 ***
2 d1 10.000 0.573 8.856 11.144 17.449 0.0000 ***
3 d2 7.500 0.573 6.356 8.644 13.087 0.0000 ***

SSreg SSres Rsquare F dfk dfres p AIC BIC
1 10662.000 268.000 0.9754803 901.761 3 68 0.00000 306.9583 316.0649

>> Bic difference between models: Positive
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Listing E.33: Experiment 2: Estimated values for the factor benevolence. All
the sample.
#####################################################
3 Benevolence
#####################################################

Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

livelli 2 3072.11 1536.06 143.4821 4.33e-08 ***
id 3 98.04 32.68 7.4227 0.0028245 **
trial 5 18.57 3.71
livelli:id 6 88.67 14.78 5.8720 0.0003841 ***
livelli:trial 10 107.06 10.71
id:trial 15 66.04 4.40
livelli:id:trial 30 75.50 2.52
Residuals 0 0.00
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Fit Indexes for model without repeted factor
R2: 0.924 F(11 ,60): 66.533 AIC: 324.734 BIC: 354.331

Optimal selection between models: [3] Equal - Bounded

[1] Equal values model X=[-1, 0,1]

Estimation mode: RLS

Liv Estimate Std.Err. lim.inf lim.sup t.value p sig
1 (Intercept) 9.377 0.314 8.751 10.002 29.896 0.0000 ***
2 object@x 8.390 0.290 7.811 8.969 28.917 0.0000 ***

SSreg SSres Rsquare F dfk dfres p AIC BIC
1 9709.391 462.201 0.9545596 724.737 2 69 0.00000 344.1992 351.0292

[2] Different values model X=[1,0,0, 0,0,-1]

Estimation mode: RLS

Liv Estimate Std.Err. lim.inf lim.sup t.value p sig
1 (Intercept) 8.964 0.568 7.831 10.097 15.787 0.0000 ***
2 object@xd1 9.295 0.674 7.951 10.639 13.795 0.0000 ***
3 object@xd2 7.898 0.724 6.454 9.342 10.909 0.0000 ***

SSreg SSres Rsquare F dfk dfres p AIC BIC
1 9957.436 478.997 0.9541034 471.197 3 68 0.00000 348.7692 357.8758

>> Bic difference between models: Strong

[3] Approximate equal values model

Estimation mode: B

Liv Estimate Std.Err. lim.inf lim.sup t.value p sig
1 (Intercept) 9.500 0.308 8.886 10.114 30.886 0.0000 ***
2 e 8.500 0.377 7.748 9.252 22.564 0.0000 ***

SSreg SSres Rsquare F dfk dfres p AIC BIC
1 9966.000 470.000 0.9549636 731.547 2 69 0.00000 345.4039 352.2339

>> Bic difference between models: Weak
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Listing E.34: Experiment 2: Estimated values for the factor competence. All
the sample.
#####################################################
4 Competence
#####################################################

Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

livelli 2 2545.44 1272.72 629.3681 3.042e-11 ***
id 3 3.15 1.05 0.3658 0.7787
trial 5 5.40 1.08
livelli:id 6 126.89 21.15 9.0491 1.125e-05 ***
livelli:trial 10 20.22 2.02
id:trial 15 43.10 2.87
livelli:id:trial 30 70.11 2.34
Residuals 0 0.00
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Fit Indexes for model without repeted factor
R2: 0.951 F(11 ,60): 105.116 AIC: 277.603 BIC: 307.2

Optimal selection between models: [4] Different - Bounded

[1] Equal values model X=[-1, 0,1]

Estimation mode: RLS

Liv Estimate Std.Err. lim.inf lim.sup t.value p sig
1 (Intercept) 9.658 0.275 9.109 10.207 35.092 0.0000 ***
2 object@x 7.249 0.368 6.514 7.984 19.672 0.0000 ***

SSreg SSres Rsquare F dfk dfres p AIC BIC
1 9238.372 320.317 0.9664894 995.025 2 69 0.00000 317.7977 324.6277

[2] Different values model X=[1,0,0, 0,0,-1]

Estimation mode: RLS

Liv Estimate Std.Err. lim.inf lim.sup t.value p sig
1 (Intercept) 8.475 0.263 7.951 9.000 32.214 0.0000 ***
2 object@xd1 9.346 0.584 8.181 10.510 16.008 0.0000 ***
3 object@xd2 5.380 0.540 4.302 6.457 9.961 0.0000 ***

SSreg SSres Rsquare F dfk dfres p AIC BIC
1 9576.033 272.108 0.9723696 797.687 3 68 0.00000 308.0534 317.1601

>> Bic difference between models: Strong

[4] Approximate different values model

Estimation mode: B

Liv Estimate Std.Err. lim.inf lim.sup t.value p sig
1 (Intercept) 8.500 0.411 7.679 9.321 20.669 0.0000 ***
2 d1 9.500 0.582 8.339 10.661 16.335 0.0000 ***
3 d2 5.500 0.582 4.339 6.661 9.457 0.0000 ***

SSreg SSres Rsquare F dfk dfres p AIC BIC
1 9726.000 276.000 0.9724055 798.754 3 68 0.00000 309.0761 318.1827

>> Bic difference between models: Weak
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Listing E.35: Experiment 2: Model selection and estimated weights for the
couple of factors predictability × honesty. All the sample.
#####################################################
1 Predictability Honesty
#####################################################

Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

F1 2 1010.5 505.2 48.1912 7.339e-06 ***
F2 2 4210.0 2105.0 197.0522 9.280e-09 ***
id 3 98.0 32.7 6.2597 0.0057321 **
trial 5 60.4 12.1
F1:F2 4 192.1 48.0 14.8379 8.772e-06 ***
F1:id 6 136.1 22.7 4.2738 0.0031579 **
F2:id 6 61.6 10.3 3.3808 0.0114770 *
F1:trial 10 104.8 10.5
F2:trial 10 106.8 10.7
id:trial 15 78.3 5.2
F1:F2:id 12 129.1 10.8 3.9219 0.0001889 ***
F1:F2:trial 20 64.7 3.2
F1:id:trial 30 159.2 5.3
F2:id:trial 30 91.1 3.0
F1:F2:id:trial 60 164.6 2.7
Residuals 0 0.0
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Fit Indexes for model without repeted factor
R2: 0.876 F(35 ,180): 36.172 AIC: 977.736 BIC: 1102.621

AdjR2 RSS df AIC BIC c0 Model AIC BIC
RLS 0.94 1534.8 3 1044.5 1058.0 -1.62 0.44 0.66 NaN NaN NaN NaN a+b=1
w A=B 0.88 1813.0 3 1080.5 1094.0 0.00 1.00 1.00 1.00 1.00 1.00 1.00
w x2 0.90 1538.4 3 1045.0 1058.5 -0.33 1.00 1.00 1.00 1.50 1.50 1.50
w x6 0.90 1387.5 6 1028.7 1052.4 -0.00 1.00 1.50 1.00 1.11 2.50 3.00 AIC BIC
AVERAGE 0.91 1477.3 6 1042.3 1065.9 -0.31 1.00 1.96 1.96 2.43 2.12 1.96
conj. 0.88 1798.6 7 1086.8 1113.8 -0.45 1.55 2.30 1.00 1.55 2.30 1.00
AxB 0.90 2301.5 2 1130.1 1140.2 3.91 1.06 NaN NaN NaN NaN NaN

[regr] Additive model
Estimation mode: RLS

Liv Estimate Std.Err. lim.inf lim.sup t.value p sig
1 (Intercept) -1.623 0.280 -2.175 -1.070 -5.787 0.0000 ***
2 object@xPredictability 0.442 0.034 0.375 0.509 13.006 0.0000 ***
3 object@xHonesty 0.663 0.024 0.615 0.711 27.284 0.0000 ***

SSreg SSres Rsquare F dfk dfres p AIC BIC
1 23100.451 1534.835 0.9376977 1063.588 3 212 0.00000 1044.536 1058.037

[equal] Averaging model: overal equal weighted case
Estimation mode: W

Liv Estimate Std.Err. lim.inf lim.sup t.value p sig
1 c0 0.000 NaN NaN NaN NaN NaN NaN
2 Predictability 0.500 0.027 0.448 0.552 18.851 0.0000 ***
3 Honesty 0.500 0.023 0.455 0.545 21.955 0.0000 ***

SSreg SSres Rsquare F dfk dfres p AIC BIC
1 13891.500 1813.024 0.884554 541.452 3 212 0.00000 1080.516 1094.017

[Optim2] Averaging model: equal weighted case
Estimation mode: W

Liv Estimate Std.Err. lim.inf lim.sup t.value p sig
1 c0 -0.334 NaN NaN NaN NaN NaN NaN
2 Predictability 1.000 0.024 0.952 1.048 40.927 0.0000 ***
3 Honesty 1.500 0.021 1.459 1.541 71.501 0.0000 ***

SSreg SSres Rsquare F dfk dfres p AIC BIC
1 13964.059 1538.449 0.9007613 641.421 3 212 0.00000 1045.044 1058.545

[Optim6] Averaging model: differential weighted case
Estimation mode: W

Liv Estimate Std.Err. lim.inf lim.sup t.value p sig
1 c0 -0.002 NaN NaN NaN NaN NaN NaN
2 High Predic. 1.000 0.023 0.954 1.046 42.790 0.0000 ***
3 med. Predic. 1.500 0.020 1.460 1.540 74.755 0.0000 ***
4 Low Predic. 1.000 0.023 0.954 1.046 42.790 0.0000 ***
5 High Honest. 1.109 0.020 1.069 1.148 55.248 0.0000 ***
6 med. Honest. 2.500 0.023 2.454 2.546 106.975 0.0000 ***
7 Low Honest. 3.000 0.020 2.960 3.040 149.510 0.0000 ***

SSreg SSres Rsquare F dfk dfres p AIC BIC
1 12490.837 1387.524 0.9000225 313.578 6 209 0.00000 1028.741 1052.368

[Multiplying] Multiplying model
Estimation mode: RLS

Liv Estimate Std.Err. lim.inf lim.sup t.value p sig
1 (Intercept) 3.906 0.364 3.188 4.625 10.718 0.0000 ***
2 AxB 1.059 0.040 0.980 1.139 26.242 0.0000 ***

SSreg SSres Rsquare F dfk dfres p AIC BIC
1 20999.241 2301.550 0.9012244 971.701 2 213 0.00000 1130.050 1140.176
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Listing E.36: Experiment 2: Model selection and estimated weights for the
couple of factors predictability × benevolence. All the sample.
#####################################################
2 Predictability Benevolence
#####################################################

Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

F1 2 744.9 372.5 206.7137 7.347e-09 ***
F2 2 4079.6 2039.8 393.4652 3.111e-10 ***
id 3 67.4 22.5 4.2949 0.0224315 *
trial 5 9.7 1.9
F1:F2 4 253.9 63.5 35.3042 8.426e-09 ***
F1:id 6 155.0 25.8 14.7106 9.160e-08 ***
F2:id 6 122.3 20.4 6.7811 0.0001290 ***
F1:trial 10 18.0 1.8
F2:trial 10 51.8 5.2
id:trial 15 78.5 5.2
F1:F2:id 12 81.4 6.8 3.1290 0.0016824 **
F1:F2:trial 20 36.0 1.8
F1:id:trial 30 52.7 1.8
F2:id:trial 30 90.2 3.0
F1:F2:id:trial 60 130.0 2.2
Residuals 0 0.0
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Fit Indexes for model without repeted factor
R2: 0.922 F(35 ,180): 60.642 AIC: 853.444 BIC: 978.329

AdjR2 RSS df AIC BIC c0 Model AIC BIC
RLS 0.94 1230.3 3 996.8 1010.3 -1.01 0.37 0.64 NaN NaN NaN NaN a+b=1
w A=B 0.89 1709.0 3 1067.7 1081.2 0.00 1.00 1.00 1.00 1.00 1.00 1.00
w x2 0.92 1241.6 3 998.7 1012.2 -0.48 1.00 1.00 1.00 2.00 2.00 2.00
w x6 0.94 981.9 7 956.1 983.1 -0.48 1.00 3.80 4.25 6.12 9.94 2.32 AIC BIC
AVERAGE 0.92 1181.0 6 993.9 1017.6 -0.54 1.00 2.04 2.04 2.20 2.04 2.29
conj. 0.88 1601.8 7 1061.8 1088.8 -0.50 1.55 2.30 1.00 1.55 2.30 1.00
AxB 0.90 2028.5 2 1102.8 1112.9 3.87 1.03 NaN NaN NaN NaN NaN

[regr] Additive model
Estimation mode: RLS

Liv Estimate Std.Err. lim.inf lim.sup t.value p sig
1 (Intercept) -1.011 0.306 -1.614 -0.408 -3.305 0.0011 **
2 object@xPredictability 0.374 0.034 0.307 0.441 11.017 0.0000 ***
3 object@xBenevolence 0.643 0.024 0.596 0.689 27.235 0.0000 ***

SSreg SSres Rsquare F dfk dfres p AIC BIC
1 20592.652 1230.287 0.9436241 1182.825 3 212 0.00000 996.7619 1010.263

[equal] Averaging model: overal equal weighted case
Estimation mode: W

Liv Estimate Std.Err. lim.inf lim.sup t.value p sig
1 c0 0.000 NaN NaN NaN NaN NaN NaN
2 Predictability 0.500 0.026 0.449 0.551 19.429 0.0000 ***
3 Benevolence 0.500 0.023 0.455 0.545 21.878 0.0000 ***

SSreg SSres Rsquare F dfk dfres p AIC BIC
1 13369.500 1708.963 0.886662 552.837 3 212 0.00000 1067.748 1081.249

[Optim2] Averaging model: equal weighted case
Estimation mode: W

Liv Estimate Std.Err. lim.inf lim.sup t.value p sig
1 c0 -0.479 NaN NaN NaN NaN NaN NaN
2 Predictability 1.000 0.022 0.957 1.043 45.589 0.0000 ***
3 Benevolence 2.000 0.019 1.962 2.038 102.670 0.0000 ***

SSreg SSres Rsquare F dfk dfres p AIC BIC
1 14075.864 1241.602 0.918942 801.138 3 212 0.00000 998.7394 1012.240

[Optim6] Averaging model: differential weighted case
Estimation mode: W

Liv Estimate Std.Err. lim.inf lim.sup t.value p sig
1 c0 -0.478 NaN NaN NaN NaN NaN NaN
2 High Predic. 1.000 0.020 0.961 1.039 50.778 0.0000 ***
3 med. Predic. 3.797 0.017 3.762 3.831 217.084 0.0000 ***
4 Low Predic. 4.245 0.020 4.206 4.284 215.554 0.0000 ***
5 High Benevo. 6.120 0.017 6.086 6.155 349.956 0.0000 ***
6 med. Benevo. 9.942 0.020 9.904 9.981 504.857 0.0000 ***
7 Low Benevo. 2.319 0.017 2.285 2.354 132.600 0.0000 ***

SSreg SSres Rsquare F dfk dfres p AIC BIC
1 15564.891 981.926 0.9406577 471.013 7 208 0.00000 956.0568 983.059

[Multiplying] Multiplying model
Estimation mode: RLS

Liv Estimate Std.Err. lim.inf lim.sup t.value p sig
1 (Intercept) 3.871 0.308 3.264 4.478 12.564 0.0000 ***
2 AxB 1.032 0.041 0.952 1.113 25.170 0.0000 ***

SSreg SSres Rsquare F dfk dfres p AIC BIC
1 19316.150 2028.522 0.9049635 1014.123 2 213 0.00000 1102.775 1112.901
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Listing E.37: Experiment 2: Model selection and estimated weights for the
couple of factors predictability × competence. All the sample.
#####################################################
3 Predictability Competence
#####################################################

Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

F1 2 1147.9 573.9 160.8368 2.491e-08 ***
F2 2 3707.3 1853.7 479.5936 1.169e-10 ***
id 3 130.1 43.4 11.6534 0.0003349 ***
trial 5 22.5 4.5
F1:F2 4 140.8 35.2 21.2680 5.680e-07 ***
F1:id 6 35.4 5.9 2.3802 0.0532649 .
F2:id 6 130.6 21.8 9.1577 1.010e-05 ***
F1:trial 10 35.7 3.6
F2:trial 10 38.7 3.9
id:trial 15 55.8 3.7
F1:F2:id 12 127.2 10.6 6.3070 4.677e-07 ***
F1:F2:trial 20 33.1 1.7
F1:id:trial 30 74.3 2.5
F2:id:trial 30 71.3 2.4
F1:F2:id:trial 60 100.8 1.7
Residuals 0 0.0
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Fit Indexes for model without repeted factor
R2: 0.926 F(35 ,180): 64.491 AIC: 836.78 BIC: 961.665

AdjR2 RSS df AIC BIC c0 Model AIC BIC
RLS 0.95 1101.4 3 972.9 986.4 -2.44 0.47 0.68 NaN NaN NaN NaN a+b=1
w A=B 0.89 1561.1 3 1048.2 1061.7 0.00 1.00 1.00 1.00 1.00 1.00 1.00
w x2 0.91 1163.4 3 984.7 998.2 -0.51 1.00 1.00 1.00 1.50 1.50 1.50
w x6 0.91 1054.0 5 967.3 987.6 -0.29 1.00 1.82 1.00 1.50 1.50 3.69
AVERAGE 0.93 1036.6 5 963.8 984.0 -0.53 1.00 1.89 1.89 2.28 1.89 1.89 AIC BIC
conj. 0.90 1401.5 7 1032.9 1059.9 -0.52 1.55 2.30 1.00 1.55 2.30 1.00
AxB 0.92 1766.9 2 1072.9 1083.1 3.37 1.12 NaN NaN NaN NaN NaN

[regr] Additive model
Estimation mode: RLS

Liv Estimate Std.Err. lim.inf lim.sup t.value p sig
1 (Intercept) -2.445 0.289 -3.014 -1.875 -8.460 0.0000 ***
2 object@xPredictability 0.472 0.030 0.412 0.532 15.546 0.0000 ***
3 object@xCompetence 0.680 0.030 0.621 0.738 22.827 0.0000 ***

SSreg SSres Rsquare F dfk dfres p AIC BIC
1 20737.654 1101.404 0.9495672 1330.539 3 212 0.00000 972.859 986.36

[equal] Averaging model: overal equal weighted case
Estimation mode: W

Liv Estimate Std.Err. lim.inf lim.sup t.value p sig
1 c0 0.000 NaN NaN NaN NaN NaN NaN
2 Predictability 0.500 0.026 0.449 0.551 19.374 0.0000 ***
3 Competence 0.500 0.023 0.454 0.546 21.551 0.0000 ***

SSreg SSres Rsquare F dfk dfres p AIC BIC
1 13189.500 1561.150 0.894164 597.033 3 212 0.00000 1048.208 1061.709

[Optim2] Averaging model: equal weighted case
Estimation mode: W

Liv Estimate Std.Err. lim.inf lim.sup t.value p sig
1 c0 -0.511 NaN NaN NaN NaN NaN NaN
2 Predictability 1.000 0.022 0.956 1.044 44.886 0.0000 ***
3 Competence 1.500 0.020 1.461 1.539 74.896 0.0000 ***

SSreg SSres Rsquare F dfk dfres p AIC BIC
1 12291.649 1163.372 0.9135362 746.631 3 212 0.00000 984.6821 998.1832

[Optim6] Averaging model: differential weighted case
Estimation mode: W

Liv Estimate Std.Err. lim.inf lim.sup t.value p sig
1 c0 -0.294 NaN NaN NaN NaN NaN NaN
2 High Predic. 1.000 0.021 0.958 1.042 46.935 0.0000 ***
3 med. Predic. 1.817 0.019 1.780 1.855 94.887 0.0000 ***
4 Low Predic. 1.000 0.021 0.958 1.042 46.935 0.0000 ***
5 High Compet. 1.500 0.019 1.462 1.538 78.315 0.0000 ***
6 med. Compet. 1.500 0.021 1.458 1.542 70.403 0.0000 ***
7 Low Compet. 3.688 0.019 3.651 3.726 192.567 0.0000 ***

SSreg SSres Rsquare F dfk dfres p AIC BIC
1 11584.089 1053.962 0.916604 461.621 5 210 0.00000 967.3487 987.6004

[Multiplying] Multiplying model
Estimation mode: RLS

Liv Estimate Std.Err. lim.inf lim.sup t.value p sig
1 (Intercept) 3.367 0.330 2.718 4.017 10.216 0.0000 ***
2 AxB 1.117 0.044 1.030 1.204 25.237 0.0000 ***

SSreg SSres Rsquare F dfk dfres p AIC BIC
1 19573.688 1766.853 0.9172067 1179.837 2 213 0.00000 1072.944 1083.069
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Listing E.38: Experiment 2: Model selection and estimated weights for the
couple of factors honesty × benevolence. All the sample.
#####################################################
4 Honesty Benevolence
#####################################################

Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

F1 2 3469.7 1734.9 217.8713 5.683e-09 ***
F2 2 2518.2 1259.1 110.0985 1.547e-07 ***
id 3 166.0 55.3 17.1625 4.099e-05 ***
trial 5 12.9 2.6
F1:F2 4 343.5 85.9 42.1204 1.799e-09 ***
F1:id 6 104.4 17.4 8.4535 2.061e-05 ***
F2:id 6 54.6 9.1 5.2684 0.0008263 ***
F1:trial 10 79.6 8.0
F2:trial 10 114.4 11.4
id:trial 15 48.4 3.2
F1:F2:id 12 59.8 5.0 2.1700 0.0249412 *
F1:F2:trial 20 40.8 2.0
F1:id:trial 30 61.7 2.1
F2:id:trial 30 51.8 1.7
F1:F2:id:trial 60 137.7 2.3
Residuals 0 0.0
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Fit Indexes for model without repeted factor
R2: 0.925 F(35 ,180): 63.118 AIC: 887.773 BIC: 1012.659

AdjR2 RSS df AIC BIC c0 Model AIC BIC
RLS 0.95 1449.2 3 1032.1 1045.6 -1.58 0.66 0.46 NaN NaN NaN NaN a+b=1
w A=B 0.91 1533.8 3 1044.4 1057.9 0.00 1.00 1.00 1.00 1.00 1.00 1.00
w x2 0.91 1355.9 3 1017.8 1031.3 -0.45 1.00 1.00 1.00 1.00 1.00 1.00
w x6 0.92 1053.2 6 969.2 992.8 0.08 1.00 1.86 2.71 1.00 1.00 1.83 AIC BIC
AVERAGE 0.92 1221.2 4 997.2 1014.0 -0.29 1.00 1.09 1.09 1.09 1.09 1.09
conj. 0.88 2079.7 7 1118.2 1145.2 -0.77 1.87 2.12 1.00 1.87 2.12 1.00
AxB 0.93 1590.7 2 1050.3 1060.4 4.02 0.98 NaN NaN NaN NaN NaN

[regr] Additive model
Estimation mode: RLS

Liv Estimate Std.Err. lim.inf lim.sup t.value p sig
1 (Intercept) -1.576 0.188 -1.947 -1.205 -8.375 0.0000 ***
2 object@xHonesty 0.656 0.028 0.601 0.712 23.279 0.0000 ***
3 object@xBenevolence 0.458 0.028 0.402 0.514 16.066 0.0000 ***

SSreg SSres Rsquare F dfk dfres p AIC BIC
1 25355.381 1449.163 0.945936 1236.424 3 212 0.00000 1032.129 1045.631

[equal] Averaging model: overal equal weighted case
Estimation mode: W

Liv Estimate Std.Err. lim.inf lim.sup t.value p sig
1 c0 0.000 NaN NaN NaN NaN NaN NaN
2 Honesty 0.500 0.020 0.461 0.539 25.193 0.0000 ***
3 Benevolence 0.500 0.021 0.460 0.540 24.357 0.0000 ***

SSreg SSres Rsquare F dfk dfres p AIC BIC
1 15471.000 1533.841 0.9097997 712.775 3 212 0.00000 1044.396 1057.897

[Optim2] Averaging model: equal weighted case
Estimation mode: W

Liv Estimate Std.Err. lim.inf lim.sup t.value p sig
1 c0 -0.454 NaN NaN NaN NaN NaN NaN
2 Honesty 1.000 0.019 0.963 1.037 53.590 0.0000 ***
3 Benevolence 1.000 0.019 0.962 1.038 51.812 0.0000 ***

SSreg SSres Rsquare F dfk dfres p AIC BIC
1 13664.770 1355.888 0.9097318 712.186 3 212 0.00000 1017.759 1031.260

[Optim6] Averaging model: differential weighted case
Estimation mode: W

Liv Estimate Std.Err. lim.inf lim.sup t.value p sig
1 c0 0.080 NaN NaN NaN NaN NaN NaN
2 High Honest. 1.000 0.017 0.967 1.033 60.374 0.0000 ***
3 med. Honest. 1.856 0.017 1.823 1.890 108.355 0.0000 ***
4 Low Honest. 2.705 0.017 2.673 2.738 163.330 0.0000 ***
5 High Benevo. 1.000 0.017 0.966 1.034 58.370 0.0000 ***
6 med. Benevo. 1.000 0.017 0.967 1.033 60.374 0.0000 ***
7 Low Benevo. 1.827 0.017 1.793 1.860 106.615 0.0000 ***

SSreg SSres Rsquare F dfk dfres p AIC BIC
1 12378.140 1053.188 0.9215872 409.397 6 209 0.00000 969.19 992.8169

[Multiplying] Multiplying model
Estimation mode: RLS

Liv Estimate Std.Err. lim.inf lim.sup t.value p sig
1 (Intercept) 4.022 0.296 3.437 4.606 13.567 0.0000 ***
2 AxB 0.984 0.027 0.931 1.036 36.983 0.0000 ***

SSreg SSres Rsquare F dfk dfres p AIC BIC
1 22194.157 1590.724 0.9331204 1485.913 2 213 0.00000 1050.261 1060.387
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Listing E.39: Experiment 2: Model selection and estimated weights for the
couple of factors honesty × competence. All the sample.
#####################################################
5 Honesty Competence
#####################################################

Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

F1 2 2834.19 1417.10 157.5685 2.752e-08 ***
F2 2 2752.26 1376.13 206.7504 7.341e-09 ***
id 3 29.63 9.88 3.3571 0.04718 *
trial 5 33.60 6.72
F1:F2 4 377.10 94.28 26.2520 1.033e-07 ***
F1:id 6 53.61 8.94 2.6255 0.03630 *
F2:id 6 38.10 6.35 2.3675 0.05433 .
F1:trial 10 89.94 8.99
F2:trial 10 66.56 6.66
id:trial 15 44.14 2.94
F1:F2:id 12 41.72 3.48 1.6906 0.09170 .
F1:F2:trial 20 71.82 3.59
F1:id:trial 30 102.10 3.40
F2:id:trial 30 80.47 2.68
F1:F2:id:trial 60 123.38 2.06
Residuals 0 0.00
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Fit Indexes for model without repeted factor
R2: 0.909 F(35 ,180): 51.484 AIC: 911.937 BIC: 1036.822

AdjR2 RSS df AIC BIC c0 Model AIC BIC
RLS 0.95 1255.7 3 1001.2 1014.7 -2.42 0.55 0.59 NaN NaN NaN NaN a+b=1
w A=B 0.90 1648.9 3 1060.0 1073.5 0.00 1.00 1.00 1.00 1.00 1.00 1.00
w x2 0.91 1312.5 3 1010.7 1024.2 -0.62 1.00 1.00 1.00 1.00 1.00 1.00
w x6 0.92 981.8 5 952.0 972.3 -0.10 1.00 2.50 2.50 1.50 1.50 3.00 AIC BIC
AVERAGE 0.93 1060.7 4 966.7 983.6 -0.45 1.00 1.20 1.20 1.20 1.20 1.20
conj. 0.89 1849.9 7 1092.9 1119.9 -0.93 1.87 2.12 1.00 1.87 2.12 1.00
AxB 0.94 1386.9 2 1020.6 1030.8 3.88 0.98 NaN NaN NaN NaN NaN

[regr] Additive model
Estimation mode: RLS

Liv Estimate Std.Err. lim.inf lim.sup t.value p sig
1 (Intercept) -2.419 0.245 -2.901 -1.938 -9.895 0.0000 ***
2 object@xHonesty 0.552 0.024 0.504 0.600 22.632 0.0000 ***
3 object@xCompetence 0.587 0.027 0.532 0.641 21.385 0.0000 ***

SSreg SSres Rsquare F dfk dfres p AIC BIC
1 22873.549 1255.713 0.947959 1287.235 3 212 0.00000 1001.180 1014.681

[equal] Averaging model: overal equal weighted case
Estimation mode: W

Liv Estimate Std.Err. lim.inf lim.sup t.value p sig
1 c0 0.000 NaN NaN NaN NaN NaN NaN
2 Honesty 0.500 0.021 0.458 0.542 23.400 0.0000 ***
3 Competence 0.500 0.022 0.456 0.544 22.349 0.0000 ***

SSreg SSres Rsquare F dfk dfres p AIC BIC
1 15291.000 1648.908 0.9026613 655.321 3 212 0.00000 1060.021 1073.522

[Optim2] Averaging model: equal weighted case
Estimation mode: W

Liv Estimate Std.Err. lim.inf lim.sup t.value p sig
1 c0 -0.624 NaN NaN NaN NaN NaN NaN
2 Honesty 1.000 0.019 0.962 1.038 52.455 0.0000 ***
3 Competence 1.000 0.020 0.961 1.039 50.100 0.0000 ***

SSreg SSres Rsquare F dfk dfres p AIC BIC
1 12808.618 1312.534 0.907052 689.615 3 212 0.00000 1010.740 1024.241

[Optim6] Averaging model: differential weighted case
Estimation mode: W

Liv Estimate Std.Err. lim.inf lim.sup t.value p sig
1 c0 -0.104 NaN NaN NaN NaN NaN NaN
2 High Honest. 1.000 0.017 0.967 1.033 60.363 0.0000 ***
3 med. Honest. 2.500 0.017 2.466 2.534 144.130 0.0000 ***
4 Low Honest. 2.500 0.017 2.467 2.533 150.906 0.0000 ***
5 High Compet. 1.500 0.017 1.466 1.534 86.478 0.0000 ***
6 med. Compet. 1.500 0.017 1.467 1.533 90.544 0.0000 ***
7 Low Compet. 3.000 0.017 2.966 3.034 172.956 0.0000 ***

SSreg SSres Rsquare F dfk dfres p AIC BIC
1 11244.658 981.839 0.9196958 481.011 5 210 0.00000 952.0376 972.2893

[Multiplying] Multiplying model
Estimation mode: RLS

Liv Estimate Std.Err. lim.inf lim.sup t.value p sig
1 (Intercept) 3.882 0.244 3.402 4.363 15.940 0.0000 ***
2 AxB 0.981 0.021 0.939 1.023 46.191 0.0000 ***

SSreg SSres Rsquare F dfk dfres p AIC BIC
1 21606.571 1386.873 0.939684 1659.200 2 213 0.00000 1020.640 1030.765
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Listing E.40: Experiment 2: Model selection and estimated weights for the
couple of factors benevolence × competence. All the sample.
#####################################################
6 Benevolence Competence
#####################################################

Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

F1 2 2060.22 1030.11 235.3664 3.895e-09 ***
F2 2 2590.05 1295.03 276.5156 1.767e-09 ***
id 3 90.07 30.02 3.3006 0.0494504 *
trial 5 32.89 6.58
F1:F2 4 312.69 78.17 25.7741 1.202e-07 ***
F1:id 6 20.39 3.40 1.2105 0.3282532
F2:id 6 142.86 23.81 6.0981 0.0002908 ***
F1:trial 10 43.77 4.38
F2:trial 10 46.83 4.68
id:trial 15 136.45 9.10
F1:F2:id 12 97.18 8.10 2.6523 0.0064368 **
F1:F2:trial 20 60.66 3.03
F1:id:trial 30 84.22 2.81
F2:id:trial 30 117.14 3.90
F1:F2:id:trial 60 183.20 3.05
Residuals 0 0.00
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Fit Indexes for model without repeted factor
R2: 0.883 F(35 ,180): 38.753 AIC: 942.538 BIC: 1067.423

AdjR2 RSS df AIC BIC c0 Model AIC BIC
RLS 0.94 1521.4 3 1042.6 1056.1 -1.55 0.46 0.63 NaN NaN NaN NaN a+b=1
w A=B 0.89 1710.6 3 1068.0 1081.5 0.00 1.00 1.00 1.00 1.00 1.00 1.00
w x2 0.89 1531.7 3 1044.1 1057.6 -0.46 1.00 1.00 1.00 1.00 1.00 1.00
w x6 0.90 1222.2 6 1001.3 1025.0 -0.20 1.00 2.55 1.00 1.00 1.51 2.41 AIC BIC
AVERAGE 0.91 1265.6 6 1008.9 1032.5 -0.31 1.00 1.73 1.52 1.52 1.53 1.52
conj. 0.90 1502.7 7 1048.0 1075.0 -0.43 1.36 2.06 1.00 1.36 2.06 1.00
AxB 0.91 1935.0 2 1092.6 1102.7 4.33 0.93 NaN NaN NaN NaN NaN

[regr] Additive model
Estimation mode: RLS

Liv Estimate Std.Err. lim.inf lim.sup t.value p sig
1 (Intercept) -1.548 0.238 -2.017 -1.080 -6.509 0.0000 ***
2 object@xBenevolence 0.457 0.025 0.407 0.507 18.095 0.0000 ***
3 object@xCompetence 0.631 0.028 0.575 0.686 22.437 0.0000 ***

SSreg SSres Rsquare F dfk dfres p AIC BIC
1 22967.990 1521.366 0.9378764 1066.851 3 212 0.00000 1042.632 1056.133

[equal] Averaging model: overal equal weighted case
Estimation mode: W

Liv Estimate Std.Err. lim.inf lim.sup t.value p sig
1 c0 0.000 NaN NaN NaN NaN NaN NaN
2 Benevolence 0.500 0.022 0.456 0.544 22.226 0.0000 ***
3 Competence 0.500 0.023 0.455 0.545 21.957 0.0000 ***

SSreg SSres Rsquare F dfk dfres p AIC BIC
1 14769.000 1710.609 0.8961985 610.120 3 212 0.00000 1067.956 1081.457

[Optim2] Averaging model: equal weighted case
Estimation mode: W

Liv Estimate Std.Err. lim.inf lim.sup t.value p sig
1 c0 -0.455 NaN NaN NaN NaN NaN NaN
2 Benevolence 1.000 0.021 0.958 1.042 46.976 0.0000 ***
3 Competence 1.000 0.022 0.958 1.042 46.407 0.0000 ***

SSreg SSres Rsquare F dfk dfres p AIC BIC
1 12958.255 1531.718 0.8942911 597.836 3 212 0.00000 1044.097 1057.598

[Optim6] Averaging model: differential weighted case
Estimation mode: W

Liv Estimate Std.Err. lim.inf lim.sup t.value p sig
1 c0 -0.203 NaN NaN NaN NaN NaN NaN
2 High Benevo. 1.000 0.019 0.962 1.038 52.215 0.0000 ***
3 med. Benevo. 2.554 0.019 2.515 2.592 131.716 0.0000 ***
4 Low Benevo. 1.000 0.019 0.962 1.038 52.215 0.0000 ***
5 High Compet. 1.000 0.019 0.962 1.038 51.582 0.0000 ***
6 med. Compet. 1.513 0.019 1.475 1.550 78.985 0.0000 ***
7 Low Compet. 2.414 0.019 2.375 2.452 124.502 0.0000 ***

SSreg SSres Rsquare F dfk dfres p AIC BIC
1 11881.303 1222.238 0.9067246 338.613 6 209 0.00000 1001.344 1024.971

[Multiplying] Multiplying model
Estimation mode: RLS

Liv Estimate Std.Err. lim.inf lim.sup t.value p sig
1 (Intercept) 4.333 0.335 3.672 4.994 12.916 0.0000 ***
2 AxB 0.934 0.036 0.864 1.004 26.314 0.0000 ***

SSreg SSres Rsquare F dfk dfres p AIC BIC
1 21033.380 1935.047 0.9157519 1157.623 2 213 0.00000 1092.585 1102.711
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Figure E.1: Experiment 2: Box-plot of the observed data from the two-ways
designs; dashed curves show the optimal weight and value parameters for the
averaging model (2nd subject)

05101520

P
re

di
ct

ab
ili

ty
 X

 H
on

es
ty

P
re

di
ct

ab
ili

ty

Trust judgment

−
1

0
+

1

H
on

es
ty

 −
1

H
on

es
ty

 0
H

on
es

ty
 +

1

●

05101520

P
re

di
ct

ab
ili

ty
 X

 B
en

ev
ol

en
ce

P
re

di
ct

ab
ili

ty
Trust judgment

−
1

0
+

1

B
en

ev
ol

en
ce

 −
1

B
en

ev
ol

en
ce

 0
B

en
ev

ol
en

ce
 +

1

05101520

P
re

di
ct

ab
ili

ty
 X

 C
om

pe
te

nc
e

P
re

di
ct

ab
ili

ty

Trust judgment

−
1

0
+

1

C
om

pe
te

nc
e 

−
1

C
om

pe
te

nc
e 

0
C

om
pe

te
nc

e 
+

1

●

05101520

H
on

es
ty

 X
 B

en
ev

ol
en

ce

H
on

es
ty

Trust judgment

−
1

0
+

1

B
en

ev
ol

en
ce

 −
1

B
en

ev
ol

en
ce

 0
B

en
ev

ol
en

ce
 +

1

05101520

H
on

es
ty

 X
 C

om
pe

te
nc

e

H
on

es
ty

Trust judgment

−
1

0
+

1

C
om

pe
te

nc
e 

−
1

C
om

pe
te

nc
e 

0
C

om
pe

te
nc

e 
+

1

05101520

B
en

ev
ol

en
ce

 X
 C

om
pe

te
nc

e

B
en

ev
ol

en
ce

Trust judgment
−

1
0

+
1

C
om

pe
te

nc
e 

−
1

C
om

pe
te

nc
e 

0
C

om
pe

te
nc

e 
+

1

166



Figure E.2: Experiment 2: Box-plot of the observed data from the two-ways
designs; dashed curves show the optimal weight and value parameters for the
averaging model (3rd subject)
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Figure E.3: Experiment 2: Box-plot of the observed data from the two-ways
designs; dashed curves show the optimal weight and value parameters for the
averaging model (4th subject)
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