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Introduction

Background and wider motivations
It is evident that modern society is highly energy dependent. In fact, in different
regions a quantifier related with quality of life is the energy used per capita (1). It
is foreseen that energy demand will triple in the next decades. Using the current
sources for electricity production, this increasing demand might be fulfilled. Nev-
ertheless, if the present rate of fossil fuel consumption carries on, the CO2 content
in the atmosphere will reach 560 ppm and the temperature may increase by 1◦C or
even more via the “greenhouse” effect that this produces. The International Energy
Agency proposes two possible scenarios in which the electrical demand in 2050 would
produce a 6◦C or 2◦C increase in the global temperature if it is covered by existing
technologies (2). This stresses the point that the environment cannot absorb for
much longer at the present and future rate the waste of human activities in general
and of energy production in particular (3).

For this, it is necessary to verify not only the internal limits of the energy sys-
tem, such as the reserves or the economics, but also the external limits, which refers
to the finite capacity to self-regeneration of the environment.

It is possible to summarized the criteria that an energy solution has to fulfil in
order to replace the current fossil fuel alternatives, these are (3):

✓ Fuel: Supply abundant and largely available.

✓ Safety: All "internal" accidents caused either by plant failures or by operator
mistakes and conceivable "external" accidents should not disrupt the life of the
population.

✓ Environment: Human health and eco-system non affected. No waste or
waste isolation. Minimun use of land and of fresh water.
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2 INTRODUCTION

✓ Affordability: Energy cost competitive and predictable.

✓ Social acceptability.

✓ Proliferation: No direct relation with nuclear weapons.

One of the possible solutions is the exploitation of nuclear energy, which occurs in
various forms. One such form is explored in the following.

Motivations for the present thesis
After of the discover in 1920 that an α-particle has a slightly less mass than four
times the hydrogen mass, Eddington suggested that this could be the method in
which the stars and the Sun are producing its energy (4). From this point the hu-
mankind was aware about the possible source of energy hidden in the nucleus.

The first approach in order to use it to generate energy in a powerplant was in-
spired in the fission discovery by Meitner and Hahn in 1938 (5). In 1957 the first
commercial electricity-generating plant powered by nuclear energy was located in
Pennsylvania and from this year this kind of energy production type has continu-
ously grown. In 1970 the nuclear energy represented the 0.9% of the shared energy
supply and it scaled to be the 5% in 2020 (6). The fission based nuclear power
is expected to continue increasing in the next decades despite this alternative does
not fulfil several criteria previously listed. Such as, naturally fissible materials like
235U are non-renewable and will get exhausted in a few hundred years, even more,
if with only this alternative would try to cover a consumption of 80 TWY, which is
the expected in the next decades, the reserves get exhausted in only 100 years (3).
Besides, fission alternatives have faced serious troubles related with social accept-
ability due to concerns of proliferation, radioactive waste disposal, the potential for
catastrophic Chernobyl like disasters, etc. (1). Finally, it is worth to comment that
this is an active research area in order to become safer. Moreover, new ideas came
up trying to achieve different fission chain reactions using Thorium (7).

In the 80’s and 90’s the ideas of implementing the fusion reactions for energy pur-
poses started to be a reality, the reaction that was chosen is the fusion of the deu-
terium (D) and tritium (T) in which, approximately, 17.8 MeV of energy is released
in the form of kinetic energy shared by the products. This idea rapidly attracted
attention because the fuel supply is practically unlimited on the scale of human
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civilization and quite cheap (3).

Some approaches have been considered in order to use this reaction in the elec-
tricity production, one of them is the so call Tokamak in which a plasma formed
from deuterium and tritium is magnetically confined in a toroidal geometry, this
confinement and external heatings produce a fully ionized gas which achieves a tem-
perature of 20 keV, giving to nuclei the enough energy to fuse via tunneling effect
producing an α-particle and a neutron. This last particle easily escapes because it
has no charge and it will end up in reacting (neutron absorption) with the material
in the outer region of the surrounding blanket of approximately one meter made of
lithium in order to produce the tritium that will constantly feed the plasma, and
also convert its kinetic energy in heat for electrical purposes (10). Also the lithium
is widely available in the Earth’s crust and oceans. It is worth to notice that tritium
is a radioactive material with a decay time constant of only about 12 years and
low toxicity. But apart from the first start up charge of tritium, no transport of
radioactive fuel outside the plant is required (3).

Currently, every new technical has the aim of improving in the confinement time,
the temperature achieved for the plasma and the density of particles gathered in the
so call triple product (1). At this moment the project ITER is under construction
and it is expected that in 2027 the first plasma will be realized. Also, the project
DEMO is being planned, that will be the last step previously to a commercial power
plant (8).

A second approach is the inertial confinement developed by United States in which
a target made of deuterium and tritium is bombarded with high power laser beams.
These beams heat the most external layer of the target and vaporize it. This causes
a compression of the inner part, with a strong density increase, allowing to over-
come the Coulomb barrier and make fusion reactions happen (4),(11). Recently,
the researchers working at this approach have announced for first time a setup that
achieves a positive balance between the energy needed to work and the energy pro-
duced (12).

Another way in which this reaction could be used is focusing a neutron beam against
a solid target of ionic salt 6LiD of such way that the neutron reacts with Lithium
producing an α-particle and a tritium nucleus, where the nuclear rearrangment re-
sults in a reduction in total mass that is translated in 4.8 MeV of kinetic energy of
the reaction products. Consequently, the tritium nucleus will fuse with a deuterium
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nucleus producing another α-particle and a neutron, where again, a reduction of the
total mass is present corresponding to 17.6 MeV of kinetic energy of the reaction
products. Finally, this neutron realesed can again react with a nucleus of 6-Lithium
closing the cycle.

The discussion about the feasibility of using this cycle for energetic purposes was
kept secret for a long time during the Cold War era and then resumed by J. R. Mc-
Nally in the 70’s (20) proposing an external beam, either a proton beam or neutron
beam, that might trigger different reactions.
Throughout the discussion, the author expressed several times the idea that the
poor data set known for cross sections at that time limitated the possible decisions
of choosing a specific fuel and the predictions of the energy generated that might be
converted in electricity (21). In the present work a modern study from a theoretical
point of view of this cycle is proposed, in which a crystal of lithium deuteride (6LiD)
is bombarded with a neutron beam which turns on the Jetter cycle. Several assump-
tions must be taken into account in order to simulate a drastically ideal system, and
little by little some of them will be relaxed to get closer, in every step, to a more
realistic system. In Fig.1, a sketch of the crystal and the neutron beam is displayed.

The lithium deuteride (6LiD) is a blue or colorless crystal usually prepared by the
direct high-temperature reaction of lithium and deuterium. The melting point of
lithium is lower than that of lithium-deuteride. Therefore, the direct reaction at
700-730 ◦C can afford high-quality bulk lithium deuteride crystal (13). Stable under
normal temperature and pressure. Its density will be taken as ρ = 0.883 g/cm3 (32).

In principle the reactions could be studied keeping these energies all the time,
namely, assuming for example, that the α-particle with 2.1 MeV will keep this
energy all the time. Of course it is well-known that a charged particle moves inside
ordinary matter, by loosing some of its kinetic energy in accordance with the for-
mula of Bethe-Block, initiating a series of ionizations along its track. This will be a
possible efinement to our work.

The present work is aimed to analyze the abundance dynamic of the different species
in time, adding different kind of interactions like collateral reactions that can occur
between the particles present in the cycle and asking us what species are prolif-
erated, what species are depleted, what competitive reactions are relevant in the
present conditions, if an ignition condition is possible with this approach and how
efficient could be.
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6LiD Crystal bombarded by a neutron beam

Figure 1: 6LiD crystal skecth being bombarded by a neutron beam. Lithium represented
in magenta and deuterium represented in blue.

In the first chapter the necessary theoretical frame is displayed. The Jetter cy-
cle simulation is explored in the second chapter. An analogous study using the
Post cycle is carried out in the third chapter. A Monte Carlo simulation of the
deuterium-breakup is proposed in the fourth chapter to produce a considerable pro-
ton population with a different energy distribution that would trigger the Post cycle.
And finally in the fifth chapter a simulation merging the two cycles through the
deuterium-breakup is done.
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Chapter 1

Theoretical Formalism

A typical nuclear reaction is commonly written in two ways. We can express it
like a + X → Y + b where the left side are the reactans and the right side are the
products. Generally, b is a light particle that can be detected and Y will be a heavy
product that stops in the target and is not directly observed. An alternative and
more compact way to indicating the same reaction is X(a, b)Y .
One of several conserved quantities that we can find in a nuclear reaction is the
kinetic energy plus the rest mass, which leads to the reaction Q-value (17):

a + X → Y + b

(mac2 + Ta) + (mXc2 + TX) = (mY c2 + TY ) + (mbc
2 + Tb) (1.1)

(mac2 + mXc2 −mY c2 −mbc
2) = (TY + Tb − TX − Ta)

Q = (mini −mfin)c2 = Tfin − Tini (1.2)
Therefore, the Q-value is defined as the initial mass energy minus the final mass
energy or analogously, the excess kinetic energy of the final products. For instance,
we are going to compute this and other quantities in detail only for one reaction
of the Jetter cycle, this could be done using two analogous methods taking into
account the nuclides masses. Firstly, we can directly replace the nuclear masses in
the expression 1.2.

Q = (mini −mfin)c2 = [m(2H) + m(3H)−m(4He)−m(n)]c2

= [1875.6129 + 2808.9211− 3727.3793− 939.5654]MeV
c2 c2

= 17.5893 MeV (1.3)

7
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Secondly, we can take advantage of the fact that in a nuclear reaction the mass
number is conserved. Therefore, we have

2H + 3H → 4He + n[
Z2H(mp + me) + N2Hmn −

(b.e)2H

c2

]
+
[
Z3H(mp + me) + N3Hmn −

(b.e)3H

c2

]

=
[
Z4He(mp + me) + N4Hemn −

(b.e)4He

c2

]
+ mn + Q

c2 (1.4)
[
(Z2H + Z3H − Z4He)m(1H) + (N2H + N3H −N4He − 1)mn

]
= −

[
(b.e)4He

c2 − (b.e)2H

c2 − (b.e)3H

c2

]
+ Q

c2 (1.5)

Q

c2 =
[

(b.e)4He

c2 − (b.e)2H

c2 − (b.e)3H

c2

]
(1.6)

Q = [(b.e)4He − (b.e)2H − (b.e)3H] (1.7)
= [28.2957− 2.2246− 8.4818] MeV
= 17.5893 MeV. (1.8)

This procedure showed that the Q-value could be understood as if the energy re-
leased was equal to the difference in binding energy between the prodcuts and the
reactans.
Besides, the products have to share the energy released into kinetic energy, and this
division is weighted by the mass, namely:

QY = Q

(
m(b)
MT

)
, Qb = Q

(
m(Y )
MT

)
. (1.9)

MT = 939.5654 MeV/c2 + 3727.3793 MeV/c2 = 4666.9447 MeV/c2 (1.10)

Qn = Q

(
m(4He)

MT

)
= 17.5893 MeV

(3727.3793
4666.9447

)
= 14.0481 MeV, (1.11)

Q4He = Q
(

mn

MT

)
= 17.5893 MeV

( 939.5654
4666.9447

)
= 3.5411 MeV. (1.12)

This process must be done with every reaction involved in the system in order to
know the excess of energy of the products particles and the consequent energy at
which next reactions will be accomplished.
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Hence, we already know that the outgoing particles in every reaction carry a certain
energy, but the quantity in which we are interested in the system is the total nuclear
energy released per unit volume. This depends on two factors. First, the velocity
distribution of the particles and secondly the nuclear cross section.

The last quantity is a measure of the probability that a given nuclear reaction
takes place. It is symbolized with the lower-case Greek letter sigma and it depends
on the relative projectile-target velocity, or alternatively on the kinetic energy, that
is σ = σ(v).
In order to obtain a more precise definition, let us consider again the generic reac-
tion X(a, b)Y . If I0 is the flux of incident particles of type a impinging on a target
consisting of N nuclei of type X, then the number of particle of type b emitted per
unit time (I) will be proportional to both I0 and N (17).

I ∝ I0 N (1.13)
The constant of proportionality that links these quantities is called the cross-section.

I = σ I0 N (1.14)

σ = I

I0 ·N
(1.15)

= (Number of interactions per time)
(Number of incident particles per area per time)(Number of target nuclei within the beam)

σ has unit of area and in Nuclear Physics the unit of cross section is a Barn (b)
1 b = 10−24 cm2 = 10−28 m2. But, the submultiples are used more often: milibarn,
1 mb = 10−3 b, microbarn, 1 µb = 10−6 b.

The velocity distribution and nuclear cross section are related through the reac-
tion rate (16), which express the number of reactions per unit volume and time.

r01 = N0 N1 ⟨σv⟩
1 + δ01

(1.16)

Where Ni is the number of species i per unit volume. ⟨σv⟩ represents the expected
value of cross section and velocity product. The expected value is taken over a
relative velocity probability distribution P (v) or its analogous energy distribution
P (E) which is most often used due to the fact that the cross section is usually given



10 CHAPTER 1. THEORETICAL FORMALISM

as function of the energy.

⟨σv⟩ =
∫

vσ(v)P (v) dv =
∫

vσ(E)P (E) dE (1.17)

Indeed, P (v) fulfils the properties of a probability distribution as being no negative
defined function and normalized over the sample space:∫ ∞

0
P (v) dv = 1 (1.18)

Of this way, P (v)dv is the probability that the relative velocity of the nuclei involved
in the reaction is in the range between v and dv. The specific function P (v) will
depend on the nature of the system and the allowed energy range.
The denominator of the expression 1.16 appears due to the fact that N0 and N1 are
the total number density of pairs of different nuclei 0 and 1 in units of particles per
volume. But, in the case of identical nuclei a term of the form

N2
j

2! (1.19)

must appear, or for a three-body interaction a term of the form

N3
j

3! (1.20)

is needed.
Up to now, we have all the ingredients to study of a set of nuclear reactions with
time expressing the element abundance in the system. Understanding abundace as
the fraction of a given sample which is in a particular form. This means that we
will consider the ratio of number of this particular species to some standard. It is
desirable to consider this standard to be invariant with respect to the compression
or expansion that the system could undergo, so that changes in abundance reflect
only nuclear processing.(18)
Therefore, let us perform some changes and include some definitions in order to
modify the expression 1.16 to deal with matter densities and obtain a nuclear abun-
dace.
The Avogadro number NA is defined like the number of atoms of species i which
makes Wi grams, where Wi is the atomic weight of species i.

NA = Wi

mi

= 6.022× 1023 mol−1 (1.21)
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If mi is the mass of a nucleus of species i as measured in the lab, then for a mixture
consisting only of species i, the mass density is

ρm = Ni mi (1.22)

And for a mixture of species

ρm =
∑

i

Ni mi =
∑

i Ni Wi

NA

(1.23)

We can carry out some change in Wi in order to use the mass number instead of the
mass weight. We, also know, that the mass unit Mu is

Mu = m(12Ca)
12 = 1

NA

(1.24)

In the sense that the mass excess is mi − AiMu

Wi = mi

Mu

= [Zim(H) + (Ai − Zi)m(n)− (b.e)i/c2]/Mu (1.25)

Where m(n) refers to neutron mass and m(H) = m(p)+m(e). Besides, using Carbon
binding energy and 1.24, it is possible to write

b.e(12C)
m(12C)c2 = 6[m(H) + m(n)]−m(12C)c2

m(12C)c2 = (WH + Wn)
2 − 1 (1.26)

Finally, the atomic weight could be written as

Wi = ZiWH + (Ai − Zi)Wn − (b.e)i/Muc2 = Zi(WH −Wn) + AiWn − (b.e)i/Muc2

= Zi(WH −Wn) + AiWn −
(b.e)i

Muc2 +
(

Ai

2 WH −
Ai

2 WH

)

= Zi(WH −Wn)− Ai

2 (WH −Wn)− (b.e)i

Muc2 + Ai

(
WH + Wn

2

)

= Ai + Ai
(b.e)12C/12− (b.e)i/Ai

Mu

+
(

Zi −
Ai

2

)
(WH −Wn) (1.27)

Since WH = 1.007825 and Wn = 1.008664 (14), and also Zi is often approximately
Ai/2, the last term might be neglected.
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The second term is less meaningful than Ai. Therefore, the atomic weight could be
written as

Wi = Ai + Aibi = Ai(1 + bi) (1.28)
And the mass density 1.23 will read as

ρm =
∑

i NiWi

NA

=
∑

i NiAi

NA

(1 + bi) (1.29)

The last quantity is not relativistically invariant and change with the composition
(18), namely, nuclear transmutations transform a fraction of the nuclear mass into
energy or leptons and vice versa. Nevertheless, the next quantity, called nucleon
density, is used in order to avoid these difficulties based on the fact that the mass
number in a nuclear reaction is a conserved quantity.

ρ ≡
∑

i NiAi

NA

(1.30)

It is worth to notice that both are almost equal and the distinction is usually not
important numerically (16).
Now, the nucleon fraction Xi for the species i is defined to be

Xi ≡
NiAi

ρNA

(1.31)

Where this quantity represents the fraction of the nucleons in the sample that is in
a form of particles of species i.
Combining 1.31 and 1.30, it is evident that this quantity has to fulfil the next
constraint for a closed system. ∑

i

Xi = 1 (1.32)

A related quantity is
Yi = Xi

Ai

= Ni

ρNA

(1.33)

Which is a ratio of the number of nuclei of species i to the total number of nucleons
in the system. Besides, the total number of nucleons is related to number density
as follows:

n =
∑

i

NiAi (1.34)

then ∑
i

Yi =
∑

i Ni

n
(1.35)
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Notice that Yi is the fraction of a mole of particles in the form of species i. So, Yi is
a mole fraction and the goal of building a quantity that is invariant under expansion
or contraction -a common phenomenon for gases and plasmas- is done. Notice that
Ni reflects this structural effects even if a nuclear reaction has not occured (18).
Instead, Yi depends only on nuclear reactions (19).

Notice that the constraint for a closed systems could be written also in terms of
the molar fraction

∑
i

Xi =
∑

i

YiAi = 1. (1.36)

At this moment the dynamic could be implemented. Consider the rate of change
in the number density Ni of species i. This rate of change must be proportional
to a positive term if particles of species i are the result of a nuclear reaction, or
proportional to a negative term if particles of species i are part of the reactans.
These terms are also called source or sink terms respectively (19).

dNi

dt
= +(sum of creation terms)− (sum of destruction terms) (1.37)

Using the reaction rate 1.16, it could be written for a generic reaction(
dN0

dt

)
1

= −(1 + δ01)r01 = −(1 + δ01)
N0N1 ⟨σv⟩

1 + δ01
= −N0N1 ⟨σv⟩ (1.38)

And using the mole fraction 1.33, the differential equation could be expressed as(
dY0

dt

)
1

= −Y0Y1 ρNA ⟨σv⟩ (1.39)

Despite that the reaction considered in the last expression is a particle-induced
reaction, some authors (16) define a constant decay λ, or an analogously mean
lifetime τ for the reaction 0 + 1 as(

dY0

dt

)
1

= −Y0(Y1ρNA ⟨σv⟩) = −Y0λ1(0) = − Y0

τ1(0) (1.40)

And it is evident that the decay constant of a nucleus via a particle-induced reaction
depends explicitly on the density of the system treated and implicitly, through the
cross section, of the energy at which the reaction is accomplished.
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We can also have a reaction that involves a single nucleus, which includes decays,
electron and positron captures, photodisintegrations, and neutrino induced reactions
that only depends on the target nucleus abundace. And, not less important, reac-
tions involving three particles might be present, for instance the triple-α process of
fundamental role in Helium burning stage (18).

Therefore, gathering all these possible processes, a set of ordinary differential equa-
tions might be defined leading the element abundance evolution in a system of this
way

dYi

dt
= +YjYk(ρNA ⟨σv⟩jk,i)− YiYj(ρNA ⟨σv⟩ij,n) + Ylλl(i)− Yiλi(m) + ... (1.41)

This set of coupled, nonlinear ordinary differential equations is dubbed as nuclear
reaction network.
An useful notation might be introduced intended to put the equations shorter

[j(k, i)] = ρNA ⟨σv⟩jk,i (1.42)

Finally, the the nuclear reaction network holds

dYi

dt
= +YjYk[j(k, i)]− YiYj[i(j, n)] + Ylλl(i)− Yiλi(m) + ... (1.43)

Finally, let us make a recap of the units involved in the quantities of interest. Using
the expression 1.39 the units of the molar fraction would be[

dY0

dt

]
= −[Y0][Y1] [ρm][NA][⟨σv⟩], (1.44)

mol
g · s = mol

g

mol
g

g

m3
1

mol
m3

s (1.45)

being consistent.

Despite of having the dynamic equations of the species abundance, the quantity
of crucial interest is the gain power. This is important because it must be under-
stood if the system under study provides an option for power production or not.

Obtaining a single expression containing all the information related with the en-
ergy injected to the system and the energy produced for this, is not a simple task.
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In the current setups every apparatus has its own criterion. For instance, the Toka-
mak system uses a modified version of the Lawson criterion (10), instead the inertial
confinment approach measures the injected energy according with the external com-
pression work on the fuel (11).

What is common to both approach is the calculation of the power per unit vol-
ume produced in these reactions, also referred to as specific power. This is obtained
by multiplying the reaction rate and the reaction Q−value and it is proportional to
the product of the densities of the two reactants species (4)

P = NiNj ⟨σv⟩Q, (1.46)

which we can take as a theoretical maximum. Then, using the expression 1.33 and
the notation 1.42, the above expression could be rewritten as

P (t) =
(
1.602× 10−22ρNA[i(j, k)]Q

)
Yi(t)Yj(t),

= p0 Yi(t)Yj(t) (1.47)

where in the last expression the explicit time dependence is shown. Besides, the
density is given in g/m3, the reaction Q− value in MeV and the reactivity in m3s−1.
This is done in order to obtain the specific power with units of GJ s−1 m−3.

Therefore, if the specific power curve as a time function is obtained, it is possible
to know the energy produced in GJ by integrating it over the time and multiplying
by the crystal volume.



16 CHAPTER 1. THEORETICAL FORMALISM



Chapter 2

Jetter Cycle

In the present chapter we focus on the simulation of the Jetter cycle. This cycle was
first proposed as a fusion chain reaction in 1950 (9) for the German physicist Ulrich
Jetter, where the fuel is the 6LiD compound and the chain centers are the neutron
and tritium.

n + 6Li → α + T
↑ ↓
n + α ← D + T

Figure 2.1: Jetter Cycle.

17
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The lithium-deuteride is a ionic crystal at room temperature, but its state (solid,
liquid or gas) does not change the picture very much, only the density is affected by
the environmental temperature.
The cycle is formed by two reactions, the first one is a neutron fission induced
reaction in which a neutron collides with the 6-Lithium producing a tritium and
α-particle. Afterwards, the outgoing tritium nucleus will fuse with a deuterium nu-
cleus obtaining an α-particle and another neutron that will close the cycle, which is
depicted in the figure 2.1.

First, let us suppose that only the reactions involved in the Jetter cycle are possible,
namely, no other channels are possible. Suppose no particle losses from the bound-
ary of the crystal and no energy losses of the particle through the system. Then, the
energy is just converted into mass or the mass converted into kinetic energy. Finally,
like 6Li and D nuclei are part of the crystal lattice, they are considered still and the
relative energy of the reaction in the first case is the beam neutron energy or the
energy shared by the product neutron of the second reaction and in the second case
would be the energy of the outgoing tritium nuclei. The α-particles are an inert
byproduct.

2.1 Theoretical Approach
For the Jetter cycle two reactions are involved. Using the expression 1.2 the Q-value
of both reactions might be calculated and also the energy shared by the products
using the expression 1.9. The relevant information is displayed in table 2.1 for
6Li(n, α)T, whereas in table 2.2 the relevant information for T(D, α)n is displayed.
All data used were taken from (14).

Nuclide Mass (MeV/c2) Binding Energy (b.e) (MeV) Excess T-Energy (MeV)
6Li 5601.5184 31.9939 —–
n 939.5654 —– —–
α 3727.3793 28.2957 2.0557
T 2808.9211 8.4818 2.7273

4.7830

Table 2.1: Data used to calculate the reaction Q-value for 6Li + n→ α + T.
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Nuclide Mass (MeV/c2) Binding Energy (b.e) (MeV) Excess T-Energy (MeV)
D 1875.6129 2.2246 —–
T 2808.9211 8.4818 —–
α 3727.3793 28.2957 3.5411
n 939.5654 —– 14.0481

17.5892

Table 2.2: Data used to calculate the reaction Q-value for D + T→ α + n.

Hence, The first reaction concerning to the fission has a Q-value of 4.7834 MeV
which are shared by the two products, such as the outgoing α-particle carries and
excess of kinetic energy of 2.0557 MeV, whereas the tritium carries 2.7273 MeV.

Analogously for the second reaction, the fusion of a tritium nuclide with a deu-
terium nuclide has a Q-value of 17.5893 MeV which is shared by the two products,
such as the outgoing α-particle carries and excess of kinetic energy of 3.5411 MeV,
whereas the neutron carries 14.0481 MeV.

Due to the assumption of no energy losses the consequent reactions produced by
the chain centers will be accomplished at this precise energy. This implies that the
energy distribution is a Dirac delta function.

P (E) = δ(E − E0) (2.1)

and the expected value of the cross section is easily computed using 1.17

⟨σv⟩ =
∫ (2E

m

)1/2
σ(E) δ(E − E0)dE =

(2E0

m

)1/2
σ(E0) (2.2)

Because the species have and keep a specific energy this acts like an additional label.
Namely, particles of the same element but different energy are dealt as a different
species. For instance, the two α-particles released in the complete cycle will have
its own differential equation and its abundance will be stored separately.

The neutrons coming from the beam are labeled as n1 whereas the resulting neutron
from T(D, α)n is labeled as n2. Analogously, the resulting α-particle of 6Li(n, α)T
is labeled as α1, whereas the resulting α-particle of T(D, α)n is labeled as α2.

Therefore, the set of ordinary differential equations that describes the abundace
behaviour of the Jetter cycle reads
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dYn1

dt
= i − Yn1(t) · Y6Li(t)

[
6Li(n1, α)

]
(2.3)

dYn2

dt
= + YD(t) · YT(t) [D(T, n2)] − Yn2(t) · Y6Li(t)

[
6Li(n2, α)

]
(2.4)

dYD

dt
= − YD(t) · YT(t) [D(T, n2)] (2.5)

dYT

dt
= + Yn1(t) · Y6Li(t)

[
6Li(n1, α)

]
+ Yn2(t) · Y6Li(t)

[
6Li(n2, α)

]
− YD(t) · YT(t) [D(T, n2)] (2.6)

dYα1

dt
= + Yn1(t) · Y6Li(t)

[
6Li(n1, α1)

]
+ Yn2(t) · Y6Li(t)

[
6Li(n2, α1)

]
(2.7)

dYα2

dt
= + YD(t) · YT(t) [D(T, α2)] (2.8)

dY6Li

dt
= − Y6Li · Yn1(t)

[
6Li(n1, α1)

]
− Y6Li · Yn2(t)

[
6Li(n2, α1)

]
(2.9)

The i in the equation 2.3 is the neutron injection rate (20) provided by the external
beam. This injection rate has to be suitable set according to the current neutron
beam facilities in order to achieve a more realistic system.

Neutrons can be produced using a variety of techniques, including linear electron or
proton accelerators, electrostatic accelerators and also via reactors.
At linear electron accelerator, neutrons are produced via (γ, n) reactions by bom-
barding heavy metal targets. The outgoing neutrons have energies ranging from the
subthermal region up to 50 MeV. Instead, for proton accelerator, the neutrons are
produced via spallation reactions (16).
Fluxes of the order of ≈ 106 neutron/cm2s, spanning an energy range of 1-300 keV,
are tipically achieved at both kind of facilities (29). It will be shown soon that is in
this precise range where the maximun of the reaction rate is achieved for the fission
reaction with 6Li.
Besides, charged-beams might be implemented in order to produce neutrons via nu-
clear reactions. For instance, a very frequently employed reaction is 7Li(p, n)7Be.
In this case integrated neutron yields of ≈ 108 − 109 neutron/s are achieved (30).
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However, the energy distribution of the emitted neutrons closely follows a Maxwell-
Boltzmann distribution, which adds some difficulties in order to compute the reac-
tion rate. Despite of this, there are other facilities that implement filtered neutron-
beams (FNBT) (31) to extract a quasi-monoenergetic neutron line from a continuous
neutron spectrum with high intensity. This extraction is achieved by means of two
nuclear physics processes. The first one employs Bragg reflection of neutrons in sin-
gle crystals. The second one is based on the transmission of neutrons through large
quantities of materials, which show deep interference minima in their total neutron
cross sections. This technique allows the selection of quasi-monoenergetic neutron
lines with energies 2, 3.5, 7.5, 13, 24, 54, 59, 133, 148 and 275 keV with intensities
ranging from 5× 104 cm−2s−1 to 5× 107 cm−2s−1 (31).
The injection rate was established to be

i = 1.1016× 106 mol/g · s (2.10)

2.2 Experimental Data
In order to obtain the expected value of the energy distribution and cross section
2.2, the cross section has to be known for several specific energies which implies that
an interpolation has to be performed on the experimental data for each reaction over
the energy range of interest.

Different data set were used to collect the data, such as Joint Evaluated Fission
and Fusion (JEFF) (22), Japanese Evaluated Nuclear Data Library (JENDL) (23)-
(24) and the Evaluated Nuclear reaction Data File (ENDF/B-VIII.0) (25). All of
these data set were consulted using the software versions Experimental Nuclear Re-
action Data (EXFOR)(26) and specially Evaluated Nuclear Data File (ENDF) (27)
in which the interpolation data of the majority of the reactions of interest of the
current work were found and used directly.

2.2.1 6Li(n, α)T
The data for this reaction were extracted from ENDF (27) in which the interpolation
was already performed following the library ENDF/B-VIII.0 and its held by Ref.
(28), which allows to choose the energy range for displaying a list of points that will
guide the interpolation. For instance, choosing the energy range from 0.1 MeV to
20 MeV, 411 points are shown in order to make the interpolation.
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6Li(n, α)T Cross Section

Figure 2.2: Cross Section for 6Li(n, α)T. Black-points: Data taken from (25) in which
the interpolation was already perfomed. Green-line: Interpolation using Mathematica.

6Li(n, α)T Reduced reacion rate

Figure 2.3: Reduced reaction rate NA ⟨σv⟩ for 6Li(n, α)T using the expression 2.2.
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The figure 2.2 shows the cross section for the fission reaction. The black dots are
the data given by the ENDF/B-VIII.0 whereas the green line is the interpolation
made using Mathematica in order to obtain a function that might be evaluated at
whatever energy, as required in order to numerically solve the set of ordinary equa-
tions.

As the cross section and the energy distribution probability of the reactans are
known, the expected value of the product of velocity and energy 2.2 is easily calcu-
lated. More often, the reduced reaction rate NA ⟨σv⟩ is plotted. The result is shown
in the figure 2.3.

It is worth to notice how the reduced reaction rate for the fission reaction 6Li(n, α)T
achieves its maximum when the coming neutrons have an energy of 0.24 MeV. And
these neutrons energy, in principle, is set by hand, because these are the particles
coming from the beam.

2.2.2 T(D, α)n

The data for this reaction were extracted from ENDF (27) in which the interpolation
was already performed following the library ENDF/B-VI and its held by Ref.(35),
which allows to choose the energy range for displaying a list of points that will guide
the interpolation. For instance, choosing the energy range from 0.1 MeV to 10 MeV,
89 points are shown in order to make the interpolation.

The figure 2.4 shows the cross section for the fusion reaction. The black dots are
the data given by the ENDF/B-VI whereas the green line is the interpolation made
using Mathematica in order to obtain a function that might be evaluated at what-
ever energy, as required in order to numerically solve the set of ordinary equations.

Again, as the cross section and also the energy distribution probability of the reac-
tans are known, the expected value of the product of velocity and energy 2.2 is easily
calculated. The reduced reaction rate NA ⟨σv⟩ for the fusion reaction is showed in
figure 2.5.
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T(D, α)n Cross Section

Figure 2.4: Cross Section for T(D, α)n. Black-points: Data taken from (35) in which the
interpolation was already perfomed. Green-line: Interpolation using Mathematica.

T(D, α)n Reduced reaction rate

Figure 2.5: Reduced reaction rate NA ⟨σv⟩ for reaction T(D, α)n using the expression 2.2.
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2.3 Results
After obtaining the expected values between the cross section interpolation and the
energy distribution of the reactions involved. The set of ordinary differential equa-
tions might be numerically solved. For that, initial conditions have to be set.

These initial conditions refer to the initial abundance in the system. Then, at
the beginning the deuterium and 6-Lithium are present at equal proportion due
to chemical stoichiometry. The neutrons present are only from the external beam
which at t = 0 is turned on and therefore their total number is a (almost) linearly
growing function. Besides, the energy of these particles is set to 0.24 MeV because
at this precise energy the maximum of the reduced reaction rate is found, like it is
shown in the figure 2.3. This choice is made in order to considerably increase the
fission probability between 6Li and n.

We propose to simulate 1 mol of 6LiD, this means that the initial molar fraction can
be calculated using the expression 1.33

Y6Li = N6Li

ρNA

= NA

V ρNA

= 1
V ρ

= 1
8

g

mol = 0.125 mol
g

. (2.11)

Following the same procedure the initial molar fraction for the deuerium can be
calculated and how is to expected, it is the same.

Since there is an external source of nucleons, just at the starting point the con-
straint over the nucleon fraction is fulfilled 1.36.

X6Li = Y6LiA6Li = 0.75 XD = YDAD = 0.25 , (2.12)

and evidently, the sum is 1 and the conditions is satisfied.

The initial conditions for solving the set of ordinary equations are listed in the
table 2.3.

Finally the system of coupled first order differential equation is solved, using the
built-in routine in Mathematica B. The results are shown in the figures 2.6,2.7 and
2.8, where the abundance evolution of each species is separately displayed. Several
intuitive behaviour is present.
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Molar Fraction Value (mol/g)
Yn1(0) 0.0
Yn2(0) 0.0
Yα1(0) 0.0
Yα2(0) 0.0
YD(0) 1.25× 10−1

YT(0) 0.0
Y6Li(0) 1.25× 10−1

Table 2.3: Initial conditions to solve the set of ordinary differential equations for the
Jetter cycle.

The figure 2.6 in the panel (a) the continuous growing in the neutron abundace
of the neutrons coming from the beam is shown. Also, the neutron abundance
coming from the fusion between deuterium and tritium continuously increases as is
shown in the panel (b).

n1 Molar Fraction n2 Molar Fraction

(a) (b)

Figure 2.6: Solution of the set of ordinary differential equations describing the Jetter
cycle.

The abundance evolution for the two species of α-particles is shown in the figure
2.7. As it is guessed from equation 2.7 and equation 2.8, both are only produced,
achieving a steady point.
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α1 Molar Fraction α2 Molar Fraction

(a) (b)

Figure 2.7: Solution for the α-particles in the Jetter cycle.

In the figure 2.8, from equation 2.5 and equation 2.9 we can see that the deuterium
and lithium is only consumed and with a very different ratio because the system
is more populated with neutrons than the tritium. Therefore, the panels (a) and
(b) show the monotonically decrease of these species until the point where both are
depleted.

Finally, the tritium has a more interesting dynamic, which is displayed in panel
(c). At the beginning is produced via the fission reaction reaching a point in which
its abundance is enough to start the deuterium consumption, this continues until
the tritium is completely depleted. Hence, the radioactive tritium is not present at
the end, it just was produced and consumed during the process.

In the figure 2.9 all the abundances curves at the same time (except the neutrons
coming from the beam) are shown. Here, it is easier to appreciate the tritium cycle,
it starts to be produced at the same point when the lithium starts to be consumed
and the peak of tritium is achieved exactly at the same point when the lithium is
exhausted and then, no more tritium is produced. Moreover, the minimun of tri-
tium abundance also coincides with the steady point of α2-particle abundance. The
minimum of lithium abundance also coincides with the steady point of α1-particle
abundance. Besides, despite of the production of n2 particles, lithium is not longer
present in the system and this neutrons also achieve a steady value.
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D Molar Fraction 6Li Molar Fraction

(a) (b)
T Molar Fraction

(c)

Figure 2.8: Solution of the set of ordinary differential equations describing the Jetter
cycle.

It is worth to notice the time scale in which the system achieves the steady solu-
tion. This is of the order of ten micro-seconds. Moreover, due to the fact that the
neutrons coming from the beam only react with the lithium, then the neutron beam
might be turn off at the time when the lithium is exhausted, namely, more or less
0.2 micro-seconds. This for energetic purposes in order to obtain a real energy gain.

Notice that using the expression 1.33 the result expressed in terms of the molar
fraction Yi may be written in terms of the nucleon fraction Xi multiplying every
species by its mass number. The results written in terms of nucleon fraction is usu-
ally given in the literature. The result is shown in the figure 2.10.
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Jetter cycle Solution

Figure 2.9: Curves of abundance evolution in terms of the molar fraction of the
Jetter cycle using the initial conditions 2.3.

At the end, the differential equations converge to a steady point in which the system
is only populated with α-particles and neutrons. This is expressed in the table 2.4
and depicted in the barchart 2.11 where is easier to appreciate the initial and final
abundances. There, tfin refers to the time at which the system has achieved the
steady solution.

Finally, due to the fact that the curves of abundance evolution are known, the fusion
yield might be calculated using the expression 1.47 and multiplying by the volume
of the simulated system. Since we are interested in the simulation of 1 mol of the
crystal 6LiD, this has a mass of 8 g and also the density is known (ρ = 0.883 g/cm3

(32)) then the volume is calculated in order to obtain the power as a function of the
time and no the specific power like is expressed in the equation 1.47.
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Jetter cycle Solution

Figure 2.10: Curves of abundance evolution in terms of the nucleon fraction of the
Jetter cycle using the initial conditions 2.3.

Molar Fraction Value (mol/g)
Yn1(tfin) 32.92
Yn2(tfin) 1.18× 10−1

Yα1(tfin) 1.25× 10−1

Yα2(tfin) 1.25× 10−1

YD(tfin) 0.0
YT(tfin) 0.0
Y6Li(tfin) 0.0

Table 2.4: Final molar fraction for the species involved in the Jetter cycle.

The curves of the power as a function of time for every reaction involved in the Jetter
cycle are displayed in the figure 2.12. In black the curves related with fission re-
actions are shown, instead in red the curve related with the fusion reaction is shown.
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Initial Abundance Final Abundance

(a) (b)

Figure 2.11: Abundance in terms of molar fraction Y expressed in units of mol/g.
(a) Initial abundance according to the initial conditions 2.3. (b) Final abundance
after the system integration.

The integration of power curves would give us the energy released in GJ and this
is the reason why the graph shows the shade under the curves. The results are
expressed in the table 2.5.

Reaction Fusion Yield (GJ)
6Li(n1, T)α 465.135
6Li(n2, T)α 24.204
D(T, n2)α 1793.500

Total 2282.840

Table 2.5: Energy released for every reaction in the Jetter cycle.

It is worth to point out the high energy that is released by the fusion reaction com-
pared with the fission reactions, showing that the fission reaction serves more like a
mediator to the fusion reactions.
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6Li(n1, T)α Power 6Li(n1, T)α Power

(a) (b)

D(T, n2)α Power Total Jetter cycle Power

(c) (d)

Figure 2.12: Power released in the Jetter cycle. (a) Power realeased by the 6Li(n1, T)α
reaction. (b) Power realeased by the 6Li(n2, T)α reaction. (c) Power realeased by the
D(T, n2)α reaction. (d) All curves overlapped. The time integration of the curves would
be the energy realeased.



Chapter 3

Post Cycle

The present chapter is focused on the the Post cycle simulation, which takes its
name from the scientist Richard Post. This cycle is also present in the 6LiD system,
representing new channels available more than the only considered in the Jetter cy-
cle.

p + 6Li → α + 3He
↑ ↓
p + α ← D + 3He

Figure 3.1: Post Cycle.

33
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The cycle is formed by two reactions, the first one is a proton fission induced reaction
in which a proton collides with the 6-Lithium producing a 3-Helium and α-particle.
Afterwards, the outgoing 3-Helium nuclei will fuse with a deuterium nucleus ob-
taining an α-particle and another proton that will close the cycle, which is depicted
in the figure 3.1. As it is shown, now the chain centers are the proton and 3He.
Besides, again the α-particles are an inert byproduct.

The Post cycle might drammatically change the final abundance displayed only by
the Jetter cycle and for this, it is implemented in order to go closer to a real system.
For this reason, it is kept in mind that the neutron beam is used for triggering the
Jetter cycle and a population of proton is present at certain point that will trigger
the Post cycle. The origin of this proton abundance will be made clear in the next
chapter.

3.1 Theoretical Approach
For the Post cycle two reactions are involved. Again, using the expression 1.2 the
Q-value of both reactions might be calculated and also the energy shared by the
products using the expression 1.9. The relevant information is displayed in table
3.1 for 6Li(p,3 He)α, whereas in table 3.2 the relevant information for 3He(D, p)α is
displayed. All data used were taken from Ref.(14).

Nuclide Mass (MeV/c2) Binding Energy (b.e) (MeV) Excess T-Energy (MeV)
6Li 5601.5184 31.9939 —–
p 938.2720 —– —–
α 3727.3793 28.2957 1.7272

3He 2808.3916 7.7180 2.2924
4.0197

Table 3.1: Data used to calculate the reaction Q-value for 6Li + p→ α + 3He.

Hence, the first reaction concerning to the fission has a Q-value of 4.0197 MeV which
is shared by the two products, such that the outgoing α-particle carries an excess of
kinetic energy of 1.7272 MeV, whereas the 3He carries 2.2924 MeV.

Analogously for the second reaction, the fusion of a 3He nuclide with a deuterium
nuclide has a Q-value of 18.3530 MeV which is shared by the two products, such as
the outgoing α-particle carries and excess of kinetic energy of 3.6908 MeV, whereas
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Nuclide Mass (MeV/c2) Binding Energy (b.e) (MeV) Excess T-Energy (MeV)
D 1875.6129 2.2246 —–

3He 2808.3916 7.7180 —–
α 3727.3793 28.2957 3.6908
p 938.2720 —– 14.6622

18.3530

Table 3.2: Data used to calculate the reaction Q-value for D + 3He→ α + p.

the proton carries 14.6622 MeV.

In this case, again, the assumption of no energy losses implies that the consequent
reactions produced by the chain centers will be accomplished at this precise energy.
Namely, the energy distribution probability function is a Dirac delta function and
the expected value between the energy distribution function and cross section is
calculated using 2.2.

Again, the two α-particles released in the complete cycle will be described by its
own differential equation and its abundance will be stored separately. Then, the
resulting α-particle of 6Li(p,3 He)α is labeled as α3, whereas the resulting α-particle
of 3He(D, p)α is labeled as α4.

Therefore, the set of ordinary differential equations that describes the abundace
behaviour of the Post cycle reads

dYp

dt
= + YD(t) · Y3He(t)

[
3He(D, p)

]
− Yp(t) · Y6Li(t)

[
6Li(p,3 He)

]
(3.1)

dY3He

dt
= + Yp(t)·Y6Li(t)

[
6Li(p,3 He)

]
− Y3He(t)·YD(t)

[
3He(D, p)

]
(3.2)

dYD

dt
= − YD(t) · Y3He(t)

[
3He(D, p)

]
(3.3)

dYα3

dt
= + Yp(t) · Y6Li(t)

[
6Li(p,3 He)

]
(3.4)

dYα4

dt
= + YD(t) · Y3He(t)

[
3He(D, p)

]
(3.5)

dY6Li

dt
= − Yp(t) · Y6Li(t)

[
6Li(p,3 He)

]
(3.6)
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3.2 Experimental Data

The same procedure was followed in order to solve the set of ordinary differential
equations as for the Jetter cycle. The data of the cross section are searched for the
specific reaction in the energy range of interest. The interpolation of this data is
performed. Combining this interpolation with the energy distribution probability
the expected value between the energy distribution function and the cross section is
calculated.

3.2.1 6Li(p, α)3He

Unlike the previous cases, for this reaction data are not available in ENDF (27) and
then no interpolation was already performed. Therefore, the data were taken from
EXFOR (26) in which 13 experiments are reported for a total of 192 data points.
The plot of the cross section data points in the energy range of interest, taking in
account also the errors is shown in figure 3.2.

It is evident that the interpolation might not be done using all these data. Firstly,
because for a specific energy (x-axis) there might be two different experimental val-
ues, which produces an error in the interpolation function in Mathematica. Besides,
although this previous case will not be present, if two very close points in energy
have a very different experimental value, this would produce a high oscillating func-
tion due to the fact that the interpolation always tries to cross every single point,
with a polynomial of a certain order.

The criteria chosen to perform the interpolation was to remove the data for which
no errors were reported in (26) and remove the overlapping data by selecting minor
errors. The result is plotted in figure 3.3. The green line represents the interpolation
made using Mathematica.

After having the interpolation function of the cross section, the reduced reaction
rate for the outgoing protons of 14.6622 MeV of kinetic energy could be computed
using 2.2. The result is depicted in the figure 3.4.
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6Li(p,3 He)α Cross Section

Figure 3.2: Cross Section data for 6Li(p,3 He)α taken from (26). Energy axis in logarith-
mic scale.

6Li(p,3 He)α Cross Section

Figure 3.3: Cross Section for 6Li(p, α)3He using the data taken from (26). Interpolation
made using Mathematica.
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6Li(p,3 He)α Reduced reaction rate

Figure 3.4: Reduced reaction rate NA ⟨σv⟩ for the reaction 6Li(p,3 He)α calculated using
the expression 2.2.

3.2.2 3He(D, p)α

The data for this reaction were extracted from ENDF (27) in which the interpolation
was already performed following the library ENDF/B-VI and its held by (33),(34),
which taking the data in the energy range from 0.1 MeV to 9.6 MeV displays a list
of 88 points that will guide the interpolation. The result is plotted in fig 3.5. the
black dots are the data given by the ENDF/B-VI, whereas the green line is the
interpolation made using Mathematica.

Again, as the cross section and also the energy distribution probability of the reac-
tans are known, the expected value of the product of velocity and energy 2.2 is easily
computed. The reduced reaction rate NA ⟨σv⟩ for the current reaction is showed in
figure 3.6.
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3He(D, p)α Cross Section

Figure 3.5: Cross Section for 3He(D, p)α using the data taken from (33) interpolated
using Mathematica.

3He(D, p)α Reduced reaction rate

Figure 3.6: Reduced reaction rate NA ⟨σv⟩ for 3He(D, p)α using the expression 2.2.
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3.3 Results
After obtaining the expected values between the cross section interpolation and the
energy distribution of the reactions involved, the set of ordinary differential equa-
tions might be numerically solved. For that, initial conditions have to be set in
sufficient number.

These initial conditions refer to the initial abundance of the various species in the
system. Then, at the beginning it is assumed that the deuterium and 6-Lithium are
present at equal proportion and a considerably quantity of protons also is present,
this due to the fact that if no protons are present the complete cycle is off. Then,
we are assuming that there is an unkonwn source of protons until the point that the
Post cycle is triggered. Again, this source of protons will be explored in the next
chapter.
Moreover, due to the fact that there is not an external source of nucleons, the con-
straint over the nucleon fraction is totally fulfilled 1.32.
Again, we propose to simulate 1 mol of 6LiD, this means that the initial molar
fraction can be calculated using the expression 1.33

Y6Li = N6Li

ρNA

= NA

V ρNA

= 1
V ρ

= 1
8

g

mol = 0.125 mol
g

(3.7)

Following the same procedure the initial molar fraction for the deuterium can be
calculated and how is to expected, it is the same.

The initial conditions for solving the set of ordinary equations are listed in the
table 3.3.

Finally the system of coupled first order differential equation is solved, using the
built-in routine in Mathematica B. The results are shown in the figure 3.7.

In this figure the abundance evolution of every species is displayed. Some behaviour
is similar to the Jetter cycle. For instance, from equation 3.3 and equation 3.6, it is
possible to see that deuterium and lithium are only consumed and with a different
ratio. Therefore, the panels (e) and (f) show the monotonically decrease of these
species until the point where both are completely depleted.

The two species of α-particles (a) and (b) are only produced like it is guessed from
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Molar Fraction Value (mol/g)
Y3He(0) 0.0
Yp(0) 10−2

Yα3(0) 0.0
Yα4(0) 0.0
YD(0) 1.25× 10−1

Y6Li(0) 1.25× 10−1

Table 3.3: Initial conditions to solve the set of ordinary differential equations for the Post
cycle.

equation 3.4 and equation 3.5 achieving at the end a steady point.

The proton and 3He have a more interested dynamic. The initial population of
proton is consumed through the first reaction producing 3He nuclei. After, when
a significant abundance of 3He is reached, the second reaction starts to produce
more protons, increasing the abundance of this species at the same time that the
abundance of 3He is decreased again. This continues until the point in which the
6-lithium is depleted and the first reaction stops. The 3He remnant is finally con-
sumed through the fusion with the deuterium.

In figure 3.8 all the abundance curves are shown. Here, it is easier to appreciate how
the protons achieves the steady-point when the deuterium is completely depleted
and also previously the lithium was exhausted. The same occurs for the α-particles.
α3 achieves the steady point when the lithium is totally consumed, whereas the
steady point for α4 coincides when the deuterium is completely consumed. On the
other hand, the 3He nuclei appear at certain point like the product of the first re-
action, but are rapidly consumed again for the second reaction until the point that
is not present at the end. A very similar dynamic like the tritium in the Jetter cycle.

It is worth to notice the time scale in which the system achieves the steady so-
lution. This is of the order of 0.1 milli-seconds, one order of magnitude slower than
the Jetter cycle. It is clear that this time depends on the initial proton population.
The two close time scales at which these two cycles occur is a sign that when they
will be merged an overlap of the two dynamics will be seen.

Notice that using the expression 1.33 the result expressed in terms of the molar
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α3 Molar Fraction α4 Molar Fraction

(a) (b)

p Molar Fraction 3He Molar Fraction

(c) (d)

D Molar Fraction 6Li Molar Fraction

(e) (f)

Figure 3.7: Solution of the set of ordinary differential equations describing the Post
cycle in terms of molar fraction Yi.
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Post cycle Solution

(a)

(b)

Figure 3.8: Curves of abundance evolution in the Post cycle using the initial condi-
tions 3.3. (a) Linear scale in the y-axis. (b) logarithmic scale in the y-axis to better
visualization of the p and 3He species.
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Post cycle Solution

(a)

(b)

Figure 3.9: Curves of abundance evolution in terms of nucleon fraction of the Post
cycle using the initial conditions 3.3. (a) Linear scale in the y-axis. (b) logarithmic
scale in the y-axis to better visualization of the p and 3He species.
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fraction Yi may be written in terms of the nucleon fraction Xi, multiplying every
species by its mass number. Results written in terms of nucleon fraction are usually
given in the literature. The result is shown in the figure 3.9.

At the end, the differential equations converge to a steady point in which the system
is only populated with α-particles and protons. This is expressed in the table 3.4
and depicted in the barchart 3.10, where it is easier to appreciate the initial and
final abundances. There, tfin refers to the time at which the system has achieved
the steady solution.

Molar Fraction Value (mol/g)
Y3He(tfin) 0.0
Yp(tfin) 10−2

Yα3(tfin) 1.25× 10−1

Yα4(tfin) 1.25× 10−1

YD(tfin) 0.0
Y6Li(tfin) 0.0

Table 3.4: Final molar fraction for the species involved in the Post cycle.

Initial Abundance Final Abundance

(a) (b)

Figure 3.10: (a) Initial abundance according to the initial conditions 3.3. (b) Final
abundance after system integration.

From the barchart is easy to see how in this case the condition over the nucleon
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fraction is conserved 1.32. This is due to the fact that the system under consider-
ation is totally closed, namely, there is no nucleon injection or losses. Therefore,
the population of protons at the end is exactly as much as at the beginning and the
α-particles achieve also the same value as the deuterium and lithium because the
mass number of lithium plus the mass number of deuterium is the same as the mass
number of 2 α species.

6Li(p, 3He)α3 Power 3He(D, p)α4 Power

(a) (b)
Total Post cycle Power

(c)

Figure 3.11: Power released in the Post cycle. (a) Power realeased by the
6Li(p, 3He)α3 reaction. (b) Power realeased by the 3He(D, p)α4 reaction. (c) All
curves overlapped. The time integration of the curves would be the energy realeased.

Finally, due to the fact that the curves of abundance evolution are known, the fu-
sion yield might be calculated using the expression 1.47 and multiplying the specific
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power by the volume of the simulated system, that it is the same like in the Jetter
cycle chapter, finding the power as a function of the time.

The curves of the power as a function of time for every reaction involved in the
Post cycle are displayed in the figure 3.11. In black, the curve related with fission
reaction is shown, instead in red the curve related with the fusion reaction is shown.

The integration of power curves would give us the energy released in GJ and this
is the reason why the graph shows the shade under the curves. The results are
expressed in the table 3.5.

Reaction Fusion Yield (GJ)
6Li(p,3 He)α3 411.12
3He(D, p)α4 1798.14

Total 2209.26

Table 3.5: Energy released for every reaction in the Post cycle.
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Chapter 4

Deuteron Knock-out reaction
D(n, 2n)p

At this point the Jetter cycle and the Post cycle have been separately studied. Both
are present when a neutron beam is focused on the solid target 6LiD. Nevertheless,
the Post cycle is triggered by an initial population of protons in the system. This
means that at the beginning only the Jetter cycle is working. It is found that there
is one reaction that might produce enough population of protons to ignite the Post
cycle. This reaction is the deuterium breakup D(n, 2n)p. In which, a sufficiently en-
ergetic neutron impinges the deuterium nucleus and break it up releasing a neutron
and a proton. Where, in principle, the incoming neutron might be the one from the
beam or from the fusion product between D and T in the Jetter cycle.

The objetive of this chapter is to explore through a Monte Carlo simulation the
energy distribution of the protons in the exit channel.

4.1 Theoretical Approach
As before, the first step is compute the Q-reaction value for the deuteron breakup.
For this, the values of the masses are directly replaced into 1.2

Q = (mini −mfin)c2 = [m(n) + m(D)− 2 m(n)−m(p)]c2

= (b.e)D = −2.2245 MeV (4.1)
Then, the reaction Q-value is negative, in which case, a threshold energy appears,
namely, a minimun of energy required to perform the reaction (15). Besides, as

49
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there are three particles in the final state, energy can be shared in a number of ways
(17). Therefore, the energy distribution for the products is not anymore a peaked
one in a specific energy but a distribution over a wide range.

In order to obtain an expression for the threshold energy and energy distribution of
the products let us review the kinematics of the system expressed in the graph 4.1.
And again, for a generic reaction X(a, b)Y .

Figure 4.1: Generic nuclear reaction X(a, b)Y described in the laboratory reference
frame.

In the Fig.4.1 the reaction in the laboratory reference frame is shown, where the
target X is considered at rest and the unique initial kinetic energy is due to the
projectile labeled with a.
From momentum and energy conservation we have:

Pa = PY cos(α) + Pb cos(θ) (4.2)

0 = PY sin(α)− Pb sin(θ) (4.3)
Q = TY + Tb − Ta (4.4)

Where the angles are indicated in the figure above. Considering Q as a known
quantity and Ta (and therefore Pa) as a parameter that might be controlled, it is
possible to eliminate the quantities related with Y . This due to the fact that Y is
usually not measurable.
To achieve this, equations 4.2 and 4.3 can be squared and added each other.

P 2
a − 2PaPb cos(θ) + P 2

b = P 2
Y (4.5)
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and using the connection between the classical linear momentum and the kinetic
energy, i.e.:

T = 1
2mv2 ⇒ P 2 = 2mT (4.6)

replacing into 4.5(
ma

mY

)
Ta −

2
mY

√
maTa

√
mbTb cos(θ) +

(
mb

mY

)
Tb = TY (4.7)

adding to both sides Tb−Ta and using the expression 1.2 for the Q-value is possible
to isolate Tb.

Tb = Ta(mY −ma) + Q mY

mb + mY

+ 2
√

mambTa cos(θ)
mb + mY

√
Tb (4.8)

The idea is study the variation of Tb with respect a fixed Q. Then, following (17),
the next change of variables is performed:

D = Ta(mY −ma) + Q mY

mb + mY

(4.9)

C = 2
√

mambTa cos(θ)
mb + mY

(4.10)

∴ Tb = D + 2C
√

Tb =⇒ Tb − 2C
√

Tb −D = 0 (4.11)

Besides, let x be equal to
√

Tb :

x2 − 2Cx−D = 0 =⇒ x = C ±
√

C2 + D (4.12)

Now, Tb must always be real and positive

√
Tb =

√
mambTa

mY + mb

cos(θ)±

√√√√mambTa cos2(θ)
(mb + mY )2 + Ta(mY −ma) + Qmy

(mb + mY ) (4.13)

Until here, this expression is totally general and it is valid whatever sign takes the
reaction Q-value. Nevertheless, if Q is negative there is a value for Ta, from which
the square root starts to be real, rather then imaginary.
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Imposing the condition that the square root must be zero and changing Ta for Tth

and Q for −|Q|, it is obtained

Eth(θ) = |Q|(mb + mY )mY

mamb cos2(θ) + (mb + mY )(mY −ma) (4.14)

The smallest value of Eth(θ) occurs for θ = 0◦, and it is the absolute threshold of the
reaction, namely, the smallest value of the incident energy Ta for which the reaction
can occur.

Eth(0) = |Q|(mb + mY )
(mb + mY −ma) (4.15)

This is an important point because this imposes a condition over the possible in-
coming neutrons that might produce the deuteron breakup.
Then, using the Q-value 4.1 and the masses involved, the threshold energy is:

Eth = 3.3396 MeV (4.16)

Hence, for the deuterium breakup exists a threshold, below which the reaction can-
not proceed. This means that the minimum kinetic energy that the neutron must
have in order to produce in the exit channel one proton and two neutrons should be
3.3396 MeV. This totally discards the possibility that the incoming neutron from
the beam can produce this reaction, because, like it was argued in the Jetter cycle
chapter, this neutrons have an energy of 240 keV in order to maximized the yield of
the 6Li(n, α)T reaction.

Now, the goal is finding the energy distribution of the proton that emerges from
the deuterium breakup, and for this a Monte Carlo simulation is implemented.

4.2 Monte Carlo simulation
The proposal for the simulation of this reaction is to consider it as two-step reaction
in which, first an inelastic scattering between the incoming neutron and the deu-
terium occurs. The outgoing deuterium obtains an excitation energy that overpasses
its binding energy. Secondly, the breakup occurs sharing the extra energy between
the products. In every step a uniform distribution is proposed for the angles be-
cause, in principle, the system is isotropic and the reaction takes place at whatever
possible angle in the space.
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A code in C++ (39) C was implemented to run a high number of events and collect
the proton energy in a histogram that permits to know the energy probability dis-
tribution.

At the beginning, the kinetic energy in the laboratory reference frame of the in-
coming neutron is known. This is 14.0481 MeV, becuase this neutron is the product
of the fusion reaction in the Jetter cycle. Then, the initial energy and momentum
is known and must be conserved for the two reactions. This is the major constraint
that must always be fulfiled.

Figure 4.2: Excitation energy absorbed by the deuterium.

The conservation of the energy reads

Elab
T = ECM

rel + EXT + ECM, (4.17)

where Elab
T is the initial kinetic energy in the laboratory frame. ECM

rel is the relative
energy in the center of mass, namely, this will be the energy available to be shared
in the deuteron-neutron scattering and its computed using the next expression:

ECM
rel =

(
m(D)

m(D) + m(n)

)
Elab

T − EXT , (4.18)

where EXT is established to be 0.1 MeV over the Q-value.
Besides, ECM is the energy due to the motion of the CM system itself with velocity
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vCM along the incident direction (z-axis).

ECM = 1
2 [m(D) + m(n)] v2

CM = 1
2 [m(D) + m(n)]

(
m(n)

m(D) + m(n)ulab
n

)2

(4.19)

Therefore, the energy conservation is fulfilled

Elab
T = ECM

rel + EXT + ECM

= 7.0358 MeV + 2.3245 MeV + 4.6877 MeV = 14.0481 MeV (4.20)
The relation between these two reference frames is depicted in the figure 4.3, where
the letter u is used for the velocities before the collisions and the letter v for the
ones after the collision. The direction of the collision coincides with z-axis in the
laboratory reference frame.

Figure 4.3: Left. Laboratory reference frame before and after of deuterium-neutron
scattering. Right. Center of mass reference frame before and after of deuterium-
neutron collision.

The next step is computing the resulting velocities of the deuterium and the incom-
ing neutron after the collision in the center of mass reference frame. The resulting
velocities were computed using the following expressions

V CM
n =

√√√√2m(D)
m(n)

ECM
rel

(m(D) + m(n)) (4.21)
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V CM
D =

√√√√2 m(n)
m(D)

ECM
rel

(m(D) + m(n)) (4.22)

Until this point the magnitude of the resulting velocities are known and also the
momentum that the deuterium carries. This is a key point, because this momen-
tum must be conserved when the fragments momenta are added in every component.

Notice that the deuterium momentum components depend of the angles (θCM, ϕCM),
which are the azimuthal and polar angles respectively. These angles are randomly
generated via a uniform probability distribution for every event considered.

After the scattering, the deuterium suddenly breaks-up in its constituents shar-
ing the energy above the binding energy (EBU). The velocities calculation for these
fragments is carried out in the rest frame of the deuterium using the following ex-
presions:

V Rest
n =

√√√√2 m(p)
m(n)

EBU

(m(p) + m(n)) (4.23)

V Rest
p =

√√√√2m(n)
m(p)

EBU

(m(p) + m(n)) (4.24)

The relation between the frame where the deuterium has kinetic energy and the rest
frame is depicted in the figure 4.4.

Again, notice that neutron and proton momentum components in the rest frame
depend of the angles (θRest, ϕRest), which are the azimuthal and polar angles respec-
tively. These angles are randomly generated via a uniform probability distribution
for every event considered.

The calculations at every step must be performed respecting the energy and mo-
mentum conservation, this is the most faithful statement that guided the code. For
instance, it was verified that the total momentum in the center of mass reference
frame is always zero, and also that the sum of momentum in the rest frame for
the fragments must vanish. Besides, the energy and momentum of the scattering
particles in the center of mass must be equal before and after the collision. The
same must be valid for the deuterium breakup, the energy and momentum before
the breakup and after the breakup must be equal. Finally, when the reconstruction
of the outgoing particles quantities is perfomed in the laboratory reference frame,
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Figure 4.4: Left. Reference frame where deuterium has kinetic energy before and
after of deuterium break-up. Right. Rest reference frame before and after of deu-
terium break-up.

the energy and momentum must be coherent with the energy and momentum of the
incoming neutron.

Therefore, until this point all the kinematic quantities are known and the two pairs
of angles were randomly generated. Namely, in the rest frame the three velocity
components for every fragment are known, the same for the three velocity compo-
nents of the deuterium and the neutron in the center of mass frame, and the last
task to do is carefully to make the composition of these velocities to obtain them in
the laboratory frame for the three fragments.

The reconstruction of the velocity components starts from the rest frame of the
deuterium, where the breakup occurs. The situation is that before going to the
rest frame, the deuterium has a definite velocity. Hence, it is necessary to boost
the fragments to the moving frame of the deuterium (36). For this, the following
composition is proposed.

Mn = m(D)2 + m(n)2 −m(p)2

2m(D)2 (4.25)
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Mp = m(D)2 + m(p)2 −m(n)2

2m(D)2 (4.26)

And the momentum in every direction, for instance, for the proton in the frame
where the deuterium has velocity reads.

Px(p) = P Rest
x (p) + Mp V CM

x (D) (4.27)

Py(p) = P Rest
y (p) + Mp V CM

y (D) (4.28)

Pz(p) = P Rest
z (p) + Mp V CM

z (D) (4.29)

The momentum for the neutron fragment is computed following the analogous ex-
pressions than for the proton fragment.

Again, the momentum conservation holds, in the sense that the sum of the neu-
tron and proton momentum in every component must be equal to that carried by
the deuterium before to the breakup.

Finally, the magnitude of the momentum vector in the laboratory reference frame
might be written in the following way

|P⃗(p)| =
√

(Px(p))2 + (Py(p))2 + (Pz(p) + MpVCM)2. (4.30)

Analogously, for the two neutrons this composition is performed taking into account
that the velocity of the center of mass has to be added for the z-component because
this axis coincides with collision direction for the scattering process.
It is evident that having the magnitude of the momentum vector for the three
products, the kinetic energy of each particle is completely known according to the
non-relativistic formula:

Ep = ( |P⃗(p)| )2

2Mp

. (4.31)

4.3 Results
The program was run using 107 events and the energy of the three products was
stored for every event in order to obtain the energy distribution.

In the first step of the reaction the distributions for the neutron and deuterium
that are obtained are shown in the figures 4.5 and 4.6.
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Figure 4.5: Deuterium energy distribution after the inelastic scattering. Data obtained
from simulation of 107 events with the Monte Carlo code C.

Figure 4.6: Neutron energy distribution after the inelastic scattering. Data obtained from
simulation of 107 events with the Monte Carlo code C.
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Figure 4.7: Neutron energy distribution after the inelastic scattering and deuterium
breakup. Data obtained from simulation of 107 events with the Monte Carlo code C.

Figure 4.8: Proton energy distribution after the inelastic scattering and the deuterium
breakup. Data obtained from simulation of 107 events with the Monte Carlo code C.
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Finally, the proton and the second neutron energy distributions from the breakup
reaction are shown in the figures 4.7 and 4.8.

At the end, the code prints the data showed in the table 4.1 which are the rele-
vant data in the two-step reaction.

Quantity Magnitude
Elab

T 14.0481 MeV
EXT 2.3245 MeV
ECM 4.6877 MeV
ECM

rel 7.0358 MeV
ECM

D 2.3478 MeV
ECM

n1 4.6880 MeV
EBU 0.1 MeV
ERest

n2 0.0499 MeV
ERest

p 0.0500 MeV
ERest

p 0.0500 MeV
Mp 937.670 MeV/c2

Mn 938.453 MeV/c2

Table 4.1: Relevant data printed by the code in the deuterium breakup reaction.



Chapter 5

Jetter + Post Cycle

After knowing the proton energy distribution that results of the deuterium breakup,
it is time to combine the Jetter and Post cycle and compare the result abundances
against those of the individual cycles.

Notice that the only change is just the openning an additional channel with the
species already present at the beginning.

The reaction network is depicted in the figure 5.1. In the upper part the Jetter
cycle is shown, while in the middle and in blue color the deuterium breakup reac-
tion is shown. Finally, at the bottom the Post cycle is shown. It is worth to notice
the indixes in the diagram, for the first reaction indexes 1 and 2 appear representing
the neutrons coming from the beam (1) or the neutrons coming from fusion reaction
between the deuterium and tritium (2). As it was proved the deuterium breakup
is achieved only with the neutrons coming from the fusion process (2). Finally, the
α-particles are labeled as before.

5.1 Theoretical Approach
In order to combine the cycles, two reduced reaction rate have to be computed.
The first is the one in which the neutron and the deuterium react consuming both
species. In this case, again, the assumption of no energy losses implies that the
consequent reactions produced by the neutron will be accomplished at the precise
energy that is produced in the fusion between the tritium and deuterium. Namely,
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n1,2 + 6Li → α1 + T
↑ ↓
n2 + α2 ← D + T
↓
n2 + D → 2n3,4 + p1

↓
3He + α3 ← 6Li + p1,2
↓ ↑

3He + D → α4 + p2

Figure 5.1: Jetter Cycle + Post cycle joined by deuterium breakup reaction.



5.1. THEORETICAL APPROACH 63

the energy distribution probability function is a Dirac delta function.

P (E) = δ(E − E0) (5.1)

5.2. and the expected value between the energy distribution function and cross
section is easily calculated using 1.17.

⟨σv⟩ =
∫ (2E

m

)1/2
σ(E) δ(E − E0)dE =

(2E0

m

)1/2
σ(E0) (5.2)

The cross section and the reduced reaction rate is depicted in the figures 5.3 and
5.4 in the experimental data section.

The second reaction rate that has to be evaluated is related with the protons that
emerge from the deuterium breakup and will react with lithium. Like it was pointed
out in the previuos chapter, the probability energy function for the protons is no
more a Dirac delta function. Instead, it is a function ranging from 0 to, approxi-
mately, 6.5 MeV as it is shown at the top of the figure 5.2. This probability function
was extracted from the histogram found in the deuterium breakup simulation 4.8
after carefully performing a suitable normalization in order to fulfill the requirement
that the integral over the sample space amounts to unity 1.18.

Therefore, the reduced reaction rate has to be evaluated using the following expres-
sion

NA ⟨σv⟩ =
∫ Emax

Emin
NA

(2E

m

)1/2
σ(E) P (E) dE =

∫ Emax

Emin
µ(E) dE (5.3)

At the middle of the figure 5.2 the cross section of the fission reaction 6Li(p, α)3He
is chopped exactly at the energy range in which the probability function is different
from zero is shown.
At the bottom of the figure 5.2 the product of all the terms inside the integral gath-
ered in the auxiliar function µ(E) is shown. Notice that the reduced reaction rate is
the area under this curve. The integration was numerically performed, the results
are resumed in the table 5.1.

Finally, the set of ordinary differential equations that describes the abundace be-
haviour of the system schematized in 5.1 reads
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Proton probability energy function

6Li(p, α)3He Cross section

µ(E) Function

Figure 5.2: Top. Proton probability energy function resulted from the deuterium
breakup. Black dots. Histogram values after the normalization. Green line. Interpo-
lation made using Mathematica. Mid. Cross section chopped in the possible energy
range. Bottom. NA ⟨σv⟩ is the area under the curve of µ(E) (5.3).
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Quantity Magnitude
Emin 0.0327 MeV
Emax 6.5011 MeV

NA ⟨σv⟩ 155.5510 m3/mol · s

Table 5.1: Relevant data for the calculation of the reduced reaction rate and the numerical
integration of the µ function.

dYn1

dt
= i − Yn1(t) · Y6Li(t)

[
6Li(n1, α)

]
(5.4)

dYn2

dt
= + YD(t) · YT(t) [D(T, n2)] − Yn2(t) · Y6Li(t)

[
6Li(n2, α)

]
− Yn2(t) · YD(t) [n2(D, 2n)] (5.5)

dYn3

dt
= + YD(t) ·Yn2(t) [n2(D, 2n)] (5.6)

dYn4

dt
= + YD(t) ·Yn2(t) [n2(D, 2n)] (5.7)

dYα1

dt
= + Yn1(t) · Y6Li(t)

[
6Li(n1, α1)

]
+ Yn2(t) · Y6Li(t)

[
6Li(n2, α1)

]
(5.8)

dYα2

dt
= + YD(t) · YT(t) [D(T, α2)] (5.9)

dYα3

dt
= + Yp1(t)·Y6Li(t)

[
6Li(p1,

3 He)
]

+ Yp2(t)·Y6Li(t)
[

6Li(p2,
3 He)

]
(5.10)

dYα4

dt
= + YD(t) ·Y3He(t)

[
3He(D, p)

]
(5.11)

dYD

dt
= − YD(t) · YT(t) [D(T, n2)] − YD(t) · Y3He(t)

[
3He(D, p)

]
− YD(t) · Yn2(t) [n2(D, 2n)] (5.12)

dYT

dt
= + Yn1(t) · Y6Li(t)

[
6Li(n1, α)

]
+ Yn2(t) · Y6Li(t)

[
6Li(n2, α)

]
− YD(t) · YT(t) [D(T, n2)] (5.13)

dY3He

dt
= + Yp1(t) · Y6Li(t)

[
6Li(p1,

3 He)
]

+ Yp2(t) · Y6Li(t)
[

6Li(p2,
3 He)

]
− Y3He(t) · YD(t)

[
3He(D, p2)

]
(5.14)
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dYp1

dt
= + YD(t) · Yn2(t) [n2(D, 2n)] − Yp1(t) · Y6Li(t)

[
6Li(p1,

3 He)
]

(5.15)

dYp2

dt
= + YD(t) · Y3He(t)

[
3He(D, p2)

]
− Yp2(t) · Y6Li(t)

[
6Li(p2,

3 He)
]

(5.16)

dY6Li

dt
= − Y6Li · Yn1(t)

[
6Li(n1, α1)

]
− Y6Li · Yn2(t)

[
6Li(n2, α1)

]
− Yp1(t) · Y6Li(t)

[
6Li(p1,

3 He)
]
− Yp2(t) · Y6Li(t)

[
6Li(p2,

3 He)
]

(5.17)

The interaction of the n3 and n4 is missing.

5.2 Experimental Data
Unlike to the previous cases, this time just one reaction was added. This was the
deuterium breakup. Then, the cross section has to be searched and the reduced
reaction rate calculated.

In order to obtain the expected value of the energy distribution and cross section
2.2, the cross section has to be known for several specific energies which implies that
an interpolation has to be performed to the experimental data for the reaction over
the energy range of interest. Combining this interpolation with the energy distri-
bution probability the expected value between the energy distribution function and
the cross section is calculated.

5.2.1 D(n, 2n)p
The data for this reaction were extracted from ENDF (27) in which the interpola-
tion was already performed following the library ENDF/B-VIII.0 and it is held by
Ref.(37), which allows to choose the energy range for displaying a list of points that
will guide the interpolation. For instance, choosing the energy range from 3.339
MeV to 30 MeV, 37 points are shown in order to make the interpolation.
The figure 5.3 shows the cross section for the breakup reaction. the black dots are
the data given by the ENDF/B-VIII.0 whereas the green line is the interpolation
made using Mathematica in order to obtain a function that might be evaluated at
whatever energy, as it is required to solve numerically the set of ordinary equations.

After having the interpolation function of the cross section, the reduced reaction
rate could be computed using 5.2. The result is depicted in the figure 5.4.
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D(n, 2n)p Cross Section

Figure 5.3: Cross Section for D(n, 2n)p using the data taken from Ref.(37) and
interpolated using Mathematica.

D(n, 2n)p Reduced reaction rate

Figure 5.4: Reduced reaction rate NA ⟨σv⟩ for the reaction D(n, 2n)p using the
expression 2.2.
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As it was pointed out in the previous sub-section, the outgoing neutrons from the
deuterium breakup will not react again in the current open channels.

5.3 Results
After obtaining the expected values between the cross section interpolation and the
probability energy distribution of the reactions involved, the set of ordinary differen-
tial equations might be numerically solved using the built-in routine in Mathematica
B. For that, initial conditions have to be set in sufficient number.

These initial conditions refer to the initial abundance in the system. Then, at the
beginning the deuterium and lithium are present at equal proportion due to chemi-
cal stoichiometry. The neutrons present are only from the external beam which at
t = 0 is turned on and therefore their total number is a (almost) linearly growing
function. Besides, the energy of these particles is set to 0.24 MeV because, as it
was pointed out in the second chapter, at this precise energy the maximum of the
reduced reaction rate is found in the figure 2.3. This choice is made in order to
considerably increase the fission probability between 6Li and n.

Moreover, due to the fact that there is not an external source of nucleons, the
constraint over the nucleon fraction is totally fulfilled 1.32.

Again, we propose to simulate 1 mol of 6LiD, this means that the initial molar
fraction can be calculated using the expression 1.33

Y6Li = N6Li

ρNA

= NA

V ρNA

= 1
V ρ

= 1
8

g

mol = 0.125 mol
g

. (5.18)

Following the same procedure the initial molar fraction for the deuterium can be
calculated and how is to expected, it is the same.

The initial conditions for solving the set of ordinary equations are listed in the
table 5.2, where at the beginning only deuterium and lithium are present at equal
amounts.
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Molar Fraction Value (mol/g)
Yn1(0) 0.0
Yn2(0) 0.0
Yn3(0) 0.0
Yn4(0) 0.0
Yp1(0) 0.0
Yp2(0) 0.0
Yα1(0) 0.0
Yα2(0) 0.0
Yα3(0) 0.0
Yα4(0) 0.0
YD(0) 1.25× 10−1

YT(0) 0.0
Y6Li(0) 1.25× 10−1

Y3He(0) 0.0

Table 5.2: Initial conditions to solve the set of ordinary differential equations for the
Jetter cycle + Post cycle.

The abundance curves for all the species involved in the system are displayed in the
figures 5.5, 5.6 and 5.7.

In the figure 5.5 the abundance evolution for all neutron species is shown. In the
panel (a), the continuous growing in the neutron abundace of the neutrons coming
from the beam is shown. The panel (b) shows how the neutrons coming from T and
D fusion increase until the point where the deuterium breakup starts to be impor-
tant, this follows until the point in which no more deuterium is present. Finally in
(c) and (d), the fragments from the deuterium breakup appear, due to the fact that
these two species have different energy distributions they are considered differents
species, but since the only source is the breakup then the abundance curve is the
same for both and the expected final abundance will be also the same.

The abundance evolution for the four species of α-particles is shown in the figure
5.6. As it is guessed from equations 5.8,5.9,5.10 and 5.11, they are formed only
by source terms, namely, all of them are only produced until they achieve a steady
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n1 Molar Fraction n2 Molar Fraction

(a) (b)
n3 Molar Fraction n4 Molar Fraction

(c) (d)

Figure 5.5: Solution of the set of ordinary differential equations describing the Jetter
and Post cycle for the neutrons species.

point. They are always considered as an inert byproduct.

In the figure 5.7, the abundance evolution for deuterium, lithium and protons are
shown. In the panel (a) and (b) we can see the monotonically decrease of deuterium
and lithium due to the fact that they only have sink terms and are consumed with
a very different ratio. This dynamic continues until the point in which both are
completely exhausted.

In the panels (c) and (d) the protons abundance evolution are shown. The abun-
dance of both species of protons is increased, the fact that the second species has
increased is a sign that Post cycle was ignited at certain point as it was hypoth-
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α1 Molar Fraction α2 Molar Fraction

(a) (b)
α3 Molar Fraction α4 Molar Fraction

(c) (d)

Figure 5.6: Solution of the set of ordinary differential equations describing the Jetter
and Post cycle for the α-species.

esized. Namely, starting from the crystal 6LiD and focusing a neutron beam, at
certain point the reactions of the Post cycle are ignited, producing more α-particles
that will increase the energy released.

Finally in the figure 5.8 the abundance evolution for the tritium and 3-helium is
shown. Both species have similar dynamics, namely, they play a common role in
both cycles. First, they are produced for the fission reactions in each cycle until the
point in which they have achieved a considerable abundance to trigger the fusion
reaction in each cycle and they start to be consumed until the point that deuterium
is consumed, namely, the steady point of the tritium and 3-helium coincide with the
point when the deuterium is totally exhausted. Due to the fact that the deuterium
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D Molar Fraction 6Li Molar Fraction

(a) (b)
p1 Molar Fraction p2 Molar Fraction

(c) (d)

Figure 5.7: Solution of the set of ordinary differential equations describing the Jetter
and Post cycle for the D,6Li and p-species.

is totally consumed when still tritium and 3-helium have a considerable abundance,
these elements are present at the end.

In the figure 5.9 all the abundance evolution curves are shown (except for the neu-
trons coming from the beam). In this, it is possible to appreciate the real scale of
the abundance of every element. It is evident that the Jetter cycle is the dominant
dynamic, more than the Post cycle dynamic in the system simulated. It is worth
to notice that deuterium breakup reaction is playing a fundamental role producing
a considerably quantity of energetic neutrons and protons than might open new
channels and triggering the Post cycle.
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T Molar Fraction 3He Molar Fraction

(a) (b)

Figure 5.8: Solution of the set of ordinary differential equations describing the Jetter
and Post cycle for the 3He and T species.

Moreover, it is easy to see how the tritium and 3-helium achieve the steady point
when the deuterium is depleted. Also how α1 and α3 particles reached their max-
imum at the same time that the lithium is depleted. Analogously, how α2 and α4
particles achieved their maximum at the same time that deuterium is depleted.

The fact that in this case the deuterium breakup channel is open produced huge
changes compared with the simulation of Jetter cycle alone. This reaction increased
the deuterium consumption implying that the tritium and 3-helium were not totally
consumed through the fusion with deuterium. The main outcome is that the Jetter
cycle and the Post cycle, where these intermediate elements are produced during
the evolution, yield zero abundance at the end. Besides, there is a considerably
population of protons and neutrons coming from the deuterium breakup when the
system achieves the steady solution.

It is worth to notice the time scale in which the system achieves the steady regime.
This is around 1 µs, instead the Jetter cycle alone took around 14 µs to achieve the
steady solution. Therefore, the presence of deuterium breakup and the Post cycle
decreases the time that the system spends to reach the steady solution. Again,
due to the fact that the neutrons coming from the beam only react with lithium,
the neutron beam might be turned off at the time when the lithium is exhausted,
namely, more or less 0.3 µs. This for saving injection energy.
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Jetter cycle + Post cycle Solution

(a)

(b)

Figure 5.9: Curves of abundance evolution for the Jetter cycle + Post cycle using
the initial conditions 3.3 in terms of molar fraction Yi. (a) Linear scale in the y-axis.
(b) logarithmic scale in the y-axis for better visualization.
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Jetter cycle + Post cycle Solution

(a)

(b)

Figure 5.10: Curves of abundance evolution for the Jetter cycle + Post cycle using
the initial conditions 3.3 in terms of nucleon fraction Xi. (a) Linear scale in the
y-axis. (b) logarithmic scale in the y-axis for better visualization.
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Notice that, by using the expression 1.33 the result expressed in terms of the molar
fraction Yi may be written in terms of the nucleon fraction Xi multiplying every
species by its mass number. The result is shown in the figure 5.10.

At the end, the differential equations converge to a steady point in which the sys-
tem is only populated with α-particles, neutrons, protons and 3-helium. This is
expressed in the table 5.3 and depicted in the barchart 5.11, where it is easier to
appreciate the initial and final abundances. There, tfin refers to the time at which
the system has achieved the steady solution.

Molar Fraction Value (mol/g)
Yn1(tfin) 21.9
Yn2(tfin) 0.011
Yp1(tfin) 0.049
Yp2(tfin) 0.002
Yn3(tfin) 0.055
Yn4(tfin) 0.055
Yα1(tfin) 0.119
Yα2(tfin) 0.068
Yα3(tfin) 0.006
Yα4(tfin) 0.002
YD(tfin) 0.0
YT(tfin) 0.051
Y6Li(tfin) 0.0
Y3He(tfin) 0.0036

Table 5.3: Final abundances in terms of molar fraction and expressed in units of mol/g
for the species involved in the Jetter cycle + Post cycle.

The barchart 5.11 shows the evident change in the final abundance when the deu-
terium breakup reaction and the Post cycle are added to the Jetter cycle. The final
abundance of tritium and 3-helium differs from the abundance found at the end of
the Jetter cycle 2.11 and of the Post cycle 3.10, respectively.

Finally, due to the fact that the curves of abundance evolution are known, the
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Figure 5.11: Abundance in terms of molar fraction Y expressed in units of mol/g.
Top. Initial abundance according to the initial conditions 2.3. Bottom. Final
abundance after Jetter cycle + Post cycle integration.

fusion yield might be calculated using the expression 1.47 and uppon multiplying
the specific power by the volume of the simulated system, that it is the same as
in the Jetter cycle chapter, the resulting the power as a function of time can be
calculated.

The curves of the power as a function of time for every reaction involved in the
Jetter cycle + Post cycle are displayed in the figures 5.12 and 5.14. In black the
curves related with fission reaction are shown, instead in red the curves related with
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fusion reaction are shown. All these reactions are exothermic, then they correspond
to energy released. Conversely, the deuterium breakup is an endothermic reaction
and this implies that this energy was spent in order to produce the proton and
neutrons in the exit channel. This is the reason why in the figure 5.14 the curve
appears on the negative side.

The results for the combine cycles are expressed in the table 5.4.

Reaction Fusion Yield (GJ)
6Li(n1, T)α1 457.517
6Li(n2, T)α1 9.070
D(T, n2)α2 980.726

6Li(p1, 3He)α3 18.829
6Li(p2, 3He)α3 0.177

3He(D, p)α2 31.794
D(n2, 2n)p1 -99.462

Total 1398.650

Table 5.4: Energy released for every reaction in the Jetter cycle + Post cycle.
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6Li(n1, T)α1 Power 6Li(n2, T)α1 Power

(a) (b)
6Li(p1,

3He)α3 Power 6Li(p2,
3He)α3 Power

(c) (d)

D(T, n2)α2 Power D(3He, p2)α4 Power

(e) (f)

Figure 5.12: Power released in the Jetter cycle + Post cycle. (a) Power released by
the 6Li(n1, T)α1 reaction. (b) Power released by the 6Li(n2, T)α1 reaction. (c) Power
released by the 6Li(p1, 3He)α3 reaction. (d) Power released by the 6Li(p2, 3He)α3 reaction.
(d) Power released by the D(3He, n2)α2 reaction. (e) Power released by the D(T, n2)α2
reaction. (f) Power released by the D(3He, p2)α4 reaction.
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D(n2, 2n)p1 Power

Figure 5.13: Power consumed in the deuterium breakup reaction.

Jetter cycle + Post cycle Power

Figure 5.14: Power released and consumed in Jetter cycle + Post cycle.



Chapter 6

Conclusions

From the present study considering a neutron beam focused on a 6LiD crystal, the
chapter two showed that the Jetter cycle was succesfully simulated. The results
showed the abundance evolution of the elements involved and a huge quantity of
nuclear energy released during the nucleosynthesis. Besides, it is desirable to com-
pare the nuclear energy released with the entering energy in the system. For this, a
rough estimate is proposed by calculating the kinetic energy of the neutrons coming
from the beam that entered to the system

Ei = i ·∆t · En1 . (6.1)

We refer to this quantity as the injection energy. Considering only the energetic
balance of the nuclear reactions and forgetting about technical implementaion, de-
vice efficiency and power consumption, we can define a reaction gain factor as the
fraction between the above quantity and the fusion yield Y ,

Q = Y

Ei

. (6.2)

Taking the rate used in the simulation for the incoming neutrons (2.10), the kinetic
energy for these neutrons (0.24 MeV) and the time when the lithium is completely
exhausted, the injection energy might be calculated. A net energy gain would require
fusion yields greater than the beam energy, 40.82 GJ. The fusion yield in the Jetter
cycle that we found was 2282.840 GJ (2.5) and this implies a gain factor of

Q = 2282.840 GJ
40.82 GJ = 55.90. (6.3)
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Where this clearly results in an overestimation. Because, not all the energy produced
is susceptible to be extracted from the system. In this field, a common statement on
the power is to divide the gain factor by 5, due to the fact that α-particles carry 1/5
of the total fusion energy per D+T reaction. Despite this, the gain factor continues
to be greater than 1 expressing a net gain in the system.

With respect to the Post cycle, the initial conditions defined in the chapter three
showed that an initial small population of protons, compared with the abundance
of the crystal elements, is enough to ignite the cycle and produces the total con-
sumption of lithium and deuterium. Besides, the energy released in the Post cycle
was comparable with the energy released in the Jetter cycle, with the common pe-
culiar dynamic that the tritium and 3-helium were created and depleted during the
process, respectively. Another important information from this simulation concerns
the time scale at which the solution achieved the steady regime, that is found to be
of the same order of the Jetter cycle, a fact that motivated to merge them in order
to see an overlap of the two dynamics.

From the deuterium breakup cross section and from the final abundance of high
energetic neutrons in the Jetter cycle, we could hypothesize this reaction as a can-
didate to link the Jetter cycle and the Post cycle and the Monte Carlo simulation,
from the chapter four, successfully permitted to obtain an energy distribution for
the outgoing protons.

The last simulation in the chapter five showed that, effectively, at a certain point
the Post cycle is ignited. Nevertheless, the dominant reactions for this setup are
those belonging to the Jetter cycle, whereas the reaction belonging to the Post cycle
play a secondary role. The deuterium breakup also has an important role, a fact
that is evident from the high quantity of neutrons and protons at the end. Besides,
the final abundances showed sizeable changes compared with the simulation of the
Jetter cycle alone. For instance, the tritium that was totally consumed in the first
simulation, now it is present in a considerable amount at the end. Analogous be-
haviour for the 3-helium, but in less proportion, is also found.

In terms of the energy produced, the presence of the endothermic reaction of deu-
terium breakup leaded to a reduction of almost the half part of the fusion yield of
the Jetter cycle alone (5.3). The gain factor reads

Q = 1398.65 GJ
40.82 GJ = 34.26. (6.4)
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Clearly, this is a rough estimation and must be considered as an upper bound for
the net gain. Facts such as particle losses or elastic scattering are factors that, even-
tually, will drecrease the fusion yield and they have to be added in the simulation
in future works. Additionally, as it was said before, not all the energy produced is
suceptible to be extracted to the system.

It was noticed that the dynamic was always trying to consume the elements present
in the crystal and populate the system with energetic α-particles. Therefore, the
final abundances of the simulated merged system suggest that other collateral reac-
tions have to be added. Namely, new channels has to be opened.

The present study must be considered as a preliminar scenario, where the nuclear
physics involved was explored without delving into the technical feasibility.
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Appendix A

Reaction Rates

In the table A.1 the reduced reaction rates used for the simulations are reported.
Where the notation proposed in 1.42 is used.

Reduced Reaction Rate
[

g

mol · s

]
[6Li(n1, α)

]
1.1614× 109[6Li(n2, α)

]
7.1395× 107

[D(T, n2)] 8.7637× 107

[D(n2, 2n)] 4.5775× 108[6Li(p1, 3He)
]

1.3732× 108[6Li(p2, 3He)
]

4.6048× 107[3He(D, p)
]

6.0392× 107

Table A.1: Reduced reaction data for all reactions involved.
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Appendix B

Mathematica routine: Nuclear
Reaction Network solver.

The solution of a nuclear reaction network could be a challenging task. As the
rate at which reactions occur is proportional to products of the densities of reac-
tans, these equations are a set of coupled and nonlinear differential equations. Such
equations also are called stiff (18). As the number of species grow, or the energy
is changed, the growing number of firts order differential equations must be taken
into account and this complicated the bookkeeping of all the abundances and the
number of coupled equations, as it is evident from equations 2.3, 3.1 and 5.4.

Here, we present a nuclear reaction network code, which has been entirely writ-
ten in Mathematica and has been used in the present work.

The code starts by reading a set of user-defined file in the initialization step. These
files contain the cross section data for every reaction involved in the reaction net-
work and the corresponding interpolation. After this, the user has to define a list
with the nuclear species involved in the simulation, where the index chosen for the
user has to be maintained until the end, because this index will serve as a label that
identifies the species.

For instance, in the present work the nuclear species list that was used is displayed
in table (B.1) with their arbitrary index.
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Index 1 2 3 4 5 6 7
Species n D T α 6Li p 3He

Table B.1: Nuclear species list read by the Mathematica routine.

Besides, a list with the reaction involved has to be set, agian, the index given will
serve as a label to identify the reaction. The list used in the present work is dis-
played in table B.2.

Index 1 2 3 4 5
Reaction 6Li(n, T)α D(T,n)α n(D,2n)p 6Li(p,3 He)α 3He(D, p)α

Table B.2: Nuclear reaction list read by the Mathematica routine.

With the knowledge of the species, the code exctracts the masses involved using the
Mathematica function IsotopeData. With all this information the code calculates
the reaction Q-value of every reaction and depending on velocity distributions of the
particles of every species, the reduced reaction rates are calculated at the specific
energy required. The results for the present work are listed in the table A.1.

Finally, the set of coupled and non-linear differential equations, the initial conditions,
the final time and the step are defined by the user. With this information the code
performs the numerical integration using the Mathematica function NDSolve which
gives results in terms of interpolating function objects and uses different methods
like “Adams”, “BDF”, “explicit Runge-Kutta”, “implicit Runge-Kutta”, “explicit
Euler”. See ref. (38) for more details.

The code outputs are the abundance evolution (dependent variables) as a func-
tion of time (independent variable) for every species configured. The flow diagram
that summarizes all these steps is depicted in the figure B.1. There, in orange color
are expressed the information that the user has to establish, whereas in blue color
the tasks that the code performs.

The present version of the Reaction Network Calculator code is called RNC 2.2
(40) and it has been developed as a general purpose that we intend to publish in
future. In this version, the set of coupled differential equations have been rewritten
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in terms of molar fractions. The cross section for the deuterium breakup and the
reactions involved in the Post cycle were added. The reaction network for the Jetter
cycle and the Post cycle were separately simulated and a new visualization of the
final abundance using a barchart was also added. Afterward, reading the energy
distribution of the protons coming from the deuterium breakup (see the appendix
C) the complete set of differential equations involving Jetter cycle + Post cycle
were written and simulated. Finally, in every reaction network simulated the curves
of power as a function of time were performed and the numerical integration using
the Mathematica function NIntegrate was used in order to obtain the energy balance.
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Flow Diagram

Figure B.1: Flow diagram of Reaction Network Calculator written in Mathematica
and implemented in the present work.



Appendix C

C++ routine: Monte Carlo
deuterium breakup.

A Monte Carlo simulation was proposed in order to obtain the energy distribution
function for the three fragments. These were labeled in the code as: the neutron 1
was the one that inelastically scattered with the deuterium, whereas the neutron 2
is the fragment coming from the deuterium breakup.

The code starts asking the number of events and the neutron energy, in the lab-
oratory system, that is impinging the deuterium. With this information the code
calculates all kinematic information related with the inelastic scattering where the
deuterium absorbs 0.1 MeV over its binding energy. At this point the first pair of
angles are randomly generated (θCM, ϕCM). These angles give the information of
how the energy is shared by these two particles.

After this, the kinematic information related with the deuterium breakup were cal-
culated in the deuterium rest frame and the second pair of angles were randomly
generated (θRest, ϕRest). Again, these angles give the information of how the energy
is shared by these two fragments.

Finally, the velocity and momentum composition were performed for the three final
particles in the laboratory reference frame guided by the energy and momentum
conservation at every step. The flow diagram is shown in the figure C.1.
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Flow Diagram

Figure C.1: Flow diagram of deuterium breakup Monte Carlo simulation written in
C++ (39) and implemented in the present work.
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