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Abstract:
The goal of this thesis project is to study the Cp-semilinear representation Cp⊗Zp Tp(X),
where X is an abelian variety over a local field K, following Fontaine’s paper “Formes
différentielles et modules de Tate des variétés abéliennes sur les corps locaux". The main
goal is to prove the Hodge-Tate decomposition Tp(X)⊗ZpCp

∼= (V0⊗KCp)⊕(V1⊗KCp(1))
where V0, V1 are K-vector spaces of same dimension of X.
Thus, in the first chapter we compute the continuous cohomology groups of Cp(n) with
respect to GK = Gal(K,K). In the second chapter, Fontaine’s work analyse the module
of Kähler differentials Ω = ΩOK

(OQp
) using an integration of invariant differentials along

elements of the Tate module of a Zp-module Γ. Finally, in the third chapter we prove
Tate-Raynaud theorem using the identification Vp(Ω) ∼= Cp(1) and then the Hodge-Tate
decomposition is obtained involving the dual abelian variety and the cohomology groups
of Cp(n).
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Introduction

The profinite Galois group GK = Gal(K̄,K) (for a local field K) is a topic of great interest
in algebraic number theory. Therefore arithmetic geometry is keen on understanding the
action of GK on geometric objects, for example on the Tate module Tp(X) of an elliptic
curve X or, more in general, of an abelian variety over K. In particular, the aim of this
thesis project is to study the Cp-semilinear representation Cp ⊗Zp Tp(X) and to prove
that it admits a Hodge–Tate decomposition, i.e. that it decomposes as finite sum of
Vi ⊗K Cp(i) for some i ∈ Z, where the Vi’s are finite dim. K-vector spaces. These i’s
are called Hodge–Tate weights and they indicate that the action of GK is twisted by
the i-power of the cyclotomic character χcycl : GK → Z×

p . The main reference of this
thesis project is Fontaine’s paper “Formes différentielles et modules de Tate des variétés
abéliennes sur les corps locaux" [Fon82].

We begin with a brief overview of the results on abelian varieties that will be necessary
for this project, giving the references for a more detailed dissertation.

In the first chapter we study the continuous cohomology groups of Cp(n). If n ̸= 0
then the 0-th and 1-st cohomology group of Cp(n) are trivial and later this result will be
a key algebraic tool for the decomposition. The main idea of the proof is to consider the
cyclotomic extension K∞ given by all pk-roots of unity and to study the ramification of
the intermediate cyclotomic extensions using the upper ramification groups.

The second chapter is dedicated to the study of the module of Kähler differentials
Ω = ΩOK

(OQp
). We consider Γ, the Zp-module structure on mQp

given by the multiplica-
tive formal group Ĝm. An original work of Fontaine studies an integration of invariant
differentials on Γ along elements of the Tate module of Γ . This allows to identify Ω with
(Qp/a)(1) for some fractional ideal a, that implies Vp(Ω) = HomZp(Qp,Ω) ∼= Cp(1).

Finally, in the third chapter we consider an abelian variety X over K with good
reduction, i.e. there exists an abelian scheme X over OK such that X = X×SpecOK

SpecK.
Assuming the good reduction, we prove Tate-Raynaud theorem: there exists an injective
K-linear map

ΩX(X)→ HomZp[G](Tp(X), Vp(Ω))

where ΩX(X) is the K-vector space of global differential forms on X. The GK-equivariant
isomorphisms Vp(Ω) ∼= Cp(1) and the cohomological results of chapter one lead to the
Hodge–Tate decomposition theorem for Tp(X) ⊗ Cp, that is a GK-equivariant Cp-linear
isomorphism

Tp(X)⊗Zp Cp
∼= (V0 ⊗K Cp)⊕ (V1 ⊗K Cp(1))

where V0, V1 are K-vector spaces of same dimension of X.
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Chapter 0

Generalities on Abelian Varieties

0.1 Definitions
Definition 0.1.1. A group variety over K is a group object in the category of algebraic
varieties over K, i.e. it is an algebraic variety V over K endowed with regular maps
m : V × V → V and inv : V → V and an element e ∈ V (K) such that the following
diagrams are commutative:

V

id ##

(id,e) // V × V

m

��

V

id ##

(e,id) // V × V

m

��
V V

V

��

(id,inv) // V × V

m

��

V

��

(inv,id) // V × V

m

��
SpecK e // V SpecK e // V

V × V × V

m×id
��

id×m // V × V

m

��
V × V m // V

which represent respectively the properties of the identity element, of the inverse and the
associativity rule.

The definition implies a structure of group on V (K) and on the other hand this structure
implies the commutativity of the previous diagrams. In general, for every extension L/K,
the set of points V (L) inherits a group structure.
Let a a K-rational point of a group variety V . We define the right translation by a to be
the map ta : V → V given by the composition

V
(id,a)−−−→ V × V

m−→ V

The map ta is an isomorphism and its inverse is tinv(a). In particular, a group variety V
is always non-singular since we may translate a non-singular open to every point of V .

Definition 0.1.2. An abelian variety over K is a complete and connected group variety
over K.
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We need to introduce also the definition of abelian scheme.

Definition 0.1.3. An abelian scheme over a ring R is a group scheme A over R such
that the structure morphism A → SpecR is of finite presentation, proper, smooth and
with all fibers geometrically connected.

Notice that a group scheme is simply the analogous of a group variety in the settings of
schemes.

0.2 Properties
An abelian variety turns out to be projective and commutative (with regard to the group
law), thus we will use the additive notation and we may use 0 instead of e. We state the
main tools towards these results without any claim to completeness and we also introduce
some important notions, such as the Tate module and the sheaf of differentials.

Commutativity

Theorem 0.2.1 (Rigidity theorem). Let α : V ×W → U be a regular map and assume V
complete and V ×W geometrically irreducible. If there are points u0 ∈ U(K), v0 ∈ V (K)
and w0 ∈ W (K) such that

α(V × {w0}) = {u0} = α({v0} ×W )

then α(V ×W ) = {u0}.

This implies the important corollary:

Corollary 0.2.2. Every regular map α : A → B of abelian varieties is a composition of
a homomorphism with a translation.

Proof. We may translate and assume α(0) = 0 so then ϕ : A × A → B defined as
ϕ(a, a′) = α(a + a′) − α(a) − α(a′) is a regular map and by the Rigidity Theorem is the
zero map, i.e. α is a homomorphism.

In particular, inv is a regular map that maps 0 to 0 and by this corollary it is an
homomorphism, hence the operation m of an abelian variety is commutative.

Theorem of the cube/square
The result regarding abelian varieties being projective requires deep work and technical-
ities, thus for our purposes we may as well define abelian varieties directly as projective
group varieties instead of complete.
However, we state two important results on that direction since they will be useful in
defining the dual variety in the next section.

Theorem 0.2.3 (Theorem of the cube). Let U, V , W be complete geometrically irre-
ducible varieties over K, and let u0 ∈ U(K), v0 ∈ V (K), w0 ∈ W (K) be K-rational
points. Then an invertible sheaf L on U × V ×W is trivial if its restrictions to

U × V × {w0}, U × {v0} ×W, {u0} × V ×W

are all trivial.
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Theorem 0.2.4 (Theorem of the square). For every invertible sheaf L on an abelian
variety A and for every couple of points a, b ∈ A(K) then

t∗a+bL ⊗ L ≃ t∗aL ⊗ t∗bL

A interesting family of regular maps between abelian varieties are the isogenies, i.e.
surjective homomorphisms with finite kernel. In particular, for every n > 0, the map
nA : A→ A that maps a 7→ a+ · · ·+ a (n-times) is an isogeny ([Mil86] section 1.7).

Proposition 0.2.5. Let A be an abelian variety of dimension d and let n > 0. Then
nA : A → A is an isogeny of degree n2d, in particular it is surjective and An(K) :=
Ker(nA : A(K)→ A(K)) contains n2d points.

Since this must hold for every n > 0, then the finite abelian groups structure theorem
implies that An(K) ∼= (Z/nZ)2d as group.

Moreover, for a prime l we define

Tl(A) = lim←−Aln(K)

called the Tate module of A. It is a free Zl-module of rank 2d. The action of Gal(K/K)
on Aln(K) induces an action on Tl(A) which will be the main object of interest in this
thesis project.
We conclude this section stating an important proposition regarding the sheaf of differ-
entials Ω1

V/K for a group variety V , referring to 3.2, 3.3 in [Spr81].

Proposition 0.2.6. Let V be a smooth algebraic variety over K of dimension d over K,
then

1. The sheaf of differentials Ω1
V/K on V is a locally free sheaf of OV -modules of rank d.

2. If V is a group variety, then Ω1
V/K is free.

Part 2 derives from the the natural isomorphism

Ω0 ⊗K OV
∼= Ω1

V/K

where Ω0 is the dual of space of the tangent space TV,0 at 0 to V . The map is given by
the pullback of ω0 ∈ Ω0 via the translations. In particular, the everywhere regular forms
on an abelian variety A are exactly the invariant forms (see [MRM74] pag. 39-40).

0.3 Pic0(A) and the dual variety
Let L be an invertible sheaf on A; from the theorem of the square we deduce that the
map

λL : A(K)→ Pic(A), a 7→ t∗aL ⊗ L−1

is a homomorphism for every L. Let define

C(L) = {a ∈ A(K) | λL(a) = 0}.

It is a closed subset of A and it is key in the definition of Pic0(A), due to the next
proposition.
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Proposition 0.3.1. For an invertible sheaf L on A the following conditions are equivalent:

• C(L) = A(K)

• m∗L ≃ p∗L ⊗ q∗L

where p, q are the two projections A× A→ A.

We define Pic0(A) as the subgroup of Pic(A) of the classes of invertible sheaves re-
specting the equivalent conditions of Proposition 0.3.1.
An important property of invertible sheaf L ∈ Pic0(A) is that for every couple α, β : V →
A of regular maps holds

(α + β)∗L ≃ α∗L ⊗ β∗L.

The dual abelian variety A∨ has the goal of parametrizing the elements of Pic0(A). We
introduce an axiomatic definition of A∨ and we won’t deepen into the actual realization
of the variety; for our purposes we assume the existence of the dual abelian variety A∨

for every abelian variety A over K.
We consider A the set of pairs (A∨,P) where A∨ is an algebraic variety over K and P is
an invertible sheaf on A× A∨ satisfying the following conditions:

• P|A×{b} ∈ Pic0(Ab) for all b ∈ A∨;

• P|{0}×A∨ is trivial.

We define the dual abelian variety A∨ and the Poincare sheaf P as a pair (A∨,P) ∈ A
satisfying the following universal property: for any pair (T,L) ∈ A there exists a unique
regular map α : T → A∨ such that (1× α)∗P ≃ L.
Some important remarks:
1) Assuming the existence of the dual variety (A∨,P), the universal property implies its
uniqueness up to a unique isomorphism.
2) The universal property states that

Hom(T,A∨) ≃ {L ∈ Pic(A× T ) satisfying above conditions}

and applying to T = SpecK we obtain

A∨(K) = Pic0(A)

3) Finally, by the actual construction of A∨ as quotient A/C(L) for an ample divisor L
we have that A and A∨ have the same dimension, since C(L) has dimension zero (see
[MRM74] sections 2.7, 2.8).

0.4 Weil pairing
For every m > 0, the Weil pairing is a canonical nondegenerate pairing

em : Am(K)× A∨
m(K)→ µm(K)

where µm(K) is the group of m-th roots of unity in K.

5



Definition of Weil pairing
For simplicity, let assume K algebraically closed, so let a ∈ Am(K) and a′ ∈ A∨

m(K) ⊂
Pic0(A). If a′ is represented by the divisor D on A, then m∗

AD is linearly equivalent to
mD by the property of Pic0(A). Since a′ ∈ A∨

m(K) then both m∗
AD and mD are linearly

equivalent to 0, i.e. there exist rational functions f and g on A such that mD = (f) and
m∗

AD = (g). Since

div(f ◦mA) = m∗
A(div(f)) = m∗

A(mD) = m(m∗
AD) = div(gm)

we deduce that gm/(f ◦mA) is a constant function c on A since it has no zeros and poles.
Therefore,

g(x+ a)m = cf(mx+ma) = cf(mx) = g(x)m

which implies g/(g ◦ ta) to be a function whose m-th power is 1. Since K(A) = K we may
identify the function with an element of µm(K) and we define

em(a, a
′) = g/(g ◦ ta).

From the definition follows the next lemma.

Lemma 0.4.1. Let m,n be positive integers, then for all a ∈ Amn(K) and a′ ∈ A∨
mn(K)

holds
emn(a, a

′)n = em(na, na
′).

This lemma is useful since for every prime l it allows to define a nondegenerate pairing
el : Tl(A)× Tl(A

∨)→ Zl(1) as

el((an), (a
′
n)) = (eln(an, a

′
n))

where Zp(1) = lim←−µln(K) (see paragraph on cyclotomic character in section 1.1).
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Chapter 1

Galois cohomology

In this chapter we compute the 0th and 1st Galois cohomology groups of Cp(n). I personally
preferred to follow the exposition on [Jor12], rather than the one in [Tat67], although they
are similar in most parts. I will assume the basics of p-adic number theory, whereas I will
introduce the upper and lower ramification groups. For further readings on these topics
see [Neu13] and [Ser13].

1.1 Generalities on Galois cohomology
We revise the definitions and basic results of Galois group cohomology. We refer to the
work of Tate and his definition of continuous cohomology.

Let G be a profinite group, then we consider a topological abelian group M endowed
with a continuous G-action, i.e. there is have a continuous map G ×M → M (σ,m) 7→
σ(m) ∈M such that for every m,n ∈M and for every σ, τ ∈ G

1G(m) = m σ(m+ n) = σ(m) + σ(n) σ(τ(m)) = (σ · τ)(m)

We can directly define the 0th and the 1st cohomology groups of M with respect to G.

Definition 1.1.1. The 0th cohomology group of M with respect to G is the group of
G-invariants:

H0(G,M) = MG = {m ∈M : σ(m) = m for every σ ∈ G}

Definition 1.1.2. The 1st cohomology group of M with respect to G is the group

H1(G,M) = {f : G→M : f continuous map s.t. f(στ) = σ(f(τ)) + f(σ)}/ ∼

where f ∼ g if for some m ∈M we have g(σ) = f(σ) + σ(m)−m.

This definition gives rise to a group indeed, using the standard terminology, it is the
group of continuous 1-cocycles, i.e. continuous maps G → M that satisfy the cocycle
condition written above, quotient the subgroup of 1-coboundaries, i.e. all the maps (that
are necessarily continuous) σ 7→ σ(m)−m for a certain m ∈M .

The definition of H i(G,M) with i > 1 is possible in an analogous way and this
construction is just a particular case of the right derived functor for the functor (−)G, but
this goes beyond our point of interest; Serre’s book [Ser13] is recommended for a more
general approach.

We know recall some tools very useful when dealing with cohomology groups.
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Theorem 1.1.3. Let H ⊂ G be a normal subgroup of a profinite group G and let M
be a topological abelian group endowed with a continuous G−action. Then we have the
following exact sequence of groups:

0→ H1(G/H,MH)
inf−−→ H1(G,M)

res−→ H1(H,M)G/H

Remark 1.1.4. The map inf : H1(G/H,MH) → H1(G,M) is defined as follows: if
f ∈ H1(G/H,MH), then inf(f)(g) = f(gH) with g ∈ G.
The map res : H1(G,M) → H1(H,M) is the restriction of the domain and it’s possible
to define an action of G on H1(H,M) as (g(f))(h) = g(f(g−1hg)). The cocycle condition
implies that H acts trivially on H1(H,M) and moreover the image of res is G (or G/H)
invariant in H1(H,M).

Theorem 1.1.5 (Hilbert 90). If L/K is a finite Galois extension, then

H1(GL/K , L
×) = 0

H1(GL/K , L) = 0

where GL/K is the Galois group associated to L/K.

Proposition 1.1.6. If the profinite group G is procyclic, i.e. it has a dense subgroup
generated by one element g, then

H0(G,M) = M g

H1(G,M) ∼= M/(g − 1)M

Proof. Of course, MG ⊂ M g and by continuity if m ∈ M g then g′(m) = m for every
g′ ∈ G.
For H1, using the cocycle condition on f : G → M we deduce that the value of f(gk) is
determined by f(g). This implies that a continuous cocycle f : G→M is determined by
f(g) ∈M . A continuous cocycle is then a coboundary if f(g) = g(m)−m = (g− 1)m for
some m ∈M , so H1(G,M) ∼= M/(g − 1)M .

In general, Galois cohomology is the continuous cohomology with respect to the ab-
solute Galois group GK = Gal(Ksep/K), which is a profinite group, for a certain field
K.

In particular, we are interested in the case K finite extension of Qp, so K is a complete
discrete valuation field of characteristic 0 with finite residue field of characteristic p > 0.
We consider an algebraic closure K = Qp and its completion Cp. The action of GK =

Gal(Qp/K) extends by continuity to Cp.

Cyclotomic character

For every n ∈ N we fix ζn a primitive pn−adic root of 1 in Q̄p, in a compatible way,
i.e. ζpn+1 = ζn. Then every σ ∈ GK maps ζn to ζxn

n with xn ∈ (Z/pnZ)× compatible
family, i.e. xn+1 ≡ xn (mod pn); we define the cyclotomic character χcycl : GK → Z×

p as
χcycl(σ) = {xn}n ∈ Z×

p . Note that every {xn}n ∈ Z×
p can be identified with an element of

Gal(F∞/Qp) where F∞ is given by Qp adjoint all the pn roots of unity.
We can then twist Cp by a power of the cyclotomic character: Cp(n) is the 1-

dimensional Cp semi-linear representation Cpv with action of GK defined as σ(xv) =

8



σ(x)χcycl(σ)
nv. Strictly speaking, it means that Cp(n) is Cp as vector space but the Ga-

lois action of GK is twisted by the n−power of the cyclotomic character. Another way
to describe Cp(n) is Cp(n) ∼= Cp ⊗Zp T

⊗n where T = lim←−
k∈N

µpk(K) with the convention of

taking T⊗−n the dual of T⊗n for positive n (remind that µpk(K) is the group of pn-roots
in K and the natural embeddings give a projective system).

The goal of this chapter is to compute H0(GK ,Cp(n)) and H1(GK ,Cp(n)) and this
computation will be key later combining it with the work of Fontaine.

1.2 Ramification and ramification groups
In this section we introduce the upper and lower ramification groups; they will help us to
compute or estimate the ramification of intermediate extensions.

Definition 1.2.1 (Lower ramification groups). If L/K is a finite Galois extension, then
for u ≥ −1 the lower ramification groups are defined:

GL/K,u = {σ ∈ GL/K : vL(σ(x)− x) ≥ u+ 1,∀x ∈ OL}

Since vL has only integer values on L, we have GL/K,u = GL/K,⌈u⌉, so then we can
define GL/K,u also as the subgroup of GL/K that acts trivially on OL/m

⌈u⌉
L (where mL is

the maximal ideal in OL). An element of GL/K,0 is then trivial in Gl/k where l, k are the
residue fields. Moreover, by Galois correspondence we have that if for every x ∈ OL and
for every u we have vL(σ(x) − x) ≥ u, then it means that σ is the identity on L. We
summarize these properties in the next proposition.

Proposition 1.2.2. 1. GL/K,u = GL/K,⌈u⌉.

2. GL/K,−1 = GL/K and GL/K,0 = ILK
(the inertia subgroup).

3. If u ≥ u′ then GL/K,u′ ⊂ GL/K,u and for u≫ 0 we have GL/K,u = {1}.

For the definition of the upper ramification groups we need the following function.

Definition 1.2.3. If L/K is a finite Galois extension we define ϕL/K : [−1,∞)→ [−1,∞)
as

ϕL/K(t) =

∫ t

0

1

[GL/K,0 : GL/K,u]
du

Remark 1.2.4. Using the previous proposition we see that ϕL/K is a piece-wise linear
function of slope 1 in the interval [−1, 0] and slope 1/eL/K = 1/#IL/K for t≫ 0.

Definition 1.2.5 (Upper ramification groups). For u ≥ −1, the upper ramification groups
are defined in terms of the lower ramification groups as

Gu
L/K = GL/K,ϕ−1

L/K
(u)

We will also make use of Herbrand’s theorem:

Theorem 1.2.6 (Herbrand). Let L/M/K be finite Galois extensions, then

1. Gu
M,K = Gu

L/K/(G
u
L/K ∩GL/M)

9



2. ϕL/K = ϕM/K ◦ ϕL/M

We denote by DL/K the different of the finite extension L/K; then this final theorem
will be the key of our computations later on.
Theorem 1.2.7. Let L/K be a finite extension, then

1. If I is a (fractional) ideal of L then vK(TrL/K(I)) = ⌊vK(IDL/K)⌋

2. If L/K is Galois,

vL(DL/K) =

∞∫
−1

(#GL/K,u − 1)du vK(DL/K) =

∞∫
−1

(1− 1

#Gu
L/K

)du

Proof. 1. We prove that vK(TrL/K(I)) ≥ n if and only if vK(IDL/K) ≥ n and the result
follows from the fact that TrL/K(I) ⊂ K whereas IDL/K ⊂ L.

vK(TrL/K(I)) ≥ n ⇐⇒ TrL/K(I)m−n
K ⊂ OK ⇐⇒ TrL/K(Im−n

K ) ⊂ OK ⇐⇒
⇐⇒ Im−n

K ⊂ D
−1
L/K ⇐⇒ vK(I)− n ≥ vK(D−1

L/K) ⇐⇒ vK(IDL/K) ≥ n

where we used the definition of the inverse different D−1
L/K = {x ∈ L : TrL/K(xOL) ⊂

OK}.

2. First we observe that the RHS is finite since #GL/K,u = 1 for u big enough. Secondly,
the equation on vL(DL/K) is derived directly from the one on vK(DL/K) with the
substitution u = ϕ−1

L/K(t), so we are proving only the first equation.

We are in the case K and L finite extensions of Qp. This means that OL = OK(x)
for some element x ∈ OL; if we denote with f(X) the minimal polynomial of x,
then DL/K is generated by f ′(x). Now,

f(X) =
∏

σ∈GL/K

(X − σ(x)) =⇒ f ′(x) =
∏

σ∈GL/K ,σ ̸=1

(x− σ(x))

So we get vL(DL/K) =
∑
σ ̸=1

vL(x − σ(x)). The last step is to observe that σ ∈

GL/K,u ⇐⇒ vL(x− σ(x)) ≥ u+ 1. This implies that∑
σ:vL(x−σ(x))=n

vL(x− σ(x)) = n(#GL/K,n−1 −#GL/K,n)

So denoting with N the maximum of vL(x− σ(x)) for σ ̸= 1, we get∑
σ ̸=1

vL(x− σ(x)) =
N∑

n=0

n(#GL/K,n−1 −#GL/K,n)

=

(N−1∑
n=0

#GL/K,n

)
−N#GL/K,N

=
N−1∑
n=0

(#GL/K,n − 1)

=

∞∫
−1

(#GL/K,u − 1)du

since #GL/K,N = 1 by assumption on N .
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1.3 Ax–Sen–Tate Lemma
In this section, we will prove the Ax–Sen–Tate Lemma that will play an important role in
computing H0(GK ,Cp(n)) and H1(GK ,Cp(n)). We first need a lemma on the valuation
of roots of polynomials and thus a lemma on the approximations of algebraic numbers.

Lemma 1.3.1. Let f ∈ Qp[x] be a monic polynomial of degree n such that every root has
valuation ≥ u, then we have:

1. If n = pkn0 with p ∤ n0 then f (pk) has a root β with v(β) ≥ u.

2. If n = pk+1 then f (pk) has a root β with v(β) ≥ u− v(p)
pk(p−1)

Proof. We write f(X) = Xn + an−1X
n−1 + · · · + a0. We remind that the opposite of

the slopes of the Newton polygon associated to f are the valuations of the roots of f
(counted with multiplicity). This implies that all slopes are ≤ −u so v(an) ≥ iu for every
0 ≤ i ≤ n− 1. We write q = pk, then

f (q)

q!
=

n−q∑
i=0

(
n− i

q

)
an−iX

n−i−q

So the product of the roots of f (q) is ±aq/
(
n
q

)
, thus

∑
β root of f (q)

v(β) = v(aq)− v

((
n

q

))
so there exists a root β such that

v(β) ≥ v(aq)

n− q
− 1

n− q
v

((
n

q

))
≥ u− 1

n− q
v

((
n

q

))
. To conclude we need to notice that

v

((
n

q

))
=

{
0 if n = pkn0

v(p) if n = pk+1

since v(n −m) = v(m) for every m < q in both cases, whereas v(q) = v(n) in the first
case and v(q) + 1 = v(n) in the second case.

Now we prove a lemma about approximation of algebraic numbers. If α ∈ K, we
define ∆K(α) = minv(σ(α)− α) with σ ∈ GK(α)/K .

Lemma 1.3.2. Let K/Qp finite extension and let α ∈ K. Then there exists β ∈ K such
that

v(α− β) ≥ ∆K(α)−
v(p)

(p− 1)2

Proof. We will show a stronger statement:

v(α− β) ≥ ∆K(α)−
⌊logpn⌋∑
i=1

v(p)

(p− 1)pi−1

11



where n = [K(α) : K] = deg Q with Q minimal polynomial of α over K. We are going
to show this by induction on n; the case n = 1 is trivial since we can choose α = β.

The inductive step is the following. Let P (X) = Q(X + α) which has roots σ(α)− α
for σ ∈ GK(α)/K , so we get that all roots of P (X) have valuation ≥ ∆K(α). We write
n = pkn0 or n = pk+1 and q = pk as in the previous lemma. Thus we get a root β̃ of P (q)

such that

v(β̃) ≥

{
∆K(α) n = pkn0

∆K(α)− v(p)
pk(p−1)

n = pk+1

Let β = β̃ + α so that β is a root of Q(q) such that v(β − α) = v(β̃). Now,

v(σ(β)− β) =v(σ(β)− σ(α) + σ(α)− α + α− β) ≥
≥ min{v(σ(β)− σ(α)), v(σ(α)− α), v(α− β)} ≥
≥ min{∆K(α), v(α− β)}

(1.1)

so we get

∆K(β) ≥

{
∆K(α) n = pkn0

∆K(α)− v(p)
pk(p−1)

n = pk+1

We can use the inductive hypothesis on Q(q) of degree n− q to find a γ ∈ K such that

v(β − γ) ≥ ∆K(β)−
⌊logp(n−q)⌋∑

i=1

v(p)

(p− 1)pi−1

Finally we notice that in the case n = pkn0 we have ⌊logp(n−q)⌋ = k+⌊logp(n0−1)⌋ =
k + ⌊logpn0⌋ = ⌊logpn⌋ so we get

v(β − γ) ≥ ∆K(α)−
⌊logpn⌋∑
i=1

v(p)

(p− 1)pi−1

whereas if n = pk+1, then ⌊logp(n− q)⌋ = k while ⌊logpn⌋ = k + 1, so

v(β − γ) ≥ ∆K(α)−
v(p)

pk(p− 1)
−

k∑
i=1

v(p)

pi−1(p− 1)
= ∆K(α)−

k+1∑
i=1

v(p)

pi−1(p− 1)

We conclude since v(α− γ) = v(α−β+β− γ) ≥ min{v(α−β), v(β− γ)} = v(β− γ)

We can state and prove the Ax–Sen–Tate lemma:

Theorem 1.3.3 (Ax–Sen–Tate). Let L/K be an algebraic extension. Then CGL
p = L̂. In

particular, if L/K is finite then CGL
p = L.

Proof. Let v be a valuation on L and let x ∈ CGL
p . We can then choose αn ∈ Qp such

that x = limn→∞ αn. For σ ∈ GL we have

v(σ(αn)− αn) = v(σ(αn − x)− (αn − x)) ≥ min v(σ(αn − x), v(αn − x)) = v(αn − x)

12



so we get ∆L(αn) ≥ v(αn − x). Using Lemma 1.3.2 we can choose βn ∈ L such that
v(βn − αn) ≥ ∆L(αn)− v(p)

(p−1)2
; this implies

v(x− βn) = v(x− αn + αn − βn) ≥ min v(x− αn), v(αn − βn) ≥

≥ min v(x− αn),∆L(αn)−
v(p)

(p− 1)2
≥ v(x− αn)−

v(p)

(p− 1)2

so we deduce that lim
n→∞

βn = x as well, so x ∈ L̂.

On the other hand, if x ∈ L̂, then x = lim βn for some βn ∈ L. The action of GL is
continuous so for σ ∈ GL we get σ(x) = σ(lim βn) = limσ(βn) = lim βn = x since βn are
invariant under the action of GL.

1.4 Cyclotomic extensions and ramification estimates
Let F = Qp and K/F a finite extension; we define Kn = K(ζn) (where ζn is a primitive pn-
adic root of unity over K) and K∞ the minimal field that contains every Kn. Analogously
we define Fn = Qp(ζn) and F∞. We call ΓK = GK∞/K , ΓKn = GK∞/Kn , HK = GK∞ , that
is kerχcycl. We use the similar notation for F recalling that ΓF

∼= Z×
p , ΓFn

∼= 1+pnZp with
GFn/F

∼= (Z/pnZ)×. This is summarized in the following diagram of Galois extensions:

Qp

HK

Qp

HF

K∞

ΓK

ΓKn

F∞

Z×
p

1+pnZp

Kn Fn

(Z/pnZ)×

K F

In this section our goal is to study the relation between the cyclotomic extension of K
and the cyclotomic extension of F = Qp and this will provide us some estimates of the
ramification of Kn/Fn with the help of the upper ramification filtration groups.

We begin with a lemma on the cyclotomic extensions.

Lemma 1.4.1. 1. The cyclotomic character factors as GK ↠ ΓK ↪→ ΓF
∼= Z×

p , so we
just think χcycl as the embedding ΓK ↪→ ΓF .

2. There exists an integer nK such that 1 + pnKZp ⊂ χcycl(ΓK)

3. For n ≥ nK we have χcycl(ΓKn)
∼= 1 + pnZp and Kn ∩ F∞ = Fn.

Proof. 1. We have already mentioned that kerχcycl = HK , so we consider χcycl : ΓK →
Z×

p and notice that this is compatible with the isomorphism ΓF
∼= Z×

p , i.e. χcycl :
ΓK → ΓF is given by the restriction to F∞. Now this map is injective since if g ∈ ΓK

is nontrivial, then g doesn’t map ζn to itself for some n ∈ N. This implies that g|F∞

is not trivial. So we have the embedding χcycl : ΓK → ΓF .
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2. First, χcycl is continuous since maps ΓKn → ΓFn and since ΓK is a profinite group, we
get χcycl(ΓK) is compact. We consider the logarithm log : 1 + p2Zp → p2Zp, which
is a continuous homomorphism so by continuity we get log(χcycl(ΓK)∩ (1+p2Zp)) is
the image of a compact inside the closed p2Zp, so it is closed and thus open as well
(again because working in Zp that is profinite). The logarithm is also invertible so
χcycl(ΓK) ∩ (1 + p2Zp) is an open subgroup in Z×

p so it contains some 1 + pnKZp.

3. We want to prove that for n ≥ nK we have χcycl(ΓKn) = 1 + pnZp
∼= ΓFn . Indeed,

the injection ΓK ↪→ ΓF gives an injection ΓKn ↪→ ΓFn ; moreover, ΓK surjects onto
ΓFn by part two. To conclude we notice that if g ∈ ΓK is mapped to an element
of ΓFn it must fix ζpn , so g ∈ ΓKn , so ΓKn

∼= ΓFn since we have surjectivity and
injectivity, both given by χcycl.

Finally, Kn ∩ F∞ = F
ΓKn∞ = F

ΓFn∞ = Fn for n ≥ nK .

Remark 1.4.2. We remind that ΓK = GK∞/K = lim←−GKn/K where GKn/K ≤ GFn/F and
since GFn/F

∼= (Z/pnZ)× is cyclic (p > 2), then ΓK is procyclic, i.e. there exists γ ∈ ΓK

such that ⟨γ⟩ is dense in ΓK. We will call γ the topological generator of ΓK.

Using the study of the Galois groups of the cyclotomic extensions of K and F we can
now compare their upper ramification filtrations, keeping the same assumptions (F = Qp

and K/F finite).

Lemma 1.4.3. 1. For n ≥ nK the extension Kn+1/Kn is totally ramified of degree p.

2. The index [Kn : Fn] is decreasing and if K/F is Galois, then GKn/Fn = GK∞/F∞ for
n big enough.

3. If K/F is a Galois extension, there exists uK such that if n ≥ nK and u ≥ uK then
Gu

Kn/FnK

∼= Gu
Fn/FnK

.

Proof. 1. For n ≥ nK , using Lemma 1.4.1, we have

GKn+1/Kn
∼= GFn+1/Fn

= IFn+1/Fn

= {g ∈ GFn+1/Fn : v(g(x)− x) > 0 for every v(x) ≥ 0}
= {g ∈ GKn+1/Kn : v(g(x)− x) > 0 for every v(x) ≥ 0}
= IKn+1/Kn

where the second line follows since Fn+1/Fn is totally ramified of degree p and
the fourth line follows because actually both defining conditions are equivalent to
v(g(ζn+1 − ζn+1) > 0. Thus the extension Kn+1/Kn is totally ramified of degree p.

2. We simply have [Kn : Fn] = [KFn : FFn] bounded by [K : F ] and decreasing, so it
must stabilise to [K∞ : F∞].

3. We can define uK such that GuK

KnK
/FnK

= {1} by proposition 1.2.2. By lemma 1.4.1
we have for n ≥ nK that Kn ∩ F∞ = Fn so GKn/FnK

∼= GKn/KnK
× GKnK

/FnK

∼=
GFn/FnK

×GKnK
/FnK

.
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Using Herbrand’s Theorem for u ≥ uK we have that Gu
KnK

/FnK

∼= Gu
Kn/FnK

/(Gu
Kn/FnK

∩
Gu

Kn/KnK
) and since Gu

KnK
/FnK

= {1} then Gu
Kn/FnK

↪→ GKn/KnK

∼= GFn/FnK
. Ap-

plying Herbrand’s Theorem again, we get Gu
Fn/FnK

∼= Gu
Kn/FnK

/(Gu
Kn/FnK

∩GFn/Fn),
so Gu

Kn/FnK
↠ Gu

Fn/FnK
⊂ GFn/FnK

. We already have Gu
Kn/FnK

↪→ GFn/FnK
that

implies Gu
Kn/FnK

↪→ Gu
Fn/FnK

by the same argument of part one. Combining the two
arguments, we get Gu

Kn/FnK

∼= Gu
Fn/FnK

.

Before applying these lemmas to estimate the ramification of the cyclotomic extensions
of K, we need to revise the case of the cyclotomic extensions of F = Qp. In the next
proposition we will denote with G(n) the Galois group of the totally ramified extension
Fn/F so that G(n) = (Z/pnZ)×; moreover, we remind that ζn − 1 is a uniformizer for
Fn. To determine the ramification groups we define, for 0 ≤ m ≤ n, the subgroup G(n)m

consisting of the elements of G(n) that are ≡ 1 (mod pm). In this way G(n)m = GFn/Fm

since the automorphism corresponding to a ∈ G(n)m maps ζm to ζam = ζm since a ≡ 1
(mod pm).

Proposition 1.4.4. The lower ramification groups for Fn/F are:

G0 = G(n)

Gu = G(n)1 if 1 ≤ u ≤ p− 1

Gu = G(n)2 if p ≤ u ≤ p2 − 1

. . . . . .

Gu = G(n)n = {1} if pn−1 ≤ u

Thus, for every n ∈ N and u ≥ −1 we have Gu
Fn/F

= GFn/F⌊u⌋ .

Proof. Let a be an element of G(n) and let σ the corresponding element in the Galois
group. Let m be the largest integer such that a ≡ 1 (mod pm); this means that a ∈ G(n)m

and a ̸∈ G(n)m+1. We have already mentioned that σ ∈ Gu if and only if vFn(σ(ζn)−ζn) ≥
u+ 1, so then:

vFn(σ(ζn)− ζn) = vFn(ζ
a
n − ζn) = vFn(ζ

a−1
n − 1)

Using our assumption on a, we have that ζa−1
n is a primitive root of unity of order pn−m,

so ζa−1
n − 1 is a uniformizer of Fn−m and we get

vFn(ζ
a−1
n − 1) = [Kpn : Kpn−m ] = ϕ(pn)/ϕ(pn−m) = pm

that provides the characterization of the lower ramification groups as in the statement.
We know now that the jumps in the lower filtration happen when u = pm − 1 with

0 ≤ m ≤ n− 1. Then if we prove that ϕFn/F (p
m− 1) = m, the upper ramification groups

are as stated, since G(n)m is GFn/Fm as explained before the statement.

ϕFn/F (p
m − 1) =

∫ pm−1

0

1

[G0 : Gt]
dt =

m∑
i=1

(pi − pi−1)

[G(n) : G(n)i]
=

m∑
i=0

(pi − pi−1)pn−i

ϕ(pn)
= m

Finally we can estimate the valuation of the relative different DKn/F :

Lemma 1.4.5. 1. The sequence {pnvp(DKn/Fn)} is bounded.
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2. There exists a constant c and a bounded sequence an such that

vp(DKn/F ) = n+ c+
an
pn

Proof. We first assume that K/F is a finite Galois extension and then we will derive the
result for finite extension.

1. Assuming n ≥ nK we have:

vp(DKn/Fn) = vp(DKn/FnK
)− vp(DFn/FnK

)

=
1

eFnK
/F

∫ ∞

−1

(
1

#Gu
Fn/FnK

− 1

#Gu
Kn/FnK

)
du

=
1

eFnK
/F

∫ uK

−1

(
1

#Gu
Fn/FnK

− 1

#Gu
Kn/FnK

)
du

≤ 1

eFnK
/F

∫ uK

−1

1

#Gu
Fn/FnK

du

where we used Theorem 1.2.7 and that, for u ≥ uK , Gu
Kn/FnK

∼= Gu
Fn/FnK

. Now

using that GFn/FnK
,v = GFn/F,v ∩GFn/FnK

and that GFn/F,v = G
ϕFn/F (v)

Fn/F
= GFn/F,v =

GFn/F⌊ϕFn/F (v)⌋ for proposition 1.4.4, we get

Gu
Fn/FnK

= GFn/FnK
,ϕ−1

Fn/FnK
(u) = GFn/F⌊ϕFn/F ◦ϕ−1

Fn/FnK
(u)⌋
∩GFn/FnK

To conclude we use that ϕFn/F = ϕFnK
/F ◦ ϕFn/FnK

by Herbrand’s Theorem. Thus

Gu
Fn/FnK

= GFn/F⌊ϕFnK
/F (u)⌋ ∩GFn/FnK

= GFn/Fmax(⌊ϕFnK
/F (u)⌋,nK )

so #Gu
Fn/FnK

= p
n−max(⌊ϕFnK

/F (u)⌋,nK) and the integral becomes:

pnvp(DKn/Fn) ≤
1

eFnK
/F

∫ uK

−1

p
max(⌊ϕFnK

/F (u)⌋,nK)
du

and the right hand side is independent of n so pnvp(DKn/Fn) bounded.

2. The result follows from vp(DKn/F ) = vp(DKn/Fn) + vp(DFn/F ) and the explicit cal-
culation of vp(DFn/F ), using lemma 1.4.3 and that #GFn/Fi

= pn−i for i > 0:

vp(DFn/F ) =

∫ ∞

−1

(
1− 1

#GFn/F⌊u⌋

)
du

=
n∑

i=0

(
1− 1

#GFn/Fi

)
= 1− 1

pn−1(p− 1)
+

n∑
i=1

(1− pi−n)

= 1− 1

pn−1(p− 1)
+ n− pn − 1

pn−1(p− 1)

= n− 1

p− 1

Indeed, now we can assign c = − 1
p−1

and an = pnvp(DKn/Fn) to satisfy vp(DKn/F ) =

n+ c+ anp
−n with an bounded.
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Finally the case K/F finite. We consider L the normal closure of K over F . Then the
lemma applies to L so we get

vp(DLn/F ) = n+ c+
an
pn

Since vp(DLn/F ) = vp(DLn/Kn) + vp(DKn/F ) we just need to prove that vp(DLn/Kn) is
definitely constant. If OL = OK(x), then OLn = OKn(x), so OL∞ = OK∞(x). This
implies that, for n big enough, the minimal polynomial of x over Kn is also the minimal
polynomial over K∞. Then for n big enough we have vp(DLn/Kn) = vp(F

′(x)) , where
F (X) is the minimal polynomial of x over K∞.

1.5 Galois cohomology of K̂∞
In this section, we compute the first cohomology group of Cp with respect of HK = GK∞

and later this will result into an inflation-restriction sequence.

Theorem 1.5.1. Let L/K/Qp be finite extensions, then mK∞ ⊂ TrL∞/K∞(mL∞).

Proof. For n ≥ max(nK , nL) we know that Ln = LFn and Kn = KFn, so GLn/Kn =
GL∞/K∞ for n ≥ cL,K for some constant cL,K ≥ max(nK , nL). Thus for n ≥ cL,K ,

TrL∞/K∞(mLn) = TrLn/Kn(mLn) = mcn
Kn

where we can compute the exponent cn thanks to Theorem 1.2.7:

cn = ⌊vKn(mLnDLn/Kn)⌋ = ⌊vKn(mLn) + eKn/Fvp(DLn/Kn)⌋ =

= ⌊eLn/Kn + eKn/FneFn/F (vp(DLn/F )− vp(DKn/F ))⌋
Now for n ≥ cL,K we have eLn/Kn ≤ [Ln : Kn] ≤ [L : K] and eKn/Fn ≤ [Kn : Fn] ≤ [K :

F ] and eFn/F = pn−1(p− 1) since Fn/F is totally ramified of degree ϕ(pn) = pn−1(p− 1).
Using lemma 1.4.5, we have vp(DLn/F )− vp(DKn/F ) = c′ + anp

−n with an bounded, so cn
is bounded by some constant c. Summing up, mc

Kn
⊂ TrL∞/K∞(mL∞) for all n.

Let x ∈ mk∞ and let x ∈ mKm for some m. Since eKn/Km is unbounded for n ≫ m,
then we can choose n such that eKn/Km > c so x ∈ mKm ⊂ mc

Kn
⊂ TrL∞/K∞(mL∞).

Corollary 1.5.2. Let K/Qp be a finite extension, then

1. Every finite extension of K∞ is of the form L∞ = LK∞ for a finite extension L/K.

2. If L/K is finite, then there exists α ∈ L∞ such that TrL∞/K∞(α) = 1 and v(α) >
−v(πK) where πK is the uniformizer for K.

Proof. 1. Let L∞ be a finite extension of K∞, then it is a simple extension since it’s
finite and the characteristic of K is zero. Let L∞ = K∞(β) and P (X) the minimal
polynomial of β over K∞. Since every coefficient of P (X) is an element of Kn for
some finite n, then β is algebraic over some Kn for n big enough. Thus β is algebraic
over K, so L = K(β) is a finite extension that gives L∞ = LK∞.

2. Theorem 1.5.1 yields α′ ∈ mL∞ such that v(α′) > 0 and TrL∞/K∞(α′) = πK . Then
α = α′/πK satisfies our request since TrL∞/K∞(α) = 1 and v(α) > −v(πK) by our
choice of α′.
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Lemma 1.5.3. If M ∈ H1(HK , p
nOCp), then there exists x ∈ pn−1OCp such that the map

g 7→M(g) + g(x)− x ∈ H1(HK , p
n+1OCp).

Proof. Since pn+2OCp is open in pnOCp , using continuity of M : HK → pnOCp we have
H ′ = M−1(pn+2OCp) open subset of HK . Now H ′ must contain GL′ where L′ is a finite
extension of K∞. By corollary 1.5.2, then GL′ = HL, i.e. L′ = L∞ = LK∞, where L/K
is a finite extension, and increasing L (so decreasing HL) we can assume that L/K is a
Galois extension and that M(HL) ⊂ pn+2OCp .
From corollary 1.5.2 let α ∈ L∞ such that TrL∞/K∞(α) = 1 and v(α) > −v(πK) > v(p).
We fix a set T = {t1, t2, . . . , tm} of representatives of HK/HL in HK , where T is finite
since #T = #GL∞/K∞ . We define

xT =
∑
i

ti(α)M(ti)

For g ∈ HK and gT = {gti : ti ∈ T} then we can compute g(xT ) using the cocycle
condition for M :

g(xT ) = g

(∑
i

ti(α)M(ti)

)
=

∑
i

(gti)(α)g(M(ti))

=
∑
iT

(gti)(α)(M(gti)−M(g))

=
∑
i

(gti)(α)M(gti)−
(∑

i

(gti)(α)

)
M(g)

= xgT −M(g)

where at the end we used that
∑

i(gti)(α) = TrL∞/K∞(α) = 1 since gT is another set of
representatives of HK/HL

∼= GL∞/K∞ . Moreover, we have gti = hitji where hi ∈ HL and
ji is a permutation of {1, 2, . . . ,m}. Thus

xgT − xT =
∑
i

(gti)(α)M(gti)− xT

=
∑
i

(hitji)(α)M(hitji)− xT

=
∑
i

(tjit
−1
ji
hitji)(α)M(tjit

−1
ji
hitji)− xT

=
∑
i

tji(α)[M(tji) + tji(M(t−1
ji
hitji))]− xT

=
∑
i

tji(α)tji(M(t−1
ji
hitji))

where in the third line we use t−1
ji
hitji ∈ HL since HL is normal in HK , so it acts trivially

on α ∈ L∞ and in the fourth line we use that ttj is a permutation so xT simplifies.
Finally, since v(α) > −v(p) and M(t−1

ji
hitji) ∈ pn+2OCp we get xgT − xT ∈ pn+1OCp

for every g ∈ HK , so M(g) + g(xT )− xT = xgT − xT ∈ pn+1OCp as wanted.

Remark 1.5.4. Note that g 7→ M(g) and g 7→ M(g) + g(x) − x are equivalent cocycles
so they represent the same element in the first cohomology group H1(HK ,Cp).
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Theorem 1.5.5. We have H1(HK ,Cp) = {1}.

Proof. Let M ∈ H1(HK ,Cp). Since M is continuous and HK compact, then Im(M) ⊂
pn0OCp for some n0 ∈ Z, i.e. m ∈ H1(HK , p

n0OCp). Now, iterating lemma 1.5.3, we obtain
for every n ≥ n0 elements xn ∈ pn−1OCp such that

M(g) +
m∑

n=n0

(g(xn)− xn) ∈ pm+1OCp

Since xn ∈ pn−1OCp , then x =
m∑

n=n0

xn converges and M(g)+g(x)−x ∈ pmOCp for every m,

so M(g) = x− g(x) and this means that M is a coboundary, i.e. H1(HK ,Cp) = {1}.

1.6 Normalized Traces and Cp(n)
GK

In this section we introduce a family of linear and continuous operators and their study
will lead to H0(GK ,Cp(n)) together with the Ax–Sen–Tate Lemma.

Definition 1.6.1. For n ≥ nK, we define prn : K∞ → Kn defined in the following way:
if x ∈ Kn+k then prn(x) = p−kTrKn+k/Kn(x).

We remark that prn is well defined, i.e. if x ∈ Kn+k and we consider it as element of
Kn+k+1 we obtain

prn(x) = p−k−1TrKn+k+1/Kn(x) = p−k−1TrKn+k/Kn(TrKn+k+1/Kn+k
(x)) =

= p−k−1TrKn+k/Kn(px) = p−kTrKn+k/Kn(x)

since Kn+k+1/Kn+k is cyclic of degree p.

Lemma 1.6.2. Let n ≥ nK and x ∈ K∞, then vp(prn(x)) ≥ vp(x)− αnp
−n where αn is a

bounded sequence.

Proof. We assume x ∈ Kn+k. Then

vp(prn(x)) = −k + vp(TrKn+k/Kn(x)) = −k + vp(TrKn+k/Kn(m
vKn+k

Kn+k
(x)))

Now we are going to first use Theorem 1.2.7 and then estimating thanks to lemma 1.4.5

vp(prn(x)) = −k +
1

eKn/F

⌊vKn(m
vKn+k

(x)

Kn+k
)DKn+k/Kn)⌋

> −k +
1

eKn/F

(vKn(m
vKn+k

(x)

Kn+k
) + vKn(DKn+k/Kn)− 1)

= −k +
1

eKn/F

(vKn(x) + eKn/Fvp(DKn+k/Kn)− 1)

= −k + vp(x) + (vp(DKn+k/F )− vp(DKn/F ))−
1

eKn/F

= vp(x)− k + n+ k + c+
an+k

pn+k
− n− c− an

pn
− 1

eKn/Fnp
n−1(p− 1)

= vp(x)−
αn

pn
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where
αn = an −

an+k

pk
+

p

eKn/Fn(p− 1)

is bounded since since an is bounded and eKn/Fn ≤ [Kn : Fn] = [K∞ : F∞] for n big
enough.

Corollary 1.6.3. For n ≥ nK, the linear function prn is uniformly continuous on K∞
and so it extends to a continuous function prn : K̂∞ → Kn

Proof. It is just an application of the previous lemma:

|prn(x)− prn(y)| = |prn(x− y)| ≤ |x− y|pαnp−n

and since αn is bounded we have an upper-bound of pαnp−n .

We define K⊥
n = {x ∈ K̂∞ : prn(x) = 0}. We can then write the following short exact

sequence of Qp−vector spaces:

0→ K⊥
n → K̂∞ → Kn → 0

Since prn|Kn = idKn , we have that the inclusion Kn ↪→ K̂∞ is a right splitting, so for
n ≥ nK we get K̂∞ = Kn ⊕K⊥

n .
Finally, the next proposition will show the power of the family of continuous operators

that enable to approximate equivariantly elements of K̂∞.

Proposition 1.6.4. For n ≥ nK and x ∈ K̂∞ we have

1. vp(prn(x)) ≥ vp(x)− αnp
−n where αn is the bounded sequence of lemma 1.6.2;

2. x = lim
n→∞

prn(x);

3. prn commutes with the action of ΓK = GK∞/K.

Proof. 1. We know that prn is continuous on K̂∞ and vp is continuous as well so the
inequality is induced by lemma 1.6.2.

2. We fix n and we write x = lim
m→∞

xm with xm ∈ Km. For every C > 0, we can
choose m such that for xn+m ∈ Kn+m we have vp(x− xn+m) > C. We remind that
prn+m+j(xn+m) = xn+m for every j ≥ 0. So

vp(x− prn+m(x)) = vp(x− xn+m + prn+m(xn+m)− prn+m(x))

≥ min{vp(x− xn+m), vp(prn+m(x− xx+m))}
≥ min{C,C − αn+mp

−(n+m)}
= C − αn+mp

−(n+m)

> C − αn+mp
−n

Since αn+mp
−n is bounded as m → ∞, then we obtain x = lim

m→∞
prn+m(x) =

lim
m→∞

prm(x) by making C →∞.
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3. Let γ ∈ ΓK be a topological generator (see Remark 1.4.2). Then, for n ≥ nK the
group GKn+k/Kn

∼= GFn+k/Fn is cyclic and it is generated by a power γs, i.e. γs|Kn+k

is a generator of GKn+k/Kn (we will write γs instead of γs|Kn+k
). Thus,

γprn(x) = p−kγ

pn∑
i=1

(γs)i(x) = p−k

pn∑
i=1

(γs)i(γ(x)) = prn(γ(x))

Theorem 1.6.5. Let K/Qp be finite and HK = GK∞. Then,

H0(GK ,Cp(n)) = Cp(n)
GK =

{
0 n ̸= 0

K n = 0

Proof. The case n = 0 is a direct application of Ax–Sen–Tate Theorem. So we assume
n ̸= 0. Assume that αe ∈ Cp(n)

GK with α ∈ C×
p . Then for every g ∈ GK we must have:

αe = g(αe) = g(α)χn
cycl(g)e

so g(α) = αχcycl(g)
−n.

In the case g = h ∈ HK , then χcycl(h) = 1 so we have h(α) = α, i.e. α ∈ CHK
p = K̂∞ by

Ax–Sen–Tate. This implies that g(α) = αχcycl(g)
−n must hold for every g ∈ ΓK = GK∞/K .

Using proposition 1.6.4, we have α = lim
m→∞

prm(α) and using that g ∈ ΓK commutes with
prm we get

g(prmα) = prmg(α) = prm(χcycl(g)
−nα) = χcycl(g)

−nprm(α)

where we used that χcycl(g) ∈ Qp. Comparing first and last term we obtain

χcycl(g)
n =

prm(α)

g(prm(α))

If we choose g ∈ ΓKm = GK∞/Kn , which invaries prm(α) ∈ Kn, then χcycl(ΓKm)
n = 1.

This is a contradiction since for m ≥ nK we have χcycl(ΓKm)
∼= 1+ pmZp by lemma 1.4.1.

This proves that Cp(n)
GK = 0 when n ̸= 0.

1.7 Topological generators
Let γ be a topological generator for ΓK and γn a topological generator for ΓKn . Since ΓKn

is subgroup of the procyclic group ΓK we have γn = γs for some integer s and for n ≥ nK

we can choose γn in order to have γn+k = γpk

n because Kn+k/Kn is a cyclic extension of
degree pk. We now need two lemmas in order to prove that the linear and continuous
operator γn is a homeomorphism when restricted to K⊥

n .

Lemma 1.7.1. If x ∈ K∞ and m ≥ 1, then vp((1− γm
n )) ≥ vp((1− γn)(x)).

Proof. We just use the factorization 1− ym = (1− y)(1 + y + · · ·+ ym−1):

vp((1− γm
n )(x)) = vp

(m−1∑
i=0

γi
n(1− γn)(x)

)
≥ min{vp(γi

n(1− γn)(x))}
= vp((1− γn)(x))
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Lemma 1.7.2. If x ∈ Km with m > n ≥ nK then

vp(x− prn(x)) ≥ vp((1− γn)(x))− 1−
m−1∑
k=n

αk

pk

where αK is the sequence defined in 1.6.2 or 1.6.4.

Proof. We prove by induction on m−n. The case m = n+1 is obtained using the previous
lemma:

vp(x− prn(x)) = vp(px− TrKn+1/Kn(x))− 1 =

= vp

( p−1∑
i=1

(1− γi
n)(x)

)
− 1 ≥ min{vp((1− γi

n)(x))} − 1 ≥ vp((1− γn)(x))− 1

For the inductive case we assume the inequality for m = n+ k and we prove it for m+1.
So we take x ∈ Km+1, then we can use the inductive hypothesis on TrKm+1/Km(x) ∈ Km

to get

vp(TrKm+1/Km(x)− prn(TrKm+1/Km(x))) ≥ vp((1− γn)(TrKm+1/Km(x)))− 1−
m−1∑
k=n

αk

pk

On the other hand, by linearity of the trace we have

vp((1− γn)(TrKm+1/Km(x))) = vp(TrKm+1/Km((1− γn)(x)))

= vp(prm((γn)(x))) + 1

≥ vp((1− γn)(x)) + 1− αm

pm

where we used proposition 1.6.4. Combining this with the inductive hypothesis we obtain

vp(TrKm+1/Km(x)− prn(TrKm+1/Km(x))) ≥ vp((1− γn)(x))−
m∑

k=n

αk

pk

We conclude using again the inductive hypothesis for Km+1/Km:

vp(x− prn(x)) = vp

(
x− 1

p
TrKm+1/Km(x) +

1

p
(TrKm+1/Km(x)− p prn(x))

)
≥ min{vp(x− prm(x)), vp(TrKm+1/Km(x)− p prn(x))− 1}

≥ min{vp((1− γn)(x))− 1, vp((1− γn)(x))− 1−
m∑

k=n

αk

pk
}

= vp((1− γn)(x))− 1−
m∑

k=n

αk

pk

where the fact that p prn(x) = prn(px) = pn−mTrKm+1/Kn(x) = prn(TrKm+1/Km(x)) was
used in the second line.

We are now ready to discuss the invertibility of the operator 1− γn.

Proposition 1.7.3. Let n ≥ nK. The operator 1 − γn is bijective on K⊥
n , its inverse

(1− γn)
−1 is continuous and the operator norm ∥(1− γn)

−1∥ is bounded independently of
n.
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Proof. First, 1− γn(K
⊥
n ) ⊂ K⊥

n since γn commutes with prn by proposition 1.6.4. More-
over, γn is a generator of ΓKn , so the kernel of 1 − γn on K̂∞ is K̂∞

γn
= K̂∞

ΓKn
= Kn

by Ax–Sen–Tate lemma. This implies that the operator 1− γn is injective on K⊥
n due to

K⊥
n ∩Kn = {0}. Thus, for m ≥ n, the restriction of the linear map 1 − γn to the finite

dimensional K−vector space Km ∩K⊥
n is bijective. Let y ∈ Km ∩K⊥

n ; using surjectivity
we have y = (1− γn)(x) for some x ∈ Km ∩K⊥

n . We apply the previous lemma to x:

vp(x− prn(x)) ≥ vp((1− γn)(x))− 1−
m−1∑
k=n

αk

pk

Now prn(x) = 0 from x ∈ K⊥
n and x = (1− γn)

−1(y), so

vp((1− γn)
−1(y)) ≥ vp(y)− C

where C = 1+
∞∑
k=n

αk

pk
that converges since αk are bounded. Thus on Km ∩K⊥

n we deduce

∥(1− γn)
−1∥ = sup

|(1− γn)
−1(y)|

|y|
≤ |p|C

so the operator (1−γn)−1 is continuous on Km∩K⊥
n and its norm is bounded independent

of n and m. Then, (1 − γ)−1 extends to a continuous operator on K⊥
n of norm bounded

independent of n.

Finally, we show how the previous proposition on 1 − γn helps treating the general case
K̂∞(n).

Proposition 1.7.4. Let k ̸= 0. Let γ the topological generator of ΓK, then 1 − γ :
K̂∞(k)→ K̂∞(k) is surjective.

Proof. Let C be the uniform bound on ∥(1−γn)
−1∥ on K⊥

n from the previous proposition.
We know that χk

cycl is a continuous character and that ΓKn form a neighborhood around
the identity in ΓK , so we have lim

n→∞
χk
cycl(γn) = 1 in ΓK that implies |1− χk

cycl(γn)| < C−1

for n big enough. For the rest of the proof, we will assume n such that the previous
inequality holds. Then ∥(1− χk

cycl(γn))(1− γn)
−1∥ < 1 and so working on K⊥

n we get:

1

1− γnχk
cycl(γn)

=
1

(1− γn)
(
1 +

(
1−χk

cycl(γn)

1−γn

)
γn

) = (1−γn)−1

∞∑
i=0

(γn(−1+χk
cycl(γn))(1−γn)−1)i

Remind that we have just implicitly used that K⊥
n is a Banach space (since prn is

continuous), therefore the space of continuous operators on K⊥
n is a Banach space as well.

Since we were able to invert 1 − γnχ
k
cycl(γn) : K⊥

n → K⊥
n it must be surjective. By

definition of K⊥
n (m), this is equivalent to 1− γn : K⊥

n (k)→ K⊥
n (k) surjective. Note that

we haven’t used k ̸= 0 so far.
Now we need surjectivity on Kn(k). For n ≥ nK , we have that χcycl(ΓKn)

∼= 1 + pnZp

from lemma 1.4.1, so χk
cycl(γn) ̸= 1 because k ̸= 0. Then, if 0 ̸= x ∈ Kn(k), we have

that (1− γn)(x) = (1− χk
cycl(γn))x ̸= 0, therefore 1− γn : Kn(k)→ Kn(k) is an injective

K−linear map so it’s also surjective by the finite dimension.
In this way, we get that 1 − γn : K̂∞(k) → K̂∞(k) is surjective. Finally, using that

γn = γs for some integer s, we have 1− γn = (1− γ)

(
s−1∑
i=0

γi

)
so 1− γ must be surjective

as well.
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1.8 First cohomology group of Cp(n)

Theorem 1.8.1.

H1(GK ,Cp(n)) =

{
0 if n ̸= 0

V if n = 0

where V is a 1-dimensional K−vector space.

Proof. We first write the inflation-restriction sequence for HK ⊂ GK and ΓK
∼= GK/HK :

0→ H1(ΓK ,Cp(n)
HK )→ H1(GK ,Cp(n))→ H1(HK ,Cp(n))

Now, since the action of the cyclotomic character is trivial on HK , we have Cp(n)
Hk =

(CHk
p )(n) = K̂∞(n) by Ax–Sen–Tate lemma and H1(HK ,Cp(n)) = H1(HK ,Cp) = 0

by Theorem 1.5.5. Then from the exact sequence and proposition 1.1.6 we obtain the
following isomorphisms of K−vector spaces

H1(GK ,Cp(n)) ∼= H1(ΓK , K̂∞(n)) ∼= K̂∞(n)/(1− γ)K̂∞(n)

where γ is a topological generator of the procyclic group ΓK .
If n ̸= 0, the map 1 − γ is surjective on K̂∞(n) by proposition 1.7.4, thus the result

H1(GK ,Cp(n)) = 0.
If n = 0, then H1(GK ,Cp) ∼= K̂∞/(1 − γ)K̂∞. Note that in the proposition 1.7.4

we have proved that 1 − γ is surjective on K⊥
m(n) also for n = 0, so K̂∞/(1 − γ)K̂∞ ∼=

Kn/(1− γ)Kn.
To conclude, we prove that K ∼= Kn/(1 − γ)Kn using the natural map from the

inclusion K ↪→ Kn.
The map is injective because if x ∈ K satisfies x = (1 − γn)(y) for some y ∈ Kn, then
recalling that γn = γs for some s we have that

[Kn : K]x = TrKn/K(x) = (1 + γ + · · ·+ γs−1)(x) = (1− γs)(y) = 0

since γn fixes y ∈ Kn.
To prove surjectivity, we have to use the inflation-restriction sequence on ΓKn ⊂ ΓK acting
on Kn; using that ΓK/ΓKn

∼= GKn/K and that ΓKn fixes Kn we obtain:

0→ H1(GKn/K , Kn)→ H1(ΓK , Kn)→ H1(ΓKn , Kn)
GKn/K

We know that H1(GKn/K , Kn) from Hilbert 90. So we get an injection

Kn/(1−γ)Kn
∼= H1(ΓK , Kn) ↪→ H1(ΓKn , Kn)

GKn/K ∼= (Kn/(1−γn)Kn)
GKn/K ∼= K

GKn/K
n = K

This implies that the dimensione of the K−vector space Kn/(1 − γ)Kn is at most one
and since we already proved that K ↪→ Kn/(1− γ)Kn, we obtain an isomorphism.
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Chapter 2

Fontaine’s theorem on Kähler
differentials

In this chapter we keep the notation of the previous one. We consider a finite extension
K/Qp, the Galois group G = Gal(K/K) and Cp the p-adic closure of K = Qp. We denote
with K0 the maximal unramified Qp−extension contained in K, i.e. K0 = Frac(W (k))
where k is the (finite) residue field of K. When not specified, the valuation v is the p−adic
valuation, i.e. v(p) = 1.
Before engaging with the work of Fontaine in [Fon82], we recall the general definitions and
properties of formal groups and Kähler differentials. Further readings on formal groups
are [LT65],[CF67], whereas regarding Kähler differentials we recommend [Har13].

2.1 Formal groups at one parameter
Let R be a ring (commutative with identity).

Definition 2.1.1. A one-parameter (commutative) formal group F over R is a power
series F (X, Y ) ∈ RJX, Y K such that:

• F (X, Y ) = X + Y + (terms of degree ≥ 2);

• F (X,F (Y, Z)) = F (F (X, Y ), Z);

• F (X, Y ) = F (Y,X);

• there exists a unique power series i(T ) ∈ RJT K such that F (T, i(T )) = 0;

• F (X, 0) = X and F (0, Y ) = Y .

We say that F (X, Y ) is the formal group law of F .

Homomorphisms of formal groups are defined in the following way:

Definition 2.1.2. Let (F , F ) and (G, G) be formal groups over R. A homomorphism
from F to G is a power series f(T ) ∈ RJT K such that f(0) = 0 and

f(F (X, Y )) = G(f(X), f(Y ))

It’s natural to define F , G isomorphic if there exist homomorphisms f : F → G and
g : G → F such that f(g(T )) = g(f(T )) = T that is the trivial homomorphism.
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It’s possible also to define invariant differentials on a formal group.

Definition 2.1.3. An invariant differential on a formal group F over R is a differential
form ω(T ) = P (T )dT with P (T ) ∈ RJT K such that

ω ◦ F (X, Y ) = ω(X) + ω(Y )

or equivalently P (F (X, Y ))FX(X, Y ) = P (X) where FX(X, Y ) is the partial derivative of
F with respect to its first variable. An invariant differential form ω(T ) = P (T )dT is said
to be normalized if P (0) = 1.

Proposition 2.1.4. Let F be a formal group over the ring R; there exists a unique
normalized invariant differential form on F and it’s given by

ω = FX(0, T )
−1dT

Thus every invariant differential form on F is of the form rω for some r ∈ R.

In this chapter we will be interested in the formal multiplicative group Ĝm that is an
example of the class of Lubin-Tate formal groups.

Let K a local field, q the cardinality of the residue field and π a uniformizer for OK .
Let Fπ the set of formal power series such that f(T ) ≡ πT (mod deg ≥ 2) and f(T ) ≡ xq

(mod π). The next proposition, proved by an inductive reasoning, leads to the definition
of Lubin-Tate formal groups.

Proposition 2.1.5. Let f ∈ Fπ, then there exists a unique formal group law Ff with
coefficients in OK such that f is an endomorphism of Ff . We say that Ff is the Lubin-
Tate formal group associated with f ∈ Fπ.

Proposition 2.1.6. Let f ∈ Fπ and Ff the corresponding group law, then for any a ∈ OK

there exists a unique [a]f ∈ OKJT K such that

• [a]f commutes with f ;

• [a]f (T ) ≡ aT (mod deg ≥ 2);

• [a]f is an endomorphism of Ff .

Moreover, the map a 7→ [a]f is an injective homomorphism of rings OK ↪→ End(Ff ).

The Lubin-Tate formal groups or, more generally, formal groups over discrete valuation
rings are interesting since their properties allow to define new operations on the maximal
ideal (or on the principal units). Indeed, if R is a discrete valuation ring with maximal
ideal M, then for every m,n ∈ M the map (m,n) 7→ F (m,n) ∈ M is a well-defined
abelian operation, since the converge of the series is given by the positive valuation of
m and n. The inverse of m is of course i(m). Lubin-Tate formal groups are even more
powerful since they give rise to a module structure; this will be discussed in detail in
section 2.3.

26



2.2 Kähler differentials
Let A a ring, B an A−algebra and M a B−module.

Definition 2.2.1. A A−derivation of B into M is an additive map d : B →M such that
d(bb′) = bd(b′) + b′d(b) for every b, b′ ∈ B and d(a) = 0 for every a ∈ A.

Definition 2.2.2. The module of Kähler differentials of B over A is a B−module ΩA(B)
endowed with an A−derivation d : B → ΩA(B) satisfying the following universal property:
for every B−module M and for every A−derivation d′ : B → M there exists a unique
B−module homomorphism f : ΩA(B)→M such that d′ = f ◦ d.

Lemma 2.2.3. The module of Kähler differentials commutes with direct limits, i.e. if
{Bi, ϕi,j}i,j∈I is a direct system of rings over A (for a direct set I), then

ΩA(B) ∼= lim−→ΩA(Bi)

where B = lim−→Bi.

Proof. We sketch the proof. From the definition we have a functorial isomorphism

HomB(ΩA(Bi), N) ∼= DerA(Bi, N)

for every Bi−module N . Then if M is a B−module, we have

DerA(B,M) = DerA(lim−→Bi,M) ∼= lim←−DerA(Bi,M) ∼=

∼= lim←−HomBi
(ΩA(Bi),M) ∼= HomB(lim−→ΩA(Bi),M)

so lim−→ΩA(Bi) satisfies the universal property of ΩA(B).

Proposition 2.2.4. Let B an A−algebra, let I be an ideal of B and let C = B/I. Then
there is a natural exact sequence of C−modules:

I/I2
γ−→ ΩA(B)⊗B C → ΩA(C)→ 0

where for every b ∈ I, if b̄ is its image in I/I2, then γb̄ = db⊗ 1.

Construction
There is a constructive proof of the existence of the module of Kähler differentials. Indeed,
we consider the free B−module generated by the symbols {db | b ∈ B} and we divide by
the relations d(b + b′) = db + db′; d(bb′) = bdb′ + b′db and da = 0 for all b, b′ ∈ B and
a ∈ A; this B−module Ω, endowed with the map d : B → Ω that maps b 7→ db, satisfies
the required universal property.
Examples
An important example is the case B = A[X]. The Kähler differentials module ΩB/A is a
free B-module generated by dX, since the relations imply dF (X) = F ′(X)dX.
Therefore, the case B = A[X]/(F (X)), with F (X) an irreducible polynomial over A
derives by the previous one using proposition 2.2.4. Indeed, ΩA(B) is again generated by
dX, but it is not a free B−module, since F ′(X)dX = dF (X) = 0. Using that Im(γ) is
generated by dF (X)⊗ 1, we get the annihilator of dX is generated by F ′(X).
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2.3 Main Theorem
As previously mentioned, we now focus our attention to the formal multiplicative group
Ĝm(X, Y ) = X + Y + XY = (1 + X)(1 + Y ) − 1. This is a Lubin-Tate formal group
defined over Qp and associated with f(T ) = (1 + T )p− 1. Moreover, for every a ∈ Zp the
series [a]f becomes the series

[a]f (T ) = (1 + T )a − 1 =
∞∑
n=1

(
a

n

)
T n

Notice that the binomial coefficient
(
a
n

)
is defined in Zp since the binomial is a continuous

function in a and so we use the fact that a is a limit of integer numbers, whose binomials
are of course integers.
We use the formal multiplicative group to redefine the sum operation on mQp

, i.e. x⊕y =
x + y + xy for every x, y ∈ mQp

. Moreover, we can define also a multiplication of a ∈ Zp

and x ∈ mQp
as follows:

a ∗ x = [a]f (x) =
∞∑
n=1

(
a

n

)
xn

well-defined since v(x) > 0. Proposition 2.1.4 yields that the sum ⊕ and the scalar
product ∗ are compatible, so they defined a new Zp−module structure on mQp

, that will
be denoted with Γ.

Therefore, we consider the Tate module TpΓ = lim←−Γ[pn]. We can study it easily since
if xn ∈ Γ[pn] then

0 = pn ∗ xn = (1 + xn)
pn − 1

that is equivalent to xn = ϵn−1 where ϵn is a pn−adic root of unity in Qp. This means that
a family of (∗ -) compatible xn = ϵn − 1 corresponds to a family of compatible pn−adic
roots. Thus, TpΓ is a Zp-free module of rank 1 and we consider a generator u = (un)n,
corresponding to a compatible family of primitive pn−adic roots ϵn. The correspondence
between xn and ϵn shows that the action of G on TpΓ is given by the cyclotomic character
(cf section 1.1).

We consider ωΓ the Zp−module of invariant differentials of Γ. It is a Zp-free module
of rank 1 as well, and it can be easily checked that it is generated by ω0 = 1

1+X
dX. We

can define a trivial action of G on ωΓ.
Let Ω = ΩOK

(OQp
) be the module of Kähler differentials. The action of G on Ω is the

natural action deriving from σ(dα) = dσ(α).
We know define an integration of invariant differentials along elements of TpΓ. Given

an element α ∈ Γ and ω = aω0 ∈ ωΓ we can combine them naturally in a 1
1+α

dα ∈ Ω.

Proposition 2.3.1. The application ⟨−,−⟩ : Γ× ωΓ → Ω that maps

(α, aω0) 7−→ ⟨α, ω⟩ = a
1

1 + α
dα ∈ Ω

is a Zp−bilinear map and it verifies ⟨g(α), ω⟩ = g(⟨α, ω⟩) for every g ∈ G,α ∈ Γ, ω ∈ ωΓ.

Proof. The linearity in the second variable and the compatibility with the G−action derive
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from the definitions. We now discuss the linearity with respect to the first entry. Indeed,

⟨α + β, ω0⟩ =
1

1 + α⊕ β
d(α⊕ β) =

=
1

1 + α + β + αβ
d(α + β + αβ) =

=
1

(1 + α)(1 + β)
d((1 + α)(1 + β)) =

=
1

1 + α
d(1 + α) +

1

1 + β
d(1 + β) =

= ⟨α, ω0⟩+ ⟨β, ω0⟩

where we used that d(1) = 0 and the product relation. Similarly, if a ∈ Zp, then

⟨aα, ω0⟩ =
1

(1 + α)a
d((1 + α)a − 1) =

=
1

(1 + α)a
d((1 + α)a) =

=
a(1 + α)a−1

(1 + α)a
d(1 + α) = a⟨α, ω0⟩

where we used again that a is a limit of integers and that the map α 7→ dα ∈ Ω is
continuous with respect to the mQp

-adic topology on Ω.

Assuming a trivial action of G on ωΓ, then Qp ⊗Zp Tp(Γ)⊗Zp ωΓ is a Qp−vector space
of dimension 1 endowed with a semi-linear continuous action of G.
Every element of Qp⊗ZpTp(Γ)⊗ZpωΓ can be written (not uniquely) in the form p−ra⊗u⊗ω0

where u and ω0 are the generators of the respective Zp-module and a ∈ OQp
. Proposition

2.3.1 allows us to show that the element a⟨ur, ω0⟩ does not depend on how we write the
element of Qp⊗Zp Tp(Γ)⊗Zp ωΓ; indeed, using p−ra⊗u⊗ω0 = p−r−1(pa)⊗u⊗ω0 we have

pa⟨ur+1, ω0⟩ = a⟨p ∗ ur+1, ω0⟩ = a⟨ur, ω0⟩

where we used that p ∗ ur+1 = ur and the linearity given by the previous proposition.
Therefore we can define a map

ξK,Γ = ξ : Qp ⊗Zp Tp(Γ)⊗Zp ωΓ → Ω

that maps p−ra⊗u⊗ω0 to a⟨ur, ω0⟩. It is a well-defined OQp
−linear map that commutes

with the action of G.

Theorem 2.3.2. The map ξ is surjective and if

aK,Γ = a = {a ∈ Qp | vp(a) ≥ −v(DK/K0)− 1/(p− 1)}

then the kernel of ξ is the OQp
−submodule aK,Γ ⊗ Tp(Γ)⊗ ωΓ of Qp ⊗Zp Tp(Γ)⊗Zp ωΓ.

The proof of the theorem is explained in detail in section 4; we now focus on this
important corollary.

Corollary 2.3.3. Let â be the closure of aK,Γ in Cp. Then,
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1. Ω ∼= (Qp/a)⊗Zp Tp(Γ)⊗Zp ωΓ

2. Tp(Ω) := HomZp(Qp/Zp,Ω) ∼= â⊗Zp Tp(Γ)⊗Zp ωΓ

3. Vp(Ω) := HomZp(Qp,Ω) ∼= Cp ⊗Zp Tp(Γ)⊗Zp ωΓ

are isomorphisms of OQp
−modules (resp. OCp−modules, Cp−vector spaces) that commute

with the action of G.

Proof. 1. The first isomorphism derives from the fact that

Ω ∼= Qp ⊗Zp Tp(Γ)⊗Zp ωΓ/a⊗Zp Tp(Γ)⊗Zp ωΓ

that is isomorphic as OQp
−module to (Qp/a)⊗Zp Tp(Γ)⊗Zp ωΓ.

2. We have that

HomZp(Qp/Zp,Ω) ∼= HomZp(Qp/Zp, (Qp/a))⊗Zp Tp(Γ)⊗Zp ωΓ

∼= HomZp(lim−→ 1/pnZp/Zp, (Qp/a))⊗Zp Tp(Γ)⊗Zp ωΓ

∼= lim←−HomZp(1/p
nZp/Zp, (Qp/a))⊗Zp Tp(Γ)⊗Zp ωΓ

∼= lim←−
1

pn
a/a⊗Zp Tp(Γ)⊗Zp ωΓ

∼= â⊗Zp Tp(Γ)⊗Zp ωΓ

where at the last line we used that every compatible sequence 1
pn
an (with an ∈

a) gives rise to a Cauchy sequence. This correspondence is compatible with the
equivalence relations, i.e. the quotient by a corresponds to converging to the same
limit in Qp.

3. Similarly:

HomZp(Qp,Ω) ∼= HomZp(Qp, (Qp/a))⊗Zp Tp(Γ)⊗Zp ωΓ

∼= HomZp(lim−→ 1/pnZp, (Qp/a))⊗Zp Tp(Γ)⊗Zp ωΓ

∼= lim←−HomZp(1/p
nZp, (Qp/a))⊗Zp Tp(Γ)⊗Zp ωΓ

∼= lim←−Qp/p
na⊗Zp Tp(Γ)⊗Zp ωΓ

∼= Cp ⊗Zp Tp(Γ)⊗Zp ωΓ

since Cp is the closure of Qp.

A choice of generator of Tp(Γ) and for ωΓ provides the following G−equivariant iso-
morphisms:

Ω ∼= (Qp/a)(1) Tp(Ω) ∼= â(1) Vp(Ω) ∼= Cp(1)

since the action on ωΓ is trivial and the action on Tp(Γ) is exactly the one of the cyclotomic
character.
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2.4 Proof of Theorem 2.3.2
This section is totally devoted to the proof of Theorem 2.3.2. As in the previous sections,
if K ′ ⊂ L are two finite extension of K0 we denote with dL/K′ : OL → ΩOK′ (OL) the
canonical map from OL and the OL-module of OK′−differentials of OL. We also denote
with d : OK → Ω the canonical map. We will subdivide the proof in many lemmas.

We have already mentioned in the first chapter that there exists an element x ∈ OL

such that OL = OK′ [x] and that the different DL/K′ is generated by P ′(x) where P (X) is
the minimal polynomial of x over K ′.

Lemma 2.4.1. 1. The OL−module ΩOK′ (OL) is generated by dL/K′x and its annihi-
lator is DL/K′.

2. The extension L/K ′ is unramified if and only if DL/K′ = OL, equivalently if and
only if ΩOK′ (OL) = 0.

Proof. 1. SinceOL
∼= OK′ [X]/(P (X)), we have already seen in section 2.2 that ΩOK′ (OL)

is generated by dL/K′x, where x has minimal polynomial P (X). Moreover, since
P (X) is the minimal polynomial we have that P ′(x)dx = dP ((x)) = 0, hence the
annihilator of dx is DL/K′ = (P ′(x)).

2. The second equivalence is a direct consequence of part 1. The first equivalence
derives from the following property of the inverse different: since Tr(mL) ⊂ mK′

then mL ⊂ mK′ · D−1
L/K′ that is equivalent to mL · DL/K′ ⊂ mK′ · OL.

Indeed, if DL/K′ = OL, then we get mL ⊂ mK′ ·OL, i.e. L/K ′ is unramified. If L/K ′

is unramified, then mL = mK′ · OL, hence DL/K′ must be OL.

If If K ′ ⊂ K” ⊂ L then we can define a canonical map r : ΩOK′ (OL) → ΩOK′′ (OL)
that maps dL/K′a to dL/K′′a for a ∈ OL.

Lemma 2.4.2. Let K ′ ⊂ K” ⊂ L be finite extensions of K0 and π the canonical map
just defined, then π is surjective and for every ω ∈ ΩOK′ (OL)

v(Ann(r(ω))) = max(0, v(Ann(ω))− v(DK′′/K))

. So in particular r is an isomorphism if K ′′/K is unramified.

Proof. Let b be a generator of OL as OK′−algebra, i.e. OL = OK′ [b]. Then of course
OL = OK′′ [b] as well so by lemma 2.4.1 we have that dL/K′b (resp. dL/K′′b) generates the
OL−module ΩOK′ (OL) (resp. ΩOK′′ (OL)) which implies r surjective.
If ω = a ·dL/K′b is a nontrivial element of ΩOK′ (OL), by lemma 2.4.1 we have v(Ann(ω)) =
v(DL/K′) − v(a); similarly, for r(ω) = a · dL/K′′b we have two cases: if v(DL/K′′) ≤ v(a)
then r(ω) = 0, otherwise we have v(Ann(r(ω))) = v(DL/K′′)− v(a), so in general

v(Ann(r(ω))) = max{0, v(DL/K′′)− v(a)}

. To conclude, we know that v(DL/K′′) = v(DL/K′) − v(DK′′/K′), so we substitute
v(DL/K′′)− v(a) = v(Ann(ω))− v(DK′′/K).

Lemma 2.4.3. Let L be a finite extension of K and πL a uniformizer for L. Then the
OL−module ΩOK

(OL) is generated by dL/KπL.
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Proof. Let K ′ be the maximal unramified extension of K contained in L. Then OL is
generated by πL as OK′ algebra and by lemma 2.4.1 we have that ΩOK′ (OL) is generated
by dL/K′πL; by lemma 2.4.2 we have that the canonical map ΩOK

(OL)→ ΩOK′ (OL) is an
isomorphism, so ΩOK

(OL) is generated by dL/KπL since it’s mapped to dL/K′πL.

If L ⊂ L′ are extensions of K then we can define a canonical map i : ΩOK
(OL) →

ΩOK
(OL′) mapping dL/Ka to dL′/Ka for every a ∈ OL.

Lemma 2.4.4. Let L ⊂ L′ be finite extensions of K. Then the canonical map i :
ΩOK

(OL) → ΩOK
(OL′), induced by the inclusion OL ⊂ OL′, is injective. Moreover,

for every ω ∈ ΩOK
(OL)

Ann(i(ω)) = Ann(ω) · OL′

Proof. We can separately solve the cases L′/L unramified and totally ramified, since we
can always decompose a finite extension as the composition of an unramified and a totally
ramified extension.
If L′/L is unramified, we choose a uniformizer πL of L. Lemma 2.4.3 implies that if ω
is a nontrivial element of ΩOK

(OL), then ω = a · dL/KπL with a ∈ OL and by lemma
2.4.1 v(Ann(ω)) = v(DL/K) − v(a). We consider i(ω) = a · dL′/KπL; since πL is also a
uniformizer for L′, then v(Ann(i(ω))) = v(DL′/K) − v(a). Finally, v(DL′/K) = v(DL/K),
since we have DL′/L = OL′ , thus Ann(i(ω)) = Ann(ω) · OL′ .
If L′/L is totally ramified, we choose πL′ a uniformizer for L′. Let P (X) = Xn +
an−1X

n−1+ · · ·+a1X +a0 the minimal polynomial of πL′ over L; it is an Eisenstein poly-
nomial and so πL = −a0 is a uniformizer for L. We write a nontrivial element of ΩOK

(OL)
as ω = a · dL/KπL with a ∈ OL and by lemma 2.4.1 v(Ann(ω)) = v(DL/K) − v(a). The
image is i(ω) = a · dL′/KπL and since πL = a1πL′ + a2π

2
L′ + · · ·+ πn

L′ then

dL′/KπL = (a1 + 2a2πL′ + · · ·+ nπn−1
L′ ) · dL′/KπL′ = P ′(πL′) · dL′/KπL′

Thus, i(ω) = P ′(πL′) ·a ·dL′/KπL′ so we have v(Ann(i(ω))) = v(DL′/K)−v(P ′(πL′))−v(a);
reminding that v(P ′(πL′)) = v(DL′/L), we get

v(Ann(i(ω))) = v(DL′/K)− v(DL′/L)− v(a) = v(DL/K)− v(a) = v(Ann(ω))

so we obtain Ann(i(ω)) = Ann(ω) · OL′ .

Lemma 2.2.3 implies that Ω = ΩOK
(OQp

) = lim−→ΩOK
(OL) where the limit is over all

L/K finite extensions. The previous lemma implies that the canonical maps ΩOK
(OL)→

Ω are injective, thus we can identify ΩOK
(OL) with a OL−submodule of Ω.

Moreover, the previous lemma shows that if ω ∈ Ω and L/K finite extension such that
ω ∈ ΩOK

(OL) and denoting with a the annihilator of ω considered as element of ΩOK
(OL),

then, passing to the limit, Ann(ω) as element of Ω is a · OQp
. In particular, Ann(ω) is a

principal ideal of OQp
with same p−adic valuation of a.

Lemma 2.4.5. Let ω, ω′ ∈ Ω. Then there exists c ∈ OK such that ω′ = cω if and only if
Ann(ω) ⊂ Ann(ω′).

Proof. It’s clear that if ω′ = cω then Ann(ω) ⊂ Ann(ω′).
We assume Ann(ω) ⊂ Ann(ω′). We can also assume ω′ ̸= 0, that implies ω ̸= 0. From the
limit description of Ω, we have that ω, ω′ ∈ ΩOK

(OL) for a finite extension L/K. Let πL

be a uniformizer for L; we have ω = a · dL/KπL and ω′ = a′ · dL/KπL for some a, a′ ∈ OL.
The assumption of ω, ω′ ̸= 0 implies that v(DL/K) > v(a) and v(DL/K) > v(a′), so

32



v(Ann(ω)) = v(DL/K) − v(a) and v(Ann(ω′)) = v(DL/K) − v(a′). The assumption
Ann(ω) ⊂ Ann(ω′) implies that v(a′) ≥ v(a) hence there exists c ∈ OL such that a′ = ca,
thus ω′ = cω.

Lemma 2.4.6. Let Ω0 = ΩOK0
(OK). Then the canonical map pr : Ω0 → Ω is surjective

and its kernel are the differentials that are annihilated by DK/K0. More precisely, if ω ∈ Ω0

we have
v(Ann(pr(ω))) = max(0, v(Ann(ω))− v(DK/K0))

.

Proof. The proof derives by the limit on L of lemma 2.4.2 for K ′ = K0 and K ′′ = K,
since we know that ω ∈ Ω0 is also an element of ΩOK0

(OL) for some L/K0 finite.

Lemma 2.4.7. Let ω0 be a generator of ωΓ and let u = (un)n∈N a generator of Tp(Γ).
For every integer r ≥ 0 we have

v(Ann(⟨ur, ω0⟩)) = max

(
0, r − 1

p− 1
− v(DK/K0)

)
.

Proof. Lemma 2.4.6 allows to assume that K = K0, i.e. that K/Qp is unramified. We
can also assume r ≥ 1. We have already seen that ur = ϵr − 1 where ϵr is a pr−adic
root of unity and that ω0 =

1
1+x

dx. We have discussed in section 1.4 that Fr = Qp(ur) is
a totally ramified extension of F = Qp with uniformizer ur. We have also computed in
lemma 1.4.5 v(DFr/F ) = r − 1

p−1
. Since K/F is unramified, then ur is also a uniformizer

for Kr = K(ur), so we get [Kr : K] = [Fr : F ] = ϕ(pr). Therefore the minimal polinomial
of πr over K is the minimal polinomial of πr over F = Qp, so

v(Ann(dπr)) = v(DFr/F ) = r − 1

p− 1
.

Moreover, 1
1+πr

is a unit in OFr so we have v(Ann(⟨ur, ω0⟩)) = r − 1/(p− 1).

Conclusion of proof of Theorem 2.3.2.
Assuming again the choice of generators u and ω0, we fix ω ∈ Ω. We can choose r big
enough in order to have v(Ann(ω)) ≤ r − 1/(p − 1) − v(DK/K0). Thus by lemma 2.4.7
we have that Ann(⟨ur, ω0⟩) ⊂ Ann(ω) and by lemma 2.4.5 there exists c ∈ OQp

such that
ω = c⟨ur, ω0⟩. Therefore,

ω = ξ(p−rc⊗ u⊗ ω0)

and this prove that ξ is surjective.
Every element α ∈ Qp⊗Tp(Γ)⊗ωΓ can be written uniquely as a⊗u⊗ω0 with a ∈ Qp. We
choose r big enough such that r ≥ 1/(p − 1) + v(DK/K0) and such that ar = pra ∈ OQp

.
Then by lemma 2.4.7, ξ(α) = ar⟨ur, ω0⟩ is zero if and only if v(ar) ≥ r − 1/(p − 1) −
v(DK/K0) that is equivalent to v(a) ≥ −1/(p − 1) − v(DK/K0). Thus the kernel of ξ is
aK,Γ ⊗ Tp(Γ)⊗ ωΓ.
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Chapter 3

Hodge–Tate decomposition of the Tate
module of an abelian variety

In this final chapter we will prove the Hodge–Tate decomposition for the Tate module of
an abelian variety over K with good reduction (following [Fon82]). This last assumption
is not necessary as shown in Fontaine’s paper, but it will ease the dissertation from a
geometric point of view. We will assume the results on abelian varieties stated in chapter
0, whose main references are [Mil86] and [MRM74]; all the results are generalizations of
results on elliptic curve presented in [Sil09].

3.1 Tate-Raynaud theorem
Let X be an abelian variety over K of dimension d and let ΩX = Ω1

X/K the sheaf of
differential forms.

Theorem 3.1.1 (Tate, Raynaud). There exists an injective K-linear and functorial (in
X) map

ρX : ΩX(X)→ HomZp[G](Tp(X),Cp(1)).

Definition of ρX
As mentioned, we assume X to have good reduction, i.e. there exists an abelian scheme
X defined over OK such that X = X×Spec(OK) SpecK.

X //

��

X

��
Spec K // Spec OK

This reduction needs also to be compatible with the two operations, i.e.

X ×X
mX //

��

X

��
X× X

mX // X

is a commutative diagram of schemes over SpecOK and similarly for the identity and the
inverse morphism.
If u : Spec OQp

→ X is a point of X(OQp
) and ω is a global section of the sheaf ΩX, then
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u∗(ω) is an element of ΩOK
(OQp

) = Ω. Indeed, u∗(ω) is the image of ω under the map
u∗ : ΩX/SpecOK

→ ΩSpecOQp
/SpecOK

= Ω.
Thus, we can define a map

⟨, ⟩ : ΩX(X)× X(OQp
)→ Ω

mapping (ω, u) to ⟨ω, u⟩ = u∗(ω). This map is of course OK-linear in the first variable;
since the action of g ∈ G on u is given by the composition with an isomorphism of SpecOQp

,
the map verifies ⟨ω, gu⟩ = g(⟨ω, u⟩) for every g ∈ G, u ∈ X(OQp

) and ω ∈ ΩX(X).

Lemma 3.1.2. We have an isomorphism of K-vector spaces ΩX(X) = K⊗OK
ΩX(X) and

an isomorphism of groups X(OQp
) = X(Qp).

Proof. Using proposition 8.10 of [Har13], we have that ΩX(X) ∼= g∗ΩX(X) where g : X →
X is the projection map given by the base extension. For every affine open U = SpecA
of X, we have V = U ×SpecOK

Spec K = Spec(A ⊗OK
K) is an affine open of X. So

ΩX(V ) = ΩV/K(V ) = ΩK(A⊗OK
K) = ΩOK

(A)⊗OK
K = ΩX(U)⊗OK

K, where we used
the compatibility of tensor product and Kähler differentials. Since it holds for every affine
open U and the gluing is unique, we get ΩX(X) = ΩX(X)⊗OK

K.
Regarding the second part, we can identify X(Qp) with X(Qp) just using the universal

property of base extension. Then, we apply the Valuative Criterion of properness to the
proper morphism X→ Spec OK :

X // Spec OK

Spec Qp
//

OO

Spec OQp

OOff

Indeed, for every u : Spec Qp → X, u is extended uniquely to SpecOK since we are
working with schemes overOK ; hence the valuation criterion implies a unique factorization
through Spec OQp

. Finally, these identifications commute with operations mX ,mX since
the operations commute with the projection morphism X → X.

Proposition 3.1.3. We have that

• the map ω 7→ 1⊗ ω from ΩX(X) to ΩX(X) is injective;

• if ω ∈ ·ΩX(X) and u1, u2 ∈ X(OQp
) = X(Qp) then

⟨ω, u1 + u2⟩ = ⟨ω, u1⟩+ ⟨ω, u2⟩.

Proof. It is sufficient to prove each part independently.

• Since SpecOK is Noetherian, then ΩX is a coherent sheaf, so ΩX(X) is finitely gen-
erated as OK−module since it’s a coherent sheaf on a finite type scheme over OK .
Since X → SpecOK is smooth, then ΩX is also a locally free OX-module of finite
rank. Hence, the global sections ΩX(X) is torsion free and the kernel of the map
ω 7→ 1⊗ ω is the torsion of ΩX(X).
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• Using the fundamental property of the product and the one of the fiber product,
we have X ×X = (X×X)×Spec OK

Spec K. We know that the differential forms of
ΩX(X) are invariant, i.e. that pr∗1,X(ω) + pr∗2,X(ω) = m∗

X(ω) for every ω ∈ ΩX(X).
Moreover, by the functoriality of the differentials, we have the following commutative
diagrams:

ΩX(X)

��

−⊗K // ΩX(X)

��
ΩX×X(X× X)

−⊗K
// ΩX×X(X ×X)

where the vertical arrows are pr∗1,X and pr∗1,X (for pr2 and m as well). Thus if
ω ∈ ΩX(X), then pr∗1,X(ω) + pr∗2,X(ω) − m∗

X(ω) is in the kernel of ΩX×X(X × X) →
ΩX×X(X ×X) that is ΩX×X(X× X)tor. The same reasoning for the previous point
implies that the torsion is trivial, so ΩX×X(X× X) is torsion free, hence pr∗1,X(ω) +
pr∗2,X(ω) = m∗

X(ω) for every ω ∈ ΩX(X). Let u1, u2 two points of X(OQp
) and let v

be the point (u1, u2) of X×X; then u1 = pr1,X◦v, u2 = pr2,X◦v and u1+u2 = mX◦v
and also u∗

1(ω) = v∗(pr∗1,X(ω)), u∗
2(ω) = v∗(pr∗2,X(ω)). Finally,

(u1 + u2)
∗(ω) = v∗(m∗

X) = v∗(pr∗1,X(ω) + pr∗2,X(ω)) = u∗
1(ω) + u∗

2,X(ω)

for all ω ∈ ΩX(X).

Using the previous proposition, we can define a pairing

ΩX(X)×X(Qp)→ Ω

that is OK−linear in the first variable and Z[G]−linear in the second; this pairing de-
fines an OK−linear map ΩX(X) → HomZ[G](X(Qp),Ω). Moreover, defining Vp(X) =

HomZ(Z[p−1],X(Qp)) we need a lemma.

Lemma 3.1.4. We have the following OK−module isomorphism:

Vp(Ω) = HomZp(Qp,Ω) = HomZ(Z[p−1],Ω)

and the following OK-inclusion:

HomZ[G](X(Qp),Ω) ↪→ HomZ[G](Vp(X),Vp(Ω)).

Proof. For the first isomorphism, we consider Z[p−1] ⊂ Qp, so the restriction is an
injective map HomZp(Qp,Ω) → HomZ(Z[p−1],Ω). On the other hand, given a map
ϕ ∈ HomZ(Z[p−1],Ω), we consider the map ϕ′(a) = ap−v(a)ϕ(pv(a)) for a ∈ Qp. This
map is the inverse of the restriction.
Regarding the inclusion, the map is given by post-composition. Let ϕ : X(Qp) → Ω and
assume ϕ ◦ f = 0 for every f ∈ Vp(X). Let fx ∈ Vp(X) such that f(1) = x; this is always
possible since X(Qp) is p-divisible. Then ϕ(fx(1)) = ϕ(x) = 0 and varying x ∈ X(Qp)

we get that the post composition map HomZ[G](X(Qp),Ω) → HomZ[G](Vp(X), Vp(Ω)) is
injective.
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By lemma 3.1.4, the map ΩX(X) → HomZ[G](X(Qp),Ω) induces an OK−linear map
ΩX(X)→ HomZ[G](Vp(X), Vp(Ω)) and by extension of scalars we obtain a K−linear map

ρ̂X = ρ̂X,r : ΩX(X) = K ⊗OK
ΩX(X)→ HomZ[G](Vp(X), Vp(Ω))

since Vp(Ω) is already a K−vector space. Finally, for every ω ∈ ΩX(X) the restriction of
ρX(ω) to Tp(X) is Zp−linear, so this gives the K−linear map

ρX = ρX,r : ΩX(X)→ HomZ[G](Tp(X), Vp(Ω))

We remind that Theorem 2.3.2 gives Vp(Ω) ∼= Cp(1), so ρX is the candidate solution for
Tate-Raynaud theorem.

Lemma 3.1.5. The maps ρ̂X and ρX depend functorially on X.

Proof. It is sufficient to prove this for ρ̂. The commutativity of the following diagram

ΩX(X) //

��

HomZ[G](Vp(X), Vp(Ω))

��
ΩX′(X ′) // HomZ[G](Vp(X

′), Vp(Ω))

is given by the compatibility of the reductions X and X′ (that we have to assume). In
this sense ρ̂X and ρX are functorial in X.

3.2 Proof of Tate-Raynaud theorem
We are left to prove that ρX is injective. We will subdivide this task in two propositions:

Proposition 3.2.1. The map ρ̂X , defined in section 3.1, is injective.

Proposition 3.2.2. The map HomZp[G](Vp(X),Cp(1))→ HomZp[G](Tp(X),Cp(1)) induced
by the inclusion of Tp(X) in Vp(X) is injective.

We begin with a lemma:

Lemma 3.2.3. For every K-rational point u of X we have that the completion of the local
ring at u is ÔX,u = KJξ1, ξ2, . . . , ξdK; analogously for X and ū the corresponding closed
point of X we have ÔX,ū = OKJξ1, ξ2, . . . , ξdK.

Proof. We remind that by smoothness OX,u is a regular local ring of dimension d. This
means that mu/m

2
u is a OX,u/mu = K-vector space of dimension d and we consider

m1,m2, . . . ,md ∈ mu a K-basis. By completion, we have a morphism ϕ : KJξ1, ξ2, . . . , ξdK→
ÔX,u mapping ξi to the image of mi in ÔX,u and mapping K to the image of the global reg-
ular maps; by Nakayama’s lemma the homomorphism ϕ is surjective. Since m̂u = muÔX,u,
then the residue field of ÔX,u is again K. The ring ÔX,u is a regular local ring, a fortiori
an integral domain. Hence ϕ is a surjective ring homomorphism between two integral
domains of the same dimension and thus is an isomorphism.
The case for X is analogous, with the accuracy thatOX,ū is a regular local ring of dimension
d+ 1.
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Proof of proposition 3.2.1 Let e the identity point of X. We define Ωcont
OK

(ÔX,ē) as the
ÔX,ē module of OK continuous differentials of ÔX,ē. It is defined as the solution of the
universal problem for continuous OK-derivations. It can be proved that in this case it is
a ÔX,ē free module generated by dξ1, dξ2, . . . , dξd and that it is isomorphic to the comple-
tion of ΩOK

(OX,ē) (see [Gro64] 0.20.4.5 and 0.20.7.14.2). We also have the compatibility
(ΩX/OK

)ē ∼= ΩOK
(OX,ē), so we have an injective OK-linear map

ΩOK
(OX,ē) ↪→ Ωcont

OK
(ÔX,ē).

We want to compose this map with the localization ΩX(X) → ΩOK
(OX,ē). This local-

ization is injective because if a global section ω ∈ ΩX(X) ⊂ ΩX(X) becomes zero in the
stalk ΩOK

(OX,ē) then it becomes zero in every stalk (global differentials are translation
invariant) and by sheaf property ω = 0. Summing up, we have a canonical and injective
map

ΩX(X)→ Ωcont
OK

(ÔX,ē).

Every continuousOK-homomorphism of ÔX,ē toOQp
corresponds to some α1, α2, . . . , αd

elements of mQp
. Then to every ω ∈ Ωcont

OK
(ÔX,ē) and continuous OK-homomorphism of

ÔX,ē to OQp
can be associated an element of Ω = ΩOK

(OQp
) that is ω computed in

α1, α2, . . . , αd (the substitution is well-defined since αi ∈ mQp
). Now, every continuous

OK-homomorphism of ÔX,ē to OQp
induces a local homomorphism OX,ē → OQp

which can
be identified with a point X(OQp

) = X(Qp) by Proposition 2.6.3 in [Mum99]; thus the
set of continuous OK-homomorphisms of ÔX,ē to OQp

can be identified with a subset of
X(OQp

) = X(Qp). When operating on this subset, the pairing ⟨, ⟩ described in section 3.1
coincides with the pairing on ΩX(X) considered as element of Ωcont

OK
(ÔX,ē).

Hence, in order to prove 3.2.1, is sufficient to prove the next lemma:

Lemma 3.2.4. For every nonzero continuous differential form

ω =
d∑

i=1

αi(ξ1, ξ2, . . . , ξd) · dξi ∈ Ωcont
OK

(OKJξ1, ξ2, . . . , ξdK)

there exist x1, x2, . . . , xd ∈ mQp
such that

d∑
i=1

αi(x1, x2, . . . , xd) · dxi is a nonzero element

of Ω.

Proof. We first prove this lemma in the case d = 1. So we assume ω = α(ξ) · dξ with

α(ξ) =
∞∑
i=0

aiξ
i is a formal nonzero power series in ξ with coefficients in OK . Let vK the

valuation on Qp normalized for K, i.e. v(K×) = Z and let

s = inf
i∈N

v(ai) i0 = smallest integer such that v(ai0) = s.

For every x ∈ Qp with v(x) < 1/i0 then v(ai0x
i0) < s + 1 ≤ v(ajx

j) for every i ̸= i0 and
this implies v(α(x)) < s+1. Now it’s always possible to find a finite extension L/K such
that v(DL/K) ≥ s + 1 and such v(πL) < 1/i0; an example is a cyclotomic extension Kn

for n big enough. Then, under these assumptions, the annihilator of dπL is OQp
· DL/K

(see section 2.4), so α(x) · dx ̸= 0.
The general case is implied by the case d = 1 and the next lemma.
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Lemma 3.2.5. Let α1(ξ1, ξ2, . . . , ξd), . . . , αd(ξ1, ξ2, . . . , ξd) be formal power series in the
variables ξ1, ξ2, . . . , ξd with coefficients in OK. Assuming that not all αi are zero, then
there exist formal power series ϕ1, ϕ2, . . . , ϕd in one variable ξ and coefficients in OK such

that
d∑

i=1

αi(ϕ1, ϕ2, . . . , ϕd)ϕ
′
i is a nonzero element of OKJξK.

Proof. First we will assume that a power series f(ξ1, ξ2, . . . , ξd) ∈ OKJξ1, . . . , ξdK is identi-
cally zero if and only every it is evaluated to zero for every choice of x1, x2, . . . , xd ∈ mK .
Indeed, this can be proved considering the smallest (by degree) nonzero term among the
one involving the minimum number of variables; giving those variables a valuation equal
to 1 and then giving all the other variables a big enough valuation.

We choose ϕi of the form ϕi = aiξ+biξ2 with ai, bi ∈ OK . Writing λ =
d∑

i=1

αi(ϕ1, ϕ2, . . . , ϕd)ϕ
′
i

we have

λ =
d∑

i=1

αi(a1ξ + b1ξ
2, . . . , adξ + bdξ

2) · (ai + 2biξ).

If αi =
∞∑

m=0

αi,m with αi,m a homogeneous polynomial of degree m and if r is the smallest

integer such that there exists j with αj,r ̸= 0 then

λ = (
∑
i

ai · αi,r(a1, . . . , ad)) · ξr +
(∑

i

ai · αi,r+1(a1, . . . , ad)+

+
∑
j

2bj · αj,r(a1, . . . , ad) +
∑
i,j

aibj ·
∂αi,r

∂ξj
(a1, . . . , ad)

)
· ξr+1 + . . .

where we have written explicitly only the terms of degree ≤ r + 1. We have 3 cases now.

• If
∑
i

ξi·αi,r(ξ1, . . . , ξd) ̸= 0 then there exists a1, a2, . . . , ad such that
∑
i

ai·αi,r(a1, . . . , ad) ̸=

0 so λ ̸= 0 for every choice of the bi.

• If
∑
i

ξi · αi,r(ξ1, . . . , ξd) = 0, but
∑
i

ξi · αi,r+1(ξ1, ξ2, . . . , ξd) ̸= 0 then there exists

a1, a2, . . . , ad such that
∑
i

ai · αi,r+1(a1, a2, . . . , ad) ̸= 0, so choosing bi = 0 we get

λ ̸= 0.

• If
∑
i

ξi · αi,r(ξ1, . . . , ξd) = 0 and
∑
i

ξi · αi,r+1(ξ1, ξ2, . . . , ξd) = 0, then for every j the

derivation of the first identity with respect to ξj yields:

αj,r(ξ1, ξ2, . . . , ξd) +
∑
i

ξi ·
∂αi,r

∂ξj
(ξ1, ξ2, . . . , ξd) = 0

Then

λ =

[∑
j

bj

(
2αj,r(a1, . . . , ad) +

∑
i,j

ai ·
∂αi,r

∂ξj
(a1, . . . , ad)

)]
· ξr+1 + . . .

= (
∑
j

bj · αj,r(a1, . . . , ad)) · ξr+1 + . . . .

Since we have chosen j and r such that αj,r(ξ1, . . . , ξd) ̸= 0 then we can find
a1, a2, . . . , ad such that αj,r(a1, . . . , ad) ̸= 0. We conclude choosing bj = 1 and
the other bi = 0 in order to get λ ̸= 0.
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Proof proposition 3.2.2. For every abelian group H, we define Vp(H) = HomZ(Z[p−1], H).
The subgroup Xp∞(Qp) is the normal subgroup of X(Qp) given by the points of order a
power of p. Since X(Qp) is p-divisible, then J = X(Qp)/Xp∞(Qp) is uniquely p-divisible,
i.e. for every j ∈ J there exists a unique j′ such that pj′ = j. So we have an exact
sequence of abelian groups

0→ Xp∞(Qp)→ X(Qp)→ J → 0.

Applying HomZ(Z[p−1],−) the following sequence is exact:

0→ Vp(Xp∞(Qp))→ Vp(X(Qp))→ J.

Indeed, we used the left exactness of Hom and that HomZ(Z[p−1], J) = J since J is
uniquely p-divisible. Moreover, we want to prove also and that Vp(X(Qp))→ J is surjec-
tive.
Indeed, if j ∈ J , then we can define a map Z[p−1]→ X(Qp) mapping 1 to j, mapping p−1

to a p-th root of j and so on. This is always possible since X(Qp) is p−divisible and all
the possible choices will be mapped to the same j as element of HomZ(Z[p−1], J). So we
have the following exact sequence:

0→ Vp(Xp∞(Qp))→ Vp(X(Qp))→ J.

We apply the contravariant HomZ[G](−,Cp(1)) recalling that Vp(Xp∞(Qp)) = Qp ⊗Zp

Tp(X), hence the exact sequence

0→ HomZ[G](J,Cp(1))→ HomZ[G](Vp(X),Cp(1))→ HomZ[G](Qp ⊗Zp Tp(X),Cp(1)).

Thus the kernel of the restriction HomZ[G](Vp(X),Cp(1)) → HomZ[G](Tp(X),Cp(1)) can
be identified with HomZ[G](J,Cp(1)).

Since X(Qp) is the union of X(L) for every finite Galois extension L/K, then J = ∪JH

for all H normal open subgroup of G. If f : J → Cp(1) is a Z[G] homomorphism, then, for
every normal open subgroup H, we have f(JH) ⊂ Cp(1) = 0 since we apply Theorem 1.6.5
to H = Gal(Qp/L) for some L/K finite Galois extension. Hence, since f(J) = ∪f(JH) = 0
we proved that the restriction map HomZ[G](Vp(X),Cp(1)) → HomZ[G](Tp(X),Cp(1)) is
injective and this implies that the map HomZp[G](Vp(X),Cp(1))→ HomZp[G](Tp(X),Cp(1))
is injective.

3.3 Hodge-Tate decomposition
We are now able to prove the Hodge-Tate decomposition for the Tate module of an
abelian variety X with good reduction. We need to work with the dual abelian variety
X∨; it can be proved that X∨ has good reduction as well. We define the K-vector spaces
LieX = HomK(ΩX(X), K) and LieX∨ = HomK(ΩX∨(X∨), K); they both are vector
spaces of dimension d equal to the dimension of X and X∨ and they are both endowed
with a trivial G-action.

Theorem 3.3.1. There exists a G-equivariant Cp-linear isomorphism

Tp(X)⊗Zp Cp
∼= ((LieX∨)∗ ⊗K Cp)⊕ (LieX ⊗K Cp(1)).
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Proof of Theorem 3.3.1
The Tate-Reynaud theorem yields an injective K-linear map

ΩX(X)→ HomZp[G](Tp(X),Cp(1)) = HomCp[G](Tp(X)⊗Zp Cp,Cp(1))

that implies a surjective K-linear map and G-equivariant map

Tp(X)⊗Zp Cp(−1)→ HomK(ΩX(X), K)

hence a surjective Cp-linear map and G-equivariant map

Tp(X)⊗Zp Cp → LieX ⊗ Cp(1).

Applying the Tate-Raynaud theorem to X∨ leads to the G-equivariant injection

(LieX∨)∗ ⊗ Cp → (Tp(X
∨)⊗ Cp)

∗(1).

Now we consider the Weil pairing Tp(X)×Tp(X
∨)→ Zp(1); it is a nondegenerate pairing

so it induces a perfect pairing (Tp(X)⊗ Cp)× (Tp(X
∨)⊗ Cp)→ Cp(1), i.e.

(Tp(X
∨)⊗ Cp)

∗(1) ∼= Tp(X)⊗ Cp.

We can then assemble a sequence

0→ (LieX∨)∗ ⊗ Cp
α−→ Tp(X)⊗ Cp

β−→ LieX ⊗ Cp(1)→ 0 (∗)

where α (resp. β) is an injective (resp. surjective) G-equivariant Cp-linear map.

Proposition 3.3.2. The sequence (∗) is exact.

Proof. We have that dimCpImα = dimCp(LieX
∨)∗ ⊗ Cp = d; moreover dimCpkerβ =

2d− d = d since Tp(X) is a free Zp−module of rank 2d. Hence to prove that (∗) is exact,
it is sufficient to prove β ◦ α = 0.
Let e1, e2, . . . , ed basis of (LieX∨)∗, then e1⊗1, e2⊗1, . . . , ed⊗1 is a Cp-basis of (LieX∨)∗⊗
Cp. Since ei⊗1 is G-invariant then the (β◦α)(ei⊗1) ∈ (LieX⊗Cp(1))

G = 0 since Theorem
1.6.5. This holds for every ei, so β ◦ α = 0.

Proposition 3.3.3. The sequence (∗) is G-equivariant split.

Proof. The sequence is exact and therefore it splits as sequence of Cp-vector spaces (finite
dimensional vector spaces are projective). We need then to prove that there exists a
GK-equivariant splitting.
We start by twisting by Cp(−1) the sequence:

0→ (LieX∨)∗ ⊗ Cp(−1)
α−→ Tp(X)⊗ Cp(−1)

β−→ LieX ⊗ Cp → 0.

Let v1, v2, . . . , vd basis of LieX. Since the sequence splits there exists w ∈ W = Tp(X)⊗
Cp(−1) such that β(w) = e1 ⊗ 1. For every σ ∈ G, we have

β(σw − w) = σβ(w)− β(w) = e1 ⊗ 1− e1 ⊗ 1 = 0

so σw − w ∈ α((LieX∨)∗ ⊗ Cp(−1)). Thus for every σ ∈ G there exists γσ ∈ (LieX∨)∗ ⊗
Cp(−1) such that α(γσ) = σw − w. The map

γ : G→ (LieX∨)∗ ⊗ Cp(−1)
σ 7→ γσ
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is a continuous 1-cocycle. To prove γστ = σγτ + γσ it is sufficient to prove that the two
terms have same through the injective G-equivariant map α. Indeed, α(γστ ) = στw − w
and

α(σγτ − γσ) = σ(τw − w) + σw − w = στw − w.

The cocycle [γ] ∈ H1(G, (LieX∨)∗⊗Cp(−1)) = 0 by Theorem 1.8.1, hence γ is a cobound-
ary, so there exists y ∈ U∗ ⊗ Cp(−1) such that for every σ ∈ G, it holds γσ = σy − y.
Then

σw − w = α(γσ) = α(σy − y) = σα(y)− α(y)

i.e. σ(w − α(y)) = w − α(y) for every σ ∈ G. We define w′ = w − α(y); w is G-invariant
and β(w′) = β(w − α(y)) = β(w) − β(α(y)) = e1 ⊗ 1. Analogously for every ei, we can
find G-invariant elements w′

i ∈ W such that β(w′
i) = ei ⊗ 1. The map

s : LieX ⊗ Cp → W

ei ⊗ 1 7→ w′
i

is a G-equivariant section of β.
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