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INTRODUCTION  

 
The purpose of this thesis is to describe the operations of a Magneto Plasma Dynamic thruster (MPD 

thruster), thanks to the analyse of the conclusions drown by Professor Martinez Sanchez in the paper “The 

Structure of Self-Field Accelerated Plasma Flows”. 

In order to do that, a MatLab code has been created, to reproduce the results he presented in that paper, 

but beforehand, an analysis of the physics that stands behind electrical propulsion and, in particular, this 

thruster will be done. 

In Chapter 1, a brief description of the basic equations of propulsion and a comparison between chemical 

and electrical thrusters will be made, showing the cases in which, electrical propulsion is more convenient 

than Chemical one. 

Then, in Chapter 2, a brief description of the main electrical thrusters at the state of the art will be given, 

describing their operations and performances. 

A theoretical description of the basics of Plasma Physics will follow in Chapter 3 with a focus on the basic 

equations of the magneto hydro dynamics. 

In Chapter 4 we will describe with a simple model how to calculate the main parameters of an MPD 

thruster, such as thrust, efficiency, and current density. 

In Chapter 5 will finally take a look in the mathematical equations behind the MatLab code and in Chapter 6 

we will present some notable results, comparing them with those presented by Professor Martinez 

Sanchez. 

  



2 
 

CHAPTER 1: SPACE PROPULSION GENERALITIES 
 

The word "Propulsion" derives from the Latin words "pro"- that means "on"- and "pellere"- that means 

"push" and represents the act that you have to do to give a material body the energy needed for his own 

motion- i.e. "push-on". This action is made by a device called "Propeller" that is dynamic to its own essence, 

so it shows with the generation of a force called "Thrust", that is responsible for its motion. 

 

 

THE EQUATION OF THE THRUST 
 

Let's start with the mathematical analysis of the problem: the only way to accelerate something in free space 

is by reaction. Considering the following system: 

 

 

 
Figure 1-1: Simplified model of a thruster. 

 

 

The Equation of the Thrust in vacuum derives from: 

 

 
𝑀𝑡𝑜𝑡(𝑡) = 𝑚(𝑡)�⃗�(𝑡) + ∫ �̇�(𝑡′)[�⃗�(𝑡′) − 𝑐(𝑡′)]𝑑𝑡′ =  𝐶𝑜𝑠𝑡.

𝑡

0

 (1-2) 

 

 

where we are writing 𝑚(𝑡) instead of 𝑀(𝑡). We put it constant because we're considering no drug or 

interaction of molecules with ambient air. Thus, it derives: 

 

 𝑑𝑀𝑡𝑜𝑡
𝑑𝑡

= 0 (1-3) 

 

 

 
𝑚
𝑑�⃗�

𝑑𝑡
+ �⃗�

𝑑𝑚

𝑑𝑡
+ �̇�(�⃗� − 𝑐) = 0 (1-4) 

 

 

but we know that: 
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�̇� = −

𝑑𝑚

𝑑𝑡
⟵ (𝑀𝑎𝑠𝑠 𝐹𝑙𝑜𝑤 𝑅𝑎𝑡𝑒) (1-5) 

 

 

 
⟹  𝑚

𝑑�⃗�

𝑑𝑡
= �̇�𝑐 = �⃗� ⟵ (𝑻𝒉𝒓𝒖𝒔𝒕) (1-6) 

 

 

 
⟹ 

𝑑(𝑚�⃗�)

𝑑𝑡
= �⃗� − �⃗��̇� = �̇�(𝑐 − �⃗�) (1-7) 

 

 

We can do the same to calculate the Kinetic Energy- 𝑬𝒌- of the system rocket-jet: 

 

 
𝐸𝑘 =

1

2
𝑚|�⃗�|2 +∫

1

2
�̇�(𝑡′)[�⃗�(𝑡′) − 𝑐(𝑡′)]2𝑑𝑡′

𝑡

0

 (1-8) 

 

 

 
⟹

𝑑𝐸𝑘
𝑑𝑡

= 𝑚�⃗�
𝑑�⃗�

𝑑𝑡
+
1

2
|�⃗�|2

𝑑𝑚

𝑑𝑡
+
1

2
�̇�(|�⃗�|2 + |𝑐|2 − 2𝑣⃗⃗⃗⃗⃗𝑐) =

1

2
�̇�|𝑐|2 (1-9) 

 

 

since 

 

 
𝑚�⃗�

𝑑�⃗�

𝑑𝑡
= �̇�𝑐�⃗� (1-10) 

 

 

 𝑑𝑚

𝑑𝑡
= −�̇� (1-11) 

 

 

so, if some energy is expended internally at the rate �̇� and converted to total kinetic energy with Efficiency- 
 𝜼𝒕𝒉 we have that: 
 

 𝑑𝐸𝑘
𝑑𝑡

= 𝜂𝑡ℎ�̇� (1-12) 

 
 

so that: 
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𝜂𝑡ℎ�̇� =

1

2
�̇�|𝑐|2 ⟵ (𝐽𝑒𝑡 𝑘𝑖𝑛𝑒𝑡𝑖𝑐 𝑃𝑜𝑤𝑒𝑟) (1-13) 

 

 

If we then define the Useful Propulsive Work as: 

 

 �⃗��⃗� = �̇�|�⃗�||𝑐| (1-14) 

 

 

we can find the Propulsive Efficiency- 𝜼𝒑𝒓𝒐𝒑: 

 

 
𝜂𝑝𝑟𝑜𝑝 =

�⃗��⃗�

𝜂𝑡ℎ�̇�
=
�̇�|�⃗�||𝑐|

1
2 �̇�

|𝑐|2
= 2

|�⃗�|

|𝑐|
 (1-15) 

 

 

This value is arbitrary high (if |�⃗�| >
|𝑐|

2
⟹ 𝜂𝑝𝑟𝑜𝑝 > 1), so it's not typically used for rockets, but it's still true 

that if we thrust at high speed we increase the Kinetic Energy more. 

 

Considering now the well-known Formula of the Thrust: 

 

 𝐹 = �̇�𝑣𝑒 + 𝐴𝑒(𝑝𝑒 − 𝑝𝑎) = �̇�𝑐 (1-16) 

 

 

(and remembering that from this moment we are evaluating just the modules of the quantities and defining): 

• 𝑣𝑒- Jet Speed far from the Exhaust; 

• 𝐴𝑒- the Exhaust Nozzle Area; 

• 𝑝𝑒- the Exhaust Pressure; 

• 𝑝𝑎- the Ambient Pressure; 

• 𝑐- Effective Exhaust Speed; 

 

and: 

 

 
𝑐 =

𝐹

�̇�
 (1-17) 

 

 

we have that for finite 𝑝𝑎, in thermal rockets, increasing 𝐴𝑒 we increase also 𝑣𝑒, towards a limit represented 

by:  

 

 



5 
 

 
𝑣𝑒,𝑚𝑎𝑥~√2𝑐𝑝𝑇0 (1-18) 

 

 

where 𝑇0 represents the Total Temperature of the exhaust. Then, it can be 𝐴𝑒(𝑝𝑒 − 𝑝𝑎) negative. So the best 

𝐴𝑒 is the one that makes  𝒑𝒆 = 𝒑𝒂. When we have this condition we can say that we are in "Perfect 

Adaptation". 

  

Other very important parameters are: 

• 𝑐𝐹- Thrust Coefficient- It represents what happens in the nozzle; 

• 𝑐∗- Real Exhaust Velocity- it represents the velocity of the sound into the Combustion Chamber; 

• 𝐼𝑠𝑝- Specific Impulse- it represents the Effective Exhaust Velocity; 

• 𝐼𝑡𝑜𝑡-Total Impulse- it tells me how big is the engine; 

• 𝐼𝑠𝑠- Specific Impulse of the System; 

• 𝐹
𝑊⁄ −  𝑇ℎ𝑟𝑢𝑠𝑡 𝑙𝑒𝑣𝑒𝑙- it tells me the relation between the thrust and the system weight; 

  

and we know that: 

 

 𝑐 = 𝑐∗ ∙ 𝑐𝐹 (1-19) 

 

 

where: 

 

 
𝑐∗ =

√𝑅𝑇0
Г(𝛾)

 (1-20) 

 

 

 

Г(𝛾) = √𝛾 (
2

𝛾 + 1
)

𝛾+1
2(𝛾−1)

 (1-21) 

 

 

 
𝑐𝐹 =

𝐹

𝑝0𝐴𝑡
 (1-22) 

 

 

so 𝑐∗ depends on the properties of the propellant. To quantify instead the performances of a nozzle analyzing 

the 𝑐𝐹 − 휀 graphic: 
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Figure 1-2: 𝑐𝐹 − 휀 graphic 

 

 

The most typical values of 𝑐𝐹 are included between 1.5 and 2. 

The bigger is the Effective Exhaust Velocity, the better is the engine. So, the two "players" are the combustion 

chamber- that is represented by 𝑐∗- because it warms the gases, and the nozzle- that is represented by 𝑐𝐹- 

because it transforms the thermal energy in ordered energy. 

 

 
𝐼𝑠𝑝 =

𝐹

�̇�𝑔
=
𝑐

𝑔∗
=
𝑐∗𝑐𝐹
𝑔∗

 (1-23) 

 

 

The 𝐼𝑠𝑝 in general should be high to have better performances. 

 

 
𝐼𝑡𝑜𝑡 = ∫ 𝐹𝑑𝑡

𝑡𝑏𝑢𝑟𝑛𝑖𝑛𝑔

0

 (1-24) 

 

 

 
⟹ 𝐼𝑠𝑝 =

𝐹 ∙ 𝑡𝑏𝑢𝑟𝑛𝑖𝑛𝑔

𝑚 ∙ 𝑔∗ ∙ 𝑡𝑏𝑢𝑟𝑛𝑖𝑛𝑔
=

𝐼𝑡𝑜𝑡
𝑚𝑝𝑟𝑜𝑝 ∙ 𝑔

∗
 (1-25) 

 

 

 
𝐼𝑠𝑠 =

𝐼𝑡𝑜𝑡
𝑚𝑡𝑜𝑡 ∙ 𝑔

∗
 (1-26) 

 

 

Then: 
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�̇� = 𝜌𝑡𝑣𝑡𝐴𝑡 = 𝜌0𝐴𝑡 (
2

𝛾 + 1
) √𝛾𝑅𝑇0 (

2

𝛾 − 1
)

1
𝛾−1

 (1-27) 

 

 

 𝜌0 =
𝑝0
𝑅𝑇0

 (1-28) 

 

 

 

where the subscript "t" represents the Throat of the Nozzle and the subscript "0" indicates the total variables. 

Finally, we can calculate the ∆𝑣 that the rocket needs to reach the requested altitude. To do it we first define 

the following parameters: 

• 𝑚0- Initial mass; 

• 𝑚𝑃/𝐿- P/L mass; 

• 𝑚𝑖𝑛- Inert mass; 

• 𝑚𝑠- mass of the structure; 

• 𝑚𝑝𝑟𝑜𝑝- mass of the propellant; 

• 𝑚𝑓-Final mass; 

 

We have: 

 

 𝑚0 = 𝑚𝑃/𝐿 +𝑚𝑖𝑛 +𝑚𝑝𝑟𝑜𝑝 (1-29) 

 

 

 𝑚𝑓 = 𝑚𝑃/𝐿 +𝑚𝑖𝑛 (1-30) 

 

 

 𝑘𝑢 =
𝑚𝑃/𝐿

𝑚0
⟵ (𝑃/𝐿 𝑅𝑎𝑡𝑖𝑜) (1-31) 

 

 

 𝑘𝑝 =
𝑚𝑝𝑟𝑜𝑝

𝑚0
⟵ (𝑃𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡 𝑅𝑎𝑡𝑖𝑜) (1-32) 

 

 

 𝑘𝑚 =
𝑚0

𝑚𝑓
⟵ (𝑀𝑎𝑠𝑠𝑒𝑠 𝑅𝑎𝑡𝑖𝑜) (1-33) 
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 𝜖 = 𝑘𝑠 =
𝑚𝑖𝑛

𝑚𝑖𝑛 +𝑚𝑝𝑟𝑜𝑝
⟵ (𝐼𝑛𝑒𝑟𝑡  𝑀𝑎𝑠𝑠 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛) (1-34) 

 

 

This last parameter increases with the decreasing of the propellant. 

As we said in the introduction, Tsiolkovsky was the first one that theorized the Rocket Equation. Starting by 

the definition of the Thrust: 

 

 𝐹 = �̇�𝑐 (1-35) 

 

 

and remembering that: 

 

 
�̇� = −

𝑑𝑚

𝑑𝑡
 (1-36) 

 

 

 
𝑚
𝑑𝑣

𝑑𝑡
= 𝐹 = −

𝑑𝑚

𝑑𝑡
𝑐 (1-37) 

 

 

 −𝑐𝑑𝑚 = 𝑚𝑑𝑣 (1-38) 

 

 

 
𝑑𝑣 = −𝑐

𝑑𝑚

𝑚
 (1-39) 

 

 

 
⟹ ∆𝑣 = −∫ 𝑐

𝑑𝑚

𝑚

𝑚𝑓

𝑚

= 𝑐 𝑙𝑛 (
𝑚0

𝑚𝑓
) = 𝑐 𝑙𝑛(𝑘𝑚) = 𝑔

∗𝐼𝑠𝑝𝑙𝑛(𝑘𝑚) (1-40) 

 

 

 
⟹𝑚0 = 𝑚𝑓 ∙ 𝑒

∆𝑣
𝐼𝑠𝑝∙𝑔

∗
 (1-41) 

 

 

 

⟹𝑚𝑝𝑟𝑜𝑝 = 𝑚𝑓 (𝑒
∆𝑣

𝐼𝑠𝑝∙𝑔
∗
− 1) = 𝑚𝑃/𝐿

(𝑒
∆𝑣

𝐼𝑠𝑝∙𝑔
∗
− 1) (1 − 𝜖)

(1 − 𝜖𝑒
∆𝑣

𝐼𝑠𝑝∙𝑔
∗

)

 (1-42) 
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From this last equation we can find the Condition of Realization of the Mission: 

 

 
(1 − 𝜖𝑒

∆𝑣
𝐼𝑠𝑝∙𝑔

∗

) > 0 
(1-43) 

 

 

 
⟹ 𝐼𝑠𝑝 >

∆𝑣

𝑙𝑛 (
1
𝜖
) ∙ 𝑔∗

 (1-44) 

 

 

Where the ∆𝑣 calculated is the theoretical one, calculated by Tsiolkovsky. 

 

As we told above, for chemical rockets c is limited by chemical energy/mass in fuel: 

 

 𝑐𝑚𝑎𝑥 = √2𝐸 (1-45) 

 

 

In fact, since: 

 

 1

2
�̇�𝑣𝑒

2 = 𝜂𝑡ℎ�̇� = 𝜂𝑡ℎ�̇�𝐸 (1-46) 

 

 

 ⟹ 𝑣𝑒 = √2𝜂𝑡ℎ𝐸 (1-47) 

 

 

And making a replacement of E by the Enthalpy H and remembering that, for a Brayton cycle we have: 

 

 𝐻 = 𝑐𝑝𝑇0 (1-48) 

 

 

 
𝜂𝑡ℎ = 1 − (

𝑝𝑒
𝑝0
)

𝛾−1
𝛾

 (1-49) 

 

 

we get: 
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𝑣𝑒 = √2𝑐𝑝𝑇0 [1 − (
𝑝𝑒
𝑝0
)

𝛾−1
𝛾
] (1-50) 

 

 

Thus, what we want is to get high value of the ratio 
𝑝0

𝑝𝑒
, that means getting high value of the pressure in the 

Combustion Chamber- 𝑝0. Higher 𝑝0in fact can increase 𝑇0 by inhibiting dissociation, so getting higher 𝐼𝑠𝑝. 

But the main reason to get higher 𝑝0 is to reduce weight for a given thrust, in fact, as we can see from the 

figure below: 

 

 
Figure 1-3: Simplified model of a thruster 

 

 𝑚

𝐹
≅
4𝜋𝑅2𝑡𝜌𝑤
𝑐𝐹𝑝0𝐴𝑡

 (1-51) 

 

 

 
2𝜋𝑅𝑡𝜎 = 𝜋𝑅2𝑝0 ⟹ 𝑡 = 𝑝0

𝑅

2𝜎
 (1-52) 

 

 

 𝐴𝑡 = 𝐾𝑅
2 (1-53) 

 

 

 
⟹

𝑚

𝐹
≅
4𝜋𝑝0𝑅𝜌𝑤
2𝜎𝑐𝐹𝑝0𝐾

 (1-54) 

 

 

 
⟹

𝑚

𝐹
≅
2𝜋

𝐾𝑐𝐹

𝜌𝑤
𝜎
𝑅 (1-55) 

 

 

 𝐹 = 𝑐𝐹𝑝0𝐾𝑅
2 (1-56) 
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⟹𝑅 = √
𝐹

𝑐𝐹𝑝0𝐾
 (1-57) 

 

 

 

⟹
𝑚

𝐹3 2⁄
≅

2𝜋

(𝐾𝑐𝐹)
3 2⁄

𝜌𝑤
𝜎
√
1

𝑝0
 (1-58) 

 

 

Thus, for a given thrust level, the engine mass scales like 
1

√𝑝0
. So, for a given 𝐼𝑠𝑝 it may be better to reduce 

𝑝0, reducing thrust and operating longer. 

However, even if we did it and we maximized the thermal efficiency 𝜂𝑡ℎ by minimizing the pressure ratio 
𝑝𝑒

𝑝0
, 

we would get the same value of the velocity we wrote before: 

 

 
𝑣𝑒,𝑚𝑎𝑥 = √2𝑐𝑝𝑇0 (1-59) 

 

 

that is about 𝑣𝑒,𝑚𝑎𝑥 ≅ 4500 𝑚/𝑠. 

That's the main reason for what sometimes we'd rather use Electric Thrusters even though the trust they 

perform is much lower than the one performed by a Chemical Rocket: Electrical Rockets break the 𝑣𝑒 limit, 

allowing any 𝐼𝑠𝑝. In few words, Electrical Rocket are very fuel efficient Rockets. 

However, the power requested by an Electrical Rocket to work well is very high, in fact: 

 

 
𝑃 =

1

𝜂𝑐

1

2
�̇�𝑐2 =

𝐹𝑐

2𝜂𝑐
 (1-60) 

 

 

 𝑃

𝑚
=
𝐹

𝑚

𝑐

2𝜂𝑐
=
𝑎𝑐

2𝜂𝑐
 (1-61) 

 

 

Roughly, if we have 0.5 𝑊/𝑘𝑔 → 2 𝑘𝑔/𝑊 = 2000 𝑘𝑔/𝐾𝑊. 

So, with reasonable mass/power ratios for Electric Power, we can get just very low accelerations. A graphic 

that shows well this point is the following one: 
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Figure 1-4: a-𝐼𝑠𝑝 graphic for chemical and electrical thrusters 

 

 

 

CHEMICAL VS ELETRIC PROPULSION AND LOW THRUST SPIRAL CLIMB 
 

In electric propulsion systems, large amounts of energy can be transferred to propellant mass to increase the 

exhaust velocity. In these systems, thrust is generated in by using electric or magnetic processes to accelerate 

propellant so, as we said above, this makes electric thrusters, unlike chemical one, not energy limited when 

neglecting component lifetime, but just power limited: in fact, the rate at which energy can be provided is 

limited by the mass of the power system so, they typically have a low thrust to mass ratio. 

However, the interesting thing of these thrusters is that they tend to have higher 𝐼𝑠𝑝, so they can operate for 

significantly longer periods of time than chemical one. 

 

So, let’s make an example to show in which case an electrical thruster is better than a chemical one when we 

go away from the Earth. 

 

To reach Mars for example, leaving from a LEO and using a Hohmann Transfer, we need a ∆�⃗�~5 𝑘𝑚/𝑠. In 

fact the total ∆�⃗� will be the result of the sum between two impulses: the first one is given by the difference 

between the transfer velocity at perigee and the initial orbital velocity around the Earth- ∆𝑣1- and the second 

one is given by the final orbital velocity around Mars and the Transfer apoapsis velocity- ∆𝑣2: 

 
𝑣𝐸 = √

𝜇

𝑟𝐸
 (1-62) 
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𝑣𝐸,𝑝 = √2𝜇 (
1

𝑟𝐸
−

1

𝑟𝐸 + 𝑟𝑀
) (1-63) 

 

 

 

 

⟹ ∆𝑣1 = 𝑣𝐸,𝑝 − 𝑣𝐸 = √
𝜇

𝑟𝐸
(√

2𝑟𝑀
𝑟𝐸 + 𝑟𝑀

− 1) (1-64) 

 

 

 
𝑣𝑀 = √

𝜇

𝑟𝑀
 (1-65) 

 

 

 

𝑣𝑀,𝑎 = √2𝜇 (
1

𝑟𝑀
−

1

𝑟𝐸 + 𝑟𝑀
) (1-66) 

 

 

 

⟹ ∆𝑣2 = 𝑣𝑀,𝑎 − 𝑣𝑀 = √
𝜇

𝑟𝑀
(1 − √

2𝑟𝐸
𝑟𝐸 + 𝑟𝑀

) (1-67) 

 

 

Where: 

• 𝜇 is the Gravitational Constant of the Sun; 

• 𝑟𝐸 is the distance Earth-Sun; 

• 𝑟𝑀 is the distance Mars-Sun; 

 

The total impulse will be given, as we said, by their sum: 

 

 ∆𝑣𝑇𝑂𝑇 = ∆𝑣1 + ∆𝑣2 = 5.4 𝑘𝑚/𝑠 (1-68) 

 

 

Now, as we said, we know that the maximum exhaust velocity that a chemical thruster can reach is about 

4.5 𝑘𝑚/𝑠 so, knowing the Rocket Equation, it has been calculated that a conventional chemical rocket should 

use more than 2/3 of the vehicle mass only for the fuel (it has been calculated about 73% of the vehicle 

mass) for a mission like this. 
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For even longer mission, where the required ∆𝑣 are in the range of 35 − 70 𝑘𝑚/𝑠 the chemical rockets 

should use more or less 99.98% of their mass just for the fuel. This is not taking into account any swing-by 

that can be done using different planets. 

Hence, such situations require the use of different engines, like the Electrical Thrusters. 

However, Electrical Thrusters, cannot provide high Thrusts so, a Hohmann Transfer is not possible; in these 

cases it’s preferable to use a Spiraling Transfer Trajectory. 

 
Let’s now make an approximation of the ∆𝒗 for a Low-Thrust Spiral Climb. 

Assume an initial circular orbit with a velocity: 

 

 
𝑣 = 𝑣𝑐𝑜 = √

𝜇

𝑟0
 (1-69) 

 

 

with the Thrust applied tangentially and being: 

 

 
𝑎 =

𝐹

𝑚
 (1-70) 

 

 

By the Conservation of the Energy, assuming the orbit remains near-circular we can write: 

 

 𝑑

𝑑𝑡
(−

𝜇

2𝑟
) = 𝑎√

𝜇

𝑟
=

𝜇

2𝑟2
𝑑𝑟

𝑑𝑡
 (1-71) 

 

 

 
⟹ 𝜇1 2⁄

𝑟−3 2⁄

2
𝑑𝑟 = 𝑎𝑑𝑡 (1-72) 

 

 

Integrating it: 

 

 
∫ 𝑎𝑑𝑡
𝑡𝑏

0

= ∆𝑣 (1-73) 

 

 

 ⟹−𝜇1 2⁄ 𝑟−1 2⁄ |
0

𝑡𝑏
= ∆𝑣 (1-74) 
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⟹ ∆𝑣 = √

𝜇

𝑟0
−√

𝜇

𝑟(𝑡𝑏)
= 𝑣𝑐𝑜 − 𝑣𝑐𝑓𝑖𝑛  (1-75) 

 

 

The velocity increment ∆𝑣 is equal to the decrease in orbital velocity. The rocket is pushing forward, but the 

velocity is decreasing, because in a 𝑟−2 force field, the kinetic energy is equal in magnitude but of the 

opposite sign as the total energy. 

Thus, the general formula for the ∆𝑣 is: 

 

 ∆𝑣 = |∆𝑣𝑐| (1-76) 

 

 

Rewriting the formula that we found: 

 

 

√
𝜇

𝑟0
−√

𝜇

𝑟
= 𝑎𝑡 (1-77) 

 

 

And solving for 𝑟, we get: 

 

 𝑟 =
𝑟0

(

 1 −
𝑎𝑡

√
𝜇
𝑟𝑜)

 

2 =
𝑟0

(1 −
𝑎𝑡
𝑣𝑐𝑜
)
2 

(1-78) 

 

 

This formula shows how the radial distance “spirals out” in time, in fact one can say that 𝑟 → ∞ for 𝑡 =
𝑣𝑐𝑜

𝑎
, 

that is another way to refer to the “escape velocity”. In this case, anyway, the orbit is no longer circular, so 

the result is not very precise, but it gives an idea of the problem. 

If we now calculate the radial and the tangential component of the velocity: 

 

 

𝑣𝑟 = �̇� =

2𝑎
𝑣𝑐𝑜

𝑟0

(1 −
𝑎𝑡
𝑣𝑐𝑜
)
3 (1-79) 

 

 

 
𝑣𝜃 = 𝑟�̇� = √

𝜇

𝑟
= √

𝜇

𝑟0
− 𝑎𝑡 = 𝑣𝑐𝑜 (1 −

𝑎𝑡

𝑣𝑐𝑜
) (1-80) 
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we can get the Overall Kinetic Energy: 

 

 
𝑣2

2
= �̇�2 + (𝑟�̇�)

2
=
𝑣𝑐𝑜

2

2

[
 
 
 

(1 −
𝑎𝑡

𝑣𝑐𝑜
)
2

+
4(

𝑎𝑟0
𝑣𝑐𝑜

2)
2

(1 −
𝑎𝑡
𝑣𝑐𝑜
)
6

]
 
 
 

 (1-81) 

 

 

and knowing that the Escape Point is defined having Zero Total Energy, after some passages we find: 

 

 

 
1 −

𝑎𝑡

𝑣𝑐𝑜
= (2𝜈)1 4⁄  (1-82) 

 
 
Where we defined the Ratio of Thrust to Gravity : 
 

 𝜈 =
𝑎
𝜇
𝑟0
2

 
(1-83) 

 
 
Hence, finally, since 𝑎𝑡 = ∆𝑣 we get: 
 

 ∆𝑣𝑒𝑠𝑐 = 𝑣𝑐𝑜[1 − (2𝜈)
1 4⁄ ] = 𝑣𝑐𝑜[1 − 0.79𝜈

1 4⁄ ] (1-84) 

 
 
With these equations we just gave an idea of the ∆𝑣 required to perform a Low-Thrust Spiral Climb to the 

point you can escape the Gravitational Force of the planet. 

 

LAST CONSIDERATION ABOUT ELELCTICAL THRUSTERS 
 
We have just calculated some important parameters like the Efficiency and the Specific Impulse of a Rocket. 

Until now we have considered the efficiency- 𝜂- as a constant, independent of the choice of the Specific 

Impulse-  𝐼𝑠𝑝. This is not correct, in general, for Electric Thrusters where the physics of the gas acceleration 

process can change significantly as the power loading (hence the jet velocity) is increased. 

In general, we can typically establish a connection between 𝜂 and c: so that 𝜂 = 𝜂(𝑐). For example, 𝜂 

increases with c in both ion and MPD thrusters, whereas it typically decreases with c in arcjets (beyond a 

certain c). 

Just to have an idea, we can calculate the efficiency for Ion Engine: Ion Engine can be fairly well characterized 

by a constant voltage drop per accelerated ion. If we call this ∆ 𝜙 and singly charged ions are assumed, the 

energy spent per ion- 𝐸𝑖- is: 
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𝐸𝑖 =

1

2
𝑚𝑖𝑐

2 + ∆ 𝜙 (1-85) 

 

 

where we consider: 

• 𝑚𝑖- Ion Mass; 

• e- Electron Charge; 

 

and where only the first part of the Energy- 
1

2
𝑚𝑖𝑐

2 is useful. 

So, the efficiency- 𝜂 - is: 

 

 
𝜂 =

𝑐2

𝑐2 +
2𝑒∆ 𝜙
𝑚𝑖

 (1-86) 

 

 

However, we should also include a factor- 𝜂0 < 1 to account for power processing and other losses. We then 

have: 

 

 
𝜂 = 𝜂0

𝑐2

𝑐2 + 𝑣𝐿
2

 (1-87) 

 

 

where 𝑣𝐿 is a "Loss Velocity", equal to the velocity to which one ion would be accelerated by the voltage 

drop ∆ 𝜙. With this last expression we can notice, first of all, the importance of a high atomic mass propellant: 

∆ 𝜙 is insensitive to propellant choice, and so 𝑣𝐿 can be reduced if 𝑚𝑖 is large. Then, we can also notice the 

rapid loss of efficiency when c is reduced below 𝑣𝐿. 

 

Hence, as we anticipated, the efficiency of an electrical thruster highly depends on the exhaust speed. 

 

In this chapter, we have seen some general equations about Propulsion and made a comparison between 

chemical and electrical thrusters. This lead us to the conclusion that, in specific cases and depending on the 

requirements, such as interplanetary transfers, electrical thruster are more convenient than chemical ones 

because they provide higher Specific Impulses and therefore need less propellant. 

In the next chapter, we will give an overview of the current state of the art of electrical thursters. 
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CHAPTER 2: ELECTRIC PROPULSION 
 

As discussed before, the Electric Propulsion shows multiple advantages compared with the chemical one. 

The idea of Electric Propulsion for spacecraft dates back to 1911, from a publication made by Konstantin 

Tsiolkovsky. Earlier, Robert Goddard has noted such a possibility in his personal notebook, but the first 

design of an electric thruster was made just in 1948 and the first experiments in the 50s, just in laboratory 

and with a reduced power. 

It was in the 60s that the interest of the scientific community for that field grew up and numerous research 

centers started to develop this kind of thrusters: the first in-space demonstration of Electric Propulsion was 

one of the two engines carried on board the SERT-1 (Space Electric Rocket Test 1) spacecraft, launched on 

the 20th of July 1964, which produced the expected thrust, showing the applicability of that new technology. 

It was an ion engine and it operated for 31 minutes. 

Then, on the 3rd of February 1970 the SERT-2 was launched, carrying on two ion thrusters that operated for 

a long time: one for more than 5 months and one for almost 3 months. 

In 1973 Dr. Tony Martin considered electrically powered propulsion with a nuclear reactor for the 

interstellar Project Dedalus, but the novel approach was rejected because of the very low thrust, the big 

weight needed to convert nuclear energy into electrical equipment and a small acceleration. 

Then, because of the reduction of money given for the space research after the conclusion of the Apollo 

Program, also the Electric Propulsion was set aside in the Occident, but luckily, in the 90s they restarted to 

study it again, and finally, from the following decade the use of Electric Thrusters started to become concrete: 

by the early 2010s, many satellite manufacturers were offering electric propulsion options on their satellites 

(especially for Attitude Control), while some commercial communication satellite operators were beginning 

to use them for GEO insertions. 

 

 

 
Figure 2-1: A picture of the SERT-1: we can see, on the sides, the two Electric Thrusters tested in the mission are visible 
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Figure 2-2: An Ion Thruster (at the left) and o an artist’s impression of the SMART-1 Ion Engine (at the right) 

 
Figure 2-3: An electric thruster 

 

 

CLASSIFICATION OF THE ELECTRIC THRUSTERS 
 

Electrical Thrusters can be classified based upon three categories: 

1. based on the acceleration mechanism adopted: 

• Electrothermal; 

• Electrostatic; 

• Electromagnetic; 

2. based on the operating regime adopted: 

• Stationary: if the thruster works continuously for a certain duration; 

• Pulsed: if it works for brief intervals that can be thought as impulses (so with a duration 

minor than a second), and separated by longer periods of accumulation of the energy; 
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3. based on the fluid used. The two definitions almost overlap: 

• ionic thrusters: they use an electrostatic acceleration mechanism; 

• plasma thrusters: the acceleration is mostly electromagnetic; 

There's an exception represented by the Hall Thrusters that are considered plasma thrusters. 

 

The most interesting characterization for us is the first one. 

The table below shows some important performances of the Electric Thrusters currently realized. 

 
Table 2-1: Electrical Thrusters at the state of the art 

ACCELERATION 

MECHANISM 
THRUSTER FUEL EFFICIENCY 𝑰𝒔𝒑 (𝒔) �̅� (𝑵) 

Electrothermal 
Resistojet 𝐻𝑦𝑑𝑟𝑎𝑧𝑖𝑛𝑒 − (𝑁2𝐻4) 65 − 90% ~300 (< 500) - 

Arcojet 𝐻𝑦𝑑𝑟𝑎𝑧𝑖𝑛𝑒 − (𝑁2𝐻4) 25 − 45% ~700 10−5 − 2.5 ∙ 10−6 

Electrostatic 

FEEP 𝐿𝑖𝑞𝑢𝑖𝑑 𝐶𝑠, 𝐼𝑛, 𝐻𝑔  5000 − 8000 10−5 − 2.5 ∙ 10−6 

Ion 𝑋𝑒 𝐺𝑎𝑠 40 − 80% 3000 3 ∙ 10−2 

RIT - - 3400 − 3700 3.5 ∙ 10−3 

Helicon Double Layer 𝐴𝑟, 𝐾𝑟, 𝑋𝑒, 𝐻𝑒, 𝐻 𝐺𝑎𝑠 - ~10000 ~10−3 

Hall (SPT, PPT, ALT) 𝑋𝑒, 𝐵𝑖 𝐺𝑎𝑠 35 − 60% 1000 − 3000 10−2 − 1.5 

Colloidal 

𝑃𝑙𝑒𝑥𝑖𝑔𝑙𝑎𝑠 − (𝐶5𝑂2𝐻8)𝑛,

𝑇𝑒𝑓𝑙𝑜𝑛 − (𝐶2𝐹4)𝑛 𝑛

, 

𝑃𝑜𝑙𝑦𝑚𝑖𝑑, 

𝑆𝑖𝑙𝑖𝑐𝑜𝑛𝑜𝑟𝑔𝑎𝑛𝑖𝑐𝑠 

60 − 70% 1000 − 2000 - 

Electromagnetic 

MPD, LFA 𝐻, 𝐴𝑟, 𝑁𝑎, 𝐴𝑙 𝐺𝑎𝑠 - 1000 − 10000 20 − 200 

ElPT - - 1000 − 10000 10−3 − 100 

PPT 𝑇𝑒𝑓𝑙𝑜𝑛 − (𝐶2𝐹4)𝑛 7 − 13% 850 − 1200  

  

 

Now we’re going to describe the most used of them. 

 

 

2.1.1.2. Electrothermal Thrusters 

 

In the old URSS Electrothermal thrusters had been used from the 1971. 

As we said, the acceleration mechanism of these systems is the same of the chemical thrusters: the fuel is 

heated in a proper compartment inside the engine- very similar to the combustion chamber- and, then, 

expanded in a nozzle; hence the thermal energy is converted in kinetic energy and finally transformed into 

Thrust. 
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The main difference between an Electrothermal Thruster and a Chemical one is about the way the gas is 

heated: in the former by a resistance in contact with the engine- Resistojet- or by an electric arc produced 

in the gas through the application of a ∆𝑉- Arcojet- while in the latter by a chemical reaction of the fuel. 

These systems are characterized by low 𝐼𝑠𝑝 even though much higher than those of the cold fuel thrusters 

and of some chemical rockets and, in general, it's preferred to have gases with a low molecular weight (like 

Hydrogen- 𝐻-, Helium- 𝐻𝑒-, and Ammonia- 𝑁𝐻3). 

 

 

Resistojet 

 

The Resistojet was first used in 1965 on board of the military spacecrafts VELA, then, for commercial use, 

from the 1980 with the launch of the first satellite of the INTELSAT-V program and, currently, it’s used 

mostly for: 

• Orbit Insertions; 

• Attitude Control; 

• De-orbit of LEO satellites; 

• In situation where energy is much more plentiful then mass and where propulsion efficiency needs 

to be reasonably high but low thrust is acceptable; 

It’s a thruster where the fuel is heated by a resistance that consists of a hot glowing filament in a proper 

chamber before entering the nozzle and being exhausted from it as Thrust. 

 

 

 
Figure 2-4: A Resistojet scheme 
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Figure 2-5: A Resistojet 

 

 

Arcjet 

 

In the Arcjet an electric discharge or “arc” is generated on the fuel (Hydrazine- 𝑁2𝐻4 or Ammonia-𝑁𝐻3), so 

more energy is supplied to extract more work from every kg of propellant at the expense of an increased 

power consumption. 

The thrust is low respect to the chemical thrusters. If the electric energy available on board is enough, an 

arcjet adapts to maintain the position of the vehicle in orbit and may replace the rockets monopropellant. 

In German, at the Institute of Space Systems Aviation of the University of Stoccarda the researchers 

developed various arcjets powered by hydrogen that can produce from 1 𝑡𝑜 100 𝑘𝑚/𝑠 of Power. The heated 

hydrogen can reach velocities slightly lower than 16 𝑘𝑚/𝑠. 

Arcjets can acquire power from solar cells or batteries. 

The Hydrazine is the most used fuel because it can be used in a chemical thruster of the same spacecraft as 

a backup of the arcjet. 

 

 

 
Figure 2-6: An Arcjet scheme 
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Figure 2-7: An Arcjet 

 

 
2.1.1.3. Electrostatic Thrusters 

 

In the Electrostatic Thrusters the fuel, after being ionized, is accelerated mostly by the Coulomb Force, so 

after the application of an electrostatic field in the direction of the acceleration. Magnetic fields are used 

only for auxiliary purposes in the ionization chamber. 

The electrostatic force, per unit area (or energies per unit volume) are of the order of  
1

2
휀0𝐸

2, where 𝐸 is the 

strength of the field 𝑉/𝑚 and 휀0 the Permittivity of the vacuum, that values 휀0 = 8.85 ∙ 10
−12 𝐹/𝑚. 

Typical maximum fields are of the order of 106 𝑉/𝑚, yielding maximum force densities of roughly 5 𝑁 ∙ 𝑚 =

5 ∙ 10−5 𝑎𝑡𝑚. 

The production of ions- electrically charged particles- for acceleration is achieved through several methods, 

like the more conventional electron bombardment or the electron cyclotron resonance, or others like 

contact ionization, radiofrequency ionization, which electrically charges atoms from an onboard fuel supply. 

This fuel supply is an inert gas, mostly Xenon or krypton, which is injected into the ionization chamber and 

then expelled for propulsion. 

These kind of systems provide relatively  high 𝐼𝑠𝑝, which have a value included between 1000 𝑠 and 10000 𝑠, 

high efficiencies ranging between 55%− 98%, but low thrusts. 

 

All the ion thrusters take advantage from the charge-mass rate of the ions. This rate mean that also relatively 

low ∆𝑉 can create high exhaust velocities. This reduces the quantity of mass requested, but increases the 

necessary specific power so, in these systems, the 𝐼𝑠𝑝 is high and the Thrust �⃗� is low and, consequently, few 

acceleration is provided because the masses of the charge electric units are directly proportional to the 

quantity of energy furnished. 

So, the ion thrusters are not suitable for vehicle launches, but just for deep space missions. 

Then, most of them, can manage just little quantity of fuel: the electrostatic grid ion thrusters, for instance, 

suffer from “Space Charge Effects” in big flows. 

The low acceleration implies the need to have a continuous Thrust for a long time so that to have an 

acceptable ∆𝑣, so the these thrusters should last from weeks to years. 

The most used fuels are characterized by molecules or atoms with high mass to ionizing energy rate. The 

ionizing rate, in fact, has to be low. 

They mustn’t contaminate the vehicle and they mustn’t have a high erosive rate. 
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They can be divided in Electrostatic and Electromagnetic thrusters and the difference between them is about 

the way the ions are accelerated. 

 

 

Field Emission Electric Propulsion- FEEP 

  

The Field Emission Electric Propulsion is an ionic thruster that uses liquid metal- mostly Cesium- 𝐶𝑠- or 

Indium-𝐼𝑛- as a fuel. 

It consists of two electrodes:  an emitter and an accelerator. 

A ∆𝑉~10 𝑘𝑉 is applied between the two electrodes to generate a very high electric field on the tip of the 

metal surface. 

The electric field extracts the ions that are then accelerated at high velocity (usually more than 100 𝑘𝑚/𝑠). 

A separated electron source is requested to maintain the vehicle electrically neuter. 

The Thrust, as we said, is very low (~𝜇𝑁 −𝑚𝑁). 

The FEEP is mostly used for very accurate attitude control (~𝜇𝑟𝑎𝑑) on space vehicles. It usually represents 

the only valid option for drag-free satellite applications like LISA, where the Thrust requests high precisions 

(~𝜇𝑁) and a wide range (0.1 − 150𝜇𝑁). 

The higher thrusts are used for the attitude control and for the orbital maintenance in little commercial 

spacecrafts. 

 

 
Figure 2-8: A FEEP scheme 
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Figure 2-9: The EVT3 

 

 

Ion Thruster 

 

These thrusters typically use Xenon gas that has no charge and is ionized after being bombarded with 

electrons coming from a very hot cathode. The ionization creates ions positively charged thanks to the loss 

of one electron. These ions then diffuse through the positive grid and enter in a zone that is characterized by 

a ∆𝑉 between the positive and negative grids (the anode is the positive grid and the cathode is the negative 

one). This ∆𝑉 accelerate the ions at very high high velocity, which cross the negative grid creating the Thrust. 

In the external part of the thruster there’s a neutralizer, that is a device that emits electrons that will couple 

with the retiring ions to neutralize them. This operation is made to avoid the ion beam to come back to the 

vehicle and so annulling the thrust. 

So we can summarize the main steps as follows: 

1. The atoms of the fuel are injected  into the propulsion chamber and then bombarded by electrons 

with an electric gun, so causing the loss of one electron per atom (or two sometimes), transforming 

them in ions. The walls and the grid absorb the lost electrons; 

2. The ions move to the exit of the combustion chamber thanks to the diffusion, then they exit in a 

plasma shell or over the positive grid; 

3. After entering the shell, the ions are between the two grids at the exit of the chamber and they are 

accelerated electrostatically in the from the positive grid to the negative; 

4. The positive grid has  a potential 𝑉+ higher than the negative (that attracts the ions). Those, when 

get close to the negative grid, are then attracted to its aperture and they finally exit; 

5. The expelled ions push the spacecraft in the direction opposite to their motion, thanks to the 3rd 

Newton Law: Principle or Action and Reaction; 

6. A cathode, called neutralizer shoots electrons to the ions to have the same quantity of positive and 

negative charges expelled to avoid a net gain of charge; 
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Figure 2-10: An Ion Thruster Scheme 

 

 

 
Figure 2-11: An Ion Thruster 

 

 

We can spend few words about the performance of this thrusters: the Ion Thruster accelerates ions to a 

velocity close to 100 𝑘𝑚/𝑠. However, the ion optics are constantly bombarded by the ions of the fuel, so 

after a certain period they start to erode or they detach, reducing the duration of the operation of the engine. 

That’s a problem because ion engine must last for many years efficiently and continuously. 

That’s why, for example, is used Xenon, that, even if it’s very difficult to find in nature and so very expensive, 

is less erosive of Mercury or Cesium, that were used in the first tests made in the 60s and 70s. 

 

Some variation of this thruster have been created. One, in particular, is interesting: it’s an engine created 

thanks to the partnership between the European Space Agency- ESA- and the Australian National University 

that has improved the performances of the classic model. This engine in fact can accelerate the exhausts to 

a velocity close to 210 𝑘𝑚/𝑠 and create an 𝐼𝑠𝑝 that is 4 times the one of the previous model. 
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The conventional Ion Thrusters use only two grids: one at high voltage and one at low. These grids, as we 

said, can accelerate and extract the ions. However, when the ∆𝑉 between them reaches 5 𝑘𝑉 some of the 

particles extracts by the chamber collide with the low voltage grid, eroding it and compromising le longevity 

of the engine. 

This problem has been by-passed successfully using two couples of grids: the first one, that has a ∆𝑉~3 𝑘𝑉 

(so, high voltage), extracts the particles, while the second one, that operates at a low voltage, accelerates 

the particles, creating the Thrust. 

Another advantage is a more compact design, so that it’s possible to create a bigger thruster to have a higher 

Thrust. In this way, the exhaust plume can be thinner and less divergent of about 3° (so 5 times thinner than 

the previous model). 

 

 

 
Figure 2-12:A  Grid Geometry (at the top) and a Potential Variation (at the bottom) of an Ion Thruster 

 

 

Other variants of the Ion Thruster depend on the way the atoms are ionized. They’re developing different 

techniques, as the use of microwaves to heat the fuel enough to obtain the plasma: the advantage is about 

the absence of the cathode (that can break or erode) increasing in this way the time of life of the thruster. 

Other improvements are focused on the grid, so it does not break. 
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Radio Frequency Ion Thruster-RIT 

 

A variant of the Ion Thruster is the Radio Frequency Ion Thruster (RIT), that combines the principal 

advantages of any gridded ion engine with those given by the ion generation provided by high frequency 

electromagnetic fields. 

This Thruster, unlike the gridded ion version, don’t need a hot cathode inside the thruster’s ionization unit. 

The propellant is ionized by electromagnetic fields, so the ionizer chamber, that is a vessel made of an 

isolating material, is surrounded by an RF-coil, that induce an axial magnetic field. The primary magnetic field 

induces a secondary one, according to the Maxwell’s Law, in which the electrons gain the energy to ionize 

the fuel. 

The mostly used fuel is Xenon, and the mass flow can be varied over an extremely wide range. The frequency 

is in the range of 𝐻𝑧. 

This thruster is suitable for systems where fast changes of thrust level are necessary. The desired Thrust, in 

fact, is reachable faster than milliseconds by simply changing the applied RF-power. 

 

 

 

 

 

 

 

 

Figure 2-13: A RIT Thruster (at the right) and a RIT Thruster scheme (at the left) 
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Figure 2-14: A RIT Thruster 

 

 

Helicon Double Layer Plasma Thruster 

 

A Helicon Double-Layer Thruster (HDLT) is a plasma thruster that works thanks on the so called “Double-

Layer Plasma”, a structure in a plasma that consists of two parallel layers with opposite electrical charge. 

The sheets of charge cause a strong electric field and so a sharp change in electrical potential across the 

double layer. In the double layer, ions and electrons are accelerated, decelerated, or reflected by the electric 

field. 

Thus, the main consequence of a double layer, is to separate regions of plasma with different characteristics. 

The double layers can be classified in three categories, depending on: 

• the Strength of the Double-Layer- that is expressed as the ratio of the potential drop in comparison 

with the plasma's equivalent thermal energy. A double layer is said to be “strong” if the potential 

drop across the layer is greater than the equivalent thermal energy of the plasma's components, 

otherwise it is considered “weak”. 

• the Potential Drop of the Double-Layer- that differentiate Double-Layers in Relativistic and Non-

Relativistic: a Double-Layer is said to be “Relativistic” if the potential drop over the layer is so large 

that the total gain in energy of the particles is larger than the rest mass energy of the electron, 

otherwise, the Double-Layer is said to be “Non-Relativistic”. In case it is Relativistic, it results in the 

location of the charge density in two very thin layers inside which the double layer the density is 

constant at and very low compared to the rest of the plasma. 

• The Way this double layer is generated- that divides Double-Layers in “Current carrying” and” 

Current-free”. The former may be generated by current-driven plasma instabilities which amplify 

variations of the plasma density. The latter, instead, forms on the interface between two plasma 

regions with different characteristics, and its associated electric field maintains a balance between 

the penetration of electrons in either direction (so that the net current is low). 

 

In a Helicon Double-Layer Thruster a very high ionized gas is ejected to provide Thrust. The gas- that can be 

Argon, Krypton, Helium, Hydrogen or Xenon- is injected into a tubular chamber with an open end, while radio 

frequency AC power is coupled into a specially shaped antenna wrapped around the chamber. The antenna 

emits an electromagnetic wave, causing the breaking down of the gas and the consequent formation of a 

plasma. The antenna then excites a helicon wave in the plasma, heating it more. The device is characterized 

by a constant magnetic field in the source tube but, away from the source region, it rapidly decreases in 

magnitude, behaving like a sort of “magnetic nozzle”. This causes a sharp boundary between the high-density 

plasma inside the source region, and the low-density plasma in the exhaust, which is associated with a sharp 

http://en.wikipedia.org/wiki/Potential_difference
http://en.wikipedia.org/wiki/Thermal_energy
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change in electrical potential. The plasma properties change rapidly across this boundary, as a current-free 

electric double layer. 

The electrical potential, much higher inside the source region than in the exhaust, confines most of the 

electrons and accelerate the ions away from the source region. In the end of this process, part of the 

electrons escapes the source region to neutralize the plasma. 

Like the others Electrostatic Thrusters, the HDLT is characterized by a high 𝐼𝑠𝑝 and low Thrust. 

Its primary application is for station-keeping maneuvers, long LEO to GEO orbit transfers and deep space 

applications. 

 

 

 
Figure 2-15: An HDL Thruster scheme 

 

 

 
Figure 2-16: An HDL Thruster 

 

 

Hall Thrusters 

 

The Hall Thruster is one of the most efficient Thrusters currently used. It’s an electrostatic ion accelerator in 

which the grid system is replaced with a relatively strong magnetic field perpendicular to the flow, that blocks 

the counter-flow of electrons in the accelerating field. 
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It was studied independently in USA and URSS in the 50s and 60s, but it was developed in a very efficient 

thruster just in the ex URSS, while in USA they were abandoned when it became apparent that there were 

strong instabilities which could not have been completely and, when, some additional work in Germany 

indicated higher effective plasma collisionality than had been expected.  

The URSS developed two kind of Hall Thrusters: 

• Thrusters with wide acceleration zone- SPD/SPT (Stationary Plasma Thrusters); 

• Thrusters with narrow acceleration zone- DAS/TAL (Thrusters with Anode Layer); 

The SPT, mostly developed by I. Morozov in the Kurchatov Institute of Moscow, has been used since 1972 

and mostly for satellite stabilization N-S, E-W direction. Progressively more efficient configurations evolved 

there, and it was realized that the instabilities, while present and annoying, did not materially interfere with 

performance. 

The thrust of the first generation SPT was about 20 − 30 𝑚𝑁 (they were called SPT-50 and SPT-60 

respectively). In 1982 the SPT-70 and the SPT-100 have reached a Thrust of about 40 𝑚𝑁 and 83 𝑚𝑁. 

In the post URSS Russia high power thrusters that could reach few 𝑘𝑊 were introduced (SPT-140, SPT-160, 

SPT-180, T-160), and also low power thrusters that reached a power of about that could reach few < 500𝑊 

were introduced (SPT-35). 

By the early 1980’s, these thrusters have flown in over 50 missions of the URSS, which, however, were limited 

to relatively small total impulses. Starting in 1991, with the complete removal of the earlier communications 

barrier, development has re-started in USA greatly improving its performances. 

 

The Hall Thruster consists of a coaxial annular cavity where plasma is created by passing current between the 

annular anode on the upstream end of an otherwise dielectric cavity and the externally located cathode. 

The propellant enters this plasma cavity via an annular manifold at the anode. A radial magnetic field is 

applied, either by ring-shaped permanent magnets, or through coils and soft iron yokes. The magnetic field 

greatly slows down the axial mean velocity of the electrons which, due to the low collisionality prevailing, are 

forced to execute an  �⃗⃗�  ×  �⃗⃗� drift around the annulus, while being radially confined by sheaths on the 

insulating walls. 

The ions instead, are only weakly affected by the magnetic field, because of their higher mass and, if the 

density is low enough that collisions are rare, are simply accelerated by the electrostatic field to an exit 

velocity: 

 

 

𝑐𝑖 = √
2𝑒𝑉

𝑚𝑖
 (2-2) 

 

 

where V is the potential where the ion is created (respect to the outside potential). 

Because of its quasi-neutrality, thanks of the presence of the electrons, no space-charge limitation arises in 

this type of thruster (unlike the gridded ion thrusters), and the acceleration distance can be several 

centimeters, compared to the typical 0.5 −  1 𝑚𝑚 gap used in electrostatic gridded ion engines. This is one 

of the main advantages of the Hall Thruster and, then, it also removes the strong thrust density limitation 

dictated by the Child-Langmuir Law in Electrostatic Gridded Ion Engines. 

Electrons also travel axially across the B field under the influence of the applied axial �⃗⃗� field. They are then 

collected by the upstream anode, and pumped by the power supply to an external cathode. The emitted 
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electrons mainly couple with the accelerated ions to neutralize the beam, but a fraction, that must be 

minimized, also diverts upstream into the accelerator section. 

As we said, the ions are simply accelerated by the electrostatic field �⃗⃗� but, since the ions are in a quasi-

neutral plasma, an equal and opposite electrostatic force is applied to the free electrons in that zone that, 

thanks to the applied radial magnetic field �⃗⃗�, drift azimuthally (so perpendicular to �⃗⃗� × �⃗⃗�) with enough 

velocity to create an equal and opposite magnetic field on themselves. So, calling 𝑥 the forward axial 

direction: 

 

 −𝑒[�⃗⃗� + �⃗�𝑒 × �⃗⃗�] = 0 (2-3) 

 

 

 
⟹ �⃗�𝑒,𝐷𝑟𝑖𝑓𝑡 = −

�⃗⃗� × �⃗⃗�

𝐵2
 (2-4) 

 

 

 
⟹ �⃗�𝑒,𝜃 = −

�⃗⃗�𝑥

�⃗⃗�𝑟
 (2-5) 

 

 

with 𝐵 = |�⃗⃗�|. 

As we said above, the  ions doesn’t have this azimuthal drift motion, so a net azimuthal current density called 

Hall Current arises: 

 

 
𝑗𝐻𝑎𝑙𝑙 = −𝑒𝑛𝑒�⃗�𝑒,𝐷𝑟𝑖𝑓𝑡 = 𝑒𝑛𝑒

�⃗⃗� × �⃗⃗�

𝐵2
 (2-6) 

 

 

Given a 𝑗𝐻𝑎𝑙𝑙 current in a plasma, the magnetic force density- called Lorentz Force-acting on it is: 

 

 𝑓 = 𝑗𝐻𝑎𝑙𝑙 × �⃗⃗� == −𝑒𝑛𝑒�⃗�𝑒,𝐷𝑟𝑖𝑓𝑡 × �⃗⃗� (2-7) 

 

 

 ⟹ 𝑓 = +𝑒𝑛𝑒�⃗⃗� (2-8) 

 

 

The duality of this system is just in this last formula: the device is a Hall Thruster, but an Electrostatic 

accelerator. 

 

The performances and the characteristics of this thruster are the following: 

• Efficiency: High-50-60 %; 
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• 𝐼𝑠𝑝~1200 − 1800 𝑠 (12 − 18
𝑘𝑁𝑠

𝑘𝑔
); 

• 
�⃗�

𝑃
 rate: 50 − 70 𝑚𝑁/𝑘𝑊; 

• ∆𝑉~300 𝑉 between the cathode and the anode; 

• The electrons that ionize the fuel has an energy of about 10 − 20𝑒𝑉 (𝑜𝑟 100000 − 250000 °𝐶). 

Once ionized most of the ions has a charge that is +1, while a little fraction (about 10 %) has a charge 

that is +2;  

• About the 30% of the discharge current is an electronic current that doesn’t produce Thrust. The 

other 70% of the current is an ion current. Since most of the electrons is trapped by the Hall Current, 

they have a long parking period inside the thruster and so they can ionize about ~90% of the fuel. 

So: 

➢ 𝐼𝑜𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦~90%; 

➢ 𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦~70%; 

➢ 𝑇𝑜𝑡𝑎𝑙 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦~63%; 

• The thrust is low respect to the chemical thrusters ~80 𝑚𝑁; 

• 𝐼𝑠𝑝|𝐻𝑎𝑙𝑙 𝑇ℎ𝑟𝑢𝑠𝑡𝑒𝑟
> 𝐼𝑠𝑝|𝐼𝑜𝑛 𝑇ℎ𝑟𝑢𝑠𝑡𝑒𝑟𝑠

; 

• The acceleration and the generation of the ions happen in a quasi-neutral plasma so there’s no  Child-

Langmuir Charge (Space Charge) saturated current limitation on the Thruster. This allows for much 

smaller thrusters compared to gridded ion thrusters. 

• The fuel is injected through the anode that has multiple little wholes to work as a gas distributor. The 

Xenon is the most used because of its high molecular weight and low ionization energy.  Many 

different fuels can be injected (also the Oxygen) in the anode, but the cathode needs a fuel that can 

be easily ionized. Now they’re starting using the Bismuth because is cheap, it has a high molecular 

weight and a low partial pressure; 

 

The Hall Effect Thruster has been used in the SMART-1 of the ESA (Snecma PPS-1350-G1), with a life time of 

13 months, 289 impulses of the engine, 58.8 kg of Xenon spent and a ∆𝑣 =

2737
𝑚

𝑠
(46.5

𝑚

𝑠
𝑝𝑒𝑟 𝑘𝑔 𝑜𝑓 𝑋𝑒𝑛𝑜𝑛) and it will be used in the Bepi Combo mission. 

 

 

 
Figure 2-17: A Hall Thruster scheme 

 



34 
 

 

 

Figure 2-18: Hall  Effect Thrusters 

 

                     

 

 

 

 

Colloidal Thruster 

 

A new type of Electrostatic Thruster has been developed: the Colloidal Thruster. It works thanks of charged 

liquid droplets produced by an electro-spray process and then accelerated by a static electric field. The fuels 

typically used for this application are cheap and convenient- Plexiglas, Teflon, Poly-mid and Silicon-organics- 

and they tend to be a low-volatility ionic liquid. 

The performances, like all the Electrostatic Thrusters, are: 

• Micro Thrust; 

• Low Thrust cost; 

• High Thruster Efficiency: 𝜂 ~ 60 − 70%; 

• High Specific Impulse: 𝐼𝑠𝑝 ~1000 − 2000 𝑠; 

• Moderate exhaust velocities: 𝑣 ~ 40 − 400 𝑚/𝑠; 

• Potential: ∆𝑉 ~ 15 − 25 𝑘𝑉; 

• Temperature Density: ~ 200 − 10000 𝐶/𝑘𝑔; 

• Life time: 𝑡 ~ 2000 − 3000 ℎ; 

 

 

http://en.wikipedia.org/wiki/Ionic_liquid
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Figure 2-19: A Colloidal Thruster scheme 

 

 

 
Figure 2-20: A Colloidal Thruster 

 

 

2.1.1.4. Electromagnetic Thrusters 

 

As we said previously, Ion Engine and Colloidal Thrusters are Electrostatic Thrusters because the electrostatic 

forces that accelerates ion (or droplets in case of Colloidal Thrusters) are also directly felt by some electrode 

and this is how the structure receives thrust. Considering that the Thrust Density of an Ion Engine has a 

magnitude of: 

 

 
𝐹𝐴 =

1

2
휀0𝐸𝑎

2 (2-9) 

 

 

being 𝐸𝑎 the field on the surface of the extractor electrode and having a magnitude of: 
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𝐸𝑎 =

4

3

𝑉

𝑑
 (2-10) 

 

 

Since 휀0 = 8.85 ∙ 10
−12 𝐹

𝑚
 and 𝐸𝑎 is not usually more than 2000 

𝑉

𝑚𝑚
, we are limited to Electrostatic Pressure 

of about 20 
𝑁

𝑚2 (and due to various inefficiencies more like 1 − 2 
𝑁

𝑚2). 

Hall Thrusters occupy an intermediate position, because ions are accelerated electrostatically but electrons, 

which see the same (and opposite) electrostatic force because of the quasi-neutrality of the plasma- 𝑛𝑖 =

𝑛𝑒-, are essentially stopped axially by an interposed magnetic field. So, at the end, most of the force is 

magnetically transmitted. In this case there’s still an electrostatic field in the plasma and, so, there will be 

some electrostatic pressure acting on various surfaces, with a magnitude of: 

 

 
𝐹𝑁 =

1

2
휀0𝐸𝑛

2 (2-11) 

 

 

But because of the quasi-neutrality of the plasma these fields are much weaker than they are between the 

grids of an ion engine and it’s just thanks of the magnetic mechanism that we can reach thrust densities 10 

times higher than those of ion engines, despite the weak electrostatic fields. 

Hence, we can ask how much stronger can be the force per unit area on some structure when it is transmitted 

magnetically as compared to electrostatically. 

The counterpart of the Electrostatic pressure is the Magnetic Pressure- 
𝐵2

2𝜇0
-, were 𝐵 is the Field Strength and 

𝜇0 = 1.256 ∙ 10
−6  

𝐻

𝑚
 is the Permeability of Vacuum. 

If we don’t recourse to superconductive structures 𝐵 can be of the order 0.1 𝑇 so, the Magnetic Pressure can 

be of the order of 
𝐵2

2𝜇0
≅ 8000 

𝑁

𝑚2 . 

Thrusters that can exploit these magnetic forces are called Electromagnetic. 

The Magnetic field can be external or self-induced (when plasma becomes large enough) and it can be steady 

or varying very fast in time. 

Let’s now describe the most important Electromagnetic Thrusters. 

 

 

 

 

 

MPD/LiLFA Thrusters 

 

The Magneto Plasma Dynamic (MPD) and the Lithium Lorentz Force Acceleration (LiLFA) Thrusters are 

constructively similar.  

The operation principle of these thrusters is that the ionized gas enter the acceleration chamber where the 

magnetic and electrical fields are created using a power source. The particles are then propelled by the 

Lorentz Force resulting from the interaction between the current flowing through the plasma and the 

magnetic field (that can be externally applied or self-induced, as we said above) out through the exhaust 

chamber. So, in these thrusters, there’s no combustion. 
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The only two differences that the LiFLA and the MPD Thrusters have are: 

• While the most used propellants used by the MPD Thrusters are Hydrogen- 𝐻-, Xenon- 𝑋𝑒-, Lithium- 

𝐿𝑖-, Argon- 𝐴𝑟-, Sodium- 𝑁𝑎-, Neon- 𝑁𝑒-, Aluminum- 𝐴𝑙 and Lithium- 𝐿𝑖- (for the best performances), 

gases, the LiLFA uses Lithium Vapor- 𝐿𝑖- that can be stored in a solid form; 

• The main cathode of an MPD thruster is replaced by several little vents inserted in a cathodic hollow 

tube. In the MPD the cathode erodes very easily because of the constant contact with the plasma; in 

the LiFLA, instead, the Lithium Vapor is injected into the hollow cathode and is not ionized into its 

erosive plasma form until it goes out of the tube. The plasma is then accelerated by the Lorentz Force. 

The Specific Impulse- 𝐼𝑠𝑝- and the Thrust- �⃗�- increase with the Magnetic Pressure, while the Specific Thrust- 

�⃗�

𝑊
- decreases. 

As already said several times, there are two kind of MPD Thrusters: 

• With an External Magnetic Field; 

• With a Self-Induced Magnetic Field; 

The former is equipped with magnets or solenoids that surround the acceleration chamber to produce an 

additional component of the Magnetic Field while in the latter the Magnetic Field is entirely generated by 

the intensity of the current flowing through the cathode placed in the center of the chamber, thanks to the 

Biot-Savart Law. 

The need for Applied Magnetic Fields arises from the demand of more efficiency when the pressure is low, 

and the Self-Induced configuration is too weak; in fact, when the Magnetic pressure is too low, the Magnetic 

Field cannot reach the required intensity to get the minimum efficiency for the acceleration process. 

The advantages connected to the use of an MPD Thruster are: 

• Very high Specific Impulse: 𝐼𝑠𝑝~1000 ÷ 10000; 

• High Exhaust Velocities: 𝑣~110 𝑘𝑚/𝑠; 

• High Thrusts: �⃗�~200 𝑁 

This last point is the one that differentiates the MPD Thrusters from all the other Electric Thrusters; in fact, 

as we know, despite the big advantage of the Electric Thrusters of having very high 𝐼𝑠𝑝, we noticed that 

unfortunately they cannot provide big thrusts. Thus, the MPD has a very high potential because it combines 

both the advantages of the Electric and the Chemical Thrusters. However, everything has a cost: in fact, the 

Power required from the MPD to provide that Thrust is of the order of 100 𝑘𝑊 to have good performances. 

Of course, the current RTGs and the solar panels cannot provide such a high Power. 

Another disadvantage connected to the MPD is the erosion of the cathode due to the evaporation of the fuel 

guided by the high current density (that is more than 100 𝐴/𝑐𝑚2). 

For this reason, the use of mixtures of propellants of multiple vacuum channel cathodes of 𝐿𝑖/𝐵 have been 

tested in laboratory and it seems to be a very hopeful solution for the erosion. 

 

In the next chapters we’ll enter more in detail of the physics of an MPD Thruster. 
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Figure 2-21: Examples of MPD Thrusters (at the top and at the bottom left) and a MPD Thruster scheme (at the bottom right) 

 

                                 

 

 

                               

 

 

 

ElPT Thrusters 

 

The Electrode-less Plasma Thruster- ElPT- has two unique characteristics: 

• The Electrodes removal, that solves the problem of the erosion and so increases the life time of the 

thruster respect to other Ionic Thrusters; 

• The capacity to regulate he Thrust; 

The neutral gas is ionized by electromagnetic radiations and then transferred in another chamber where it’s 

accelerated with electric and magnetic oscillating fields using the physics behind the “Ponderomotive Force”: 

in case of interaction between matter and high intensity radiations the magnetic term of the Lorentz Force 

can be neglected because of the relativistic velocities conferred to the electrons by the high frequency fields. 

This force represents a non-linear term in the interaction because the velocity used to calculate it depends 

itself on them. 

In this thruster, the separation of the ionization and acceleration sections gives the engine the capability to 

regulate the velocity of the propellant flux combining, in this way, the amplitude of the Thrust and the 𝐼𝑠𝑝. 
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PIT Thrusters 

 

The Pulse Inductive Thrusters- PIT- has a nozzle that release a puff of gas of Ammonia- 𝑁𝐻3- or Argon- 𝐴𝑟- 

that diffuse through an induction flat coil in a wire of 1 𝑚 of diameter. Then, a group of capacitors release an 

electric current impulse that lasts about 10 𝑚𝑠 on the coil, generating a radial magnetic field that then 

induces a circular electric field on the gas, ionizing it and causing the movement of ions in the opposite 

direction respect to the one of the original current impulse. Since their motion is perpendicular to the 

magnetic field, the ions are accelerated and expelled into space. 

This device doesn’t need any electrode (that erode very easily) and its power can be increased just increasing 

the number of impulses for seconds. A system of 1 𝑀𝑏 could pulse for 200 times for seconds. 

 

 

 

 

 

 

Figure 2-22: A PIT Thruster (on the left) and a PIT Thruster scheme (on the right) 

 

                                      

 

PPT Thrusters 

 

A Pulsed Plasma Thruster- PPT- is much different from the other Electromagnetic Thrusters for its low 

realization costs, low weight, its simplicity and reliability. 

It’s called “Pulsed” because it’s based on brief impulsive discharges (so of very high intensity) that let it 

have high 𝐼𝑠𝑝 even for moderate powers. The absorbed power can be managed just regulating the 

frequency of repetitions of the impulses without modifying the performances of the engine. 

It’s mostly used in Micro-Propulsion where you need a very accurate attitude control and brief impulses but 

exact. 

His performances are: 

• 𝐼𝑠𝑝~1000 𝑠 

• Impulsive bit ~30 𝜇𝑁/𝑠 

• 𝑃~100 𝑊 

The most used material is Solid Teflon- (𝑪𝟐𝑭𝟒)𝒏- and the working principle is the following: a pipeline boot 

generates a spark on the surface of the propellant producing enough electric conductivity inside the 

acceleration chamber so as to allow the capacitors to release the energy they’d stored and then to allow 

the Teflon ablation. 
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The operating cycle starts when the Processing Power Unit (PPT) picks power from the Bus of the 

Spacecraft  and charges the capacitors bench to the desired voltage. These capacitors are connected to a 

couple of electrodes in which the Teflon bar is powered. 

Once the PPT discharge is trigged, it quickly becomes an arc and the ∆𝑉 between the electrodes reaches 

few hundreds of Volts. 

Ideally, the spread arc covers the entire surface of the propellant. The charge flows from the capacitors 

through the electrodes and the arc, creating a Charge Loop that induces a Magnetic Field. 

Thanks to the interaction of this Magnetic Field with the arc the Lorentz Force is generated, accelerating 

the thin layer of the surface of the ionized Teflon. 

A big fraction of the ablated mass remains neutral feeling the gas-dynamic effects of the acceleration. 

So, the acceleration is due to the combined effect of the gas-dynamic and electromagnetic forces. 

The gas mass reaches the exit of the channel and is expelled with a minimum heat and electromagnetic 

energy loss. 

Finally, once the capacitors bench has downloaded all the energy it was loaded, the cycle restart from the 

beginning, generating the pulsed behavior of the PPT. 

The way the propellant is injected into the Combustion Chamber should be fixed to get the desired density 

distribution and when the discharge is generated it’s important that it quickly reaches the intensity desired 

as to get a stable current layer, highly conductive and impermeable to the gas. 

 

 

 

 

Figure 2-23: A PPT Thruster (at the right) and a PPT Thruster scheme (at the left) 

 

                    

 

 

With this the PPT the description of the main Electric Thrusters is over. 

The aim of this thesis is to make an analysis of an MPD thruster so in the next chapters we’re going into 

detail of the Plasma Physics and, in particular, in the Physics of the MPD Thruster. 
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CHAPTER 3: PHYSICS OF THE ELECTRIC THRUSTERS 
 

As we said in the introduction, one of the main advantages of the Electric Propulsion is that the Electric 

Thrusters break the 𝑣𝑒 limit due to the temperature and the chemical characteristics of the fuel. 

The most efficient and powerful Electric Thrusters works thanks to the plasma. 

So let’s start with a description of plasma physics and to continue then with the MHD equation, that are more 

suitable for the description of an MPD Thruster. 

 

 

PLASMA PHYSICS GENERALITIES 
 

Plasma is considered as the fourth state of matter and, even if on the Earth is very rare to find it in nature - 

except for the Ionosphere, Boreal and austral Auroras and the lightning- it represents the quasi totality of 

the mass of the Universe, most of which is in the rarefied intergalactic regions, in particular the intracluster 

medium and stars, including the Sun. 

On the contrary, in the last decades artificial plasma has been created and used more frequently: an example 

can be represented by the neon signs. 

It is used in Space Propulsion for many reason: 

• It is globally neuter ⟹ we can abandon the neutralizers; 

• It is an easy storable propellant; 

• It is throttlable; 

It can be produced in various way, like with a capacitive-inductive source, or a wave source, it can be 

accelerated in many way, as we saw in the previous chapter, and it can be detached by a magnetic nozzle or 

a neutralizer. 
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Figure 3-1: TheNorthen Lights 

 

                         

 

 

 

 

Plasma is an ionized gas, consisting of a set of charged and neutral particles, quasi-neutral and which exhibits 

a collective behavior. 

It is important to note that, although they are unbound, these particles are not “free” in the sense of not 

experiencing forces. When the charges move, generate electrical currents with magnetic fields, and as a 

result, they are affected by each other's fields and they respond to the main Electromagnetic Laws that, for 

vacuum, are: 

 

 �⃗� = 𝑗 × �⃗⃗�  ← 𝑳𝒐𝒓𝒆𝒏𝒕𝒛 𝑭𝒐𝒓𝒄𝒆 (3-2) 

 

 

 휀0∇ ∙ �⃗⃗� = 𝜌 ← 𝑮𝒂𝒖𝒔𝒔 𝑳𝒂𝒘

∇ × �⃗⃗� = −
𝜕�⃗⃗�

𝜕𝑡
 ← 𝑭𝒂𝒓𝒂𝒅𝒂𝒚 𝑳𝒂𝒘

∇ ∙ �⃗⃗� = 0 ← 𝑵𝒐𝒏 − 𝒆𝒙𝒊𝒔𝒕𝒂𝒏𝒄𝒆 𝒐𝒇 𝒎𝒂𝒈𝒏𝒆𝒕𝒊𝒄 𝒎𝒐𝒏𝒐𝒑𝒐𝒍𝒆𝒔

∇ × �⃗⃗� = 𝜇0 (𝑗 + 휀0
𝜕�⃗⃗�

𝜕𝑡
)  ← 𝑨𝒎𝒑é𝒓𝒆 𝑳𝒂𝒘

}
 
 
 

 
 
 

 

← 𝑴𝒂𝒙𝒘𝒆𝒍𝒍 𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏𝒔 𝒊𝒏 𝒗𝒂𝒄𝒖𝒖𝒎 

(3-3) 

 

 

If we consider just the electrostatic case, with a negligible variation of the magnetic field �⃗⃗�, so: 

 

 �⃗⃗� = 𝐶𝑜𝑛𝑠𝑡; (3-4) 
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 ⟹ ∇× �⃗⃗� = 0 (3-5) 

 

 

 ⟹ �⃗⃗� = −∇�̅� (3-6) 

 

 

where �̅� is a scalar potential. 

If we substitute in the Gauss Law, we then have: 

 

 ∇2�̅� = −
𝜌

휀0
 ← 𝑷𝒐𝒊𝒔𝒔𝒐𝒏 𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏 (3-7) 

 

 

As we said, plasma is an ionized gas and the Saha Ionization Equation- also known as Saha Langmuir 

Equation- describes its  ionization state relating it to the temperature and the pressure. 

It represents the equilibrium between the ionization rate (that depends on the temperature- 𝑇) and 

recombination rate (that depends on the density- 𝜌): 

 

 𝑛𝑖
𝑛𝑛
= 2.4 ∙ 1021 =

𝑇3 2⁄

𝑛𝑖
𝑒
(−
𝑈𝑖
𝑘𝑇
)
 (3-8) 

 

 

For temperatures in the range of 300 𝐾, with a ionization grade per Newton of about 𝑈𝑖 = 14.5 𝑒𝑉 and a 

density of 3 ∙ 1025 𝑚−3, the percentage  of ionized particles is very low 
𝑛𝑖

𝑛𝑛
~10−122, so on the Earth we 

cannot observe the presence of the Plasma except for few cases. 

 

 

3.1.1.2. Quasi-Neutrality of the Plasma 

 

Saying that plasma is quasi-neuter means that the plasma is overall neuter, thus: 

 

 −𝑞𝑒𝑛𝑒 = 𝑞𝑖𝑛𝑖 ± ∆ (3-9) 

 

 

where the subscripts 𝑒 and 𝑖 indicates the electrons and the ions, respectively, and ∆ is very small. 

This is one of the main characteristic of the plasma, which reflects its capacity to remain electrically neuter. 

In fact the plasma can balance the positive negative and the charges so that 𝑛𝑖~𝑛𝑒 in any macroscopic 

element of the plasma itself. An imbalance on the local charge density will create an electrostatic force that 

will restore the charge equilibrium. 
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To understand better this concept, consider an initial stationary state where 𝑛𝑖 = 𝑛𝑒 = 𝑛0 and let’s assume 

that the plasma is cold, which means that the excitement thermal motion of the electrons and ions is 

negligible. 

Suppose now to perturb the system moving some electrons from a region to another adjacent to the first 

one: this motion will create a net positive charge behind them and, thus, an electric field- 𝐸- between ions 

and electrons. This electric field will exert a force to them to reduce their distance. 

Let’s calculate the effect of an electric field- 𝐸𝑥-, directed on the 𝑥 axis, on a single electron with a mass- 𝑚𝑒 

and an electric charge 𝑞𝑒: 

 

 
𝐹𝑒𝑙,𝑥 = 𝑚𝑒𝑎𝑥 = 𝑚𝑒

𝑑2𝑥

𝑑𝑡2
= 𝑞𝑒𝐸𝑥 (3-10) 

 

 

Now, applying the Gauss Theorem for a close rectangular surface, it can be shown that: 

 

 
𝐸𝑥 = −

𝑥𝑁𝑒𝑞𝑒
휀0

 (3-11) 

 

 

where 𝑁𝑒  is the electronic density at the equilibrium. So, substituting, we obtain: 

 

 𝑑2𝑥

𝑑𝑡2
= −𝜔𝑝

2𝑥 (3-12) 

 

 

where: 

 

 

𝜔𝑝 = √
𝑁𝑒𝑞𝑒

2

휀0𝑚𝑒
 (3-13) 

 

 

and 𝜔𝑝 is the Plasma Frequency. This means that every perturbation to the equilibrium of plasma create an 

oscillation with frequency 𝜔𝑝. Then, the oscillations of the plasma seem to interest just the zone where the 

charge imbalance has happened, without propagating in other zones of the plasma. However, in reality, the 

oscillations propagate because of thermal effects and “finite boundaries”: the electrons in fact arrive in quite 

adjacent zones, transporting an information that is closely linked to the perturbation itself. 

In a partially ionized gas where the perturbation are important , the oscillations of the plasma can happen 

just if the average time 𝜏𝑛 between the collisions is long enough respect the oscillation of the plasma, so: 

 

 𝜔𝑝𝜏𝑛 > 1 (3-14) 
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This condition is fundamental to consider an ionized gas as a plasma. 

Before proceeding further, we should review important notions like Temperature and Energy: 

 

Temperature 

 

The particles of a gas that is in thermal equilibrium have very different velocities. The most likely distribution 

is the Maxwellian Distribution: 

 

 

𝑓(𝑢) = 𝐴 ∙ 𝑒
(
−
1
2
𝑚𝑢2

𝐾𝐵𝑇
)

 
(3-15) 

 

 

where 𝐾𝐵 is the Boltzmann Constant that is: 

 

 𝐾𝐵 = 1.38 ∙ 10
−23 𝐽/𝐾 (3-16) 

 

 

and the density 𝑛 is given by: 

 

 
𝑛 = ∫ 𝑓(𝑢)𝑑𝑢

∞

−∞

 (3-17) 

 

 

The width of the distribution is characterized by the Temperature  𝑇, while the altitude depends on the 

density 𝑛: 

 

 
𝐴 = 𝑛√(

𝑚

2𝜋𝐾𝐵𝑇
) (3-18) 

 

 

and, in presence of an external potential- 𝜙 - the distribution will become: 

 

 

𝑓(𝑢) = 𝐴 ∙ 𝑒

(
−
1
2
𝑚𝑢2−𝑒𝜙

𝐾𝐵𝑇
)

 
(3-19) 

 

 

This last equation shows that there are less electrons where the potential 𝜙 is higher because, if we integrate 

respect 𝑢, not all the particles have enough energy to be there. 

Knowing that for 𝜙 → ∞⟹ 𝑛𝑖 = 𝑛𝑒 = 𝑛∞, then: 
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⟹ 𝑛𝑒 = 𝑛∞𝑒

(
𝑒𝜙
𝐾𝐵𝑇

)
 (3-20) 

 

 

 

 
Figure 3-2: f(u)-u graphic 

 

 

Average Kinetic Energy 

 

To see the exact meaning of 𝑇 we can compute the average Kinetic Energy of the particles in this distribution. 

 

 

 

𝐸𝑎𝑣 =
∫

1
2
𝑚𝑢2𝑓(𝑢)𝑑𝑢

∞

−∞

∫ 𝑓(𝑢)𝑑𝑢
∞

−∞

 (3-21) 

 

 

that, for a mono-dimensional distribution, after some calculations, becomes: 

 

 
𝐸𝑎𝑣 =

1

2
𝐾𝐵𝑇 (3-22) 

 

 

while, for the tri-dimensional case becomes: 

 

 
𝐸𝑎𝑣 =

3

2
𝐾𝐵𝑇 (3-23) 

 

 

So, as we can easily understand, the general result is that 𝐸𝑎𝑣 is equal to 
1

2
𝐾𝐵𝑇 per degree of freedom. 

Since 𝑇 and 𝐸𝑎𝑣 are so closely related, it’s common to indicate the Temperature 𝑇 in units of energy, so, 

since: 
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 1 𝐾𝐵𝑇 = 1 𝑒𝑉 = 1.6 ∙ 10
−19𝐽 (3-24) 

 

 

we then have: 

 

 
𝑇 =

1.6 ∙ 10−19

1.38 ∙ 10−23
= 11600 (3-25) 

 

 

So, we can say that 1 𝑒𝑉 = 11600 𝐾. 

It’s interesting to note that a single plasma can have different temperature at the same time. In fact, it 

happens often that electrons and ions have different Maxwellian Distributions inside the same plasma, 

because the collision rate among particles with other particles of same species is larger than the rate of 

collisions between ions and electrons. Thus, each species can have its own thermal equilibrium and, so, its 

own Temperature. However, the plasma may not last long enough for the two temperatures to equalize. 

Then, when there is a Magnetic Field �⃗⃗�, even a single species can have two temperatures because the forces 

acting perpendicular to �⃗⃗�(due to the Lorentz Force) are different from those acting along �⃗⃗�, so the 

components of the velocity perpendicular and parallel to �⃗⃗� could belong to different Maxwellian 

Distributions with different Temperatures 𝑇⊥and 𝑇⫽. 

 

 

3.1.1.3. Debye Shielding 

 

A fundamental characteristic of the plasma is its ability to shield out electric potentials that are applied to it. 

However, this characteristic is valid just in a macro-view of the plasma. As we said in the previous paragraph, 

looking at a more restricted area of the plasma, we could see that some particles having the same charge are 

grouped into “charged clouds” where the electrostatic potential is strong enough to withhold them and 

shield them from other charges, but some particles, that are at the edge of these charged clouds (where the 

electric field is weak) have enough thermal energy to escape from its electrostatic potential. That “edge” 

occurs at the radius where the Potential Energy of the particles is almost equal to their Thermal Energy- 𝐾𝐵𝑇- 

and the shielding is not complete. 
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Figure 3-3: Representation of charged clouds 

 

 

Let’s now compute the approximate thickness of this charged cloud: imagine that the potential 𝜙 in the plane 

𝑥 = 0 is held at a value 𝜙|𝑥=0 = 𝜙0 by a perfectly transparent grid, as we can see in the figure below. 

 

 

 
Figure 3-4: 𝜙(𝑥) trend 

 

 

We want to compute 𝜙(𝑥). Assume that the ion-electron mass rate- 𝑚𝑖 𝑚𝑒⁄ - is large enough that the inertia 

of the ions prevents them from moving significantly on the time scale of the experiment. 

Thus, Poisson’s Equation in one dimension is: 

 

 
휀0∇

2𝜙 = 휀0
𝑑2𝜙

𝑑𝑥2
= −𝑒(𝑛𝑖 − 𝑛𝑒) (3-26) 

 

 

where 𝑒, in this case, is the electron charge. 

If the density far away is 𝑛∞ we then have 𝑛𝑖 = 𝑛∞. 

In the presence of a Potential Energy 𝑞𝜙, the electron distribution function is: 

 

 

𝑓(𝑢) = 𝑎𝐞

−(
1
2
𝑚𝑢2+𝑞𝜙)

𝐾𝐵𝑇𝑒  
(3-27) 

 

 

where 𝐞, in this case, is the mathematical constant. 
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This equations express the physical principle that there are fewer particles at places where the potential 

energy is large since not all particles have enough energy to get there. 

Integrating 𝑓(𝑢) over 𝑢, setting 𝑞 = −𝑒 and noting that 

 

 lim
𝜙→0

𝑛𝑒 = 𝑛∞ (3-28) 

 

 

we find: 

 

 
𝑛𝑒 = 𝑛∞𝐞

𝑒𝜙
𝐾𝐵𝑇𝑒 (3-29) 

 

 

so, substituting for 𝑛𝑖 and 𝑛𝑒 in the previous equation: 

 

 
휀0
𝑑2𝜙

𝑑𝑥2
= 𝑒𝑛∞ (𝐞

𝑒𝜙
𝐾𝐵𝑇𝑒 − 1) (3-30) 

 

 

In the region where |
𝑒𝜙

𝐾𝐵𝑇𝑒
| ≪ 1 we can expand it in a Taylor series: 

 

 
휀0
𝑑2𝜙

𝑑𝑥2
= 𝑒𝑛∞ [

𝑒𝜙

𝐾𝐵𝑇𝑒
+
1

2
(
𝑒𝜙

𝐾𝐵𝑇𝑒
)
2

+⋯] (3-31) 

 

 

No simplifications are possible for the region near the grid where 
𝑒𝜙

𝐾𝐵𝑇𝑒
 may be large. However, these regions 

don’t contribute much to the thickness of the cloud because the potential falls very rapidly there. 

Thus, we have: 

 

 
휀0
𝑑2𝜙

𝑑𝑥2
=
𝑛∞𝑒

2

𝐾𝐵𝑇𝑒
𝜙 (3-32) 

 

 

 
⟹

𝑑2𝜙

𝑑𝑥2
−
𝑛∞𝑒

2

휀0𝐾𝐵𝑇𝑒
𝜙 = 0 (3-33) 

 

 

 
⟹

𝑑2𝜙

𝑑𝑥2
− (

1

𝜆𝐷
)
2

𝜙 = 0 (3-34) 
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So, we can finally define the Debye Length: 

 

 

⟹ 𝜆𝐷 = √
휀0𝐾𝐵𝑇𝑒
𝑛∞𝑒

2
 (3-35) 

 

 

and we can finally write: 

 

 
𝜙 = 𝜙0𝐞

(−
|𝑥|
𝜆𝐷
)
 (3-36) 

 

 

Thus, the Debye Length is a measure of the shielding distance or thickness of the sheath. 

We can do a couple of considerations about this last formula: 

• As the density is increased, 𝜆𝐷 decreases, since each layer of plasma contains more electrons; 

• 𝜆𝐷 increases with increasing 𝐾𝐵𝑇𝑒. In fact, without thermal agitation, the charge cloud would collapse 

to an infinitely thin layer; 

• To define 𝜆𝐷 we used the temperature of the electrons because they’re more mobile than the ions, 

so they do the shielding by moving so as to  create a surplus or a deficit of negative charge; 

 

In the previous paragraph we defined the Quasi-Neutrality of the plasma. We can now relate this 

characteristic to the Debye Shielding: if the dimensions 𝐿 of a system are much larger than 𝜆𝐷 then, 

whenever local concentrations of charge arise or external potentials are introduced into the system, these 

are shielded out in a distance short compared with 𝐿, leaving the bulk of the plasma free of large electric 

potentials or fields. Outside of the sheath on the wall or on an obstacle ∇2𝜙 is very small and 𝑛𝑖 ≅ 𝑛𝑒, so it’s 

enough a small charge imbalance to give rise to potentials of the order of 
𝐾𝐵𝑇𝑒

𝑒
. The plasma is “quasi-neutral” 

in the sense that 𝑛𝑖 ≅ 𝑛𝑒 ≅ 𝑛, where 𝑛 is the Plasma Density. 

So, at the end, an ionized gas can be considered a Plasma if it’s dense enough that 𝐿 ≫ 𝜆𝐷. 

 

The definition of Debye Shielding we’ve just given it’s valid, by a statistic point of view, only if there are 

enough particles in the charge cloud. This number can be estimated with a parameter called “Plasma 

Parameter”- 𝛬: 

 

 
𝛬 =

4

3
𝑛0𝜋𝜆𝐷

3 (3-37) 

 

 

𝛬 represents the number of particles inside a Debye Sphere. Thus, an ionized gas can be considered a plasma 

if 𝛬 ≫ 1. 

Hence, at the end, the minimal conditions to consider an ionized gas as a plasma are summarized as follows: 

• 𝜔𝑝𝜏𝑛 > 1 

• 𝐿 ≫ 𝜆𝐷 
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• 𝛬 ≫ 1 

 

 

3.1.1.4. Collective Behavior 

 

As we mentioned at the beginning of this chapter, another important characteristic of the plasma is its 

Collective Behavior. Depending on the density, a plasma behaves sometimes like a fluid  where the collective 

effects are preponderant and, sometimes, like a collection of individual particles. 

The collective behavior of the plasma is due to some phenomena that we described in the previous 

paragraph, like the Debye Shielding, and just in case the collision cross section between electrons and neuter 

particles is much lower than the collision cross section between electrons and ions. Thus, the frequency of 

the collisions with the neuter particles should be low enough so that the dynamic of the motion of the plasma 

is determined by the Electromagnetic Forces and not by those Hydrodynamic. 

Hence, what makes plasmas particularly difficult to analyze is the fact that the densities fall in an intermediate 

range. 

 

In the next paragraph we’ll start the analysis of the Plasma Physics first describing the motion of a single 

particle in an electromagnetic field, then making a panoramic of the plasma as a fluid and, finally, we’ll 

introduce the equations of the Magneto-Hydro-Dynamic. 

 

 

3.1.1.5. Motion of a Single Charged Particle in an Electromagnetic Field 

 

To make this analysis we should start with the simplest case and then continue with the more complex. 

 

 

Uniform �⃗⃗⃗� and �⃗⃗⃗� Fields 

 

As we previously said, the fundamental equation of the motion, for a charged particle under the influence of 

the Lorentz Force is: 

 

 
𝑚
𝑑�⃗�

𝑑𝑡
= �⃗�𝐿𝑜𝑟𝑒𝑛𝑡𝑧 = 𝑞(�⃗⃗� + �⃗� × �⃗⃗�) (3-38) 

 

 

where 𝑚 is the mass of the particle and �⃗� its velocity. 

We can analyze this equation studying the two different cases: �⃗⃗� = 0 or a finite �⃗⃗�. 

 

�⃗⃗⃗� = 𝟎 

 

In this case, a charged particle has a simple cyclotron gyration. Hence, the equation of the motion is: 
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𝑚
𝑑�⃗�

𝑑𝑡
= �⃗�𝐿𝑜𝑟𝑒𝑛𝑡𝑧 = 𝑞(�⃗� × �⃗⃗�) (3-39) 

 

 

Taking now �̂� to be the direction of �⃗⃗� (�⃗⃗� = 𝐵�̂�), we have: 

 

 

[

𝑚�̇�𝑥
𝑚�̇�𝑦
𝑚�̇�𝑧

] = 𝑞 |
𝑥 �̂� �̂�
𝑣𝑥 𝑣𝑦 𝑣𝑧
0 0 𝐵

| = [
𝑞𝐵𝑣𝑦
−𝑞𝐵𝑣𝑥
0

] (3-40) 

 

 

 

⟹

{
 
 

 
 
�̈�𝑥 = (

𝑞𝐵

𝑚
) �̇�𝑦 = −(

𝑞𝐵

𝑚
)
2

𝑣𝑥

�̈�𝑦 = −(
𝑞𝐵

𝑚
) �̇�𝑥 = −(

𝑞𝐵

𝑚
)
2

𝑣𝑦

 (3-41) 

 

 

This formulas describe a simple harmonic oscillator at the cyclotron frequency, defined as: 

 

 
𝜔𝑐 =

|𝑞|𝐵

𝑚
 (3-42) 

 

 

where we have chosen, by convention, 𝜔𝑐 as always positive. 

The solution of these equations is then: 

 

 

{

𝑣𝑥 = 𝑣⊥ cos(𝜔𝑐𝑡 + 𝛿)

𝑣𝑦 = 𝑣⊥ sin(𝜔𝑐𝑡 + 𝛿)
𝑣𝑧 = 𝑣⫽

 (3-43) 

 

 

where 𝛿 is an arbitrary phase that defines the orientation of the particle. 

 

Then, thanks to the Euler Transformations, the solution can also be written as: 

 

 𝑣𝑥,𝑦 = 𝑣⊥𝑒
±𝑖𝜔𝑐𝑡±𝑖𝛿𝑥,𝑦  (3-44) 

 

 

where the ± denotes the sign of the charged particle. 

The positive integration constant 𝑣⊥ is the velocity in the plane perpendicular to �⃗⃗�: 
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𝑣⊥ = √𝑣𝑥

2 + 𝑣𝑦
2 (3-45) 

 

 

 the particle, has a gyration motion with a radius- 𝑟𝐿-, called Larmor Radius, such that: 

 

 𝑟𝐿 =
𝑣⊥
𝜔𝑐

=
𝑚𝑣⊥
|𝑞|𝐵

 (3-46) 

 

 

Thus, if we chose the phase 𝛿 so that: 

 

 

 
{
𝑣𝑥 = 𝑣⊥𝑒

𝑖𝜔𝑐𝑡 = �̇�

𝑣𝑦 = ±𝑖𝑣⊥𝑒
𝑖𝜔𝑐𝑡 = �̇�

 (3-47) 

 

 

the final solution of the motion will be: 

 

 

{

𝑥 − 𝑥0 = 𝑟𝐿 sin(𝜔𝑐𝑡)

𝑦 − 𝑦0 = ±𝑟𝐿 cos(𝜔𝑐𝑡)
𝑧 − 𝑧0 = 𝑣⫽𝑡

 (3-48) 

 

 

that describes a circular orbit in a plane that is perpendicular to �⃗⃗�, with an angular frequency 𝜔𝑐 and a radius 

𝑟𝐿, around a Guiding Center (𝑥0, 𝑦0, 𝑧0 + 𝑣⫽𝑡) which is fixed. 

 

 

 
Figure 3-5: Motion of an electron around an ion 
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The direction of the gyration is always such that the magnetic field generated by the charged particle is 

opposite to the externally imposed field. 

So, as we can see in the next figure, the trajectory of a charged particle in space is, in general, an helix. 

 

 

 
Figure 3-6: Helical trajectory of a charged particle in space 

 

 

𝑭𝒊𝒏𝒊𝒕𝒆 �⃗⃗⃗� 

 

If now we add an Electric Field �⃗⃗� to the Magnetic Field �⃗⃗�, the resulting motion will be the sum of the two 

basic motions: the usual circular Larmor gyration plus a drift of the guiding centre. 

Assume that �⃗⃗� lies in the 𝑥 − 𝑧 plane (so 𝐸𝑦 = 0); as in the previous case, the 𝑧 component of the velocity- 

𝑣𝑧- is unrelated to the transverse components and can be treated separately. 

The equation of the motion, now, must be considered completely: 

 

 
𝑚
𝑑�⃗�

𝑑𝑡
= 𝑞(�⃗⃗� + �⃗� × �⃗⃗�) (3-49) 

 

 

The 𝑧 component is simply: 

 

 
𝑣𝑧 =

𝑞𝐸𝑧
𝑚

𝑡 + 𝑣𝑧,0 (3-50) 

 

 

that is a straightforward acceleration along 𝐵. 

For the other two components we have: 
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{

𝑑𝑣𝑥
𝑑𝑡

=
𝑞

𝑚
𝐸𝑥 ± 𝜔𝑐𝑣𝑦

𝑑𝑣𝑦

𝑑𝑡
= 0 ∓ 𝜔𝑐𝑣𝑥

 (3-51) 

 

 

 

⟹ {

�̈�𝑥 = −𝜔𝑐
2𝑣𝑥

�̈�𝑦 = ∓𝜔𝑐 (
𝑞

𝑚
𝐸𝑥 ±𝜔𝑐𝑣𝑦) = −𝜔𝑐

2 (
𝐸𝑥
𝐵
+ 𝑣𝑦) =

𝑑2

𝑑𝑡2
(
𝐸𝑥
𝐵
+ 𝑣𝑦)

 (3-52) 

 

 

so, we can write: 

 

 

{
𝑣𝑥 = 𝑣⊥𝑒

𝑖𝜔𝑐𝑡

𝑣𝑦 = ±𝑖𝑣⊥𝑒
𝑖𝜔𝑐𝑡 −

𝐸𝑥
𝐵

 (3-53) 

 

 

As we can see, the Larmor Motion is the same as before, but a drift �⃗�𝑔𝑐 is superimposed on the guiding centre 

in the – 𝑦 direction (for 𝐸𝑥 > 0). The figure below expresses this concept: 

 

  

Figure 3-7: Trajectory of charged particles for a finite E field 

                      

 

 

To compute the equation for �⃗�𝑔𝑐 we can omit the term 
𝑑�⃗⃗�

𝑑𝑡
 in the equation of the motion, since it gives only 

the circular motion at 𝜔𝑐. So, the equation becomes: 

 

 �⃗⃗� + �⃗� × �⃗⃗� = 0 (3-54) 

 

 

Taking the cross product with �⃗⃗� we have: 
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 �⃗⃗� × �⃗⃗� + (�⃗� × �⃗⃗�) × �⃗⃗� = �⃗⃗� × �⃗⃗� = �⃗⃗� × (�⃗� × �⃗⃗�) = 𝑣𝐵2 − �⃗⃗�(�⃗� ∙ �⃗⃗�) (3-55) 

 

 

So, the Electric Field Drift of the Guiding Centre is given by: 

 

 
�⃗�⊥,𝑔𝑐 =

�⃗⃗� × �⃗⃗�

𝐵2
= �⃗�𝐸  (3-56) 

 

 

 
𝑣𝐸 = |�⃗�𝐸| =

𝐸

𝐵
   [
𝑉 𝑚⁄

𝑇𝑒𝑠𝑙𝑎
] = [𝑚 𝑠⁄ ] (3-57) 

 

 

That is independent by the mass 𝑚 and the charge 𝑞 of the particle. In fact, in the first half cycle of the ion's 

orbit, it gains energy from the electric field and increases in v⃗⃗⊥ and, hence, in rL. In the second half-cycle, it 

loses energy and decreases in rL. But we know that for particles of the same velocity but different mass, the 

lighter one will have smaller rLand hence drift less per cycle. 

Thus, is this difference in rLon the left and right sides of the orbit that causes the drift 𝑣𝐸. 

 

 

 
Figure 3-8 Trajectory of charged particles for a finite E field 

 

 

Let’s now generalize the formula considering a general force �⃗� in stand of 𝑞�⃗⃗�. In this case the guiding centre 

drift caused by 𝐹 ⃗⃗⃗⃗ would be: 

 

 
�⃗�𝑓 =

1

𝑞

�⃗� × �⃗⃗�

𝐵2
 (3-58) 

 

 

If the force is the Gravitational Force, for example, we’ll have: 
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�⃗�𝑔 =

𝑚

𝑞

�⃗� × �⃗⃗�

𝐵2
 (3-59) 

 

 

This is different from the previous formulas for one thing: the drift �⃗�𝑔 changes sign with the particle’s charge, 

so under a Gravitational Force ions and electrons will drift in opposite directions, causing a net current: 

 

 
𝑗 = 𝑛(𝑀 +𝑚)

�⃗� × �⃗⃗�

𝐵2
 (3-60) 

 

 

The magnitude of �⃗�𝑔 is usually negligible, but when the lines of force are curved there’s an effective 

gravitational force due to the centrifugal force, that is not negligible, is independent of the mass and will 

create a plasma instability called “Gravitational Instability”. 

 

Now we can study the case of particles in motion in inhomogeneous fields- �⃗⃗� or �⃗⃗�- that can vary in space or 

time. 

 

 

Non-Uniform �⃗⃗⃗� Field 

 

Introducing inhomogeneity the problem becomes too complicated to be solved exactly so, to get an 

approximate solution,  we should expand in the small ratio 𝑟𝐿 𝐿⁄ , where 𝐿 is the scale length of the 

inhomogeneity. This approach is called “Orbit Theory”. 

Let’s examine the simplest cases where only one inhomogeneity occurs at time. 

 

𝛁𝑩 ⊥ �⃗⃗⃗�: 𝑮𝒓𝒂𝒅‐ �⃗⃗⃗� 𝑫𝒓𝒊𝒇𝒕 

 

In this case, the lines of force are straight, but their density increases in the 𝑦 direction, as we can see in the 

figure above. 

 

 

 
Figure 3-9: Trajectory of charged particles for a non-uniform B Field 
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The gradient in |�⃗⃗�| causes he Larmor Radius to be larger at the bottom of the orbit than at the top and this 

shuld lead to a drift, in opposite directions for ions and electrons, perpendicular to both 𝐵 and ∇�⃗⃗�. This drift 

then should be proportional to 𝑟𝐿 𝐿⁄  and �⃗�⊥. 

Considering now the Lorentz Force averaged over a gyration: 

 

 �⃗� = 𝑞�⃗� × �⃗⃗� (3-61) 

 

 

we can calculate 𝐹𝑦, approximately, by using the undisturbed orbit  for a uniform �⃗⃗� Field (while  𝐹𝑥 = 0 since 

the particle spend as much time moving up as down): 

 

 
𝐹𝑦 = −𝑞𝑣𝑥𝐵𝑧(𝑦) = −𝑞𝑣⊥ cos(𝜔𝑐𝑡) [𝐵0 ± 𝑟𝐿 cos(𝜔𝑐𝑡)

𝜕𝐵

𝜕𝑦
] (3-62) 

 

 

Making a Taylor expansion of �⃗⃗� Field about the point (𝑥0, 𝑦0) = (0,0). 

This expansion is valid just in case 𝑟𝐿 𝐿⁄ ≪ 1, being 𝐿 the scale length of 
𝜕𝐵𝑧

𝜕𝑦
. First term of the equation 

averages to zero in a gyration and the average of cos2(𝜔𝑐𝑡) is 
1

2
, so we have: 

 

 
�⃗�𝑔𝑐 =

1

𝑞

�⃗� × �⃗⃗�

𝐵2
=
1

𝑞

𝐹𝑦
|𝐵|

𝑥 = ∓
𝑣⊥𝑟𝐿
𝐵

1

2

𝜕𝐵

𝜕𝑦
𝑥 (3-63) 

 

 

Since the choice of the 𝑦 axis is arbitrary we can generalize the equation as follows: 

 

 
�⃗�∇�⃗⃗� = ±

1

2
𝑣⊥𝑟𝐿

�⃗⃗� × ∇�⃗⃗�

𝐵2
 (3-64) 

 

 

where ± stands for the sign of the charge. The quantity �⃗�∇�⃗⃗� is called 𝑮𝒓𝒂𝒅‐ �⃗⃗⃗� Drift. It’s in opposite direction 

for ions and electrons and causes a current transverse to �⃗⃗�. 

 

𝑪𝒖𝒓𝒗𝒆𝒅 �⃗⃗⃗�: 𝑪𝒖𝒓𝒗𝒂𝒕𝒖𝒓𝒆 𝑫𝒓𝒊𝒇𝒕 

 

Suppose now that the lines of force are curved with a constant radius of curvature 𝑅𝑐 and |�⃗⃗�| to be constant. 

Here we cannot use the Maxwell’s Equation in vacuum, so  the Grad‐ B⃗⃗⃗ drift must be added to the effect 

derived here. 

If 𝑣ǁ
2 denotes the average square of the component of random velocity along 𝐵, the average centrifugal force 

is: 
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𝐹𝑐𝑓̅̅ ̅̅ =

𝑚𝑣ǁ
2

𝑅𝑐
�̂� = 𝑚𝑣ǁ

2 �⃗⃗�𝑐

𝑅𝑐
2 (3-65) 

 

 

So we have: 

 

 
�⃗�𝑅 =

1

𝑞

𝐹𝑐𝑓̅̅ ̅̅ × �⃗⃗�

𝐵2
=
𝑚𝑣ǁ

2

𝑞𝐵2
�⃗⃗�𝑐 × �⃗⃗�

𝑅𝑐
2  (3-66) 

 

 

And this �⃗�𝑅 Drift is called Curvature Drift. 

On the other side, if |�⃗⃗�| decreases with the radius, so: 

 

 
|�⃗⃗�| ∝

1

𝑅𝑐
 (3-67) 

 

 

we can demonstrate that: 

 

 ∇|�⃗⃗�|

|�⃗⃗�|
= −

�⃗⃗�𝑐

𝑅𝑐
2 (3-68) 

 

 

 
⟹ �⃗�∇�⃗⃗� =

1

2

𝑚𝑣⊥
2

𝑞𝐵2
�⃗⃗�𝑐 × �⃗⃗�

𝑅𝑐
2  (3-69) 

 

 

Adding this last term to �⃗�𝑅, we get: 

 

 
�⃗�𝑅 + �⃗�∇�⃗⃗� =

𝑚

𝑞𝐵2
�⃗⃗�𝑐 × �⃗⃗�

𝑅𝑐
2 (𝑣ǁ

2 +
1

2
𝑣⊥
2) (3-70) 
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Figure 3-10: Representation of curvature drift 

 

 

This case is important because it represents, for example, the case of a magnetic field into a torus: the 

particles will always drift out of the torus. 

 

For a Maxwellian Distribution, as we saw in the previous paragraph, we calculated that 𝑣ǁ
2̅̅ ̅ and 

1

2
𝑣⊥
2̅̅ ̅̅ ̅

, both 

equal to 𝐾𝐵𝑇𝑒 𝑚⁄ , so we have that the Average Curved-Field Drift is: 

 

 
𝑣𝑅+∇�⃗⃗�̅̅ ̅̅ ̅̅ ̅̅ = ±

𝑟𝐿
𝑅𝑐
𝑣𝑡ℎ�̂� (3-71) 

 

 

where �̂� is the direction of �⃗⃗�𝑐 × �⃗⃗�. This shows that 𝑣𝑅+∇�⃗⃗�̅̅ ̅̅ ̅̅ ̅̅  depends on the charge of the particle but not on 

its mass. 

 

𝛁𝑩ǁ�⃗⃗⃗�: Magnetic Mirrors 

 

Now consider a Magnetic Field �⃗⃗� pointed primarily in the 𝑧 direction and whose magnitude varies in the 𝑧 

direction. We suppose the field to be axial symmetric, with 𝐵𝜃 = 0 and 𝜕 𝜕𝜃⁄ = 0. There will necessarily be 

a component 𝐵𝑟 that creates a force which can trap a particle in a magnetic field. 

 

 

 
Figure 3-11: Representation of a Magnetic Field pointed in the z direction, axial symmetric whose magnitude varies with z 
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Thus, from ∇ ∙ �⃗⃗� = 0, we have: 

 

 1

𝑟

𝜕

𝜕𝑟
(𝑟𝐵𝑟) +

𝜕𝐵𝑧
𝜕𝑧

= 0 (3-72) 

 

 

If 
𝜕𝐵𝑧

𝜕𝑧
 is given at 𝑟 = 0 and doesn’t vary so much with 𝑟, then we have: 

 

 
𝑟𝐵𝑟 = −∫ 𝑟

𝜕𝐵𝑧
𝜕𝑧

𝑑𝑟 ≅ −
1

2
𝑟2 [

𝜕𝐵𝑧
𝜕𝑧
]
𝑟=0

𝑟

0

 (3-73) 

 

 

 
⟹ 𝐵𝑟 = −

1

2
𝑟 [
𝜕𝐵𝑧
𝜕𝑧
]
𝑟=0

 (3-74) 

 

 

The variation of |�⃗⃗�| with 𝑟 causes a Grad-B Drift of guiding centers about the axis of symmetry, but there is 

no radial Grad-B Drift because 𝜕�⃗⃗� 𝜕𝜃 = 0⁄ . So, the components of the Lorentz Force are: 

 

 

{

𝐹𝑟 = 𝑞(𝑣𝜃𝐵𝑧 − 𝑣𝑧𝐵𝜃)

𝐹𝜃 = 𝑞(−𝑣𝑟𝐵𝑧 + 𝑣𝑧𝐵𝑟)

𝐹𝑧 = 𝑞(𝑣𝑟𝐵𝜃 − 𝑣𝜃𝐵𝑟)
 (3-75) 

 

 

Since 𝐵𝜃 = 0, two terms vanish, while the two terms containing the component 𝐵𝑧 give rise the usual Larmor 

Gyration. The terms 𝑣𝑧𝐵𝑟 vanishes on the axis and if it doesn’t do it causes a drift in the radial direction, 

making the guiding centers follow the lines of force. 

What we are interested in is the terms 𝑣𝜃𝐵𝑟. We have: 

 

 
𝐹𝑧 =

1

2
𝑞𝑣𝜃𝑟 (

𝜕𝐵𝑧
𝜕𝑧
) (3-76) 

 

 

So, the average over one gyration is: 

 

 
𝐹�̅� = ∓

1

2
𝑞𝑣⊥𝑟𝐿

𝜕𝐵𝑧
𝜕𝑧

= ∓
1

2
𝑞
𝑣⊥
2

𝜔𝑐

𝜕𝐵𝑧
𝜕𝑧

= −
1

2

𝑚𝑣⊥
2

𝐵

𝜕𝐵𝑧
𝜕𝑧

 (3-77) 

 

 

and, defining the Magnetic Moment of the gyrating particle as: 
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𝜇 =

1

2

𝑚𝑣⊥
2

𝐵
 (3-78) 

 

 

we have: 

 

 
𝐹�̅� = −𝜇 (

𝜕𝐵𝑧
𝜕𝑧
) (3-79) 

 

 

That is the value of the Grad-B Drift. 

As the particle moves into regions with stronger or weaker �⃗⃗� the Larmor radius changes, but 𝝁 remains 

invariant. In fact, we the component of the equation of motion along B is: 

 

 
𝑚𝑣ǁ

𝑑𝑣ǁ
𝑑𝑡

= −𝜇
𝑑𝑠

𝑑𝑡
 (3-80) 

 

 

 
⟹𝑚𝑣ǁ

𝑑𝑣ǁ
𝑑𝑡

=
𝑑

𝑑𝑡
(
1

2
𝑚𝑣ǁ

2) = −𝜇
𝜕𝐵

𝜕𝑠

𝑑𝑠

𝑑𝑡
= −𝜇

𝑑𝐵

𝑑𝑡
 (3-81) 

 

 

where 
𝑑𝐵

𝑑𝑡
 is the variation of �⃗⃗� as seen by the particle (�⃗⃗� itself is constant). 

For the conservation of the energy we have: 

 

 𝑑

𝑑𝑡
(
1

2
𝑚𝑣ǁ

2 +
1

2
𝑚𝑣⊥

2) =
𝑑

𝑑𝑡
(
1

2
𝑚𝑣ǁ

2 + 𝜇𝐵) = 0 (3-82) 

 

 

 

 
⟹−𝜇

𝑑𝐵

𝑑𝑡
+
𝑑

𝑑𝑡
(𝜇𝐵) = 0 (3-83) 

 

 

 
⟹

𝑑𝜇

𝑑𝑡
= 0 (3-84) 

 

 

This last equation is the basis for one of the primary schemes for plasma confinement: the Magnetic Mirror. 
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Figure 3-12: Scheme of the Magnetic Mirror 

 

 

Since 𝜇 is constant, If a particle moves from a Weak-Field region to a Strong-Field region, we have: 

 

 1

2
𝑚
𝑣⊥,𝑤
2

𝐵𝑤
=
1

2
𝑚
𝑣⊥,𝑠
2

𝐵𝑠
 (3-85) 

 

 

where the subscript 𝑤 indicates the Weak-Field Condition, while the subscript 𝑠 indicates the Strong-Field 

Condition. 

So, if 𝐵𝑠 > 𝐵𝑤 we have that 𝑣⊥,𝑠
2 > 𝑣⊥,𝑤

2 . However, the Magnetic Field B don’t do any work, so the Kinetic 

Energy of the particle remains invariant: 

 

 
𝐸𝐾 =

1

2
𝑚(𝑣⊥,𝑤

2 + 𝑣ǁ,𝑤
2 ) (3-86) 

 

 

So we’ll have that: 

 

 𝑣ǁ,𝑠
2 < 𝑣ǁ,𝑤

2  (3-87) 

 

 

 ⟹ 𝑣ǁ,𝑠 < 𝑣ǁ,𝑤 (3-88) 

 

 

that means that the axial velocity of the particle will decrease while the particle is moving into the Strong-

Field region. 

Thus, the axial velocity will be: 

 

 1

2
𝑚𝑣ǁ

2 = 𝐸𝐾 −
1

2
𝑚𝑣⊥

2 = 𝐸𝐾 − 𝜇𝐵 (3-89) 

 

 

 

⟹ 𝑣ǁ = √
2

𝑚
(𝐸𝐾 − 𝜇𝐵) (3-90) 
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This last equation is very important because it shows that if the Magnetic Field �⃗⃗� is Strong enough the particle 

can be stopped and forced by 𝐹ǁ the to re-enter the plasma body, into the Weak-Field region. 

However, not all the particles are trapped by the Magnetic Mirror: for example, a particle with 𝑣⊥ = 0 will 

have no magnetic moment and will not feel any force along  �⃗⃗� and also a particle with small 𝑣⊥ 𝑣ǁ⁄  at the 

mid plane (𝐵 = 𝐵𝑤) will escape if the maximum field 𝐵𝑠 is not strong enough. To understand in which case 

the particles will escape from the mirror, let’s consider a particle with 𝑣⊥ = 𝑣⊥,𝑤 and 𝑣ǁ = 𝑣ǁ,𝑤. In the mid 

plane we will have that 𝑣ǁ = 0 and 𝑣⊥ = 𝑣′⊥ at its turning point. Let the field be 𝐵′ there. Then, the invariance 

of 𝜇 yelds: 

 

 1
2
𝑚𝑣⊥,𝑤

2

𝐵𝑤
=

1
2
𝑚𝑣′⊥

2

𝐵′
 (3-91) 

 

 

and, for the conservation of energy, we have: 

 

 𝑣′⊥
2 = 𝑣⊥,𝑤

2 + 𝑣ǁ,𝑤
2 = 𝑣𝑤

2  (3-92) 

 

 

 
⟹

𝐵𝑤
𝐵′
=
𝑣⊥,𝑤
2

𝑣′⊥
2 =

𝑣⊥,𝑤
2

𝑣𝑤
2
= sin2(𝜃) (3-93) 

 

 

where 𝜃 is the pitch angle of the orbit in the Weak-Field region. Particles with smaller 𝜃 will mirror in regions 

of higher 𝐵, but if 𝜃 is too small, 𝐵′ will exceed 𝐵𝑠 and the particles will not mirror at all. Replacing 𝐵′ with 𝐵𝑠 

we can find the limit of 𝜃 to confine the articles: 

 

 
sin2(𝜃𝑠) =

𝐵𝑤
𝐵𝑠

=
1

𝑅𝑚
 (3-94) 

 

 

where 𝑅𝑚 is the Mirror Ratio. 

The boundary defined by this equation is a cone in velocity space, independent of 𝑞 and 𝑚, called “Loss 

Cone”. Particles lying within the loss cone (so with 𝜃 < 𝜃𝑠) are not confined. So, a mirror-confined plasma is 

never isentropic. 
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Figure 3-13: Loss Cone 

 

 

Note that without collisions, both ions and electrons are equally well confined, but when collisions occur 

articles are lost and are scattered into the loss cone. Since electrons have higher collision frequencies they 

will be lost mostly than ions, so the plasma will tend to become positively charged. 

 

 

Non-Uniform �⃗⃗⃗� Field 

 

Consider now the case in which the Electric Field �⃗⃗� is non-uniform. 

Let’s start with the case of a uniform Magnetic Field. Assume �⃗⃗� to be in the 𝑥 direction and to vary sinusoidally 

along it: 

 

 �⃗⃗� = 𝐸0 cos(𝑘𝑥) 𝑥 (3-95) 

 

 

 
𝜆 =

2𝜋

𝑘
 (3-96) 

 

 

 

 
Figure 3-14: Electric Field varying sinusoidally along x 
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Such a charge distribution can arise in a plasma during a wave motion. 

So, according to the equation of the motion, we have: 

 

 
𝑚
𝑑�⃗�

𝑑𝑡
= 𝑞[�⃗⃗�(𝑥) + �⃗� × �⃗⃗�] (3-97) 

 

 

where: 

 

 

{
�̇�𝑥 =

𝑞𝐵

𝑚
𝑣𝑦 +

𝑞

𝑚
𝐸𝑥(𝑥)

�̇�𝑦 = −
𝑞𝐵

𝑚
𝑣𝑥

 (3-98) 

 

 

 

{
 

 �̈�𝑥 = −𝜔𝑐
2𝑣𝑥 ± 𝜔𝑐

�̇�𝑥
𝐵

�̈�𝑦 = −𝜔𝑐
2𝑣𝑦 −𝜔𝑐

2
𝐸𝑥(𝑥)

𝐵

 (3-99) 

 

 

and 𝐸𝑥(𝑥) is the Electric Field at the position of the particle. 

As we saw in the previous analysis, the orbit of the particle in absence of Electric Field is given by: 

 

 𝑥 = 𝑥0 + 𝑟𝐿 sin(𝜔𝑐𝑡) (3-100) 

 

 

 
⟹ �̈�𝑦 = −𝜔𝑐

2𝑣𝑦 −𝜔𝑐
2
𝐸0
𝐵
cos[𝑘(𝑥0 + 𝑟𝐿 sin(𝜔𝑐𝑡))] (3-101) 

 

 

The result, as in the previous cases, will be the sum of a gyration at 𝜔𝑐 and a steady drift �⃗�𝐸. What we must 

calculate now is �⃗�𝐸, so we can take out the gyratory motion by averaging over a cycle, getting 𝑣𝑥̅̅ ̅ = 0. 

Thus, we’ll have: 

 

 �̈�𝑦 = 0̅̅ ̅̅ ̅̅ ̅̅ ̅ (3-102) 

 

 

 
⟹−𝜔𝑐

2𝑣𝑦 −𝜔𝑐
2
𝐸0
𝐵
cos[𝑘(𝑥0 + 𝑟𝐿 sin(𝜔𝑐𝑡))] = 0 (3-103) 
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That, after some passages and considering just the small Larmor radius case- 𝑘𝑟𝐿 ≪ 1, will yield to: 

 

 
𝑣𝑦̅̅ ̅ = −

𝐸0
𝐵
[cos(𝑘𝑥0)] (1 −

1

4
𝑘2𝑟𝐿

2) = −
𝐸𝑥(𝑥0)

𝐵
(1 −

1

4
𝑘2𝑟𝐿

2) (3-104) 

 

 

 
⟹ �⃗�𝐸 =

�⃗⃗� × �⃗⃗�

𝐵2
(1 −

1

4
𝑘2𝑟𝐿

2) (3-105) 

 

 

For an arbitrary variation of �⃗⃗� we can generalize the formula above like follows: 

 

 
�⃗�𝐸 =

�⃗⃗� × �⃗⃗�

𝐵2
(1 +

1

4
𝑟𝐿
2∇2) (3-106) 

 

 

where 
1

4
𝑟𝐿
2∇2 is called “Finite-Larmor-Radius-Effect” and is representative of an effect called “Drift 

Instability” that makes the Electric Field �⃗⃗� grow indefinitely causing an instability of the plasma. 

Also the Grad-B Drift  is a Finite-Larmor-Radius-Effect, but since in the Grad-B Drift it is proportional to 𝑘𝑟𝐿 

while in this last case it is proportional to 𝑘2𝑟𝐿
2, the non-uniformity of the Electric Field �⃗⃗�, therefore, is more 

important at large 𝑘 or small scale lengths of inhomogeneity. 

For this reason, drift instabilities belong to a general class called “Microinstabilities”. 

 

 

Time-Varying �⃗⃗⃗� Field 

 

If we now consider The �⃗⃗� Field uniform in space but varying in time, things will change. 

Let’s start from the case with �⃗⃗� constant in time. 

Consider �⃗⃗� lying on the 𝑥 axis, so: 

 

 �⃗⃗� = 𝐸0𝑒
𝑖𝜔𝑡�̂� (3-107) 

 

 

 �̇�𝑥 = 𝑖𝜔𝐸𝑥  (3-108) 

 

 

 
⟹ �̈�𝑥 = −𝜔𝑐

2 (𝑣𝑥 ∓
𝑖𝜔

𝜔𝑐

�̃�𝑥
𝐵
) (3-109) 
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We now define: 

 

 
�̃�𝑝 = ±

𝑖𝜔

𝜔𝑐

�̃�𝑥
𝐵

 (3-110) 

 

 

 
�̃�𝐸 = −

�̃�𝑥
𝐵

 (3-111) 

 

 

Where the tilde just remark the fact that the drift is oscillating. Thus we get: 

 

 
{
�̈�𝑥 = −𝜔𝑐

2(𝑣𝑥 − �̃�𝑝)

�̈�𝑦 = −𝜔𝑐
2(𝑣𝑦 − �̃�𝐸)

 (3-112) 

 

 

Like above, we’re looking for a solution that is the sum of a drift and a gyratory motion: 

 

 
{
𝑣𝑥 = 𝑣⊥𝑒

𝑖𝜔𝑐𝑡 + �̃�𝑝

𝑣𝑦 = ±𝑖𝑣⊥𝑒
𝑖𝜔𝑐𝑡 + �̃�𝐸

 (3-113) 

 

 

 
⟹ {

�̈�𝑥 = −𝜔𝑐
2𝑣𝑥 + (𝜔𝑐

2 −𝜔2)�̃�𝑝

�̈�𝑦 = −𝜔𝑐
2𝑣𝑦 + (𝜔𝑐

2 −𝜔2)�̃�𝐸
 (3-114) 

 

 

These last equations are those above just in case 𝜔2 ≪ 𝜔𝑐
2. 

The solutions �⃗� = (𝑣𝑥, 𝑣𝑦) tells us that the guiding center motion has two components: 

• The 𝑦 component, perpendicular to �⃗⃗� and �⃗⃗�, that is the usual �⃗⃗� × �⃗⃗� Drift except for the fact that 

now 𝑣𝐸 oscillates slowly with a frequency 𝜔; 

• The 𝑥 component, that is a new Drift along �⃗⃗� and called “Polarization Drift”. Hence, we can fine the 

Polarization Drift as: 

 
𝑣𝑝 = ±

1

𝜔𝑐𝐵

𝑑�⃗⃗�

𝑑𝑡
 (3-115) 

 

 

Since this Drift is in opposite direction for ions and electrons, it will provoke a Polarization Current, 

that, for 𝑍 = 1, is: 
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𝑗𝑝 = 𝑛𝑒(𝑣𝑝,𝑖 − 𝑣𝑝,𝑒) =

𝜌

𝐵2
𝑑�⃗⃗�

𝑑𝑡
 (3-116) 

 

 

where 𝜌 is the mass density. 

 

 

Time Varying �⃗⃗⃗� Field 

 

The last case to analyze is the one where the Magnetic Field �⃗⃗� varies in time. Since the Lorentz Force is always 

perpendicular to �⃗�, a Magnetic Field cannot impart velocity (and, so, energy) to a charged particle, however, 

we can associate it an Electric Field �⃗⃗�: 

 

 ∇ × �⃗⃗� = −�̇⃗⃗� (3-117) 

 

 

that can accelerate particles causing the consequent no-uniformity of the fields. Let 𝑣⊥ =
𝑑𝑙

𝑑𝑡
 be the 

transverse velocity and 𝑙 the element of path along a particle trajectory (here we can neglect 𝑣ǁ). We have: 

 

 𝑑

𝑑𝑡
(
1

2
𝑚𝑣⊥

2) = 𝑞�⃗⃗� ∙ 𝑣⊥ = 𝑞�⃗⃗� ∙
𝑑𝑙

𝑑𝑡
 (3-118) 

 

 

The change in one gyration in a field that changes slowly, is given by: 

 

 
𝛿 (
1

2
𝑚𝑣⊥

2)∮𝑞�⃗⃗� ∙ 𝑑𝑙 = 𝑞∫(∇ × �⃗⃗�) ∙ 𝑑𝑆 = −𝑞∫ �̇⃗⃗� ∙ 𝑑𝑆 (3-119) 

 

 

Where 𝑆 is the surface enclosed by the Larmor orbit and direction given by the right-hand rule when fingers 

point the direction of �⃗�. For ions we have  �̇⃗⃗� ∙ 𝑑𝑆 < 0, and for electrons �̇⃗⃗� ∙ 𝑑𝑆 > 0, so: 

 

 

𝛿 (
1

2
𝑚𝑣⊥

2) = ±𝑞�̇�𝜋𝑟𝐿
2 = ±𝑞�̇�𝜋

𝑣⊥
2

𝜔𝑐
∙
𝑚

±𝑞𝐵
=

1
2𝑚𝑣⊥

2

𝐵
∙
2𝜋𝐵

𝜔𝑐
 (3-120) 

 

 

Since the quantity 
2𝜋𝐵

𝜔𝑐
 is just the change 𝛿𝐵 during one period of gyration, we have: 
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𝛿 (
1

2
𝑚𝑣⊥

2) = 𝜇𝛿𝐵 (3-121) 

 

 

 ⟹ 𝛿𝜇 = 0 (3-122) 

 

 

This means that the Magnetic Moment is invariant in slowly varying Magnetic Field and this characteristic 

allows us to prove that the Magnetic Flux though a Larmor orbit is constant: given the flux 𝜙 by 𝐵𝑆, with 

𝑆 = 𝜋𝑟𝐿
2 is: 

 

 

𝜙 = 𝐵𝜋
𝑣⊥
2

𝜔𝑐
= 𝐵𝜋

𝑣⊥
2𝑚2

𝑞2𝐵2
=
2𝜋𝑚

𝑞2

1
2𝑚𝑣⊥

2

𝐵
=
2𝜋𝑚

𝑞2
𝜇 (3-123) 

 

 

 𝜇 = 𝐶𝑜𝑛𝑠𝑡.⟹ 𝜙 = 𝐶𝑜𝑛𝑠𝑡. (3-124) 

 

 

We can now summarize the formula we found for the Guiding Centre Drift: 

 

 
Table 3-1: Guiding Centre Drift main formulas 

TYPE OF FORCE DRIFT 

General Force 
�⃗�𝑓 =

1

𝑞

�⃗� × �⃗⃗�

𝐵2
 

 

Electric Field 
�⃗�𝐸 =

�⃗⃗� × �⃗⃗�

𝐵2
 

 

Gravitational Field 
�⃗�𝑔 =

𝑚

𝑞

�⃗� × �⃗⃗�

𝐵2
 

 

Non-uniform �⃗⃗⃗� Field 
�⃗�𝐸 =

�⃗⃗� × �⃗⃗�

𝐵2
(1 +

1

4
𝑟𝐿
2∇2) 
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Grad-B Drift 
�⃗�∇�⃗⃗� = ±

1

2
𝑣⊥𝑟𝐿

�⃗⃗� × ∇�⃗⃗�

𝐵2
 

 

Curvature Drift 
�⃗�𝑅 =

𝑚𝑣ǁ
2

𝑞𝐵2
�⃗⃗�𝑐 × �⃗⃗�

𝑅𝑐
2  

 

Curved Vacuum Field 
�⃗�𝑅 + �⃗�∇�⃗⃗� =

𝑚

𝑞𝐵2
�⃗⃗�𝑐 × �⃗⃗�

𝑅𝑐
2 (𝑣ǁ

2 +
1

2
𝑣⊥
2) 

 

Polarization Field 
𝑣𝑝 = ±

1

𝜔𝑐𝐵

𝑑�⃗⃗�

𝑑𝑡
 

 

 

 

3.1.1.6. Plasma as a Fluid 

 

As we said at the beginning of this chapter plasma, depending on the density,  sometimes behave as a fluid. 

However, plasma is always subjected to the Electromagnetic Laws that are represented by the Maxwell 

Equations, that are: 

 

 

𝐼𝑛 𝑣𝑎𝑐𝑢𝑢𝑚: 

{
 
 
 

 
 
 휀0∇ ∙ �⃗⃗� = 𝜌 

∇ × �⃗⃗� = −
𝜕�⃗⃗�

𝜕𝑡
 

∇ ∙ �⃗⃗� = 0 

∇ × �⃗⃗� = 𝜇0 (𝑗 + 휀0
𝜕�⃗⃗�

𝜕𝑡
)

 (3-125) 

 

 

 

𝐼𝑛 𝑎 𝑚𝑒𝑑𝑖𝑢𝑚: 

{
 
 
 
 

 
 
 
 ∇ ∙ �⃗⃗⃗� = 𝜎 

∇ × �⃗⃗� = −
𝜕�⃗⃗�

𝜕𝑡
 

∇ ∙ �⃗⃗� = 0 

∇ × �⃗⃗⃗� = 𝑗 +
𝜕�⃗⃗⃗�

𝜕𝑡

�⃗⃗⃗� = 휀�⃗⃗�

�⃗⃗� = 𝜇�⃗⃗⃗�

 (3-126) 
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where 𝜎 and 𝑗 stands for the “free” charge and current densities. The “bound” charge and current densities 

arising from polarization and magnetization of the medium are included in the definition of �⃗⃗⃗� and �⃗⃗⃗� with the 

constants 휀 and 𝜇. 

So, starting from the equation of the motion of a single particle: 

 

 
𝑚
𝑑�⃗�

𝑑𝑡
= 𝑞(�⃗⃗� + �⃗� × �⃗⃗�) (3-127) 

 

 

If we now multiply it for the density 𝑛 we get the Fluid Equation: 

 

 
𝑚𝑛

𝑑�⃗⃗�

𝑑𝑡
= 𝑞𝑛(�⃗⃗� + �⃗⃗� × �⃗⃗�) (3-128) 

 

 

Now, since we know that given a certain function �⃗�(𝑥, 𝑡) we have: 

 

 𝑑�⃗�

𝑑𝑡
=
𝜕�⃗�

𝜕𝑡
+ (�⃗⃗� ∙ ∇)�⃗� (3-129) 

 

 

Then, for �⃗� = �⃗⃗�, we get: 

 

 
𝑚𝑛

𝜕�⃗⃗�

𝜕𝑡
+ (�⃗⃗� ∙ ∇)�⃗⃗� = 𝑞𝑛(�⃗⃗� + �⃗⃗� × �⃗⃗�) (3-130) 

 

 

that is the Equation of the Fluid with a Convective Derivative and where 
𝜕�⃗⃗⃗�

𝜕𝑡
 is the time derivative in a fixed 

frame. 

When thermal motions are taken into account, a pressure force must be added to the right-hand side of this 

last equation and, in case of an isotropic distribution of the fluid with a motion in the 𝑥 direction, we have: 

 

 
𝑚𝑛

𝜕�⃗⃗�

𝜕𝑡
+ (�⃗⃗� ∙ ∇)�⃗⃗� = 𝑞𝑛(�⃗⃗� + �⃗⃗� × �⃗⃗�) − ∇𝑝 (3-131) 

 

 

Where 𝑝 is the Stress tensor whose components 𝑝𝑖,𝑗 = 𝑚𝑛𝑣𝑖𝑣𝑗̅̅ ̅̅ ̅ specify both the direction of the motion and 

the component of momentum involved. In the general case we replace −∇�⃗� with −∇ ∙ �⃗⃗�: 

 

 
�⃗⃗� = [

𝑝 0 0
0 𝑝 0
0 0 𝑝

] = 𝑝 (3-132) 
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We previously noted that a plasma could have two temperatures 𝑇⊥ and 𝑇ǁ in the presence of a Magnetic 

Field. In that case, we’ll have two different pressures 𝑝⊥ = 𝑛𝐾𝐵𝑇⊥ and 𝑝ǁ = 𝑛𝐾𝐵𝑇ǁ so, the Stress Tensor will 

be: 

 

 
�⃗⃗� = [

𝑝⊥ 0 0
0 𝑝⊥ 0
0 0 𝑝ǁ

] (3-133) 

 

 

Where the coordinate of the third column is in the direction of �⃗⃗�. 

In case of a neural gas, the charged fluid will exchange moment with it through collisions, so the momentum 

lost for collision will be proportional to the relative velocity �⃗⃗� − �⃗⃗�0, where �⃗⃗�0 is the velocity of the neutral 

fluid. Calling 𝜏 = 𝐶𝑜𝑛𝑠𝑡. the mean free time between collisions, if we don’t consider collisions between 

charged particles, we get: 

 

 
𝑚𝑛

𝜕�⃗⃗�

𝜕𝑡
+ (�⃗⃗� ∙ ∇)�⃗⃗� = 𝑞𝑛(�⃗⃗� + �⃗⃗� × �⃗⃗�) − ∇ ∙ �⃗⃗� −

𝑚𝑛(�⃗⃗� − �⃗⃗�0)

𝜏
 (3-134) 

 

 

This equation is the same of the Navier-Stokes Equation: 

 

 
𝜌 [
𝜕�⃗⃗�

𝜕𝑡
+ (�⃗⃗� ∙ ∇)�⃗⃗�] = −∇�⃗� + 𝜌𝜈∇2�⃗⃗� (3-135) 

 

 

except for the absence of electromagnetic forces and collisions between species. 𝜈is the Kinematic Viscosity 

Coefficient and the term 𝜌𝜈∇2�⃗⃗� is just the collisional part ∇ ∙ �⃗⃗� − ∇𝑝 in the absence of Magnetic Field. The 

former was derived without any explicit statement of the collision rate, while the latter describes a fluid 

where there are frequent collisions between particles. So, this last equation can be used to describe a plasma 

species, because, anyway, in the first equation we assumed implicitly the presence of collisions speaking 

about Maxwellian Distribution. 

In general we have that, for motions perpendicular to �⃗⃗� the Fluid Theory is a good approximation, so the two 

main equations are the Continuity Equation: 

 

 𝜕𝑛

𝜕𝑡
+ ∇ ∙ (𝑛�⃗⃗�) = 0 (3-136) 

 

 

And the State Equation: 

 

 𝑝 = 𝐶𝑛𝛾 (3-137) 
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with C a constant and defining 𝛾 as Ratio of Specific Heats: 

 

 𝛾 =
𝑐𝑝
𝑐𝑣

 (3-138) 

 

 

 
⟹

∇𝑝

𝑝
= 𝛾

𝛻𝑛

𝑛
 (3-139) 

 

 

For Isothermal Compression we then have: 

 

 ∇𝑝 = ∇(𝑛𝐾𝐵𝑇) = 𝐾𝐵𝑇∇𝑛 (3-140) 

 

 

where we obviously assumed 𝛾 = 1. 

If we now consider, for simplicity, a plasma with only two species- ions and electrons- the charge and current 

densities will be given by: 

 

 
{
𝜎 = 𝑛𝑖𝑞𝑖 + 𝑛𝑒𝑞𝑒

𝑗 = 𝑛𝑖𝑞𝑖�⃗�𝑖 + 𝑛𝑒𝑞𝑒�⃗�𝑒
 (3-141) 

 

 

And, ignoring both the collisions and the viscosity (the Stress Tensor �⃗⃗� coincides with Scalar Pressure 𝑝) the 

Complete Set of Fluid Equations will become: 

 

 

{
 
 
 
 
 
 

 
 
 
 
 
 휀0∇ ∙ �⃗⃗� = 𝑛𝑖𝑞𝑖 + 𝑛𝑒𝑞𝑒 

∇ × �⃗⃗� = −
𝜕�⃗⃗�

𝜕𝑡
 

∇ ∙ �⃗⃗� = 0 

𝜇0
−1∇ × �⃗⃗� = 𝑛𝑖𝑞𝑖�⃗�𝑖 + 𝑛𝑒𝑞𝑒�⃗�𝑒 + 휀0

𝜕�⃗⃗�

𝜕𝑡

𝑚𝑗𝑛𝑗
𝜕�⃗�𝑗

𝜕𝑡
+ (�⃗�𝑗 ∙ ∇)�⃗�𝑗 = 𝑞𝑗𝑛𝑗(�⃗⃗� + �⃗�𝑗 × �⃗⃗�) − ∇𝑝𝑗         𝑗 = 𝑖, 𝑒 

𝜕𝑛𝑗

𝜕𝑡
+ ∇ ∙ (𝑛𝑗�⃗�𝑗) = 0       𝑗 = 𝑖, 𝑒 

𝑝𝑗 = 𝐶𝑗𝑛𝑗
𝛾𝑗         𝑗 = 𝑖, 𝑒

 (3-142) 

 

 

This group of equations is characterized by 16  independent equations in the 16 unknowns 

𝑛𝑖, 𝑛𝑒 , 𝑝𝑖, 𝑝𝑒 , �⃗�𝑖 , �⃗�𝑒 , �⃗⃗� and �⃗⃗�. It seems we have 18 scalar equations if we count each vector equation as three 
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scalar equations, however two of Maxwell’s Equations are superfluous, since they can be recovered from the 

Divergence Equations. 

 

 

3.1.1.7. Kinetic Theory 

 

The fluid theory we’ve used until now is the simplest description of a plasma and fortunately it can be applied 

to the majority of the plasma phenomena. In this theory we neglect the collisions and we the velocity 

distribution is assumed to be Maxwellian everywhere and can therefore be specified by only one number: 

the temperature 𝑇. That’s why in this case there are just four independent variables: 𝑥, 𝑦, 𝑧 and 𝑡. 

However, there are some phenomena, where collisions have an important role, for which this theory is 

inadequate. For these, we need to consider the velocity distribution 𝑓(�⃗�) of each species. This treatment is 

called Kinetic Theory. 

In this case we have seven independent variables: 𝑥, 𝑦, 𝑧, 𝑣𝑥 , 𝑣𝑦, 𝑣𝑧 and 𝑡. 

 

 

 
Figure 3-15: Velocity distribution of two different species 

 

 

The Plasma Approximation 

 

The procedure used to study a plasma is the following: �⃗⃗� is calculated through the motion equations and, 

then, the Poisson Equation is used to calculate 𝜎. The reason is that the plasma use to remain neutral so the 

Electric Field �⃗⃗�, as we saw, will adapt to preserve its neutrality. The charge distribution will adjust 

automatically to satisfy the Poisson Equation (but only at enough low frequencies), so we can assume 𝑛𝑖 =

𝑛𝑒 and ∇ ∙ �⃗⃗� ≠ 0 at the same time. 

Hence, on time scales long enough, to let electrons and ions move we can replace the Poisson Equation with 

the quasi-neutrality condition- 𝑛𝑖 = 𝑛𝑒. This is called “Plasma Approximation” and it’s valid just for low 

frequency applications. For High Frequency Electronic Waves this is not suitable and �⃗⃗� must be determined 

with the Maxwell’s Equations. 

 

 
Equations of Kinetic Theory  

 

Now, given a multi-particle system, we can introduce the Distribution Function 𝑓𝛼(𝑟, �⃗�, 𝑡) for a species 𝛼 

defined as: 
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 𝑓𝛼(𝑟, �⃗�, 𝑡)𝑑𝑟𝑑�⃗� = 𝑑𝑁(𝑟, �⃗�, 𝑡) (3-143) 

 

 

Is the number of particles in the volume element  𝑑𝑉 = 𝑑𝑟𝑑�⃗� in the phase space, with 𝑑𝑟 = 𝑑𝑥𝑑𝑦𝑑𝑧 very 

little, but big enough to contain a statistically significant number of particles and 𝑑�⃗� = 𝑣𝑥𝑣𝑦𝑣𝑧. 

This property let us approximate the function 𝑓𝛼(𝑟, �⃗�, 𝑡) with a continuous function. 

This function will change both for the effect of the flux of particles through the element 𝑑𝑟𝑑�⃗� and the 

collisional effect. 

The flux of particles through the area 𝑆 that delimits the volume element ∆𝑉 and the flux of particles 

generated by the collisions should be equal the time rate of the density variation of the particles in the phase 

space. To evaluate this flux we use the Divergence Theorem: 

 

 
∫𝑃 ∙ 𝑑𝑆 = ∫∇ ∙ 𝑃𝑑𝑉 (3-144) 

 

 

If we define with �⃗⃗� = (�⃗�, �⃗�) the generalized vector of the equations in the six-dimensional space (𝑟, �⃗�), we 

can write the Entering Flux as: 

 

 
−∫𝑑𝑆 ∙ [�⃗⃗�𝑓] (3-145) 

 

 

That, for the Divergence Theorem becomes: 

 

 
−∫𝑑𝑟𝑑�⃗� ∙ [∇𝑟 ∙ (�⃗�𝑓) + ∇𝑣 ∙ (𝑟𝑓)] (3-146) 

 

 

so, at the end, we’ll get: 

 

 𝜕𝑓

𝜕𝑡
= −∇𝑟 ∙ (�⃗�𝑓) − ∇𝑣 ∙ (𝑟𝑓) + (

𝜕𝑓

𝜕𝑡
)
𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑠

 (3-147) 

 

 

The acceleration is always: 

 

 
�⃗� =

�⃗�

𝑚
=
𝑞(�⃗⃗� + �⃗� × �⃗⃗�)

𝑚
 (3-148) 
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So, simplifying and considering that 𝑟 and �⃗� are independent we’ll finally get the Boltzmann Equation: 

 

 𝜕𝑓

𝜕𝑡
+ �⃗�∇𝑟(𝑓) +

𝑞(�⃗⃗� + �⃗� × �⃗⃗�)

𝑚
∇𝑣(𝑓) = (

𝜕𝑓

𝜕𝑡
)
𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑠

 (3-149) 

 

 

where 
𝜕𝑓

𝜕𝑡
 is the total derivative of the Distribution Function 

𝑑𝑓

𝑑𝑡
 that, in the absence of collisions says that the 

Convective Derivative 
𝑑𝑓

𝑑𝑡
 is equal to zero: in this last case the equation is called “Vlasov Equation”. 

Now, considering just the electrons that are more mobile than the ions, at the equilibrium 
𝜕

𝜕𝑡
= 0 and with 

�⃗⃗� = 0 the Boltzmann Equation becomes: 

 

 �⃗�∇𝑟𝑓𝑒 −
𝑒

𝑚
�⃗⃗� ∙ ∇𝑣𝑓𝑒 = 0 (3-150) 

 

 

At the thermal equilibrium, the distribution of the electrons is different from the Maxwellian one 𝑓𝑀 just for 

a factor connected to the Electric Potential 𝜙: 

 

 
𝑓𝑒 = 𝑓𝑀𝐞

𝑒𝜙
𝐾𝐵𝑇 (3-151) 

 

 

where, as usual, 𝐞 represents the exponential base and 𝑒 the charge of the electron. 

Integrating respect to �⃗� we get: 

 

 
𝑛𝑒 = 𝑛𝑒,0𝐞

𝑒𝜙
𝐾𝐵𝑇 (3-152) 

 

 

We call this last equation “Boltzmann Relation”, and with that we admit that electrons, that are more mobile 

and get into thermal equilibrium more easily, can be represented by this distribution. 

This is a big advantage especially in the PIC (Particle In Cell) system, solving in this way the problem of the 

low 𝜆𝐷. However, in this case, the Poisson Equation becomes non-linear. 

 

As we saw, the presence of a Magnetic Field tend to confine the plasma so, for the particles that leave the 

system, there should be a detachment from the lines of force. This happens when the Kinetic Pressure- 

𝑃𝑘 = 𝑃𝑒 + 𝑃𝑖- is stronger than the Magnetic Pressure- 𝑃𝑚, where 𝑃𝑚 and 𝑃𝑒- that is the Electron Pressure- 

value: 

 

 
𝑃𝑚 =

𝐵2

2𝜇0
 (3-153) 
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 𝑃𝑒 = 𝑛𝑒𝐾𝐵𝑇𝑒 (3-154) 

 

 

To compute 𝑃𝑖 instead, assume that the 𝑝𝑧𝑧 term of the Stress Tensor is the dominant one: this can be 

considered true if we assume 𝐵 → 0 so, if 𝜇 in a constant, we’ll get 𝑣⊥ → 0 and the Ion Pressure- 𝑃𝑖- will be: 

 

 ⟹𝑃𝑖 ≅ 𝑛𝑖𝑚𝑖〈𝑣𝑧
2〉 (3-155) 

 

 

The collisionality of the plasma tends to make the Distribution Function Maxwellian- 𝑓𝑀- as he following 

equation sais: 

 

 
𝑓(𝑡) = 𝑓𝑀 + [𝑓(0) − 𝑓𝑀]𝐞

(−
1
𝜏
)
 (3-156) 

 

 

To quantify it we define the Krook Collision Term: 

 

 
(
𝜕𝑓

𝜕𝑡
)
𝑐
=
𝑓 − 𝑓𝑀
𝜏

 (3-157) 

 

 

or, more in general, we use an equation called “Fokker-Plank Equation” that summarize the concept of 

Collisionality of a plasma: 

 

 𝑑𝑓

𝑑𝑡
= −

𝜕

𝜕𝑣
∙ (𝑓〈∆𝑣〉)

1

2

𝜕2

𝜕𝑣𝜕𝑣
: (𝑓〈∆𝑣∆𝑣〉) (3-158) 

 

 

 

3.1.1.8. Diffusion and Mobility in Weakly Ionized Gases 

 

Any realistic plasma will have a density gradient and the plasma will tend to diffuse toward regions of low 

density. In this paragraph we’ll analyze the problem of the diffusion of the plasma in absence of Magnetic 

Field and then, in the next paragraph, we’ll complete the description speaking about Plasma Diffusion in 

presence of a Magnetic Field, introducing the MHD Equations. 
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Figure 3-16: Representation of particle distribution in a plasma 

 

 

Collision Parameters 

 

The Mean Free Path is an index of the probability a collisional event to happen. Consider a gas volume with 

a density 𝑛𝑛, with cross area 𝐴 and volume 𝐴𝑑𝑥: the cross area of the atoms will be 𝑛𝑛𝐴𝑑𝑥𝜎, where 𝜎 is the 

atom section. 

 

 

 
Figure 3-17: Gas control volume of density 𝑛𝑛, 

 

 

Thus, the fraction of particles connected to a collision will be 
𝑛𝑛𝐴𝑑𝑥𝜎

𝐴
 and the exiting flux from a region with 

density 𝑛𝑛 will be 𝛤′ = 𝛤(1 − 𝑛𝑛𝜎𝑑𝑥), so: 

 

 𝑑𝛤

𝑑𝑥
= −𝑛𝑛𝜎𝛤 (3-159) 

 

 

 
⟹𝛤 = 𝛤0𝐞

(−
𝑥

𝜆𝑚𝑝𝑓
)
 (3-160) 
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Having defined: 

 

 
𝜆𝑚𝑝𝑓 =

1

𝑛𝑛𝜎
 (3-161) 

 

 

Hence, the time between two collisions will be: 

 

 
𝜏 =

𝜆𝑚𝑝𝑓

𝜈
 (3-162) 

 

 

and so, the Collision Frequency will be: 

 

 𝜈 = 𝑛𝑛𝜎𝑣 (3-163) 

 

 

In a real plasma the diffusion processes (collisions) tend to attenuate the pressure gradients if we consider a 

stationary process 
𝜕

𝜕𝑡
= 0 and we neglect  �⃗� ∙ ∇�⃗�. So, the equilibrium of the forces, without Magnetic Field, 

will be: 

 

 
𝑚𝑛

𝑑�⃗�

𝑑𝑡
= 𝑚𝑛 [

𝜕�⃗�

𝜕𝑡
+ (�⃗� ∙ ∇)�⃗�] = ±𝑒𝑛�⃗⃗� − ∇𝑝 −𝑚𝑛𝜈�⃗� (3-164) 

 

  

 

 
⟹ �⃗� = ±(

𝑒

𝑚𝜈
) �⃗⃗� − (

𝐾𝐵𝑇

𝑚𝜈
)
∇𝑛

𝑛
= ±𝜇𝐷 �⃗⃗� − 𝐷

∇𝑛

𝑛
 (3-165) 

 

 

being 𝜇𝐷 the Mobility Coefficient and 𝐷 the Diffusion Coefficient (whose value is higher for the electrons). 

The definition of flux derives from the Diffusion one: 

 

 𝛤𝑗 = 𝑛�⃗�𝑗 = ±𝜇𝑗𝑛�⃗⃗� − 𝐷𝑗∇𝑛 (3-166) 

 

 

and, if the field is zero, the diffusion is simply the classic one described by the Fick’s Low: 

 

 𝛤 = −𝐷∇𝑛 (3-167) 
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while, if the density is uniform ∇𝑛 = 0, we get: 

 

 
{
𝛤𝑒 = 𝑛�⃗�𝑒 = −𝜇𝑒𝑛�⃗⃗�

𝛤𝑖 = 𝑛�⃗�𝑖 = 𝜇𝑖𝑛�⃗⃗�
 (3-168) 

 

 

 ⟹ 𝑗 = 𝑛𝑖𝑞𝑒�⃗�𝑒 + 𝑛𝑒𝑞𝑒�⃗�𝑒 = 𝑒(𝛤𝑖 − 𝛤𝑒) = 𝑛𝑒(𝜇𝑖 − 𝜇𝑒)�⃗⃗� (3-169) 

 

 

 

Decay of a Plasma by Diffusion 

 

Consider now a plasma created in a container that decays by diffusion to the walls. Electrons and ions will 

reach the wall and recombine there, so the density near wall will be essentially zero. The fluid equations of 

motion and continuity govern the plasma behavior but if the decay is slow and the collision frequency 𝜈 is 

large, the time derivative in equation of motion will be negligible, getting: 

 

 𝜕𝑛

𝜕𝑡
+ ∇ ∙ (𝑛�⃗�) = 0 (3-170) 

 

 

 
⟹

𝜕𝑛

𝜕𝑡
+ ∇ ∙ 𝛤𝑗 = 0 (3-171) 

 

  

Now, if it was 𝛤𝑖 ≠ 𝛤𝑒, we would have a serious charge imbalance: if electrons, that are faster than ions, leave 

the plasma, it will be created a polarity as to retard them and to accelerate ions to the equilibrium. So, by 

setting 𝛤𝑖 = 𝛤𝑒 = 𝛤 we’ll get: 

 

 𝛤 = 𝜇𝑖𝑛�⃗⃗� − 𝐷𝑖∇𝑛 = −(−𝜇𝑒𝑛�⃗⃗�) − 𝐷𝑒∇𝑛 (3-172) 

 

 

 
⟹ �⃗⃗� =

𝐷𝑖 − 𝐷𝑒
𝜇𝑖 + 𝜇𝑒

∇𝑛

𝑛
 (3-173) 

 

 

And the common flux will be: 
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𝛤 = 𝜇𝑖

𝐷𝑖 −𝐷𝑒
𝜇𝑖 + 𝜇𝑒

∇𝑛 − 𝐷𝑖∇𝑛 = −
𝜇𝑖𝐷𝑒 + 𝜇𝑒𝐷𝑖
𝜇𝑖 + 𝜇𝑒

∇𝑛 (3-174) 

 

 

where we found a new coefficient called “Ambipolar Diffusion Coefficient”: 

 

 
𝐷𝑎 =

𝜇𝑖𝐷𝑒 + 𝜇𝑒𝐷𝑖
𝜇𝑖 + 𝜇𝑒

 (3-175) 

 

 

So, if this coefficient is constant we’ll have: 

 

 𝜕𝑛

𝜕𝑡
= 𝐷𝑎∇

2𝑛 (3-176) 

 

 

To compute the magnitude of 𝐷𝑎 consider 𝜇𝑒 ≫ 𝜇𝑖, thus: 

 

 
𝐷𝑎 = 𝐷𝑖 +

𝜇𝑖
𝜇𝑒
𝐷𝑒 ∝ 𝐷𝑖 +

𝑇𝑖
𝑇𝑒
𝐷𝑖 (3-177) 

 

 

So, if 𝑇𝑖 = 𝑇𝑒 ⟹𝐷𝑎 ≅ 2𝐷𝑖. 

Hence, the effect of the ambipolar electric field is to enhance the diffusion of ions by a factor of two, but the 

diffusion rate of the two species together is primarily controlled by the slower species. 

 

If we now integrate the Diffusion Equation we can get the Spatial and Time Behavior of the Ambipolar 

Diffusion. Using the method of the separation of variables we can write: 

 

 𝑛(𝑟, 𝑡) = 𝑇(𝑡)𝑆(𝑟) (3-178) 

 

 

 
𝑆
𝑑𝑇

𝑑𝑡
= 𝐷𝑎𝑇∇

2𝑆 (3-179) 

 

 

and, after some passages, we can get the general solution: 

 

 
𝑇 = 𝑇0𝑒

(−
1
𝜏
)
 (3-180) 
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𝑆 = 𝐴 cos (

𝑥

√𝐷𝑎𝜏
) + 𝐵 sin (

𝑥

√𝐷𝑎𝜏
) (3-181) 

 

 

In case of a plasma between two flat plates and we neglect the term on sine for symmetry, setting 𝑥 = ±𝐿 

and 𝑆 = 0 as boundary conditions, we’ll have: 

 

 
𝑛 = 𝑛0𝑒

(−
1
𝜏
)
cos (

𝜋𝑥

2𝐿
) (3-182) 

 

 

This is called the Lowest Diffusion Mode. The density distribution is a cosine and the peak density decays 

exponentially with time. The time constant 𝜏 increases with 𝐿 and varies inversely with 𝐷. 

 

 

 
Figure 3-18: Density distribution of the plasma between two flat plates 

 

 

There are, of course, higher diffusion modes with more than one peak, but we won’t enter in detail of these 

cases. 

 

 

Steady State Solutions 

 

In many experiments, a plasma is maintained in a Steady State by continuous ionization of plasma to offset 

the losses. To calculate the density profile, in this case, we must add a source term to the equation of 

continuity: 

 

 𝜕𝑛

𝜕𝑡
− 𝐷∇2𝑛 = 𝑄(𝑟) (3-183) 
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When 𝑄 is positive, it represents a source and contributes to positive 
𝜕𝑛

𝜕𝑡
. In steady state, we set 

𝜕𝑛

𝜕𝑡
= 0 and 

what remains is a Poisson-type equation for 𝑛(𝑟). 

If the ionization is produced by energetic electrons in the tail of the Maxwellian Distribution, like in many 

weakly ionized gases, then 𝑄 is proportional to the electron density 𝑛. Setting 𝑄 = 𝑍𝑛, where 𝑍 is the 

Ionization Function, we get: 

 

 
∇2𝑛 = −(

𝑍

𝐷
)𝑛 (3-184) 

 

 

Consequently, in this particular case the density remains constant. The plasma is maintained against diffusion 

losses thanks to a heat source that keeps the electron temperature at its constant value and thanks of a small 

influx of neutral atoms that replenish those that are ionized. 

 

Now consider a slab geometry where the source is localized on the plane 𝑥 = 0, like a slit-collimated beam 

of ultraviolet light. This is called “Plane Source”. The new steady state diffusion equation is then: 

 

 𝑑2𝑛

𝑑𝑥2
= −

𝑄

𝐷
𝛿(0) (3-185) 

 

 

Except at 𝑥 = 0 the density should satisfy the equation: 

 

 𝑑2𝑛

𝑑𝑥2
= 0 (3-186) 

 

 

So, the solution will be: 

 

 
𝑛 = 𝑛0 (1 −

|𝑥|

𝐿
) (3-187) 

 

 

In this case, the plasma has a linear profile. 
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Figure 3-19: Linear profile of the plasma density for a steady state solution 

 

 

Finally, let’s consider a cylindrical plasma with a source located on the axis, like a beam of energetic electrons 

producing ionization along the axis. This is called “Line Source”. Except at 𝑟 = 0, the density should satisfy 

the following equation: 

 

 1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕𝑛

𝜕𝑟
) = 0 (3-188) 

 

 

So, the solution that vanishes at 𝑟 = 𝑎 will be: 

 

 𝑛 = 𝑛0 ln (
𝑎

𝑟
) (3-189) 

 

 

The density becomes infinite at 𝑟 = 0. 

 

 

 
Figure 3-20: Density distribution of a cylindrical plasma with a source located on the axis 
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Recombination 

 

When an ion and an electron collide, they have a finite probability of recombining into a neutral atom. To 

conserve momentum, a third body must be present. If the third body is an emitted photon, the process is 

called “Radiative Recombination”, while if it is a particle the process is called “Three-Body Recombination”. 

The loss of plasma by recombination can be represented by a negative source term in the equation of 

continuity that is proportional to 𝑛𝑖𝑛𝑒 = 𝑛
2. In absence of diffusion terms, we can re-write the equation of 

continuity as: 

 

 𝜕𝑛

𝜕𝑡
= −𝛼𝑛2 (3-190) 

 

 

where 𝛼 is called “Recombination Coefficient and has unit of [𝑚3 𝑠⁄ ]. 

This is a non-linear equation for 𝑛, so we cannot use the solutions superposition method to solve it. 

Anyway, the solution is given by: 

 

 1

𝑛(𝑟, 𝑡)
=

1

𝑛0(𝑟)
+ 𝛼𝑡 (3-191) 

 

 

where 𝑛0(𝑟) is the initial density distribution. After the density has fallen far below its initial value, it decays 

reciprocally with time: 

 

 
𝑛 ∝

1

𝛼𝑡
 (3-192) 

 

 

In the following figure we can see the results of measurements of the density decay in the afterglow of a 

weakly ionized 𝐻 plasma. When the density is high the recombination is dominant while, after the density 

has reached a low value, it’s the diffusion that becomes dominant. 

 

 

P 
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Figure 3-21: Results of the measurements of the density decay in the afterglow of a weakly ionized 𝐻 plasma 

 

Diffusion Across a Magnetic Field 

 

The rate of plasma lost by diffusion can be decreased by a Magnetic Field. Considering always a weakly 

ionized plasma in a Magnetic Field, charged particles will move along �⃗⃗� by diffusion and mobility since �⃗⃗� does 

not affect the motion in parallel direction. So, we’ll have for each species: 

 

 
𝛤𝑧 ± 𝜇𝑛𝐸𝑧 −𝐷

𝜕𝑛

𝜕𝑧
 (3-193) 

 

If there were no collisions, particles would not diffuse in the perpendicular direction but they would continue 

to gyrate about the same-line force, while in presence of collisions particles migrate across �⃗⃗� to the walls 

along the gradients. They do his by a random-walk process and so also the guiding centre will shift position. 

The particles will diffuse in the direction opposite to ∇𝑛, the step length in the random walk is no longer 𝜆𝑚, 

but has the magnitude of the Larmor Radius 𝑟𝐿. 

Writing the perpendicular component of the fluid equation for each species and assuming that the plasma is 

isothermal and 𝜈 large enough for the 
𝑑�⃗⃗�⊥

𝑑𝑡
 to be negligible: 

 

 
𝑚𝑛

𝑑�⃗�⊥
𝑑𝑡

= ±𝑒𝑛(�⃗⃗� + �⃗�⊥ × �⃗⃗�) − 𝐾𝐵𝑇∇𝑛 −𝑚𝑛𝜈�⃗� = 0 (3-194) 

 

 

Where the 𝑥 and 𝑦 components are: 
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{
 

 𝑚𝑛𝜈𝑣𝑥 = ±𝑒𝑛𝐸𝑥 − 𝐾𝐵𝑇
𝜕𝑛

𝜕𝑥
± 𝑒𝑛𝑣𝑦𝐵

𝑚𝑛𝜈𝑣𝑦 = ±𝑒𝑛𝐸𝑦 − 𝐾𝐵𝑇
𝜕𝑛

𝜕𝑦
∓ 𝑒𝑛𝑣𝑥𝐵

 (3-195) 

 

 

Now, using the definition of 𝜇 and 𝐷 we get: 

 

 

{
 

 𝑣𝑥 = ±𝜇𝐸𝑥 −
𝐷

𝑛

𝜕𝑛

𝜕𝑥
±
𝜔𝑐
𝜈
𝑣𝑦

𝑣𝑦 = ±𝜇𝐸𝑦 −
𝐷

𝑛

𝜕𝑛

𝜕𝑦
∓
𝜔𝑐
𝜈
𝑣𝑥

 (3-196) 

 

 

And substituting them for 𝑣𝑥 we can solve for 𝑣𝑦 first and then for 𝑣𝑥: 

 

 

{
 
 

 
 𝑣𝑦(1 + 𝜔𝑐

2𝜏2) = ±𝜇𝐸𝑦 −
𝐷

𝑛

𝜕𝑛

𝜕𝑦
− 𝜔𝑐

2𝜏2
𝐸𝑥
𝐵
± 𝜔𝑐

2𝜏2
𝐾𝐵𝑇

𝑒𝐵

1

𝑛

𝜕𝑛

𝜕𝑥

𝑣𝑥(1 + 𝜔𝑐
2𝜏2) = ±𝜇𝐸𝑥 −

𝐷

𝑛

𝜕𝑛

𝜕𝑥
− 𝜔𝑐

2𝜏2
𝐸𝑦

𝐵
∓ 𝜔𝑐

2𝜏2
𝐾𝐵𝑇

𝑒𝐵

1

𝑛

𝜕𝑛

𝜕𝑦

 (3-197) 

 

 

where we can identify the �⃗⃗⃗� × �⃗⃗⃗� Diamagnetic Drifts: 

 

 
𝑣𝐸𝑥 =

𝐸𝑦

𝐵
 (3-198) 

 

 

 
𝑣𝐸𝑦 = −

𝐸𝑥
𝐵

 (3-199) 

 

 

 
𝑣𝐷𝑥 = ∓

𝐾𝐵𝑇

𝑒𝐵

1

𝑛

𝜕𝑛

𝜕𝑦
 (3-200) 

 

 

 
𝑣𝐷𝑦 = ±𝜔𝑐

2𝜏2
𝐾𝐵𝑇

𝑒𝐵

1

𝑛

𝜕𝑛

𝜕𝑥
 (3-201) 

 

 

and defining the Perpendicular Mobility and Diffusion Coefficients: 
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 𝜇⊥ =
𝜇

1 + 𝜔𝑐
2𝜏2

 (3-202) 

 

 

 
𝐷⊥ =

𝐷

1 +𝜔𝑐
2𝜏2

 (3-203) 

 

 

we finally get: 

 

 
�⃗�⊥ = ±𝜇⊥�⃗⃗� − 𝐷⊥

∇𝑛

𝑛
+
�⃗�𝐸 + �⃗�𝐷

1 + (
𝜈2

𝜔𝑐
2)

 
(3-204) 

 

 

So, the perpendicular velocity of either species is composed by two parts: one perpendicular to the gradients 

potential and density (the 𝑣𝐸 + �⃗�𝐷 drift) and the one parallel to the gradients in potential and density. 

The product 𝜔𝑐𝜏 is an important quantity in magnetic confinement: when 𝜔𝑐
2𝜏2 ≪ 1 he Magnetic Field has 

little effect on diffusion while when 𝜔𝑐
2𝜏2 ≫ 1 the Magnetic Field significantly retards the rate of diffusion 

across �⃗⃗�. 

Then we can see that the role of the collision frequency 𝜈 changed: in diffusion parallel to �⃗⃗�, 𝐷 is proportional 

to 𝜈−1, since collisions retard the motion, while in diffusion perpendicular to �⃗⃗�,  𝐷⊥ is proportional to 𝜈, since 

collisions are needed for the cross-field migration. 

The same consideration can be made for the role of 𝑚 because 𝜈 ∝
1

√𝑚
, so we can see that 𝐷 ∝

1

√𝑚
 and 𝐷⊥ ∝

√𝑚. 

Finally, we can conclude saying that in parallel diffusion electrons move faster than ions because of their 

higher thermal velocity, while in perpendicular diffusion electron escape more slowly because of their smaller 

Larmor radius. 

 

Since the Diffusion and Mobility Coefficients are anisotropic in the presence of a magnetic field, the problem 

of the Ambipolar Diffusion is not intuitive as in the case with �⃗⃗� = 0. 

Anyway, in general, the problem requires to solve simultaneously the equation of continuity for ions and 

electrons: in this case it’s not the fluxes 𝛤𝑗, but the divergences of the flux that should match, so: 

 

 ∇ ∙ 𝛤𝑗 = ∇ ∙ 𝛤𝑖 = ∇ ∙ 𝛤𝑒 (3-205) 

 

 

with: 
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{
∇ ∙ 𝛤𝑖 = ∇⊥ ∙ (𝜇𝑖,⊥𝑛�⃗⃗�⊥ − 𝐷𝑖,⊥∇𝑛) +

𝜕

𝜕𝑧
(𝜇𝑖𝑛𝐸𝑧 − 𝐷𝑖

𝜕𝑛

𝜕𝑧
)

∇ ∙ 𝛤𝑒 = ∇⊥ ∙ (−𝜇𝑒,⊥𝑛�⃗⃗�⊥ − 𝐷𝑒,⊥∇𝑛) +
𝜕

𝜕𝑧
(−𝜇𝑒𝑛𝐸𝑧 − 𝐷𝑒

𝜕𝑛

𝜕𝑧
)

 (3-206) 

 

 

 

 
Figure 3-22: Representation of the fluxes components for the Ambipolar Diffusion 

 

 

3.1.1.9. Fully Ionized Plasma 

 

When the plasma is composed of ions and electrons alone, all collisions are Coulomb Collisions between 

charged particles. However, there’s a big difference between collisions between like particles (ion-ion or 

electron-electron collisions) and unlike particles (ion-electron collisions). 

If we consider a head-on collision between two identical particles, the particles will emerge with their velocity 

reversed: they simply interchange their orbits and the two guiding centers remain in the same places. 

The worst that can happen is a 90°collision in which the velocities will be changed 90° in direction and the 

guiding centers will be shifted but the “center of mass” of the two guiding centers remains stationary. 

So, collisions between like particles give rise to very little diffusion. 

 

 

 
Figure 3-23: Representation of a head-on collision between two identical particles 
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Instead, when two particles of opposite charge collide the situation is totally different. The worst case is the 

180° collision in which the particles emerge with their velocities reversed. Since they must continue to gyrate 

about the lines of force in the proper sense both guiding centers will move in the same direction. So, unlike 

particle collision give rise to diffusion. 

 

 

 
Figure 3-24: Representation of a head-on collision between two particles with opposite charge 

 

 

Plasma Resistivity 

 

The fluid equations of motion may be written as follows: 

 

 

{
 

 𝑚𝑖𝑛
𝑑�⃗�𝑖
𝑑𝑡

= 𝑒𝑛(�⃗⃗� + �⃗�𝑖 × �⃗⃗�) − ∇𝑝𝑖 − ∇ ∙ �⃗⃗�𝑖 + 𝑃𝑖,𝑒

𝑚𝑒𝑛
𝑑�⃗�𝑒
𝑑𝑡

= 𝑒𝑛(�⃗⃗� + �⃗�𝑒 × �⃗⃗�) − ∇𝑝𝑒 − ∇ ∙ �⃗⃗�𝑒 + 𝑃𝑒,𝑖

 (3-207) 

 

 

where 𝑃𝑖,𝑒 and 𝑃𝑒,𝑖 represents, respectively, the momentum gain of the ion fluid caused by collisions with 

electrons, and vice versa, and �⃗⃗�𝑖 and �⃗⃗�𝑒 represents the stress tensor. 

Since the collision don’t give rise to much diffusion we can neglect the terms ∇ ∙ �⃗⃗�𝑗 and, because of the 

conservation of momentum, we have: 

 

 𝑃𝑖,𝑒 = −𝑃𝑒,𝑖 (3-208) 

 

 

with: 

 

 𝑃𝑒,𝑖 = 𝑚𝑛(�⃗�𝑖 − �⃗�𝑒)𝜈𝑒𝑖 = 𝜂𝑒
2𝑛2(�⃗�𝑖 − �⃗�𝑒) (3-209) 

 

 

where 𝜂 is a constant of proportionality and is called “Specific Resistivity”. Thus, we get: 
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𝜈𝑒𝑖 =

𝑛𝑒2

𝑚
𝜂 (3-210) 

 

Now, just to understand the meaning of 𝜂 suppose a plasma in an Electric Field- �⃗⃗�- and that the current that 

it derives is all carried by the electrons (which are more mobile than the ions). Supposing �⃗⃗� = 0 and 𝐾𝐵𝑇𝑒 =

0 so that ∇ ∙ 𝑃𝑒 = 0, than in steady state the equation we wrote above reduces to: 

 

 𝑒𝑛�⃗⃗� = 𝑃𝑒,𝑖 (3-211) 

 

 

And, since 𝑗 = 𝑒𝑛(�⃗�𝑖 − �⃗�𝑒), we get: 

 

 𝑃𝑒,𝑖 = 𝜂𝑒𝑛𝑗 (3-212) 

 

 

 ⟹ �⃗⃗� = 𝜂𝑗 (3-213) 

 

 

that is a simply Ohm’s law and 𝜂 represents just the Specific Resistivity. 

Again, to understand it better, think of a medium where we have an Electric Field- �⃗⃗�. Just using the well 

known Ohm’s Law, we get: 

 

 
�⃗⃗� =

𝑉

𝐿
=
𝑅𝑖

𝐿
 (3-214) 

 

 

 
𝑅 = 𝜂

𝐿

𝐴
 (3-215) 

 

 

 
⟹ �⃗⃗� =

𝜂𝑖

𝐴
= 𝜂𝑗 (3-216) 

 

 

Now, considering again that the electron mobility is higher than those of the ions, in a mono-dimensional 

case we can write: 

 

 
𝑗 =

𝑛𝑒2

𝑚𝑒𝜈
�⃗⃗� (3-217) 
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 ⟹ 𝜂 =
𝑚𝑒𝜈

𝑛𝑒2
 (3-218) 

 

Some values of 𝜂 are listed below: 

 

 
Table 3-2: Values of the specific resistivity 𝜂 for different materials 

Element or Material Specific Resistivity 

Hydrogen-𝐻 𝜂 = 5 × 10−7[𝛺 × 𝑚] 

Copper- 𝐶𝑢 𝜂 = 2 × 10−8[𝛺 × 𝑚] 

Stainless Steel 𝜂 = 7 × 10−7[𝛺 × 𝑚] 

Mercury- 𝐻𝑔 𝜂 = 10−6[𝛺 ×𝑚] 

 

 

The value found for Hydrogen is often called the “Spritzer Resistivity” thanks to the scientist that first 

compute it. 

Taking into account the complete formula: 

 

 

{
𝜂ǁ = 5.2 × 10

−5
𝑍 ln𝛬

𝑇3 2⁄ [𝑒𝑉]
𝜂⊥ = 2.0𝜂ǁ

 (3-219) 

 

 

 

And counting it for 𝐾𝐵𝑇𝑒 = 100 𝑒𝑉 we then get the value in the table. 

 

 

THE SINGLE FLUID MHD MODEL 
 

Now we can start with the analysis of diffusion in fully ionized plasma. 

In the previous paragraph we derived the kinetic equations of a plasma, that describe the way the 

Distribution Function evolve in the phase space and, then, we reduced the number of variables of the 

equation from seven to four, using equations with physical and dynamic parameters (like particle density, 

momentum, kinetic energy, etc.) that describe the plasma as a mix of different fluids, composed by particles 

with different masses and charges, but all subjected to the same electromagnetic forces and that evolves in 

time and space respecting the conservation laws and that interact between each other and with other species 

through collisions. 

Every species is described by the same set of equation that differs just for the different masses, charges and 

collision terms. 
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From now we’ll describe the plasma as a single fluid with a mass density 𝜌 and an electrical conductivity 1 𝜂⁄ . 

These are the equation of the Magneto-Hydro-Dynamics- MHD Equations. 

In this model, the plasma evolves in space and time with a velocity �⃗�: 

 

 
�⃗� =

∑ 𝑛𝑗𝑚𝑗 �⃗⃗�𝑗𝑗

∑ 𝑛𝑗𝑚𝑗𝑗
 (3-220) 

 

 

that represents the Average Macroscopic Velocity of the plasma. 

Of course, this velocity has an appreciable meaning when the components of the plasma move in solidarity: 

if the motion of the components is much different its meaning is not so clear. 

So, the MHD Model is particularly suitable for the overall motion of the plasma, in particular in situation of 

macroscopic equilibrium and not in case of a phenomena where we need to analyze the relative motion 

between electron and ions or the motion of one particular species; in these last cases we should come back 

to the Double-Fluid Model. 

 

So, let’s start with the description of the MHD Model. 

 

 

3.1.1.10. The MHD Equations 

 

The following equation will be calculated supposing that the transport coefficients (like resistivity, viscosity 

and thermal conductivity) are simple scalar and are constant. Even if it’s not always true, it’s not a strange 

hypothesis if the collision frequency is high: in that case the plasma is maintained in condition of isotropy. 

We can start from the Continuity Equation: 

 

 𝜕𝑛𝑗

𝜕𝑡
+ ∇ ∙ (𝑛𝑗 �⃗⃗�𝑗) = 0 (3-221) 

 

 

This, multiplied for 𝑚 and added over all the particles species, leads to: 

 

 𝜕𝜌

𝜕𝑡
+ ∇ ∙ (𝜌�⃗�) = 0 (3-222) 

 

 

where the Total Mass Density of the plasma 𝜌 is given by: 

 

 𝜌 =∑ 𝑛𝑗𝑚𝑗
𝑗

 (3-223) 
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Then, to get the Equation of the Motion we must add the Electromagnetic Forces to the Navier-Stokes 

Equation, that in absence of charge separation are reduced just to the Hall Force 𝑗 × �⃗⃗�, so we have: 

 

 𝜕�⃗�

𝜕𝑡
+ (�⃗� ∙ ∇)�⃗� = 𝑓 −

1

𝜌
∇𝑝 +

1

𝜌𝑐
𝑗 × �⃗⃗� + 𝜈∇2�⃗� (3-224) 

 

 

 

We can now express the current 𝑗 through the Maxwell Equations: 

 

 
∇ × �⃗⃗� =

4𝜋

𝑐
𝑗 +

1

𝑐

𝜕�⃗⃗�

𝜕𝑡
 (3-225) 

 

 

Now, neglecting the processes that happen in very short times and with typical velocities  𝑣 ≪ 𝑐, so 

|
𝐸

𝐵
| ~

𝑣

𝑐
≪ 1, we have: 

 

 

|
1

𝑐

𝜕�⃗⃗�

𝜕𝑡
| : |∇ × �⃗⃗�|~

𝐸
𝑐𝑡
𝐵
𝐿

~
𝑣

𝑐

𝐸

𝐵
~(
𝑣

𝑐
)
2

 (3-226) 

 

 

So, we can neglect the diffusion current and get: 

 

 𝑗 =
𝑐

4𝜋
∇ × �⃗⃗� (3-227) 

 

 

That leads us to write the Equation of the Motion just with the Magnetic Field: 

 

 𝜕�⃗�

𝜕𝑡
+ (�⃗� ∙ ∇)�⃗� = 𝑓 −

1

𝜌
∇𝑝 +

1

4𝜋𝜌
(∇ × �⃗⃗�) × �⃗⃗� + 𝜈∇2�⃗� (3-228) 

 

 

Then, knowing that: 

 

 
(∇ × �⃗⃗�) × �⃗⃗� = (�⃗⃗� ∙ ∇)�⃗⃗� − ∇2 (

𝐵2

2
) (3-229) 

 

 

We finally get: 
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 𝜕�⃗�

𝜕𝑡
+ (�⃗� ∙ ∇)�⃗� = 𝑓 −

1

𝜌
∇(𝑝 +

𝐵2

8𝜋
) +

(�⃗⃗� ∙ ∇)�⃗⃗�

4𝜋𝜌
+ 𝜈∇2�⃗� (3-230) 

 

 

So, the effect of the Magnetic Field is to introduce an isotropic pressure and a tension along the lines of 

force. 

 

For the Energy Equation we have: 

 

 
𝜌 (
𝜕휀

𝜕𝑡
+ �⃗� ∙ ∇휀) = ∇ ∙ (𝐾𝐵∇𝑇) − 𝑝∇ ∙ �⃗� +

𝑗2

𝜎

= ∇ ∙ (𝐾𝐵∇𝑇) − 𝑝∇ ∙ �⃗� +
1

𝜎
[
𝑐

4𝜋
(∇ × �⃗⃗�)]

2

 

(3-231) 

 

 

Now, we can write the Induction Maxwell Equation: 

 

 𝜕�⃗⃗�

𝜕𝑡
= −𝑐∇ × �⃗⃗� (3-232) 

 

 

that can be combined with the following equations: 

 

 
𝑗 = 𝜎 (�⃗⃗� +

�⃗�

𝑐
× �⃗⃗�) =

𝑐

4𝜋
(∇ × �⃗⃗�) (3-233) 

 

 

 
⟹ �⃗⃗� =

𝑐

4𝜋𝜎
∇ × �⃗⃗� −

�⃗�

𝑐
× �⃗⃗� (3-234) 

 

 

 
⟹

𝜕�⃗⃗�

𝜕𝑡
=

𝑐2

4𝜋𝜎
∇2�⃗⃗� + ∇ × (�⃗� × �⃗⃗�) (3-235) 

 

 

that is called “Magneto-Hydro-Dynamic Equation” and: 

 

 
𝜂 =

𝑐2

4𝜋𝜎
 (3-236) 

 

 

is the Electric Resistivity. 
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The first term of this last equation represents the Diffusion of the Magnetic Field, while the second term 

represents the Convection of the Magnetic Field by the plasma in motion. 

 

The relative importance of these last two terms is measured by their ratio, that is a pure number called 

“Reynolds Magnetic Number”: 

 

 

𝑅𝑀 =

𝑣𝐵
𝐿
𝜂𝐵
𝐿2

=
𝑣𝐿

𝜂
 (3-237) 

 

 

Now we can analyze the MHD Equation in different situations. 

 

 

Plasma at rest: �⃗⃗⃗� = 𝟎 

 

In this case the Magneto-Hydro-Dynamic Equation becomes: 

 

 𝜕�⃗⃗�

𝜕𝑡
= 𝜂∇2�⃗⃗� (3-238) 

 

 

that indicates how the field changes in a scale time: 

 

 
𝜏𝐷𝑖𝑓𝑓 =

𝐿2

𝜂
=
4𝜋𝜎𝐿2

𝑐2
 (3-239) 

 

 

because the Flux Lines diffuse into the plasma when the resistivity is not exactely equal to zero. The reason 

for the Magnetic Field Decay is that the Magnetic Field is generated by Electric Currents and these currents 

are dissipated for Joule Effect. 

 

 

Plasma in motion with no resistivity: �⃗⃗⃗� ≠ 𝟎, 𝜼 = 𝟎 

 

The MHD Equation now is: 

 

 𝜕�⃗⃗�

𝜕𝑡
= ∇ × (�⃗� × �⃗⃗�) (3-240) 

 

 

and for a given �⃗⃗� at 𝑡 = 0 let us calculate how it changes in time. 
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This equation shows that the Concatenate Magnetic Flux should conserve  in the dynamic of a plasma with 

no resistivity. About that we should introduce two theorems that Alfvén theorized in 1942 about it: 

 

a) The Magnetic Flux though a circuit concatenated with plasma is constant. So, the flux through a 

circuit 𝛾 with area 𝑆 is given by: 

 

 
𝜙 = ∫ �⃗⃗� ∙ 𝑑𝑆 (3-241) 

 

 

When the circuit moves with the plasma the flux will vary for two different effects: the local 

variation of �⃗⃗� with time and the variation of the deformed area of the motion (lateral flux loss): 

 

 𝑑𝜙

𝑑𝑡
= ∫

𝜕�⃗⃗�

𝜕𝑡
∙ 𝑑𝑆 +∮ �⃗⃗�(�⃗� × 𝑑𝑟) = −∫{−

𝜕�⃗⃗�

𝜕𝑡
+ ∇ × (�⃗� × �⃗⃗�)} ∙ 𝑑𝑆 (3-242) 

 

 

The argument of the integral gets zero if �⃗� is the plasma velocity. So, if the circuit moves with the 

Plasma, 𝜙 results constant, that means that the flux is transported without variations: the field is 

frozen. 

 

b) Fluid elements that are initially associated to a certain flux line keep on be solidal with those lines. 

So, writing the MHD Equation in the following form: 

 

 𝜕�⃗⃗�

𝜕𝑡
= (�⃗⃗� ∙ ∇)�⃗⃗� − (�⃗⃗� ∙ ∇)�⃗⃗� − �⃗⃗�(�⃗⃗� ∙ ∇) (3-243) 

 

 

and using the Continuity Equation we get: 

 

 𝑑�⃗⃗�

𝑑𝑡
= (�⃗⃗� ∙ ∇)�⃗� +

�⃗⃗�

𝜌

𝑑𝜌

𝑑𝑡
 (3-244) 

 

 

 
⟹

𝑑

𝑑𝑡
(
�⃗⃗�

𝜌
) = (

�⃗⃗�

𝜌
∙ ∇) �⃗� (3-245) 

 

 

If we now consider a linear fluid element  defined from the 𝑑𝑟 vector with initial extremes 1 and 2 

that moves for a time 𝑑𝑡 to the positions 1′ and 2′ , we have that the variation of the 𝑑𝑟 vector is: 
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 𝑑𝑟(𝑡 + 𝑑𝑡) − 𝑑𝑟(𝑑𝑡) = (�⃗�2 − �⃗�1)𝑑𝑡 = (𝑑𝑟 ∙ ∇)�⃗�𝑑𝑡 (3-246) 

 

 

 
⟹

𝑑

𝑑𝑡
𝑑𝑟 = (𝑑𝑟 ∙ ∇)�⃗� (3-247) 

 

 

 
⟹ 𝑑𝑟 ∝

�⃗⃗�

𝜌
 (3-248) 

 

 

So, if 𝑑𝑟 is initially along �⃗⃗� the proportionality is conserved. This situation happens only when the 

velocities of the fluid element and the Magnetic Field are the same, so when the plasma and the  

magnetic field are solidal: if the density of the plasma increase also the intensity of the Magnetic  

Field will increase, and vice-versa. 

 

In this chapter, we just gave an idea of which are the main plasma equations used to describe electric 

thruster, in particular, the Magneto Hydro Dynamic Equations. 

In the next chapter, we will describe some basic and simplified equations of the operations of an MPD 

Thruster. 
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CHAPTER 4: PHYSICS OF AN MPD THRUSTER 
 

The most powerful type of Electromagnetic Thruster is the MPD Thruster, in particular the Self-Induced 

Magnetic Fields version that operates in Steady (or Quasi-Steady) fashion, which can generate multi-

Newton Thrust levels with a few cm of diameter. 

Let’s see its working principle. 

 

 

 
Figure 4-1: An MPD Thruster 

 

 

ELECTROMAGNETIC FORCES ON PLASMAS-MPD THRUSTERS 
 

 

 
Figure 4-2: An MPD Thruster Scheme 

 

 

4.1.1.2. General Plasma Physics of an MPD Thruster 
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Given a charge 𝑞 moving at velocity �⃗� in an Electric Field �⃗⃗� and in a Magnetic Field �⃗⃗� the Lorentz Force, as 

we said multiple times, is given by: 

 

 �⃗�𝐿𝑜𝑟𝑒𝑛𝑡𝑧 = 𝑞(�⃗⃗� + �⃗� × �⃗⃗�) (4-2) 

 

 

We know that �⃗� cannot depend on the rectilinear motion of the observer and so it’s also for 𝑞 and �⃗⃗� for non-

relativistic velocities. So it’s the Electric Field- �⃗⃗�- that must be different in different reference frames. Let �⃗⃗� 

the Electric Field in laboratory frame and 𝐸′⃗⃗⃗⃗  the Electric Field in another frame moving at a velocity �⃗⃗� relative 

to the first one. 

Thus we have: 

 

 �⃗⃗� + �⃗� × �⃗⃗� = 𝐸′⃗⃗⃗⃗ + (�⃗� − �⃗⃗�) × �⃗⃗� (4-3) 

 

 

 ⟹𝐸′⃗⃗⃗⃗ = �⃗⃗� + �⃗⃗� × �⃗⃗� (4-4) 

 

 

In particular, if �⃗⃗� = �⃗� the Lorentz Force is seen to be purely electrostatic, getting �⃗�𝐿𝑜𝑟𝑒𝑛𝑡𝑧 = 𝑞𝐸′⃗⃗⃗⃗ . 

The frame that moves at the �⃗⃗� velocity is often chosen to be the one moving at the mean mass velocity of 

the plasma. 

Now consider a plasma where there’s a number density 𝑛𝑗 of the 𝑗𝑡ℎ type of charged particles, which have a 

charge 𝑞𝑗 and move with a velocity �⃗�𝑗. The net Lorentz Force per unit volume is: 

 

 𝑓 =∑ 𝑛𝑗𝑞𝑗(�⃗⃗� + �⃗�𝑗 × �⃗⃗�)
𝑗

 (4-5) 

 

 

and, since the plasma is neutral, we have that: 

 

 ∑ 𝑛𝑗𝑞𝑗
𝑗

= 0 (4-6) 

 

 

so: 

 

 𝑓 =∑ (𝑛𝑗𝑞𝑗�⃗�𝑗) × �⃗⃗�
𝑗

 (4-7) 

 

 

But we also know that: 
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 ∑ 𝑛𝑗𝑞𝑗�⃗�𝑗
𝑗

= 𝑗 (4-8) 

 

 

being 𝑗 the Current Density Vector, that is measured in [𝐴 𝑚2⁄ ]. So, finally we get: 

 

 𝑓 = 𝑗 × �⃗⃗� (4-9) 

 

 

Notice that the �⃗�𝑗 used in the previous formulas could be the velocity of any frame, including the Plasma 

Frame. 

 

As already said multiple times, the dominant contribution to 𝑗 is given by the electrons because of the higher 

mobility so, in the plasma frame we have that: 

 

 𝑗 = 𝑗𝑒 = −𝑒𝑛𝑒�⃗�𝑒 (4-10) 

 

 

being �⃗�𝑒 the electron mean mass velocity vector (that is not the thermal velocity 𝑐𝑒). 

These electrons have a very rapid and chaotic motion, except for the whole swarm slowly drift �⃗�𝑒 and, 

typically, we have that: 

 

 |�⃗�𝑒| ≪ 𝑐𝑒 (4-11) 

 

 

Now, to understand this swarm consider the net Lorentz force on it per unit volume: 

 

 𝑓𝑒 = −𝑛𝑒𝑚𝑒�⃗�𝑒𝜈𝑒 =
𝑚𝑒𝜈𝑒
𝑒

𝑗 (4-12) 

 

 

 
⟹ 𝑗 =

𝑒2𝑛𝑒
𝑚𝑒𝜈𝑒

(𝐸′⃗⃗⃗⃗ + �⃗�𝑒 × �⃗⃗�) (4-13) 

 

 

or, since: 

 

 
�⃗�𝑒 = −

𝑗

𝑛𝑒𝑒
 (4-14) 
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⟹ 𝑗 =

𝑒2𝑛𝑒
𝑚𝑒𝜈𝑒

𝐸′⃗⃗⃗⃗ −
𝑒

𝑚𝑒𝜈𝑒
𝑗 × �⃗⃗� (4-15) 

 

 

Now, defining the Scalar Conductivity- 𝜎- and the Hall Parameter- 𝛽- as: 

 

 
𝜎 =

𝑒2𝑛𝑒
𝑚𝑒𝜈𝑒

 (4-16) 

 

 

 
𝛽 =

𝑒𝐵

𝑚𝑒𝜈𝑒
 (4-17) 

 

 

 
𝛽 = 𝛽 (

�⃗⃗�

𝐵
) (4-18) 

 

 

we can finally write the Generalized Ohm’s Law: 

 

 𝜎𝐸′⃗⃗⃗⃗ = 𝑗 + 𝑗 × 𝛽 (4-19) 

 

 

where, as written above: 

 

 𝐸′⃗⃗⃗⃗ = �⃗⃗� + �⃗⃗� × �⃗⃗� (4-20) 

 

 

Now, remembering the definition of Gyro Frequency: 

 

 
𝜔 =

𝑒𝐵

𝑚𝑒
 (4-21) 

 

 

we can write: 

 

 𝛽 =
𝜔

𝜈𝑒
 (4-22) 
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That represents the ratio between gyro frequency and collision frequency. It should be high for low pressures 

and densities, where collisions are rare and for high magnetic field, where the gyro frequency is high. 

Normally, in MPD Thrusters we have 𝛽~1. 

 

We now want to calculate the Electromagnetic Work. 

The rate at which the external fields work on the charged particles is: 

 

 𝑊 =∑ 𝑛𝑗𝑞𝑗(�⃗⃗� + �⃗�𝑗 × �⃗⃗�)
𝑗

∙ �⃗�𝑗 = �⃗⃗� ∙∑ 𝑛𝑗𝑞𝑗�⃗�𝑗
𝑗

 (4-23) 

 

 

 𝑊 = �⃗⃗� ∙ 𝑗 (4-24) 

 

 

It’s evident that the Magnetic Field doesn’t directly contribute to the total work, but it does by modifying the 

Electric Field- �⃗⃗�- or the Current Density Vector- 𝑗. 

This total work goes, partly, into heating the plasma (Dissipation) and, partly, into bodily pushing it 

(Mechanical Work), in fact: 

 

 𝑊 = �⃗⃗� ∙ 𝑗 = (𝐸′⃗⃗⃗⃗ − �⃗⃗� × �⃗⃗�) ∙ 𝑗 = 𝐸′⃗⃗⃗⃗ ∙ 𝑗 + (𝑗 × �⃗⃗�) ∙ �⃗⃗� (4-25) 

 

 

being: 

 

 (�⃗⃗� × �⃗⃗�) ∙ 𝑗 = −(𝑗 × �⃗⃗�) ∙ �⃗⃗� (4-26) 

 

 

Now, using also Ohm’s Law, we have that: 

 

 
𝐸′⃗⃗⃗⃗ ∙ 𝑗 =

1

𝜎
(𝑗 + 𝑗 × 𝛽) ∙ 𝑗 =

𝑗2

𝜎
 (4-27) 

 

 

 
⟹𝑊 =

𝑗2

𝜎
+ (𝑗 × �⃗⃗�) ∙ �⃗⃗� (4-28) 

 

 

As we can see easily, the first term is the well known Joule Heating Effect, while the second one is simply the 

rate at which the Lorentz Force -𝑗 × �⃗⃗�- does Mechanical Work on plasma moving at the velocity �⃗⃗�. 
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This second term shows that it is possible to accelerate a plasma with a Magnetic Field. Thus, in an efficient 

accelerator, we should try to maximize (𝑗 × �⃗⃗�) ∙ �⃗⃗� at the expense of 
𝑗2

𝜎
. 

 

As we said in the previous chapter, the Magnetic Field in an MPD Thruster can be self-induced or provided 

by external coils. 

Now, we know that the general relationship between �⃗⃗� and 𝑗 (in a Steady State and without magnetic 

materials) is given by the Ampere’s Law: 

 

 
𝑗 = ∇ ×

�⃗⃗�

𝜇0
 (4-29) 

 

 

being 𝜇0 = 4𝜋 ∙ 10
−7  

𝐻

𝑚
 the Magnetic Permeability of Vacuum. 

In the integral form we have: 

 

 
∬𝑗 ∙ 𝑑𝐴 = ∮

�⃗⃗�

𝜇0
∙ 𝑑𝑙 (4-30) 

 

 

which states that the circulation of 
�⃗⃗�

𝜇0
 around a closed line equals the total current linked by the loop. 

Just to make an example, inside a long solenoid carrying a current 𝑖 the field �⃗⃗� is nearly constant and we get: 

 

 
𝑖𝑛 =

�⃗⃗�

𝜇0
𝑙 (4-31) 

 

 

where 𝑛 is the number of turns, so: 

 

 �⃗⃗� = 𝜇0
𝑛

𝑙
𝑖 (4-32) 

 

 

But we also know that the Magnetic Field has the essential property of being solenoidal, so: 

 

 ∇ ∙ �⃗⃗� = 0 (4-33) 

 

 

So, in regions where no current is flowing we also have that ∇ × �⃗⃗� = 0 so, by �⃗⃗� = −∇𝜓, 

 we can define the Magnetic Potential-  𝜓- that obeys the Laplace’s Equation: 
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 ∇2𝜓 = 0 (4-34) 

 

 

However, such a potential cannot exist in a current-carrying plasma, so the vector �⃗⃗� must be found by 

simultaneous solution of Ampere’s Law (according to which we can write ∇ ∙ 𝑗 = 0) and the Ohm’s Law (with 

the additional condition ∇ ∙ �⃗⃗� = 0). 

 

 

 
Figure 4-3: Scheme of a conductive plasma inside a solenoid. 

 

 

Considering now a conductive plasma inside a solenoid, so that an external �⃗⃗� field- �⃗⃗�𝑒𝑥𝑡- and a self induced 

�⃗⃗� field- �⃗⃗�𝑖𝑛𝑑- coexist. The first one is due to the coil currents, while the second one is due to currents in the 

plasma itself. Suppose the plasma currents are due to the flow at the velocity �⃗⃗� in the total magnetic field �⃗⃗�, 

while any external electrodes are shot-circuited, so that �⃗⃗� = 0 in the laboratory frame. Then, we have that: 

 

 𝐸′⃗⃗⃗⃗ = �⃗⃗� + �⃗⃗� × �⃗⃗� = �⃗⃗� × �⃗⃗� (4-35) 

 

 

with 𝐸′ ≅ 𝑢𝐵. Now, neglecting the Hall Effect, we have that 𝑗~𝜎𝑢𝐵 and that the induced field obeys 

separately its own Ampere’s Law: 

 

 
𝑗 = ∇ ×

�⃗⃗�𝑖𝑛𝑑
𝜇0

 (4-36) 

 

 

with 𝐵𝑖𝑛𝑑 ≅ 𝜇0𝑗𝑙, being 𝑙 the characteristic distance for variation 𝐵𝑖𝑛𝑑 and 𝑗 the Plasma Current Density. This 

happens because ∇ × �⃗⃗�𝑒𝑥𝑡 = 0 in the plasma (outside the coil wires). 
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 ⟹ 𝐵𝑖𝑛𝑑 ≅ 𝜇0𝑙𝑢𝐵𝜎 (4-37) 

 

 

Now, we have that: 

 

 �⃗⃗� = �⃗⃗�0 + �⃗⃗�𝑖𝑛𝑑 (4-38) 

 

 

 
⟹

�⃗⃗�𝑖𝑛𝑑

�⃗⃗�0 + �⃗⃗�𝑖𝑛𝑑
~𝜇0𝑙𝑢𝜎 (4-39) 

 

 

This last formula shows that the field created by the plasma currents becomes comparable to the external 

field when the Magnetic Reynolds Number- 𝑅𝑒𝑚 = 𝜇0𝑙𝑢𝜎 is of the order of the unit. 

 

For a high power MPD accelerator, for example, we have these values: 

• 𝜎 = 1000 𝑠/𝑚𝐻  

• 𝑢 = 10000 𝑚/𝑠 

• 𝑙 = 0.1 𝑚 

 

getting: 

 

 𝑅𝑒𝑚~10
−6 ∙ 10−1 ∙ 103 ∙ 104 = 1 (4-40) 

 

 

So, the operation with self-induced magnetic field becomes possible. This simplifies a lot the design, since no 

heavy and power-consuming external coils are needed. 

However, in some case external field may be preferable. 

 

 

4.1.1.3. A Simple Plasma Accelerator 

 

Now consider a rectangular channel with two conducting and two insulating walls with a plasma flowing in 

the channel at the velocity �⃗⃗� and an external Electric Field �⃗⃗� applied to it: 
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Figure 4-4: Scheme of a plasma flowing in a rectangular channel with two insulating and two conducting walls. 

 

 

If we ignore the Hall Effect and the magnitude of |�⃗⃗�| > |�⃗⃗��⃗⃗�| (the Induced Faraday Field), a current 𝑗 = 𝜎𝐸′⃗⃗⃗⃗ =

𝜎(�⃗⃗� + �⃗⃗� × �⃗⃗�) will flow in the direction of �⃗⃗�. 

 

 

 
Figure 4-5: Scheme of current direction. 

 

 

The Lorentz Force 𝑓 = 𝑗 × �⃗⃗� is then in the forward direction and so we have an accelerator. On the other 

hand, instead, if |�⃗⃗�| < |�⃗⃗��⃗⃗�|, the current 𝑗 flows in the direction opposite to �⃗⃗�. Externally, a positive current 

flows into the positive pole of the “battery” and could be used to re-charge it. 

This is thus an MHD generator and the battery would probably be replaced by a passive load. The Lorentz 

Force points backwards, so the fluid is forced to flow by an external pressure gradient (like in a turbine). 

 

In a moderate pressure, plasma 𝛽 can easily exceed the unit. 

To understand better the Ohm’s Law consider the following images: 
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Figure 4-6: Scheme of electromagnetic forces acting on a plasma. 

 

              

 

 

We can see that the effect is to turn the current and the Lorentz Force counter-clockwise by a tan−1(𝛽). 

There’s still a forward force- called “Blowing Force”-, but also a transverse force- called “Pumping Force” 

that pumps the fluid towards the cathode wall, creating a transverse pressure gradient. 

As we said before, the Hall Effect doesn’t contribute directly to the work, but it contributes to the Joule 

Dissipation 
𝑗2

𝜎
, so we can turn the whole diagram by tan−1(𝛽) clockwise and have the 𝑗 flow only transversally 

and 𝑓 = 𝑗 × �⃗⃗� axially. However, that implies a forward component of the external field �⃗⃗�: 

 

 

 
Figure 4-7: Scheme of electromagnetic forces acting on a plasma. 

 

 

So, we should build the electrode wall in such a way that an axial voltage can be sustained. 

 

 

 



110 
 

4.1.1.4. Basics Design of an MPD Thruster 

 

Consider now the possibility to wrap the continuous electrode accelerator into an annulus, eliminating the 

insulating walls: 

 

 

 
Figure 4-8: Continuous electrode accelerator wrapped into an annulus. 

 

 

The Magnetic Field is now azimuthal, which circular lines of force and the insulating sidewalls have been 

replaced by the annular plasma itself. Anyway, an insulating backwall is still required. 

The current tends to concentrate near the edge of the downstream anode and near the cathode root. Then, 

the pumping force will now tend to produce a highly concentrated jet of plasma: in fact a highly luminous 

central core is usually observed on MPD plumes, extending from the downstream part of the cathode to 

several cathode lengths. 

 

Now, speaking about the Magnetic Field, notice that the azimuthal �⃗⃗�  can be provided by the plasma current 

flowing in the meridional plane. This can be seen from Ampere’s Law, written in cylindrical coordinates: 

 

 

{
 
 

 
 𝜇0𝑗𝑟 =

1

𝑟

𝜕𝐵𝑥
𝜕𝜙

−
𝜕𝐵𝜙

𝜕𝑥
=
𝜕𝐵𝜙

𝜕𝑥
  𝑓𝑜𝑟 𝐵𝑥 = 0

𝜇0𝑗𝑥 =
1

𝑟

𝜕(𝑟𝐵𝜙)

𝜕𝑟
−
1

𝑟

𝜕𝐵𝑟
𝜕𝜙

=
1

𝑟

𝜕(𝑟𝐵𝜙)

𝜕𝑟
    𝑓𝑜𝑟 𝐵𝑟 = 0

 (4-41) 

 

 

The direction of �⃗⃗� is the one required for the acceleration and his magnitude, in a point 𝑃 can be simply 

related to the amount of current 𝑖′ that crosses the surface 𝑆: this surface leans on the ring that contains 𝑃 

and extends around the cathode tip. 

Thus, from the Integral Ampere’s Law we have: 

 

 
𝐵(𝑃) = 𝜇0

𝑖′

2𝜋𝑟
 (4-42) 
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where 𝑟 is the radial coordinate of P. In particular, 𝑖′ = 𝑖 (where 𝑖 is the Total Current) for any point on the 

insulating backplate, and it’s 𝑖′ = 0 for point outside the cylinder, like the point 𝑄 in the figure below. 

 

 

 
Figure 4-9: Representation of the current flow in a MPD Thruster. 

 

 

4.1.1.5. Approximate Calculation of the Thrust 

 

There are two contributes to the trust of our accelerator: 

• The integral of the gas pressure over the back-facing surfaces, that is called 

“Electrothermal/Aerodynamic Thrust” and it would be the only one acting in a device where the 

Joule Heating Effect- 
𝑗2

𝜎
- dominates over the Lorentz Work- (𝑗 × �⃗⃗�) ∙ �⃗⃗�. 

• The reaction to the Lorentz Forces exerted on the plasma 

 

At high efficiencies, the Electromagnetic Thrust dominates over the Electrothermal. Let’s calculate it: 

 

 
�⃗�𝐸𝑀 =∬∫𝑗 × �⃗⃗�𝑑𝑉 =

1

𝜇0
∬∫(∇ × �⃗⃗�) × �⃗⃗�𝑑𝑉 (4-43) 

 

 

For the BAC-CAB Rule we have: 

 

 
(∇ × �⃗⃗�) × �⃗⃗� = (�⃗⃗�∇)�⃗⃗� − ∇(

𝐵2

2
) (4-44) 

 

 

but since |�⃗⃗�| doesn’t vary along its own direction in our case, we have: 
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(�⃗⃗�∇)�⃗⃗� = −

𝐵2

𝑟
𝑙𝑟  (4-45) 

 

 

 
⟹ �⃗�𝐸𝑀 = −

1

𝜇0
∬∫∇(

𝐵2

2
)𝑑𝑉 (4-46) 

 

 

and, applying the Gauss Theorem: 

 

 
�⃗�𝐸𝑀 = −

1

𝜇0
∬

𝐵2

2
𝑑𝐴 (4-47) 

 

 

where the integral extends to the surface surrounding the plasma and 𝑑𝐴 points outwards from the surface. 

Since we are interested only on the axial force we can write: 

 

 
�⃗�𝐸𝑀 = −

1

𝜇0
∬
𝐵2

2
𝑑𝐴𝑥 (4-48) 

 

 

where 𝑑𝐴𝑥 is the projection of each area element to the axial direction. 

For any cylindrical surface, 𝑑𝐴𝑥 = 0. The only surface surrounding the plasma which face backwards (or 

forward) are the back-plate, the cathode tip and the anode rim. 

Now, for the back-plate, using 𝑖′ = 𝑖 we have: 

 

 
(𝐹𝐸𝑀)𝐵𝑎𝑐𝑘−𝑃𝑙𝑎𝑡𝑒 = +

1

𝜇0
∫ (

𝜇0𝑖

2𝜋𝑟
)
2

2𝜋𝑟
𝑅𝑎

𝑅𝑐

𝑑𝑟 =
𝜇0𝑖

2

4𝜋
ln
𝑅𝑎
𝑅𝑐

 (4-49) 

 

 

Where 𝑅𝑎 and 𝑅𝑐 are the anode and the cathode radii and the positive sign is because the normal 𝑑𝐴 to the 

surface points backwards (out of the plasma). 

The calculation of the cathode tip and anode rim contributions is more complicated, since we would need to 

know the distribution of the current on these surfaces. However, for conventional built thrusters, these 

contributions have been estimated experimentally to amount at most 10 % of the total and they’re counted 

with the Maecker’s Formula (that arises the same formula we wrote above): 

 

 
𝐹 =

𝜇0𝑖
2

4𝜋
ln
𝑅𝑎
𝑅𝑐

 (4-50) 
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This formula is the results of many experimental calculus and it is object of many studies. 

From Maecker’s Law we can notice that 𝐹 is independent of the size and it scales as the square of the total 

current. 

Thus, the magnitude of the Exit Velocity- 𝑢𝑒- is: 

 

 
𝑢𝑒 =

𝐹

�̇�
=
𝜇0
4𝜋
ln
𝑅𝑎
𝑅𝑐

𝑖2

�̇�
 (4-51) 

 

 

In the diagrams below, we can see the trend of the Thrust and the Thrust Efficiency respect to the Current 

and the Thrust Efficiency respect to the Specific Impulse. 

 

  

Figure 4-10: Trend of the Thrust (on the left) and the Thrust Efficiency (on the right) respect to the Current. 
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Figure 4-11: Trend of theThrust Efficiency respect to the Specific Impulse. 

 

 

It has been found that the speed of sound at representative points in the flow scales like 
1

√𝑀
, being 𝑀 the 

Molecular Mass of the gas and, from the formula of the exit velocity, we can see that the Mach Number at 

the exit varies like the quantity: 

 

 𝑖2√𝑀

�̇�
 (4-52) 

 

 

This parameter is the most important scaling parameter for an MPD Thruster. It has been found that, for 

each geometrical arrangement, there’s a limiting value of 
𝑖2√𝑀

�̇�
 beyond which the operation becomes highly 

unsteady and erosion of the electrodes increases a lot. 

Experimentally a rough value of the current- 𝑖- has been found for any combination of propellant and mass 

rate- �̇�. For a mass rate of �̇� = 6 𝑔/𝑠 of Argon, for instance, we have that: 

 

 𝑖∗ = 23 𝑘𝐴 (4-53) 

 

 

 
⟹ (

𝑖2√𝑀

�̇�
)

∗

= 560 (4-54) 
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Anyway, this value is going to be pushed to highest possible values, because with its increasing also the 

Specific Impulse and the Ratio of Magnetic Pressure to Dynamic Pressure increase. 

 

Now, if the Thrust Efficiency is: 

 

 

𝜂 =

1
2 �̇�𝑢𝑒

2

𝑖𝑉
=
1

2

𝐹2

�̇�
𝑖𝑉

 
(4-55) 

 

 

we obtain: 

 

 
⟹ 𝑉 =

1

2𝜂
(
𝜇0
4𝜋
ln
𝑅𝑎
𝑅𝑐
)
2 𝑖3

�̇�
 (4-56) 

 

 

Thus, while 𝜂 varies little with current- 𝑖-, 𝑉 varies as its cube. 

At lower currents, 𝜂 goes down, the Electrothermal Component of the Thrust predominates, and the near-

electrode voltage drops become comparable to the voltage needed for acceleration. 

 

 

 
Figure 4-12: Electrode voltage drops vs voltage needed for the acceleration. 

 

 

 

4.1.1.6. Power Requirements 

 

Considering the example above and assuming 𝑅𝑐 = 1 𝑐𝑚 and 𝑅𝑎 = 5 𝑐𝑚 the Thrust is: 
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𝐹 = 10−7 ∙ 230002 ln (

5

1
) = 85.1 𝑁 (4-57) 

 

 

And the Jet-Power- 𝑃𝐽𝑒𝑡- results being: 

 

 
𝑃𝐽𝑒𝑡 =

𝐹2

2�̇�
=

85.12

2 ∙ 0.006
= 6.04 ∙ 105 𝑊 (4-58) 

 

 

Consider that the best efficiencies obtained so far are of the order of  50%: the actual power required for an 

MPD is about 1.2 𝑀𝑊, a very difficult requirement to meet in space except for nuclear reactors. 

 

 

 
Figure 4-13: Scheme on an MPD Apparatus. 

 

 

MODEL FOR MPD PERFORMANCE-ONSET 
 

When current flows through a highly conductive and rapidly moving plasma the current tends to concentrate 

near the entrance and exit of the channel because of a strong Electromagnetic Field which tends to block 

current over most of the channel length. 

Just to understand it, considering the annular chamber of an MPD Thruster let’s suppose to unwrap it into a 

rectangular 1-D channel, as in the figure above: 
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Figure 4-14: Representation of an MPD Channel unwrapped into a rectangular 1-D channel. 

 

 

According to the Ampere’s Law we have: 

 

 
𝑗 =

1

𝜇0
∇ × �⃗⃗� (4-59) 

 

 

being, in this case: 

 

 
∇=

𝜕

𝜕𝑥
𝑖𝑥 (4-60) 

 

 

 
⟹ 𝑗𝑧 = 𝑗 =

1

𝜇0

𝑑𝐵𝑦

𝑑𝑥
 (4-61) 

 

 

and defining 𝐵 = −𝐵𝑦 we get: 

 

 
𝑗 = −

1

𝜇0

𝑑𝐵

𝑑𝑥
 (4-62) 

 

 

If we then ignore Hall Effects, Ohm’s Law gives us: 
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 𝑗 = 𝜎(�⃗⃗� + �⃗⃗� × �⃗⃗�) (4-63) 

 

 

or, using: 

 

 

{
𝐸 = 𝐸𝑧 =

𝑉

𝐻
𝐵 = −𝐵𝑦
𝑢 = 𝑢𝑥

 (4-64) 

 

 

 
⟹ 𝑗 = 𝜎(𝐸 − 𝑢𝐵) = 𝜎 (

𝑉

𝐻
− 𝑢𝐵) (4-65) 

 

 

 𝑑𝐵

𝑑𝑥
= −𝜇0𝑗 (4-66) 

 

 

 

Now, the flow velocity- �⃗⃗�- evolves along 𝑥 according to the Momentum Equation and ignoring the pressure 

forces: 

 

 
�̇�
𝑑𝑢

𝑑𝑥
+ 𝐴

𝑑𝑃

𝑑𝑥
= 𝐴(𝑗 × �⃗⃗�)

𝑥
= 𝑗𝐵𝑤𝐻 (4-67) 

 

 

 
⟹ �̇�

𝑑𝑢

𝑑𝑥
= −

1

𝜇0

𝑑𝐵

𝑑𝑥
𝐵𝑤𝐻 = −

𝑤𝐻

𝜇0

𝑑

𝑑𝑥
(
𝐵2

2
) (4-68) 

 

 

 
�̇�
𝑑𝑢

𝑑𝑥
+
𝑤𝐻

𝜇0

𝑑

𝑑𝑥
(
𝐵2

2
) = 0 (4-69) 

 

 

 

 𝑑

𝑑𝑥
[�̇�𝑢 +

𝑤𝐻

𝜇0
(
𝐵2

2
)] = 0 (4-70) 

 

 



119 
 

 
�̇�𝑢 +

𝑤𝐻

𝜇0
(
𝐵2

2
) = 𝐶𝑜𝑛𝑠𝑡. (4-71) 

 

 

 
⟹ �̇�𝑢 + 𝑤𝐻

𝐵2

2𝜇0
= �̇�𝑢0 +𝑤𝐻

𝐵0
2

2𝜇0
 (4-72) 

 

 

 
⟹ 𝑢 =

𝑤𝐻

2𝜇0
(
𝐵0
2 −𝐵2

�̇�
) (4-73) 

 

 

 
⟹

𝑑𝐵

𝑑𝑥
= −𝜎𝜇0 [𝐸 −

𝑤𝐻

2𝜇0�̇�
𝐵(𝐵0

2 −𝐵2)] (4-74) 

 

 

 
⟹

𝑑𝐵

𝐸 −
𝑤𝐻
2𝜇0�̇�

𝐵(𝐵0
2 − 𝐵2)

= −𝜎𝜇0𝑑𝑥 (4-75) 

 

 

 
∫ −𝜎𝜇0𝑑𝑥
𝑥

0

= ∫
𝑑𝐵

𝐸 −
𝑤𝐻
2𝜇0�̇�

𝐵(𝐵0
2 − 𝐵2)

𝐵

𝐵0

 (4-76) 

 

 

and approximating the conductivity 𝜎 as a constant, we get: 

 

 
⟹ 𝜎𝜇0𝑥 = ∫

𝑑𝐵

𝐸 −
𝑤𝐻
2𝜇0�̇�

𝐵(𝐵0
2 − 𝐵2)

𝐵0

𝐵

 (4-77) 

 

 

The denominator of this last equation represents the Driving Field. 

The field 𝐵0 at 𝑥 = 0 is a measure of the current 𝑖, in fact integrating between 𝑥 = 0 and 𝑥 = 𝐿 we get: 

 

 
∫ 𝑗𝑑𝑥
𝐿

0

=
𝑖

𝑤
=
𝐵0
𝜇0

 (4-78) 
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⟹ 𝐵0 =

𝜇0𝑖

𝑤
 (4-79) 

 

 

 
⟹ 𝜎𝜇0𝐿 = ∫

𝑑𝐵

𝐸 −
𝑤𝐻
2𝜇0�̇�

𝐵(𝐵0
2 − 𝐵2)

𝐵0

0

 (4-80) 

 

 

Where once 𝑖 and �̇� are specified, only 𝐸 remains as unknown, but we use the equation 𝑉 = 𝐸𝐻. 

Consider now the case where the maximum value of the back Electromagnetic Field reaches almost the level 

𝐸: in this case the integrand will be very large as long as this condition prevails, and it indicates a large value 

of 𝜎𝜇0𝐿. 

Then, we know that 𝐵 remains flat when 𝐸 − 𝑢𝐵 ≪ 𝐸 and there will be little current in this region, as you 

can see in the figure below: 

 

 
 

Figure 4-15: Current density vs position along the channel. 

 

 

We can see that two strong current concentrations develop, near 𝑥 = 0 and 𝑥 = 𝐿. 

The denominator is minimum when 𝐵 has a value such that to maximizes 𝐵0
2 − 𝐵2, so when 𝐵0

2 − 3𝐵2 = 0. 
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⟹ 𝐵1 = 𝐵(𝑢𝐵)𝑚𝑎𝑥 =

𝐵0

√3
 (4-81) 

 

 

 
⟹ (𝐸 − 𝑢𝐵)𝑚𝑎𝑥 = 𝐸 −

𝑤𝐻

2𝜇0�̇�

2𝐵0
3

3√3
 (4-82) 

 

 

And, since we assumed this difference to be much less than 𝐸, we get: 

 

 
⟹𝐸 ≅

𝑤𝐻

𝜇0�̇�

𝐵0
3

3√3
 (4-83) 

 

 

 
⟹𝑉 ≅

1

3√3
(
𝐻

𝑤
)𝜇0

2
𝑖3

�̇�
 (4-84) 

 

We notice that near 𝑥 = 0 and 𝑥 = 𝐿, for 𝑢𝐵 ≪ 𝐸 we get: 

 

 𝑑𝐵

𝑑𝑥
= −𝜎𝜇0𝐸 (4-85) 

 

 

So, the thickness 𝑙 of the thin current layer (where 𝐵 varies substantially) can be estimated as follow: 

 

 
𝑙0 =

𝐵0 − 𝐵1
𝜎𝜇0𝐸

 (4-86) 

 

 

 
𝑙𝑒 =

𝐵1
𝜎𝜇0𝐸

 (4-87) 

 

 

where 𝐵1 was defined above. 

 

 
𝑙0 =

3(√3 − 1)�̇�

𝜎𝑤𝐻𝐵0
2  (4-88) 
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𝑙𝑒 =

3�̇�

𝜎𝑤𝐻𝐵0
2 (4-89) 

 

 

So, after some passages, we get: 

 

 
𝜎𝑢𝑒𝜇0𝑙0 ≅

3

2
(√3 − 1) (4-90) 

 

 

 
𝜎𝑢𝑒𝜇0𝑙𝑒 ≅

3

2
 (4-91) 

 

 

being 𝜎𝑢𝜇0𝑙 the Magnetic Reynolds Number- 𝑅𝑚- based on length 𝑙. 

Since we assumed these layers to be thin, we can now say that this happens when: 

 

 𝑅𝑚(𝐿) ≫ 1 (4-92) 

 

 

The high current inlet and exit layer, however, are very dissipative and their resistance can be estimated as: 

 

 

𝑅0 =

4
3𝐻

𝜎𝑤𝑙0
 (4-93) 

 

 

 

𝑅𝑒 =

4
3𝐻

𝜎𝑤𝑙𝑒
 (4-94) 

 

 

so, the Ohmically Dissipated Power- 𝑃𝐷- is: 

 

 𝑃𝐷 = 𝑖0
2𝑅0 + 𝑖𝑒

2𝑅𝑒 (4-95) 

 

 

being: 

 

 
𝑖0 =

𝑤

𝜇0
(𝐵0 − 𝐵1) =

𝑤𝐵0
𝜇0

(1 −
1

√3
) = 𝑖 (1 −

1

√3
) (4-96) 
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𝑖𝑒 = 𝑖 − 𝑖0 =

𝑖

√3
 (4-97) 

 

 

Substituting we get: 

 

 
𝑃𝐷 =

4

9√3
(
𝐻

𝑤
)
2 𝜇0

2𝑖4

�̇�
 (4-98) 

 

 

Most of this dissipation is used to ionize and excite the gas atoms. 

 

 

INSTABILITY ONSET 
 

For a given thruster, as 
𝑖2

�̇�
 increases, also the ionization fraction 𝛼𝑒 increases rapidly: 

 

 
𝛼𝑒 =

𝑚𝑖

𝑒𝑉𝑖

4

9√3
(
𝐻

𝑤

𝜇0𝑖
2

�̇�
)

2

 (4-99) 

 

 

being 𝑒𝑉𝑖 the effective ionization energy per atom. 

When it reaches the unit, the behavior of the plasma changes drastically because any extra dissipation cannot 

be absorbed into ionization anymore and goes directly into heating of the plasma. This causes the increasing 

of conductivity with current concentrations leading to further current concentrations. 

 

We can write: 

 

 
𝐻

𝑤

𝜇0𝑖
2

�̇�
= √

9√3

4

𝑒𝑉𝑖
𝑚𝑖

 (4-100) 

 

 

and finally: 

 

 

𝑢𝑒 =
1

2
√
9√3

4

𝑒𝑉𝑖
𝑚𝑖

= 0.981√
𝑒𝑉𝑖
𝑚𝑖

 (4-101) 
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The velocity √
2𝑒𝑉𝑖

𝑚𝑖
 at which the particle Kinetic Energy would be capable of ionizing is called “Alfvèn Critical 

Speed”. 

In the following table we can see some values of parameters with different gases: 

 

 
Table 4-1: Properties of different gases. 

GAS Hydrogen- 𝐻 Nitrogen- 𝑁𝑎 Argon- 𝐴𝑟 Lithium- 𝐿𝑖 

𝑴𝒊 (𝒈/𝒎𝒐𝒍) 1 14 40 7 

𝑽𝒊 (𝑽𝒐𝒍𝒕𝒔) 13.6 14.6 15.8 5.4 

(𝑰𝒔𝒑)𝒎𝒂𝒙
 (𝒔) 5120 1420 870 1220 

 

 

Finally, let’s see the Efficiency of an MPD Thruster. 

If we consider just the power lost for Ohmic Dissipation and of near-electrode voltage drops, we have: 

 

 ∆𝑉 = ∆𝑉𝐶𝑎𝑡ℎ𝑜𝑑𝑒 + ∆𝑉𝐴𝑛𝑜𝑑𝑒 (4-102) 

 

 

 

𝜂 =

1
2 �̇�𝑢𝑒

2

1
2 �̇�𝑢𝑒

2 + 𝑃𝐷 + 𝑖∆𝑉
 (4-103) 

 

 

Substituting the formulas we found above we finally get: 

 

 
𝜂 =

1

3.05 +
8∆𝑉�̇�
𝜇0
2𝑖3

(
𝐻
𝑤)

2 
(4-104) 

 

 

Even if the voltage Drops could be eliminated, this efficiency can reach a maximum of: 

 

 
𝜂𝑚𝑎𝑥 =

1

3.05
= 0.328 (4-105) 

 

 

So, the best that can be done when there’s a voltage drop is to approach the “onset” at a point we get: 
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𝜂 =

1

3.05 + 2.88∆𝑉√(

𝑤
𝐻
𝜇0�̇�

) √(
𝑚𝑖
𝑒𝑉𝑖
)
34

 
(4-106) 

 

 

For argon, for example, having values of: 

• �̇� = 6 𝑔/𝑠; 

• 
𝑤

𝐻
= 4; 

• ∆𝑉 = 10 𝑉 

 

we get: 

 

 𝜂∗ = 0.259 (4-107) 

. 

 

Values of this order are very typical and most of the inefficiency are due to the strong dissipation in the inlet 

and exit layers, that is intrinsic to the constant area. One solution that has been developed is to use a 

Convergent-Divergent Geometry that has the effect of weakening these dissipative layers, retarding the 

onset and increasing the Efficiency. 

 

In this chapter we just described the main equations which rule the operations of an MPD Thruster, deriving 

important parameters such as the Thrust, the efficiency and the exhaust velocity of this engine. 

In the next chapters we’ll make a rapid description of the method used to solve the MHD equations previously 

described and then we will post the analysis with a 1-D code written specifically for this analysis. 
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CHAPTER 5: MAGNETOGASDYNAMICS AND PLASMA 

ACCELERATORS 

 

As it was pointed out previously, plasma is a gas containing charged particles (ions and electrons) that may 

give rise to, and/or interact with, electric and magnetic fields. On the other hand, obviously, the equations 

of gas dynamics are applicable to plasmas, provided that the contributions of the magnetic and electric fields 

are taken into account. Thus, Maxwell’s equations will also be needed. 

In the context of plasma physics, Magnetogasdynamics (MGD), often also referred to as 

Magnetohydrodynamics (MHD), arises from the combination of Maxwell equations and gas dynamics 

equations. 

 

FUNDAMENTALS OF MAGNETOGASDYNAMICS 
 

Assuming an isotropic medium, in the absence of electric polarization and magnetic polarization, and calling 

σ the charge density, 𝐽 the current density, and �⃗⃗� and �⃗⃗� the electric and magnetic fields, respectively, 

Maxwell’s equations read: 

 

 𝛻 ∙ �⃗⃗� =
𝜎

휀0
 (5-2) 

 

 

 𝛻 ∙ �⃗⃗� = 0 (5-3) 

 

 

 
𝛻 × �⃗⃗� = −

𝜕�⃗⃗�

𝜕𝑡
 (5-4) 

 

 

 
𝛻 × �⃗⃗� = 𝜇0𝐽 +

1

𝑐2
𝜕�⃗⃗�

𝜕𝑡
 (5-5) 

 

 

Here 휀0 and 𝜇0 are, respectively, the dielectric constant and the magnetic permeability of vacuum, and 𝑐 =

1 휀0𝜇0⁄  is the speed of propagation of electromagnetic waves in vacuum. 

The gas dynamics equations, if dissipative effects (i.e., viscosity and heat transfer) are neglected and 

accounting for electric and magnetic forces, read: 

 

Continuity Equation: 

 

 𝜕𝜌

𝜕𝑡
+ 𝛻 ∙ (𝜌�⃗⃗�) = 0 (5-6) 
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Momentum Equation: 

 

 𝜕(𝜌�⃗⃗�)

𝜕𝑡
+ 𝛻 ∙ (𝜌�⃗⃗��⃗⃗�) = −𝛻𝑃 + 𝜎�⃗⃗� + 𝐽 × �⃗⃗� (5-7) 

 

 

For a great number of practical applications, at any point of the plasma domain, the density of positive 

charges (ions) is almost balanced by the density of negative charges (electrons), giving rise to the so-called 

charge quasi-neutrality. 

 

 𝜎𝑖𝑜𝑛𝑠 ≅ 𝜎𝑒𝑙𝑒𝑐 →  𝜎 = 𝜎𝑖𝑜𝑛𝑠 − 𝜎𝑒𝑙𝑒𝑐 ≅ 0 (5-8) 

 

 

Under the hypothesis of charge neutrality, the term of the electrical field can be dropped in the momentum 

equation. In addition, upon substitution of 𝛻 × �⃗⃗� = 𝜇0𝐽 into the momentum equation, and after some 

manipulation, one finally gets: 

 

 𝜕(𝜌�⃗⃗�)

𝜕𝑡
+ 𝛻 ∙ [𝜌�⃗⃗��⃗⃗� + (𝑃 +

1

2𝜇0
�⃗⃗� ∙ �⃗⃗�) 𝐼 −

1

𝜇0
�⃗⃗��⃗⃗�] = 0 (5-9) 

 

 

Energy Equation: 

 

 𝜕(𝜌𝑒𝑡)

𝜕𝑡
+ 𝛻 ∙ [(

𝑃

𝛾 − 1
+
1

2
𝜌�⃗⃗� ∙ �⃗⃗�) �⃗⃗�] = −𝛻 ∙ (𝑃�⃗⃗�) + �⃗⃗� ∙ 𝐽 (5-10) 

 

 

where: 

 
𝜌𝑒𝑡 =

𝑃

𝛾 − 1
+
1

2
𝜌�⃗⃗� ∙ �⃗⃗� (5-11) 

 

 

The term �⃗⃗� ∙ 𝐽 arises from averaging the Lorentz force on the particles, and neglecting the contribution of the 

ions compared to that of the electrons, and realizing that the magnetic field doesn’t produce work. 

According to the Poynting’s Theorem: 

 

 
𝛻 ∙ (�⃗⃗� ×

�⃗⃗�

𝜇0
) + �⃗⃗� ∙ 𝐽 = −

𝜕

𝜕𝑡
(
휀0
2
�⃗⃗� ∙ �⃗⃗� +

1

2𝜇0
�⃗⃗� ∙ �⃗⃗�) (5-12) 
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It can be shown that the electric energy is negligible compared to the magnetic energy. Then energy equation 

yields: 

 

 𝜕

𝜕𝑡
(𝜌𝑒𝑡 +

1

2𝜇0
�⃗⃗� ∙ �⃗⃗�) + 𝛻 ∙ [(

𝛾

𝛾 − 1
𝑃 +

1

2
𝜌�⃗⃗� ∙ �⃗⃗�) �⃗⃗� + (�⃗⃗� ×

�⃗⃗�

𝜇0
)]

= 0 

(5-13) 

 

 

Taking into account Ohm’s Law: 

 

 
𝐽 = 𝜎𝑒(�⃗⃗� + �⃗⃗� × �⃗⃗�)     →     �⃗⃗� =

𝐽

𝜎𝑒
− �⃗⃗� × �⃗⃗� (5-14) 

 

 

𝜎𝑒 being the plasma conductivity, after some manipulation, the energy equation finally reads: 

 

 𝜕

𝜕𝑡
(𝜌𝑒𝑡 +

1

2𝜇0
�⃗⃗� ∙ �⃗⃗�) + 𝛻 ∙ [(𝜌𝑒𝑡 + 𝑃 +

�⃗⃗� ∙ �⃗⃗�

𝜇0
) �⃗⃗� −

1

𝜇0
(�⃗⃗� ∙ �⃗⃗�)�⃗⃗�]

=
𝐽 ∙ 𝐽

𝜎𝑒
 

(5-15) 

 

 

In virtue of the hypothesis of neutrality, the electric field needn’t be considered explicitly, although it does 

exist, and the expression for 𝜕�⃗⃗� 𝜕𝑡⁄  can be conveniently manipulated to give: 

 

 𝜕�⃗⃗�

𝜕𝑡
= −𝛻 × (

𝛻 × �⃗⃗�

𝜎𝑒𝜇0
− �⃗⃗� × �⃗⃗�)

=
1

𝜎𝑒𝜇0
[𝛻2�⃗⃗� − 𝛻(𝛻 ∙ �⃗⃗�)] + 𝛻 × (�⃗⃗� × �⃗⃗�) = 

(5-16) 

 

 

 = 𝜈𝑒𝛻
2�⃗⃗� + 𝛻 ∙ (�⃗⃗��⃗⃗� − �⃗⃗��⃗⃗�) (5-17) 

 

 

𝜈𝑒 = 1 𝜎𝑒𝜇0⁄  being the magnetic diffusivity. 

The continuity, momentum and energy equations, together the equation for the magnetic field may be 

written in the form: 
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𝜕

𝜕𝑡

[
 
 
 
 
 

𝜌

𝜌�⃗⃗�

�⃗⃗�

𝜌𝑒𝑡 +
|�⃗⃗�|

2

2𝜇0 ]
 
 
 
 
 

+ 𝛻 ∙

[
 
 
 
 
 
 
 
 
 𝜌�⃗⃗�

𝜌�⃗⃗��⃗⃗� + (𝑃 +
|�⃗⃗�|

2

2𝜇0
)𝐼 −

1

𝜇0
�⃗⃗��⃗⃗�

(�⃗⃗��⃗⃗� − �⃗⃗��⃗⃗�)

(𝜌𝑒𝑡 + 𝑃 +
|�⃗⃗�|

2

𝜇0
) �⃗⃗� − (�⃗⃗� ∙ �⃗⃗�)�⃗⃗�

]
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 

0
0

𝜈𝑒𝛻
2�⃗⃗�

𝜈𝑒
|�⃗⃗� × �⃗⃗�|

2

𝜇0 ]
 
 
 
 
 

 

(5-18) 

 

 

This is a system of 8 O.D.E. expressed in conservative form, with sources terms (arising as a consequence of 

the space gradients of the magnetic field). 

 

 

QUASI-ONE-DIMENSIONAL MODEL OF A PLASMA ACCELERATOR 
 

Let us consider now that the plasma flows within a straight duct centered along the 𝑥 coordinate, so that the 

physical properties at each section are averaged over the cross-sectional area 𝐴(𝑥), that in turn is assumed 

to change smoothly, this is: 

 

 𝑑

𝑑𝑥
(√𝐴) ≪ 1 (5-19) 

 

 

In that case the physical variables become a function of only 𝑥 and 𝑡. In addition, consistently with this 

simplified quasi-one-dimensional model, the magnetic field will be assumed to be transversal to 𝑥, this is, 𝐵𝑧 

for a duct with planar walls or 𝐵𝜙 for a duct with symmetry of revolution, and the only component of the 

electrical field is 𝐸𝑦 (or 𝐸𝑟). 
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Figure 5-1: Duct with planar walls. 

 

 

 

 

 

 
Figure 5-2: Duct with symmetry of revolution (mean radius is assumed constant). 

 

 

 

 

 

However, some equations must now be reviewed, since additional source terms on the right side arise now 

as a consequence of conservation balances. 

 

L 

x 

y 

z 

Ey 

Bz 

W 

H 

A = WH 

L 

ϕ 

𝐔ϕ 

𝐔r 
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Continuity Equation: 

 

 𝜕(𝜌𝐴)

𝜕𝑡
+
𝜕

𝜕𝑥
(𝜌𝐴𝑢) = 0 (5-20) 

 

 

or: 

 

 𝜕𝜌

𝜕𝑡
+
𝜕

𝜕𝑥
(𝜌𝑢) = −𝜌𝑢

1

𝐴

𝑑𝐴

𝑑𝑥
 (5-21) 

 

 

Momentum Equation: 

 

 𝜕(𝜌𝐴𝑢)

𝜕𝑡
+
𝜕

𝜕𝑥
(𝜌𝐴𝑢2) = −

𝜕

𝜕𝑥
(𝑃𝐴) + 𝑃

𝑑𝐴

𝑑𝑥
− 𝐽𝐵𝑦𝐴 (5-22) 

 

 

or: 

 

 𝜕(𝜌𝐴𝑢)

𝜕𝑡
+
𝜕

𝜕𝑥
(𝜌𝐴𝑢2 + 𝑃𝐴) = 𝑃

𝑑𝐴

𝑑𝑥
−
𝐵𝑦

𝜇0

𝜕𝐵𝑦

𝜕𝑥
𝐴 (5-23) 

 

 

or: 

 

 𝜕(𝜌𝑢)

𝜕𝑡
+
𝜕

𝜕𝑥
[𝜌𝑢2 + (𝑃 +

1

2𝜇0
𝐵𝑦
2)] = −𝜌𝑢2

1

𝐴

𝑑𝐴

𝑑𝑥
 (5-24) 

 

 

or: 

 

 
𝜌
𝜕𝑢

𝜕𝑡
+ 𝜌𝑢

𝜕𝑢

𝜕𝑥
+
𝜕

𝜕𝑥
(𝑃 +

1

2𝜇0
𝐵𝑧
2) = 0 (5-25) 

 

 

Energy Equation: 

 

 
𝐴
𝜕

𝜕𝑡
(𝜌𝑒𝑡 +

𝐵𝑦
2

2𝜇0
) +

𝜕

𝜕𝑥
(𝜌ℎ𝑡𝑢𝐴 +

𝐵𝑧
2

𝜇0
𝑢𝐴) =

1

𝜎𝑒
𝐽𝑦
2𝐴 (5-26) 
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or: 

 

 𝜕

𝜕𝑡
(𝜌𝑒𝑡 +

𝐵𝑦
2

2𝜇0
) +

𝜕

𝜕𝑥
(𝜌ℎ𝑡𝑢 +

𝐵𝑧
2

𝜇0
𝑢)

=
1

𝜎𝑒
𝐽𝑦
2 − (𝜌ℎ𝑡𝑢 +

𝐵𝑧
2

𝜇0
𝑢)

1

𝐴

𝑑𝐴

𝑑𝑥
 

(5-27) 

 

 

The system can be written in conservative form: 

 

 

𝜕

𝜕𝑡

[
 
 
 
 

𝜌
𝜌𝑢
𝐵𝑦

𝜌𝑒𝑡 +
1

2𝜇0
𝐵𝑦
2

]
 
 
 
 

+
𝜕

𝜕𝑥

[
 
 
 
 
 
 

𝜌𝑢

𝜌𝑢2 + (𝑃 +
1

2𝜇0
𝐵𝑦
2)

𝐵𝑦𝑢

𝜌ℎ𝑡𝑢 +
1

𝜇0
𝐵𝑧
2𝑢

]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 −𝜌𝑢

1

𝐴

𝑑𝐴

𝑑𝑥

−𝜌𝑢2
1

𝐴

𝑑𝐴

𝑑𝑥

𝜈𝑒
𝜕2𝐵𝑦

𝜕𝑥2

1

𝜎𝑒
𝐽𝑦
2 − 𝜌ℎ𝑡𝑢

1

𝐴

𝑑𝐴

𝑑𝑥]
 
 
 
 
 
 
 
 

 

(5-28) 

 

 

Taking into account: 

 

 
𝜌𝑒𝑡 +

1

2𝜇0
𝐵𝑦
2𝑢 =

𝑃

𝛾 − 1
+
1

2
𝜌𝑢2 +

1

2𝜇0
𝐵𝑦
2𝑢       𝜌ℎ𝑡𝑢 +

1

𝜇0
𝐵𝑦
2𝑢

=
𝛾

𝛾 − 1
𝑃𝑢 +

1

2
𝜌𝑢3 +

1

𝜇0
𝐵𝑦
2𝑢 

(5-29) 

 

 

In primitive variables �⃗⃗�𝑇 = [𝜌 𝑢 𝐵𝑦 𝑃]: 

 

 

𝜕

𝜕𝑡

[
 
 
 
 

𝜌
𝜌𝑢
𝐵𝑦

𝜌𝑒𝑡 +
1

2𝜇0
𝐵𝑦
2

]
 
 
 
 

=

[
 
 
 
 
1 0 0 0
𝑢 𝜌 0 0
0 0 1 0
1

2
𝑢2 𝜌𝑢

𝐵𝑦

𝜇0

1

𝛾 − 1]
 
 
 
 
𝜕

𝜕𝑡
[

𝜌
𝑢
𝐵𝑦
𝑃

] = [𝐿]
𝜕

𝜕𝑡
[

𝜌
𝑢
𝐵𝑦
𝑃

] (5-30) 

 

 

It can be shown that the above system is equivalent to: 
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𝜕

𝜕𝑡
[

𝜌
𝑢
𝐵𝑦
𝑃

] +

[
 
 
 
 
𝑢 𝜌 0 0

0 𝑢
1

𝜌

𝐵𝑦

𝜇0

1

𝜌
0 𝐵𝑦 𝑢 0

0 𝛾𝑃 0 𝑢]
 
 
 
 
𝜕

𝜕𝑥
[

𝜌
𝑢
𝐵𝑦
𝑃

] (5-31) 

 

 

Eigenvalues of the system are: 

 

𝑑𝑒𝑡

[
 
 
 
 
 
𝑢 − 𝜆 𝜌 0 0

0 𝑢 − 𝜆
1

𝜌

𝐵𝑦

𝜇0

1

𝜌
0 𝐵𝑦 𝑢 − 𝜆 0

0 𝛾𝑃 0 𝑢 − 𝜆]
 
 
 
 
 

= (5-32) 

 

 

 
= (𝑢 − 𝜆) [(𝑢 − 𝜆)3 − (𝑢 − 𝜆)

1

𝜌

𝐵𝑦
2

𝜇0
− (𝑢 − 𝜆)

𝛾𝑃

𝜌
] = (5-33) 

 

 

 
(𝑢 − 𝜆) [(𝑢 − 𝜆)3 − (𝑢 − 𝜆)(

𝛾𝑃

𝜌
+
1

𝜌

𝐵𝑦
2

𝜇0
)]

= (𝑢 − 𝜆)2 [(𝑢 − 𝜆)2 − (
𝛾𝑃

𝜌
+
1

𝜌

𝐵𝑦
2

𝜇0
)] = 0 

(5-34) 

 

 

 

𝜆1 = 𝜆2 = 𝑢        𝜆3 = 𝑢 − √
𝛾𝑃

𝜌
+
1

𝜌

𝐵𝑦
2

𝜇0
        𝜆4 = 𝑢 + √

𝛾𝑃

𝜌
+
1

𝜌

𝐵𝑦
2

𝜇0
 (5-35) 

 

 

The quantity 𝑐𝑠 = √𝛾𝑃 𝜌⁄  is the Acoustic Wave Speed, accounting for the velocity of propagation of pressure 

perturbations, while 𝑐𝑎 = √𝐵𝑦
2 𝜌𝜇0⁄  is the so-called Alfven Wave Speed, i.e., the velocity of propagation of 

magnetic perturbations. For this reason, the term √𝑐𝑠
2 + 𝑐𝑎

2 gives rise to the Magneto-Acoustic Wave Speed. 

 

 

RIGHT EIGENVECTORS 
 

Let’s consider the Right Eigenvectors. For 𝜆1,2 = 𝑢: 
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[
 
 
 
 
0 𝜌 0 0

0 0
1

𝜌

𝐵𝑦

𝜇0

1

𝜌
0 𝐵𝑦 0 0

0 𝛾𝑃 0 0]
 
 
 
 

[

𝛿𝜌
𝛿𝑢
𝛿𝐵𝑦
𝛿𝑃

] = [

0
0
0
0

] (5-36) 

 

 

giving: 

 

 𝛿𝑢 = 0     𝛿𝑃

= −
𝐵𝑦

𝜇0
𝛿𝐵𝑦   𝑓𝑜𝑟 𝑎𝑛𝑦 𝛿𝜌, 𝛿𝐵𝑦, 𝑜𝑟 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡𝑙𝑦  

[
 
 
 
 

𝛿𝜌
0
𝛿𝐵𝑦

−
𝐵𝑦

𝜇0
𝛿𝐵𝑦]

 
 
 
 

 
(5-37) 

 

 

For 𝜆3,4 = 𝑢 ∓ √𝛾𝑃 𝜌⁄ + 𝐵𝑦
2 𝜌𝜇0⁄ : 

 

 

[
 
 
 
 
 
 
 
 
 
 
 
 
±√

𝛾𝑃

𝜌
+
1

𝜌

𝐵𝑦
2

𝜇0
𝜌 0 0

0 ±√
𝛾𝑃

𝜌
+
1

𝜌

𝐵𝑦
2

𝜇0

1

𝜌

𝐵𝑦

𝜇0

1

𝜌

0 𝐵𝑦 ±√
𝛾𝑃

𝜌
+
1

𝜌

𝐵𝑦
2

𝜇0
0

0 𝛾𝑃 0 ±√
𝛾𝑃

𝜌
+
1

𝜌

𝐵𝑦
2

𝜇0 ]
 
 
 
 
 
 
 
 
 
 
 
 

[

𝛿𝜌
𝛿𝑢
𝛿𝐵𝑦
𝛿𝑃

]

= [

0
0
0
0

] 

(5-38) 

 

 

giving: 

 

 

𝛿𝑢 = ∓√
𝛾𝑃

𝜌
+
1

𝜌

𝐵𝑦
2

𝜇0

𝛿𝜌

𝜌
     𝛿𝑃 = ∓

𝛾𝑃

√𝛾𝑃
𝜌 +

1
𝜌
𝐵𝑦
2

𝜇0

𝛿𝑢 =
𝛾𝑃

𝜌
𝛿𝜌       𝛿𝐵𝑦

= ±
𝐵𝑦

𝜌
𝛿𝜌     𝑓𝑜𝑟 𝑎𝑛𝑦 𝛿𝜌 

(5-39) 
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A STEADY PLASMA ACCELERATOR 
 

A Steady Solution, provided boundary conditions are steady as well, arises from dropping the time 

derivatives. In the next development, it will be assumed that the voltage is constant along the channel, this 

is, 𝐻𝐸𝑦 = 𝑉 = 𝑐𝑜𝑛𝑠𝑡, so: 

 

 𝑑

𝑑𝑥
(𝜌𝑢𝐴) =

𝑑�̇�

𝑑𝑥
= 0   →    �̇� = 𝜌𝑢𝐴 = 𝑐𝑜𝑛𝑠𝑡. (5-40) 

 

 

 𝑑

𝑑𝑥
[𝜌𝑢2 + (𝑃 +

1

2𝜇0
𝐵𝑧
2)] = −𝜌𝑢2

1

𝐴

𝑑𝐴

𝑑𝑥
 (5-41) 

 

 

 
→  𝜌𝑢

𝑑𝑢

𝑑𝑥
+ 𝑢

𝑑

𝑑𝑥
(𝜌𝑢) + 𝜌𝑢2

1

𝐴

𝑑𝐴

𝑑𝑥
+
𝑑

𝜕𝑥
(𝑃 +

1

2𝜇0
𝐵𝑧
2) = 0 (5-42) 

 

 

 
→   𝜌𝑢

𝑑𝑢

𝑑𝑥
+
𝑑

𝑑𝑥
(𝑃 +

1

2𝜇0
𝐵𝑧
2) = 0 (5-43) 

 

 

 𝑑

𝑑𝑥
(𝜌ℎ𝑡𝑢) =

𝐸𝑦

𝜇0

𝑑𝐵𝑧
𝑑𝑥

− 𝜌ℎ𝑡𝑢
1

𝐴

𝑑𝐴

𝑑𝑥
   →   

𝑑

𝑑𝑥
(�̇�ℎ𝑡) =

𝐸𝑦

𝜇0

𝑑𝐵𝑧
𝑑𝑥

𝐴   

→   𝜌𝑢
𝑑ℎ𝑡
𝑑𝑥

=
𝐸𝑦

𝜇0

𝑑𝐵𝑧
𝑑𝑥

 

(5-44) 

 

 

It is convenient to consider a non-dimensional system, using the following reference quantities: 

 

 
𝐵𝑟𝑒𝑓 = 𝐵0        𝑢𝑟𝑒𝑓 =

𝐵0
2𝐴∗

2𝜇0�̇�
     ℎ𝑟𝑒𝑓 = 𝑢𝑟𝑒𝑓

2          

 

𝑃𝑟𝑒𝑓 =
𝐵0
2

2𝜇0
        𝜌𝑟𝑒𝑓 =

𝑃𝑟𝑒𝑓

ℎ𝑟𝑒𝑓
=
2𝜇0

𝐵0
2 (

�̇�

𝐴∗
)
2

 

(5-45) 
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𝐸𝑟𝑒𝑓 = 𝐵𝑟𝑒𝑓𝑢𝑟𝑒𝑓 =

𝐵0
3𝐴∗

2𝜇0�̇�
        𝐽𝑟𝑒𝑓 =

𝐵𝑟𝑒𝑓

𝜇0𝐿
       𝐴𝑟𝑒𝑓 = 𝐴

∗       

 𝑥𝑟𝑒𝑓 = 𝐿       𝑉𝑟𝑒𝑓 = 𝐸𝑟𝑒𝑓𝐻
∗ 

(5-46) 

 

 

The ‘star’ superscript stands for the axial section where the flow is critical (i.e., the so-called Magneto-Sonic 

Conditions, as it will be seen later). 

The non-dimensional variables are defined as follows: 

 

 
�̃� =

𝐵𝑧
𝐵0
         �̃� =

𝑢

𝑢𝑟𝑒𝑓
         �̃� =

𝑃

𝑃𝑟𝑒𝑓
         �̃� =

𝜌

𝜌𝑟𝑒𝑓
          

ℎ̃ =
ℎ

ℎ𝑟𝑒𝑓
         �̃� =

𝐸𝑦

𝐸𝑟𝑒𝑓
 

(5-47) 

 

 

 
𝐽 =

𝐽𝑦

𝐽𝑟𝑒𝑓
          𝑎 =

𝐴

𝐴∗
=
𝐻

𝐻∗
          �̃� =

𝑥

𝐿
           �̃� =

𝑉𝑦

𝑉𝑟𝑒𝑓
 (5-48) 

 

 

The above general equations in non-dimensional form read: 

 

Continuity Equation: 

 

 
�̇� = 𝜌𝑢𝐴 = �̃�

2𝜇0

𝐵0
2 (

�̇�

𝐴∗
)
2

�̃�
𝐵0
2𝐴∗

2𝜇0�̇�
𝑎𝐴∗ = �̃��̃�𝑎�̇�    →     �̃��̃�𝑎 = 1 (5-49) 

 

 

Momentum Equation: 

 

 
𝜌𝑢
𝑑𝑢

𝑑𝑥
+
𝑑

𝑑𝑥
(𝑃 +

1

2𝜇0
𝐵𝑧
2) = 0   

→     �̃��̃�𝑎
�̇�

𝐴

𝑑�̃�

𝑑�̃�

𝐵0
2𝐴∗

2𝜇0�̇�

1

𝐿
+
1

𝐿

𝐵0
2

2𝜇0

𝑑

𝑑�̃�
(�̃� + �̃�2) = 0 

(5-50) 

 

 

 
→    �̃��̃�

𝑑�̃�

𝑑�̃�
+
𝑑

𝑑�̃�
(�̃� + �̃�2) = 0 (5-51) 

 

 

Energy Equation: 
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𝜌𝑢

𝑑

𝑑𝑥
(ℎ +

𝑢2

2
) =

𝐸𝑦

𝜇0

𝑑𝐵𝑧
𝑑𝑥

    →      �̃��̃�
𝑃𝑟𝑒𝑓

ℎ𝑟𝑒𝑓

𝑢𝑟𝑒𝑓

𝐿

𝑑

𝑑�̃�
(ℎ̃ +

�̃�2

2
)

= �̃�𝐵𝑟𝑒𝑓𝑢𝑟𝑒𝑓
𝐵𝑟𝑒𝑓

𝜇0𝐿

𝑑�̃�

𝑑�̃�
 

(5-52) 

 

 

 
→     �̃��̃�

𝑑

𝑑�̃�
(ℎ̃ +

�̃�2

2
) = 2�̃�

𝑑�̃�

𝑑�̃�
 (5-53) 

 

 

If one multiply both sides by a, since �̅�𝑎 = �̅� = 𝑐𝑜𝑛𝑠𝑡., one gets the integral (calling 𝟎 ≡ 𝒊𝒏𝒍𝒆𝒕): 

 

 
ℎ̃ +

�̃�2

2
− 2�̃��̃� = ℎ̃0 +

�̃�0
2

2
− 2�̃� (5-54) 

 

 

Alternatively, the internal energy equation is obtained subtracting the momentum equation by u̅, yielding: 

 

 
�̃��̃�
𝑑ℎ̃

𝑑�̃�
− �̃�

𝑑�̃�

𝑑�̃�
− 2�̃��̃�

𝑑�̃�

𝑑�̃�
= −2�̃�

𝑑�̃�

𝑑�̃�
 (5-55) 

 

 

Ohm’s Law: 

 

 
𝐽𝑦 = 𝜎𝑒(𝐸𝑦 − 𝑢𝐵𝑧)     →       𝐽

𝐵𝑟𝑒𝑓

𝜇0𝐿
= 𝜎𝑒𝐵𝑟𝑒𝑓𝑢𝑟𝑒𝑓(�̃� − �̃��̃�) (5-56) 

 

 

The Magnetic Reynolds Number and its inverse are defined as: 

 

 
𝑅𝑚 = 𝜎𝑒𝜇0𝑢𝑟𝑒𝑓𝐿 =

𝐵0
2𝐴∗𝜎𝑒𝐿

2�̇�
       휀 =

2�̇�

𝐵0
2𝐴∗𝜎𝑒𝐿

 (5-57) 

 

 

Then Non-Dimensional Ohm’s Law then yields: 

 

 휀𝐽 = �̃� − �̃��̃� (5-58) 

 

 

Also: 
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𝐽𝑦 = −𝜇0  

𝑑𝐵𝑧
𝑑𝑥

= −𝜇0𝐽
𝐵𝑟𝑒𝑓

𝜇0𝐿
=
𝑑�̃�

𝑑�̃�

𝐵𝑟𝑒𝑓

𝐿
    →     𝐽 = −

𝑑�̃�

𝑑�̃�
 (5-59) 

 

 

And the Energy Equation becomes: 

 

 
�̃��̃�
𝑑ℎ̃

𝑑�̃�
− �̃�

𝑑�̃�

𝑑�̃�
= 2�̅��̅�

𝑑�̃�

𝑑�̃�
− 2�̃�

𝑑�̃�

𝑑�̃�
= 2휀𝐽2 (5-60) 

 

 

The voltage changes according to: 

 

 𝑉𝑦 = 𝐸𝑦𝐻    →     �̃�𝑉𝑟𝑒𝑓 = �̃�𝐸𝑟𝑒𝑓𝐻
∗𝑎     →    �̃̅� = �̃�𝑎 (5-61) 

 

 

For realistic MPD thrusters, 휀 is of the order of 0.1 – 0.3. 

 

In plasma accelerators, the magnetic contribution is dominant over the pressure contribution. Then, for the 

sake of simplicity, aiming easy computations that will give some light into the behavior of a plasma 

accelerator, let us neglect by now the pressure contribution and assume the case of constant area, i.e., 𝑎 =

1. 

 

 

 
Figure 5-3: Duct with constant area. 
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The Momentum Equation is then easily integrated, giving: 

 

 �̃� = �̃�0 + 1 − �̃�
2 (5-62) 

 

 

As it will be shown in next chapters, �̃�0 ≪ 1, so it can be dropped. Ohm’s Law becomes: 

 

 
𝐽 = −

𝑑�̃�

𝑑�̃�
=
1

휀
(�̃� − �̃��̃�) =

1

휀
[�̃� − �̃�(1 − �̃�2)] (5-63) 

 

 

Since: 

 

 
�̃� =

2𝜇0�̇�

𝐵0
3𝐴

𝐸𝑦 =
2�̇�

𝐵0
2𝐴𝜎𝑒𝐿

𝜇0𝜎𝑒𝐿

𝐵0
𝐸 = 휀

𝜇0𝜎𝑒𝐿

𝐵0
𝐸 (5-64) 

 

 

The axial position is related to the Magnetic Field through: 

 

 
�̃� = 휀 ∫

𝑑�̃�

�̃� − �̃�(1 − �̃�2)

1

�̂�

 (5-65) 

 

 

Assuming the values: 

 

 𝜎 = 1000𝑆 𝑚⁄         𝑉 = 32 𝑉     𝐻 = 0.04 𝑚      𝑊 = 0.16 𝑚       𝐵0
= 0.12 𝑇 

(5-66) 

 

 

 
�̃� =

2𝜇0�̇�

𝐵0
3𝐴

𝐸𝑦 = 1.09083 (5-67) 

 

 

Aiming for a total magnetic expansion, up to �̃� = 0, one gets a Total Length: 

 

 
𝐿 =

2�̇�

𝜎𝑤𝐻𝐵0
2∫

𝑑�̃�

�̃� − �̃�(1 − �̃�2)

1

0

=
2�̇�

𝜎𝑤𝐻𝐵0
2 1.21131

= 1.5772 · 10−1𝑚 = 15.77 𝑐𝑚 

(5-68) 

 

 

The Current Density is: 
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𝐽 =

1

휀
[�̃� − �̃�(1 − �̃�2)] (5-69) 

 

 

This expression reveals a maximum of 𝐽 ̅ close to the inlet and outlet of the channel, since the factor 

�̃�(1 − �̃�2) decays to zero there. 

 
Figure 5-4: Magnetic field vs positioon along the channel. 
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Figure 5-5: Velocity vs position along the channel. 

 

 

Figure 5-6: Current Density vs position along the channel. 
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THE ZEROTH ORDER SOLUTION 
 

In the limit for 휀 → 0, the above system becomes singular. Indeed, the above expressions for planar duct 

yield: 

 

 [�̃� − �̃�(1 − �̃�2)] = 0 (5-70) 

 

 

This algebraic equation gives �̅� = 𝑐𝑜𝑛𝑠𝑡., and 𝐽 ̅ = 0. However, since really ≠ 0 , neither of these two 

asymptotic results occur. But what physically does occur is that, as a consequence of the imposed boundary 

conditions, properties change rapidly across two (thin) layers at the inlet and outlet. So, one can distinguish 

three zones: the so-called Outer Zone, where ε is assumed zero, and the Two Thin Layers. 

 

 

 

 

 
Figure 5-7: Representation of the Outer Zone and the Two Thin Layers. 

 

 

For the Outer Zone (with superscript “o”) the Energy Equation reduces to the expression of isentropic flow, 

since: 

 

 
�̃�𝑜�̃�𝑜

𝑑ℎ̃𝑜

𝑑�̃�  
− �̃�𝑜

𝑑�̃�𝑜

𝑑�̃�  
= 0   →    

𝑑ℎ̃𝑜

𝑑�̃�  
=
1

�̃�𝑜
𝑑�̃�𝑜

𝑑�̃�  
 (5-71) 

 

 

The Ohm’s Law turns into: 

 

 
�̃�𝑜 = �̃�𝑜�̃�𝑜     →     �̃�𝑜 =

�̃�𝑜

�̃�𝑜
 (5-72) 

 

L 

(1) (0) 

Outlet layer 

Inlet layer 
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Using the Continuity Equation �̃�𝑜�̃�𝑜𝑎 = 1, combined with �̃�𝑜 = �̃�𝑜𝑎, one gets: 

 

 �̃�𝑜

�̃�𝑜
= �̃�𝑜𝑎 = �̃� = 𝑐𝑜𝑛𝑠𝑡. (5-73) 

 

 

One may define the equivalent pressure as a quantity that accounts for both the Gas Pressure and the 

Magnetic Pressure (i.e., magnetic energy per unit volume) as they appear in the momentum equation: 

 

 �̃�𝑒𝑞
𝑜 = �̃�𝑜 + (�̃�𝑜)

2
 (5-74) 

 

 

This pressure is a function of density, then, the Magneto-Sonic Speed will be: 

 

 

�̃�𝑜 = √
𝑑�̃�𝑒𝑞

𝑜

𝑑�̃�𝑜
= √

𝑑�̃�𝑜

𝑑�̃�𝑜
+ 2�̃�𝑜�̃�2 = √(�̃�𝑠

𝑜)2 + (�̃�𝑎
𝑜)2 (5-75) 

 

 

With �̃�𝑠
𝑜 and �̃�𝑎

𝑜 being, respectively, the (non-dimensional) speed of sound and the Alfven Speed: 

 

 
(�̃�𝑠
𝑜)2 =

𝑑�̃�𝑜

𝑑�̃�𝑜
=
𝑑𝑃𝑜

𝑑𝜌𝑜
𝜌𝑟𝑒𝑓

𝑃𝑟𝑒𝑓
= 𝛾

𝑃𝑜

𝜌𝑜
(
2𝜇0

𝐵0
2 𝜌

∗𝑢∗)

2

 (5-76) 

 

 

 
(�̃�𝑎
𝑜)2 =

1

𝜌𝑜
(𝐵𝑧

𝑜)2

𝜇0
(
2𝜇0

𝐵0
2 𝜌

∗𝑢∗)

2

 (5-77) 

 

 

Recovering dimensional units: 

 

 

𝑐𝑜 = �̃�𝑜
𝐵0
2𝜌∗𝑢∗

2𝜇0
= √(�̃�𝑠

𝑜
𝐵0
2𝜌∗𝑢∗

2𝜇0
)

2

+ 2�̃�𝑜�̃�𝑜𝑎 (
𝐵0
2𝜌∗𝑢∗

2𝜇0
)

2

= √𝛾
𝑃𝑜

𝜌𝑜
+
1

𝜌𝑜
(𝐵𝑧

𝑜)2

𝜇0
 

(5-78) 

 

 

It is well known that for conventional nozzles, the flow can only reach sonic conditions at the nozzle throat, 

provided the downstream pressure at the divergent section is low enough. 
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In a similar way, now in plasmas, assuming subcritical inlet flow, for a given flow rate and throat area, the 

existence of Magneto-Sonic Chocked Flow will depend on the upstream conditions, i.e., the conditions 

immediately past the thin inlet layer. 

 

At the sections (0) and (1) of the Inlet Layer the flow conditions are, respectively, �̃�0
𝑖 , �̃�0

𝑖 , �̃�0
𝑖 , �̃�0

𝑖, and �̃�1
𝑖 , �̃�1

𝑖 , 

�̃�1
𝑖 , �̃�1

𝑖. Since the layer is assumed very thin (of the order of 휀), the area within it changes very little, so it can 

be taken roughly constant. For the Inner Zone it is convenient to rescale distances with 휀, i.e., 𝜉𝑖 = �̃� 휀⁄ . The 

equations in the inner zone are then: 

 

 �̃�𝑖�̃�𝑖 = �̅�0�̅�0 (5-79) 

 

 

 1

𝑎0

𝑑�̃�𝑖

𝑑𝜉𝑖
+
𝑑

𝑑𝜉𝑖
[�̃�𝑖 + (�̃�𝑖)

2
] = 0 (5-80) 

 

 

 
ℎ̃𝑖 +

(�̃�𝑖)
2

2
− 2�̃��̃�𝑖 = ℎ̃0 +

�̃�0
2

2
− 2�̃� (5-81) 

 

 

 𝑑�̃�𝑖

𝑑𝜉𝑖
= �̃�𝑖 − �̃�𝑖�̃�𝑖          �̃�𝑖 =

�̃�

𝑎0
 (5-82) 

 

 

The Momentum Equation is easily integrated: 

 

 �̃�𝑖 = �̃�0 + 𝑎0(�̃�0 − �̃�
𝑖) + 𝑎0 [(�̃�0)

2
− (�̃�𝑖)

2
] (5-83) 

 

 

The Matching Conditions for the Inner and Outer Zone are: 

 

 �̃�1
𝑖 �̃�1
𝑖 = �̃�1

𝑜�̃�1
𝑜 (5-84) 

 

 

 �̃�1
𝑜 = �̃�1

𝑖 = �̃�0 + 𝑎0(�̃�0 − �̃�1
𝑜) + 𝑎0 [(�̃�0)

2
− (�̃�1

𝑜)
2
] (5-85) 

 

 

 
ℎ̃1
𝑜 +

(�̃�1
𝑜)2

2
− 2�̃��̃�1

𝑜 = ℎ̃𝑡0 − 2�̃� (5-86) 
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Since the �̃�𝑖  must tend smoothly to the value of the outer zone, the derivative 𝑑�̃�𝑖 𝑑𝜉𝑖⁄  must necessarily 

tend to zero, yielding: 

 

 �̃� = 𝑎0�̃�1
𝑜�̃�1

𝑜 (5-87) 

 

 

Assuming known �̃�0, one computes �̃�0, from continuity, and then �̃�0, from ℎ̃𝑡0. 

 

 

NUMERICAL SCHEME TO SOLVE THE COMPLETE SET OF EQUATIONS 
 

For the numerical integration of the complete set of equations, the equations must be solved for each 

individual derivative: 

 

 1

�̃�

𝑑�̃�

𝑑�̃�
+
1

�̅�

𝑑�̃�

𝑑�̃�
= −

1

𝑎

𝑑𝑎

𝑑�̃�
 (5-88) 

 

 

 
�̃��̃�
𝑑�̃�

𝑑�̃�
+
𝑑�̃�

𝑑�̃�
+ 2�̃�

𝑑�̃�

𝑑�̃�
= 0 (5-89) 

 

 

 
�̃��̃�
𝑑ℎ̃

𝑑�̃�

𝑑�̃�

𝑑�̃�
+ �̃��̃�

𝑑ℎ̃

𝑑�̃�

𝑑�̃�

𝑑�̃�
+ �̃��̃�2

𝑑�̃�

𝑑�̃�
+ 2

�̃�

𝑎

𝑑�̃�

𝑑�̃�
= 0 (5-90) 

 

 

Being ℎ̃ = ℎ̃(�̃�, �̃�) 

 

 𝑑�̃�

𝑑�̃�
= −

1

휀
(�̃� − �̃��̃�) (5-91) 

 

 

If one solves for the individual derivatives, this system can also be expressed as: 

 

 𝑑�̃�

𝑑�̃�
=

1

�̃�2 − �̃�𝑠
2 {−�̃��̃�

2
1

𝑎

𝑑𝑎

𝑑�̃�
+
2

휀�̃�
[(𝛾 − 1)�̃� − 𝛾�̃��̃�](�̃� − �̃��̃�)} (5-92) 
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 𝑑�̃�

𝑑�̃�
=

1

�̃�2 − �̃�𝑠
2 {�̃�𝑠

2�̃�
1

𝑎

𝑑𝑎

𝑑�̃�
−
2

휀�̃�
[(𝛾 − 1)�̃� − 𝛾�̃��̃�](�̃� − �̃��̃�)} (5-93) 

 

 

 𝑑�̃�

𝑑�̃�
= −

1

휀
(�̃� − �̃��̃�) (5-94) 

 

 

 𝑑�̃�

𝑑�̃�
=

1

�̃�2 − �̃�𝑠
2 {−𝛾�̃��̃�

2
1

𝑎

𝑑𝑎

𝑑�̃�

+
2

휀
[(𝛾 − 1)�̃��̃� − �̃�(𝛾 − 1)�̃�2 − �̃��̃�𝑠

2](�̃� − �̃��̃�)} 

(5-95) 

 

 

A singularity arises for �̃� = �̃�𝑠. But, since the numerators of 
𝑑�̃�

𝑑�̃�
 and 

𝑑�̃�

𝑑�̃�
 are: 

 

 
−�̃�2

�̃�

𝑎

𝑑𝑎

𝑑�̃�
+
2

휀�̃�
[(𝛾 − 1)�̃� − 𝛾�̃��̃�](�̃� − �̃��̃�)

=
1

�̃�
[−�̃�2

�̃��̃�

𝑎

𝑑𝑎

𝑑�̃�
+
2

휀
[(𝛾 − 1)�̃� − 𝛾�̃��̃�](�̃� − �̃��̃�)] 

(5-96) 

 

 

 
�̃�𝑠
2�̃�
1

𝑎

𝑑𝑎

𝑑�̃�
−
2

휀�̃�
[(𝛾 − 1)�̃� − 𝛾�̃��̃�](�̃� − �̃��̃�)

=
1

�̃�
[�̃�𝑠
2
�̃��̃�

𝑎

𝑑𝑎

𝑑�̃�
−
2

휀
[(𝛾 − 1)�̃� − 𝛾�̃��̃�](�̃� − �̃��̃�)] 

(5-97) 

 

 

A necessary condition to null both expressions simultaneously is certainly  �̃� = �̃�𝑠.  Under this hypothesis, 

the numerator of 𝑑�̃� 𝑑�̃�⁄  is also zero and the derivatives become indeterminate of the type 0 0⁄ . However, 

the smoothness of the sonic passage implies a constrain for  �̃�, in the sense that the indeterminations yield 

finite values in the limit �̃� → �̃�𝑠. The development gives rise to a quadratic expression in terms of 𝑑�̃� 𝑑�̃�⁄ . 

Care must be taken, however, so as to ensure that the positive value for 𝑑�̃� 𝑑�̃�⁄  is chosen, consistently with 

the continuous acceleration of the plasma. 

 

 

CONSTANT AREA DUCT 
 

Let’s consider now a particular case: a constant area duct. In this case 𝑎 ≡ 1, so we get �̃� = �̃�, and the 

expression for the velocity derivative becomes: 

 



147 
 

 𝑑�̃�

𝑑�̃�
= −

1

�̃�2 − �̃�𝑠
2 {
2

휀�̃�
[(𝛾 − 1)�̃� − 𝛾�̃��̃�](�̃� − �̃��̃�)} (5-98) 

 

 

The smoothness through the sonic passage implies that the numerator is zero too. Thus, we get two roots: 

 

 
�̃� =

𝛾 − 1

𝛾

�̃�

�̃�
 (5-99) 

 

 

 
�̃� =

�̃�

�̃�
 (5-100) 

 

 

Since the product �̃��̃� increases through the channel, the first root is expected to be associated to the sonic 

passage, while the second one to a supersonic flow. 

Hence, the set of ordinary differential equation becomes: 

 

 

 1

�̃�

𝑑�̃�

𝑑�̃�
+
1

�̅�

𝑑�̃�

𝑑�̃�
= 0 ⟹ �̃��̃� = �̃�0�̃�0 = 1 (5-101) 

 

 

 
�̃��̃�
𝑑�̃�

𝑑�̃�
+
𝑑�̃�

𝑑�̃�
+ 2�̃�

𝑑�̃�

𝑑�̃�
= 0 ⟹ �̃� + �̃� + �̃�2 = �̃�0 + �̃�0 + �̃�0

= �̃�0 + �̃�0 + 1 

(5-102) 

 

 

 
�̃��̃�
𝑑ℎ̃

𝑑�̃�

𝑑�̃�

𝑑�̃�
+ �̃��̃�

𝑑ℎ̃

𝑑�̃�

𝑑�̃�

𝑑�̃�
+ �̃��̃�2

𝑑�̃�

𝑑�̃�
+ 2

�̃�

𝑎

𝑑�̃�

𝑑�̃�
= 0 (5-103) 

 

 

and, remembering that �̃��̃� = 1,  �̃�0 = 1 and also 𝑎 = 1 and being: 

 

 
∫
𝑑ℎ̃

𝑑�̃�

𝑑�̃�

𝑑�̃�
+
𝑑ℎ̃

𝑑�̃�

𝑑�̃�

𝑑�̃�
+ ∫ �̃�

𝑑�̃�

𝑑�̃�
=(ℎ̃ +

�̃�2

2
) − (ℎ̃0 +

�̃�0
2

2
) (5-104) 

 

 

we get: 
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⟹ (ℎ̃ +

�̃�2

2
) − (ℎ̃0 +

�̃�0
2

2
) + 2�̃�(�̃� − 1) = 0 (5-105) 

 

 

Now, for a calorically perfect gas we can write: 

 

 𝛾

𝛾 − 1

�̃�

�̃�
+
�̃�2

2
− ℎ̃𝑡0 + 2�̃�(�̃� − 1) = 0 (5-106) 

 

 

being: 

 

 
ℎ̃𝑡0 = ℎ̃0 +

�̃�0
2

2
 (5-107) 

 

 

and, remembering that 𝛾
�̃�

�̃�
= �̃�𝑠

2 using the first root: 

 

 
�̃�𝑠 =

𝛾 − 1

𝛾

�̃�

�̃�𝑠
 (5-108) 

 

 

 1

𝛾 − 1
�̃�𝑠
2 +

�̃�𝑠
2

2
− ℎ̃𝑡0 + 2�̃�(�̃�𝑠 − 1) = 0 (5-109) 

 

 

 𝛾 + 1

2(𝛾 − 1)
(
𝛾 − 1

𝛾

�̃�

�̃�𝑠
)

2

− ℎ̃𝑡0 + 2�̃�(�̃�𝑠 − 1) = 0 (5-110) 

 

 

Being �̃� = �̃�, since 𝑎 = 1. Thus, we can write: 

 

 𝛾 − 1

𝛾

�̃�

�̃�𝑠
+ �̃�𝑠 + �̃�𝑠 = �̃�0 + �̃�0 + 1 (5-111) 

 

 

 
⟹ �̃�𝑠 =

�̃�𝑠
𝛾
𝛾
�̃�𝑠
�̃�𝑠
=

1

𝛾�̃�𝑠
�̃�𝑠
2 =

�̃�𝑠
𝛾
=
𝛾 − 1

𝛾2
�̃�

�̃�𝑠
 (5-112) 
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⟹

𝛾 − 1

𝛾

�̃�

�̃�𝑠
+
𝛾 − 1

𝛾2
�̃�

�̃�𝑠
+ �̃�𝑠

2 = �̃�0 + �̃�0 + 1 (5-113) 

 

 

 
⟹

𝛾2 − 1

𝛾2
�̃�

�̃�𝑠
+ �̃�𝑠

2 = �̃�0 + �̃�0 + 1 (5-114) 

 

 

so, after some passages: 

 

 
⟹ �̃�2 −

2𝛾

𝛾 + 1
(�̃�0 + �̃�0 + 1 − �̃�

2)�̃� +
2(𝛾 − 1)

𝛾 + 1
[ℎ̃𝑡0 + 2�̃�(1 − �̃�)]

= 0 

(5-115) 

 

 

that certainly gives �̃�(�̃�). For a given value of �̅�, two possible solutions for �̃� exist, one supersonic and the 

other subsonic: 

 

 �̃�

=
𝛾

𝛾 + 1
(�̃�0 + �̃�0 + 1 − �̃�

2)

± √[
𝛾

𝛾 + 1
(�̃�0 + �̃�0 + 1 − �̃�

2)]
2

−
2(𝛾 − 1)

𝛾 + 1
[ℎ̃𝑡0 + 2�̃�(1 − �̃�)] 

(5-116) 

 

 

A smooth sonic passage is obtained by forcing the determinant to be zero, yielding: 

 

 
[(ũ0 + P̃0 + 1) − B̃

2]
2
=
2(γ2 − 1)

γ2
h̃t0 +

2(γ2 − 1)

γ2
2Ṽ(1 − B̃) (5-117) 

 

 

Together with the condition ũ = c̃s: 

 

ũ = c̃s = √γ
P̃

ρ̃
= √γh̃    →     ũ2 =

2γ

2 + γ
[h̃t0 − 2Ṽ(B̃ − 1)] (5-118) 

 

 
γ

γ + 1
(ũ0 + P̃0 + 1 − B̃

2) = √
2γ

2 + γ
[h̃t0 − 2Ṽ(B̃ − 1)] (5-119) 
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As an alternative procedure, we can use the first root for the sonic point ũs = (γ − 1)Ṽ (γB̃s)⁄  and also 

ũs
2 = γ P̃s ρ̃s⁄ = γP̃sũs. The energy equation then gives: 

 

 1

γ − 1
ũs
2 +

ũs
2

2
− h̃t0 + 2Ṽ(B̃s − 1) = 0 (5-120) 

 

 

 γ + 1

2(γ − 1)
(
γ − 1

γ

Ṽ

B̃s
)

2

− h̃t0 + 2Ṽ(B̃s − 1) = 0 (5-121) 

 

 

 γ2 − 1

2γ2
(
Ṽ

B̃s
)

2

− ℎ̃𝑡0 + 2�̃�(�̃�𝑠 − 1) = 0 (5-122) 

 

 

From the momentum equation one gets �̃�0 + �̃�0: 

 

 𝛾 − 1

𝛾

�̃�

�̃�𝑠
+
𝛾 − 1

𝛾2
�̃�

�̃�𝑠
+ �̃�𝑠

2 = �̃�0 + �̃�0 + 1    ⟹  �̃�0 + �̃�0

=
𝛾2 − 1

𝛾2
�̃�

�̃�𝑠
+ �̃�𝑠

2 − 1 

(5-123) 

 

 

and also: 

 
�̃�𝑠 =

�̃�𝑠
𝛾
𝛾
�̃�𝑠
�̃�𝑠
=

1

𝛾�̃�𝑠
�̃�𝑠
2 =

�̃�𝑠
𝛾
=
𝛾 − 1

𝛾2
�̃�

�̃�𝑠
 (5-124) 

 

 

Given ℎ̃𝑡0, and assuming known �̃�, the two equations above give �̃�0 + �̃�0 and �̃�𝑠 (magnetic field at the 

sonic point), in terms of ℎ̃𝑡0 and �̃�. 

Finally, by integration of Ohm’s law, one gets: 

 

 𝑑�̃�

𝑑�̃�
= −

1

휀
(�̃� − �̃��̃�)     ⟹    �̃� =  휀 ∫

𝑑�̃�

�̃� − �̃�(�̃�)�̃�

1

�̂�

 (5-125) 

 

 

and assuming zero magnetic field at the end of the channel, we get: 
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1 =  휀 ∫

𝑑�̃�

�̃� − �̃�(�̃�)�̃�

1

0

 (5-126) 

 

 

 

 

In this chapter, we have presented a mathematical analysis of a self-field quasi-one-dimensional plasma 

flows, with the hypothesis of zero axial current. 

In the next chapter we will present some results obtained with a MATLAB® code whose main object is to 

reproduce the mathematical analysis presented before and, in the last chapter, some conclusions about 

this thesis will be drawn. 
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CHAPTER 6: RESULTS 

 

In the last chapter, we performed a mathematical analysis of a self-field accelerated quasi-one-dimensional 

plasma flows with zero axial current, in particular in the case of a constant area duct. 

These equations are the basics to understand the behavior of self-induced MPD thruster. 

In this chapter we’re going to show and analyze some results obtained with a Matlab Code created 

specifically to develop this Algorithm which are in agreement with the paper “The Structure of Self-Field 

Accelerated Plasma Flows” of Prof. Martinez-Sanchez. 

 

The procedure used to create the algorithm describing the behavior of the plasma flow is summarized below: 

 

 
Figure 6-1: Block scheme of the matlab code procedure. 

  

ℎ̃𝑡0, �̃� 

𝛾2 − 1

2𝛾2
(
�̃�

�̃�𝑠
)

2

− ℎ̃𝑡0 + 2�̃�(�̃�𝑠 − 1) = 0   ⟹   �̃�𝑠 

�̃�𝑠 =
γ − 1

γ2
�̃�

�̃�𝑠
 �̃�0 + �̃�0 =

γ2 − 1

γ2
�̃�

�̃�𝑠
+ �̃�𝑠

2 − 1 

 

B̃ (𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒) 

�̃�2 −
2𝛾

𝛾 + 1
(�̃�0 + �̃�0 + 1 − �̃�

2)�̃� +
2(𝛾 − 1)

𝛾 + 1
[ℎ̃𝑡0 + �̃�(1 − �̃�)] = 0   ⟹  �̃� = �̃�(�̃�) 

 

휀 =
1

∫
𝑑�̃�

�̃� − �̃�(�̃�)�̃�

1

0

 

�̃�0 = �̃�(1)  
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RESULTS OF THE ANALYSIS OF A SELF-FIELD PLASMA FLOW IN A CONSTANT AREA 

CHANNEL WITH ZERO AXIAL CURRENT 
 

In our analysis, we assumed the following values: 

• 𝐵0 = 0.1 𝑇𝑒𝑠𝑙𝑎 

• �̇� 𝐴∗ = 0.5 𝑘𝑔/𝑠⁄  

• 𝑢𝑟𝑒𝑓 = 7960 𝑚/𝑠 

• 𝑃𝑟𝑒𝑓 = 3980 𝑁/𝑚
2 

• 𝜌𝑟𝑒𝑓 = 6.28 ∗ 10
−5 𝑘𝑔 𝑚3⁄  

• 𝐸𝑟𝑒𝑓 = 796 𝑉 𝑚⁄  

 

Below, you can see some graphs obtained with this Matlab Code, varying a couple of non-dimensional 

parameters calculated before: �̃�, which we saw being equal to �̃� in case of Constant Area Channel, and �̃�0, 

from which, of course, ℎ̃0 depends. 

As you we can see from the block diagram above, these are the two initial data which, throughout the 

mathematical analysis previously described, will let us find all the other variables.  

The graphs are in agreement with those reproduced by Prof. Martinez Sanchez and they are an interesting 

point of analysis for the behavior of the flow inside the thruster. 

 

The two solutions of the equation: 

 

 
�̃�2 −

2𝛾

𝛾 + 1
(�̃�0 + �̃�0 + 1 − �̃�

2)�̃� +
2(𝛾 − 1)

𝛾 + 1
[ℎ̃𝑡0 + �̃�(1 − �̃�)]

= 0   ⟹  �̃� = �̃�(�̃�) 

(6-2) 

 

 

are the subsonic and supersonic velocities, for a given �̃� and the sonic passage can be found finding the 

minimum of this equation for a certain �̃� = �̃�𝑆. 

Considering the final equation: 

 
휀 =

1

∫
𝑑�̃�

�̃� − �̃�(�̃�)�̃�

1

0

 
(6-3) 
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We can easily see that the smallest �̃� possible corresponds to the maximum of the quantity �̃��̃�, since 

otherwise the equation would become singular. 

This conclusion, can be easily seen also from the graphs: substituting different values of E, into the code, we 

can clearly see that, for �̃� smaller than this value, the Magnetic Reynolds Number goes to infinite and the 

product �̃��̃� as well, leading to a singularity in the graph. 

 

Figure 6-2: Trend of different parameters for �̃� = 0.36419 and 𝑇 = 400 𝐾. 

If we now increase �̃� up to his minimum value, we can see that the Magnetic Reynolds Number, even though 

still very large, is quietly reduced and that the flow accelerates and that there is the formation of strong inlet 

and exit current concentrations. 

Moreover, we can also see that, as expected, P is very small and there is a predominance of the back 

electromagnetic field �̃��̃� over the ohmic drop �̃�-�̃��̃� for almost all the channel. However, despite the 

smallness of P, we can see that its gradient is strongly positive near the exit. This is due to the ohmic heating 

in that region with negligible magnetic acceleration. 
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Figure 6-3: Trend of different parameters for �̃� = 0.455 and 𝑇 = 400 𝐾. 

 

As we increase the Electric Field, the Magnetic Reynolds Number decreases and the Pressure Gradient at the 

end of the channel increases as well, finally leading to a thermal chocking for Magnetic Reynolds 

Number~3.4. 

 

 
Figure 6-4: Trend of different parameters for �̃� = 0.55 and 𝑇 = 400 𝐾. 
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Figure 6-5: Trend of different parameters for �̃� = 0.55359 and 𝑇 = 400 𝐾. 

 

 

 

From this point on, the graphs deriving from this matlab code are not very accurate any more. 

According to the paper of Professor Martinez Sachez, there should be the formation of the Chocking a bit 

after the mid of the channel. However, in this small code, we were able to reproduce only the results arising 

before the thermal shock. 

What really happens at this point is that there is the transition from the positive supersonic to the subsonic 

solution of the equation that we found before. 

What we can see from the graphs, in fact, is that under that value of the Magnetic Reynolds Number a 

discontinuity arises, but the values of the respective Electric Field and Channel Lenght are quite higher than 

those calculated by Prof. Martinez Sanchez. 

 

 
Figure 6-6: Trend of different parameters for �̃� = 0.62 and 𝑇 = 400 𝐾. 
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Finally, decreasing even more the Reynolds Magnetic Number, the graphs clearly diverge and are not 

reliable any more. 

 

 
Figure 6-7: Trend of different parameters for �̃� = 0.8 and 𝑇 = 400 𝐾. 

If we then run the Program increasing the value of the Temperature we can see that the trend of these 

different parameters is the opposite: the Reynolds Magnetic Number, in fact, increases and the other 

parameters will vary consequently. 

For values of the Electromagnetic field higher than 0.5 the variation of the Temperature leads to a small 

variation in the Reynolds Magnetic Number. 

 
Figure 6-8: Trend of different parameters for �̃� = 0.55 and 𝑇 = 300 𝐾. 
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Figure 6-9: Trend of different parameters for �̃� = 0.55 and 𝑇 = 400 𝐾. 

 

 
Figure 6-10: Trend of different parameters for �̃� = 0.55 and 𝑇 = 500 𝐾 

However, if the Electromagnetic Field is too low an increase in the Temperature will lead to infinite values of 

the Reynolds Magnetic Number and the model is not accurate anymore, due to the strong localized heating 

typical of the Constant Area Geometry, as we can see in the figures below.  
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Figure 6-11: Trend of different parameters for �̃� = 0.455and 𝑇 = 400 𝐾. 

 

 
Figure 6-12: Trend of different parameters for �̃� = 0.455 and 𝑇 = 500 𝐾. 
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Figure 6-13: Trend of different parameters for �̃� = 0.455 and 𝑇 = 500 𝐾. 

The results by Professor Martinez Sanchez, in the analysis of a Convergent Divergent Channel, using the same 

initial values show that: 

• no current concentration is seen near the inlet or the exit and the current density is almost uniform 

along the channel; 

• there is no positive pressure gradient near the exit, which means that the flow is never decelerated; 

• the Mach-Alfven number is a bit less than one at the throat and increases above one in the divergent 

part of the channel. 

 

What we can conclude from the results obtained from the graphs is that for big Reynolds Magnetic Numbers, 

geometrical throats are magnetosonically chocked and there is a predominance of the back electromagnetic 

field �̃��̃� over the ohmic drop �̃�-�̃��̃� for almost all the channel. 

Then, we also saw that the strong inlet and outlet current concentrations produce important thermal effects 

for a constant area channel, while for a convergent divergent channel there are no pressure gradients near 

the exit, so the flow is not decelerated. 

 

These results are in agreement with those obtained by Prof. Martinez Sanchez for the Constant Area Channel 

until the Magnetic Reynolds Number decreases to 3.4. After that, we saw that the results are not so accurate 

any more. This is most likely due to limitations arising from the code itself which does not simulate perfectly 

the shock wave. 
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CHAPTER 7: CONCLUSIONS 
 
With this thesis we investigated the operations of a Magneto Plasma Dynamic Thruster with a MatLab code 

that has been created to reproduce the conclusions drawn by Professor Martinez Sanchez in the paper “The 

Structure of Self-Field Accelerated Plasma Flows”. 

After a brief mathematical analysis of the basic equations which describe the MPD, some important 

parameters such as thrust, efficiency and exhaust velocity of the engine were calculated, then a simplified 

quasi-one-dimensional model of the plasma flow, in which the magnetic field has been assumed to be 

transversal to 𝑥, was formulated. 

We then calculated, in particular, a steady state solution where we assumed: 

• constant voltage along the channel, 

• no pressure contribution, 

• constant area channel, 

and for this specific case, a MatLab code was created to reproduce the trend of some important parameters 

such as the magnetic field, the exhaust velocity and the current density. 

What we could see was that our results are in agreement with those obtained by Prof. Martinez Sanchez for 

the constant area channel until the magnetic Reynolds number decreases to 3.4. After that, we saw that the 

results are not so accurate any more, most likely due to limitations arising from the code itself which does 

not perfectly simulate the shock wave. 

For future work it would be interesting to create a Matlab code to simulate the convergent divergent channel 

and then to perform some simulations with a Multiphysics Software to compare the quasi-one-dimensional 

model with a 2D model. 
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