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Preface

Quantum mechanics represents one of the most successful theories in the history of
science. It was born more than a hundred years ago but, for several decades, quan-
tum mechanics was confined to a revolutionary interpretation of physics and related
fields, like astronomy.
Only in the last decades, after the discovery of laser with the possibility of produc-
ing coherent light, the quantum mechanics receive a strong interest in the area of
information, with very innovative and promising applications, like those concerning
computer, cryptography, and communications. In particular, the original ideas of
quantum communications were developed by Helstrom and by scientists from MIT
proving the superiority of quantum systems with respect to classic optical systems.
Measurement of the quantum properties of a physical system is fundamental in
quantum mechanics and quantum information science; the first one prohibits the
perfect discrimination of non-orthogonal states, due to their intrinsic overlap. This
seemingly impossible task can, however, be accomplished by performing general-
ized quantum measurements that allow for inconclusive results as a possibility for
the measurement outcomes. Quantum-state discrimination among non-orthogonal
states, besides being of fundamental interest, is critical for many realizations of
quantum information processing. In particular, the discrimination of non-orthogonal
coherent states is essential in quantum key distribution for unconditionally secure
communications, coherent state-based quantum repeaters and quantum computing.
Moreover, multi-state discrimination can enable: coherent state-assisted entangle-
ment generation with high fidelity, entanglement swapping and photon number state
preparation and detection. In addition, unambiguous multi-state comparison allows
for quantum digital signatures.
There are two complementary approaches for non-orthogonal state discrimination.
The first of these, minimum error discrimination (MED), seeks measurements that
minimize the probability of erroneously identifying the state.
The second approach, that is unambiguous state discrimination (USD), introduces
inconclusive results to achieve perfect state discrimination, and aims to maximize
the probability of conclusive results. However, imperfections in realistic implemen-
tations make ideal (error-free) USD impossible. Thus, real-world USD becomes an
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intermediate measurement strategy between MED and ideal USD, which retains the
conclusive results of ideal USD, but contains some errors in those conclusive re-
sults.
First, we demonstrate the realization of generalized quantum measurement for USD
of two non-orthogonal coherent states using coherent displacement and photon
counting.
Finally, we demonstrate the both realizations for K non-orthogonal (K > 2).
The performance of each specific system is compared to that of the corresponding
classical and quantum optical system.

Organization of the thesis

The thesis is organized into 6 chapters:

Chapter 1 Collects the mathematical background needed in the formulation and
development of Quantum Mechanics: mainly notions of linear vector spaces and
Hilbert spaces, with special emphasis on the eigendecomposition of linear oper-
ators.

Chapter 2 Introduces the fundamentals of Quantum Mechanics, in four postu-
lates. Postulate 1 is concerned with the environment of Quantum Mechanics:
a Hilbert space. Postulate 2 formulates the evolution of a quantum system, ac-
cording to Schrödinger’s and Heisenbergs visions. Postulate 3 is concerned with
the quantum measurements, which prescribes the possibility of extracting infor-
mation from a quantum system. Finally, Postulate 4 deals with the combination
of two or more interacting quantum systems. A particular emphasis is given to
Postulate 3, because it manages the information in a quantum system and will be
the basis of Quantum Communications and Quantum Information consideration.

Chapter 3 Develops the concept of unambiguous state discrimination. Here a non-
trivial effort is made to express the results within the language of telecommuni-
cations, where the USD is applied to the receiver.

Chapter 4 Deals with the general formulation of quantum communication sys-
tems, where the transmitter (Alice) prepares and launches the information in a
quantum channel and the receiver (Bob) extracts the information by applying the
quantum decision rules. Although, in principle, the transmission of analog infor-
mation would be possible, according to the lines of present-day technology, only
digital information (data) is considered. In any case, we will refer to optical com-
munications, in which the information is conveyed through a coherent radiation
produced by a laser. The quantum formulation of coherent radiation is expressed
according to the universal and celebrated Glaubers theory.

Chapter 5 The basic ideas of chapter 4 are applied to most popular USD commu-
nication systems, each one characterized by a specific binary modulation format
(OOK, BPSK, PPM). The performance of each specific system is compared to
that of the corresponding classical and quantum optical system.

Chapter 6 The concepts of chapter 4 are applied to USD communication systems,
each one characterized by a specific multilevel modulation format, i.e. QAM,
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PSK, PPM. Of course, the performance of each specific system is compared to
that of the corresponding classical and quantum optical system.

Padova, 25 February 2019 Federico Meggetto
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Chapter 1
Vector spaces and operative methods

This chapter given an introduction to the important concept of vector spaces, that
are thoroughly discussed in the following chapters. For a more detailed discussion
please refer to the dedicated literature [1] – [5].

1.1 Vector spaces

A vector space [3], V, is a collection of vectors, {v1, ...,vn} in which an addition
and a multiplication operation by scalar quantities {α,β ,γ, ...} ∈ F are defined such
that:

v+w ∈ V (1.1)
αv ∈ V, i f v ∈ V, α ∈ F (1.2)

F is called the scalar field and the addition and product operations α+β ∈F, αβ ∈F
are defined on F. These operators satisfy some properties:

Definition 1.1. Axioms for addition

1. v+w = w+ v ∀v,w ∈V
2. v+(w+ z) = (v+w)+ z ∀v,w,z ∈V
3. ∃ null vector, 0, vi +0 = 0+ vi = vi
4. ∃ single vector, (−vi), such that vi +(−vi) = 0

Definition 1.2. Axioms for multiplication by scalars

1. α(v+w) = αv+αw, α ∈ F and v,w ∈V
2. (α +β )v = αv+βv
3. α(βv) = (αβ )v
4. 1v = v, 1 ∈ F

1



2 1 Vector spaces and operative methods

where 1 is the identity in the F field of the scalars, that is 1α = α .
A set of n non-null vectors is called linearly independent if there are no scalar
solutions to the equation

n

∑
i=1

αivi = 0 (1.3)

except for the trivial solution αi = 0 ∀i.
This definition implies the fact that if n vectors are independent, they cannot be
written as linear combinations between one and the others.
A vector space is said to be n-dimensional, if it admits at most n linearly independent
vectors. We will denote a n-dimensional space on F with the symbol V n(F).

Definition 1.3. Given n linearly independent vectors (v1,v2, ...,vn), any other vector
v ∈V n(F) can be written as a linear combination of the n vectors. This is called the
basis, or a set of basis vectors.

1.2 Vector spaces with inner product

An inner product in a vector space associates two vectors to a scalar of F, i.e. it is a
bilinear mapping V x V → F that satisfies the following axioms:

1. 〈v|v〉 ≥ 0
2.
〈
vi|v j

〉
=
〈
v j|vi

〉∗
3.
〈
vi|αv j +βvk

〉
= α

〈
vi|v j

〉
+β 〈vi|vk〉

The operation * is a complex conjugation if F = C is the field of the complex num-
bers.
The second property says that the inner (or scalar) product is called Hermitian in the
case of complex.
The third property outlines the linearity of the inner product. It is antilinear when
compared to the first.
When an inner product is defined within a vector space, this is called ”vector space
with an inner product”. The norm of a vector induced by the inner product can be
defined:

|v|=
√
〈v|v〉 (1.4)

A vector is called normalized or unitary if it has a norm equal to one. Moreover, two
vectors are said to be orthogonal if their scalar product is null:

〈v|w〉= 0⇔ v⊥ w (1.5)

A set of vectors (e1,e2, ...,en) is called orthonormal if〈
ei|e j

〉
= δi j (1.6)
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where δi j is the Kronecker delta.
An important property of the inner product is Schwarz’s inequality:

|
〈
vi|v j

〉
|2 ≤ |vi|2

∣∣v j
∣∣2 (1.7)

Another important inequality in which the inner product is satisfied is the triangular
inequality: ∣∣vi + v j

∣∣≤ |vi|+
∣∣v j
∣∣ (1.8)

1.3 The Dirac notation

Dirac introduced a notation for vector space’s description that is extremely relevant
for discussions of the following topics [5]. As we have already observed, a vector is
entirely specified by assigning its components to a base vector introduced.
For example, on an orthonormal basis:

v =
n

∑
i=1

eivi (1.9)

all operations on vectors are reported to operations on the vi components. There-
fore there is a two-way correspondence between the vector v and the n-ple of its
components in a given basis.

v⇔


v1
v2
...

vn

 (1.10)

In this orthonormal basis, the inner product can be written as:

〈v|w〉=
n

∑
i=1

viwi =
(
v1 · · · vn

)w1
...

wn

 (1.11)

where we have associated with the vector v the n-upla
(
v1 · · · vn

)
We are now able to introduce a more compact way of expressing the inner product
between two vectors.
Precisely, the ket, that corresponds to the column vector, i.e.

|v〉 ⇔

v1
...

vn

 (1.12)
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and the bra, that corresponds to the row vector:

〈v| ⇔
(
v1 · · · vn

)
(1.13)

The representation that associates bra to vector v is the dual of the one that associates
the ket. Note that, in matrix notation, the dual representation is obtained through the
operations of transposition and complex conjugation. This operation goes from ket
to bra and viceversa.

〈v|= |v〉† (1.14)

and obviously it also applies (
|v〉†
)†

= |v〉 (1.15)

In the base (1.9), the base vectors have the representation:

|ei〉 ≡ |i〉 ⇔


0
...
1
...
0

→ ith place (1.16)

So the ket |v〉 can be written in this base as

|v〉= ∑
i

vi |i〉 (1.17)

and the bra as
〈v|= ∑

i
vi
∗ 〈i| (1.18)

We now notice that the inner product of a vector v with another w is:

〈v|w〉=
(
v1 · · · vn

)w1
...

wn

= ∑
i

viwi (1.19)

The orthonormality of the basic vectors is written in the form

〈i| j〉= δi j (1.20)

If a ket has representation
|v〉= ∑

i
vi |i〉 (1.21)

its components vi are calculated by taking the inner product with the basic vectors:
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〈 j|v〉= ∑
i

vi 〈 j|i〉= ∑
i

viδi j = v j (1.22)

It follows the expression
|v〉= ∑

i
|i〉〈i|v〉 (1.23)

Similarly,

〈v|= ∑
i
〈i|zi〉 (1.24)

〈v| j〉= ∑
i
〈i| j〉zi = z j (1.25)

〈v|= ∑
i
〈v|i〉 |i〉 (1.26)

(1.27)

We now would like to show how it is possible, given n linearly independent vectors,
to build a set of orthonormal vectors (Gram-Schmidt process). We begin by defining
n orthogonal vectors from the given set (|v1〉 , ..., |vn〉).∣∣1′〉= |v1〉 (1.28)∣∣2′〉= |v2〉−

|1′〉〈1′|v2〉
〈1′|1′〉

(1.29)

The ket |2′〉 is constructed by subtracting its projection along |v2〉 from |1′〉. This
makes it orthogonal to |1′〉 as we immediately verify. We choose then

∣∣3′〉= |v3〉−
|1′〉〈1′|v3〉
〈1′|1′〉

− |2
′〉〈2′|v3〉
〈2′|2′〉

(1.30)

Given the orthogonality of |1′〉 and |2′〉 it immediately follows〈
1′|3′

〉
=
〈
2′|3′

〉
= 0 (1.31)

Proceeding in an iterative way, the following result is obtained

∣∣k′〉= |vk〉−
k−1

∑
i′=1

|i′〉〈i′|vk〉
〈i′|i′〉

, k = 2, ...,n (1.32)

The orthonormal base is obtained by normalizing each ket |i′〉

∣∣i′〉= |i′〉|i′〉 = |i′〉√
〈i′|i′〉

(1.33)
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The linear independence of the n initial vectors is implicitly used here. In fact, if
the previous construction was linearly dependent, it could have been stopped before
reaching the vector |n′〉.

Definition 1.4. The maximum number of orthogonal vectors in a vector space is
equal to the maximum number of linearly independent vectors.

1.4 Linear operators

An operator A is an operation that transforms a vector into another vector. That is,
A is a mapping of the vector space V in itself:

A : V →V (1.34)

The action of A on the vectors is represented as follows∣∣v′〉= A |v〉 (1.35)

An operator is linear if it satisfies the following property:

A(α |v〉+β |w〉) = αA |v〉+βA |w〉 (1.36)

An operator A can also act on the bra:

(〈v|α + 〈w|β )A = 〈v|Aα + 〈w|Aβ (1.37)

A simple example of an operator is the identity operator which transforms each
vector into itself

I |v〉= |v〉 , ∀|v〉 ∈V (1.38)

The operators can be combined by the following operation:

Product: (A1A2) |v〉= A1 (A2 |v〉)
Sum: (A1 +A2) |v〉= A1 |v〉+A2 |v〉
Scalar multiplication: (αA) |v〉= α (A |v〉)

It is important to note that the product of two operators is generally not commuta-
tive, that is,

A1A2 6= A2A1 (1.39)
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1.5 Matrix representation of a linear operator

We have seen that a vector with given base corresponds to an n-ple of numbers.
These numbers are its components in that base. Similarly, given the base, a linear
operator is represented by an array of n× n numeric values that correspond to its
matrix elements. Obviously, the matrix elements depend on the choice of the base.
Recall that an operator is completely assigned once the action on the elements of a
base has been defined. In particular, the components of the transformed ket can be
easily calculated under the action of the operator if this equality is valid:

|w〉= A |v〉 (1.40)

ensue
wi = 〈i|w〉= 〈i|A|v〉= 〈i|A∑

j
v j | j〉= ∑

j
〈i|A| j〉v j (1.41)

setting as
Ai j = 〈i|A| j〉 (1.42)

follows that
wi = ∑

j
Ai jv j (1.43)

Thus, the operator’s action can be evaluated by working with its matrix elements.
Such action is simply the product of its column vector representable matrix and the
usual rows by columns product.
The matrix elements of the identity operator are calculated as:

〈i|I| j〉= 〈i| j〉= δi j (1.44)

The identity operator has matrix representation given by the identity matrix.
Recall that we have demonstrated the relationship (1.23)

|v〉=
n

∑
i=1
|i〉〈i|v〉 (1.45)

which can be written in the form

|v〉=

(
n

∑
i=1
|i〉〈i|

)
|v〉 (1.46)

Note that the vector |v〉 appears both at the right and left hand-side of the equation.
Therefore, it is possible to rewrite it as:
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I =

(
n

∑
i=1
|i〉〈i|

)
(1.47)

and with these steps we have arrived at the identity matrix.

1.5.1 Projectors

It is interesting to consider the quantities |i〉〈i| as operators. Remind that |i〉 as an
orthonormal basis. Their action is given by

(|i〉〈i|) |v〉= |i〉〈i|v〉= vi |i〉 (1.48)

Also, they are called projectors

Pi = |i〉〈i| (1.49)

We observe that
n

∑
i=1

Pi = I (1.50)

Furthermore the projectors respect the following property 1

PiPj = |i〉〈i| j〉〈 j|= δi j |i〉〈i|= δi jPi (1.51)

To calculate the matrix elements of a projector, we can use the representation of the
bra and ket

Pi = |i〉〈i| ⇔


0
...
1
...
0


(
0 · · · 1 · · · 0

)
(1.52)

and this expression is equal to

1 If i = j, in particular, we have Pi
2 = Pi, and is called idempotency. Otherwise PiPj = 0 for i 6= j

is called orthogonality
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i




0 · · · 0 · · · 0
...

. . .
...

. . .
...

0 · · · 1 · · · 0
...

. . .
...

. . .
...

0 · · · 0 · · · 0



i︷ ︸︸ ︷

or by direct calculation

(Pi) jk = 〈 j|Pi|k〉= 〈 j|i〉= 〈i|k〉= δi jδik (1.53)

which, in fact, tells us that the only nonzero element is at column and row i.
The product AB of two operator has matrix representation the product of the matrices

(AB)i j = 〈i|AB| j〉= 〈i|AIB| j〉=
n

∑
k=1
〈i|A|k〉〈k|A| j〉=

n

∑
k=1

AikBk j (1.54)

1.5.2 Hermitian operators

It is important at this time, is to introduce the Hermitian operators. Then in the
matrix representative

A† = A (1.55)

Given the operator A, it is Hermitian if

〈〈A|v〉 , |w〉〉= 〈|v〉 ,A |w〉〉 (1.56)

and the Anti-Hermitian operators

A† =−A (1.57)

Each operator can always be decoupled into a Hermitian and an anti-Hermitian part

A =
1
2
(
A+A†)︸ ︷︷ ︸

hermitian

+
1
2
(
A−A†)︸ ︷︷ ︸

anti−hermitian

(1.58)

Other important operators are unitary operators:

UU† =U†U = I (1.59)

or, in other words,
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U† =U−1 (1.60)

We observe that the product of unitary operators is unitary. In fact

(U1U2)
† =U2

†U1
† =U2

−1U1
−1 = (U1U2)

−1 (1.61)

Moreover, the unitary operators have the important property of preserving the inner
product.

|w1〉=U |v1〉 (1.62)
|w2〉=U |v2〉 (1.63)

resulting in
〈w2|w1〉= 〈v2|U†U |v1〉= 〈v2|v1〉 (1.64)

Leaving unchanged the norm of a vector, they generalize the rotations to the com-
plex case.
It is important to observe that if we think of the columns of a n× n unitary matrix
as n vectors, they form an orthonormal set. In fact, starting from UTU = I we have

δi j = 〈i|I| j〉=
〈
i|U†U | j

〉
=

n

∑
k=1

〈
i|U†|k

〉
〈k|U | j〉=

=
n

∑
k=1

(
U†)

ikUk j =
n

∑
k=1

Uki
∗Uk j

(1.65)

Also, it is important to mention the fact that the same considerations can be done
for the n rows.

1.5.3 Trace

An important operator, which as invariant under unitary transformations is the trace.
An example in the trace(sum of the diagonal elements):

Tr[A] =
n

∑
i=1

Aii (1.66)

An important property in the follow:

Tr[AB] = Tr[BA] (1.67)

indeed
Tr[AB] = ∑

i, j
Ai jB ji = ∑

i
B jiAi j = Tr[BA] (1.68)



1.6 Eigenvalues and eigenvectors 11

From this, it follows the cyclic property of the trace

Tr[ABC] = Tr[A(BC)] = Tr[(BC)A] = Tr[B(CA)] = Tr[CAB] (1.69)

And by using the latter

Tr[U†AU ] = Tr[UU†A] = Tr[A] (1.70)

which shows the important property of invariance to unitary transformation. Another
operator which is unaltered under unitary transformations is the determinant. In
fact

det[U†AU ] = det[U†]det[U ]det[A] = det[U†U ]det[A] = det[A] (1.71)

A result of the trace is:

tr(A |ψ〉〈ψ|) = ∑
i
〈i|A|ψ〉〈ψ|i〉=

= ∑
i
〈ψ|i〉〈i|A|ψ〉= 〈ψ|∑

i
|i〉〈i|A|ψ〉= 〈ψ|A|ψ〉

(1.72)

1.6 Eigenvalues and eigenvectors

Given an operator A, we are often interested in determining the vector space’s di-
rections that have not changed since action of A. This is defined by the equation

A |v〉= λ |v〉 (1.73)

where vector |v〉 is called an eigenvector of A with eigenvalue λ . The eigenvalue
equation for operator A can be written in the form:

(A−λ I) |v〉= 0 (1.74)

or, in components:
n

∑
j=1

(Ai j−λδi j)v j = 0 (1.75)

This is a linear and homogeneous equation in the components of the autovector.
Therefore, we do not have identically zero solutions for v j if and only if the deter-
minant of the system is null

det[A−λ I] = 0 (1.76)

By expanding the determinant, we find an equation of degree n which determines
the possible eigenvalues. This is also referred to as the characteristic equation.
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From the fundamental theorem of algebra (every equation of degree n has n complex
roots) it follows that every operator in Cn(C) has n complex non-necessarily distinct
eigenvalues. Once the eigenvalue λ is found, are can obtained the correspondent
eigenvector solving the eigenvalue equation

∑
j
(Ai j−λδi j)v j = 0 (1.77)

Theorem 1.1. For each Hermitian operator there is at least one orthogonal eigen-
vector base. In this base the operator matrix is diagonal and its eigenvalues are the
diagonal matrix elements.

Proof. First of all, it is shown that if A is Hermitian, then eigenvectors correspond-
ing to distinct eigenvalues are orthogonal.
Suppose that Au = λu and Av = µv for λ 6= µ . Then

λ 〈u,v〉= 〈u,Av〉= 〈u,λv〉= λ 〈u,v〉 (1.78)

since µ 6= λ it follows that λ 〈u,v〉= 0.
Suppose that A has n distinct eigenvalues {λ1, ...,λn}with corresponding orthogonal
eigenvectors {u1, ...,un}. Let us also agree to scale the eigenvectors so that〈

ui,u j
〉
= δi, j (1.79)

We recall that the eigenvalue equation can be written in matrix form

AU =UΛ (1.80)

where U = (u1 u2 ... un) and Λ = diag{λ1, ...,λn}. And now, the outcome is

A =UΛU† (1.81)

In other words, A can be diagonalized in a particularly simple way.
Now we can show that if A is Hermitian then A has n orthonormal eigenvectors
{u1, ...,un} and Equation (1.81) is verified where

Λ = diag{λ1, ...,λn} (1.82)

If all the eigenvalues were distinct then the results follows from the forgoing discus-
sion. Here we shall outline a proof this result for the case where A is real so that the
setting is Rn rather than Cn. Define the function

f (y) = 〈Ay,y〉 (1.83)
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Analysis tells us that this function has a minimum on the set 〈y,y〉 = 1. The mini-
mizer can be found with Lagrange multipliers. We have the Lagrangian

L(y) = 〈Ay,y〉−λ (〈y,y〉−1) (1.84)

and the minimizer x1 is found from the necessary condition

∇L(y) = 0 (1.85)

We compute

∂L
∂yk

= 〈Ak,y〉+
〈
Ay,ek

〉
−2λyk = 2(〈Ak,y〉−λyk) (1.86)

so that we have to solve

∇L≡ Ay−λy = 0
〈y,y〉= 1

(1.87)

The solution to this problem is the eigenvector x1 with eigenvalue λ1.
If we now apply the Gram-Schmidt method to the set of n+ 1 dependent vectors
{x1,e1, ...,en} we end up with n orthogonal vectors {x1,y2, ...,yn}.
We now minimize

f (y) = 〈Ay,y〉 sub ject to ‖y‖= 1 (1.88)

over all y∈ span{y2, ...,y2} and get the next eigenvalue λ2 and eigenvector x2 which
then necessarily satises 〈x1,x2〉 = 0. Next we find an orthogonal basis of Rn of the
form {x1,x2,y3, ...,yn} and minimize f (y) over span {y3, ...,yn} subject to the con-
straint that ‖y‖= 1. We keep going and find eventually n eigenvectors, all of which
are mutually orthogonal. Afterwards all eigenvectors can be normalized so that we
have an orthonormal eigenvector basis of Rn which we denote by {u1, ...,un}.
We say that A can be diagonalized.
The diagonalization theorem guarantees that for each eigenvalue one can find an
eigenvector which is orthogonal to all the other eigenvectors regardless of whether
the eigenvalue is distinct or not. This means that if an eigenvalue µ is a repeated
root of multiplicity k (meaning that det(Aλ I) = (λ µ)kg(λ )), where g(µ) 6= 0), then
dimN(AµI) = k. We simply find an orthogonal basis of this null space. The process
is, as usual, the application of Gaussian elimination to

(AµI)x = 0 (1.89)

and finding k linearly independent vectors in the null space which can then be made
orthogonal with the Gram-Schmidt process. ut
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1.7 Hilbert spaces

A Hilbert space H is a complex inner product space that is also a complete metric
space with respect to the distance function induced by the inner product. To say
that H is a complex inner product space means that H is a complex vector space on
which there is an inner product 〈x,y〉 associating a complex number to each pair of
elements x,y of H that satisfies the following properties:

1. The inner product of a pair of elements is equal to the complex conjugate of the
inner product of the swapped elements:

〈y,x〉= 〈x,y〉 (1.90)

2. The inner product is linear in its first argument. For all complex numbers a and
b,

〈ax1 +bx2,y〉= a〈x1,y〉+b〈x2,y〉 (1.91)

3. The inner product of an element with itself is positive definite:

〈x,x〉 ≥ 0 (1.92)

where the case of equality holds precisely when x = 0.

It follows from properties 1 and 2 that a complex inner product is antilinear in its
second argument, meaning that

〈x,ay1 +by2〉= a〈x,y1〉+b〈x,y2〉 (1.93)

A real inner product space is defined in the same way, except that H is a real vector
space and the inner product takes real values. Such an inner product will be bilinear:
that is, linear in each argument.
The norm is the real-valued function:

‖x‖=
√
〈x,x〉 (1.94)

and the distance d between two points x,y in H is defined in terms of the norm by

d(x,y) = ‖x− y‖=
√
〈x− y,x− y〉 (1.95)

That this function is a distance function means firstly that it is symmetric in x and
y, secondly that the distance between x and itself is zero, and otherwise the distance
between x and y must be positive, and lastly that the triangle inequality holds, mean-
ing that the length of one leg of a triangle xyz cannot exceed the sum of the lengths
of the other two legs:

d(x,z)≤ d(x,y)+d(y,z) (1.96)
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This last property is ultimately a consequence of the more fundamental Cauchy-
Schwarz inequality, which asserts

|〈x,y〉| ≤ ‖x‖‖y‖ (1.97)

with equality if and only if x and y are linearly dependent.
Relative to a distance function defined in this way, any inner product space is a
metric space, and sometimes is known as a pre-Hilbert space.
Any pre-Hilbert space that is additionally also a complete space is a Hilbert space.
Completeness is expressed using a form of the Cauchy criterion for sequences in H:
a pre-Hilbert space H is complete if every Cauchy sequence converges with respect
to this norm to an element in the space.
Completeness can be characterized by the following equivalent condition:
if a series of vectors

∞

∑
k=0

uk (1.98)

converges absolutely in the sense that

∞

∑
k=0
‖uk‖< ∞, (1.99)

then the series converges in H, in the sense that the partial sums converge to an
element of H.
As a complete normed space, Hilbert spaces are by definition also Banach spaces.
As such they are topological vector spaces, in which topological notions like the
openness and closedness of subsets are well-defined. Of special importance is the
notion of a closed linear subspace of a Hilbert space that, with the inner product
induced by restriction, is also complete (being a closed set in a complete metric
space) and therefore a Hilbert space in its own right.

1.8 Tensor products

The tensor product is used to put together vector spaces to create larger ones. Sup-
pose that V and W are vector spaces of dimension m and n, respectively, and that V
and W are also Hilbert spaces over a field K.
The vectors V ⊗W are then defined to be the equivalence classes of the congruence
generated by the following relations:
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∀v,v1,v2 ∈V, ∀w,w1,w2 ∈W, ∀z ∈ K :
(v1,w)+(v2,w) = (v1 + v2,w)

(v,w1)+(v,w2) = (v,w1 +w2)

z(v,w) = (zv,w)

z(v,w) = (v,zw)

(1.100)

and
V ×W = [v1w1,v1w2, ...] (1.101)

Hence, V ⊗W is a vector space of m× n size. The elements of V ⊗W are linear
combinations of ”tensor products” |v〉⊗ |w〉 of elements of |v〉 of V and |w〉 of W .
In particular, if |i〉 and | j〉 are orthonormal bases for the spaces V and W, then
|i〉⊗ | j〉 is a basis for V ⊗W .
By definition the tensor product satisfies the following properties:

1. For an arbitrary scalar z:

z(|v〉⊗ |w〉) = (z |v〉)⊗|w〉= |v〉⊗ (z |w〉) (1.102)

2.
(|v1〉+ |v2〉)⊗|w〉= |v1〉⊗ |w〉+ |v2〉⊗ |w〉 (1.103)

3.
|v〉⊗ (|w1〉+ |w2〉) = |v〉⊗ |w1〉+ |v〉⊗ |w2〉 (1.104)

If we now suppose that A and B are linear operators on V and W, and that |v〉 and
|w〉 are vectors respectively in V and W. We can define a linear operator A⊗B on
V ⊗W by the equation

(A⊗B)(|v〉⊗ |w〉)≡ A |v〉⊗B |w〉 (1.105)

The given definition of A⊗B is then extended to all elements of V ⊗W in a natural
way to guarantee the linearity of A⊗B, that is,

(A⊗B)

(
∑

i
ai |vi〉⊗ |wi〉

)
≡∑

i
aiA |vi〉⊗B |wi〉 (1.106)



Chapter 2
Quantum mechanics

The purpose of this chapter is to introduce some fundamental concepts concerning
quantum mechanics. The aim is to support the basics to understand the content of
this thesis: for more information, refer to the dedicated literature [1] [5] – [8].
In the following sections, we will give a description of the base mathematical for-
mulation of quantum mechanics. These postulates provide a connection between the
physical world and the mathematical formalism of quantum mechanics.

2.1 Postulates 1 and 2

2.1.1 Postulate 1: State space

The first postulate of quantum mechanics states that a Hilbert space is associated
with any isolated physical system. This space is also known as the state space of the
system.
This system is entirely described by its state vector. The latter is a unit vector.
Given a physical system, quantum mechanics does not give us hints on whether the
system is found or about its state.

2.1.2 Postulate 2: Evolution

The second postulate of quantum mechanics states that the evolution of a closed
quantum system is described by a unitary transformation. The state |ψ(t1)〉 of the
system at time t1 is related to the state |ψ(t2)〉 of the system at time t2 by a unitary
operator U(t1, t2) which depends only on the times t1 and t2,

17
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|ψ(t2)〉=U |ψ〉 (2.1)

In quantum mechanics, the space and quantum state of a system are not specified.
The description of a real world quantum dynamic, operator U , is also not specified.
This postulate requires a system to be closed or that does not have interactions with
others. In reality, this scenario never happens because there will be always be at least
a minimal interactions between systems. However, systems that are approximately
closed and described by a good approximated unit evolution are still considerably
interesting.
As we have just seen, this postulate describes how well correlated are states of a
closed system in two different periods of time. At this point, it is now possible to
reformulate such postulate to describe an evolution in continuous time.

2.1.2.1 Another formulation

The other formulation of the postulate 2 of quantum mechanics says that the time
evolution of the state of a closed quantum system is described by the Schrödinger
equation,

i}
d |ψ〉

dt
= H |ψ〉 (2.2)

where } is Planck’s constant.
H is a fixed Hermitian operator, known as the Hamiltonian of the closed system.
For many systems, it is possible to write a time-varying Hamiltonian where H is not
actually a constant.

2.2 Postulate 3: Quantum measurement

We said that close quantum systems evolve unitary. The third postulate provides a
means of describing the effect of measurements on quantum systems.
The quantum measurement postulate essentially:

1. provides a rule that describes the measurement statistics, the probabilities of dif-
ferent possible measurements

2. provides a rule that describes the post-measurement status of the system

The postulate 3 states that quantum measurements are described by a collection
∏m of measurement operators. These are operators acting on the state space of the
system being measured. The measurement outcomes that may can be associate to
the index m of the operator. If the state of the quantum system is |ψ〉 immediately
before the measurement, then the probability of having m is given by

p(m) = 〈ψ|∏m |ψ〉 (2.3)



2.2 Postulate 3: Quantum measurement 19

and the state of the system after measurement is

∣∣∣ψ(m)
post

〉
=

∏m |ψ〉√
〈ψ|∏m |ψ〉

=
∏m |ψ〉√

p(m)
(2.4)

The operators satisfy the completeness equation,

∑
m

∏m = I (2.5)

Which expresses the fact that probabilities sum to one:

1 = ∑
m

p(m) = ∑
m
〈ψ|∏m |ψ〉 (2.6)

2.2.1 Projective measurements

The model of a quantum measurement is formulated on the basis of appropriate
Hermitian operators. The standard formulation is based on projectors, and was
introduced by von Neumann (this is why they are referred to as projective or
von Neumann measurements), but other equivalent formulations are found in the
literature, and also various generalizations.
For many applications of quantum computation and information, we will mainly be
concerned about projective measurements.
To this measurement we can associate the observable Hermitian operator M. Such
operator has a spectral decomposition,

M = ∑
m

mPm (2.7)

where Pm is the projector of eigenvalue m on the eigenspace of M. The possible
measurement’s outcome correspond to the eigenvalues m of the observable. Upon
measuring the state |ψ〉, the probability of getting result m is given by

p(m) = 〈ψ|Pm |ψ〉 (2.8)

That the measurement operators, in addition to satisfying the completeness relation
(2.5), also satisfy the conditions that ∏m are orthogonal projectors, i.e. the ∏n are
Hermitian and

∏m ∏n = δm,n (2.9)

The projective measures have different properties; in particular, it is fairly straight-
forward to calculate the average values for measurements. By definition, the average
value of the measurement is
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E(M) = ∑
m

mp(m) = ∑
m

m〈ψ|Pm |ψ〉=

= 〈ψ|
(

∑
m

mPm

)
|ψ〉= Tr (M |ψ〉〈ψ|)

(2.10)

2.2.2 POVM measurements

The generalized quantum measurements are carried out through a set of Hermi-
tian operators, which are not necessarily projectors, and are called POVM (positive
operator-valued measurements).
A system of general measurement operators (POVM) Qm is defined imposing the
following conditions to the operators Qm:

1. They are Hermitian operators, Qm
∗ = Qm

2. They are positive semidefinite: Qm ≥ 0
3. They resolve the identity: ∑m Qm = I

The above properties on POVMs ensure that the probabilities calculated

p(m) = 〈ψ|Qm |ψ〉 (2.11)

respect the conditions relative to a probability distribution, that is,

p(m)≥ 0, ∑
m

p(m) = 1 (2.12)

We note that, with the POVMs, Postulate 3 cannot be fully applied to know the sys-
tems state immediately after the measurement. On the other hand, this knowledge is
irrelevant in many applications and in particular in quantum communications.
According to many authors, for example Helstrom [65], and Eldar and Forney [66],
through the POVM measurements from a quantum system more useful results can
be obtained with respect to von Neumanns projective measurements, based on pro-
jectors. As will be seen in the next chapter, to improve generality and simplicity,
it is convenient to work out the formulation considering POVMs, but often, due to
contextual constraints, we will arrive at the conclusion that such operators turn out
to be projectors.

2.3 Postulate 4: Composite systems

The fourth postulate of quantum mechanics is used to describe a composite quantum
system consisting of several distinct physical systems.
The postulate 4 of quantum mechanics states that the state space of a composite
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physical system is the tensor product of the component state spaces. Moreover, if
we have systems numbered 1 to n, and system number i is in the state |ψi〉, then the
joint state of the total system is

|ψ1〉⊗ |ψ2〉⊗ ...⊗|ψn〉 (2.13)

2.4 The density operator

To study quantum mechanics, we have used state vectors; another equivalent tool
is the density operator [9] or density matrix. It provides a much more convenient
language to reflect about some commonly encountered scenarios in quantum me-
chanics.

2.4.1 Ensembles of quantum states

The density operator provides a means of describing quantum systems whose state
where we have an additional uncertainty on the system state.
More precisely, suppose that a quantum system is in one of the numerous states |ψi〉,
where i is an index, with respective probabilities pi.
The density operator for the system is defined as

ρ ≡∑
i

pi |ψi〉〈ψi| (2.14)

Two new important concepts related to the density operator can now be introduced,
i.e. the pure state and the mixed state.

1. A quantum state is said to be pure, when the state |ψ〉 is known. In this case, the
density operator is ρ = |ψ〉〈ψ| and the state satisfies the equation tr

(
ρ2
)
= 1.

2. Otherwise, ρ is in a mixed state. The state satisfies tr
(
ρ2
)
< 1 and it is a mixture

of the pure states of ρ .

Through this mathematical notation, the postulates of quantum mechanics can be
completely reformulated in an equivalent way.
If through the unitary operator U we can describe the evolution of a closed quantum
system and if this system was initially in state |ψi〉 with probability pi, the system is
going to be in state U |ψi〉with probability pi. Of course, this only after the evolution
has occurred. The evolution of the density operator is described by the equation

ρ(t0) = ∑
i

pi |ψi〉〈ψi| →∑
i

piU |ψi〉〈ψi|U† =UρU† = ρ(t1) (2.15)
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With the density operator it is possible to describe measurements. If we try to per-
form a measurement, described by the operators ∏m, we can say that, if the initial
state was |ψi〉, then the probability of obtaining result m is

p(m|i) = 〈ψi|∏m |ψi〉= tr (∏m |ψi〉〈ψi|) (2.16)

with equation (1.72) for the last equality.
According to the laws of total probability, the probability of obtaining result m is

p(m) = ∑
i

p(m|i)pi = ∑
i

pitr
(
∏m |ψi〉〈ψi|

)
= tr

(
∏mρ

)
(2.17)

2.4.2 General properties of the density operator

The density operator was introduced as a means of describing sets of quantum states.
The operators that are of type density, are characterized by the following theorem:

Theorem 2.1. An operator ρ is the density operator associated with some ensemble
pi, |ψi〉 if and only if it satisfies the conditions:

1. Trace condition, that is, ρ has a trace equal to one.
2. Positive condition, that is, ρ is a positive operator.

Proof. Suppose ρ = ∑i pi |ψi〉〈ψi| is a density operator. Then

tr(ρ) = ∑
i

pitr (|ψi〉〈ψi|) = ∑
i

pi = 1 (2.18)

therefore the trace condition tr(ρ) = 1 is satisfied.
Suppose, now, that |ϕ〉 is an arbitrary vector in the state space.

〈ϕ|ρ|ϕ〉= ∑
i

pi 〈ϕ|ψi〉〈ψi|ϕ〉= ∑
i

pi|〈ϕ|ψi〉|2 ≥ 0 (2.19)

The positivity condition is satisfied.
Vice versa, suppose that ρ is any operator that satisfies the conditions of trace and
positivity conditions.
Since ρ is positive, it must have a spectral composition

ρ = ∑
j

λ j | j〉〈 j| (2.20)

where the vectors | j〉 are orthogonal, and λ j are real, non-negative eigenvalues of ρ .
From the trace condition, we see that ∑ j λ j = 1. We can infer that a system in the
state | j〉 and with probability λ j, has the density operator ρ . That is, λ j, | j〉 is an
ensemble of states that creates the density operator ρ . ut
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With this theorem we can define a density operator as ρ and with a trace equal to
one. The postulates of quantum mechanics can be reformulated as:

Postulate 1: Associated with any isolated physical system, there is a complex vec-
tor space with inner product (Hilbert space) known as the state space of the system.
The system is entirely described by its density operator. It is a positive operator ρ ,
with trace one and acting on the state space of the system. If a quantum system is in
state ρi and with probability pi, the density operator for such system is ∑i piρi.

Postulate 2: The evolution of a closed quantum system is described by a unitary
transformation. That is, the state ρ at time t1 is related to the state ρ ′ at time t2 by a
unitary operator U which depends only on t1 and t2,

ρ
′ =UρU† (2.21)

Postulate 3: Quantum measurements are described by a collection Mm of measure-
ment operators. These act on the state space of the system being measured. The
index m refers to the outcomes that may occur during the experiment. If the state is
ρ immediately before the measurement, then the probability of having result m is

p(m) = tr
(
Mm

†Mmρ
)
, (2.22)

and the state of the system after the measurement is

MmρMm
†

tr
(
Mm

†Mmρ
) (2.23)

Lastly, the measurement operators also satisfy the completeness equation,

∑
m

Mm
†Mm = I (2.24)

Postulate 4: The state space of a composite physical system is the tensor product of
the state spaces of the component physical systems. If we have systems numbered 1
to n, and the system number i is in state ρi, then the joint state is

ρ1⊗ρ2⊗ ...⊗ρn (2.25)

Naturally, these reformulations of the fundamental postulates of quantum mechanics
in terms of density operator are mathematically equivalent to the description in terms
of the state vector.





Chapter 3
Discrimination of quantum states

In quantum information processing and quantum computing protocols, information
is encoded in a state. It is fundamental to identify the state of the system. We can
talk about quantum state discrimination if the possible states are non-orthogonal.

3.1 Introduction

The system sends information encoded in a state belonging to a set of target states.
[6]. Determining the state of the system, after information processing, it still an is-
sue. If we are in the situation where the set of possible target states is known and
they are mutually orthogonal, then the state of the system can be unambiguously
detected.
It is important to remark that whenever target states are non-orthogonal, target states
cannot be perfectly identified.
The problem of discrimination between non-orthogonal states is ubiquitous in quan-
tum information and quantum computing. In many communication schemes such as
cryptography and probability, these states are the basis and therefore very much in
use. Generally speaking, it is a measurement optimization problem. For more infor-
mation on this matter we recommend the readings of reviews [6] [10] [11].
Non-orthogonal quantum states have a considerable importance in the communica-
tion of quantum cryptographic secure protocols, especially in the scheme of quan-
tum key distribution (QKD), for example in the technique based on the procedure
developed by Bennett [15] in two states, i.e. B92 protocol.

3.2 Unambiguous discrimination

For measure optimization, we will consider two schemes:

25
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1. Unambiguous discrimination
2. Minimal error discrimination

By waking through the next section, we will see that the optimal measure for the
first strategy is a POVM whereas for the second is a standard von Neumann.
Unambiguous discrimination is relatively simple to generalize for more than two
states but it gets rather difficult to deal with in the eventuality of mixed states.
The error minimization approach, initially developed for two mixed states, is rather
difficult to generalize to more than two states.
Before starting the treatment of the optimal unambiguous discrimination for two
pure states, a physical representation of the phenomenon must be presented. To this
end, we describe the optimal unambiguous discrimination procedure between two
non-orthogonal polarization states of the single photon, in terms of classical optics.
Consider weak impulses, each containing on average one photon.
Then the electric field has amplitude E0 with |E0|2 = 1.
Each pulse is linearly polarized, with equal probability in the direction e1,2

e1,2 = cosθex± sinθey (3.1)

where ex and ey denote the reference polarization base vectors and we assume
cosθ ≥ sinθ .
In Figure 3.1 shows the graphical representation of the polarization vectors.

Fig. 3.1 Linearly polarized pulse

If, at this point, the pulses go through a linear optical device and undergo a polariza-
tion selective attenuation in direction by a factor of tanθ , their polarization vectors
may be orthogonal.
For this purpose the attenuation process has to be designed in such a way that the
amplitude of the x-component is reduced .
The electric field vectors of the respective pulses are then transformed into vectors

E ′1,2 =
E0
√

2sinθ(ex± ey)√
2

(3.2)
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After leaving the linear optical device, the polarization directions of the two pulses
are orthogonal. It can be said that pulses can be discriminated unambiguously even
when the pulses contain only a single photon.
Due to the reduction of the total initial intensity by a factor 2sin2

θ , the intensity
that can be used for the unambiguous polarization state discrimination is equally
reduced.
Since in the classical detection the detection probability depends on the intensity,
on each final orthogonal probability equal to the probability of having at least one
photon

PD = P[N1,2 > 0] = 1− e−|E
′
1,2|2 =

= 2sin2
θ = 1− cos(2θ) = 1−|〈e1e2〉|

(3.3)

The module of the scalar product was introduced in equation (3.3) because, when
the direction of one of the vectors (e1 or e2) is inverted, the linear polarization state
remains the same.
The probability of a discrimination failure, i.e. the polarization state of the photon
cannot be determined in a unambiguously way, is

QF = 1−PD = |〈e1e2〉| (3.4)

As it can be seen, the procedure described above provides the maximum PD or the
minimum QF = 1− PD given the unit vector and the fact that the only possible
operation on the vector is a selective attenuation.
In general, if two states, |ψ1〉 and |ψ2〉, occur with equal probability, the optimal
probability of obtaining an unambiguous result is given by equation (3.3) with the
scalar product e1e2 replaced by the 〈ψ1|ψ2〉 overlap.

3.2.1 Unambiguous discrimination of two pure states

Unambiguous discrimination treats the problem in which a quantum system is pre-
pared in either one of the two known states, |ψ1〉 or |ψ2〉 with probability η1 or
η2 (such that η1 +η2 = 1) respectively. These preparation probabilities are called a
priori probabilities.
The states are, in general, non-orthogonal, 〈ψ1|ψ2〉 6= 0 but linearly independent.
Ivanovic [16] has come to the conclusion that if you allow inconclusive detection
results, Bob can, in all the cases, permanently determine the status of the individual
system. To carry out this task it is useful to use the von Neumann measurement.
We indicate the Hilbert space of the two given states by H and introduce the projec-
tor P1 for |ψ1〉 and P1 for the orthogonal subspace, such that P1+P1 = I, the identity
in H.
So we know with certainty that |ψ2〉 has been prepared if in the measurement a click
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in the P1 detector occurs. A similar conclusion for |ψ1〉 can be reached with the roles
of |ψ1〉 and |ψ2〉 reversed.
Naturally, when a click in P1 occurs, nothing is learned about what state was pre-
pared and therefore corresponding to inconclusive results.
The probability of failure is

QF = |〈ψ1|ψ2〉| (3.5)

whereas success is
PD = 1−QF = 1−|〈ψ1|ψ2〉| (3.6)

These probabilities (3.5) – (3.6) are optimal and are called the Ivanovic-Dieks-Peres
limit (IDP) [16] – [18].
This result can be generalized for the case when the preparation probabilities of the
states, η1 and η2, are different

η1 6= η2 (3.7)

IDP thus corresponds to the case of equal a priori probability and the generalization
for a priori arbitrary probabilities is due to Jaeger and Shimony [19].

3.2.2 Optimal POVM and the complete solution

The von Neumann projective measurement has two results: it can correctly identify
one of the two states but lose information of the other, or information of the identi-
fiable state is occasionally lost.
If we want to have a better result we would need a measurement with three results,
|ψ1〉, |ψ2〉 and failure.
However, in the two-dimensional Hilbert space H, the number of possible results
for a von Neumann measurement cannot exceed two, since it is always limited by
the dimensionality of the Hilbert space.
Therefore, we must move to generalized measurements that allow a greater flexibil-
ity [44]. In particular, the number of distinguishable results may exceed the dimen-
sionality of the corresponding Hilbert space.
In our case, this means that we replace the projector P2 with the quantum detection
operator ∏1, P1 by ∏2 and introduce ∏0 for the inconclusive results so that

p1 = 〈ψ1|∏1 |ψ1〉 (3.8)

is the probability of successfully identifying |ψ1〉 and

q1 = 〈ψ1|∏0 |ψ1〉 (3.9)

is the failing probability to identify |ψ1〉. Analogously for |ψ2〉.
For an unambiguous discrimination, it is also required that
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〈ψ2|∏1 |ψ2〉= 〈ψ1|∏2 |ψ1〉= 0 (3.10)

These possibilities must respect the constraint,

∏1+∏2+∏0 = I (3.11)

where I is the unit operator in H. The probabilities are always real and non-negative,
which implies that quantum detection operators are semi-definite positive.
It should be noted that equation (3.11) does not correspond to orthogonal measure-
ments when all detection operators are different from zero. This equation describes
a POVM or simply a generalized measurement with the detection operators as its
elements.
Decomposing ∏k as

∏k = Ak
†Ak (3.12)

the detection probability can be expressed as〈
ψi|Ak

†Ak|ψi
〉
= ‖Akψi‖2 ≥ 0 (3.13)

This expression can also help us to identify the operator Ak.
The expression Ak |ψi〉 corresponds to the post-detection state.
The condition of unambiguous discrimination is equivalent to the condition

A1 |ψ2〉= A2 |ψ1〉= 0 (3.14)∣∣ψ⊥1 〉 is an orthogonal vector to |ψ2〉 and
∣∣ψ⊥2 〉 to |ψ1〉 and |ψ1〉 |ψ2〉 the post-

detection states applying A1, A2, we have

A1 = c1 |ψ1〉
〈
ψ⊥1
∣∣ (3.15)

and
A2 = c2 |ψ2〉

〈
ψ⊥2
∣∣ (3.16)

It must also be noted that the ci coefficients belong to the complex field and they are
determined from the optimal condition.
For perfect distinguishability of post-detection states, corresponding to optimal dis-
crimination, we must verify their orthogonality, i.e. 〈ψ1|ψ2〉= 0 .
Then we can write the detection operators as

∏1 = A1
†A1 = |c1|2

∣∣ψ⊥1 〉〈ψ⊥1 ∣∣ (3.17)

end
∏2 = A2

†A2 = |c2|2
∣∣ψ⊥2 〉〈ψ⊥2 ∣∣ (3.18)

Now, by inserting these expressions in the definition of p1 and p2 we get
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|c1|2 = p1

|〈ψ1|ψ⊥1 〉|
2 (3.19)

A similar result holds for |c2|2.
Finally, by introducing cosΘ = |〈ψ1|ψ2〉| and sinΘ =

∣∣〈ψ1|ψ1
⊥〉∣∣, we can write the

detection operators as
∏1 =

p1
sin2 Θ

∣∣ψ⊥1 〉〈ψ⊥1 ∣∣ (3.20)

end
∏2 =

p2
sin2 Θ

∣∣ψ⊥2 〉〈ψ⊥2 ∣∣ (3.21)

We have just obtained operators ∏1 and ∏2.
However, we need to have a further condition for the existence of the POVM. This
condition is the positivity of the inconclusive detection operator, i.e.

∏0 = I−∏1−∏2 (3.22)

This 2× 2 matrix problem in H and the corresponding eigenvalue problem can be
solved analytically.
The non-negativity of the eigenvalues leads to the condition

q1q2 ≥ |〈ψ1|ψ2〉|2 (3.23)

where q1 = 1− p1 and q2 = 1− p2 are the failure probabilities for the corresponding
input states.
Equation (3.23) represents the constraint imposed by the positivity requirement on
the optimal detection operators. Now, let

Q = η1q1 +η2q2 (3.24)

be the average probability of failure for unambiguous discrimination.
We want to minimize this probability of failure through the constraint of equation
(3.23). Considering the relation

P = η1 p1 +η2 p2 = 1−Q (3.25)

then the minimum of Q is also the maximum probability of success.
Through equation (3.23), to optimize the product q1q2 we can express q2 as

q2 =
cos2 Θ

q1
(3.26)

By inserting this expression into (3.24) we obtain

Q = η1q1 +η2
cos2 Θ

q1
(3.27)
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where q1 can now be considered as an independent parameter of the problem.
The optimization of Q with respect to q1 gives the following result:

qPOV M
1 =

√
η2

η1
cosΘ (3.28)

and

qPOV M
2 =

√
η1

η2
cosΘ (3.29)

Finally, by substituting these optimal values just found in equation (3.24), the prob-
ability of optimal failure is obtained by

QPOV M = 2
√

η1η2 cosΘ (3.30)

It is to be noted that for
η1 = η2 =

1
2

(3.31)

we obtain the IDP result of equation (3.5).
Such result is extremely useful for the average probability of failure of the two von
Neumann measurements.

Fig. 3.2 A von Neumann measurement that discriminates |ψ2〉 unambiguously

This probability for the first measurement of von Neumann, with its error direction
in |ψ1〉, can be written with a simple inspection as

Q1 = η1 +η2|〈ψ1|ψ2〉|2 (3.32)
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because, in this direction and prepared with probability η1, |ψ1〉 gives a click with
probability 1, and, prepared with probability η2, |ψ2〉 gives a click with probability
|〈ψ1|ψ2〉|2. The corresponding configuration of the detector, which provides Q1 for
the probability of failure, is shown in Figure 3.2.
With a similar reasoning, the probability of von Neumann second measurement’s
average failure, with error direction along |ψ2〉 is

Q2 = η1|〈ψ1|ψ2〉|2 +η2 (3.33)

The corresponding detector set-up, which provides Q2 for the failure probability, is
shown in Figure 3.3.

Fig. 3.3 A von Neumann measurement that discriminates |ψ1〉 unambiguously

It can be observed that Q1 and Q2 are the arithmetic mean of two terms and QPOV M

is the geometric mean of the same terms in both cases.
For the existance of the POVM solution, we have

q1
POV M ≤ 1

q2
POV M ≤ 1

(3.34)

Using η2 = 1−η1, then the POVM exists in the interval
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cos2 Θ

1+ cos2 Θ
≤ η1 ≤

1
1+ cos2 Θ

(3.35)

We now have two cases:

1. if η1 is smaller than the lower limit, the POVM is the first von Neumann mea-
surement.

2. if η1 is higher than the upper limit, the POVM is the second von Neumann mea-
surement

This can be easily seen from equations (3.20), (3.21) and (3.22) since

p1 = 1−q1 = 0 (3.36)

∏0 becomes a projection along |ψ1〉 for q1 = 1.
The configuration of the detection operators, which provides QPOV M for the failure
probability, is shown in Figure 3.4.

Fig. 3.4 Optimal POVM that discriminates |ψ1〉 and |ψ2〉 unambiguously

The results we have just obtained are summarized as follows. The probability of
optimal failure, Qopt , is

Qopt =


QPOV M, if cos2 Θ

1+cos2 Θ
≤ η1 ≤ 1

1+cos2 Θ

Q1, if n η1 <
cos2 Θ

1+cos2 Θ

Q2, if n 1
1+cos2 Θ

< η1

(3.37)
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3.2.3 Neumark theorem and the realization of the
POVM

In reality, detection operators are non-orthogonal and therefore POVM is difficult to
achieve in a Hilbert space. To overcome this problem, we can make use of Neumark
theorem [45].
It states that a POVM can be realized according to the following constructive pro-
cedure, also known as a generalized measurement.
The system is embedded in a larger Hilbert space, where extra degrees of freedom
are called ancilla. A unitary transformation commits the degrees of freedom of the
system with those of the ancilla. Von Neumann’s projective measurements can still
be performed on this larger system. You can choose the unitary transformation and
the subsequent von Neumann measurement in such a way that if the result k is found
on the larger system and using von Neumann measurement, the resulting transfor-
mation on the original system state is Ak |ψ〉. This corresponds to an element of the
POVM in the original Hilbert space of the system.
We illustrate the power of this theorem on an alternative derivation of the condi-
tion on the individual failure probabilities (3.23). The joint Hilbert space K of the
system plus ancilla is a tensor product of the two Hilbert spaces, H of the system
and A of the ancilla, K = H⊗A. This means that a state in K is a superposition of
product states where, in each product, the first member is from H and the second is
from A. Specifically, the two inputs now correspond to |ψ1〉 |φ0〉 and |ψ2〉 |φ0〉, where
|φ0〉 describes the initial state of the ancilla. We choose the unitary transformation
as

U (|ψ1〉 |φ0〉) =
√

p1

∣∣∣ψ ′1〉 |φ0〉+
√

q1 |ψ0〉 |φ1〉 (3.38)

and
U (|ψ2〉 |φ0〉) =

√
p2

∣∣∣ψ ′2〉 |φ0〉+
√

q2eiΘ |ψ0〉 |φ1〉 (3.39)

where |φ1〉 is chosen to be orthogonal to |φ0〉, and
∣∣∣ψ ′1〉 and

∣∣∣ψ ′2〉 correspond to
orthogonal vectors in the original Hilbert space.
If we now perform a von Neumann measurement on the ancilla, then a click along
direction |φ1〉 collapses both inputs onto the same output, |ψ0〉. All information
about the inputs is lost. The probability for this to happens, and with input i, is qi
(i = 1,2). Obviously, this outcome corresponds to the inconclusive result, so qi are
the failure probabilities of the corresponding input states i. On the other hand, a click
along direction |φ0〉 transforms the original inputs into orthogonal outputs in the
Hilbert space system. The probability for this to happen, and with input i, is pi (i =
1,2). Obviously, this outcome corresponds to full distinguishability in the original
Hilbert space system, so pi are the probabilities of success for discriminating the
corresponding input states i. From unitarity we obtain pi +qi = 1 for i = 1,2 and by
taking the inner product of (3.38) and (3.39) we obtain (3.42).
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3.2.4 More than Two Pure States

So far we have only considered a discrimination between two states, a case where a
complete solution can be found. This is not true for more than two states. There are
only a few general results and only for special case explicit solutions exist.
Let’s analyze a general result that apply to the case of unambiguous discrimination.
Only linearly independent states can be discriminated without ambiguity, according
to Chefles [46]. Let the POVM for discriminating the N states |ψ1〉 , ..., |ψN〉.
Consider the POVM ∏i = Ai

†Ai, i = 1, ...N, I with

AI
†AI +

N

∑
j=1

A j
†A j = I (3.40)

is an obvious generalization of equation (3.11) to N states.
We note that

∏1 = A1
†A1

. . .

. . .

∏N = AN
†AN

(3.41)

The operator AI again corresponds to the inconclusive outcome, whereas the opera-
tor A j to the identification of the state as

∣∣ψ j
〉
. Since it has to be errorless, we must

have 〈
ψk|A j

†A j|ψk
〉
=
〈
ψk|∏ j |ψk

〉
= p jδ jk (3.42)

where 0≤ p j ≤ 1 is the probability of successfully identifying
∣∣ψ j
〉
.

Fig. 3.5 Graphic representation of Unambiguous State Discrimination.
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Note that (3.42) applies to the case of independent states. This can be proven as
follow.

Proof. If we now suppose that the states are linearly dependent so that they can be
expressed in terms of each other

∣∣ψ j
〉
=

N

∑
k=1

c jk |ψk〉 (3.43)

We can replace this relationship in equation (3.42) and we obtain that

N

∑
m,n=1

c∗kmckn
〈
ψm|A j

†A j|ψn
〉
= p jδ jk (3.44)

This result can be simplified by noting that∣∣〈ψm|A j
†A j|ψn

〉∣∣2 ≤ 〈ψm|A j
†A j|ψm

〉〈
ψn|A j

†A j|ψn
〉

(3.45)

which gives 〈
ψm|A j

†A j|ψn
〉
= p jδmnδ jm (3.46)

Finally, replacing this in equation (3.44) we find∣∣ck j
∣∣2 = δ jk (3.47)

implying that states are non linear combinations and therefore necessarily linearly
independent. ut

At this point, consideration on the form of the operator A j can be made, keeping in
mind that we have

A j |ψk〉= 0 ∀ j 6= k (3.48)

Let
∣∣ψ⊥k 〉 the unit orthogonal vector to all the vectors |ψi〉 6= |ψk〉. We can therefore

choose

A j =

√p j〈
ψ⊥j |ψ j

〉 ∣∣∣ψ ′j〉〈ψ
⊥
j

∣∣∣ (3.49)

where
∣∣∣ψ ′j〉 , j = 1, ...,N are arbitrary orthogonal unit vectors.

The problem now is to find the values of p j, given the a priori probability of the∣∣ψ j
〉

state η j.
The values of p j should be chosen to maximize the average probability of success,
P, where

P =
N

∑
j=1

η j p j (3.50)

and in such a way that the operator
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AI
†AI = I−

N

∑
j=1

A j
†A j = I−

N

∑
j=1

p j

∣∣∣ψ⊥j 〉〈ψ⊥j

∣∣∣∣∣∣〈ψ j|ψ⊥j
〉∣∣∣2 (3.51)

is positive.
The solution to the general N > 2 problem must be obtained via numerical proce-
dures and it is not trivial.

3.2.4.1 Upper and Lower bounds

The second general result states that there exists upper and lower bounds on the
success probability. An upper bound is given by [76]

P≤ 1− 1
N−1

N

∑
j=1

N

∑
k=1
k 6= j

√
η jηk

∣∣〈ψ j|ψk
〉∣∣ (3.52)

Starting from the work of Duan and Guo [77], X. Sun, et al. derived a lower bound
[78]. Consider the N ×N matrix whose elements are

〈
ψ j|ψk

〉
, and let λN be the

smallest eigenvalue of this matrix. They showed that

P≥ λN (3.53)

The problem of discriminating among three non-orthogonal states was first consid-
ered by Peres and Terno [79].
They developed a geometric approach and numerically applied it to several exam-
ples. A different method was considered by Duan and Guo [77] and Y. Sun and
ourselves [80].

3.2.4.2 Case of three states

We considered the three vectors to be discriminated,
∣∣ψ j
〉
, j = 1,2,3, and lied in

the space H. To this, a failure space, A, is appended so that the whole problem takes
place in the space obtained by the direct sum extension

K = H⊗A (3.54)

If the procedure fails, the vector
∣∣ψ j
〉

is mapped into a vector in the failure space,∣∣φ j
〉
, and if it succeeds it is mapped onto a vector in the original space, √p j

∣∣∣ψ ′j〉,

where
∥∥∥ψ

′
j

∥∥∥= 1, and 0≥ p j ≥ 1.

The vectors
∣∣∣ψ ′j〉 are mutually orthogonal, so that they can be perfectly distin-
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guished. Chefles showed that the set of failure vectors must be linearly dependent
for the optimal procedure [46], so that the dimension of A is one or two.
Making this more explicit, we assume that there is a unitary operator, U , acting on
K, such that

U
∣∣ψ j
〉
=
√

p j

∣∣∣ψ ′j〉+ ∣∣φ j
〉

(3.55)

It should be noted that, unlike in (3.39), the vector
∣∣φ j
〉

is not-normalized to unity.
Instead, we use

〈
φ j|φ j

〉
= q j here. After U has been performed, we measure the

projection operator onto the space H. If we obtain 1, the procedure succeeded, and
we know what the input state was. If the input was

∣∣ψ j
〉
, the procedure succeeds

with probability p j. If we obtain 0, the procedure failed, and this happens with
probability q j = 1− p j =

∥∥φ j
∥∥2, if the input state was

∣∣ψ j
〉
. The above equation

implies that 〈
φ j|φk

〉
=
〈
ψ j|ψk

〉
−δ jk p j (3.56)

Defining the matrix
C jk =

〈
φ j|φk

〉
(3.57)

we see by its definition that it must be positive definite. Therefore, the problem
of finding the optimal unambiguous state discrimination procedure is reduced to
finding the values of p j that optimize the success probability

P =
3

∑
j=1

η j p j (3.58)

subject to the constraint that the 3×3 matrix, whose elements are
〈
ψ j|ψk

〉
−δ jk p j

is positive.
This can be solved in some special cases. We shall assume that all the a priori prob-
abilities are the same, so that they are all 1/3. If all overlaps are the same, i.e.

〈ψ1|ψ2〉= 〈ψ1|ψ3〉= 〈ψ2|ψ3〉= s (3.59)

where s is real and positive, then q j = s, for j = 1,2,3, and Q = 1−P = s as well.
There is also an explicit solution if

〈ψ1|ψ2〉= 〈ψ1|ψ3〉= s1

〈ψ2|ψ3〉= s2
(3.60)

where both s1 and s2 are real and positive. We first note that for a fixed value of s1
there is a restriction on how large s2 can be.
The largest angle between |ψ2〉 and |ψ3〉 is twice the angle between |ψ1〉 and |ψ2〉
(this maximum is achieved when the vectors are coplanar). This implies that

s2 ≥ 2s2
1−1 (3.61)
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The solution to the state discrimination problem depends on whether s1/s2 < 2 or
not.
If s1/s2 < 2, we have

q1 =
s2

1
s2
, q2 = q3 = s2

Q =
1
3

[
s2

1
s2

+2s2

] (3.62)

If s1/s2 > 2, we have

q1 = 2s1, q2 = q3 = s1− s2

Q =
2
3
(2s1− s2)

(3.63)

3.2.4.3 Case of Symmetry (GUS)

There is another case where the exact solution to the unambiguous discrimination
problem is known, and to which we now put our focus on. First we note that a set of
N states is called symmetric [7] [11] [60] if there exists a unitary operator, V , such
that, for j = 1, ...,N−1,

V
∣∣ψ j
〉
=
∣∣ψ j+1

〉
V |ψN〉= |ψ1〉

(3.64)

This, in turn, means that V can be expressed as

V =
N−1

∑
k=0

e2πik/N |γk〉〈γk| (3.65)

where |γk〉 is the eigenstate of V with eigenvalue e2πik/N .
This implies that

∣∣ψ j
〉
=V j−1 |ψ1〉.

The case of unambiguous state discrimination for N symmetric states was analyzed
by Chefles and Barnett [82]. They found an analytical expression for the optimal
success probabilities when the a priori probabilities of the states are the same. The
vectors

∣∣ψ j
〉
, j = 1, ...,N are now assumed to span the entire space. Because the

states
∣∣ψ j
〉

form a basis for the space, (3.64) now implies that V N = I.
The states can now be expanded as

∣∣ψ j
〉
=

N−1

∑
k=0

e2πik( j−1)/Nck |γk〉 (3.66)

The optimal success probability is found to be
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P = N min |ck|2 (3.67)

where the minimum is taken over k [82].

3.2.5 Mixed States

Unambiguous discrimination can also be extended to the case of mixed states [25],
where it may be applied to problems such as quantum state comparison [13] [25],
subset discrimination [52], and determining whether a given state is pure or mixed
[53].
Consider the problem of discriminating between two mixed states ρ0, ρ1, which
may be written in terms of their eigenvalues and eigenvectors as follows

ρ0 = ∑
i

λ
(0)
i

∣∣∣λ (0)
i

〉〈
λ
(0)
i

∣∣∣ (3.68)

and
ρ1 = ∑

i
λ
(1)
i

∣∣∣λ (1)
i

〉〈
λ
(1)
i

∣∣∣ (3.69)

where 0 < λ
( j)
i ≤ 1. Define the projectors

Λ
(0)
ker = I−∑

i

∣∣∣λ (0)
i

〉〈
λ
(0)
i

∣∣∣ (3.70)

and
Λ

(1)
ker = I−∑

i

∣∣∣λ (1)
i

〉〈
λ
(1)
i

∣∣∣ (3.71)

such that
Λ

(0)
ker ρ0 = Λ

(1)
ker ρ1 = 0 (3.72)

These are the projectors onto the kernels of ρ0 and ρ1 respectively 1.
If we now define ∏1 to lie in the kernel of ρ0 then

∏1 = Λ
(0)
ker ∏1 Λ

(0)
ker (3.73)

and clearly
Tr
(
ρ0∏1

)
= Tr

(
ρ0Λ

(0)
ker ∏1 Λ

(0)
ker

)
= 0 (3.74)

Thus, if there exists a positive operator ∏1 in the kernel of ρ0 for which Tr(ρ1 ∏1),
then ρ1 may be unambiguously discriminated from ρ0.

1 The support of a mixed state ρ is the subspace spanned by its eigenvectors with non-zero eigen-
values. The kernel of a mixed state is the subspace orthogonal to its support.
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Similarly ρ0 should lie in the kernel of ρ1. A necessary and sufficient condition
for unambiguous discrimination between two mixed states is that they have non-
identical kernels, and therefore non-identical supports [25].
Unless the states are orthogonal, we get an inconclusive outcome, as before

∏I = 1−∏0−∏1 (3.75)

The solution that minimizes the probability of occurrence of the inconclusive result
is difficult.
Some solutions are presented and known for some special cases. For example: one-
dimensional kernel states [25], unambiguous discrimination between a pure and a
mixed state, initially in two dimensions [54], and later extended to N dimensions
[51]. Other examples may be found in [30],[39] and [40].
Reduction theorems given in [26] show that it is always possible to reduce a general
problem to be in the form of discriminating two states, each of rank r, with them
spanning across a 2r-dimensional space.
Thus, the simplest case, which is non-reducible to pure state discrimination, is the
problem of two rank-2 density operators in a 4-dimensional space. This was indeed
analyzed in detail by Kleinmann et al [55]. Upper and lower bounds for the gen-
eral case are given in [25], [28] and [31], a further reduction theorem in [40], and
numerical algorithms are discussed in [29].

3.3 State discrimination with minimum error

As we have seen so far, whenever a definitive answer is returned after a state mea-
surement, the result should be unambiguous, even with the possibility of obtaining
inconclusive results.
However, we want to have only conclusive results for applications in quantum com-
munication. This constraint, however, can generate errors that are inevitable when
states are non-orthogonal.
Based on the measurement result, in each individual case a hypothesis must be made
about the state of the quantum system. This procedure is known as quantum hypoth-
esis testing.
The problem is to find the optimal measurement strategy that minimizes the prob-
ability of errors. In the most general case, we want to distinguish, with minimum
probability of error, between N states of a quantum system (N > 2), being charac-
terized by the density operators ρ j, with j = 1, ...,N, and occurring with given a
priori probabilities η j which sum up to unity.
The measurement can be formally described with the help of a series of measure-
ment operators ∏ j that refer to the possible measurement results [7] and [11].
They are defined in such a way that Tr(ρ ∏ j) is the probability of infer that the
system is in the state ρ j if it has been prepared in the state ρ .



42 3 Discrimination of quantum states

In particular for pure states (third postulate) the transition probability are

p(i| j) = Tr
(
∏i
∣∣ψ j
〉〈

ψ j
∣∣) (3.76)

Since the probability is a non-negative real number, detection operators must be
Hermitean and positive semidefinite.
All of this leads to the following relationship:

N

∑
j=1

∏ j = I (3.77)

where I denotes the unit operator in the Hilbert space of the quantum system.
Thus the overall probability Perr of making an incorrect hypothesis for one of the
incoming states is then given by

Perr = 1−Pcorr = 1−
N

∑
j=1

η jTr(ρ j∏ j) (3.78)

with ∑
N
j=1 η j = 1.

Here, we have introduced the probability Pcorr that the hypothesis is correct. To find
the minimum error measurement strategy, it is necessary to determine the specific set
of detection operators that minimizes the value of Perr under the constraint given by
equation (3.77). By inserting these optimal detection operators into equation (3.78),
the minimum probability of error

Pmin
err ≡ PE (3.79)

is determined.

3.3.1 Distinguishing two quantum states with minimum
error

If we consider the case of only two states, we can calculate the minimum probability
of error PE using the Helstrom formula [7].
We now analyze the measurement of the two-state minimum error with the help of
an alternative method [47] [48] which allows us to obtain an immediate view of the
structure of the optimal detection operators.
Starting from equation (3.78) and using the relations

η1 +η2 = 1 (3.80)
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and
∏1+∏2 = I (3.81)

that must be satisfied by the a priori probabilities and by the detection operators,
respectively, we see that the total probability of obtaining an incorrect result in the
measurement is given by

Perr = 1−
2

∑
j=1

η jTr(ρ j∏ j) = η1Tr(ρ1∏2)+η2Tr(ρ2∏1) (3.82)

This formula can be alternatively written as follows

Perr = η1 +Tr(Λ∏1) = η2−Tr(Λ∏2) (3.83)

where we introduced the Hermitean operator

Λ = η2ρ2−η1ρ1 = ∑
k

λk |φk〉〈φk| (3.84)

It should be noted that the states |φk〉 indicate the orthonormal eigenstates which
belong to the eigenvalues λk of the operator Λ and, moreover, the eigenvalues are
real.
Using the spectral decomposition of Λ , we obtain the following relation

Perr = η1 +∑
k

λk〈φk|∏1 |φk〉= η2−∑
k

λk〈φk|∏2 |φk〉 (3.85)

Now, for the optimization, we need to determine the specific operators ∏1, or ∏2,
that minimize the equation (3.85) under the constraint that

0≤
〈
φk|∏ j |φk

〉
≤ 1 (3.86)

with j = 1,2 and for all eigenstates |φk〉.
This last constraint is due to the fact that Tr(ρ ∏ j) denotes a probability for any ρ .
Taking into account this constraint and the equation (3.85) it immediately follows
that the smallest possible error probability is achieved when the detection operators
are chosen in such a way that the equations

〈φk|∏1 |φk〉= 1 (3.87)

to the positive eigenvalues and

〈φk|∏1 |φk〉= 0 (3.88)

for all the negative eigenvalues.
For all the values of k corresponding to the optimum detection operators can be
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written as
∏1 = ∑

k ”positive”
|φk〉〈φk| (3.89)

and
∏2 = I−∏1 (3.90)

Obviously, provided that there are positive and negative eigenvalues in the spectral
decomposition of Λ , the minimum error measurement for discrimination two quan-
tum states is a von Neumann measurement that consists in carrying out projections
on the two orthogonal subspaces of states

{
|φ1〉 , ...,

∣∣φk0−1
〉}

, on the one hand, and{∣∣φk0

〉
, ...,

∣∣φDS

〉}
on the other side.

Now, by inserting the optimum detection operators in the equation (3.83) it turns
out that the minimum error probability [48] is

PE = η1− ∑
k ”positive”

λk (3.91)

Now, using the condition η1 +η2 = 1, we obtain

PE =
1
2

(
1−∑

k
|λk|
)

=
1
2
(1−Tr |Λ |) (3.92)

where |Λ |=
√

Λ †Λ .
Using now, also equation (3.78), this brings us to the Helstrom formula [3] for the
minimum error probability in discriminating ρ1 and ρ2,

PE =
1
2
(1−Tr |η2ρ2−η1ρ1|) (3.93)

3.3.1.1 Pure state

In the special case in which the states to be distinguished are pure states |ψ1〉 and
|ψ2〉, this expression is reduced to [7]

PE =
1
2

(
1−
√

1−4η1η2|〈ψ1|ψ2〉|2
)

(3.94)

The expression (3.94) can be cast to the equivalent form,

PE = ηmin

1−
2ηmax

(
1−|〈ψ1|ψ2〉|2

)
ηmax−ηmin +

√
1−4ηminηmax|〈ψ1|ψ2〉|2

 (3.95)
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where ηmin is the smallest of the prior probabilities, η1 and η2 and ηmax that is
greatest of the prior probabilities, η1 and η2.
The first factor on the right-hand-side is what we would get if we always guessed the
state that is prepared more often, without any measurement at all. Thus, the factor
multiplying ηmin is the result of the optimized measurement.
The setting of the detectors that obtain the optimum error probabilities is particularly
simple in the case of equal probability a priori.
Two orthogonal detectors, symmetrically positioned around the two pure states, will
perform the task, [7] with measurement vector |D1〉 and |D2〉 as shown in Figure 3.6
with

∏1 = |D1〉〈D1| (3.96)

and
∏2 = |D2〉〈D2| (3.97)

Fig. 3.6 Detector configuration for the optimum minimum-error discrimination of two pure states
with equal a priori probabilities. A von Neumann measurement with two orthogonal detectors
placed symmetrically around |ψ1〉 and |ψ2〉 will achieve the optimum.

The set-up of the detectors that achieve the optimum error probabilities is particu-
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larly simple for the case of equal a priori probabilities.
The result of equation (3.93) was obtained independently by Helstrom [7] and
Holevo [14] and is commonly referred to as the Helstrom bound.
Finally, it should be noted that the relation

PE ≤
1
2

Qopt (3.98)

is always satisfied between the minimum-error probability of the minimum-error
detection and the optimal failure probability of unambiguous detection [22].
This result holds for pure as well as mixed states. It means that for two arbitrary
states (mixed or pure), prepared with arbitrary a priori probabilities, the smallest
possible failure probability in unambiguous discrimination is at least twice as large
as the smallest probability of errors in minimum-error discrimination of the same
states.
In Figure 3.7 we display the failure probabilities, Q1, Q2 and QPOV M from equation
(3.37) as well as the minimum error probability PE from equation (3.95) vs η1 for a
fixed value of the overlap, cos2 Θ .

Fig. 3.7 Failure probability, Q, and minimum error probability, PE , vs the prior probability, η1.
Dashed line: Q1, dotted line: Q2, solid line: QPOV M . For the figure we used the following repre-
sentative value: |〈ψ1|ψ2〉|2 = 0.1. For this the optimal failure probability, Qopt is given by Q1 for
0 < η1 < 0.09, by QPOV M for 0.09≤ η1 ≤ 0.91, and by Q2 for 0.91 < η1.
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In Figure 3.8 we display the minimum error probability, PE , vs the prior probability,
η1.

Fig. 3.8 Minimum error probability, PE , vs the prior probability, η1

In Figure 3.9 we display the failure probability, QPOV M , vs minimum error proba-
bility, PE .
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Fig. 3.9 Failure probability, QPOV M , vs minimum error probability, PE . For the figure we used the
following representative value: η1 = η2 = 1/2

3.3.2 Distinguishing N Symmetric Pure States

We conclude our review of minimum-error discrimination of a pure-state discrimi-
nation with a problem that is solvable and has found wide application in quantum
communication. It consists in the so called square-root measurement that discrimi-
nates with minimum error between N equally probable symmetric states. Symmetric
pure states are defined in such a way that each state derives from its predecessor by
applying a unitary operator V in a cyclic way [86]∣∣ψ j

〉
=V

∣∣ψ j−1
〉
=V j−1 |ψ1〉

|ψ1〉=V |ψN〉
(3.99)

for j = 1, ...,N and implying that V N = I.
For the case that the states occur with equal a priori probability, i. e. that η j = 1/N
for each of the states, Ban et al. found that the optimum detection operators for
minimum-error discrimination are given by [86]

∏ j = A†
jA j = B−1/2 ∣∣ψ j

〉〈
ψ j
∣∣B−1/2 ≡

∣∣µ j
〉〈

µ j
∣∣ (3.100)
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where

B =
N

∑
j=1

∣∣ψ j
〉〈

ψ j
∣∣ (3.101)

∣∣µ j
〉
= B−1/2

∣∣ψ j
〉

are in general non-normalized and are called detection states. It
is obvious that the special structure of the detection operators, or of the detection
states, respectively, suggest the name square-root-measurement.
The minimum error probability PE for this measurement is [86]

PE = 1− 1
N

N

∑
j=1

∣∣〈µ j|ψ j
〉∣∣2 (3.102)

in accordance with the fact that in the corresponding optimized measurement
scheme the quantum system is inferred to have been prepared in the state

∣∣ψ j
〉

pro-
vided that the state

∣∣µ j
〉

is detected. When the detection states
∣∣µ j
〉

are orthonormal,
the detection operators are projection operators and the minimum-error measure-
ment is a von-Neumann measurement. If not, it is a generalized measurement. The
latter always holds true when the number of states exceeds the dimensionality of the
physical state space of the quantum system, as can be immediately seen from the
fact that the detection operators have to sum up to the unit operator in that space. In
this case the given states are linearly dependent and form an overcomplete set in the
Hilbert space of the system.
Let us apply the general solution in order to investigate minimum-error discrimina-
tion for the set of the N symmetric states

∣∣ψ j
〉
=

D

∑
k=1

ckei 2π
N j(k−1) |γk〉 , (N ≥ D) (3.103)

where the coefficients ck are arbitrary non-zero complex numbers with ∑k |ck|2 = 1,
and the states |γk〉 (k = 1, ...,D) form a D-dimensional orthonormal basis. The given
symmetric states are non-orthogonal except for the case that both the conditions N =
D and |ck|2 = 1/N are fulfilled. To distinguish them with minimum error, provided
that they occur with equal a priori probability, we obtain the optimum detection
states ∣∣µ j

〉
=

1√
N

D

∑
k=1

ck

|ck|
ei 2π

N jk ∣∣γ j
〉

(3.104)

yielding the minimum error probability [87]

PE = 1− 1
N

(
D

∑
k=1
|ck|
)2

(3.105)

In this case the detection states
∣∣µ j
〉

are non-orthogonal and non-normalized, with
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µ j|µ j

〉
=

D
N

(3.106)

When N = D, however, the states
∣∣ψ j
〉

are linearly independent and therefore can
be discriminated also unambiguously.
Assuming equal a priori probabilities, the minimum failure probability, QF , for un-
ambiguous discrimination of symmetric states has been derived to be

QF = 1−Nmin|ck|2 (3.107)

according with [82].
Comparing this with the expression for PE , the minimum error probability is found
to be smaller than QF . It is worth mentioning that the minimum error probability, PE ,
on the one hand, and the failure probability, QF , on the other hand, have been con-
sidered as distinguishability measures for ordering different ensembles of N equally
probable symmetric pure states, and it has been found that these two measures im-
pose different orderings [88].

3.4 SRM Approach

Now, we introduce the SRM approach that will be very useful for the study of PPM
modulation performance in the next chapters.
We summarize the main steps of the SRM theory, and for a more detailed discussion
is recommended reading the dedicated literature [1].
Starting from the constellation of K coherent states C = {|γ0〉 , ..., |γK−1〉}, we eval-
uate in sequence

1. Grams matrix of the inner products G =
[〈

γi|γ j
〉]

, where i, j = 0,1, ...,K − 1,
calculated according to (4.8). In the cases of interest, the matrix G, which is
K×K, has rank K.

2. The spectral decomposition (EID) of G

G =VΛGV ∗ =
K−1

∑
i=0

σ
2
i |vi〉〈vi| (3.108)

From this EID we find the eigenvalues σ2
i and the orthonormal basis {|vi〉}.

3. The square roots of G

G±
1
2 =VΛ

± 1
2

G V ∗ (3.109)

4. The transition probabilities according to [1]

pc(i| j) =
∣∣∣∣(G

1
2

)
i j

∣∣∣∣2 (3.110)
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and the error probabilities (with equiprobable symbols)

Pe = 1− 1
K

K−1

∑
i=0

∣∣∣∣(G
1
2

)
i j

∣∣∣∣2 (3.111)

5. The measurement vectors as linear combination of the states according to

M = Γ G
1
2 → |µi〉=

K−1

∑
j=0

(
G

1
2

)
i j

∣∣γ j
〉

(3.112)

With geometrically uniform symmetry (GUS). If the states |γi〉 have the GUS,
Grams matrix becomes circulant and its EID is given by

G =W[K]ΛGW ∗[K] =
K−1

∑
i=0

σ
2
i |wi〉〈wi| (3.113)

where the vectors |wi〉 are the columns of the DFT matrix W[K]

|wi〉=
1√
K

[
W−i

K ,W−2i
K , ...,W−i(K−1)

K

]T
i = 0,1, ...,K−1 (3.114)

and the eigenvalues are given by the DFT of the first row [r0,r1, ...,rK−1] of the
matrix G

λi = σ
2
i =

K−1

∑
k=0

rkW−ki
K , rk = 〈γ0|γk〉 (3.115)

The square roots of G have elements

(
G±

1
2

)
i j
=

1
K

K−1

∑
p=0

λ
± 1

2
p W−p(i− j)

K (3.116)

and in particular the diagonal elements are all equal. Therefore, the error probability
is given by

Pe = 1−
∣∣∣(G

1
2

)
00

∣∣∣2 (3.117)





Chapter 4
Concepts of Communications

As previously discussed, the quantum decision theory can be applied to quantum
communications systems.
In such systems, the nature of the states that carry the information is specified. A
constellation of K quantum states, to which to commit a symbol belonging to a K-
ary alphabet, corresponds, in the classical version, to a K-ary modulation format. We
are still only considering states that operate at optical frequencies (optical quantum
systems), because at radio frequencies quantum phenomena are not very relevant.
In practice, the quantum states are usually treated as coherent states of a coherent
monochromatic radiation emitted by a laser.
In the chapter 5, we are going to discuss binary systems, with the differences among
classical, quantum and USD versions of the OOK (on-off keying), 2-PSK (phase-
shift keying) and 2-PPM (Pulse position) modulations.
In chapter 6 we discuss a multilevel system, and examine differences for classical,
quantum and USD versions of the K-QAM (quadrature amplitude), K-PSK, and K-
PPM modulations. All of the above mentioned systems are examined in the absence
of thermal noise. Thus, in this chapter, the scheme of Figure 4.1 is going to be
followed where the channel is ideal and the received state is directly given by the
transmitted state.

Fig. 4.1 Quantum communications system for digital transmission. {An} is a sequence of clas-
sical symbols of information that Alice carries into a sequence of quantum states {|γAn〉}. For
each symbol period, Bob performs a quantum measurement to identify, from the result m of the
measurement, which symbol was transmitted.

Quantum measurements are affected by an intrinsic randomness (corresponding to
shot noise in the classical model). Therefore, even if we ignore thermal noise, the

53
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following analysis can still be done in the presence of noise.
To learn more, readings of reviews [1] [74] are strongly encouraged.

4.1 Coherent States

In physics, and specifically in quantum mechanics, a coherent state is the specific
quantum state of the quantum harmonic oscillator. It is often described as being the
state with dynamics to be closely similar to the oscillatory behavior of a classical
harmonic oscillator. When Erwin Schrödinger derived it in 1926, it was the first ex-
ample of quantum dynamics. He derived it while searching for solutions of his own
equation that satisfy the correspondence principle. The quantum harmonic oscilla-
tor and the coherent states arise in the quantum theory for a wide range of physical
systems. For instance, a coherent state well describes the oscillating motion of a
particle confined in a quadratic potential. Also, it describes a state in a system for
which the ground-state wave packet is displaced from the origin of the system. This
state can be related to classical solutions by a particle oscillating with an amplitude
equivalent to the displacement. These states, expressed as eigenvectors of the low-
ering operator and forming an overcomplete family, were introduced in the early
papers of John R. Klauder.
In the quantum theory of light (quantum electrodynamics) and other bosonic quan-
tum field theories, coherent states were introduced by Roy J. Glauber in 1963.
The concept of coherent states has always been considerably abstract; it has become
a major topic in mathematical physics and in applied mathematics, with applications
ranging from quantization to signal processing and image processing. For this rea-
son, the coherent states associated to the quantum harmonic oscillator are sometimes
referred to as canonical coherent states (CCS), standard coherent states, Gaussian
states, or oscillator states.
In quantum optics, the coherent state refers to a state of the quantized electromag-
netic field, that describes a maximal kind of coherence and a classical kind of be-
havior. Erwin Schrödinger derived it as a ”minimum uncertainty” Gaussian wave
packet in 1926, searching for solutions of the Schrödinger equation that satisfy the
correspondence principle. It is a minimum uncertainty state, with the single free
parameter chosen to make the relative dispersion (standard deviation in natural di-
mensionless units) equal for position and momentum, each being equally small at
high energy.
Further, in contrast to the energy eigenstates of the system, the time evolution of
a coherent state is concentrated along the classical trajectories. The quantum lin-
ear harmonic oscillator, and hence coherent states, arise in the quantum theory of a
wide range of physical systems. They occur in the quantum theory of light (quan-
tum electrodynamics) and other bosonic quantum field theories. While minimum
uncertainty Gaussian wave packets were well-known, they did not attract full at-
tention until when Roy J. Glauber, in 1963, provided a complete quantum-theoretic
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description of coherence in the electromagnetic field.
He wanted to describe the Hanbury-Brown and Twiss’ experiment, which generated
very wide baseline (hundreds or thousands of miles) interference patterns that could
be used to determine stellar diameters. This opened the door to a much more com-
prehensive understanding of coherence.
In classical optics, light is thought of as electromagnetic waves radiating from a
source. Often, coherent laser light is thought of as light that is emitted by many
sources that are in phase. Actually, the picture of one photon being in-phase with
another is not valid in quantum theory. Laser radiation is produced in a resonant
cavity where the resonant frequency of the cavity is the same as the frequency as-
sociated with the atomic electron transition providing energy flow into the field. As
energy in the resonant mode builds up, the probability for stimulated emission, in
that mode only, increases. That is a positive feedback loop in which the amplitude in
the resonant mode increases exponentially until some non-linear effects limit it. As
a counter-example, a light bulb radiates light into a continuum of modes, and there
is nothing that selects one over the other. The emission process is highly random in
space and time. In a laser, however, light is emitted into a resonant mode, and that
mode is highly coherent. Thus, laser light is idealized as a coherent state.
The energy eigenstates of the linear harmonic oscillator (i.e. masses on springs, lat-
tice vibrations in a solid, vibrational motions of nuclei in molecules, or oscillations
in the electromagnetic field) are fixed-number quantum states. The Fock state (i.e. a
single photon) is the most particle-like state; it has a fixed number of particles, and
phase is indeterminate. A coherent state distributes its quantum-mechanical uncer-
tainty equally between the canonically conjugate coordinates, position and momen-
tum, and the relative uncertainty in phase (defined heuristically), and amplitude are
roughly equal and small at high amplitude.
That said, let’s consider a generic model of the quantum state, created by an elec-
tromagnetic field at a certain frequency (optical). This model is given by a coherent
quantum state according to Glauber’s theory which will now be formulated in detail,
with, of course, an emphasis on USD.

4.1.1 Glauber’s Representation

The coherent radiation emitted by a laser is modeled as a coherent state. It has been
demonstrated [67] – [69] that the coherent states of a single mode can be repre-
sented in a Hilbert space of infinite dimensions. This space, has an orthonormal
basis {|n〉 ,n = 0,1,2, ...}, called number states, because |n〉 contains exactly n pho-
tons.
Considering this base, the number operator is associated, which is defined by

N =
∞

∑
n=0

n |n〉〈n| (4.1)
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Then N has eigenvectors |n〉 with eigenvalues n.
In this mathematical context, a generic coherent state (or Glauber state) is expressed
as follows:

|α〉= e−
1
2 |α|

2 ∞

∑
n=0

αn
√

n!
|n〉 (4.2)

where α is a complex amplitude whose meaning is

|α|2 = average number o f photons in the state |α〉 (4.3)

According to equation (4.2), to each point α of the complex plane C, a coherent
state is associated with a physical meaning given by equation (4.3).
Thus, the more α gets further from the origin of C, the higher the photonic intensity
associated to the state |α〉 becomes.
The set of coherent states will be indicated by

G= {|α〉 ,α ∈ C} : coherent states (4.4)

4.1.2 Poisson regime in the coherent states

Photon statistics are the theoretical and experimental study of the statistical distribu-
tions produced in photon counting experiments that use Photodetectors to analyze
the intrinsic statistical nature of photons in a light source. In these experiments,
light’s incident on the photodetector generates photoelectrons and a counter reg-
isters electrical pulses, generating a statistical distribution of photon counts. Low
intensity disparate light sources can be differentiated by the corresponding statisti-
cal distributions produced in the detection process.
We now set up a quantum measurement with the number operator N (interpreted as
an observable), in such a way to find a relationship between a representation of a
coherent state |α〉 and Poisson’s regime.
The outcome m of the measurement gives the number of photons of the quantum
system in the state |α〉.
The probability of having an outcome of the measurement m = i is

p(m = i| |α〉) = |〈i|α〉|2 =

∣∣∣∣∣ ∞

∑
n=0

e−
1
2 |α|

2 αn
√

n!
〈i|n〉

∣∣∣∣∣
2

=

=

∣∣∣∣e− 1
2 |α|

2 α i
√

i!

∣∣∣∣2 = e−|α|
2 |α|2i

i!

(4.5)

Therefore,

p(m = i| |α〉) = e−Nα
(Nα)

i

i!
(4.6)
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with Nα = |α|2.
It can also be proved that the average of m is

E[m|α] = 〈α|N|α〉= |α|2 = Nα (4.7)

In conclusion, the outcome of the measurement m is a Poisson random variable with
average Nα = |α|2.

4.1.3 Degree of Superposition of Coherent States

It is important to evaluate the degree of superposition of two distinct coherent states
|α〉 and |β 〉, within the geometry given by the inner product. We have

Definition 4.1. The inner product of two coherent states is given by

〈α|β 〉= e−
1
2 (|α|

2+|β |2−2α∗β) (4.8)

Hence two distinct coherent states are never orthogonal

The quadratic degree of superposition of two states is expressed by

|X |2 := |〈α|β 〉|2 = e−|α−β |2 (4.9)

where X = 〈α|β 〉.

4.2 Constellations of Coherent States

In a quantum communication system, the target is the trasmission of a sequence
of classical symbols {An} through a sequence of quantum states {|γAn〉}. Thus, in
general, with a K-ary alphabet A = {0,1, ...,K−1}, Alice must be able to prepare a
constellation of K coherent states

S = {|γ0〉 , |γ1〉 , ..., |γK−1〉} (4.10)

to realize the c→ q mapping

An ∈ A→ |γAn〉 ∈ S (4.11)

which must be bijective. This operation is also called quantum encoding.
Our goal is to choose the constellation, and to do so, we will use the modulations
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that are used for optical trasmission systems, also called classical systems. This
approach also has the advantage of allowing us to compare the performances of
classical, quantum and USD systems.
A classical K-ary modulation, in general non-linear, is specified by K complex
waveforms

γ0(t),γ1(t), ...,γK−1(t) (4.12)

of duration limited to the signaling interval [0,T ], with the rule that if An ∈ A is the
n-th source symbol, the modulator forms a signal with complex envelope [70]

c(t) = γAn(t) 0≤ t < T (4.13)

With a sequence of symbols {An}, the complete expression of the complex envelope
becomes

c(t) =
+∞

∑
n=−∞

γAn (t−nT ) (4.14)

from which a real modulated signal is obtained as

v(t) = R
[
c(t)ei2πvt] (4.15)

where v is the carrier optical frequency.
To proceed from the classical system, characterized by the waveforms γi(t), i ∈ A,
to the quantum system and USD with coherent state constellation |γi〉 with i ∈ A,
we must somehow ”remove” the dependence on time, which is not present in the
coherent states.

4.2.1 State Constellations from Scalar Modulations

In PSK and QAM modulations, the waveforms (4.12) are of the form

γi(t) = γih(t), i ∈ A = {0,1, ...,K−1} (4.16)

where h(t) is a real pulse and γi are complex numbers.
The complex envelope c(t) of the modulated signal is then produced by an encoder,
mapping the symbols i ∈ A into the complex symbols γi, and by an interpolator with
impulse response h(t). The resulting complex envelope becomes

c(t) =
+∞

∑
n=−∞

Cnh(t−nT ) (4.17)

where {Cn} is the sequence of complex symbols obtained by the mapping
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An = i→Cn = γi (4.18)

In this way, a constellation of complex symbols is identified

C = {γ0,γ1, ...,γK−1} , γi ∈ C (4.19)

from which one can form the constellation of coherent states

S = {|γ0〉 , |γ1〉 , ..., |γK−1〉} , |γi〉 ∈G (4.20)

that are in a one-to-one relationship with the constellation of complex symbols C.

4.2.2 State Constellations from Vector Modulations

Everything that has been previously seen consisted of directly creating the constel-
lation of coherent states from the constellation of symbols.
This system is not always possible, because in general the K waveforms (4.12) can-
not be expressed in the form (4.16).
To remove the dependence on time, we can proceed as follows [70]. Let’s take a
function base, h1(t), ...,hN(t), orthonormal in the interval [0,T ), with N ≤ K, and
we expand the waveforms (4.12) on this basis, i.e.

γi(t) =
N

∑
j=1

γi jh j(t), i = 0,1, ...,K−1 (4.21)

where the coefficients are given by

γi j =
∫ T

0
γi(t)h∗j(t)dt, j = 1, ...,N (4.22)

The vectors of the complex coefficients

γi = (γi1, ...,γiN) , i = 0,1, ...,K−1 (4.23)

uniquely identify the waveform γi(t).
The classic modulator is implemented in such a way that the encoder makes the map

An = i ∈ A→Cn = γi ∈ CN (4.24)

with
Cn = [Cn1, ...,CnN ] , γi = [Ci1, ...,CiN ] (4.25)
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Then from the vector Cn, a sequence of interpolators forms the complex envelope
c(t) of the modulated signal, as

c(t) =
∞

∑
n=−∞

N

∑
i=1

Cnihi (t−nT ) (4.26)

This generalizes the scalar modulation, which is obtained with N = 1.
What we have already described, allows us to identify a constellation of complex
vectors {γi, i = 0, ...,K−1} with γi ∈CN .
Now, to introduce the coherent states, we must consider a composite Hilbert space,
given by the tensor product

H = H0⊗H0⊗ ...⊗H0 (4.27)

of N equal Hilbert spaces H0.
In this composite space, the states become the tensor product of coherent states and,
through equation (4.23), to each symbol i ∈ A the tensor product of coherent states
is associated

|γi〉= |γi1〉⊗ |γi2〉⊗ ...⊗|γiN〉 (4.28)

that, with i varying in A, forms the desired constellation of coherent states.
This composite constellation of coherent states will be used in PPM modulation.

4.3 Parameters in a Constellation of Coherent States

Note that the constellation of coherent states S given by equation (4.20) can be
structured in a matrix form as

Γ = [|γ0〉 , |γ1〉 , ..., |γK−1〉] (4.29)

and becomes the state matrix.
In modulation formats, the states of S are always independent (in the sense of vec-
tor spaces), and therefore the state matrix always has the complete rank, that is,
rank(Γ ) = K. From the state matrix, we obtain the Gram’s matrix, a K×K matrix
formed by the inner products between the pairs of states

G = Γ
∗
Γ =

[〈
γi|γ j

〉]
, |γi〉 ,

∣∣γ j
〉
∈G (4.30)

that can be calculated using equation (4.8).
Also G has always the full rank and since the states are non-orthogonal, all the
entries G are non-zero.
Also in the N-dimensional case, when the states are given by the tensor product of
the N component states (4.28), to calculate the state overlap, we evaluate the inner
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products 〈
γi|γ j

〉
=
〈
γi1|γ j1

〉〈
γi2|γ j2

〉
...
〈
γiN |γ jN

〉
(4.31)

In this relation we have kept in mind that the inner product of the states (given by
a tensor product) is obtained as a product of the inner products of the component
states.
Each of the inner products of the component states is evaluated by equation (4.8).

4.3.1 Number of Signal Photons in a Constellation

From equation (4.7) we have that the average number of photons associated to the
coherent state |γ〉 ∈G is given by the squared norm of the complex amplitude γ

Nγ = |γ|2 (4.32)

In a constellation of coherent states, we introduce the signal photons per symbol.
We can observe that the generic symbol of the constellation, C ∈ C, must be con-
sidered as a random variable with probability p(C = γ), γ ∈C, and also the average
number of photons NC associated to C becomes a random variable; the statistical
average of NC,

NS = E [NC] = ∑
γ∈C

p(C = γ)Nγ = ∑
γ∈C

p(C = γ)|γ|2 (4.33)

defines the average number of photons per symbol, or in other words, the number of
signal photons per symbol.
Now, given the one-to-one correspondence A = i⇔C = γi, the probability of these
two events turns out to be equal to the prior probability ηi.
Therefore, we have

NS = ∑
i∈A

ηi|γi|2 photons/symbol (4.34)

In particular, with equally likely symbols, the number of signal photons per symbol
becomes

NS =
1
K ∑

i∈A
|γi|2 =

1
K ∑

γ∈C
|γ|2 (4.35)

Finally, knowing that, with equiprobable symbols, there are log2 K bit/symbol, the
number of photons of the signal per bit is given by

NR =
NS

log2 K
photons/bit (4.36)
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We have seen above that in a N-dimensional constellation A, whose states are N-
mode coherent states, |γ〉 = |γ1〉⊗ |γ2〉⊗ ...⊗|γN〉, the average number of photons
associated to the composite state |γ〉 is

Nγ = |γ1|2 + |γ2|2 + ...+ |γN |2 (4.37)

where γ = [γ1,γ2, ...,γN ]. Consequently, the number of signal photons per symbol
must be evaluated according to

NS = ∑
γ∈C

p(C = γ)Nγ (4.38)

with Nγ given by equation (4.37), and the sum extended to the N-dimensional con-
stellation.



Chapter 5
Communications with binary systems

5.1 OOK Modulation

5.1.1 Classical Systems with OOK Modulation

Classical signal with OOK as shown in Figure 5.1.

Fig. 5.1 A realization of a binary sequence and corresponding OOK signal

At reception ideal photon counter receiver uses the decision criterion

Â0 =

{
0, if n = 0
1, if n ≥ 1

(5.1)

where n is the number of photons counted in a symbol period. Then, with the trans-
mission of the symbol A0 = 0, we always have a correct decision

Pe(0) = 0 (5.2)

When A0 = 1 the number of arrivals n is a Poisson variable with average NR(1), and
therefore with (conditioned) distribution

63
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pn(k|1) = e−NR(1) NR(1)
k

k!
, k = 0,1, ... (5.3)

and we have an error when n = 0, which occurs with probability

Pe(1) = pn(0|1) = e−NR(1) = e−2NR (5.4)

The average error probability in the classical system is therefore

Pe,classical =
1
2

e−2NR (5.5)

where equally likely symbols are assumed.
In optical communications this probability is called the quantum limit [71] or shot
noise limit, and it is the optimum for any detection that does not exploit the coher-
ence property of the optical beam. Notice, in fact, that in this classical context the
decision criterion (5.1) is optimal.
The receiver scheme is called direct detection of the incident light pulses. The main
advantage of this approach is its simplicity. In particular, phase and frequency in-
stabilities of the laser source are well tolerated. Moreover, at the receiver direct
detection is used and phase sensitive devices are avoided.

5.1.2 Quantum Interpretation of Photon Counting in
OOK

The OOK modulation, has a simple quantum equivalent, employing the coherent
states |0〉 and |α〉 where the photon counting can be treated as a quantum measure-
ment with not optimal measurement operators.
The quantum measurement realized by the photon counter is obtained with the el-
ementary projectors |n〉〈n|, where |α〉 is the number state, and the outcome of the
measurement is given by the number of photons n. The transition probabilities in
the measurement are

p(i|α) = p(n = i|α) = e−|α|
2 |α|2i

i!
,

p(i|0) = p(n = i|0) = δi0

(5.6)

The alphabet of the measurement is then M = {0,1,2, ...}, and it is different from
the alphabet A = {0,1} of the source.
To find the global performance, we must introduce a decision criterion consisting
in the partitioning of M into two decision regions M0 and M1 to obtain two global
measurement operators. The optimal partition is M0 = {0} and M1 = {1,2, ...} and



5.1 OOK Modulation 65

so we have the global projectors

Q0 = |0〉〈0|

Q1 =
∞

∑
n=1
|n〉〈n|

(5.7)

Fig. 5.2 Quantum interpretation of the decision made via a photon counter in an OOK system.
The outcome of quantum measurement is given by the number of photons n present in the state |α〉
or |0〉. The decision converts the measurement alphabet M = {0,1,2, ...} into the binary alphabet
A = {0,1}, thus realizing a binary channel.

The global transition probabilities, from [1], are pc(0|0) = Tr[ρ0Q0] and pc(0|1) =
Tr[ρ1Q0], where ρ1 = |α〉〈α| and ρ0 = |0〉〈0|. Then

pc(0|0) = 〈0|0〉〈0|0〉= 1

pc(0|1) = 〈α|Q0|α〉= |〈α|0〉|2 = e−|α|
2
= e−2NR

(5.8)

5.1.3 Quantum Systems with OOK Modulation

Now let’s analyze the constellation of the OOK modulation, shown in Figure 5.3

|γ0〉= |0〉 , |γ1〉= |∆〉 ∈ G (5.9)

where |0〉 is the ground state and the state |∆〉 is by the number ∆ which is not
restrictive to assume real and positive. The quadratic superposition of the two states
is |〈0|∆〉|2 = e−∆ 2

.
The number of signal photons associated with the symbol A0 = 0 is NR(0)= 0, while
the one associated to the symbol A0 = 1 is NR(1) = ∆ 2.
The number of signal photons for bit is then
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NR =
1
2

NR(0)+
1
2

NR(1) =
1
2

NR(1) (5.10)

and the quadratic superposition of the two states can be written in the meaningful
form

|X |2 = e−2NR (5.11)

From the formula of Helstrom [7], we obtain that the error probability of the OOK
quantum system with equiprobable symbols becomes

Pe,quantum =
1
2

[
1−
√

1−|〈ψ1|ψ2〉|2
]

(5.12)

and finally becomes

Pe,quantum =
1
2

[
1−
√

1− e−2NR

]
(5.13)

Fig. 5.3 Constellation of symbols in OOK modulation
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5.1.4 USD Systems with OOK Modulation

Now let’s look at how the OOK system is detected in the USD system.
Starting from the equation (3.5) we consider the equiprobable symbols, as was done
in the case of the quantum system.
So we make η1 = η2 =

1
2 . From this we get that

Pe,USD = Q = |〈ψ1|ψ2〉| (5.14)

becomes
Pe,USD = e−

1
2 |α−β |2 (5.15)

and follows
Pe,USD = e−

1
2 |α|

2
(5.16)

that can be rewritten as
Pe,USD = e−NR (5.17)

Fig. 5.4 Comparison of classical, quantum and USD OOK modulation

The comparison between the Pe,classical of the classical receiver, given by (5.5), the
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Pe,quantum of the quantum receive, given by (5.13) and Pe,USD of USD receive , given
by (5.17) is shown in Figure 5.4 as a function of the average number of photons per
bit NR.
Thus we not have a great improvement in quantum OOK with respect to classical
OOK (in error probability a relevant improvement is expressed in decades).
While, as far as OOK is concerned, in the case of USD, we have a deterioration in
performance compared to both the classic and the quantum (in the probability of
error).
We can see how the ambiguous state of the USD substantially influences the perfor-
mance of this modulation.
Now, we report the values of NR for the various channels analyzed at the sensitivity
thresholds 10−9:

NR,quantum = 9.668 photons/bit

NR,classical = 10.015 photons/bit

NR,USD = 20.723 photons/bit

Finally, it should be noted that the relation (3.98) is valid because the value of NR,USD
is more than double of NR,quantum.

5.2 BPSK Modulation

Phase-shift keying (PSK) is a digital modulation process which conveys data by
changing (modulating) the phase of a constant frequency reference signal (the car-
rier wave).

5.2.1 Classical Systems with BPSK Modulation

The BPSK modulator encoding mapping

A0→C0 = eiA0π =

{
+1, A0 = 0
−1, A0 = 1

(5.18)

which gives the modulated signal

vT (t) = R
[
C0V0ei2πvt]=V0 cos(2πvt +A0π) , 0 < t < T (5.19)

where V0 is the amplitude of the carrier v0(t) =V0 cos(2πvt).
Figure 5.5 shows a sequence of binary symbols and the corresponding BPSK signal,
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which in the interval (nT,nT +T ) is given by V0 cos(2πvt +Anπ).

Fig. 5.5 A realization of a binary sequence and corresponding BPSK signal

Since different symbols have the same optical energy over the bit period, and hence
the same photon counting, direct detection cannot discriminate between them.
Then the receiver adds to the incoming signal vR(t) =VR cos(2πvt+Anπ) the signal
VL cos(2πvt), generated by a local laser tuned at the same frequency as v0(t), to get
the signal

v(t) =VR cos(2πvt +A0π)+VL cos(2πvt) (5.20)

We assume that the local carrier has an amplitude VL much greater than that of the
received signal, VL�V0 [1].
Since cos(2πvt +A0π) = cos(A0π)cos(2πvt), the power becomes

Pv(t) = (VR cos(A0π)+VL)
2 =VR

2 +VL
2 +2VRVL cos(A0π) (5.21)

which is illustrated in Figure 5.6 for a sequence of source symbols.

Fig. 5.6 Example of the optical power PR(t) after the introduction of the local carrier in a homo-
dyne receiver

Applying this power to a photon counter, we obtain a number of arrivals n in a
symbol period, which can be decomposed in the form



70 5 Communications with binary systems

n = n̄(A0)+u (5.22)

where n̄(A0) = E[n|A0] is the useful signal and the fluctuation u is the shot noise.
Now, from the theory of semiclassical detection developed in [1], the number of
signal photons is given by the photonic intensity Pv(t)/hv integrated over (0,T ),
and therefore it results in

n̄(A0) = H
(
VL

2 +VR
2 +2VRVL cos(πA0)

)
= NL +NR +U0 cos(πA0) (5.23)

where H = T/hv, NL + NR = H
(
VL

2 +VR
2
)

is a bias term, U0 = 2
√

NLNR, and
U0 cos(πA0) is the symbol-dependent part. The variance, coinciding with the av-
erage, is

σ
2
n (A0) = NL +NR +U0 cos(πA0)∼= NL (5.24)

where the approximation follows from the hypothesis VL � V0. In conclusion, the
decision on the transmitted symbol A0 is made on the value

n = NL +NR +U0 cos(πA0)+u (5.25)

At this point we introduce the Gaussian approximation, where it is assumed that the
photon number n is a Gaussian random variable and hence specified by the mean
n̄(A0) and by the variance σ2(A0) = NL, which is independent of the symbol A0.
So, using [1], the error probability in the classical BPSK with homodyne receiver is
given by

Pe,classical = Q
(√

4NR

)
(5.26)

This error probability is known as the standard quantum limit.
In the ideal counter the error probability in the classical BPSK is given by

Pe,classical =
1
2

e−4NR (5.27)

which represents the super quantum limit.

5.2.2 Quantum Systems with BPSK Modulation

In the BPSK quantum system, the symbol A0 = 0 (phase ϕ = 0) is encoded into a
coherent state |∆〉 with a given amplitude ∆ and the symbol A0 = 1 (phase ϕ = π)
into the coherent state |−∆〉. It is show in Figure 5.7

|γ0〉= |∆〉 , |γ1〉= |−∆〉 ∈ G (5.28)

Obviously, the number of signal photons associated to the two states is equal
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Fig. 5.7 Constellation of symbols and states in 2-PSK modulation

NR(0) = NR(1) = |∆ |2 = NR (5.29)

and the (quadratic) superposition degree of the two states becomes

|X |2 = e−∆−(−∆)2
= e−4∆ 2

= e−4NR (5.30)

which yields the error probability

Pe,quantum =
1
2

[
1−
√

1− e−4NR

]
(5.31)

Compared to the quantum BPSK modulation, we have an improvement, because the
term at the exponent 4NR in place of 2NR.

5.2.3 USD Systems with BPSK Modulation

Now let’s look at how the BPSK system is detected in the USD system.
Starting from the equation (3.5) we consider the equiprobable symbols, as was done
in the case of the quantum system.
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So we make η1 = η2 =
1
2 . From this we get that

Pe,USD = Q = |〈ψ1|ψ2〉| (5.32)

becomes
Pe,USD = e−

1
2 |α−(−α)|2 (5.33)

And we rewrite
Pe,USD = e−

1
2 4|α|2 (5.34)

And finally becomes

Pe,USD = e−2NR (5.35)

Fig. 5.8 Comparison of classical, quantum and USD BPSK modulation

The comparison between the Pe,classical of the classical receiver, given by (5.26), the
Pe,quantum of the quantum receiver, given by (5.31) and Pe,USD of USD receiver, given
by (5.35) is shown in Figure 5.8 as a function of the average number of photons per
bit NR.
Analyzing the results we can see a worsening of the BPSK in USD compared to the
classic BPSK (in the probability of error a significant improvement is expressed in
decades).
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Even if we compare the USD system with the quantum we have a deterioration in
performance (in the probability of error).
So we can conclude by saying that with a binary modulation we can have unsatis-
factory performance with the USD channel.
Now, we report the values of NR for the various channels analyzed at the sensitivity
thresholds 10−9:

NR,quantum = 4.837 photons/bit

NR,classical = 8.913 photons/bit

NR,USD = 10.361 photons/bit

Finally, it should be noted that the relation (3.98) is valid because the value of NR,USD
is more than double of NR,quantum.

5.3 2-PPM Modulation

5.3.1 Classical System with 2-PPM Modulation

In the classical version, the symbol period T is subdivided into K = 2 parts
with spacing T0 = T/K, obtaining K positions. Then, to the symbol i ∈ A =
{0,1, ...,K−1} the waveform is associated consisting of a rectangle in the ith posi-
tion iT0 of the symbol period

γi(t) =

{
∆ , iT0 < t < (i+1)T0

0, elsewhere
i = 0,1, ...,K−1 (5.36)

where ∆ > 0 is the scale factor. But, we will adopt the specular format

γi(t) =

{
∆ , (K−1− i)T0 < t < (K− i)T0

0, elsewhere
i = 0,1, ...,K−1 (5.37)

where the ith position becomes (K−1− i)T0 instead of iT0.
The reason of this choice is due to the fact that it simplifies the formulation of the
symmetry operator in the quantum version. To waveforms (5.37), K binary words
can be associated of length K

γi = [γi,K−1, ...,γi,1,γi,0] i = 0,1, ...,K−1 (5.38)

where γi j = ∆δi j. For example, for K = 2 the words are
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γ0 = [0 ∆ ]

γ1 = [∆ 0]
(5.39)

5.3.2 Quantum System with 2-PPM Modulation

In the case of the PPM modulation, the states are represented by the formulation
given by the paragraph 4.2.2 where the coherent states take the form:

|γi〉= |γi,K−1〉⊗ ...⊗|γi,1〉⊗ |γi,0〉 , i = 0,1, ...K−1 (5.40)

with ∣∣γi j
〉
=

{
|∆〉 , i = j
|0〉 , i 6= j

(5.41)

where |∆〉 is a coherent state with parameter ∆ , and |0〉 is the ground state.
In our case, i.e. with K = 2, we have two states:

|γ0〉= |0〉⊗ |∆〉
|γ1〉= |∆〉⊗ |0〉

(5.42)

5.3.3 Performance of Quantum 2-PPM Systems

For binary quantum PPM (K = 2), from (6.82) we get from Helstrom

Pe,quantum =
1
2

(
1−
√

1−|X |2
)

(5.43)

where |X |2 as the superposition of the states |γ0〉 and |γ1〉 which is equal to e−NS .
Then since NS = NR the error probability is

Pe,quantum =
1
2

(
1−
√

1− e−2NR

)
(5.44)

5.3.4 Performance of Classical 2-PPM Systems

For the study of performance of Classic PPM systems we consider A0 the transmit-
ted word, B0 received word and Â0 decided word.
Let us consider the case K = 2 with the standard format and with a unitary scale
factor (∆ = 1), in which the possible transmitted words A0 are
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γ0 = [1 0]
γ1 = [0 1]

(5.45)

With a photon counter, the symbol 0 is always received correctly, whereas the sym-
bol 1 may be received as 0, with an error probability e−NS . Then we have three
possible received words B0: the two correct words (5.45) and the wrong word [0 0],
(see Figure 6.11) and we have to decide to which correct word the wrong word
should be associated.
The optimum criterion (with equiprobable symbols) is to associate the wrong word
[0 0] to whatever correct word.
Then the decision criterion becomes

Â0 = γ0 i f B0 = [1 0] or B0 = [0 0]

Â0 = γ1 i f B0 = [0 1]
(5.46)

and we can get an error only in the last case, each with probability e−NS . Thus

Pe,classical =
1
2
[Pe(γ1)+Pe(γ2)] =

1
2
[
0+ e−NS

]
=

1
2

e−NS (5.47)

The general result is

Pe,classical =
K−1

K
e−NS (5.48)

and since NS = NR, for binary classical PPM, from (5.48) we have

Pe,classical =
1
2

e−NR (5.49)

5.3.5 Performance of USD 2-PPM Systems

Now let’s look at how the 2-PPM system is detected in the USD system.
Starting from the equation (3.5) we consider the equiprobable symbols, as was done
in the case of the quantum system.
So we make η1 = η2 =

1
2 . From this we get that

Pe,USD = Q = |〈ψ1|ψ2〉| (5.50)

The inner product |〈ψ1|ψ2〉| can be written in the following form

|〈ψ1|ψ2〉|= |〈∆ |0〉| |〈0|∆〉|= e−
1
2 NS e−

1
2 NS (5.51)

and it follows that
Pe,USD = e−NR (5.52)
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The comparison between the Pe,classical of the classical receiver, given by (5.49), the
Pe,quantum of the quantum receiver, given by (5.44) and Pe,USD of USD receiver, given
by (5.52) is shown in Figure 5.9 as a function of the average number of photons per
bit NR.

Fig. 5.9 Comparison of classical, quantum and USD 2-PPM modulation

Analyzing the results we can notice a nearness of the performances of the 2-PPM
with USD compared to the classic 2-PPM.
While, if we compare the USD system with the quantum one, we have a deteriora-
tion in performance.
So we can conclude by saying that with a low-complexity PPM modulation we can
have similar performance for USD and classic channel.
Now, we report the values of NR for the various channels analyzed at the sensitivity
thresholds 10−9:

NR,quantum = 9.668 photons/bit

NR,classical = 20.031 photons/bit

NR,USD = 20.723 photons/bit

Finally, it should be noted that the relation (3.98) is valid because the value of NR,USD
is more than double of NR,quantum.



Chapter 6
Communications with multilevel systems

After dealing with the case of binary modulation in the last chapter, we now go to
study multilevel modulations. In particular, QAM, PSK and PPM modulations.

6.1 K-QAM Modulation

6.1.1 QAM Formats

The alphabet of QAM modulation consists of a constellation of K = L2 equally
spaced points on a square grid of the complex plane, which can be defined starting
from the L-ary balanced alphabet

AL = {−(L−1)+2(i−1)| i = 1,2, ...,L} with L = 2,3, ... (6.1)

The K-ary QAM constellation is then formed by the complex numbers

C = {∆(u+ iv) | u,v ∈ AL} (6.2)

where ∆ is the scale factor and 2∆ gives the spacing of symbols in the constellation,
with ∆ real and positive.
Figure 6.1 illustrates the constellation for L = 2 i.e. 4-QAM.
To obtain the constellation of the coherent states in quantum QAM it suffices to
assign to each symbol γ of the constellation C the corresponding coherent state |γ〉.
Then the constellation of the coherent states becomes

S = {|γuv〉= |∆(u+ iv)〉 | u,v ∈ AL} (6.3)

77
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Fig. 6.1 Constellation of 4-QAM with scale factor ∆

For example, for the 4-QAM, where L = 2 and A2 = {−1, 1}, we have the following
coherent states listed in lexicographic order

u =−1 v =−1 |γ0〉= |γ−1,−1〉= |∆(−1− i)〉
u =−1 v =+1 |γ1〉= |γ−1,+1〉= |∆(−1+ i)〉
u =+1 v =−1 |γ2〉= |γ+1,−1〉= |∆(+1− i)〉
u =+1 v =+1 |γ3〉= |γ+1,+1〉= |∆(+1+ i)〉

6.1.2 Performance of Quantum QAM Systems

We consider the decision based on the SRM method, described in paragraph 3.4.
Let’s start with the construction of the Gram matrix G, whose elements are inner
products

〈γuv|γu′v′〉=
〈
∆ (u+ iv) |∆

(
u′+ iv′

)〉
(6.4)

Remembering equation (4.8), we get

〈γuv|γu′v′〉= e−
1
2 ∆ 2

[
(u′−u)

2
+(v′−v)

2−2i(u′v−v′u)
]
, u,v,u′,v′ ∈ AL (6.5)
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The only problem in the construction of the Gram matrix G is the ordering of the
four-index elements in a standard (bidimensional) matrix. To this end, we can use
the lexicographical order indicated above. The main point of the SRM is the spectral
decomposition of G, according to (3.108), that is,

G =VΛGV ∗ =
K−1

∑
i=0

σ
2
i |vi〉〈vi| (6.6)

which identifies the eigenvalues σ2
i and the orthonormal basis |vi〉, i = 1,2, ...,K,

and also the square roots

G±
1
2 =VΛ

± 1
2

G V ∗ (6.7)

We can then compute the transition probabilities from (3.110) and the error proba-
bility from (3.111), that is,

p( j|i) =
∣∣∣∣(G

1
2

)
i j

∣∣∣∣2 (6.8)

and

Pe,quantum = 1− 1
K

K−1

∑
i=0

[(
G

1
2

)
i j

]2

(6.9)

The performance is evaluated according to the number of photons per symbol, NS,
given in general by (4.35).
We find for the QAM

NS =
2
3
(
L2−1

)
∆

2 =
2
3
(K−1)∆

2 (6.10)

so that the shape factor of the QAM constellation is given by

µK =
2
3
(K−1) (6.11)

6.1.3 Performance of classical Optical QAM Systems

The signal at the decision point is

z =C0U0 +ua + iub (6.12)

where C0 = A0 + iB0 is the transmitted symbol, U0 is the amplitude, ua and ub are
statistically independent Gaussian noises with null average and the same variance
σ2

u .
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So the probability of error [1] turns out to be

Pe,classical = 1−
[

1−2
(

1− 1
L

)
Q
(

U0

σu

)]2

(6.13)

where Q(x) is the normalized complementary Gaussian distribution.
The result depends on the cardinality K and on the SNR Λ =U2

0 /σ2
u , which can be

expressed as a function of the average number of photons per symbol NS that is,

Λ =
4NS

µK
(6.14)

with
µK =

2
3
(K−1) (6.15)

6.1.3.1 Case 4-QAM

In the specific case of 4-QAM, we have that

Pe,classical = 1−
[
1−Q

(√
4NR

)]2
(6.16)

where NR = NS
2 .

6.1.3.2 Case 16-QAM

In the case of 16-QAM, we have that NR = NS
4

Pe,classical = 1−

[
1− 3

2
Q

(√
8
5

NR

)]2

(6.17)

6.1.4 Performance of USD QAM Systems

Let’s see how the QAM system is detected in the USD system.
As we saw in Chapter 3, with a number of symbols greater then two, we can find
upper and lower bounds for the USD system.
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6.1.4.1 Lower bound

Regarding the lower bound, let’s start with the formula (3.52). Knowing that the
symbols are equiprobable then the ηi are equal to 1/K.
So the error probability can be rewritten as

Pe,USDLower ≥
1

K−1

K

∑
i=1

K

∑
j=1
j 6=i

√
1
K

1
K

∣∣〈ψi|ψ j
〉∣∣ (6.18)

and follows

Pe,USDLower ≥
1

K−1

K

∑
i=1

K

∑
j=1
j 6=i

1
K

∣∣〈ψi|ψ j
〉∣∣ (6.19)

6.1.4.2 Upper bound

Now let’s analyze the upper bound. Considering the equation (3.53) we can write
the upper bound as

Pe,USDU pper ≤ 1−λK (6.20)

where λK is the minimum eigenvalue of the matrix〈ψ1|ψ1〉 · · · 〈ψ1|ψK〉
...

. . .
...

〈ψK |ψ1〉 · · · 〈ψK |ψK〉

 (6.21)

〈
ψi|ψ j

〉
can be written in the form

〈
ψi|ψ j

〉
= e−

1
2 (|ψ|

2+|ψ|2−2ψ∗ψ) (6.22)

6.1.4.3 Case 4-QAM

In the case of 4-QAM the inner products
∣∣〈ψi|ψ j

〉∣∣ can be rewritten as

∣∣〈ψi|ψ j
〉∣∣={e−2NR , if |i− j|= 1 and |i− j|= 3

e−4NR , if |i− j|= 2
(6.23)

Therefore, the general equation given in (6.19) can be rewritten explicitly in the case
of 4-QAM.
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Pe,USDLower ≥
1
3
(
2e−2NR + e−4NR

)
(6.24)

For the upper bound we have |ψi|2 = 2NR ∀i

〈
ψi|ψ j

〉
= e
− 1

2

(
NS+NS−2NSei 2π

K ( j−i)
)

(6.25)

where NS = 2NR.
Therefore, we can write in extended form as follows

〈
ψi|ψ j

〉
=


1 e−NS(1+i) e−2NS e−NS(1−i)

e−NS(1−i) 1 e−NS(1+i) e−2NS

e−2NS e−NS(1−i) 1 e−NS(1+i)

e−NS(1+i) e−2NS e−NS(1−i) 1

 (6.26)

6.1.4.4 Upper bound with GUS in the case of 4-QAM

Assuming equal a priori probabilities, the minimum failure probability for unam-
biguous discrimination of symmetric states is given by the formula (3.107) which is
shown below

Pe,USD ≤ 1−K min
k
|ck|2 (6.27)

The value of |ck|2 is given by [82] and is equal to

|ck|2 =
1

K2

K

∑
i=1

K

∑
j=1

e
−2πik(i− j)

K
〈
ψ j|ψi

〉
(6.28)

where
〈
ψ j|ψi

〉
is equal to

〈
ψ j|ψi

〉
= e
− 1

2

(
NS+NS−2NSei 2π

K ( j−i)
)

(6.29)

So, the failure probability is as follows

Pe,USD ≤ 1−K
1

K2 min
k

[
K

∑
i=1

K

∑
j=1

e
−2πik(i− j)

K e
− 1

2

(
NS+NS−2NSei 2π

K ( j−i)
)]

(6.30)

and finally (for K = 4)

Pe,USD ≤ 1− 1
4

min
k

[
4

∑
i=1

4

∑
j=1

e
−iπk(i− j)

2 e−
(

NS−NSei π
2 ( j−i)

)]
(6.31)
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Fig. 6.2 Comparison of classical, quantum and USD (Lower bound, Upper bound and GUS) 4-
QAM modulation

The comparison between the Pe,classical of the classical receiver, given by (6.16), the
Pe,quantum of the quantum receiver, given by (6.9) and Pe,USD of USD receiver, given
by upper bound (6.20), lower bound (6.19) and GUS (6.31) is shown in Figure 6.2
as a function of the NR.
Analyzing the results we can see a worsening of the QAM in USD compared to the
classic QAM.
Now, we report the values of NR for the various channels analyzed at the sensitivity
10−9:

NR,quantum = 5.007 photons/bit

NR,classical = 9.331 photons/bit

NR,USDU pper,GUS = 10.5677 photons/bit

NR,USDU pper = 10.5677 photons/bit

NR,USDLower = 10.1589 photons/bit
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Fig. 6.3 Probability of conclusive results as a function of mean photon number NR for the USD
scheme with 4-QAM modulation in comparison with classical, quantum and Optimal USD

Figure 6.3 shows the probability of conclusive results as a function of mean photon
number NR of the input state for the USD scheme. The maximum probability of
conclusive results for optimum USD is included in Figure 6.3 as a result of equation

POptimum,USD = K min
k
|ck|2 (6.32)

6.1.4.5 Case 16-QAM

In the case of 16-QAM we have NS = 10∆ 2 that is equal to NR = 5
2 ∆ 2 and µK = 10.

The inner products
∣∣〈ψi|ψ j

〉∣∣ can be rewritten as
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∣∣〈ψi|ψ j
〉∣∣=



e−
4
5 NR , if |i− j|= 1 and |i− j|= 4

e−
16
5 NR , if |i− j|= 2 and |i− j|= 8

e−
36
5 NR , if |i− j|= 3 and |i− j|= 12

e−
8
5 NR , if |i− j|= 5

e−4NR , if |i− j|= 6 and |i− j|= 9
e−8NR , if |i− j|= 7 and |i− j|= 13

e−
32
5 NR , if |i− j|= 10

e−
52
5 NR , if |i− j|= 11 and |i− j|= 14

e−
72
5 NR , if |i− j|= 15

(6.33)

Fig. 6.4 Comparison of classical, quantum and USD (Lower and Upper bound) 16-QAM modula-
tion

Therefore, the general equation given in (6.19) can be rewritten explicitly in the case
of 16-QAM.
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Pe,USDLower ≥
1
15

(
2e−

4
5 NR +2e−

16
5 NR +2e−

36
5 NR + e−

8
5 NR +2e−4NR

)
+

1
15

(
2e−8NR + e−

32
5 NR +2e−

52
5 NR + e−

72
5 NR
) (6.34)

Instead, for the upper bound can be solved by considering the the general equation
(6.20).
In the case of 16-QAM we report in Figure 6.4 the comparison between quantum,
classic and USD (lower and upper bound).
The values of NR are shown below for the various channels analyzed at the sensitiv-
ity 10−9:

NR,quantum = 12.48 photons/bit

NR,classical = 23.83 photons/bit

NR,USDU pper = 27.34 photons/bit

NR,USDLower = 22.53 photons/bit

6.2 K-PSK Modulation

Since the 4-PSK and 4-QAM overlap, as mentioned above, the evaluation of the
performance of the USD will have the same result but with different resolution ap-
proach.

6.2.1 K-PSK Format

The constellation of the PSK modulation consists of K points uniformly distributed
along a circle of the complex plane

C = {∆W m
K | m = 0,1, ...,K−1} (6.35)

where the scale factor ∆ is given by the radius of the circle and WK = ei2π/K . The
constellation is illustrated in Figure 6.5 for some values of K.
In the quantum version, the states are obtained by simply associating to every com-
plex symbol ψ of the constellation (6.35) the corresponding coherent state, which
is given by

|ψm〉= |∆W m
K 〉= e−

1
2 ∆ 2

∞

∑
n=0

(∆W m
K )n

√
n!
|n〉, m = 0,1, ...,K−1 (6.36)
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Fig. 6.5 Constellations of PSK modulation

In this constellation, all the coherent states have the same number of signal photons
given by

NS = ∆
2 (6.37)

Constellation (6.36) enjoys GUS [1]. The unitary operation S is obtained from the
rotation operator, which is defined as

R(φ) := eiφN (6.38)

where N is the number operator given by (4.1). Specifically we have

S = R
(

2π

K

)
= e(

i2π
K N) =W N

K (6.39)

6.2.2 Performance of Quantum K-PSK Systems

For the decision we apply the SRM, which gives an optimal result. Then, for the
performance evaluation, we follow the procedure described in paragraph 3.4, taking
into account that the PSK constellation satisfies the GUS. The generic element i, j
of Gram’s matrix G = [Gi j] is the inner product Gi j =

〈
ψi|ψ j

〉
obtained from (4.8)

with α = ∆W i
K and β = ∆W j

K , namely,

Gi j = e−∆ 2
(

1−W j−i
K

)
, i, j = 0,1, ...,K−1 (6.40)

The element i, j depends only on the difference j-i; and therefore Gram’s matrix
becomes circulant. The eigenvalues are obtained computing the DFT of the first
row of the Gram’s matrix, that is,
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λi =
K−1

∑
k=0

G0kW−ki
K (6.41)

and the corresponding eigenvectors are given by the columns of the DFT matrix

|wi〉=
1√
K

[
1,W−i

K ,W−2i
K , ...,W−(K−1)i

K

]T
(6.42)

Thus the matrices G±
1
2 are obtained from (3.116), where the element i, j is given by

(
G±

1
2

)
i j
=

1
K

K−1

∑
p=0

λ
± 1

2
p W p( j−i)

K (6.43)

Finally, the error probability with equiprobable symbols is simply

Pe,quantum = 1− 1
K

(
K−1

∑
i=0

√
λi

)2

(6.44)

Therefore, to calculate Pe,quantum it suffices to evaluate the eigenvalues according to
(6.41) and to apply (6.44). As usual, Pe,quantum can be expressed as a function of the
number of signal photons per symbol NS, given by (6.37).

6.2.3 Performance of Classical K-PSK Sytems

The classical optical PSK system falls into the general model of quadrature modu-
lations (with homodyne receiver). The signal at the decision point becomes (based
on [1])

z0 =C0U0 +ua + iub (6.45)

where C0 is the transmitted symbol, C0 ∈ C0 =
{

W i
K |i = 1, ...,K

}
, ua and ub are

independent zero-mean Gaussian components with the same variance σ2
u . At this

point, we introduce the count parameters

U0 = (2VRVL)H

σ
2
u = HV 2

L
(6.46)

and that in this case the number of signal photons contained in the received power
is

NS = HV 2
L (6.47)

So the SNR becomes
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Λ =
U2

0
σ2

u
= 4NS (6.48)

the shape factor µK being unitary.
For K > 4 the exact computation is not known, and we resort to the inequality

Pe,classical < P′e = e
− 1

2
U2

0
σ2u

sin2( π
K ) = e−2NS sin2( π

K ) (6.49)

6.2.3.1 Case 8-PSK

In that case K=8, NS = 3NR, and the outcome is follows

Pe,classical < e−2NS sin2( π
8 ) = e−6NR sin2( π

8 ) (6.50)

6.2.3.2 Case 16-PSK

In this case K=16, NS = 4NR, the result is as follows

Pe,classical < e−2NS sin2( π

16 ) = e−8NR sin2( π

16 ) (6.51)

6.2.4 Performance of USD K-PSK Systems

In the case of USD we have the lower bound and the upper bound.

6.2.4.1 Lower bound in the case of 8-PSK

The error probability is as follows

Pe,USDLower ≥
1
7

8

∑
i=1

8

∑
j=1
j 6=i

1
8

∣∣〈ψi|ψ j
〉∣∣ (6.52)

where the inner products
∣∣〈ψi|ψ j

〉∣∣ can be rewrite as
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∣∣〈ψi|ψ j
〉∣∣=



e−3NR(1−1/
√

2−i/
√

2), if |i− j|= 1
e−3NR(1−i), if |i− j|= 2
e−3NR(1+1/

√
2−i/

√
2), if |i− j|= 3

e−6NR , if |i− j|= 4
e−3NR(1+1/

√
2+i/

√
2), if |i− j|= 5

e−3NR(1+i), if |i− j|= 6
e−3NR(1−1/

√
2+i/

√
2), if |i− j|= 7

(6.53)

Therefore, the general equation can be rewritten explicitly in the case of 8-PSK.

Pe,USDLower ≥
8

56
e−3NR(1−1/

√
2−i/

√
2)+

8
56

e−3NR(1−i)+

8
56

e−3NR(1+1/
√

2−i/
√

2)+
8

56
e−6NR+

8
56

e−3NR(1+1/
√

2+i/
√

2)+
8

56
e−3NR(1+i)+

8
56

e−3NR(1−1/
√

2+i/
√

2)

(6.54)

6.2.4.2 Upper bound in the case of 8-PSK

The upper bound is as follows

Pe,USDU pper ≤ 1−λK (6.55)

where λK is the minimum eigenvalue in the matrix thus formed〈ψ1|ψ1〉 · · · 〈ψ1|ψ8〉
...

. . .
...

〈ψ8|ψ1〉 · · · 〈ψ8|ψ8〉

 (6.56)

Thus, we have |ψi|2 = 3NR ∀i

〈
ψi|ψ j

〉
= e−

1
2

(
2NS−2NSei π

4 ( j−i)
)
= e−

(
3NR−3NRei π

4 ( j−i)
)

(6.57)

6.2.4.3 Upper bound with GUS in the case of 8-PSK

The minimum failure probability for unambiguous discrimination of symmetric
states is given by the formula (3.107) which is shown below
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Pe,USD ≤ 1−K min
k
|ck|2 (6.58)

The value of |ck|2 is given by [82] and is equal to (in the case of 8-PSK)

|ck|2 =
1

64

8

∑
i=1

8

∑
j=1

e
−πik(i− j)

4
〈
ψ j|ψi

〉
(6.59)

where
〈
ψ j|ψi

〉
is equal to

〈
ψ j|ψi

〉
= e−

1
2

(
2NS−2NSei π

4 ( j−i)
)

(6.60)

So, the failure probability for K=8 is as follows

Pe,USD ≤ 1− 1
8

min
k

[
8

∑
i=1

8

∑
j=1

e
−iπk(i− j)

4 e
(
−NS+NSei π

4 ( j−i)
)]

(6.61)

Fig. 6.6 Comparison of classical, quantum and USD (Upper bound, Lower bound and GUS) 8-
PSK modulation
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The comparison between the Pe,classical of the classical receiver, given by (6.50), the
Pe,quantum of the quantum receiver, given by the general equation (6.44) and Pe,USD
of USD receiver, given by upper bound (6.55), lower bound (6.54) and GUS (6.61)
is shown in Figure 6.6 as a function of the NR.
Analyzing the results we can see like the 8-PSK in USD is better in the lower bound
and worse in the upper bound than the classic 8-PSK.
Now, we report the values of NR for the various channels analyzed at the sensitivity
10−9:

NR,quantum = 11.3978 photons/bit

NR,classical = 23.584 photons/bit

NR,USDU pper,GUS = 24.3575 photons/bit

NR,USDU pper = 24.3575 photons/bit

NR,USDLower = 22.1588 photons/bit

Fig. 6.7 Probability of conclusive results as a function of the mean photon number per bit NR for
the USD scheme with 8-PSK modulation in comparison with classical, quantum and Optimal USD

In Figure 6.7 shows the probability of conclusive results as a function of mean pho-
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ton number NR of the input state for the USD scheme. The maximum probability of
conclusive results for optimum USD is included in Figure 6.7 as a result of equation

POptimum,USD = K min
k
|ck|2 (6.62)

6.2.4.4 Lower bound in the case of 16-PSK

The error probability is as follows

Pe,USDLower ≥
1
15

16

∑
i=1

16

∑
j=1
j 6=i

1
16

∣∣〈ψi|ψ j
〉∣∣ (6.63)

where the inner products
∣∣〈ψi|ψ j

〉∣∣ can be rewrite as

∣∣〈ψi|ψ j
〉∣∣=



e−4NR(1−eiπ/8), if |i− j|= 1

e−4NR(1−eiπ/4), if |i− j|= 2

e−4NR(1−ei3π/8), if |i− j|= 3

e−4NR(1−eiπ/2), if |i− j|= 4

e−4NR(1−ei5π/8), if |i− j|= 5

e−4NR(1−ei3π/4), if |i− j|= 6

e−4NR(1−ei7π/8), if |i− j|= 7
e−8NR , if |i− j|= 8

e−4NR(1−e−i7π/8), if |i− j|= 9

e−4NR(1−e−i3π/4), if |i− j|= 10

e−4NR(1−e−i5π/8), if |i− j|= 11

e−4NR(1−e−iπ/2), if |i− j|= 12

e−4NR(1−e−i3π/8), if |i− j|= 13

e−4NR(1−e−iπ/4), if |i− j|= 14

e−4NR(1−e−iπ/8), if |i− j|= 15

(6.64)

Therefore, the general equation can be rewritten explicitly in the case of 16-PSK.
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Pe,USDLower ≥
16

240
e
−4NR

(
1−
√

2+
√

2
2 − i

2

√
2−
√

2
)
+

16
240

e−4NR

(
1− 1+i√

2

)
+

16
240

e−4NR(1−icos(π/8)+sin(π/8))+
16
240

e−4NR(1−i)+

16
240

e−4NR(1−icos(π/8)−sin(π/8))+
16
240

e−4NR

(
1+ 1−i√

2

)
+

16
240

e
−4NR

(
1+
√

2+
√

2
2 − i

2

√
2−
√

2
)
+

16
240

e−8NR+

16
240

e
−4NR

(
1+
√

2+
√

2
2 + i

2

√
2−
√

2
)
+

16
240

e−4NR

(
1+ 1+i√

2

)
+

16
240

e−4NR(1+icos(π/8)+sin(π/8))+
16
240

e−4NR(1+i)

16
240

e−4NR(1+icos(π/8)−sin(π/8))+
16
240

e−4NR

(
1− 1−i√

2

)
+

16
240

e
−4NR

(
1−
√

2+
√

2
2 + i

2

√
2−
√

2
)

(6.65)

6.2.4.5 Upper bound in the case of 16-PSK

The upper bound is as follows

Pe,USDU pper ≤ 1−λK (6.66)

where λK is the minimum eigenvalue in the matrix thus formed 〈ψ1|ψ1〉 · · · 〈ψ1|ψ16〉
...

. . .
...

〈ψ16|ψ1〉 · · · 〈ψ16|ψ16〉

 (6.67)

Thus, we have |ψi|2 = 4NR ∀i

〈
ψi|ψ j

〉
= e−

(
NS−NSei π

8 ( j−i)
)
= e−

(
4NR−4NRei π

8 ( j−i)
)

(6.68)

6.2.4.6 Upper bound with GUS in the case of 16-PSK

The minimum failure probability for unambiguous discrimination of symmetric
states is given by the formula (3.107) which is shown below
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Pe,USD ≤ 1−K min
k
|ck|2 (6.69)

The value of |ck|2 is given by [82] and is equal to (in the case of 16-PSK)

|ck|2 =
1

256

16

∑
i=1

16

∑
j=1

e
−πik(i− j)

8
〈
ψ j|ψi

〉
(6.70)

where
〈
ψ j|ψi

〉
is equal to

〈
ψ j|ψi

〉
= e−

1
2

(
2NS−2NSei π

8 ( j−i)
)

(6.71)

So, the failure probability for K=16 is as follows

Pe,USD ≤ 1− 1
16

min
k

[
16

∑
i=1

16

∑
j=1

e
−iπk(i− j)

8 e−
(

NS−NSei π
8 ( j−i)

)]
(6.72)

Fig. 6.8 Comparison of classical, quantum and USD (Upper bound, Lower bound and GUS) 16-
PSK modulation
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The comparison between the Pe,classical of the classical receiver, given by (6.51), the
Pe,quantum of the quantum receiver, given by the general equation (6.44) and Pe,USD
of USD receiver, given by upper bound (6.66), lower bound (6.65) and GUS (6.72)
is shown in Figure 6.8 as a function of the NR.
Analyzing the results we can see like the 16-PSK in USD is much better in the lower
bound and worse in the upper bound than the classic 16-PSK.
Now, we report the values of NR for the various channels analyzed at the sensitivity
10−9:

NR,quantum = 32.8921 photons/bit

NR,classical = 68.06 photons/bit

NR,USDU pper,GUS = 70.3315 photons/bit

NR,USDU pper = 70.3315 photons/bit

NR,USDLower = 61.443 photons/bit

Fig. 6.9 Probability of conclusive results as a function of mean photon number NR for the USD
scheme with 16-PSK modulation in comparison with classical, quantum and Optimal USD

In Figure 6.9 shows the probability of conclusive results as a function of mean pho-



6.3 K-PPM Modulation 97

ton number NR of the input state for the USD scheme. The maximum probability of
conclusive results for optimum USD is included in Figure 6.9 as a result of equation

POptimum,USD = K min
k
|ck|2 (6.73)

6.3 K-PPM Modulation

In paragraph 5.3 the modulation 2-PPM was treated. Now, in this section, we will
see the performance of K-PPM for the classic, quantum and USD channels.
One of the key difficulties of implementing this technique is that the receiver must
be properly synchronized to align the local clock with the beginning of each sym-
bol. Therefore, it is often implemented differentially as differential pulse-position
modulation, whereby each pulse position is encoded relative to the previous, such
that the receiver must only measure the difference in the arrival time of successive
pulses. It is possible to limit the propagation of errors to adjacent symbols, so that an
error in measuring the differential delay of one pulse will affect only two symbols,
instead of affecting all successive measurements.
Aside from the issues regarding receiver synchronization, the key disadvantage of
PPM is that it is inherently sensitive to multipath interference that arises in chan-
nels with frequency-selective fading, whereby the receiver’s signal contains one or
more echoes of each transmitted pulse. Since the information is encoded in the time
of arrival, the presence of one or more echoes can make it extremely difficult to
accurately determine the correct pulse. Multipath in the Pulse Position Modulation
systems can be easily supported by using the same techniques that are used in Radar
systems.
One of the principal advantages of PPM is that it is an M-ary modulation technique
that can be implemented non-coherently, such that the receiver does not need to use
a phase-locked loop (PLL) to track the phase of the carrier. This makes it a suitable
candidate for optical communications systems, where coherent phase modulation
and detection are difficult and extremely expensive. The only other common M-
ary non-coherent modulation technique is M-ary frequency-shift keying (M-FSK),
which is the frequency-domain dual to PPM.
In Figure 6.10 is presented an example of PPM with K = 4.

6.3.1 Performance of Quantum K-PPM Systems

Considering that the PPM states have the GUS and that the SRM gives an optimal
detection, we can then apply the method summarized in paragraph 3.4, on the SRM
detection in the presence of GUS.
The performance evaluation, then, is structured as follows.
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Fig. 6.10 Realization of transmitted symbols and corresponding optical power in classic 4-PPM
modulation

G has as element i, j the inner product Gi j =
〈
ψi|ψ j

〉
, where now the states |ψi〉 are

composite. Recalling that〈
ψi|ψ j

〉
=
〈
ψi0|ψ j0

〉〈
ψi1|ψ j1

〉
...
〈
ψiK−1|ψ jK−1

〉
(6.74)

Then, using equation (4.8), we get

〈
ψi|ψ j

〉
=

{
1, i = j

e−|∆ |
2
, i 6= j

(6.75)

For example, in our case where K = 2 the inner product 〈ψ0|ψ1〉 results in

〈ψ0|ψ1〉= 〈∆ |0〉〈0|∆〉= e−
1
2 |∆ |

2
e−

1
2 |∆ |

2
= e−|∆ |

2
(6.76)

We observe that the same energy E is associated to all symbols, and, according
to equation (5.40), to each composite state the same signal photons are associated,
given by

NS = |∆ |2 = number o f signal photons/symbol (6.77)

Therefore Gram’s matrix becomes

G =


1 |X |2 . . . |X |2

|X |2 1 . . . |X |2
...

. . .
...

|X |2 |X |2 ... 1

 (6.78)

Notice that G is a circulant matrix, as a consequence of the GUS.
Considering the GUS, the eigenvalues of G are given by the DFT of the first row[
1, |X |2, ..., |X |2

]
and therefore

λi =
K−1

∑
k=0

G0kW−ki
K = 1+ |X |2

K−1

∑
k=1

W−ki
K (6.79)
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we have

λi =

{
1+(K−1)|X |2, i = 0
1−|X |2, i = 1, ...,K−1

(6.80)

where

λ0 = 1+(K−1)|X |2

λ1 = 1−|X |2
(6.81)

The error probability is computed from (3.111) and becomes

Pe,quantum = 1− 1
K2

(√
1+(K−1)|X |2 +(K−1)

√
1−|X |2

)2

(6.82)

In the quantum case, the error probability is given by (6.82), which can be rewritten
in the form

Pe,quantum =
K−1

K2[
K− (K−2)

(
1−|X |2

)
−2
√(

1−|X |2
)(

1+(K−1) |X |2
)] (6.83)

where the superposition degree |X |2 can be expressed as a function of the number
of signal photons per symbol NS, or of the number of signal photons per bit NR

|X |2 = e−NS = e−NR log2 K (6.84)

6.3.1.1 Case 4-PPM

So, in our case, where K = 4, the equation (6.84) becomes

|X |2 = e−NS = e−2NR (6.85)

and then the equation (6.83) can be rewritten as

Pe,quantum =
3
8

[
4−2

(
1−|X |2

)
−2
√(

1−|X |2
)(

1+3|X |2
)]

(6.86)

Thus the equation (6.86) can be rewritten with the following

Pe,quantum =
3
2
− 3

4

(
1−|X |2

)
− 3

4

√(
1−|X |2

)(
1+3|X |2

)
(6.87)
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and finally

Pe,quantum =
3
4
+

3
4

e−2NR − 3
4

√
1+2e−2NR −3e−4NR (6.88)

6.3.1.2 Case 16-PPM

So, in our case, where K = 16, the equation (6.84) becomes

|X |2 = e−NS = e−4NR (6.89)

and then the equation (6.83) can be rewritten as

Pe,quantum =
15

256

[
16−14

(
1−|X |2

)
−2
√(

1−|X |2
)(

1+15|X |2
)]

(6.90)

and then

Pe,quantum =
15
16
− 210

256
(
1− e−4NR

)
− 15

128

√
(1− e−4NR)(1+15e−4NR)

(6.91)

6.3.2 Performance of Classical K-PPM Systems

Now, recall that the equation of K-PPM in the classical channel (according to (5.48))
is as follows

Pe,classical =
K−1

K
e−NS (6.92)

6.3.2.1 Case 4-PPM

So, in our case where K = 4 this equation becomes

Pe,classical =
3
4

e−NS (6.93)

and then

Pe,classical =
3
4

e−2NR (6.94)
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In the classic 4-PPM system the channel and decision criterion is made as follows
in the Figure 6.11

Fig. 6.11 Channel and decision criterion of a classical 4-PPM. A0 is the transmitted word, B0 the
received word, and Â0 the decided word

6.3.2.2 Case 16-PPM

So, in our case where K = 16 this equation becomes

Pe,classical =
15
16

e−4NR (6.95)

6.3.3 Performance of USD K-PPM Systems

Now let’s see at how the 4-PPM system is detected in the USD system.
As we saw in Chapter 3, with a modulation order number of symbols greater then
two, we can find upper and lower bounds for the USD system.
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6.3.3.1 Lower bound in the case of 4-PPM

Regarding the lower bounds, let’s start with the formula (3.52). Knowing that the
symbols are equiprobable then the ηi are equal to 1/K with K = 4.
So the error probability can be rewritten as

Pe,USDLower ≥
1
3

4

∑
i=1

4

∑
j=1
j 6=i

1
4

∣∣〈ψi|ψ j
〉∣∣ (6.96)

The inner products
∣∣〈ψi|ψ j

〉∣∣ can be rewritten as∣∣〈ψi|ψ j
〉∣∣= e−NS = e−2NR (6.97)

And finally

Pe,USDLower ≥ e−2NR (6.98)

6.3.3.2 Lower bound in the case of 16-PPM

The inner products
∣∣〈ψi|ψ j

〉∣∣ can be rewritten as∣∣〈ψi|ψ j
〉∣∣= e−NS = e−4NR (6.99)

And then
Pe,USDLower ≥ e−4NR (6.100)

6.3.3.3 Upper bound

Now let’s analyze the upper bound. Considering the equation (3.53) we can write
the upper bound as

Pe,USDU pper ≤ 1−λK (6.101)

where λK is the minimum eigenvalue in the matrix thus formed〈ψ1|ψ1〉 · · · 〈ψ1|ψK〉
...

. . .
...

〈ψK |ψ1〉 · · · 〈ψK |ψK〉

 (6.102)
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6.3.3.3.1 Case 4-PPM〈
ψi|ψ j

〉
can be written in the form

〈
ψi|ψ j

〉
=

{
1, if i = j
e−NS = e−2NR , if i 6= j

(6.103)

Therefore, we can write in extended form as follows

〈
ψi|ψ j

〉
=


1 e−2NR e−2NR e−2NR

e−2NR 1 e−2NR e−2NR

e−2NR e−2NR 1 e−2NR

e−2NR e−2NR e−2NR 1

 (6.104)

6.3.3.3.2 Case 16-PPM

In the case of 16-PPM the inner product
〈
αi|α j

〉
can be written in the form

〈
ψi|ψ j

〉
=

{
1, if i = j
e−NS = e−4NR , if i 6= j

(6.105)

6.3.3.4 Upper bound with GUS in the case of 4-PPM

Assuming equal a priori probabilities, the minimum failure probability for unam-
biguous discrimination of symmetric states is given by the formula (3.107) which is
shown below

Pe,USD ≤ 1−K min
k
|ck|2 (6.106)

The value of |ck|2 is given by [82] and is equal to

|ck|2 =
1

K2

K

∑
i=1

K

∑
j=1

e
−2πik(i− j)

K
〈
ψ j|ψi

〉
(6.107)

where
〈
ψ j|ψi

〉
is equal to

〈
ψ j|ψi

〉
=

{
1, if i = j
e−NS = e−2NR , if i 6= j

(6.108)

So, the failure probability is as follows
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Pe,USD ≤ 1−K
1

K2 min
k

∑
i, j
i 6= j

e
−2πik(i− j)

K e−2NR +K

 (6.109)

and finally (for K = 4)

Pe,USD ≤ 1− 1
4

min
k

∑
i, j
i 6= j

e
−iπk(i− j)

2 e−2NR +4

 (6.110)

Fig. 6.12 Comparison of classical, quantum and USD (Upper bound, Lower bound and GUS)
4-PPM modulation

The comparison between the Pe,classical of the classical receiver, given by (6.94), the
Pe,quantum of the quantum receiver, given by (6.88) and Pe,USD of USD receiver, given
by upper bound (6.101), lower bound (6.96) and GUS (6.110) is shown in Figure
6.12 as a function of the average number of photons per bit NR.
Analyzing the results we can see an improvement of 4-PPM in USD.
Interestingly, the bounds of the USD overlap. Finally, the USD compared to the
classic 4-PPM has very close performances. So we can conclude by saying that
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with a modulation of this type we can have satisfactory performances with the USD
channel.
Now, we report the values of NR for the various channels analyzed at the sensitivity
10−9:

NR,quantum = 5.109 photons/bit

NR,classical = 10.217 photons/bit

NR,USDU pper,GUS = 10.361 photons/bit

NR,USDLower = 10.361 photons/bit

NR,USDU pper = 10.361 photons/bit

Fig. 6.13 Probability of conclusive results as a function of mean photon number NR for the USD
scheme with 4-PPM modulation in comparison with classical, quantum and Optimal USD

In Figure 6.13 shows the probability of conclusive results as a function of mean
photon number NR of the input state for the USD scheme. The maximum probability
of conclusive results for optimum USD is included in Figure 6.13 as a result of
equation

POptimum,USD = K min
k
|ck|2 (6.111)
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6.3.3.5 Upper bound with GUS in the case of 16-PPM

The failure probability in the case of K = 16 is the follow.

Pe,USD ≤ 1− 1
16

min
k

∑
i, j
i6= j

e
−iπk(i− j)

8 e−4NR +∑
i, j
i= j

e
−iπk(i− j)

8

 (6.112)

Fig. 6.14 Comparison of classical, quantum and USD (Upper bound, Lower bound and GUS)
16-PPM modulation

The comparison between the Pe,classical of the classical receiver, given by (6.95), the
Pe,quantum of the quantum receiver, given by (6.91) and Pe,USD of USD receiver, given
by upper bound (6.101), lower bound (6.100) and GUS (6.112) is shown in Figure
6.14 as a function of the average number of photons per bit NR.
Analyzing the results we can see an improvement of 16-PPM in USD.
It is noteworthy that bounds of the USD compared to the classic 16-PPM have
overlapping performances.
So we can conclude by saying that with a modulation of this type we can have
satisfactory performances with the USD channel.
Now, we report the values of NR for the various channels analyzed at the sensitivity
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10−9:

NR,quantum = 2.775 photons/bit

NR,classical = 5.164 photons/bit

NR,USDU pper,GUS = 5.18 photons/bit

NR,USDLower = 5.18 photons/bit

NR,USDU pper = 5.18 photons/bit

Fig. 6.15 Probability of conclusive results as a function of mean photon number NR for the USD
scheme with 16-PPM modulation in comparison with classical, quantum and Optimal USD

In Figure 6.15 shows the probability of conclusive results as a function of mean
photon number NR of the input state for the USD scheme. The maximum probability
of conclusive results for optimum USD is included in Figure 6.15 as a result of
equation

POptimum,USD = K min
k
|ck|2 (6.113)
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6.3.3.6 Comparison of K-PPM USD systems

In Figure 6.16 the error probability of the USD PPM is plotted as a function of the
number of signal photons per bit NR for various values of K given by the formula
(6.106).
We realize that USD PPM receivers have an extraordinary sensitivity.
In particular, we report the values of NR for the USD channel, given by the formula
(3.107), analyzed at the sensitivity 10−9:

2−PPM NR,USD = 20.723 photons/bit

4−PPM NR,USD = 10.217 photons/bit

8−PPM NR,USD = 6.907 photons/bit

64−PPM NR,USD = 3.453 photons/bit

512−PPM NR,USD = 2.305 photons/bit

1024−PPM NR,USD = 2.072 photons/bit

Fig. 6.16 Error probability of USD K-PPM as a function of number of signal photons per bit NR
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