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Abstract

In this thesis we analyze a model introduced in [14, 17] and its extensions
[14, 15]. These works conjectured a new formulation of Optimal Transport,
an expanding area of mathematics whose aim is the identification of the
most efficient strategy to reallocate resources from one place to another.
The numerical approximation of the equations of the model represents a
simple yet effective numerical approach to solve Optimal Transport problems.
However, the numerical scheme was analyzed only in the two dimensional
case.

The aim of this thesis is to exploit the model to solve three dimensional
Optimal Transport problems, where few examples of numerical solution are
known from the literature. We present all the non trivial challenges required
by the three dimensional extension, together with an ample series of numeri-
cal experiments, that confirms the conjectured equivalence with the Optimal
Transport problem. The results show that the numerical scheme is robust
and efficient, with ample space for improvement from the computational
point of view.
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Introduction

Optimal Transport (OT) is an expanding area of mathematics that stud-
ies how to find the least-cost strategy, with respect to a transport cost, to
reallocate resources from an initial to a final configuration.

Gaspard Monge was the first to approach this problem in 1781 in "Mé-
moire sur la théorie des déblais et des remblais" [24], where he discussed
the problem of finding the most efficient way to move soil from an exca-
vation site to an embankment of equal volume. Mathematically speaking,
the excavation site and the embankment are described, respectively, by two
non-negative measures f+ and f− with equal mass. Originally, Monge con-
sidered the Euclidean distance as cost function, thus assuming the cost of
transportation to be proportional to the travel distance. Nowadays, dif-
ferent formulations of the OT problem exist, this is due to the increasing
attention to the problem after the relaxed formulation proposed by Leonid
Kantorovich in 1942 [20], and nowadays this is called the Monge-Kantorovich
(MK) problem. A divergence constrained formulation is another formulation
of the OT problem that aims to find the optimal transportation path in case
the mass accumulation along the process is either favoured or discouraged.
The formulation is the following: given Ω ⊂ Rd and q ∈ (0, 2), find among
the vector-valued functions v : Ω 7→ Rd, orthogonal to the boundary of Ω,
the optimal v∗ that solves

inf
v

{∫

Ω

|v|q : ∇· v = f+ − f−
}
.

In case q ∈ (1, 2) the problem is called Congested Transport (CT) problem,
and the convex exponent in the minimization problem discourages mass accu-
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mulation along the transport. In case q = 1 the problem is called Beckmann
problem, and it is equivalent to the Monge-Kantorovich OT problem, with
cost equal to the Euclidean distance. When q ∈ (0, 1) we have the Branched
Transport (BT) problem, which encourages mass accumulation. This con-
centration effect leads to the formation of very singular solutions, and the
integral process requires a proper characterization [35]. In the above for-
mulation f+ and f− no longer represent the initial and final configuration
of the transported resources, but they can be reinterpreted as a continuous
injection and absorption of mass. The problem now searches for the min-
imizing flux that ensures mass balance and minimizes the overall "traffic",
penalizing or not mass concentration along the transport depending on the
value of q.

The numerical solution of the Divergence Constrained formulation finds
applications in several fields. For example, the CT problem can be used
to model traffic flows [8]. The Monge-Kantorovich OT problem with the
Euclidean distance (equivalent to the Beckmann problem) is exploited in
Machine Learning [1, 22] and Image Processing [29]. The BT problem is
probably the most interesting from the physical point of view, since the
solutions of this problem are spatial trees with many bifurcations, that re-
semble many natural and artificial complex transport systems. Tree roots
represent a perfect example of this ramified structure. In fact, they explore
the entire soil water horizon, typically highly heterogeneous, saving as much
water and nutrients as possible [21], and as result they develop this peculiar
network. On the other hand, tree branches spread out in the air to maximize
the amount of light they receive from the sun for photosynthesis, minimizing
their surface as protection from external factors, such as parasites or tem-
perature changes. Another example is the circulatory system in the human
body, where veins and arteries transport back and forth the blood from the
heart to the whole body and exhibit the ramified structure. Therefore, this
branched framework is very common in natural systems, and OT theory can
be effectively used to describe these patterns as solution of minimal energy
problems. However, the numerical solution of OT and especially BT prob-
lems poses very difficult issues, and only few examples in the two dimensional
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case exist [26].

The above examples give an idea of the importance of solving the OT
problem. Unfortunately there are few examples in literature that solve the
CT problem and the Beckmann problem in the three dimensional case [2,
10, 36], while there are not three dimensional solutions for the BT problem.

The main purpose of this thesis is to exploit the numerical scheme, in-
troduced in [14, 17], to the three dimensional case. The model consists in
solving the Dynamic Monge-Kantorovich (DMK) equations, a system com-
posed by an elliptic diffusion equation for the transport potential and an
ordinary differential equation for the transport density. The problem reads
as follows: find the pair of functions (µ(t, ·), u(t, ·)) : [0,+∞)×Ω 7→ R+×Rd

that satisfies:

−∇·
(
µ(t, x)∇u(t, x)

)
= f+(x)− f−(x)

∂tµ(t, x) = [µ(t, x)| ∇u(t, x)|]β − µ(t, x)

µ(0, x) = µ0(x) > 0

where µ is an isotropic conductivity coefficient and u is a potential function.
The dynamics of the process is modulated by the coefficient β ∈ (0, 2),
the case β ∈ (0, 1) penalizes mass accumulation along the transport, while
β ∈ (1, 2) favours the aggregation. The DMK solution is conjectured to
converge toward an equilibrium configuration (µ∗, u∗) at large times, and
the asymptotic vector field v∗ = −µ∗∇u∗ is conjectured to be solution of
the OT problem. Unfortunately, the proof of the mathematical existence
and uniqueness of the solution pair (µ(t), u(t)) is still an open problem.
However, in [14, 17] the authors identify a Lyapunov-candidate functional,
i. e. a functional that decreases in time along (µ(t), u(t)) and that reads as
follows:

Lβ(µ) :=
1

2

∫

Ω

µ| ∇u(µ)|2 dx+
1

2

∫

Ω

µ
2−β
β

2−β
β

dx .

Moreover, the authors proved that in case β ∈ (0, 1], the minimization of Lβ
is equivalent to the Divergence Constrained formulation with q = 2−β, and
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the asymptotic configuration (µ∗, u∗) of the model is related to the solution
of the p-Poisson equation. On the other hand, when β ∈ (1, 2) the previous
equivalence between the minimization of Lβ and the Divergence Constrained
formulation holds in the form of conjecture, supported by numerous numer-
ical experiments.

The main advantage of the DMK formulation is that its numerical dis-
cretization is rather simple and efficient. Firstly, the ordinary differential
equation for the transport density µ is projected onto a piecewise constant
FEM space defined on a triangulation of the domain. Then, the elliptic
equation is discretized using a linear Galerkin FEM method defined on the
uniformly refined grid. Finally, the resulting differential-algebraic system of
equations is solved exploiting the forward or the backward Euler method.
The procedure is iterated in time until the relative differences on the spatial
norm of the transport density are smaller than a predefined tolerance.

In this thesis we extend the two dimensional algorithm implemented in
[14, 17] to verify the conjectures and the effectiveness of the solver in the
three dimensional case. We consider the forward Euler scheme for the time
discretization and we exploit the spatial discretization that requires to work
simultaneously with a grid and the relative refined subgrid. We follow the
approach described in [27] and obtain the subgrid by uniformly refining each
tetrahedron into 8 tetrahedra.

All the experiments support the conjecture that the solution (µ(t), u(t))

possesses a time-asymptotic equilibrium point. Moreover, we compare the
asymptotic state of the DMK equations with an explicit solution of the
OT problem, when available, and we prove the optimal convergence of the
scheme, consistently with the two dimensional case. In addition, we are able
to compute accurately the 1-Wasserstein distance, even with very coarse
meshes. We also consider spherical domains, where an analytical solution
for the p-Poisson equation is derived. The numerical experiments show the
asymptotic configuration is related to that explicit solution, giving solidity
to the scheme in the case β ∈ (0, 1]. Moreover, for β > 1, the optimal
path, which is described by the asymptotic value µ∗, presents the ramified
structures typical of the BT problem.
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Chapter 1

Introduction to Optimal Mass
transport theory

In this chapter we present a general introduction of the theory of Optimal
Transportation (OT). We start from the original formulation made by Monge
and the relaxation introduced by Kantorovich. Subsequently we focus on the
Divergence Constrained formulation of the problem and we define the Monge-
Kantorovich equations. Then we move to more general formulations, where
mass concentration along the transport is either penalized or favoured.

1.1 Monge formulation

Gaspard Monge was the first to approach the OT problem in 1781 in "Mé-
moire sur la théorie des déblais et des remblais" [24], introducing it as a
problem of military fortification construction. The Monge OT problem aims
to find the least effort map to move the soil from an excavation area (déblais)
to an embankment (remblais), preserving the volume and considering as
transport cost the product between the distance and the mass.

Mathematically speaking, the déblais and the remblais can be considered
as two non negative measures f+ and f− with equal mass, living in two
complete and separable spaces X and Y . We denote with M+(Ω) the set
of non negative measures defined on a measure space Ω. All the possible
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Déblais ≈ f+ Remblais ≈ f−

T

Figure 1.1: Graphic representation of the Monge problem of finding the
least effort map to move the soil from an excavation area (déblais) to an
embankment (remblais) of equal volume.

mass movements between X and Y with the mass-conservation assumption
constitute the set of transport maps :

T (f+, f−) :=

{
measurable map T : X 7→ Y

s.t. : T#(f+) = f−

}

where T#(f+) is the image measure defined as

T#(f+)(A) := f+(T−1A) for all measurable sets A ∈ Y .

The transport cost c : X × Y 7→ R+ is a function that describes the cost
of moving a unit mass from X to Y , and in its original formulation Monge
considered the standard Euclidean distance c(x, y) = |x− y|. We can state
the Monge problem as follows.

Problem 1 (Monge Problem)
Given two non negative finite measures f+ and f− on X and Y satisfying
f+(X) = f−(Y ) and a cost function c : X × Y 7→ R+, find T ∗ ∈ T (f+, f−)

solving

min
T∈T (f+,f−)

I(T ) :=

∫

X

c(x, T (x))df+(x) . (1.1.1)

6



1.2. KANTOROVICH RELAXATION

1.2 Kantorovich relaxation

Problem 1, as formulated by Monge, poses some serious issues from the
mathematical point of view. In fact, standard tools of the calculus of varia-
tions can not be applied due to the high non linearity in the constraints and
even the existence of a transport map is difficult to prove. A relevant im-
provement came around the 1940s, when Leonid Kantorovich introduced in
[20] a relaxed version of the Monge problem, which eventually led to the de-
velopment of linear programming and brought Kantorovich the Nobel Prize
in Economics in 1975.

To simplify the exposition, we start from the finite dimensional case.
Given the densities f+ and f− introduced in the Monge problem, consider
the points (xi)i=1,n ∈ Rd and (yj)j=1,m ∈ Rd. Then, we associate to each
discrete point the mass (f+

i )i=1,n or (f−j )j=1,m, and we add the requirement∑n
i=1 f

+
i =

∑m
j=1 f

−
j . To each couple of points (xi, yj) we assign the real

number cij, representing the cost of moving one unit of mass from xi to yj,
i. e. the Euclidean distance between xi and yj. Thus we define the problem
as follows.

Problem 2 (Discrete Primal Problem)
Given c ∈ Rn×m, f+ ∈ Rn and f− ∈ Rm, find γ∗ that solves the minimization
problem:

min
γij

n∑

i=1

m∑

j=1

cijγij (1.2.1a)

m∑

j=1

γij = f+
i

n∑

i=1

γij = f−j γij ≥ 0 . (1.2.1b)

This problem tells that we have to identify the variables γij, which stand
for the quantity of resources moved from the initial place i to the final place
j. This formulation allows the splitting of the mass in the movement from
the initial configuration to the final and, due to its linearity, it can be seen
as a discrete relaxed version of problem 1. Problem 2 is called "primal".

7
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In fact, as typically in operation research, to each primal linear program-
ming problem there is an equivalent "dual" problem. The discrete dual of
problem 2 is given by:

Problem 3 (Discrete Dual Problem)
Given c ∈ Rn×m, f+ ∈ Rn and f− ∈ Rm, find u∗ and v∗ which solve the
maximization problem:

max
(ui,vj)

n∑

i=1

uif
+
i +

m∑

j=1

vjf
−
j (1.2.2a)

ui + vj ≤ ci,j . (1.2.2b)

For the sake of simplicity, to better understand the above discrete formu-
lations, we report here a basic result of operation research (see [7]), which
explains how a discrete primal minimization problem is related to its dual,
that is a maximization problem.

min
x

{
c · x :

Ax = b

x ≥ 0

}
= max

y

{
b · y : ATy ≤ c

}
(1.2.3)

A ∈ Rm,n x, c ∈ Rn y, b ∈ Rm .

Moving from the discrete to the continuous setting, the masses of the
initial and of the final configurations are no more divided into different posi-
tions, but they are arranged with initial and final “densities”. The solution of
the relaxed formulation will now be searched not in the set of the transport
maps T (f+, f−), but among the transport plans :

Γ(f+, f−) :=
{
γ ∈M+(X × Y ) : (πx)#γ = f+ , (πy)#γ = f−

}

where πx and πy are the projection maps (x, y) 7→ x and (x, y) 7→ y. Thus γ
and the two constraints are the analogous in the continuous case of γij and of
the constraints of equation (1.2.1). We can now formulate the Kantorovich
Primal problem.

8



1.2. KANTOROVICH RELAXATION

Problem 4 (Kantorovich Primal Problem)
Given two non negative finite measures f+ and f− on X and Y satisfying
f+(X) = f−(Y ), and given a cost function c : X×Y 7→ R+, find the optimal
transport plan γ∗ ∈ Γ(f+, f−) that solves

min
γ∈Γ(f+,f−)

Kc(γ) :=

∫

X×Y
c(x, y)dγ(x, y) . (1.2.4)

The relaxation of Monge’s original problem provided by Kantorovich is
such that for any map T ∈ T (X, Y ) we can always define a plan γ that
belongs to Γ(f+, f−). A first important advantage of problem 4 is that,
under very mild assumptions on the cost function, it admits a solution, as
stated in the following theorem.

Theorem 5
For any c : X × Y 7→ R lower semi-continuous, problem 4 admits a solution
γ∗ ∈ Γ(f+, f−) .

The proof of the above theorem can be found in [30], and it is based on
the classical direct method of the calculus of variations. A second advantage
is that it admits a dual, similarly to the discrete case. Thus, defining with
Cb the space of continuous and bounded functions and with Lc the set

Lc :=

{
(u, v) ∈ Cb(X)× Cb(Y ) :

u(x) + v(y) ≤ c(x, y) ∀(x, y) ∈ X × Y

}
,

we are ready to define the Kantorovich Dual problem in the continuum.

Problem 6 (Kantorovich Dual Problem)
Given two non negative finite measures f+ and f− on X and Y satisfying
f+(X) = f−(Y ), and given a cost function c : X × Y 7→ R+, find the pair
(u∗, v∗) ∈ Lc which solves the maximization problem:

sup
(u,v)∈Lc

I(f+,f−)[u, v] :=

∫

X

u(x)df+(x) +

∫

Y

v(y)df−(y) . (1.2.5)

9
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We will see later how the dual formulation plays a fundamental role in
the analysis of OT. The following is the Kantorovich duality theorem, that
is mentioned here for completeness and whose proof can be found in [33].

Theorem 7 (Kantorovich Duality)
Given two non-negative finite measures f+ and f− on X and Y satisfying
f+(X) = f−(Y ), and given a cost function c : X × Y 7→ R lower semi-
continuous, the following equality holds:

min
γ∈Γ(f+,f−)

Kc(γ) = max
(u,v)∈Lc

I(f+,f−)(u, v) .

To conclude, we remark that the Kantorovich formulation is nowadays
known as the Monge-Kantorovich Transport problem.

1.3 Lp-OT problem: c(x, y) = |x− y|p

A typical cost function used in OT is c(x, y) = |x− y|p, which gives origin
to the so called Lp-OT problem, with p > 1. Referring to [30], we report a
fundamental result for this class of problems.

Proposition 8
Consider a compact domain Ω ⊂ Rd, two balanced measures f+, f− ∈M+(Ω),
such that ∂Ω is f+-negligible, and f+ is absolutely continuous with respect
to the Lebesgue measure. Assume that the transport cost is of the form
c(x, y) = h(|x − y|) with h a strictly convex function, then there exists a
unique transport plan γ∗ ∈ Γ(f+, f−) of the form γ∗ = (Id, T ∗)#f

+, with
T ∗ ∈ T (f+, f−). Moreover, there exists a Kantorovich potential u such that
T ∗ satisfies the following relation:

T ∗(x) = x− (Jh)
−1(∇(u∗(x)))

where J is the Jacobian matrix.

This proposition ensures uniqueness of an optimal transport plan that is
solution of the Kantorovich Primal problem, and the existence of an optimal

10
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map. Unfortunately, we are not able to apply the above proposition when
p = 1, i. e. when we consider the Euclidean distance as cost function, that is
what happens in the problem formulated by Monge.

1.3.1 Wasserstein distance

We give now an intuitive definition of theKantorovich-Rubinstein-Wasserstein
distance; this is known in literature just as Wasserstein distance, so we will
denote it in this way. The p-Wasserstein distance, defined in [34], reads as
follows.

Definition 9 (p-Wasserstein distance)
Given Ω an open, bounded, convex, and connected domain in Rd with smooth
boundary and two non-negative finite measures f+ and f− on Ω satisfying
f+(Ω) = f−(Ω), and p ≥ 1. The p-Wasserstein distance between f+ and f−

is given by:

Wp(f
+, f−) := min

γ

{∫

Ω×Ω

|x− y|p dγ(x, y) : γ ∈ Γ(f+, f−)

} 1
p

. (1.3.1)

We would like to highlight the relation between this distance and prob-
lem 4, when the cost function is given by c(x, y) = |x− y|p, showing that
OT finds the plan that minimizes the p-Wasserstein distance.

The importance of the Wasserstein measure can be easily understood
considering the following simple example, taken from [1]. Given two non-
overlapping Dirac densities, we want to measure their distance. The 1-
Wasserstein distance provides a more precise and smoother result than other
measures, which may return a non-continuous distance or infinity. It is now
commonly accepted that the p-Wasserstein distance can be exploited when
we need to measure distance between densities, e. g. between two probabil-
ity distributions. We will se later that the model we propose computes the
1-Wasserstein distance very efficiently.

11
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1.4 L1-OT problem: c(x, y) = |x− y|
We move now from the Lp-OT problem to the L1-OT problem, where p = 1

and the cost function is the Euclidean distance c(x, y) = |x− y|, which is
the cost considered in problem 1. We highlight that, due to this choice of
c(x, y), the total transport cost does not depend on the intermediate phases
between the starting and the final configuration of the mass transported.
From now on, we will consider Ω ⊂ Rd an open, bounded, connected and
convex domain with smooth boundary. Moreover, f+ and f− admit L1-
density with respect to the Lebesgue measure, meaning they are integrable
functions. With a small abuse of notation, we will denote these densities
with f+ and f−. The following considerations and results can be extended
in case the above hypotheses do not hold [33].

The L1-OT problem presents more pathological behaviour than those
described in proposition 8, in fact the uniqueness of an optimal plan is not
ensured. In addition, it is still a matter of research the minimal assump-
tions needed on f+, f− and Ω to ensure the existence of the optimal trans-
port map solution of the Monge problem. Despite these difficulties, L1-OT
problem has a rich mathematical theory, and it presents different analogous
formulations.

The first important result we want to highlight for the L1-OT problem
is given by the following theorem, which presents a different way to describe
the Kantorovich Dual problem.

Theorem 10 (Kantorovich-Rubinstein Theorem)
Consider Ω ⊂ Rd an open, bounded, connected, and convex domain with
smooth boundary. Take two non-negative balanced densities f+ and f− on
Ω. Problem 6, with cost function c(x, y) = |x− y|, can be rewritten as
follows. Find u∗ ∈ Lip1(Ω) that solves

sup
u∈Lip1(Ω)

∫

Ω

uf dx (1.4.1)

with f = f+ − f−. Lip1(Ω) denotes the set of the Lipschitz continuous
functions of Ω, with Lipschitz constant equal to 1.

12
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The proof of the theorem can be found in [33], where it is proved that
the equality (u∗, v∗) = (u∗,−u∗) and the constraint (u∗, v∗) ∈ Lc, when
c(x, y) = |x− y|, lead to u∗ ∈ Lip1(Ω).

Before going on with the discussion of the L1-OT problem, we introduce
a new formulation that is crucial for the purposes of this thesis.

Problem 11 (Beckmann Problem)
Consider Ω ⊂ Rd an open, bounded, connected, and convex domain with
smooth boundary. Take two non-negative balanced densities f+ and f− on
Ω. Find v∗ ∈ [L1(Ω)]d solving

min
v∈[L1(Ω)]d

{∫

Ω

|v| dx : ∇· v = f

}

where f = f+ − f−. The divergence constraint on v is in the sense of
distributions, i.e.

∫

Ω

∇ϕ · v dx = −
∫

Ω

ϕf dx ∀ϕ ∈ C1(Ω̄)

where Ω̄ stands for the closure of Ω.

We are now ready to state the following equivalence.

Proposition 12
Consider Ω ⊂ Rd an open, bounded, connected, and convex domain with
smooth boundary. Take two non-negative balanced densities f+ and f− on
Ω , then the following equivalence holds:

sup
u∈Lip1(Ω)

∫

Ω

uf dx = min
v∈[L1(Ω)]d

{∫

Ω

|v| dx : ∇· v = f

}

where f = f+ − f− .

The proof of this equivalence result can be found in [12]. The left hand
side is equivalent to the Kantorovich Dual problem when the cost function
is c(x, y) = |x− y|, as we have seen in theorem 10, while the right hand
side is the Beckmann problem. Problem 11 gives a new point of view of the
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L1-OT problem. What is really interesting about this formulation is that
we have no more a static problem: now the process is continuous since we
have a constant injection and absorption of mass, and the only constraint
of the problem is that the vector field v satisfies ∇· v = f = f+ − f−. As
already noticed, in this formulation f+ and f− represent mass fluxes that
are continuously injected and extracted, and the equation imposes the mass
balance.

1.4.1 Monge-Kantorovich equations

Proposition 12 shows the direct connection between u∗, solution of prob-
lem 6, and v∗, solution of problem 11. A finer characterization of this rela-
tion is given by the following proposition, where we introduce the Monge-
Kantorovich equations (MK equations), that represent one of the main result
of the L1-OT problem, see e. g. [13].

Proposition 13 (Monge-Kantorovich Equations)
Given Ω ⊂ Rd an open, bounded, connected, and convex domain with smooth
boundary. Take two non-negative balanced densities f+ and f− on Ω. Con-
sider u∗ and v∗, solutions of problems 6 and 11, respectively, then the fol-
lowing equality holds:

v∗ = −µ∗∇u∗ (1.4.2)

where µ∗(f+, f−) is a L1 positive density on Ω, called OT density.
The OT density µ∗ and the Kantorovich potential u∗ satisfy the following
system:

−∇·(µ∗∇u∗) = f in Ω (1.4.3a)

| ∇u∗| ≤ 1 in Ω (1.4.3b)

| ∇u∗| = 1 a.e. in µ∗ > 0 (1.4.3c)

where f = f+ − f− .

The fundamental result of this proposition is the existence of a transport
potential, so that the flux v is a sort of "function" law, widespread in many
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applications. We highlight that ∇u∗ tells us the direction we take while
moving from the source f+ to the sink f−, while µ∗ is representative of the
amount of mass we have in each point, and can be interpreted as the flux
intensity.

Remark 14
According to propositions 12 and 13, it is worth to note the equivalence be-
tween the 1-Wasserstein distance and the Beckmann problem, that leads to
the following:

W1(f+, f−) =

∫

Ω

µ∗ dx . (1.4.4)

Historically speaking, the MK equations were introduced with two differ-
ent approaches in [5] and [13]. We summarize in figure 1.2 all the different
formulations of the Optimal Transport Problem we introduced up to this
point. Initially we move through relaxation from the Monge problem to
the Kantorovich Primal problem, and here we connect the primal with its
dual, both in the discrete and in the continuous setting. After the introduc-
tion of the OT density and of equation (1.4.2), we can link the Kantorovich
formulations, the MK equations and the Beckmann problem.
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Monge Problem

inf
T

∫

Ω

c(x, T (x))df+(x)

s.t. :
T : X 7→ Y

T#f
+ = f−

Kantorovich Primal

min
γ

∫

X×Y
c(x, y)dγ(x, y)

s.t. : γ ∈ Γ(f+, f−)

Kantorovich Dual

max
(u,v)

{∫

X

u(x)df+(x) +

∫

Y

v(x)df−(y)

}

s.t. : (u, v) ∈ Lc

Discrete Primal

min
γij

n∑

i=1

m∑

j=1

cijγij

s.t. :

γi,j ≥ 0
∑

j

γi,j = f+
i

∑

i

γi,j = f−
j

Discrete Dual

max
(ui,vj)

{
n∑

i=1

uif
+
i +

m∑

j=1

vjf
−
j

}

s.t : ui + vj ≤ ci,j ∀i, j

MK Equations

−∇ · (µ∗∇u∗) = f

|∇u∗| ≤ 1 in Ω

|∇u∗| = 1 a.e. in µ∗ > 0

Beckmann Problem

v∗ = argmin
v

∫

Ω

|v|dx

s.t. :
v ∈ [L1(Ω)]d

∇ · v = f

Figure 1.2: Map of the connections among different formulations of the OT
problem, with a particular focus on the L1-OT formulation.
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1.5 Divergence Constrained problem

In the Monge-Kantorovich formulation, the total transport cost depends only
on the initial and final points, and not on the intermediate stages. This is
not sufficient to describe all the environmental and industrial phenomena,
as we can see in the following example.

Consider a courier that has to deliver two boxes from a delivery center to
two different destinations. The problem is discrete, the final configuration
is represented by two Dirac masses, i. e. (f−j = δxj)j=1,2, where xj stands
for the destination, while f+ is a single Dirac source, with mass 2, located
at the delivery center. L1-OT problem answers sending each box to the
corresponding destination along straight lines, as if every box goes straight
from its starting to its final point, thus the path is a "V". However, this kind
of transport is economically unrealistic and it is usually more convenient
to aggregate the two boxes for the first part of the journey, and to split
them when they are closer to the destination. Therefore, following this
reasoning, the optimal transport path would have a "Y" shape. There may
be also a third situation, in which the privileged routes of the boxes are
independent, but more widespread than the ones of the L1-OT problem. For
this case, the optimal path has a "U" shape. Observe that in the L1-OT
problem the "V" shape is optimal since the transport cost per unit length is
proportional to the amount of goods transported, while the encouragement
of mass concentration and the need of a widespread path lead to the "Y"
and "U" shapes, respectively.

x1 x1 x1

y1

y2

y1

y2

y1

y2

1

1

2

1

1

1

1

Figure 1.3: Schematic representation of the problem of delivering two boxes
from a starting point x1 to two destinations y1 and y2. The left pattern is
the solution of the L1-OT problem, presenting a "V" shape. The "Y" and
the "U" shapes are reported in the middle and right patterns, respectively.
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Therefore, the L1-OT problem does not posses the capability to describe
all the possible scenarios, and favouring or penalizing mass concentration are
important factors we need to take into account. To mathematically model
these two problems we introduce a new OT formulation, which comes from
the generalization of the Beckmann problem and that reads as follows.

Problem 15 (Divergence Constrained Problem)
Given 0 < q ≤ 2, find among all vector-valued functions v : Ω 7→ Rd,
orthogonal to the boundary of Ω, the optimal v∗ that solves:

inf
v

{∫

Ω

|v|q : ∇· v = f+ − f−
}
. (1.5.1)

The kind of the transport depends on the value of the coefficient q. Of
course we observe that when q = 1 we have the Beckmann problem. In
the case q ∈ (0, 1), the concave exponent encourages mass accumulation,
and this problem is called Branched Transport (BT) problem, while when
q ∈ (1, 2], the convex power penalizes mass concentration along the path,
and we have the Congested Transport (CT) problem.

1.5.1 Branched Transport problem

The BT problem encourages mass accumulation, leading to the formation of
ramified structures, typical of many natural systems. These branched paths
produce singular measures, thus the integration process requires a proper
characterization due to regularity problems. This formulation was firstly
introduced by Gilbert in [18], where he discussed the problem of finding the
minimal cost network connecting cities.

The Gilbert-Steiner problem

Gilbert discussed the problem of finding the minimal cost communication
network. He modelled the grid as a graph such that each edge was associated
with a flow (or capacity). To this aim, he generalized the Steiner problem,
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which is the problem of finding the minimal length network connecting a
set of points x1, . . . , xn, using a sub-additive cost function. Denoting with
ϕ(q) the transport cost per unit length of an edge with flux q, this function
encourages mass accumulation if it satisfies the following two properties:

ϕ(max(q1, q2)) ≤ ϕ(q1 + q2) ≤ ϕ(q1) + ϕ(q2)

ϕ(q1 + c)− ϕ(q1) ≤ ϕ(q2 + c)− ϕ(q2) ∀c > 0, q1 > q2 .

The first property means that the transport cost increases as the transported
mass grows, but it is sub-additive: it is more convenient to transport two
parcels together rather than separately. In essence, it includes in the problem
a sort of "economy of scale". The second property states that the marginal
cost generated by adding a positive mass to a given background quantity is
smaller for bigger backgrounds. A function satisfying both properties is the
concave function ϕ(x) = qα with α ∈ (0, 1).

To properly describe the Gilbert-Steiner problem we need to define the
Transport Path.

Definition 16 (Transport Path)
Consider two atomic measures f+ =

∑n
i=1 f

+
i δxi and f− =

∑m
j=1 f

−
j δxj ,

where
∑n

i=1 f
+
i =

∑m
j=1 f

−
j , (xi, yj) are points in Ω ⊂ Rd and δp is the Dirac

measure centered in p. An admissible Transport Path (G, q) from f+ to
f− is a pair composed by an oriented graph G = (V,E) (V and E denote,
respectively, the set of nodes and the set of edges of the graph G) and a flow
function q : E 7→ [0,∞] satisfying mass balance (Kirchhoff law):

∑

e∈σ(v)

qe =





f+
i if v = xi for some i
−f−j if v = yj for some j

0 otherwise
(1.5.2)

where σ(v) is the star of v, i. e. the set of edges having vertex v in common.

Thus the Gilbert-Steiner problem reads as follows.

Problem 17 (Gilbert-Steiner Problem)
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Given two balanced atomic masses f+ and f− and α ∈ [0, 1], find the Trans-
port Path (G, q) minimizing the Gilbert-Steiner energy

Eα(G, q) =
∑

e∈E(G)

(qe)
αLe (1.5.3)

where Le denotes the length of the edge e ∈ E.

The parameter α may vary in the interval [0, 1], and the external situa-
tions α = 0 and α = 1 correspond, respectively, to the Steiner problem and
to a discrete version of the L1-OTP. When α ∈ (0, 1) we get the branched
structures, typical of the BT formulation.

The main problem of the BT problem is that it is really hard to identify a
minimizer, because we need to consider all the possible configurations, whose
number grows with the number of source and sink points. The BT problem
attempts to describe the branching structures typical of many natural sys-
tems as solution of minimal energy problems. For example, the formulation
of problem 17 finds application in the study of river networks, where the prin-
ciple of minimum energy is widespread in the study area of optimal channel
networks. This is well described in [23] and [28]. River networks are solution
of the following minimization problem:

min
Q

∑

e∈E(G)

Q
1
2
e Le

where G denotes a graph that schematizes the river network, while Qe and
Le are, respectively, the flux of water passing through each edge and the
edge length. The flux Qe satisfies the water conservation principle. The
analogy with problem 17 is evident, the minimization principle corresponds
to equation (1.5.3), while the flux Qe satisfies Kirchhoff law.

Extension to the continuum

Problem 17 can also be extended to two positive mass densities f+ and f−,
defined on the domain Ω ⊂ Rd. The intuitive idea is to take two atomic
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approximations f+
n and f−n of f+ and f−, i. e.

f+
n ⇀ f+

f−n ⇀ f−

where

f+
n =

n∑

i=1

f+
i δxi

f−n =
n∑

j=1

f−j δyj .

Consider now the Transport Path (Gn, qn) from f+
n to f−n , solution of prob-

lem 17. Then we can define the Transport Path from f+ to f− as the limit,
with n → ∞, of (Gn, qn). For this purpose, we need to introduce the con-
cepts of 1-rectifiable set in Rd and of 1-dimensional Hausdorff measure H1.
The first can be seen as a countable union of Lipschitz curves, while the H1

measure of a simple curve is the length of the curve.
We can give now the definition of the BT problem for two positive mass

densities f+ and f− defined on Ω, as it is given in [35].

Problem 18 (Branched Transport Problem)
Find v∗ ∈ [M(Ω)]d solving

min
v∈[M(Ω)]d

{∫

E⊂Ω

|v|q dH1 : ∇· v = f+ − f−
}

where E ⊂ Ω is the 1-rectifiable union of the graph edges, H1 is the 1-
dimensional Hausdorff measure, q ∈ (0, 1) andM(Ω) is the set of measures
defined on a measure space Ω. The divergence constraint on v is in the sense
of distributions.

1.5.2 Congested Transport problem

In this section we analyze the CT problem, which penalizes mass concentra-
tion along the path, and it is defined as follows.
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Problem 19 (Congested Transport Problem)
Consider Ω ⊂ Rd an open, bounded, connected, and convex domain with
smooth boundary. Take two non-negative balanced densities f+ and f− on
Ω. Given q ∈ (1, 2], find the optimal vector field v∗ : Ω 7→ Rd that solves

min
v∈[Lq(Ω)]d

{∫

Ω

|v|q dx : ∇· v = f+ − f−
}
. (1.5.4)

It can be shown that problem 19 is equivalent to the non-linear elliptic
p-Poisson equation, which reads as follows.

Problem 20 (p-Poisson Equation)
Consider Ω ⊂ Rd an open, bounded, connected, and convex domain with
smooth boundary. Take two non-negative balanced densities f+ and f− on
Ω. Assume that the forcing terms f+ and f− admit Lq-densities, with q > 1,
and let p to be the conjugate exponent of q, i.e.

1

p
+

1

q
= 1 .

We define the p-Poisson equation as follows:

−∇·(| ∇up|p−2∇up) = f+ − f− (1.5.5)

complemented with zero Neumann boundary condition.

We remark that the exponent p of definition 9 is different from the expo-
nent p of the p-Poisson equation, even if they are denoted in the same way.
The following proposition affirms the equivalence between the Divergence
Constrained formulation and the p-Poisson equation as a duality result.

Proposition 21
Consider Ω ⊂ Rd an open, bounded, connected, and convex domain with
smooth boundary. Take two non-negative balanced densities f+ and f− on
Ω. Assume that the forcing terms f+ and f− admit Lq-densities, with q > 1,
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and let p to be the conjugate exponent of q. Then the following equivalence
holds:

max
v∈[Lq(Ω)]d

{
−
∫

Ω

|v|q
q
dx : ∇· v = f+ − f−

}
= min

u∈W 1,p(Ω)

{∫

Ω

(
1

p
|∇u|p − fu

)
dx

}

(1.5.6)
where f = f+ − f− and W 1,p(Ω) is the Sobolev space. The solution up of
the right-hand side problem and the solution v̄ of the left-hand side problem
satisfy the following relation:

v̄ = − |∇up|p−2∇up .

The proof of the above proposition can be easily derived from the results
present in [12]. Note that the right-hand side of equation (1.5.6) is the weak
form of the p-Poisson equation.

The following schematic representation summarizes the different ways we
can move the mass f+ into f−, and it highlights the relationship between the
Divergence Constrained problems and the corresponding PDE formulation.
As stated above, the coefficients p and q satisfy 1

p
+ 1

q
= 1, and f = f+− f−.

We want to highlight that both the Beckmann problem and the Congested
Transport problem have a corresponding PDE formulation, while this does
not occur for the Branched Transport problem.
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Beckmann
Problem

min
v

∫

Ω

|v|q=1dx

s.t. :
v ∈ [L1(Ω)]d

∇ · v = f

Congested Transport
Problem

min
v

∫

Ω

|v|q dx

s.t. :
v ∈ [Lq(Ω)]d

∇ · v = f

Branched Transport
Problem

min
v

∫

E⊂Ω

|v|q dH1

s.t. :
v ∈ [M(Ω)]d

∇ · v = f

MK Equations

−∇ · (µ∗∇u∗) = f

|∇u∗| ≤ 1 in Ω

|∇u∗| = 1 a.e. in µ∗ > 0

p-Poisson Equation

−∇ · (|∇up|p−2∇up) = f

q ∈ (0, 1) q = 1 q ∈ (1, 2]

Figure 1.4: Schematic representation of the different ways of moving a mass
f+ into f−, highlighting the connections between the Divergence Constrained
formulations and the corresponding PDE. The exponent q ∈ [0, 2] modulates
the way we move the mass from the initial to the final configurations. In
case q ∈ (0, 1) mass accumulation is encouraged, while if q ∈ (1, 2) mass
aggregation is discouraged; for q = 1 the problem is equivalent to the L1-OT
problem. The boundary values q = 0 and q = 2 correspond to the Steiner
problem and to the Poisson equation, respectively.
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Chapter 2

Dynamic Monge-Kantorovich
formulation

In this chapter we introduce the Dynamic Monge-Kantorovich (DMK) equa-
tions developed in [14, 17] and further analyzed in [14, 15] and discuss how
these "relaxed" dynamics can be effectively exploited to derive efficient nu-
merical solutions for the OT problem.

2.1 Dynamics of Physarum Polycephalum

We start from the mathematical discrete model proposed in [31], which de-
scribes the behaviour of Physarum Polycephalum (PP): a slime mold pos-
sessing a remarkable path-finding capability in mazes. In fact, on the basis
of experimental evidence (see [25]), PP is able to find the shortest route
connecting food sources. A remarkable example of application of this opti-
mization ability is the analysis of transportation networks in cities: e. g., as
shown in [32], PP is able to reproduce the railroads of Tokyo.

In the experiment proposed in [25], initially a maze is filled by PP, then
two food sources are added and PP starts modifying its shape, concentrating
only on the shortest path connecting the two food sources. PP in the channels
of the maze is schematized as an indirect planar graph G = (V,E), where
V is the set of vertices and E is the set of edges; furthermore we denote
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the positive edge length with {Le}e∈E and the two nodal indices where the
unitary food sources are located with v = 1, n. A conductivity function
De is associated to each edge e ∈ E and a potential (or pressure) function
pv to each node v ∈ V . The mathematical discrete formulation describing
PP reads as follow. Find the optimal distribution of the pair (De, pv) that
satisfies

∑

e∈σ(v)

Qe(t) = fv =





+1 v = 1

−1 v = n

0 v 6= 1, n

∀v ∈ V (2.1.1a)

Qe(t) = De(t)
(pu(t)− pv(t))

Le
∀e ∈ E (2.1.1b)

D′e(t) = |Qe(t)|β −De(t) ∀e ∈ E (2.1.1c)

De(0) = D̂e(0) > 0 ∀e ∈ E (2.1.1d)

where e = (u, v) denotes the edge of G connecting vertices u and v, σ(v)

is the star of v, i. e. the set of edges having vertex v in common, and β is
a non-negative coefficient. The model can be explained using a hydraulic
analogy: we interpret the graph G as the pipes where a fluid flows driven
by the vertex source functions. In this view, equation (2.1.1a) is the fluid
mass balance, while equation (2.1.1b) is the momentum balance, affirming
that the flux in each edge e = (u, v) is directly proportional to the prod-
uct between the discrete gradient of the potential function (pi)i=u,v and the
conductance coefficient De. We know the conductance coefficient is the in-
verse of the hydraulic resistance, and flow resistance is proportional to the
reciprocal of the pipe diameter. Thus, the evolutive equation (2.1.1c) affirms
that to allow the flow of larger fluxes with minimal energy loss the pipe di-
ameter must increase. The decay term −De(t) keeps the diameter bounded,
compensating the growth of the hydraulic conductivity. Equation (2.1.1d) is
the initial data. Using this mathematical model, in [31] the authors showed
by numerical experiments that the conductivity De tends to localize on the
edges of the shortest path between the two food sources.

In [4] we find a very important result for the above model: when time
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t → ∞, the distribution of the conductivity function De converges to the
shortest path for a general planar graph G. Moreover, the authors proved
the above mathematical discrete model is equivalent to the OT problem,
applied on the graph G and having forcing terms satisfying:

∑

v∈V
fv = 0 . (2.1.2)

The PP problem can be reformulated as finding Q∗ = {Q∗e}e∈E such that:

min
Q∈{Qe}e∈E

∑

e∈E
QeLe s.t. : (2.1.3)

∑

e∈σ(v)

Qe = fv for all v ∈ V .

To summarize, the solution of the discrete model describing PP converges to
a stationary solution Q∗, which is solution of the above Optimal Transport
problem.

2.2 Dynamic Monge-Kantorovich formulation

Moving from the discrete to the continuum, we do not have anymore a graph
structure as for the PP dynamics, but an open and bounded domain Ω ⊂ Rd.
This is the setting where the authors in [14, 16, 17] have worked and defined
the following problem.

Problem 22 (Dynamic Monge-Kantorovich Problem)
Consider a balanced forcing function f : Ω → R, i. e.

∫
Ω
f+ =

∫
Ω
f−, where

f = f+ − f− represents the difference between mass injected and absorbed,
and thus it has to be balanced. Find the pair of functions (µ(t, ·), u(t, ·)) :

[0,+∞)× Ω 7→ R+ × Rd that satisfies:

−∇·
(
µ(t, x)∇u(t, x)

)
= f(x) (2.2.1a)

∂tµ(t, x) = µ(t, x)| ∇u(t, x)| − µ(t, x) (2.2.1b)

µ(0, x) = µ0(x) > 0 (2.2.1c)
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where µ is an isotropic conductivity coefficient and u is a potential function;
the system is complemented by zero Neumann boundary conditions. Here, ∂tµ
denotes partial differentiation with respect to time, and ∇ = ∇x. We denote
the system of equation (2.2.1) as DMK equations.

There is a close analogy between equations (2.1.1) and (2.2.1). Equa-
tion (2.2.1a) is the analogous in the continuum of the momentum balance
equation (2.1.1b), where the flow is q = −µ∇u, and equation (2.2.1b) is the
evolutive equation, which is in analogy with equation (2.1.1c). The dynamics
of the OT density described in equation (2.2.1b) has two components, the
first term is the positive contribute, given by the flux magnitude, while the
second is the decay term.

Analogously to the discrete model, in [14, 17] the authors make the fol-
lowing conjecture, relating equation (2.2.1) with the L1-OT problem.

Conjecture 1
The solution pair (µ(t), u(t)) of problem 22, with f = f+−f−, converges for
t → +∞ to the pair (µ∗, u∗), where µ∗ = µ∗(f+, f−) is the OT density and
u∗ is a Kantorovich potential, solution of the L1-OT problem.

2.2.1 Existence and uniqueness

Conjecture 1 has not been mathematically proved yet, in fact the prob-
lem of showing existence and uniqueness of the solution pair (µ, u) of equa-
tion (2.2.1) is still open. Anyway, a proof of the local in time existence and
uniqueness of the solution can be found in [14], under the assumptions of
f+, f− ∈ L∞(Ω) and µ0 ∈ Cδ(Ω), where δ ∈ (0, 1) and Cδ(Ω) is the set of the
Hölder continuous functions in Ω:

Cδ(Ω) =

{
v : Ω 7→ R : v[δ,Ω] := sup

x 6=y

|v(x)− v(y)|
|x− y|δ

< +∞
}

.

2.2.2 Lyapunov-candidate functional

To add consistency to the previous conjecture, we introduce the Lyapunov-
candidate functional, a function decreasing in time along (µ(t), u(t)) that was
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firstly identified in [17]. Specifically for the L1-OT problem, the Lyapunov-
candidate functional is defined for µ ∈ L1(Ω), and it is given by

L(µ) :=
1

2

∫

Ω

µ| ∇u(µ)|2 dx+
1

2

∫

Ω

µ dx . (2.2.2)

The Lyapunov-candidate functional is the sum of two terms: the first may
be seen as the energy dissipated during the transport, while the second rep-
resents the cost of building the optimal transport infrastructure. Thus, we
should look for the transport infrastructure µ∗ which gives the optimal trade-
off between the two components. We highlight that the Lyapunov-candidate
functional is a decreasing function along the µ(t)-trajectories, in fact its time
derivative is given by

dL(µ(t))

dt
= −1

2

∫

Ω

µ(t) (|∇u(µ(t))| − 1)2 (|∇u(µ(t))|+ 1) dx

and it is easy to see that it is always non-positive. In [14, 17], the authors
investigate if the Lyapunov-candidate functional L admits a minimum and
if this is related to the p-Poisson equation, introduced in problem 20. The
minimization of L is equivalent to problem 11, as we see in the following
proposition, whoose proof can be found in [14].

Proposition 23
Given Ω an open, bounded, convex, and connected domain in Rd with smooth
boundary. Consider f ∈ L1(Ω) with zero mean, then the Beckmann problem
and the minimization of L are equivalent:

min
v∈[L1(Ω)]d

{∫

Ω

|v| dx : ∇· v = f

}
= min

µ∈L1
+(Ω)

L(µ) (2.2.3)

where L1
+(Ω) indicates the space of the non-negative function in L1(Ω). More-

over, the OT density µ∗(f) is a point of minimum for L.
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2.3 Extended Dynamic Monge-Kantorovich for-

mulation

L1-OT problem is not enough to properly describe all the possible ways
of moving a mass, as described in the previous chapter. For this reason
in section 1.5 we extended problem 11 to problems 18 and 19. Thus, we
generalize problem 22 adding an exponent β to the first term of the dynamic
equation (2.2.1b), as suggested in [14, 15].

Problem 24 (Extended Dynamic Monge-Kantorovich Problem)
Consider a balanced forcing function f : Ω → R, meaning

∫
Ω
f+ =

∫
Ω
f−,

where f = f+ − f− represents the difference between mass injected and ab-
sorbed and a coefficient β ∈ (0, 2). Find the pair of functions (µ(t, ·), u(t, ·)) :

[0,+∞)× Ω 7→ R+ × Rd that satisfies:

−∇·
(
µ(t, x)∇u(t, x)

)
= f(x) (2.3.1a)

∂tµ(t, x) = [µ(t, x)| ∇u(t, x)|]β − µ(t, x) (2.3.1b)

µ(0, x) = µ0(x) > 0 , (2.3.1c)

where µ is an isotropic conductivity coefficient and u is a potential function.
The system is complemented by zero Neumann boundary conditions. Here,
∂tµ still denotes partial differentiation with respect to time, and ∇ = ∇x.
We define the system of equations (2.3.1a) to (2.3.1c) as DMK equations,
with a little abuse of notation.

The evolutive equation (2.3.1b) states the time derivative of the OT den-
sity µ grows non-linearly with the flux µ(t, x)| ∇u(t, x)|. When β ∈ (0, 1),
the growth is sub-linear, and it penalizes the flux intensity, i. e. the OT den-
sity. Instead when β ∈ (1, 2), the growth is super-linear, and the OT density
accumulation is favoured. Thus, equation (2.3.1) in case β ∈ (0, 1) is related
to the Congested Transport problem, instead when β ∈ (1, 2) the problem is
in analogy with the Branched Transport problem. We have not considered
in problem 24 the case β = 0, we remark now that this would lead the sys-
tem to an explicit solution. Moreover, note that the restriction β ∈ (0, 2)
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has been enforced for theoretical reasons, although numerical experiments,
reported in [14], show a similar behaviour for β ≥ 2.

We can find in [14] a generalization of conjecture 1.

Conjecture 2
The solution (µ(t), u(t)) of problem 24 converges at large times to an equi-
librium configuration (µ∗β(·), u∗β(·)), as in conjecture 1.

2.3.1 Lyapunov-candidate functional

The generalization of the Lyapunov-candidate functional to a generic β reads
as follows:

Lβ(µ) :=
1

2

∫

Ω

µ| ∇u(µ)|2 dx+





1
2

∫
Ω
ln(µ) dx if β = 2

1
2

∫
Ω
µ

2−β
β

2−β
β

dx if β ∈ (0, 2) .
(2.3.2)

Note that typical solutions of the OT of Xia [35] and numerical solutions
reported in [14, 15] show that the optimiser of Lβ has a singular structure and
thus the integrals in equation (2.3.2) need to be intended not in the Lebesgue
sense, but accordingly to the singular measure arising from the solution. This
is a still unresolved theoretical issue that will need to be addressed in future
studies. The derivative of the Lyapunov-candidate functional along the µ(t)

trajectory is given by:

dLβ(µ(t))

dt
=−1

2

∫

Ω

µβ
(
|∇u(µ(t))|β−µ(t)

1−β
β
β
)(
|∇u(µ(t))|2−(µ(t)

1−β
β )2

)
dx

and is always non-positive. We remark once more that the Lyapunov-
candidate functional is the sum of two terms, the first representing the energy
dissipated along the transport, the second standing for the cost of building
the optimal infrastructure. Thus we have to look for the minimum of the
Lyapunov-candidate functional. Therefore we focus on the existence of a
minimum of the Lyapunov-candidate functional Lβ, and on its relation with
the p-Poisson equation, as we have done in proposition 23.
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Proposition 25
Let 0 < β < 1, q = 2 − β and P (β) = 2−β

β
. Then the following equality

holds:

min
v∈[Lq(Ω)]d

{∫

Ω

|v|q
q
dx : ∇· v = f

}
= min

µ∈LP (β)
+ (Ω)

Lβ(µ) (2.3.3)

where LP (β)
+ (Ω) denotes the space of the non-negative function in LP (β)(Ω).

Moreover, the functional Lβ admits a unique minimizer µ∗β ∈ LP (β)
+ (Ω), given

by
µ∗β = |∇up|p−2

where up is the solution of the p-Poisson equation

−∇·(|∇up|p−2∇up) = f

with p conjugate exponent of q:

p =
2− β
1− β .

The proof can be found in [14]. Proposition 25 affirms the equivalence
between problem 19 and the minimization of the Lyapunov-candidate func-
tional, in case β ∈ (0, 1). Concerning the relation between the Lyapunov-
candidate functional and the p-Poisson equation, the authors in [14] propose
the following conjecture.

Conjecture 3
When β ∈ (0, 1), the solution (µ, u) of problem 24 converges, as t → ∞, to
the pair (|∇up|p−2 , up), where up is the solution of the p-Poisson equation
with

p =
2− β
1− β .

The conjecture holds for any initial condition µ0. We can include also β = 0

in conjecture 2, due to equation (2.3.1) converging to the Poisson equation
if p = 2.
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In case β ∈ (1, 2), we still want to check if the Lyapunov-candidate
functional Lβ admits a minimum, and if µ(t) converges to this minimizer as
t→∞. Unfortunately, there is no mathematical proof of this, so we are not
able to state the analogous of propositions 23 and 25 when β ∈ (1, 2). On
the other hand, in [14] the authors propose the following.

Conjecture 4
For β > 1 the solution (µ(t), u(t)) of the DMK equations converges to the
stationary point (µ∗β, u

∗
β), which is a minimum of the Lyapunov-candidate

functional Lβ and it depends on the initial condition µ0.

To support this conjecture, the authors performed various numerical sim-
ulations showing that the solution (µ, u) of the DMK equations converges to
the equilibrium solution (µ∗β, u

∗
β). Furthermore, the support of the numerical

solution of the OT density µ∗h approximates 1-dimensional structures typical
of the BT problem.

To summarize, we have seen that solving problem 24 is analogous to solve
the OT problem, and the value of β determines the behaviour of the mass
while moving along the path. In addition, the Lyapunov-candidate functional
decreases along the µ(t)-trajectories, and looking for the minimum of this
functional is analogous to solve the Divergence Constrained problem.

2.3.2 Relation with Wasserstein distance

In remark 14 we have seen the equivalence between the 1-Wasserstein dis-
tance W1(f+, f−) and the Beckmann problem. This equivalence holds when
the coefficients p of the Wasserstein distance and q of the Divergence Con-
strained problem are equal to 1. The equivalence holds only in this specific
case. We also know from propositions 23 and 25 the relation p = 2−β

1−β ,
thus we say that equations (1.3.1) and (2.2.3) are equivalent only when
q = β = p = 1. When the equality does not hold, we can only rely on propo-
sitions 23 and 25, but we don’t know any relationship with the Wasserstein
distance.

In figure 2.1 the above relations between coefficients are illustrated, and
we remark once more that coefficients p, q and β are related, respectively,

33



CHAPTER 2. DYNAMIC MONGE-KANTOROVICH FORMULATION

to the Wasserstein distance, the Divergence Constrained problem and the
Lyapunov-candidate functional.

p

β q

p = 1

q = 1β = 1

β = 2 − q

β = 2 − q ?

Figure 2.1: Relations among the coefficients p, q and β, respectively related
to the Wasserstein distance, the Divergence Constrained problem and the
Lyapunov-candidate functional. The red dashed line (β > 1) highlights the
region where an analogous of propositions 23 and 25 exists only in the form
of conjecture. The black dashed line (q ∈ (0, 1)) denotes the region where
integration problems arise (problem 18). The circle indicates the point where
the equality between equations (1.3.1) and (2.2.3) holds. This plot comes
from an idea of F. Santambrogio.
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Chapter 3

Three dimensional numerical
solution of the DMK formulation

In this chapter we move toward the work specifically done in this thesis,
describing the numerical approach we use to solve numerically the DMK
equations. Firstly, we need to remark there is no mathematical proof of the
convergence of the scheme because of the lack of global control on |∇u|, and
what we do is to rely on numerical tests. To solve equation (2.3.1) our ap-
proach is based on the method of lines: we discretize all but one dimension,
which is time that remains continuous; this leads to a system of non-linear
ordinary differential-algebraic equations. Initially we focus on the projection
spaces, many choices are analyzed in [14] and the most reliable and rea-
sonable result is to look for a continuous approximation of the Kantorovich
potential u and a more flexible and less regular approximation of the OT
density µ. Then we focus on the uniform mesh refinement algorithm we im-
plemented to refine the three dimensional grid. Successively, we talk about
the temporal discretization we perform. The non-linear differential algebraic
system is discretized by means of the first order forward Euler method. Fi-
nally, we focus on the solution of the arising system of differential algebraic
equations.
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3.1 Projection spaces

The spatial discretization of the DMK equations is achieved by projecting
the weak formulation of the system onto a pair of finite dimensional spaces
(Vh,Wh). We denote with Th(Ω) the regular triangulation of the domain,
assumed to be polygonal to avoid having to deal with the geometrical error
induced by a piecewise linear approximation of the boundary. The compu-
tational mesh is characterized by N nodes, M tetrahedra and characteristic
length h. We also denote with P0(Th(Ω)) = span{ψ1(x), . . . , ψM(x)} the
space of element-wise constant functions on Th(Ω), i. e. ψi(x) is the character-
istic function of the tetrahedron Ti, and with P1(Th(Ω)) = span{ϕ1(x), . . . ,

ϕN(x)} the space of element-wise linear Lagrangian basis functions defined
on Th(Ω). The choice of the space Vh for the projection of the weak for-
mulation of the elliptic equation (2.3.1a) is Vh = P1,h/2 = P1(Th/2(Ω)). We
remark that the triangulation Th/2(Ω) is generated by uniformly refining each
tetrahedron Tk ∈ Th(Ω), i. e. each element Tk is divided in 2d sub-elements,
and we will see later how this process is performed. Moving to the projection
space of the dynamic equation (2.3.1b), we considerWh = P0,h = P0(Th(Ω)).
Different pairs of spaces (Vh,Wh) were considered in [14], and the most ef-
ficient among them turned out being (P1,h/2,P0,h). Furthermore, some of
the spaces considered in [14] present the classical lack of stability typical of
a violation of an inf-sup-like constraint; unfortunately this condition is still
not identified.

The discrete potential uh(t, x) and diffusion coefficient µh(t, x) are defined
as follows:

uh(t, x) =
N∑

i=1

ui(t)ϕi(x) ϕi ∈ Vh = P1,h/2 = P1(Th/2(Ω))

µh(t, x) =
M∑

k=1

µk(t)ψk(x) ψk ∈ Wh = P0,h = P0(Th(Ω))

where N and M are the dimensions of Vh and Wh, respectively.

Problem 26 (Fem formulation)
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For t > 0 find (uh(t, ·), µh(t, ·)) ∈ Vh ×Wh such that

∫

Ω

µh∇uh · ∇ϕj dx =

∫

Ω

fϕj dx j = 1, . . . , N (3.1.1a)
∫

Ω

∂tµhψl dx =

∫

Ω

[
(|µh ∇uh|)β − µh

]
ψl dx l = 1, . . . ,M (3.1.1b)

∫

Ω

µh(0, ·)ψl dx =

∫

Ω

µ0ψl dx l = 1, . . . ,M (3.1.1c)

where Vh = P1(Th/2(Ω)), Wh = P0(Th(Ω)) and β ∈ (0, 2). In addition, we
add to equation (3.1.1a) the zero-mean constraint

∫
Ω
uh dx = 0 to enforce

well-posedness.

Moving toward the discrete formulation of the problem, we denote with
u(t) = {ui(t)}i=1,...,N and µ(t) = {µk(t)}k=1,...,M the vectors describing the
time evolution of the projected system. The non-linear system of differential
algebraic equations (DAE) is then:

A[µ(t)]u(t) = b (3.1.2a)

∂tµ(t) = D[u(t)]µ(t) (3.1.2b)

µ(0) = µ̃0 . (3.1.2c)

The N×N stiffness matrix A[µ(t)] and theM×M diagonal matrixD[u(t)]

are, respectively:

Aij[µ(t)] =
M∑

k=1

µk(t)

∫

Tk

ψk∇ϕi · ∇ϕj dx (3.1.3a)

Dk,k[u(t)] =
1

|Tk|

∫

Tk

(
|
N∑

i=1

ui(t)(∇ϕi)|Tk |β − 1

)
dx (3.1.3b)

where |Tk| is the measure of the element Tk. The N components of the source
vector b are

bi =

∫

Ω

f ϕi dx .
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Besides, µ̃0 is a M -dimensional vector whose components are given by

µ̃0k =
1

|Tk|

∫

Tk

µ0 dx ,

i. e. it is the L2-projection of µ0 on the tetrahedrons of Th.

3.2 Mesh refinement

We use a spatial discretization that requires to work simultaneously with a
grid with mesh parameter h and the relative subgrid with mesh parameter
h
2
. In this section we explain the idea we exploited to refine the tetrahedral

mesh. We followed the approach described in [27] to implement our own
algorithm that uniformly refines a given grid.

We start from a tetrahedral grid for which we know the topology and
the ensuing geometric properties for each cell: coordinates of the vertices,
volume, baricenter, edges, faces, surfaces of the faces, neighbouring cells
and nodes of each surface and edge. We denote with Ni the number of nodes
relative to the grid i, withMi the number of cells, and with Ei the number of
edges. We refer to the original grid with i = 1 and with i = 2 to the subgrid.
For the sake of simplicity, we refer to figure 3.1 to explain the refinement
process, where we can graphically see it for one tetrahedron; the extension
to the case of multiple tetrahedrons is straightforward. We subdivide the
tetrahedron into 8 tetrahedra, and to do so we need to add new points:
these are the middle points of each edge. Therefore, the number of nodes N2

will be equal to N1 + E1. We remark that subdividing this way each edge
we are sure that now the mesh parameter is h

2
, consistently with the space

discretization. We analyze now the building of the topology of the subgrid.
The number of tetrahedra of the refined mesh is given by M2 = M1×8. The
4 tetrahedra given by (1, 5, 6, 7), (2, 5, 8, 9), (3, 6, 8, 10) and (4, 7, 9, 10) are
always present, regardless of the regularity of the cell. On the other hand,
the other tetrahedra depend on the shape of the cell, and we choose the
configuration that minimizes the Euclidean distance between the opposite
pair of nodes (5, 10), (6, 9) and (7, 8), thus satisfying the Delaunay property
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3.2. MESH REFINEMENT

Figure 3.1: Single tetrahedron refinement example. For this refinement we
have N1 = 4, N2 = 10, M1 = 1 and M2 = 8.
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[11]. In figure 3.1 the pair (6, 9) minimizes such distance, so we connect that
vertices and we build the four tetrahedrons. The topology of the two meshes
is summarized in the following table.

(topol)1 (topol)2

(1,2,3,4) (1,5,6,7)
(2,5,8,9)
(3,6,8,10)
(4,7,9,10)
(5,6,7,9)
(5,6,8,9)
(6,7,9,10)
(6,8,9,10)

In case of different choice of pair of nodes minimizing the Euclidean distance,
the process is analogous.

The main problem we face exploiting such refinement is that the band-
width we obtain is large, thus after the building of the subgrid we do a reorder
of the mesh nodes following the Cuthill-McKee approach [9], to minimize the
bandwidth of the stiffness matrix.

3.3 Time discretization

In order to solve the DAE equation (3.1.2) we introduce time discretization
exploiting the forward Euler scheme. The approximate solution at time tk
can be written as

ukh(x) =
N∑

i=1

ukiϕi(x)

µkh(x) =
M∑

l=1

µkl ψl(x)

where we define (uk,µk) = (u(tk),µ(tk)) =
({
uki
}
i=1,N

,
{
µkl
}
l=1,M

)
. More-

over, denoting with ∆tk the time-step size, i. e. tk+1 = tk+∆tk, and recalling
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µh(t, ·) ∈ P0,h, the forward Euler scheme reads as follows:

A[µk] uk = b

µk+1 = µk + ∆tk
[
D[uk](µk)β − µk

]

µ0 = µ̃0

where the matricesA[µk] andD[uk] are defined in equations (3.1.3a) and (3.1.3b).
We remark here that using an explicit procedure like the forward Euler
method introduces limitations on the time step size, which needs to be small
enough to ensure numerical stability. In a future work we aim to exploit the
backward Euler method, and to solve the implicit equation we will rely on
the Newton algorithm.

3.4 Algorithm

The aim of our model is to optimally transport f+ into f−, and to do so we
look for the pair (µ(t, x), u(t, x)) solution of the DMK equations. We control
the achievement of the large time equilibrium by monitoring the relative
variation of µh between two successive time steps, defined as follows:

var(µh(t)) :=
ρ(µh(t), µh(t−∆t))

∆t
(3.4.1)

where

ρ(µh(t), µh(t−∆t))

∆t
:=
‖µh(t)− µh(t−∆t)‖L2(Ω)

∆t‖µh(t−∆t)‖L2(Ω)

.

and ∆t is the distance between two successive time steps. Operatively,
we start from the projected initial data µ0

h and we progress in time until
var(µh(t)) is below a fixed threshold τT, or when we exceed a maximum
number of time steps. When the first condition is achieved, we assume the
conjectured asymptotic state is reached.
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3.5 Solution of the linear system

The DAE equation (3.1.2) leads to a large sparse symmetric linear system,
which is positive semi-definite because of homogeneous Neumann bound-
ary conditions. We solve the system through the Preconditioned Conjugate
Gradient (PCG) method, and we exploit the approach suggested in [19] to
construct the Krylov subspace orthogonal to the null space of the system
matrix. A Krylov subspace of order r, generated by a matrix M and a
vector c, is the linear subspace Kr = span

{
c,Mc,M 2c, . . . ,M r−1c

}
. The

idea is to maintain the generators of Kr always orthogonal to the kernel of
A. Since during the dynamical process some of the µkl → 0, we evaluate
a "near-kernel" of A by calculating the eigenvectors relative to eigenvalues
that are smaller than a threshold (e. g. 10−10) and use these as generators of
Ker(A). This is coupled with an effective spectral preconditioner, developed
ad hoc in [3].

Convergence of the PCG method is considered achieved when the Eu-
clidean norm of the residual relative to the initial residual norm is smaller
than a fixed tolerance τCG. Operatively, we start from ukh, i. e. the solution
at the previous time step, and we use an incomplete Cholesky factorization
with no fill-in as preconditioner. Since the system dynamics drives the trans-
port density µh to zero in large portions of the domain Ω, we set a lower
limit to it imposing µh ≥ 10−10 everywhere. This is sufficient to guarantee
the coercivity of the FEM bilinear form, which is a hypothesis of the Lax-
Milgram theorem, and to keep bounded the system condition number, so
that the PCG method converges within a limited number of iterations.
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Chapter 4

Numerical experiments

In this chapter we focus on the numerical experiments we performed in or-
der to verify the accuracy of our model. Firstly, we perform a test case for
the L1-OT problem, where we compare the numerical solution with a known
analytical one, refining progressively the mesh and checking how the error be-
haves as the mesh parameter h decreases. Successively, the relation between
the OT problem and the p-Poisson equation is verified for different values
of β ∈ (0, 1], matching the numerical with the analytical derived solution of
the p-Poisson equation. Then, we solve the same problem of the first test
case as a Branched Transport problem, and this numerical simulation allows
us to observe the 1-dimensional structures typical of the BT formulation.

4.1 L1-OT problem test case

Performing this test case we check the convergence of the numerical solution
of our scheme toward the closed-form solution of the MK equations. The
coefficient β = 1 and the problem we are solving is the L1-OT problem. We
consider a cubic domain in R3, Ω = [0, 1]× [0, 1]× [0, 1], a zero-mean function
f , whose supports are two parallelepipeds Q+ and Q− contained in Ω. The
forcing f assumes different signs in the two parallelepipeds, in fact one is the
source and the other the sink. In addition, we identify with Qc the support
of the OT density µ∗ in between the source and the sink. The three supports
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are the following:

Q+ =

{
(x, y, z) ∈ Ω : (x, y, z) ∈

[
1

8
,
3

8

]
×
[

1

4
,
3

4

]
×
[

1

4
,
3

4

]}

Qc =

{
(x, y, z) ∈ Ω : (x, y, z) ∈

[
3

8
,
5

8

]
×
[

1

4
,
3

4

]
×
[

1

4
,
3

4

]}

Q− =

{
(x, y, z) ∈ Ω : (x, y, z) ∈

[
5

8
,
7

8

]
×
[

1

4
,
3

4

]
×
[

1

4
,
3

4

]}
.

This problem consists in optimally transporting f+ = f+(Q+) into f− =

f−(Q−). We solve problem 22, recalling that , when t→∞ and β = 1, the
solution of the DMK equations is conjectured to become stationary and to
approximate the solution of the MK equations. We consider a steady-state
configuration is achieved when the relative variation of the numerical density
µh between two successive time iterations is smaller than a fixed tolerance
τT, i. e.

var(µk+1
h ) =

ρ(µk+1
h , µkh)

∆tk
=
‖µk+1

h − µkh‖L2(Ω)

‖µkh‖L2(Ω)∆tk
< τT .

We denote with t∗ the time at which the numerical solution becomes sta-
tionary and with µ∗h the corresponding µkh, where k is the time step relative
to time t∗. The forcing function f is constant and assumes opposite sign in
Q+ and Q−. Specifically,

f(x, y, z) =





2 in Q+

− 2 in Q−

0 elsewhere
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Figure 4.1: The forcing function f of the test case. We highlight that the
mesh is aligned with the forcing function, and this is true for both mesh 1
and mesh 2.

and the corresponding OT density µ∗(f) is given by [6]:

µ∗(f)(x, y, z) =





2

(
x− 1

8

)
in Q+

1

2
in Qc

2

(
7

8
− x
)

in Q−

0 elsewhere .

We are solving the L1-OT problem, whose aim is to minimize the Euclidean
distance, thus the support of µ∗(f) is given by Qµ = Q+ ∪Qc ∪Q−. We set
as initial condition µ0(x, y, z) = 1 in the whole domain.

Two different mesh families are considered and we denote them as mesh
1 and mesh 2. Mesh 1 is aligned only with the two forcing parallelepipeds
Q+ and Q− and we call it Qf -aligned. On the other hand, mesh 2 is aligned
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Figure 4.2: The two pictures represent the spatial distribution of the OT
density of the L1-OT problem test case. In the upper figure we consider
mesh 1, while in the lower picture we have mesh 2. The two meshes present
different tonalities of red in Qc, which imply different orientations of the
tetrahedrons. In fact, a light illuminates the meshes, and the non smooth
surface produces the shadows we see in the top panel.
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with both the forcing function in Q+ and Q− and the OT density in Qc

and we define it as Qµ-aligned. Both meshes are aligned with the support
of f , thus the constraint

∑
i

∫
Ω
f(x)ϕi dx = 0 can be imposed exactly. The

difference between the two meshes is shown in figure 4.2, where we show the
view of the µ∗h distribution from a vertical section locate far from Qc. The
different shades indicate different illumination of the tetrahedra faces that
are not orthogonal to the lighting rays. The bottom figure shows that the
Qµ-aligned mesh has regular illumination planes, indicating alignment with
Qc. In order to asses the FEM convergence, we uniformly refine our grids
a number of times. We expect that, for mesh 1, the convergence should be
influenced also by the geometric convergence of the mesh boundary elements
toward the support Qµ of µ∗, and not only by the mesh parameter h.

We highlight that our aim does not lie in maximizing computational
speed, but only in assessing the numerical behaviour of the system, and only
once this is checked a successive step will be increasing the computational
speed. Thus we do not limit the minimum time step size, the number of
time iterations and the number of iterations for solving the linear system of
algebraic equations through the PCG algorithm. The tolerances we impose
are the followings: τCG = 10−11 for the PCG exit, τT = 5× 10−5 for station-
arity. In all the simulations we adopted a varying time step ∆tk, whose size
is tuned in according to the value var(µkh). The upper threshold for ∆tk we
impose ensures the stability of the forward Euler scheme, to be more specific
∆tk ∈ [0.005, 0.5] for each iteration. To asses the convergence of the FEM
scheme, we look at the time behaviour of the L2(Ω) relative error

err(µh(t), f) :=
‖µh(t)− µ∗(f)‖L2(Ω)

‖µ∗(f)‖L2(Ω)

(4.1.1)

as h→ 0. In addition, we compute also the Wasserstein error, which evalu-
ates the correctness of proposition 23. This error is given by:

errW1(µh(t), f) :=
L(µh(t))− ‖µ∗(f)‖L1(Ω)

‖µ∗(f)‖L1(Ω)

(4.1.2)

where L(µh(t)) is the Lyapunov-candidate functional evaluated at time t.
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Figure 4.3: Convergence toward equilibrium for both the Qf -aligned and the
Qµ-aligned meshes. The log-log plots of var(µh(t)) and err(µh(t)) vs. time
are reported.

4.1.1 Convergence toward steady-state equilibrium

Initially we analyse the numerical convergence of the solution (µh, uh) toward
the equilibrium by looking at the time evolution of var(µh(t)) and err(µh(t)),
which are reported in figure 4.3.

The µh variation displays a decreasing monotone behaviour for every
refinement, with an expected convergence rate toward steady-state. For
both the Qf -aligned and Qµ-aligned meshes, initially the var(µh(t)) plots
coincide, while at larger times they deviate as a consequence of the higher
spatial accuracy of the finer meshes. Moreover, we observe that also the
err(µh(t)) curves initially coincide, and they start diverging when the corre-
sponding spatial accuracy limit is attained. Accuracy saturation in the error
plots (err(µh(t))) vs. t occurs at the same time at which var(µh(t)) starts
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diverging. Differently from the two dimensional case, for both mesh fami-
lies err(µh(t)) reaches a point of minimum and then begins a slight growth,
and the reason of this trend is still unknown. Moreover, err(µh(t)) presents
a more peculiar behaviour in the non-stationary interval for the Qµ-aligned
mesh, but the final value of err(µh(t)) gets consistently smaller as long as the
mesh is refined. We also remark that err(µh(t)) of the finest of the Qµ-aligned
meshes required τT = 1.2× 10−5 to reach the minimum value. Therefore, an
idea to improve the computational speed of the model may be to initially
use the coarsest grid, and progressively move to more refined grids only once
the spatial accuracy limit is reached.

4.1.2 Convergence of the spatial discretization

h/8 h/4 h/2 h

10−1.5

10−1

10−0.5

err(µ∗
h) Qf -mesh aligned err(µ∗

h) ∝ h+0.429

Qµ-mesh aligned err(µ∗
h) ∝ h+0.767

Figure 4.4: Log-log plot of err(µ∗h) vs. h for both the Qf -aligned and the
Qµ-aligned meshes. The average experimental convergence rate are reported
in the legend for both meshes.

We have just seen the L2 relative error decreases as long as the mesh
becomes finer. The experimental convergence profiles for the different meshes
are reported in figure 4.4.
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4.1.3 Dynamics of L(µ(t)) and Wasserstein error

100 101 102 103

10−1

10−0.5

t

L(µh)
µ
(1)
0

µ
(2)
0

µ
(3)
0

Figure 4.5: Time behaviour of the Lyapunov-candidate functional for differ-
ent initial data. The log-log plot of L(µh(t)) vs. time is reported.

In figure 4.5 we look at the time behaviour of the Lyapunov-candidate
functional L(µh(t)) for one of the Qµ-aligned meshes, the result for the other
meshes being practically indistinguishable. Initially L decreases monotically
and then it becomes stationary; moreover different initial data lead to the
same stationary value. The three different initial conditions for the OT
density are:

µ
(1)
0 = 1

µ
(2)
0 = 0.1 + 4((x− 0.5)2 + (y − 0.5)2 + (z − 0.5)2)

µ
(3)
0 = 3 + 2 sin(8πx) sin(8πy) sin(8πz) .

We recall that the initial condition for the OT density for the other numerical
simulations is µ(1)

0 .
Figure 4.6 reports the Wasserstein error, defined in equation (4.1.2), for

both the Qf -aligned and the Qµ-aligned meshes. We see that the Lyapunov-
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Figure 4.6: Log-log plot of the Wasserstein error errW1(µh(t)) vs. time for
both Qf -aligned and Qµ-aligned meshes. The top plot refers to the Qf -
aligned mesh, the bottom plot to the Qµ-aligned mesh.

candidate functional is a good approximation of W1(f+, f−), the error de-
creases consistently as h gets smaller and errW1(µh(t)) of the Qµ-aligned-
mesh is smaller than the one of the Qf -aligned mesh.

4.1.4 Computational cost

In this thesis we are interested in evaluating the accuracy of our approach,
which is still not optimized for computational speed. Nonetheless, we include
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Figure 4.7: Number of iterations (N it.) to solve the linear system for each
time step vs. time. The linear system is solved through the PCG scheme.
The left plot is referred to the non-aligned mesh, the righ plot to the mesh
aligned with the OT density in Qc. With nref we denote the number of
refinements.

a little discussion about the computational cost. We evaluate the computa-
tional cost with the total number of iterations required to solve the linear
system arising from the discretization of the elliptic equation, and the time
behaviour of the number of PCG iterations is reported in figure 4.7. These
number of iterations grow with the size of the matrices, so with the mesh
refinements, and they are more or less constant around their mean values for
the whole time. We highlight that the number of iterations for the aligned
mesh are slightly smaller than the ones of the non-aligned mesh.

Some ideas to improve the computational speed are the use of coarse-
mesh solutions to extrapolate initial guess, or the use of an implicit scheme
to improve stability and allow larger time step size.

4.2 p-Poisson test case

This test case evaluates the validity of conjecture 3, comparing µh(t, x) with
µ∗β := |∇up|p−2, where up is the solution of the p-Poisson equation, for which
an explicit solution is developed. We denote with µ∗h the long-time limit
of µh(t, x). The domain is formed by three concentric spheres of radius
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1, 2
3
and 1

3
. The forcing term is balanced and radially symmetric, meaning

that f(x, y, z) = F (r), where r =
√
x2 + y2 + z2, and F : (0, 1) 7→ R.

4.2.1 Analytical solution for the ball

We show now the calculations we performed to obtain the analytical expres-
sion of the OT density, solution of the p-Poisson equation for a ball centred
in (0, 0). We start from the p-Poisson equation

∇·(|∇up|p−2∇up) = f

where up = up(x, y, z) and f = f(x, y, z). We move to spherical coordinates,
thus up(x, y, z) = U(r) and f(x, y, z) = F (r). The above equation becomes

r1−d d

dr

(
rd−1 |U ′(r)|p−2

U ′(r)
)

= F (r)

where d is the dimension of the problem. Moving r1−d to the right hand side
and integrating between 0 and r, we get

rd−1 |U ′(r)|p−2
U ′(r) =

∫ r
0
td−1F (t)dt

rd−1
,

then we apply the absolute value to both sides of the equation and we raise
to the power p−2

p−1
. We obtain

|U ′(r)|p−2
=

∣∣∫ r
0
td−1F (t)dt

∣∣ p−2
p−1

r(d−1) p−2
p−1

.

Moving back to Cartesian coordinates, and knowing from proposition 25
that, for β ∈ (0, 1), p = 2−β

1−β and the pair (µ(t), u(t)), solution of equa-
tion (2.3.1), converges to the pair (|∇up|p−2 , up), we finally obtain the ex-
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plicit formula for µ∗β:

µ∗β(x, y, z) = |Z(r)|
p−2
p−1 = |Z(r)|β (4.2.1)

Z(r) =
1

rd−1

∫ r

0

td−1F (t)dt . (4.2.2)

4.2.2 Numerical simulation

The forcing function we consider is piecewise constant, positive in the interval
r ∈ (0, 1

3
), null in r ∈ (1

3
, 2

3
) and negative when r ∈ (2

3
, 1). Moreover, f

verifies the mass conservation principle, i. e.
∫ 1

3

0
F (r)dr =

∫ 1
2
3
F (r)dr. We

performed the experiments for a sequence of conformally refined grids and
for four different values of β: 0.25, 0.5, 0.75 and the limit value of 1. The
grid refinement considered are characterized by a ratio between successive
mesh parameters of 1.2, and not of 2 as in the others numerical experiments;
i. e. for this test case we have hi

hi+1
= 1.2. It is trivial to say conjecture 3 holds

also for the boundary case β = 1. In particular, for this value equation (4.2.1)
represents the OT density solving the MK equations.

The tolerances we impose are as follows: τT = 5 × 10−5 for stationarity
and τCG = 10−11 for the PCG exit. The initial condition is µ0 = 1 in the
whole domain. In all the simulations we adopted a varying time step ∆tk,
whose size is tuned in according to the value var(µkh). The upper threshold
for ∆tk we impose ensures the stability of the forward Euler scheme.

We evaluate the relative variation and the relative L2 error, which we
recall are given by:

var(µkh) =
‖µk+1

h − µkh‖L2(Ω)

∆tk‖µkh‖L2(Ω)

err(µkh, f) =
‖µkh − µ∗β(f)‖L2(Ω)

‖µ∗β(f)‖L2(Ω)

.

where f is the balanced forcing function.
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Evaluation of the Wasserstein error

In addition to the L2 error, we also compute the time behaviour of another
error, that evaluates the correctness of propositions 23 and 25. With a
little abuse of notation, we call it Wasserstein error, remarking that, in case
β = 1, it coincides with equation (4.1.2). We start from proposition 25, and
we denote with v∗ the solution of

min
v∈[Lq(Ω)]d

{∫

Ω

|v|q
q
dx : ∇· v = f

}
.

From proposition 25 we know q = 2− β, thus we have

∫

Ω

|v∗|2−β
2− β .

Moreover, from proposition 21 we know that v∗ = −|∇up|p−2∇up, where up
is the solution of the p-Poisson equation. In conjecture 3 we affirmed that at
large times µ∗β converges to | ∇up|p−2, and knowing from proposition 25 that
the equality p = 2−β

1−β holds, we arrive at the following optimal "Wasserstein"
distance: ∫

Ω

(µ∗)
2−β
β

2− β = ‖µ
∗(f)

2−β
β

2− β ‖L1(Ω)

where without any risk of misunderstanding we denote µ∗β with µ∗.
Finally, the error reads as follows:

errW1(µh(t), f) :=
Lβ(µh(t))− ‖µ

∗(f)
2−β
β

2−β ‖L1(Ω)

‖µ∗(f)
2−β
β

2−β ‖L1(Ω)

(4.2.3)

where Lβ(µh(t)) is the Lyapunov-candidate functional evaluated at time t,

and ‖µ∗(f)
2−β
β

2−β ‖L1(Ω) is derived above.

Convergence toward steady-state and convergence profiles

In figure 4.8 we observe the behaviour of var(µh), err(µh), and errW1(µh) for
this test case. The errors decrease consistently refining the mesh and for all
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Figure 4.8: Log-log time behaviour of var(µh(t)), err(µh(t)) and errW1(µh(t)).
The ratio between successive mesh parameters h is hi

hi+1
= 1.2.

the simulations the equilibrium configuration is achieved. In case β = 1,
err(µh) starts growing after the point of minimum, and we suppose this is
due to symmetry errors between the mesh-aligned and the explicit solutions.
For the CT problem, i. e. for β < 1, the system reaches stationarity very
quickly in time with respect to the case β = 1.

In figure 4.9 we report the values of err(µ∗h) for successive refinements for
all the values of β considered. err(µ∗h) decreases consistently with the mesh
refinement, and the experimental rate of convergence of the scheme seems
to be proportional to hm, where h is the mesh characteristic length and m a
coefficient that grows with β.

4.3 BT problem test case

In this section we present a numerical experiment we performed imposing
β = 1.5 in equation (2.3.1). The domain, the forcing function, and the sup-
port of the forcing function we consider are the same of the L1-OT problem
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h/(1.2)3 h/(1.2)2 h/(1.2) h

10−4
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err(µ∗
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β = 0.25 err(µ∗
h) ∝ h+0.947

β = 0.5 err(µ∗
h) ∝ h+0.952

β = 0.75 err(µ∗
h) ∝ h+0.963

β = 1.0 err(µ∗
h) ∝ h+1.079

Figure 4.9: Log-log plot of err(µ∗h) vs. the mesh parameter h, for all the
values of β considered. In the legend we report the average experimental rate
of convergence for each β. The ratio between successive mesh parameters h
is hi

hi+1
= 1.2.

test case; which we recall are:

Ω = {(x, y, z) ∈ Ω : (x, y, z) ∈ [0, 1]× [0, 1]× [0, 1]}

f(x, y, z) =





2 in Q+

− 2 in Q−

0 elsewhere

Q+ =

{
(x, y, z) ∈ Ω : (x, y, z) ∈

[
1

8
,
3

8

]
×
[

1

4
,
3

4

]
×
[

1

4
,
3

4

]}

Q− =

{
(x, y, z) ∈ Ω : (x, y, z) ∈

[
5

8
,
7

8

]
×
[

1

4
,
3

4

]
×
[

1

4
,
3

4

]}
.

Again, the tolerances we impose are τT = 5 × 10−5 for stationarity and
τCG = 10−11 for the PCG exit. The initial condition for the OT density is
µ0 = 1 in the whole domain. As in the previous test cases, the original mesh
is conformally refined up to three times. In all the simulations we adopted
a varying time step ∆tk, whose size is tuned according to the value var(µkh).
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Figure 4.10: Log-log plot of var(µh(t)) vs. time for β = 1.5.

The upper threshold for ∆tk we impose ensures the stability of the forward
Euler scheme. An explicit solution for the OT density is not known, so we
cannot evaluate the errors as in the previous test cases, but only the variation
of the OT density µh between successive time steps.

After the initial transient, var(µh(t)) presents an irregular behaviour, and
is decreasing in time non monotonically and there are oscillations, as we see
in figure 4.10. Despite the irregular behaviour, this test case reaches conver-
gence toward the equilibrium configuration (µ∗h, u

∗
h) for every refinement.

4.3.1 Branched structures

The solution of the problem displays an irregular pattern made by narrow
channels, that connects Q+ to Q−, and whose shape tends to approximate
the 1-dimensional structures typical of the BT problem. The equilibrium
configuration µ∗, which is representative of the flow capacity, is not homoge-
neous in the domain, but its pattern suggests the presence of a hierarchical
structure. There are sub-channels with low OT density that branch into each
other, and the flow capacity is maximum in the ramified channels connecting
f+ to f−.
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Figure 4.11: Numerical approximation of µ∗h for β = 1.5. The four pictures
are obtained for the most refined mesh, i. e. with mesh parameterh

8
; the OT

density is plotted only if above the minimum thresholds of 10, 102, 103 and
5× 103, respectively.

In figure 4.11 the spatial distribution of µ∗h is reported for the most re-
fined mesh for different minimum thresholds of µ∗, and we can easily observe
the network described above. Note that these structures appear only with
a carefully selected logarithmic colour scale, showing a range in µ∗h ranging
between several orders of magnitude. Inside Q+ and Q− the hierarchical
branching structure appears, while in Qc µ∗h concentrates on a series of con-
nected tetrahedra, creating a tight channel with high flow capacity. Looking
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at figure 4.12, we observe that, as long as we refine the grid, the values of
µ∗h in the channels connecting f+ to f− grow. In fact the mass we need to
transport is the same and the channels are tighter. In addition, increasing
the spatial accuracy the mass does not change its trajectory, it still passes
through the same points. Thus, as h → 0, the trajectory approximates
always better the 1-dimensional structure, typical of the BT problem.
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Figure 4.12: Numerical approximation of µ∗h for β = 1.5. The three figures
show the branched structures for three successive refinements.
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4.3.2 Lyapunov functional

In this subsection we focus on the time behaviour of the Lyapunov-candidate
functional Lβ(µh(t)), that for β = 1.5 is given by equation (2.3.2). We recall
that this functional is the sum of two terms: E(µ(t)), which represents the
energy dissipated along the transport, and M(µh(t)), that stands for the
cost of building the optimal infrastructure. Figure 4.13 reports the time
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h
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h/4

100 101 102 103
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h
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Figure 4.13: Log-log time behaviour of Lβ(µh(t)), E(µ(t)) andM(µh(t)) for
the BT problem test case. The top left plot reports the time evolution of
the Lyapunov-candidate functional for different mesh refinements and initial
condition µ(1)

0 , the top right plot for different initial data µ0. The two bottom
images are computed for different mesh refinements, starting from the initial
condition µ(1)

0 .

evolution of the Lyapunov-candidate functional and its two contributes. The
behaviour of Lβ for different refinements and for different initial data µ0 is
shown in the upper plots, while the two lower images are the contributes E
and M for different mesh refinements and initial data µ0 = 1. First of all,
we observe that the Lyapunov-candidate functional decreases monotically
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Lβ(µ∗)

µ
(1)
0 0.663× 10−1

µ
(2)
0 0.661× 10−1

Table 4.1: Lyapunov-candidate functional equilibrium value for the consid-
ered initial conditions.

in time, consistently with what we expect. We start analysing the case
with different mesh refinements and initial data µ0 = 1. Lβ(µh) reaches an
equilibrium value Lβ(µ∗h) for every mesh refinement, but, differently from the
L1-OT problem test case, this value scales with the mesh parameter h. Also
the two functionals E(µ(t)) andM(µh(t)) present a time behaviour similar
to Lβ(µh), in fact they both reach an equilibrium point which changes with
h. The behaviour of E(µ(t)) andM(µh(t)) is opposite as long as we refine
the mesh, in fact the first decreases as h gets smaller, while the latter is
inversely proportional to h. On the other hand, the equilibrium values Lβ
are slightly different for the two different initial conditions considered, that
are

µ
(1)
0 = 1

µ
(2)
0 = 3 + 2 sin(8πx) sin(8πy)sin(8πz) .

In table 4.1 we observe the value Lβ(µ∗) for each refinement. The differ-
ent initial conditions influence the branching displacements even for coarse
meshes, as we observe in figure 4.14. Thus this test case presents dependence
on the initial data µ0, consistently with conjecture 4.

4.3.3 Computational cost

The computational cost is given by the number of PCG iterations required to
solve the linear system arising from the FEM discretization of the problem.
The time behaviour of the number of iterations is reported in figure 4.15.
The mean value of the number of iterations for each different refinement
grow consistently with the size of the system, and the resulting behaviour is
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Figure 4.14: Numerical approximation of µ∗ for different initial conditions
µ0 and β = 1.5. The initial data are µ(1)

0 and µ(2)
0 , respectively for the left

and the right pictures.

100 101 102 103
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300

t

N it.
mesh 1 nref 0
mesh 1 nref 1
mesh 1 nref 2

Figure 4.15: Number of iterations (N it.) to solve the linear system for each
time step vs. time. The linear system is solved through the PCG scheme.
With nref we denote the number of refinements.

strongly oscillatory around the mean value.
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Conclusions

In this thesis we derived and analyzed experimentally a three dimensional
numerical extension of the DMK formulation, which is an innovative way
proposed in [14, 17] to solve Optimal Transport problems. The aim of this
thesis work is to verify the accuracy and robustness of this extension. Fur-
ther developments can be easily identified for the improvement of the com-
putational speed. Two possible developments may consist in moving the
present work toward a parallel implementation, and involving an implicit
time integration, exploiting BDF (Backward Differentiation Formulae) and
the quadratic convergent Newton method.

We performed several test cases, presented in chapter 4, and the results
we obtained are satisfactory. Our three dimensional numerical model is con-
sistent with both the two dimensional model and the conjectures stated in
chapter 2. Our results show that the L1-OT problem test case verifies the
idea that the DMK equations converge at large times toward an asymp-
totic configuration, and this equilibrium is related to the solution of the MK
equations. Then we performed the p-Poisson test case, where we observe
the relation between (µ(t), u(t)) and up, solutions of the DMK equations
and of the p-Poisson equation, respectively. This relation is verified for both
the CT problem and the Beckmann problem. We observe that also for the
CT problem the solution reaches an equilibrium configuration. Next, we
addressed the BT problem test case, and for this problem the solution of
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the DMK equations again reaches an equilibrium, and our idea is that this
stationary configuration is related to the BT problem solution. The one di-
mensional branching structures arising as solution and the behaviour of the
Lyapunov-candidate functional give consistency to our conjectures.

Of course, the main future development is the application of the model to
physical problems, and one of the first future purposes may be the study of
the plant-root dynamics through an OT approach. It is a matter of fact that
OT presents extremely wide fields of application. In fact, we believe that the
cardiovascular system, animal brain, transportation networks and climate
change processes are examples of areas where OT theories can effectively and
successfully be applied toward a better understanding of their functioning
mechanism. The three dimensional numerical model developed in this thesis
will contribute substantially to the study of these fundamental and complex
problems.

66



Bibliography

[1] M. Arjovsky, S. Chintala, and L. Bottou, Wasserstein GAN,
arXiv preprint arXiv:1701.07875, (2017).

[2] J.-D. Benamou and G. Carlier, Augmented Lagrangian methods for
transport optimization, mean field games and degenerate elliptic equa-
tions, J. Optim. Theory Appl., 167 (2015), pp. 1–26.

[3] L. Bergamaschi, E. Facca, A. Martínez, and M. Putti, Spec-
tral preconditioners for the efficient numerical solution of a continuous
branched transport model, J. Comput. Appl. Math., (2018).

[4] V. Bonifaci, K. Mehlhorn, and G. Varma, Physarum can compute
shortest paths, J. Theor. Biol., 309 (2012), pp. 121 – 133.

[5] G. Bouchitté, G. Buttazzo, and P. Seppecher, Shape optimiza-
tion solutions via Monge-Kantorovich equation, CR MATH, 324 (1997),
pp. 1185–1191.

[6] G. Buttazzo and E. Stepanov, On regularity of transport density
in the Monge-Kantorovich problem, SIAM J. Control Optim., 42 (2003),
pp. 1044–1055.

[7] M. Caramia, S. Giordani, F. Guerriero, R. Musmanno, and

D. Pacciarelli, Ricerca operativa, De Agostini Scuola SpA, Novara,
Italy, 2014.

[8] G. Carlier, C. Jimenez, and F. Santambrogio, Optimal trans-
portation with traffic congestion and wardrop equilibria, SIAM J. Con-
trol Optim., 47 (2008), pp. 1330–1350.

67



BIBLIOGRAPHY

[9] E. Cuthill and J. McKee, Reducing the bandwidth of sparse sym-
metric matrices, ACM, (1969), pp. 157–172.

[10] M. Cuturi, Sinkhorn distances: Lightspeed computation of optimal
transportation distances, Adv. Neural Inf. Process. Syst., 26 (2013).

[11] B. N. Delaunay, Sur la sphère vide, Bulletin of Academy of Sciences
of the USSR, (1934), pp. 793–800.

[12] I. Ekeland and R. Téman, Convex Analysis and Variational Prob-
lems, Classics in Applied Mathematics, SIAM, Philadelphia, PA, USA,
1999.

[13] L. C. Evans and W. Gangbo, Differential equations methods for
the Monge-Kantorovich mass transfer problem, American Mathematical
Soc., 137 (1999).

[14] E. Facca, Biologically inspired formulation of Optimal Transport Prob-
lems, PhD thesis, Università degli Studi di Padova, 2018.

[15] E. Facca, F. Cardin, and M. Putti, Extended Dynamic Monge-
Kantorovich equation for Congested and Branched Optimal Transport
problems, SIAM J. Appl. Math., submitted, (2018).

[16] , Towards a stationary Monge-Kantorovich dynamics: the
Physarum Policephalum experience, SIAM J. Appl. Math., 75 (2018),
pp. 651 – 676.

[17] E. Facca, S. Daneri, F. Cardin, and M. Putti, Numerical solu-
tion of Monge-Kantorovich equations via a dynamic formulation, SIAM
J. Sci. Comput., (2017).

[18] E. N. Gilbert, Minimum cost communication networks, Bell Labs
Technical Journal, 46 (1967), pp. 2209–2227.

[19] E. F. Kaasschieter, Preconditioned conjugate gradients for solving
singular systems, J. Comput. Appl. Math., 24 (1988), pp. 265–275.

68



BIBLIOGRAPHY

[20] L. V. Kantorovich, On the translocation of masses, C. R. (Doklady)
Acad. Sci. USSR, 321 (1942), pp. 199–201.

[21] G. Katul, S. Manzoni, S. Palmroth, and R. Oren, A stomatal
optimization theory to describe the effects of atmospheric CO2 on leaf
photosynthesis and transpiration, Ann. Bot., 105 (2010), pp. 431–442.

[22] S. Kolouri, S. R. Park, M. Thorpe, D. Slepcev, and G. K. Ro-

hde, Optimal mass transport: Signal processing and machine-learning
applications, IEEE Signal Process. Mag., 34 (2017), pp. 43–59.

[23] A. Marani, R. Rigon, and A. Rinaldo, A Note on Fractal Channel
Networks, Water Resour. Res., 27 (1991), pp. 3041–3049.

[24] G. Monge, Mémoire sur la théorie des déblais et des remblais, De
l’Imprimerie Royale, 1781.

[25] T. Nakagaki, H. Yamada, and A. M. Tóth, Path finding by tube
morphogenesis in an amoeboid organism, Biophys. Chem., 92 (2001),
pp. 47 – 52.

[26] E. Oudet and F. Santambrogio, A Modica-Mortola approximation
for branched transport and applications, Arch. Ration. Mech. An., 201
(2011), pp. 115–142.

[27] A. Plaza, M. Padrón, J. Suarez, and S. Falcon, The 8-tetrahedra
longest-edge partition of right-type tetrahedra, Finite Elem. Anal. Des.,
41 (2004), pp. 253–265.

[28] I. Rodríguez-Iturbe and A. Rinaldo, Fractal River Basins:
Chance and Self-Organization, Cambridge University Press, 2001.

[29] Y. Rubner, C. Tomasi, and L. J. Guibas, The earth mover’s dis-
tance as a metric for image retrieval, Int. J. Comput. Vis., 40 (2000),
pp. 99–121.

[30] F. Santambrogio, Optimal Transport for Applied Mathematicians,
Birkäuser, NY, 2015.

69



BIBLIOGRAPHY

[31] A. Tero, R. Kobayashi, and T. Nakagaki, A mathematical model
for adaptive transport network in path finding by true slime mold, J.
Theor. Biol., 244 (2007), pp. 553 – 564.

[32] A. Tero, S. Takagi, T. Saigusa, K. Ito, D. P. Bebber, M. D.

Fricker, K. Yumiki, R. Kobayashi, and T. Nakagaki, Rules
for biologically inspired adaptive network design, Science, 327 (2010),
pp. 439–442.

[33] C. Villani, Topics in Optimal Transportation, vol. 58 of Graduate
studies in mathematics, AMS, Providence, R.I., 2003.

[34] , Optimal Transport: Old and New, Springer Science & Business
Media, Berlin, Heidelberg, 2008.

[35] Q. Xia, Optimal Paths related to Transport Problems, CCM, 5 (2003),
pp. 251–279.

[36] , Numerical simulation of optimal transport paths, 2010 Second
International Conference on Computer Modeling and Simulation, 1
(2010), pp. 521–525.

70


	Abstract
	Introduction to Optimal Mass transport theory
	Monge formulation
	Kantorovich relaxation
	 Lp -OT problem:  c(x,y)=|x-y|p 
	Wasserstein distance

	 L1 -OT problem: c(x,y)=|x-y|
	Monge-Kantorovich equations

	Divergence Constrained problem
	Branched Transport problem
	Congested Transport problem


	Dynamic Monge-Kantorovich formulation
	Dynamics of Physarum Polycephalum
	Dynamic Monge-Kantorovich formulation
	Existence and uniqueness
	Lyapunov-candidate functional

	Extended Dynamic Monge-Kantorovich formulation
	Lyapunov-candidate functional
	Relation with Wasserstein distance


	Three dimensional numerical solution of the DMK formulation
	Projection spaces
	Mesh refinement
	Time discretization
	Algorithm
	Solution of the linear system

	Numerical experiments
	 L1 -OT problem test case
	Convergence toward steady-state equilibrium
	Convergence of the spatial discretization
	Dynamics of  L((t))  and Wasserstein error
	Computational cost

	 p-Poisson test case
	Analytical solution for the ball
	Numerical simulation

	BT problem test case
	Branched structures
	Lyapunov functional
	Computational cost


	Conclusions

