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Abstract

The evolution of spherically symmetric cold dark matter overdensities in an expanding
Universe is studied using Schrödinger-Newton (SN) equations, which model self-gravitating
collisionless matter.

For doing so, the density profiles of the perturbations are ideally divided into shells, for
which an explicit SN solution for a Λ = 0 background can be found. Then, supposing
absence of shell crossing during the whole evolution of the overdensity, the free-particle ap-
proximation is applied to each shell. This approximation, under appropriate limits, which
are separately discussed, reduces either to the Zel’dovich approximation or to the adhesion
one.
Then the evolution of the overdensity is treated with SN equations in Zel’dovich approxi-
mation as a whole, without dividing the system into shells, obtaining results that perfectly
overlap with the ones held by the shell by shell study in the Zel’dovich limit.
Eventually, for a specific density profile, time dependent perturbation theory is used to
refine the evolution of its shells computed in the free-particle approximation.

Then it is studied the evolution of a density profile coherent with the initial conditions of
the Universe which are described in literature. For this system, it is explicitly found the
shell by shell exact SN solution, the SN solution in Zel’dovich approximation, and it is
discussed the evolution of a mini halo placed inside it.

Independently on the specific density profile considered, the exact solution prescribes that
the shells of the overdensity initially expand at a slower rate than the background, then
they turn around and collapse.
The free-particle approximation similarly predicts that regions of the overdensity for which
the density is below a critical value initially expand, then turn around and collapse; but
differently, if they exist, regions whose density exceeds, at the initial time, the critical
density, directly contract.
In both treatments, eventually the density diverges: in the centre of symmetry of the
perturbation if it is spherically symmetric, or possibly elsewhere if a test halo is added to
the system.

Finally, the effect on the system of a non-null cosmological constant is studied, by deriving
its effect on the solution which describes a shell. For low enough cosmological constants,
the evolution quantitatively resembles the one computed for the Λ = 0 case.
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Chapter 1

Introduction

1.1 Cosmology: what it studies, an historical excursus and

its main achievements

Cosmology studies the Universe on large scales: both in time, therefore its history and
destiny, and in space, hence the so-called Large Scale Structure of the Universe (LSS). In
other words, its aim is the understanding of the origin of the Universe, its evolution, and
its characteristics on a "large scale". How should this recurring expression be intended?
Planets, stars, and planetary systems for example are too microscopical to be object of
the study of cosmology. The typical length-scales of this subject are the ones of clusters of
galaxies, which are gravitationally bound systems of some galaxies, ranging from a few, as
the few tens of the Local Group (the cluster containing the Milky Way), to the thousands
of galaxies contained in the Coma cluster, which is depicted in figure 1.1 [18]. To set an
order of magnitude, the Local Group has a diameter of roughly 3 Mpc [60].

The length-scales of interest for cosmology range from the ones typical of single galaxies
(at least 50 kpc for the Milky Way [86]), to the Hubble horizon dH := c/H where H is the
Hubble parameter. A sphere of radius ∼ dH centred on us is the portion of the Universe
causally connected with us, and therefore the unique one from which we can collect data
(in principle, except for technical limits). Substituting into the expression for dH the value
given by the Plank 2018 data release [66] for the Hubble parameter, H = (67.66 ± 0.42)
km−1 s−1 Mpc−1, one finds

dH = (4.434± 0.028) Gpc .

An interest in the Cosmos seems to be a constitutive trait of humankind, because it is so
widespread to be relevant even in cultures which never talked to each other, like the Maya
and the Sumer1 just to make an example. In Western culture, the argument of the history
and destiny of the Universe had been addressed by philosophers since the Presocratics.
Among them, I find particularly interesting Empedocles, because he had some particularly
modern intuitions. In the appendix (in section A.1) I briefly present his cosmology and its
actuality.

1One of the most important traces left by Sumer are the Ziqqurats, which for the historian of religions
Mircea Eliade are "a symbolic image of the Cosmos" [26], and because of their orientation they were
probably also sites where to perform astronomical observations [54].
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Figure 1.1: The Coma cluster of galaxies observed in optical light. Only the central region is
shown; the cluster contains more than a thousand galaxies, most of which are elliptical. Picture
from [18].

While physics and philosophy were not separated, cosmology remained a very speculative
subject, relying as much on metaphysics as on physics. Nevertheless, some ideas pointed
out in this phase are still believed to be true: Kant’s "island universes" resemble very
closely modern galaxies, and the idea of Democritus that the Earth does not occupy a
special ("privileged") position in the Universe is taken as an axiom to formulate the modern
cosmological principle, which states that every comoving observer sees the Universe around
him, at a fixed time in his own reference frame, as homogeneous and isotropic. An observer
is comoving when she is at rest with respect to the CMB radiation.

At the beginning of the XX century, the perspective changed: the development in 1915 of
the theory of General Relativity allowed cosmology to become a purely scientific subject.
In 1924 the first cosmological models grounded within General Relativity were formulated
[64]. Such models of the Universe, whose main characteristic is to be expanding, correctly
predicted the recession of galaxies, observed by Edwin Hubble. Taking this expansion
seriously and deriving its consequences, in 1948, the hot Big Bang model was proposed [64].
The success of this model is mainly due to two correct predictions of its: the abundances
of light nuclei formed during the first minutes after the Big Bang, and the existence of a
background radiation in the microwave region of the electromagnetic spectrum, the CMB
("Cosmic Microwave Background"). The model predicts that the CMB generated at the
so-called "recombination", which is the formation of neutral atoms from free nuclei and
electrons. These predictions only rely on the hypothesis that General Relativity is a valid
description of the dynamics of the Universe and on the validity of ordinary physics. No
other alternative model has to date been able to reproduce these observations, especially
not with so few ingredients [64].

The hot Big Bang model envisages the existence of an initial state of the Universe in
which the spatial distance between every two points2 is null, time has no meaning and
the energy density is infinite (that is why it is called "hot"). The concept of spacetime

2If one can say so, since their distance is zero.
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becomes meaningful when this initial configuration starts to expand, allowing the existence
of nonzero distances. As the Universe expands it cools down. Initially, the Universe is
populated by all the elementary particles of the standard model. As the temperature
decreases, the quarks segregate into hadrons, and heavy particles start to decade in lighter
ones. Eventually, the only standard model particles left in the Universe end up being
photons, neutrinos, electrons, protons, and neutrons. Then protons and neutrons assemble
into light nuclei, and nuclei and electrons recombine into atoms. At recombination matter
and radiation decouple, and the latter still travels in a transparent Universe and forms the
Cosmic Microwave Background, which we detect since 1965.

According to the ΛCDM model (the standard model of cosmology), the particles predicted
by the standard model of particle physics constitute only a tiny fraction of the content
of the Universe, nowadays close to the 5% [66], while the biggest fraction of matter is
"dark": it interacts significantly with ordinary standard model matter only gravitation-
ally, therefore it is "dark" both because it does not emit light, since it does not interact
electromagnetically, and because its components are still unknown. Several particles which
are possible candidates for constituting dark matter have been hypothesized (e.g. WIMPs
and sterile neutrinos [22]); among them, axions and Axion-Like Particles (ALPs) are es-
pecially interesting in the framework of this thesis, since we will use a tool particularly
appropriated to treat axion dark matter. We will deepen the subject in a few pages.
Moreover, only 31% [66] of the energy density of the present-day Universe is due to matter,
the remaining 69% [66] is represented by dark energy. In the ΛCDM model this energy is
described by a cosmological constant Λ and its energy density is constant over time and
space. It can be thought of as an energy associated with empty space.

Despite correctly predicting the existence of the CMB and the abundances of light elements,
the hot Big Bang model, as exposed until now, presents some defects: let us mention the
most relevant.

From observations, held among others by COBE, WMAP, and Planck, we know that the
temperature of the CMB radiation is the same in all directions to an accuracy of better
than one part in 105. The problem lays in the fact that the standard model predicts that
regions of the sky at an angular distance of more than about 1.8 degrees, were causally
disconnected at recombination, when the CMB "formed" [50]. How all these causally
disconnected regions can have extremely similar temperatures? This problem is known as
the horizon problem of the standard model.

The second major difficulty of the model is the flatness problem. A universe in which the
cosmological principle holds is described by the solution of Einstein equations defined by
the line element

ds2 = −dt2 + a2(t)

[

1

1− kr2
dr2 + r2dΩ2

]

, (1.1)

called Friedmann-Lemaître-Robertson-Walker metric. (x, y, z, t) are coordinates on the
spacetime, dΩ := sin θdθ dφ, a is a function of time only called scale factor which allows
contractions and expansions of the Universe, the parameter k can take three different
values, which set the spatial curvature of the universe described by the solution: if k = +1
the universe has positive curvature, thus is closed, if k = −1 it has negative curvature
and it is open, while if k = 0 it is flat. The curvature of our Universe can be deduced by
estimating the value of the parameter [50]

Ωk := − k c2

H2 a2
, (1.2)
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where H is the Hubble parameter, defined as

H(t) :=
ȧ

a
,

with ȧ the time derivative of a. The value of the parameter (1.2) today was estimated in
2018 from the Planck collaboration [66] to be

Ωk(t0) := 0.0007± 0.0019 ;

t0 indicates the present time. In the standard hot Big Bang model, the value of Ωk(t0)
descends uniquely from an initial condition, set at the Planck time, when the Universe
emerged from the quantum gravity epoch. The problem arises because in the standard
model Ωk was about 60 orders of magnitude closer to 0 at Plank time than nowadays [50].
This constitutes a fine-tuning problem on the initial conditions of the Universe needed to
explain the actual curvature of it.

These and other problems of the hot Big Bang model were solved if the Universe went
through a period of rapid, exponential expansion, called inflation [50]. In this hypothesis,
the material content of the Universe before inflation would have been washed out by the
extreme dilution due to the enormous expansion which characterizes this period. The
actual energy content of the Universe would have been generated at the end of inflation,
during a period called reheating, by the decay of the inflaton, the yet unknown (scalar, if
it is a single one) field which determined inflation.

Inflation is an appealing theory also because it would naturally explain the existence of tiny
inhomogeneities in the density of the Universe after reheating. These are crucial, because
if the distribution of matter in the primordial Universe were perfectly homogeneous and
isotropic, the Robertson-Walker metric (1.1) would be an exact description of the entire
spacetime of the Universe: no structures at all would be present at any time, including
Earth and humans today.
Since instead the latter exist, the cosmological principle does not hold perfectly: in the
primordial Universe, there must have been some deviations from perfect uniformity [50].
These inhomogeneities are the seeds of the actual distribution of matter on large scales,
the so-called Large Scale Structure, LSS.

1.2 The Large Scale Structure of the Universe

Our actual knowledge on the LSS is inferred from observations of a sufficiently large num-
ber of galaxies, the results of which are collected in large galaxy catalogues. Figure 1.2
shows the distribution in the sky of 1 million celestial objects mapped in one of these cat-
alogues, the SDSS (Sloan Digital Sky Survey) [70]; in particular the SDSS covers around
a quarter of the sky and measures the position and absolute brightness of around 100
million celestial objects and the distance of more than one million galaxies [64]. Looking
at figure 1.2 we clearly see that the distribution of galaxies in space is not random, but
it shows a variety of structures3 [50]. However, galaxy distribution on large scales can be
different form the one of matter [50], because of phenomena which interest solely baryonic
matter, like hydrodynamical effects (e.g. shocks), star formation and heating and cooling
of gas [19]. As far as we know, dark matter interacts only gravitationally, therefore in order
to measure the whole matter distribution, we must rely on gravity. It is because of this fact

3A deeper insight on how a slice of the Universe look like is conveyed by the video [3], where the
positions in space of the galaxies identified by the VIPERS survey are represented on a 3D grid.
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Figure 1.2: Imaging of the distribution of 100 million celestial objects in the sky as a function of
redshift z. From the catalogue SDSS [70].

that gravitational lensing is a very promising way to probe the mass distribution in the
Universe [50]. The phenomenon exploited by this technique is the deviation from straight
lines of the geodesics in a spacetime curved by matter. Light coming from distant sources
is therefore deflected when it passes by a massive object. The cumulative gravitational
lensing effect due to the inhomogeneous mass distribution between source and observer is
called cosmic shear [50]. Potentially it holds informations on the matter density in the
vicinity of all the geodesic travelled by the light, but two problems arise: unless the light
beam passes very close to a particular overdensity (i.e. a galaxy or cluster), the cosmic
shear is very weak; and moreover a distortion is by definition only appreciable by referring
to the original, undistorted, image. But we clearly do not have images of distant quasars
taken far enough from Earth to make a comparison. Therefore we can only search for im-
ages of objects close the one from the other (therefore whose light beams travelled on close
paths, in a similarly deformed spacetime), and evaluate the correlation of their distortions
(i.e. image ellipticities) [50].
Studying weak gravitational lensing on the SDSS data, Mandelbaum et al. in [44] demon-
strate that galaxies are surrounded by extended dark matter halos, from 10 to 100 times
more massive than the galaxies themselves.

From the study of galaxy distribution, the statistical properties of matter distribution
measured via gravitational lensing, and numerical simulations, we know that the Large
Scale Structure of the Universe is the so called cosmic web [64]. To understand what it
looks like one could imagine to tessellate the Universe with irregular polyhedra [19], with
diameters4 up to ∼ 100 Mpc [50]; inside each polyhedron there are underdense regions
which contain very few, or no, galaxies; matter is placed on the edges of such figures,
therefore it forms filaments. Where two edges cross, a knot forms, i.e. a dark matter halo
likely to host a cluster of galaxies. The whole structure is continuously evolving, under
the effect of gravity: structures merge and disrupt each other through tidal forces [19] and
matter flows from underdense regions to overdense ones and from filaments to knots5. The

4To be technical, I am here referring to the caliper diameter of the polyhedron.
5Once again, this evolution in time can be seen in a video, [37], which represents the result of an N-
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Figure 1.3: Present-day (z = 0), 15 Mpc/h thick slice of the large-scale distribution of cold dark
matter in the Universe, as computed by Millennium simulation (2005) [73]. The parameter h is
defined as H0 := (100h) km/s/Mpc , where H0 is the Hubble constant H0 := H(t0), with t0 the
present time.

result of a numerical simulation of the present-day cosmic web is depicted in figure 1.3.

To characterize the cosmic web an useful quantity is the two-point correlation function,
defined as "the excess number of galaxy pairs of a given separation, r, relative to that
expected for a random distribution" [50]; in formula [50]

ξ(r) =
DD(r)∆r

RR(r)∆r
− 1 ,

where DD(r)∆r is the number of galaxy pairs with separations in the range r ± ∆r/2,
and RR(r)∆r is the number that would be expected if galaxies were randomly distributed
in space. Galaxies are said to be positively correlated on scale r if ξ(r) > 0, to be an-
ticorrelated if ξ(r) < 0, and to be uncorrelated if ξ(r) = 0 [50]. On scales smaller than
about 10 h−1 Mpc, the real-space correlation function can be approximated by the following
power law [50]:

ξ(r) =

(

r

r0

)−γ

,

with γ ≈ 1.8 and a correlation length r0 ≈ 5 h−1 Mpc. This shows that galaxies are strongly
clustered on scales shorter than ∼ 5 h−1 Mpc, and the clustering strength becomes weak
on scales much larger than 10 h−1 Mpc [50].
However the sole two-point correlation function does not specify completely a precise CDM

body simulation of the formation and evolution of Large Scale Structure of the Universe. The number of
simulated particles is 5123 and the size of the simulation box is ∼ 100 Mpc. The simulation was carried
on Cray XT4 at Center for Computational Astrophysics, CfCA, of National Astronomical Observatory of
Japan.
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distribution [68]: to do so, higher-order correlation functions are needed. Their definition
is analogous to the one of ξ: e.g. the three-point correlation function ζ(x1,x2,x3) measures
the joint probability of the existence of three objects (galaxies) located in the 3 infinitesimal
volume elements δV1, δV2 and δV3, centred on x1, x2, x3 respectively [42].

The current best explanation of how this large scale structure originated is that it results
from the growth of the mentioned primordial, small, seed fluctuations on an otherwise
homogeneous universe amplified by gravitational instability [8]. We refer to gravitational
instability as the process, driven by gravity, which allows perturbations to grow with time.
It works in an intuitive way: a region whose initial density is slightly higher than the mean
will attract its surroundings slightly more strongly than average. Consequently, over-dense
regions pull matter towards them and become even more over-dense. On the other hand,
under-dense regions become even more rarefied as matter flows away from them [50].
Overdense regions of an expanding universe initially expand, but at a rate slower than the
one of the background. Then, when the overdensity reaches [50]

δρ

ρ̄
:=

ρ− ρ̄

ρ̄
∼ 1

(where ρ̄ is the mean density of the universe and ρ is the density of the perturbation),
turn-around takes place: the overdensity reaches its maximum expansion and starts to
contract. Since as said the dominant component of matter is dark, the system relaxes to
a quasi-equilibrium state through violent relaxation, a process which will be discussed in
detail in chapter 3. The final object which forms at the end of this process is a dark matter
halo, as the ones detectable with weak gravitational lensing techniques.

While dark matter violently relaxes, the small fraction of baryonic matter (in the form of
gas) which constituted the initial perturbation develops shocks, which raise the entropy of
the gas [50]. If radiative cooling is inefficient, the system relaxes to hydrostatic equilibrium
[50], a state in which the inward pull due to gravity is balanced by a pressure gradient
which develops an outward directed force. The gas sets in the potential well of the dark
matter halos: because of that, galaxy distribution bears information on the cosmic web.

1.3 Cold Dark Matter evolution as a way to explain the for-

mation of the Large Scale Structure

As said, inflationary models are able to predict the seeds which probably originated the
large scale structure, and from the analysis of the CMB power spectrum, which is influenced
by those fluctuations, we can have some information on them. And then we have data on
the large scale distribution of matter. One of the aims of cosmology is the explanation of
the latter in terms of the evolution of the former: to build the bridge between those small
seeds and the cosmic web.
To do so we need to model matter, and in particular dark matter, because trivially it is
the dominant component of matter in the Universe, but also because it is dark matter
the first to undergo clustering, and therefore to form the structures in which baryons,
gravitationally attracted, fall giving rise to stars and galaxies [18].

In order to perform this modelling, one possibility is to follow the proposal of Widrow and
Kaiser [81]: describe and study the cosmological behaviour of Cold Dark Matter with a
Schrödinger equation coupled to a Poisson one.
Indeed, Madelung [43] in 1927 showed that the modulus of a wavefunction which obeys
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Schrödinger equation can be interpreted as (the square root of) the density of a fluid, and
its phase as (proportional to) a velocity potential, both of them satisfying fluid equations:
continuity and Bernoulli ones. Madelung intended to propose a fluidodinamical interpreta-
tion of Quantum Mechanics, but his discovery was reinterpreted by Widrow and Kaiser [81]:
they argued that if a wavefunction can be interpreted as a fluid, a fluid can be described
by a wavefunction. This point of view opens to the possibility of using techniques specific
of Quantum Mechanics to achieve results valid for collisionless self-gravitating matter [29].

In particular, in this thesis, I will concentrate on the study of spherically symmetric CDM
distributions, with the just exposed technique. This assumption on the symmetry of the
system, on one side, simplifies the study, and on the other one, it does not detach it too
much from real objects present in our Universe, since the Local Group in which we live, is
one of the knots of the cosmic web, and these, with a sufficient degree of idealization [39],
can be thought to be spherically symmetric.

Therefore the approach to the study of CDM taken in this thesis is quantum mechanical.
Despite being generally valid, regardless of the specific particles constituting dark matter,
this nature of the treatment would be specially adequate for a dark matter candidate which
could display quantum mechanical behaviours on cosmological scales, such as axions do.
Let us therefore make a parenthesis on what axions are and why they display their quantum
mechanical nature on such large scales.

1.4 A CDM candidate with special properties: the axion

The existence of axions was first proposed by Peccei and Quinn in the late 1970s, as a
solution to the so-called strong CP problem. This one arises from the fact that to the
standard QCD Lagrangian [22]

LQCD = −1

4
GµνGµν + q̄i /Dq − [q̄RmqqL + h.c.] (1.3)

it is possible to add a term ∆LQCD which is consistent with the gauge symmetry of the
SM [22]:

∆LQCD = θ
αs

8π
GµνG̃µν . (1.4)

In the two expressions above −1
4G

µνGµν is the gluons kinetic term, and therefore Gµν is
the field strength; it is constructed from the gluon field AI

µ in the following way [22]:

Gµν := ∂µA
I
ν − ∂νA

I
µ + gfIJKAJ

µA
K
ν ,

where g is the gauge coupling constant and f
IJK is the commutator between the matrices

tI , which are the SU(3)c generators for the spinorial representation of the group. q is the
quark array

q =

(

u
d

)

,

where each field, u and d, is a Dirac fermion; q̄ is a shortage for q†γ0, where in turn the γµ

are the Dirac matrices. /D is a compact notation for the contraction between the covariant
derivative Dµ and the Dirac matrices γµ; the covariant derivative is defined as [22]

Dµ := ∂µ − igAI
µt

I .

mq denotes the masses of the quarks; the subscript R and L mean respectively "right-
handed" and "left-handed"; "h.c." stands for "hermitian conjugate", therefore it is a short-
age for the hermitian conjugate for the other term in the brackets.
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The term (1.4) is absent in the standard QCD Lagrangian because it implies CP violation,
which is not seen experimentally for strong interactions to a very high degree of accuracy.
For example the existence of the ∆LQCD term implies a non-vanishing electric dipole
moment for the neutron [22]

dn ≃ θ × 10−16e cm .

Experiments gave the bound dn < 10−26e cm [2], which implies

θ < 10−10e cm .

This extreme smallness of the coupling is seen as a fine tuning problem, and axions give
an explanation to it.

The proposal of Peccei and Quinn is to promote the θ parameter to a dynamical field. Its
smallness is thus no more a matter of fine tuning, but it arises naturally by the evolution
of the field in the expanding Universe.
The SM has so to be extended with a new U(1) global symmetry, known as PQ symmetry,
which is spontaneously broken at some large energy scale fa. From Goldstone theorem,
there must be a so-called "(pseudo-)Goldstone boson" associated with this spontaneous
breaking of symmetry. This is the axion [22].
The Lagrangian of the new theory is the usual QCD one (1.3), plus the ∆LQCD term (1.4)
with the substitution [22]

θ =
φa
fa
, (1.5)

where φa is the axion field.
Axions would have no electric charge, most likely a very small mass and very low interaction
cross-sections for strong and weak forces [22]. The axion mass, in particular, is expected
to be a function of temperature; nonetheless it is approximately constant in the range
0 ≤ T ≤ ΛQCD with ΛQCD ≃ 200MeV the basic QCD scale [22]. Axions constituting dark
matter would be born in a zero-momentum Bose condensate [81], therefore this range is
the one of interest for the study of the LSS. In such a range the axion mass would take the
following expression [22]

ma = 0.62
107GeV

fa
eV (1.6)

as a function of the Peccei-Quinn scale fa, whose value is to determine experimentally.

Axions can be produced by the Primakoff process γ + Ze ↔ Ze + a [46]. In words in
the presence of an external electric or magnetic field, photons can transform into axions
and axions into photons. Because of this process the Universe would look more transpar-
ent to radiation if axions were there [36]: light can transform into axions, which, since
they do not interact, can traverse cosmological distances unaffected by the extragalactic
background light till they transform back into photons, thanks to the magnetic field of the
Milky Way [27].
Primakoff process, allowing the transformation of axions into photons, justifies the possi-
bility of indirect detection of axions via γ ray astronomy.

Axions may also be produced by the reaction NN → NNa, where N is a nucleon, via
nucleon-nucleon bremsstrahlung. This process can take place in neutron stars. In [7]
Berenji et al. analyse data taken by Fermi LAT in 5 years, in the gamma-ray band
(between 60 MeV and 200 MeV), for a sample of 4 nearby neutron stars. No evidence for
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Figure 1.4: Exclusion plot for the (ma, fa) parameter space for ALPs at 95% CL. In red it is
shown the region excluded by [7], by the study of neutron stars. In blue the bound from Fermi
LAT analysis of SN 1987A [31]. The axion line (black) shows the parameters allowed by PQ axions.
From [7].

an axion or axion-like particle6 signal is there found, thus it’s stated a 95% confidence level
upper limit on the axion mass of ma = 7.9 10−2 eV , which corresponds to a lower limit
for the Peccei-Quinn scale f of 7.6 107 GeV , in the hypothesis of relativistic axions, which
holds till ma ≃ 1keV .

Instead, an event in which we do expect a strong occurrence of the Primakoff process is the
core-collapse supernova. In [31] Giannotti et al. derive an upper bound for the axion mass
(and thus a lower one on the Peccei-Quinn scale), from the lack of a gamma-ray signal
in the Fermi Large Area Telescope in coincidence with the observation of the neutrinos
emitted from the supernova SN1987A.

The two upper bounds mentioned, derived respectively from the observation of neutron
stars and a supernova, are shown in figure 1.4 [7].

From these bounds, we see that the axion mass should be less than a few meV, with no
lower bound (axions and ALPs with ma . 10−9 eV are called ultralight [57]). Compton
wavelength, defined as [34]

λc :=
h

mc
,

is the length under which a particle of mass m displays quantum mechanical effects. The
constraint ma . 1 meV for the axion mass translates into the constraint λc & (6 × 10−5)
pc.
In [57] it is experimentally found a constraint on the coupling between photons and axions
in the Lagrangian which allows Primakoff process; this constraint is valid for axions with
mass ma < 4.4× 10−10 eV. Such axions would have a Compton wavelength λc > 1.5× 102

6The Axion-Like Particles (ALPs) are pseudo-scalar bosons similar in properties to standard QCD
axions. They are predicted by several extensions of the Standard Model.

10



pc.
Axions with a Compton wavelength of the order of the diameter of the Milky Way would
have a mass of the order of 10−12eV, which is a still plausible value.

Because of this fact, the behaviour of a Cold Dark Matter made of axions or ALPs would
be powerfully described with a quantum mechanical technique, as the one adopted in this
thesis. I will deepen the way to treat axions after presenting the quantum mechanical
equations I will use to model CDM: the already cited Schrödinger-Newton equations.

1.5 The fluid treatment of CDM

Our aim is the study of the behaviour on cosmological scales of Cold Dark Matter. Since it
does not interact if not gravitationally (or if it does, it interacts in such a feeble way that
the effect of such interaction is negligible on the scales of interest) [19], its particles move
under the sole influence of the mean gravitational potential generated by all of the other
particles. The state of such a collisionless system is specified by a distribution function
f = f(r,v, t), which gives the density of particles in phase space as a function of time.
In phase space we are using here the system of coordinates given by the physical position
r and velocity v := dr

dt ; f is a distribution function and therefore has to be non-negative
everywhere and normalized to

∫

f d3r d3v = 1. The evolution of f is predicted by a
Boltzmann equation in which the collision operator is identically null, which takes the
name of Vlasov equation, [81]

∂f

∂t
=

3
∑

i=1

(

∂V

∂ri

∂f

∂vi
− vi

∂f

∂ri

)

, (1.7)

coupled to a Poisson one for the Newtonian potential V [21]

∇2V = 4πG

∫

fd3v . (1.8)

One possibility is to solve the Vlasov-Poisson pair numerically, in order to evolve f and
have at any time a full description of the CDM distribution. Unfortunately, efforts along
this line have had limited success because f presents a too much complicated evolution
to be followed, primarily because of the large number of phase-space dimensions typi-
cally involved [19] and also because distribution functions, in general, develop fine-grained
structures, which are difficult to follow numerically [81].

One alternative is represented by N-body simulations, in which one discretizes the problem
considering a finite number of particles, many orders of magnitude less than the actual num-
ber of particles in the physical system, distributed following the phase space distribution
of interest. The discrepancy in the number of particles in the model and in reality can lead
to unphysical effects due to "particle noise" such as two-body relaxation [25]. Smoothing
techniques alleviate this problem but at the cost of losing spatial resolution [21]. For the
same reason N-body techniques sample regions of high matter density very precisely, while
underdense regions are sampled less accurately [29], for a certain number of particles con-
sidered; increasing the number of particles, one can increase the definition in underdense
regions, at the cost of increasing also the time required for the computation.

Another alternative tool to study CDM behaviour is the fluid approximation; it holds every
time velocity dispersion (i.e. the second moment of the velocity v) is negligible compared
to bulk velocity (the first moment of v) [17].
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Velocity dispersion is actually negligible compared to bulk speed at scales of interest in
cosmology for Cold Dark Matter (CDM). Our study will be entirely focused on this type
of dark matter candidate. The behaviour of a self-gravitating fluid without viscosity, as
CDM is in the fluid approximation, is governed by a system of three coupled equations:
the continuity one, expressing conservation of mass, Euler equation, expressing momentum
conservation, and Poisson equation, for the gravitational potential. In formulae they are
[19]

∂ρ

∂t
+∇ · (ρv) = 0 , (1.9)

∂v

∂t
+ (v · ∇)v = −1

ρ
∇P −∇V , (1.10)

∇2V = 4πGρ . (1.11)

For the case of CDM, we can set the pressure P identically equal to 0, so its gradient
vanishes. The use of the gravitational potential, and therefore of Newtonian gravity instead
of General Relativity, is accurate for scales much smaller than the Hubble horizon dH :=
c/H(t) [56]. The expansion of the Universe makes the vorticity of the velocity field v
rapidly negligible [18], and the motion generated by gravity is irrotational because of
Kelvin circulation theorem [17]. So, since ∇ × v = 0, we can define a scalar potential φ
such that [19]

v := ∇φ .
Furthermore we can exploit the following identity [45]:

∇(
1

2
v2) = v × (∇× v) + (v · ∇)v . (1.12)

For what just said, the first term on the right hand side of (1.12), in our treatment is zero.
Having written v as a gradient of a potential, we can express conservation of momentum
in terms of the potentials, arriving at the so called Bernoulli equation, which implies Euler
equation. With our assumptions, Bernoulli equation reads [19]

∂φ

∂t
+

1

2
(∇φ)2 = −V . (1.13)

1.6 The wave-mechanical description of a fluid: Schrödinger-

Newton equations

The possible approaches exposed in the last section, to model and study the evolution of
the distribution of collisionless matter on large scales, have been successful in describing
the basic features of large-scale structure [19]. Nonetheless they can be improved, since
they present some weaknesses; in particular three of the latter, pointed out by Coles and
Spencer in [19], are solved, at least partially, adopting a wave-mechanical approach to the
study of CDM. The mentioned three weaknesses of standard techniques are [19]:

• standard perturbation methods do not guarantee a density field that is everywhere
positive. This problem arises for example supposing a Gaussian distribution of initial
fluctuations.

• Some analytic approximations (Zel’dovich approximation and its variations, see sec-
tion 2.3) and treatments (see 2.1) break down at shell crossing.

• Analytical techniques for modelling the effects of gas pressure are scarce.
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These difficulties are overcome in the approach suggested by Widrow and Kaiser in 1993
[81]. It involves re-writing the fluid equations given in the last section in the form of a
non-linear Schrödinger equation.

The solution of such a Schrödinger equation is a wavefunction whose modulus squared
represents the density of the fluid, and its phase is proportional to its velocity potential.
In this way, we are encoding phase-space information in a continuous function defined in
position space only [29].
This approach, which I will illustrate in detail in a few lines, solves the three difficulties
highlighted before:

• first, the construction requires that the density field is everywhere non-negative, since
it is a modulus squared [19].

• Secondly, particles are not treated as point-like entities with definite trajectories, as
we will see later in the thesis is done in Zel’dovich approximation. Therefore shell-
crossing does not have the catastrophic form in the wave-mechanical approach that
it does in the Zel’dovich approximation [19].

• As we will soon see in detail, Schrödinger equation is equivalent to a continuity
equation for the density of the fluid, and a Bernoulli equation with an additional
term with respect to the standard one (1.13). Either we can get rid of this term
using a trick which we will see in a few lines, making its effect vanish to model
a pressureless fluid, or we can leave it, and use it to model pressure of baryonic
fluids [19], or similar repulsive effects on small scales [72].

Let us now approach quantitatively this quantomechanical description of a fluid. In the
previous section, we stated the equations governing a CDM pressureless fluid. If we define
the following quantities

ψ(r, t) := R(r, t) e
i
ν
φ(r,t) (1.14)

ρ(r, t) := |ψ|2 = ψ∗ψ = R2(r, t) , (1.15)

after some algebra continuity (1.9) and Bernoulli equation (1.13) can be re-written in one
equation of the form [19] [81] [17]

iν
∂ψ

∂t
= −ν

2

2
∇2ψ + V ψ +

ν2

2

∇2R

R
ψ . (1.16)

This equation resembles very much Schrödinger’s one. Indeed making the substitution
ν = ~/m [19] we recover Schrödinger equation plus an extra term: the last on the right
hand side in (1.16).

To have a look on what this extra term describes, let’s invert the path: let’s start with
Schrödinger equation, written in terms of ν, and find which continuity and Bernoulli equa-
tions are equivalent to it. This is, by the way, the path followed by Madelung in proposing
his hydrodynamical approach to Quantum Mechanics. It turns out [72] that the fluid equa-
tions equivalent to the Schrödinger one, making the ansatz (1.14) and (1.15) are a standard
continuity equation, in the form (1.9), and the following modified Bernoulli equation

∂φ

∂t
+

1

2
(∇φ)2 = −(V +Q) , (1.17)

where

Q = −ν
2

2

∇2R

R
(1.18)
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is the extra term appearing in Schrödinger equation, and it is called "Bohm quantum
potential" [?] or "quantum pressure term" [19], because it has an effect on the dynamic
of a collisionless fluid, similar to the one pressure has on baryonic fluids. It is the term
useful to model pressure anticipated in treating the advantages of the wave-mechanical
approach [19].
This implies that we are free to drop the quantum pressure term from the non-linear
Schrödinger equation (1.16) and include it in the Bernoulli equation instead [72].

Notice that by taking the limit for ν → 0 of equation (1.17) we recover the usual Bernoulli
equation (1.13), and so the right fluid equations for the situation we aim to describe. We
can ask ourselves what is, on the quantum mechanical side, the effect of taking this limit.
Since as said ν = ~/m, we can allow variations of ν interpreting the constant ~ as an
adjustable parameter [17]. Sending it to 0 gives in general the classical limit of a quantum
theory, hence also in the context of SN equations, in literature they often refer to this limit
as the classical one. If ~ is no more fixed, it controls the spatial resolution λ through the
de Broglie relation λ = ~/p [17].
As we will see, the limit ν → 0 is not compulsory even for pressureless fluids while using ap-
proximations; indeed the quantum pressure term, despite being in some sense a by-product
of the Madelung transformation [29] which translates fluid equations in Schrödinger one,
can be left to model effects for which the approximation is not able to account [19].

The following two coupled equations, mathematically equivalent to fluid equations with
the extra quantum pressure term, are called in literature Schrödinger-Newton (SN) or
Schrödinger-Poisson (SP) equations [17]

iν
∂ψ

∂t
= −ν

2

2
∇2ψ + V ψ , (1.19)

∇2V = 4πG|ψ|2 . (1.20)

Garny et al. in [29] claim that the Schrödinger-Poisson equations should not be per-
ceived as a generalization of the fluid model with quantum pressure, but rather as one way
of sampling the phase space of the exact Vlasov-Poisson system, just as N-body simula-
tions. This in fact was the approach followed by Widrow and Kaiser [81] in proposing SN
equations to simulate collisionless matter for the first time. In particular, no information
about moments of the DM distribution higher than the first, such as the velocity power
spectrum, could be computed in the fluid treatment, while in [29] Garny et al. explicitly
find the second moment of the velocity for numerical simulations of halos, computed using
the wave-mechanical approach, and Davies and Widrow in [21] compute expressions for
the velocity moment of order n in terms of the solution ψ of SN equations.

This seems to be a paradox: how could the Schrödinger-Newton system encode more infor-
mation than the mathematically equivalent fluid treatment? Garny et al. [29] answer that
this additional information arises by averaging the phase space distribution function one
can compute with the wave-mechanical approach, to obtain the coarse-grained distribution
function. Indeed if one sets the parameter ν at a low enough value that the associated De
Broglie wavelength is significantly smaller than the scale one is smoothing/coarse-graining
over, each coarse-grained cell contains a significant number of wave packets, making the
prediction of higher order cumulants viable, just as for N-body simulations.

Since moreover a computation done with a wave mechanical simulation of a certain CDM
distribution needs on average the same computational power as the same calculation per-
formed with an N-body simulation (see [81] and [21]), the Schrödinger-Newton approach
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happens to be a promising one, which can give insights where N-body simulations or ana-
lytical techniques, such as Zel’dovich and adhesion approximation, fail.
In particular in [81] Widrow and Kaiser simulate the evolution until present time of an
overdensity with a density contrast δρ(ti)/ρ(ti) ≃ 0.1 at an initial time ti such that
a(ti)/a0 = 0.04, in a two-dimensional cold dark matter universe. They performed the
simulation both using a code based on the Schrödinger-Newton approach discussed till
now and with a PM code (Kate et al. 1991). They found comparable results in a similar
computation time, with the Scrödinger method being slightly faster [81].
In [21] Davies and Widrow find that the CPU time/time step required by both a code
based on Schrödinger method and an N-body simulation, scales as N lnN , where N is
the number of test particle considered, in the N-body simulation, and its analogue in the
quantum mechanical approach: the number of single coherent-state wavepacket centred
at some chosen point in phase space. Moreover, the wave-mechanical approach can give
predictions even in the mildly non-linear regime [72], which is achieved by a perturba-
tion after trajectories of individual particles cross, a phenomenon that makes Zel’dovich
approximation breaking down. Indeed the density forecasted by SN equations does not
necessarily diverge when shell crossing happens [19]; for example the simulation performed
by Widrow and Kaiser in [81] extends after trajectories cross.

As anticipated, Schrödinger-Newton equations are also particularly appropriate to model
axions. Let us see in detail how.

1.7 Schrödinger-Newton equations for modelling axions

Axions are described by the scalar field φa (1.5). A classical scalar field obeys the coupled
Klein-Gordon and Einstein equations [81]:

(

�+m2
)

φa = 0 (1.21)

Gµν = 8πGTµν , (1.22)

where [81]

Tµν = ∂µφa∂νφa −
1

4
gµν

[

∂kφa∂
kφa −m2φ2a

]

.

For nonrelativistic fields (|∆ψ/ψ̇| ≪ 1) we can write [81]

φa =
1√
2m

(ψe−imt + ψ∗eimt) , (1.23)

where ψ is a slowly varying function of time in the sense that |mψ| ≫ |∂ψ/∂t|. This is an
excellent approximation for dark matter axions since they are born in a Bose condensate.
Then Schrödinger and Poisson equations follow by direct substitution of (1.23) into (1.21)
and (1.22) once two assumptions are made: that the gravitational field generated by φa
is weak (therefore only the Newtonian potential enters into the metric) and that we can
neglect ψ̈ terms [81]. In all this treatment were used units in which ~ = 1.

The Klein-Gordon equation (1.21) was first proposed as a relativistic extension for spin-zero
particles of Schrödinger equation; therefore φa was intended as a wavefunction. However
such a theory would predict some unreal phenomena, like superluminal propagation and
particle number conservation even at high energies. To get rid of these erroneous predic-
tions, φa has to be intended as a field operator, with appropriate commutation rules [63].
However, in the limit of very large occupation numbers, the Klein-Gordon equation can
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be interpreted as a wave equation [81]. This is the case for axions, since they form a
Bose-Einstein condensate and therefore they all occupy a single state of zero momentum.

As said treating the ν → 0 limit, the de Broglie wavelength controls the spatial resolution
of an LSS study held with SN equations. When treating axions, the ν → 0 limit is no more
justified, because h is no more a simple adjustable parameter coming out from a mathe-
matical trick, but it is precisely the Plank constant. Therefore the value of ν = ~/ma is
set. For axion masses low enough, the de Broglie wavelength of the axions moving in the
gravitational field of a galaxy would be large enough to perform simulations, but as the
mass increase, the resolution of the simulation increase too, making it more demanding
in terms of computational power (or equivalently time). For example axions with mass
ma = 105 eV would have a de Broglie wavelength of ∼ 10m, which makes it unreasonable
to follow them if we are interested in galaxies and clusters [81].
Therefore, if axions exist, either they have low enough masses to make the Schrödinger-
Newton approach exact for treating the evolution of their distribution on cosmic scales,
or they are too massive to be handled by numerical simulations with this technique, and
in this case we can consider fictitious lighter particles to derive approximate results. In
N-body simulations one considers too few superheavy particles, in this case we would con-
sider too many superlight particles [81].

Despite being able to model CDM and to describe almost exactly axion CDM, Schrödinger-
Newton equations are not only useful in cosmology, or anyway to model a pressureless
self-gravitating fluid: they were proposed in the context of the measurement problem in
quantum mechanics and arise very naturally in quantum gravity, either as part of an
effective theory or of a possible fundamental one. In the next section I would like to give
a brief recap of the physical domains in which SN equations appear, in order to broaden
our view on the subject.

1.8 Schrödinger-Newton equations in other fields of physics

Schrödinger-Newton equations were proposed for the first time by L. Diósi in a paper [23]
dated 1985 to solve the following problem. According to classical physics, in the absence
of external forces, the centre of mass of a given macroscopic object either moves uniformly
along a straight line or, in a particular frame, rests at a certain point. Unfortunately,
the Schrödinger equation of a free particle does not have localized stationary solutions.
Wave-packet solutions, which are possibly the best representation for the free motion of a
macroscopic body, are not stationary. When such wave-packets evolve as prescribed by the
usual Schrödinger equation they widen, and thus the position of the centre of mass becomes
more and more uncertain as time flows. At the same time, experience seems to show that
a macroscopic object always has a well-defined position. As one could imagine given that
such a problem is not yet solved and scientists do not seem to urge for a conclusion of it, the
effects of the cited spread are extremely difficult to measure. Let us for example consider
a body of several grams localized (i.e. with its centre of mass localized) within the typical
atomic size, i.e. in a cube of side 10−8cm. Then the initial position displays no change for
thousands of years [5]. Therefore we still do not know if we have to adapt our intuition
to another unexpected reality predicted by quantum mechanics, or we have to modify
the theory in order to make it agree with our intuition deduced by common experience.
Diósi goes in the latter direction and proposes that the wavefunction gravitationally self-
interacts, giving rise to a force which acts against dispersion. This behaviour is encoded
in Schrödinger-Newton equations (1.19) (1.20).

16



It is interesting to note that such an interaction can be conceived only intending the
wavefunction ψ as a physical object, as Schrödinger and de Broglie thought it was; if on
the other hand ψ was a probability wave, i.e. a theoretical tool useful to compute values
of observables of the particle it describes, like it was intended by Bohr, Heisenberg, Pauli
and the school of Copenhagen, it could not interact with anything, even less with itself.
Indeed every detector works assuming that if something interacts, then it exists (there)7.

More recently, in 2011, D. Giulini et al. tested with numerical simulations the effectiveness
of the gravitational self-interaction proposed by Diósi in inhibiting dispersion of wave-
packets [32]. They started with a spherically symmetric Gaussian wave-packet and they
found that independently of its width, for masses m ≤ 6× 109 u, the wave-packet spreads,
but slower than what the free solution without self-interaction would do. The larger the
mass, the slower the spreading becomes compared to the free solution, until for masses
m ≥ 7× 109 u, simulations showed the wave-packet to collapse.

Ten years later the work of Diósi, R. Penrose proposed Schrödinger-Newton equations
in a different context: to provide a dynamical, unitary, description of the collapse of
the wavefunction [59]. He indeed examined a quantum superposition of two different
stationary mass distributions, and computed the perturbing effect of each distribution
on the space-time structure, in accordance with the principles of general relativity. He
then supposed that these perturbed spacetimes coexisted in a quantum superposition; he
therefore assumed that gravity has a quantum nature, as the other fundamental forces
have, indeed Wheeler defines quantum gravity as the possibility for different spacetime
geometries to be in superposition. Penrose showed that in this superposition of space-times,
time translations are ill-defined, and, using Noether theorem, that therefore the energy of
the superposed state has an uncertainty which, in the Newtonian limit, is proportional
to the gravitational self-energy E∆ of the difference between the two mass distributions.
He then argued that this is consistent with a finite lifetime of the order of ~/E∆ for
the superposed state. After this time interval, the superposed state would collapse to
a stationary solution of SN equations. I used the word "collapse" because with such a
mechanism Penrose aimed at describing unitarily the process of quantum state reduction,
making it a spontaneous, gravitationally induced, process.

In a later work [5] Bahrami et al. argued however that if the only correction brought
to quantum mechanics is the gravitational self-interaction prescribed by SN equations,
it is easy to show that the "collapse" prescribed by the new theory is not equivalent to
the one we know it takes place. If we indeed consider a wavefunction peaked at x =
0 and x = 2, it would evolve in the modified theory towards a single peak at x = 1,
differently from what would occur during a measurement. Moreover, the normal collapse
postulate, together with the dynamics prescribed by SN equations, generates superluminal
propagation of information. One can avoid this effect by introducing ad hoc prescriptions
on the mechanism of collapse, but this surely implies that SN equations are not able alone
to explain unitarily the wavefunction collapse after a measurement.

The third and last context in which Schrödinger-Newton equations arise is quantum gravity.
They could be the nonrelativistic limit either of a fundamental theory of gravity or of an
effective classical limit of a quantum gravity theory. The latter case arises when one
follows the proposal of Møller and Rosenfeld that only matter fields are quantized, while

7Plato too would agree with this assumption: he writes in Sophist, 247d-f (English translation from [62])

I suggest that everything which possesses any power of any kind, either to produce
a change in anything of any nature or to be affected even in the least degree by the
slightest cause, though it be only on one occasion, has real existence.

Therefore he defines as existing whatever interacts.
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the gravitational field remains classical even at the fundamental level. This theory is often
called semi-classical gravity. In this theory the Einstein tensor Gab remains classical as
it is in general relativity: it is not promoted to an operator [5]; Einstein equation equate
therefore Gab to the expectation value of the stress energy tensor operator in a given
quantum state ψ, i.e. 〈ψ| T̂ab |ψ〉. The nonrelativistic limit of this equation, in which
the energy density ρ dominates in 〈ψ| T̂ab |ψ〉 and the Newtonian potential in Gab, is the
Schrödinger-Newton system [5]. If instead gravity has a quantum nature, Gab must be
promoted to an operator, and SN equations arise as an effective theory, describing the
mean field generated by many particles [5]. SN equations nonetheless are not the only
nonrelativistic limit of a quantum theory of gravitation: as said, SN equations suppose a
realistic interpretation of the wavefunction; Bernstein et al. in [9] write a different classical
limit of quantum gravity, which is linear, and assumes, in accordance with Copenhagen
interpretation, that |ψ(r)|2 describes nothing more than the probability density for finding
the mass it describes at the location r.

In the next few years we could assess the nature of SN equations by discovering if gravity
has to be quantized (recall moreover that if it has a classical nature, the argument of
Penrose exposed above becomes inconsistent). Indeed an experiment aimed at measuring
a quantum gravitational effect in the lab has been recently proposed by Bose et al. [13] and
by Marletto and Vedral [47]. This experiment would try to entangle two masses through a
gravitational interaction. Indeed a general argument based on information theory (see [47]
and [15]) ensure that if a physical entity can entangle two systems while complying with
locality, then it must be non-classical (i.e. it has to be described by at least two non-
commuting variables). Therefore detection of the Bose-Marletto-Vedral (often referred to
as BMV) effect, which is due to an entanglement, would count as evidence that gravity is
quantised.

1.9 Properties of Schrödinger-Newton equations

To conclude our overview on Schrödinger-Newton equations, let us point out their symme-
tries. Some of them are enjoyed also by the action from which equations (1.19) and (1.20)
can be derived. That action reads [32]

S[ψ,ψ∗] =
∫

dt

{

iν

2

∫

(ψ∗(r, t)ψ̇(r, t)− ψ(r, t)ψ̇∗(r, t)) d3r+

− ν2

2

∫

∇ψ(r, t) · ∇ψ∗(r, t) d3r+

+
G

2

∫

d3r

∫ |ψ(r, t)|2|ψ(s, t)|2
||r − s|| d3s

}

. (1.24)

As D. Giulini et al. in [32] show, S is left invariant by the action of the following transfor-
mations:

• constant phase shifts:

ψ 7→ ψ′ = eiβψ with constant β ∈ R .

Noether theorem for this symmetry implies that the space integral of |ψ|2 is time
independent;

• proper orthochronous Galilei transformations. Hence linear and angular momentum,
as well as energy, are conserved.
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The equations instead are left invariant also by:

• space (P ) and time (T ) inversions which together with the proper orthochronous
Galilei transformations close the Galilei group; these symmetries are enjoyed by SN
equations in the sense that if ψ solves the equations, then Pψ and Tψ also solve it;

• the action of the group R+ of positive real numbers with multiplication: if ψ(r, t) is
a solution of

− ~
2

2m
∇2ψ + V ψ = i~

∂ψ

∂t
(1.25)

∇2V = 4πGm2 |ψ|2 (1.26)

then µ9/2ψ(µ3r, µ5t) satisfies the same equations for mass mµ = µm. This scaling
preserves normalization.

Another important feature of Schrödinger-Newton equations is the fact that, unlike ordi-
nary Schrödinger equation, they are non-linear, because of the gravitational self-interaction
of the wavefunction. In particular when one performs the transformation ψ 7→ aψ with
a ∈ C, the term V ψ of (1.19) is mapped in a3 V ψ. This non-linearity has important
consequences; the superposition principle is not valid anymore: a linear combination of
solutions of SN equations is not necessarily solution in turn. Because of that, states in a
theory in which SN equations are valid are not elements of a Hilbert space, since they are
not vectors because their set is not closed with respect to summation.

After this general discussion of Schrödinger-Newton equations, the next step will be to
recall techniques that are useful to study, with SN equations, the kind of system this thesis
aims at describing: spherically symmetric density perturbations. But before, let us briefly
point out the plan of the thesis.

1.10 Plan of the thesis

The plan of the rest of the thesis is as follows.

In chapter 2, I will recall some treatments and tools which are useful to study a spherically
symmetric overdensity with the approach presented until now. In particular I will expose
the treatment of spherical collapse, a re-writing of SN equations in an expanding back-
ground, as our Universe is, Zel’dovich and adhesion approximations, which are realized in
the SN approach by the free particle approximation, and a solution of Schrödinger-Newton
equations, found by Johnston et al. [38], for a matter distribution similar to a top-hat.

In chapter 3, I will then make use of those tools to study the evolution of a spherically
symmetric density profile. I will decompose the profile in shells and write for it a solution
using the top-hat one just mentioned. Then I will implement the free-particle approxima-
tion proposed by Short and Coles in [72]. Finally I will specify a particular spherically
symmetric profile, work out the previous general predictions for it, and refine those results
with time dependent perturbation theory.

In chapter 4 the tools of chapter 2 will be applied to predict the evolution of an overdensity
coherent with the initial conditions of our Universe, the ones determined by inflation. In
particular, an exact solution is found and the free-particle approximation is implemented,
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as before. The effect of the additional presence of a mini sub-halo is briefly discussed.
Stationary solutions, describing virialized halos, are finally presented.

Finally, in chapter 5 the top-hat solution considered in chapter 2 will be generalized to
Universes with non-null cosmological constant.
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Chapter 2

Theoretical tools

Let us here start to focus on spherically symmetric cold dark matter configurations.
In particular if the configuration is an overdensity, it will eventually collapse. Let us hence
recall in the following section the theory of spherical collapse. The treatment will be taken
and readapted from [50] and [56].

2.1 Spherical Collapse in a spatially flat Λ = 0 Universe

Expansion of the overdensity In the absence of a cosmological constant, the radius
r of a mass shell in a spherically symmetric density perturbation evolves according to the
Newtonian equation [50]

d2r

dt2
= −Gm

r2
, (2.1)

where m is the mass within the mass shell. Before shell crossing, m is independent of t for
a given mass shell, and so eq. (2.1) can be integrated once to give [50]

1

2

(

dr

dt

)2

− Gm

r
= E , (2.2)

where E is the specific energy of the mass shell. For E < 0 the mass shell eventually
contracts, while for E ≥ 0 it expands forever (the same behaviour is predicted by SN
equations for their solutions with positive energy: they expand indefinitely; for the demon-
stration see [4]). Since we are interested in spherical collapse, let us focus on the first case:
for an E < 0 mass shell, one can write the following explicit parametric solutions of the
E.O.M. [50]

r = A(1− cos η) , t = B (η − sin η) , (2.3)

where A and B are two constants, which can be determined knowing the initial (i.e. com-
puted at a reference initial time ti) radius of the mass shell, ri, and the initial mean
overdensity within it. A way to express the latter is through the dimensionless density
contrast δ, defined as [50]

δ =
ρ− ρ̄

ρ̄
, (2.4)

where ρ̄ is some background density. If we use as ρ the mean overdensity inside the shell
of radius ri, defined as

ρ̄i =
3m

4πr3i
, (2.5)
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we recover the mean density contrast δ̄i. This quantity will be of crucial importance in the
following; let us therefore define here, generally, the mean overdensity of a spherical region
with radius r; let us call it δ̄(r, a):

δ̄(r, a) :=
4π
V

∫ r
0 ρ r

′2 dr′ − ρ̄

ρ̄
=

4π

V

∫ r

0

ρ(r′, a)− ρ̄

ρ̄
r′2 dr′ =

4π

V

∫ r

0
δ(r′, a) r′2 dr′ , (2.6)

where V represents the volume of a sphere of radius r.

In terms of the mean density contrast δ̄i, the constants A and B, in a spatially flat back-
ground, read [50]

A =
3

10

ri
δ̄i
, B =

9

20

ti
δ̄i
. (2.7)

The evolution of a shell in the overdensity is therefore as follows: it expands, till at [50]

t = tta := πB (2.8)

it reaches its maximum expansion with [50]

r = rmax := 2A , (2.9)

and then it starts collapsing. Eq. (2.7) states that the turnaround time tta of a given shell
depends on the initial overdensity enclosed by it.

All this treatment has been carried in the assumption that the mass m enclosed by a shell
was constant in time. As soon the first shell starts to contract, this assumption could be
violated because of shell crossing : particles in the contracting mass shell can cross the
mass shells that were originally inside it, and consequently m is no longer constant [50].
What happens indeed after the turnaround is the setting up of a process called violent
relaxation, which drive the system towards a virialized final state [56].

Violent relaxation Every time a mixing such as the one caused by shell crossing, co-
exists with a variation in time of the gravitational potential, violent relaxation occurs.

Let ǫ = (1/2)v2+V be the specific energy for a given particle of the considered overdensity.
Then (from [50])

dǫ

dt
=
∂ǫ

∂v

dv

dt
+

∂ǫ

∂V

dV

dt
= −v · ∇V +

dV

dt
= −v · ∇V +

∂V

∂t
+ v · ∇V =

∂V

∂t
.

Thus, a time-dependent gravitational potential of a collisionless system can induce a change
in the energies of the particles involved (i.e. in a time-varying potential, energy is no longer
an integral of motion). Therefore, in such a time varying potential, particles can both gain
or lose energy, and some particles can even become unbound. Overall, the effect is to
broaden the range of energies [50].

After turnaround, a shell starts collapsing, therefore in this phase too the density is a func-
tion of time, and it is easy to see, from Poisson equation, that this means that the gravi-
tational potential is also time dependent. In particular, during collapse the gravitational
potential experiences fluctuations on large scales [56]. If moreover the shells constituting
the spherical overdensity cross, this provides mixing and the process the whole overdensity
undergoes in these conditions is called relaxation, because it drives the system towards a
virialized state of equilibrium, and violent, because the timescale for the process to occur
can be defined as [50]

tvr =

〈

ǫ2

ǫ̇2

〉1/2

=

〈

1

ǫ2

(

∂V

∂t

)2
〉−1/2

, (2.10)
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where the average 〈...〉 is over all particles that make up the collective potential. As
shown by Lynden-Bell (1967), this is approximately equal to the free fall time of the

system tff = [3π/(32Gρ̄)]1/2, with ρ̄ the average density; therefore the process is fast
(hence "violent").

Violent relaxation is self-limiting, because as soon as a system approaches any equilibrium
state, the variations in time of the potential, which drive the evolution, vanish [50]. The
ending point of this process is indeed a virialized configuration [56] with radius rvir, velocity
dispersion vvir and density ρvir. For a spherically symmetric system with constant density,
numerical simulations [69] show that this configuration is achieved by the time tvir = 2tmax,
where tmax is its turnaround time. Still in the constant density case, we can compute rvir,
vvir and ρvir following [56] and hence exploiting the fact that in a virialized system the
potential energy U and the kinetic one T are related by |U | = 2T . The total energy is
therefore E = U + T = −T . At t = tmax all the energy is in the potential form and it
is [56]

E = −3

5

GM2

rmax
,

where M is the mass of the overdensity. Then using [56]

T :=
Mv2vir

2
= −E

we get [56]

vvir =

√

6GM

5rmax
; (2.11)

and using [56]

|U | = 3GM2

5rvir
= 2T :=Mvvir

we get [56]

rvir =
rmax

2
. (2.12)

ρvir is finally easily obtained as

ρvir =
M

4
3π r

3
vir

(2.13)

and therefore ρvir = 8 ρmax where ρmax is the density at the turning point.

For some specific density profiles, however, shell crossing at turnaround does not take
place; therefore the analytic solution remains valid and, since there is no mixing, violent
relaxation does not take place. In this thesis we will study this kind of profiles, which
avoid shell crossing.

In order to study the evolution of these profiles in our Universe, it is necessary to place
the system, described by the Schrödinger-Newton equations, in an expanding background.
In the next section we will recall a re-writing of Schrödinger-Newton equations in terms of
quantities which are particularly useful in an expanding background.

2.2 Schrödinger-Newton equations in a spatially flat expand-

ing background

Let us assume an Einstein-de Sitter Universe as such a background, and call ρ̄ its uniform
energy density.
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We will make use of comoving coordinates, as it is customary in cosmology:

r = ax

with r the physical coordinate, a(t) the scale factor and x the comoving coordinate. In the
same outlook, let us define the following scaled quantities [?]

δ =
ρ− ρ̄

ρ̄
,

χ =
ρ

ρ̄
= 1 + δ ,

u =
dx

da
; (2.14)

let us moreover define Φ as the potential of the comoving peculiar velocity field u, just like
we did with the physical velocity one v [?]:

u = ∇xΦ . (2.15)

In order to rewrite fluid equations (1.9) (1.13) and (1.11) in terms of the above defined
quantities, let us compute some derivatives of them [48].

dχ(x, t)

dt
=
∂χ

∂t

∣

∣

∣

∣

x

+∇xχ · ȧu ,

but because of the definition of χ, it is also true that

dχ

dt
=
ρ̇

ρ̄
− ρ ˙̄ρ

ρ̄2
(2.16)

and by definition of total derivative we can moreover write [48]

dρ(x, t)

dt
=
∂ρ

∂t

∣

∣

∣

∣

x

+∇xρ · ȧu .

Hence we can rewrite (2.16) as

∂χ

∂a
ȧ+∇xχ · ȧu =

1

ρ̄

(

∂ρ

∂t

∣

∣

∣

∣

x

+∇xρ · ȧu
)

− ρ ˙̄ρ

ρ̄2
,

which simplified reads
∂ρ

∂t

∣

∣

∣

∣

x

=
ρ ˙̄ρ

ρ̄
+
∂χ

∂a
ȧρ̄ .

Le us moreover calculate the relation between u (2.14) and v := dr/dt

v :=
dr

dt
=
d(ax)

dt
= ȧ(x + au) .

Considering now ρ as a function of r and t we can write [48]

Dρ(r, t)

Dt
=
∂ρ

∂t

∣

∣

∣

∣

r

+
∂ρ

∂r
· ṙ =

=
∂ρ

∂t

∣

∣

∣

∣

r

+H(r · ∇r)ρ+ (aẋ · ∇r)ρ ,
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meanwhile considering it as a function of x and t we can write [48]

Dρ(x, t)

Dt
=
∂ρ

∂t

∣

∣

∣

∣

x

+
∂ρ

∂x
· ẋ ,

but [48]
Dρ(r, t)

Dt
=
Dρ(x, t)

Dt

so, exploiting the relation [48]

∇r =
1

a
∇x , (2.17)

one obtains the following equation [48]

∂ρ

∂t

∣

∣

∣

∣

r

=
∂ρ

∂t

∣

∣

∣

∣

x

−H(r · ∇rρ) .

The above found expressions can be plugged into the continuity equation (1.9)

∂ρ

∂t

∣

∣

∣

∣

r

+∇r · (ρv) = 0

to obtain

ρ ˙̄ρ

ρ̄
+
∂χ

∂a
ȧρ̄−H(r · ∇rρ) + ρ̄ȧ [∇r · (χx) +∇r · (χa∇xΦ)] = 0 ; (2.18)

supposing as a background a matter dominated Universe in which the cosmological prin-
ciple holds, (2.18) becomes1 [17]

∂χ

∂a
+∇x · (χ∇xΦ) = 0 . (2.19)

In an expanding background it is useful to define, following [55], the peculiar velocity
field b as

v = ṙ =
ȧ

a
r + aẋ = Hr + b (2.20)

and the peculiar gravitational potential V as [55]

V = V̄ + V ,

where V is the usual Newtonian potential defined by

∇2
rV = 4πGρ

and V̄ is the background gravitational potential defined to obey [55]

∇2
rV̄ = 4πGρ̄ ,

which in an Einstein de Sitter Universe is solved by [55]

V̄ =
2πG

3
ρ̄|x|2 ;

1See the appendix for the derivation
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consequently, V obeys the following Poisson equation [55]

∇2
xV = 4πGa2(ρ− ρ̄) = 4πGa2ρ̄δ .

With these variables, in an Universe where Friedmann equations are valid, Euler equation
becomes [55]

∂b

∂t

∣

∣

∣

∣

x

+ (b · ∇r)b +Hb = −1

a
∇xV .

Let us compute the relation connecting b (2.20) and u (2.14)

b := a
dx

dt
= a

dx

da

da

dt
:= aȧu := aȧ∇xΦ

and plug this expression into Euler equation (1.10)

∂ (aȧ∇xΦ)

∂t

∣

∣

∣

∣

x

+ (aȧ∇xΦ · ∇r)aȧ∇xΦ+Haȧ∇xΦ = −1

a
∇xV ;

the equation above is then equivalent to

ȧ2∇xΦ+ aä∇xΦ+ aȧ∇xΦ̇ + aȧ2∇x

[

1

2
(∇xΦ)

2

]

+ ȧ2∇xΦ = −1

a
∇xV . (2.21)

If the following equation is satisfied, so it is also (2.21)

2H2Φ+
ä

a
Φ+

ȧ2

a

∂Φ

∂a
+
ȧ2

a

[

1

2
(∇xΦ)

2

]

= − 1

a3
V . (2.22)

(2.22) is then equivalent to

2
8πG

3
ρ̄Φ− 4πG

3
ρ̄Φ+

ȧ2

a

∂Φ

∂a
+
ȧ2

a

[

1

2
(∇xΦ)

2

]

= − 1

a3
V ,

and to
3

2
H2Φ+

ȧ2

a

∂Φ

∂a
+
ȧ2

a

[

1

2
(∇xΦ)

2

]

= − 1

a3
V ,

and to
∂Φ

∂a
+

[

1

2
(∇xΦ)

2

]

= − 3

2a

(

Φ+
2

3ȧ2a
V

)

. (2.23)

The last written equation can be rewritten as [?]

∂Φ

∂a
+

1

2
(∇xΦ)

2 = −Ṽ (2.24)

providing that the effective potential Ṽ is defined as the following sum of the velocity
potential Φ and a slightly modified Newtonian potential ϕ [17]

Ṽ =
3

2a
(Φ + ϕ) , (2.25)

where ϕ is [17]

ϕ :=
2V

3a3H2
. (2.26)
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Starting from (2.23) one can compute the equivalent of Poisson equation for the effective
potential

∇2
xṼ =

3

2a
∇2

xΦ+
1

ȧ2a2
∇2

xV =
3

2a
∇2

xΦ+
1

ȧ2
4πGρ̄δ =

3

2a
∇2

xΦ+
1

ȧ2
4πGρ̄(χ− 1) =

=
3

2a
∇2

xΦ+
3

2ȧ2
H2(χ− 1) =

3

2a
∇2

xΦ+
3

2a2
(χ− 1) .

Because of this expression it is easy to check that the following relation holds [?]

∇2
xϕ =

δ

a
.

We are then left with the following system of equations, in which every quantity should be
thought as function of (x, a) [?]

∂χ

∂a
+∇x · (χ∇xΦ) = 0 (2.27)

∂Φ

∂a
+

1

2
(∇xΦ)

2 = −Ṽ (2.28)

∇2
xṼ =

3

2a
∇2

xΦ+
3

2a2
(χ− 1) . (2.29)

Following Madelung procedure (i.e. substitution (1.14)) and interpreting this time the
squared modulus of Ψ as χ [17]:

|Ψ|2 = R2(x, a) := χ , (2.30)

one can obtain (1.16), with the only difference that the derivative in t is now replaced by
one in the scale factor a, and Ṽ is now the quantity defined in (2.25), [17]:

iν
∂Ψ

∂a
= −ν

2

2
∇2

xΨ+ Ṽ ψ +
ν2

2

∇2
xR

R
, (2.31)

coupled to the following modified Poisson equation [?]

∇2
x

[

Ṽ +
3iν

4a
ln

(

Ψ

Ψ∗

)]

=
3

2a2
(|Ψ|2 − 1) . (2.32)

The just written system of equations is usually difficult to solve; therefore let us introduce
some approximations, which lower the complexity of the study.

2.3 Zel’dovich and adhesion approximations

An useful tool to study the overdensities which lead to the LSS is the approximation
proposed by Zel’dovich in [87] (see also [56] and [67]). Zel’dovich starts form the following
result of linear theory for the growth of perturbations. In a uniform Universe with energy
density ρ̄(t), the actual position of any particle r(t) is related to its initial (Lagrangian)
location q by a very simple expression [56]:

r(t) = a(t)q .
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This result is no more valid in presence of density perturbations; but in the linear regime,
valid for perturbations with contrast δ < 1, a similar relation holds (readapted from [56]):

r(t) = a(t)[q +D+(t)p(q)] := a(t)x(t) , (2.33)

where D+(t) is the growing mode of the linear density contrast and x(t) is by definition the
usual comoving Eulerian coordinate. In an Einstein-de Sitter Universe D+(t) ∝ a(t) [14],
but since the actual value of the scale factor is non physical, we can set the proportionality
constant between D+ and a equal to 1.

Then, using (2.33), we can compute

u :=
dx

da
= p(q) (2.34)

and therefore (2.33) can be rewritten as

r(t) = a(t)[q + a(t)u(q)] .

This equation shows that particles in the Zel’dovich approximation execute a kind of inertial
motion on straight line trajectories [17].

Let us now calculate how the perturbed density evolves when the individual particles
move according to (2.33). If the initial, unperturbed, homogeneous density is ρq, then
conservation of mass implies the following relation for the perturbed density ρ(r, t) [56]

ρ(r, t)d3r = ρqd
3q . (2.35)

Therefore [56]

ρ(r, t) = ρq det

(

∂qi
∂rj

)

=
ρq/a

3

det
(

∂xj

∂qi

) =
ρ̄(t)

det
(

δij + a(t)
(

∂uj

∂qi

)) ; (2.36)

ρ(r, t) is known as continuity density.

Since in (2.15) we defined Φ as
u(x) = ∇xΦ(x) ,

the Jacobian ∂uj/∂qi appearing in (2.36) can be written as the following tensor, called
deformation tensor [67]

dij :=
∂uj
∂qi

=
∂2Φ

∂qi∂qj
. (2.37)

Expanding the determinant of (2.36) to the first order in the perturbation D+(t)p(q), the
expression for the density distribution is therefore [67]

ρ(r, t) =
ρ̄(t)

(1−D+(t)λ1(q))(1−D+(t)λ2(q))(1−D+(t)λ3(q))
=

=
ρ̄(t)

(1−D+I1 +D2
+I2 −D3

+I3)
(2.38)

where λ1, λ2, λ3 are the eigenvalues of the deformation tensor and I1 = λ1 + λ2 + λ3,
I2 = λ1λ2 + λ2λ3 + λ1λ3, I3 = λ1λ2λ3 are its invariants. Since D+ grows with time,
a positive eigenvalue denotes collapse and a negative one signals expansion. If at least
one of the eigenvalues is positive, at the time tsc for which D+(tsc) = 1/max{λj} with
j = 1, 2, 3, the overdensity becomes formally infinite and Zel’dovich approximation breaks
down. When the density diverge, the material contained initially in a cube in q space gets
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compressed to a sheet in the r space, perpendicular to the direction of the eigenspace of
the bigger eigenvalue [67]. Unavoidably different particle trajectories cross, therefore shell
crossing occurs. The structures formed, because of their flatness, are called "pancakes".
Numerical simulations have been employed to test how well Zel’dovich approximation works
[56]. It was found that it reproduces in an excellent fashion the formation, appearance and
location of the pancakes. Once the pancake is formed however, particles in the Zel’dovich
approximation go on in their travel without having a feedback from the formation of an
highly dense region, called caustic; therefore this caustic blur and the pancake thickens.
What on the contrary simulations show is that particles falling into pancakes oscillate
about the central region in the collapsed direction, and flow freely in the "plane" in which
the pancake lays; at the intersection of different pancakes then they can form filaments
and finally clumps at the intersection of filaments, and all this structure is not smeared
out with time as Zel’dovich approximation would forecast [55]. To overcome this problem
we have to switch to the so called adhesion approximation, but first let us deepen a bit
the study of Zel’dovich approximation.

The internal consistency of Zel’dovich approximation can be assessed by means of the
following argument [67]. Differentiating equation (2.33) twice with respect to time allows
us to determine the acceleration of the fluid element. A dynamical estimate of the density
ρdyn is then provided by Euler equation: for a pressureless fluid it reads

∂v

∂t
+ (v · ∇r)v = −∇rV

Dv

Dt
= −∇rV

∇rr̈ = −∇2
rV

∇rr̈ = −4πGρdyn , (2.39)

where in the first passage I used the definition of convective derivative [55]

D

Dt
:=

∂

∂t
+ v · ∇r

and in the the last one Poisson equation (1.11).
If the Zel’dovich approximation were exact, the values of the just determined ρdyn and of
the continuity density of eq. (2.36) would coincide. The fractional difference [67]

δ̃ :=
ρdyn − ρ

ρ

therefore provides a measure of the accuracy of the Zel’dovich approximation. Sahni and
Coles in [67] find

δ̃ = −D2
+I2 + 2D3

+I3 ; (2.40)

from this expression we can see that δ̃ = 0 if λ2 = λ3 = 0. This means that the Zel’dovich
approximation is an exact solution of the fluid equations for a system with planar symmetry,
as long as there is no shell-crossing [67] [55].

The Zel’dovich approximation can also be formulated in Eulerian space by noting that
(2.33) implies du/da = 0 along a particle trajectory, provided particle trajectories do not
intersect [67]. Since we are following a fluid element in its evolution, the correct notion of
total derivative is the one provided by the convective derivative, defined in the variables
introduced in the last section as

D

Da
:=

∂

∂a
+ u · ∇x .
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It follows that the Zel’dovich approximation corresponds to

∂u

∂a
+ u · ∇xu =

Du

Da
=
du

da
= 0 . (2.41)

We can then integrate the equation formed by the first and the last member of (2.41) to
obtain the so-called Zel’dovich–Bernoulli equation [67]:

∂Φ

∂a
− 1

2
|∇xΦ|2 = 0 . (2.42)

Comparing this equation to the Bernoulli equation in an expanding background (2.28), we
see that the latter turns into (2.42) in the case Ṽ = 0.

Since the starting point of Zel’dovich approximation is a result of linear theory, one could
argue what is the difference between the two, and why the former fairly predicts density
distributions even in the non-linear regime where the latter fails. The key [56] lays in the
fact that Zel’dovich approximation linearises the temporal evolution of particles, and with
their trajectories describes perturbations, while linear theory linearises the evolution of the
density contrast. Another way of understanding this fact is by realizing that Zel’dovich
approximation uses the Newtonian potential extrapolated from linear theory, instead of the
density; this has advantages since potentials are much smoother functions than densities
[56].

As anticipated, in order to predict the stability of caustics, we need to improve our model:
in the so called adhesion approximation [72], particles follow Zel’dovich trajectories until
shell-crossing occurs. However, when particle trajectories cross, the particles are assumed
to stick to each other. As a result, the singularities predicted by the Zel’dovich approxima-
tion are frozen rather than being washed out, and stable structures form. Mathematically,
the adhesion model is obtained from the Zel’dovich approximation by including an artificial
viscosity term in (2.42) [55] [72]:

∂Φ

∂a
− 1

2
|∇xΦ|2 = µ∇2

xΦ . (2.43)

The constant µ > 0 has dimensions of L2 and can be thought as a viscosity coefficient.
In the inviscid limit µ → 0 the structures formed in the adhesion model are infinitely
thin and the adhesion approximation reduces exactly to the Zel’dovich approximation
outside of mass concentrations [67]. For finite values of µ, the viscosity term causes density
perturbations to be suppressed on scales . µ1/2 [55].

In [72], Short and Coles consider the following free-particle Schrödinger equation in the
coordinates (x, a)

iν
∂Ψ

∂a
= −ν

2

2
∇2

xΨ ; (2.44)

it is mathematically equivalent, via Madelung transformation, to the usual continuity equa-
tion (1.9) and the following modified Bernoulli equation [72]

∂Φ

∂a
− 1

2
|∇xΦ|2 = −ν

2

2

∇2
x|Ψ|
|Ψ| . (2.45)

Short and Coles then define the approximation scheme called free-particle approximation
by the one which uses eq. (2.44) and gives rise to the Bernoulli equation (2.45). In this ap-
proximation the Poisson equation (2.29) decouples from the Schrödinger one and provides
the following relationship between the amplitude and phase of the wavefunction [72]:

ν∇2
x[arg(Ψ)] +

1

a
(|Ψ|2 − 1) = 0 . (2.46)

30



Figure 2.1: Illustration of the spherical overdensity. The wavefunction and gravitational potential
that solve the SP system in the inner, vacuum and outer regions, respectively, are (ψc, Vc), (ψg, Vg)
and (ψf , Vf ). The radii Rc and Rf label the boundaries of the vacuum region. (From [38]

Equations (2.43) and (2.45) resemble each other: in the inviscid limit µ→ 0 for the first one,
and in the classical one ν → 0 for the second, they both give Zel’dovich-Bernoulli equation.
Moreover the viscous term of the former and the quantum pressure term of the latter
present phenomenological similarities: the quantum pressure term prohibits the formation
of structures below the de Broglie wavelength [29]; therefore, recalling that ν = ~/m, in the
limit ν → 0, as well as in the µ→ 0 one, thin structures can form, while for bigger values
of the two parameters, only thicker ones are allowed. In [72] numerical simulations are
performed which show that, in the limit ν → 0, the free-particle approximation reduces to
the Zel’dovich approximation prior to shell-crossing. They also argue that in that limit2 the
quantum pressure term will only become important in regions where particle trajectories
intersect. They then propose to study a modification of adhesion approximation in which
the viscous term µ∇2

xΦ is replaced by the quantum pressure term, which has moreover a
similar mathematical expression, in addition to a similar phenomenology.

2.4 Schrödinger-Newton solution for a top-hat compensated

overdensity

Let us now discuss a solution of Schrödinger-Newton equations that will be of very useful for
our later work. It is found by Johnston et al. in [38] and it describes a matter overdensity
similar to a top-hat one. The physical system described is the one represented in figure
2.1. It is made up of three parts: an infinite outer fluid region of homogenous density; an
inner fluid sphere, also of homogenous density and overdense relative to the outer region;
and a spherical shell of vacuum which separates the two fluids. The inner fluid sphere
is ‘compensated’, that is, we can imagine forming the inner fluid region by removing the
mass from the vacuum (gap) region and adding it (homogeneously) to the mass within the
inner radius of the gap [38].

2more precisely, in the limit of small yet finite ν, since predictions in the actual ν → 0 limit cannot be
computed explicitly by a simulation, because they would need either an infinite computational power or
an infinite time.
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Because of Birkhoff’s theorem the evolution of the inner overdensity is independent from
the one of the external region, at r > Rf [18]. Exploiting this property, Johnston et al. find
a solution of the SP system for this matter configuration by simply attaching to each other
three different solutions: one describing a closed Universe, to model the inner overdensity,
one for the void region and a third piece describing a flat Universe to model the external
region [38]. Let us see the three of them in more details.

Flat Universe Johnston et al. in the cited paper [38] start by recalling that in a spatially
flat Universe in which the cosmological principle holds, the density evolves in terms of a
globally defined cosmic time t according to the following law

ρ(t) := |ψ|2 = Λc2

8πG
cosech2

(

3

2

√

Λc2

3
t

)

. (2.47)

This expression is then substituted into the following modified version of Poisson equation
(1.11) which enables the existence of a non-zero cosmological constant Λ [38]

∇2V = 4πG|ψ|2 − Λc2

= Λc2

[

1

2
cosech2

(

3

2

√

Λc2

3
t

)

− 1

]

. (2.48)

If we then define for notational convenience

λ :=
3

2

√

Λc2

3
,

the root of such equation can be written as [38]

V =
Λc2

12

[

coth2(λt)− 3
]

r2 , (2.49)

as it is now proven. Because of spherical symmetry, the Laplacian takes the form [38]

∇2 =
∂2

∂r2
+

2

r

∂

∂r
; (2.50)

thus let us compute

∂V

∂r
=

Λc2

6

[

coth2(λt)− 3
]

r ,

∂2V

∂r2
=

Λc2

6

[

coth2(λt)− 3
]

.

To check (2.48) we have therefore to prove

Λc2

6

[

coth2(λt)− 3
]

+
2Λc2

6

[

coth2(λt)− 3
]

= Λc2
(

1

2
cosech2(λt)− 1

)

,

which, using the relation cosh2(x)− sinh2(x) = 1, turns out to be equivalent to

Λc2

2

[

coth2(λt)− 3
]

= Λc2
1

2

cosh2(λt)− sinh2(λt)− 2 sinh2(λt)

sinh2(λt)
,

and thus to
Λc2

2

[

coth2(λt)− 3
]

=
Λc2

2

[

coth2(λt)− 3
]

.
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Substituting then the expression for V (2.49) in the Schrödinger equation (1.16), Johnston
and al. find an expression for the potential φ which allows to compute the following final
wavefunction [38]

ψ =

√

Λc2

8πG
cosech (λt) exp

[

i

ν

√

Λc2

12
coth(λt)r2

]

. (2.51)

In order to check that (2.51) was indeed a solution of (1.16) for the gravitational potential
(2.49) we need to calculate

∂ψ

∂t
= −

√

Λc2

8πG
exp

(

i

ν

λ

3
coth(λt)r2

)

cosech2(λt)λ

[

cosh(λt) +
i

ν

λ

3
cosech(λt)r2

]

,

∂ψ

∂r
= 2

i

ν

λ

3

√

Λc2

8πG
exp

(

i

ν

λ

3
coth(λt)r2

)

cosech(λt) coth(λt)r ,

∂2ψ

∂r2
= 2

i

ν

λ

3

√

Λc2

8πG
exp

(

i

ν

λ

3
coth(λt)r2

)

cosech(λt) coth(λt)

(

2
i

ν

λ

3
coth(λt)r + 1

)

.

Defining
√

Λc2

8πG
:= A ,

equation (1.16) becomes

− iνA
λ

sinh(λt)
cosh(λt) +A

λ

3
r2

λ

sinh2(λt)
+

+
ν2

2
A

[

− λ2

ν29
coth2(λt)4r2 +

2i

ν

λ

3
coth(λt) +

4i

ν

λ

3
coth(λt)

]

−λ
2

9

[

coth2(λt)− 3
]

r2A = 0 ,

which is equivalent to

− iνλ coth(λt) +
λ2

3
r2 cosech2(λt)+

+

[

−2
λ2

9
coth2(λt)r2 + iνλ coth(λt)

]

− λ2

9

[

coth2(λt)− 3
]

r2 = 0 ,

and thus to

λ2

3
r2 cosech2(λt)− 2

λ2

9
coth2(λt)r2 − λ2

9
coth2(λt)r2 +

λ2

3
r2 = 0 ,

which can be simplified to

cosech2(λt)− coth2(λt) + 1 = 0 ,

which is an identity.

The solutions in the special case of a spatially flat universe with zero cosmological constant
can be obtained by taking the Λ → 0 limit of (2.51) and (2.49), which yields [38]

ψ =
1√

6πGt2
exp

(

ir2

3tν

)

, (2.52)

V =
r2

9t2
. (2.53)
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In a spatially flat, matter dominated Universe the following two relations hold [18]

H2 =
8πG

3
ρ , (2.54)

H =
2

3t
; (2.55)

from these it is easy to find a law3 for the temporal variation of ρ

ρ(t) =
1

6πGt2
. (2.56)

Closed Universe In order to write a solution of the SP system for a closed Universe, it
is convenient to define the following dimensionless conformal time [38]

η = a

(

3M

4π

)−1/3 ∫

α2/3dt , (2.57)

where a is a constant with dimensions of velocity, whose explicit expression we will find
afterwards; M := (4/3)πρR3, with R being the scale factor of such a Universe; α := |ψ| =√
ρ.

Johnston and al. then assume the well-known form of the density evolution in a closed
FRW model with Λ = 0 [38]

ρ = α2 =
A2

sin6(η/2)
, (2.58)

where A is a constant; then following the same procedure explained for the spatially flat
case, they find the following solutions of the SP system

ψ =
A

sin3(η/2)
exp

[

iaµ−1/3A2/3 cos(η/2)

ν2 sin3(η/2)
r2

]

, (2.59)

V =
a2µ−2/3A4/3

4 sin6(η/2)
r2 , (2.60)

where we defined for notational convenience µ := 3M/(4π) and the value of A is now set
by the following condition [38]

a

(µA)1/3
=

√

8πG

3
.

What we have written till now implies the following well-known results [38]

R =
2GM

a2
sin2(η/2) , (2.61)

t =
GM

a3
(η − sin η) . (2.62)

From the expression for R(η), setting sin(η/2) = 1 we find an expression for the velocity
parameter a [38]:

a =

√

2GM

Rmax
, (2.63)

where Rmax is the maximum value of R attained during the evolution.

3Which differs from the one found in [38], probably because of a typo there.
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In order to check the validity of (2.59) and (2.60), let us calculate

∂ψ

∂η
= A exp

[

iaµ−1/3A2/3 cos(η/2)

ν2 sin3(η/2)
r2

]

×

×
[

−3

2
sin−4(η/2) cos(η/2)− iaµ−1/3A2/3r2

4ν sin7(η/2)
(sin2(η/2) + 3 cos2(η/2))

]

,

dη

dt
= aµ−1/3 A2/3

sin2(η/2)
,

∂ψ

∂r
=

A

sin3(η/2)
exp

[

iaµ−1/3A2/3 cos(η/2)

2ν sin3(η/2)
r2

]

iaµ−1/3A2/3 cos(η/2)

ν sin3(η/2)
r ,

∂2ψ

∂r2
=

A

sin3(η/2)
exp

[

iaµ−1/3A2/3 cos(η/2)

2ν sin3(η/2)
r2

]

×

×





(

iaµ−1/3A2/3 cos(η/2)

ν sin3(η/2)
r

)2

+
iaµ−1/3A2/3 cos(η/2)

ν sin3(η/2)



 .

Thus equation (1.16) becomes

iνA exp

[

iaµ−1/3A2/3 cos(η/2)

2ν sin3(η/2)
r2

]

×

×
[

−3

2
cos(η/2) sin−4(η/2)− iaµ−1/3A2/3r2

4ν sin7(η/2)
(1 + 2 cos2(η/2))

]

aµ−1/3A2/3

sin2(η/2)
=

= −ν
2

2

A

sin3(η/2)
exp

[

iaµ−1/3A2/3 cos(η/2)

2ν sin3(η/2)
r2

]





(

iaµ−1/3A2/3 cos(η/2)

ν sin3(η/2)
r

)2

+
iaµ−1/3A2/3 cos(η/2)

ν sin3(η/2)



+

− ν2
A

sin3(η/2)
exp

[

iaµ−1/3A2/3 cos(η/2)

2ν sin3(η/2)
r2

]

iaµ−1/3A2/3 cos(η/2)

ν sin3(η/2)
+

+
a2µ−2/3A4/3

4 sin6(η/2)
r2

A

sin3(η/2)
exp

[

iaµ−1/3A2/3 cos(η/2)

2ν sin3(η/2)
r2

]

,

which simplified becomes

iν

[

−3

2
cos(η/2)− iaµ−1/3A2/3r2

4ν sin3(η/2)
(1 + 2 cos2(η/2))

]

µ−1/3A2/3

sin2(η/2)
=

= −ν
2

2

(

iµ−1/3A2/3 cos(η/2)

ν sin2(η/2)

)[

iaµ−1/3A2/3 cos(η/2)

ν sin3(η/2)
r2 + 1

]

+

− ν
iµ−1/3A2/3 cos(η/2)

sin2(η/2)
+
aµ−2/3A4/3

4 sin5(η/2)
r2 ,
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and

iν

[

−3

2
cos(η/2)− iaµ−1/3A2/3r2

4ν sin3(η/2)
(1 + 2 cos2(η/2))

]

+

− 1

2

(

aµ−1/3A2/3 cos2(η/2)

sin3(η/2)
r2

)

+
3

2
νi cos(η/2)− aµ−1/3A2/3

4 sin3(η/2)
r2 = 0 ,

and again

− 3

2
iν cos(η/2) +

aµ−1/3A2/3r2

4 sin3(η/2)
(1 + 2 cos2(η/2))+

+
3

2
νi cos(η/2)− 1

2

aµ−1/3A2/3

sin3(η/2)
r2
(

1

2
+ cos2(η/2)

)

= 0 ,

which is equivalent to

aµ−1/3A2/3r2

4 sin3(η/2)
(1 + 2 cos2(η/2))− 1

2

aµ−1/3A2/3

sin3(η/2)
r2
(

1

2
+ cos2(η/2)

)

= 0 ,

which is finally the same as

1

2
r2(1 + 2 cos2(η/2))− r2

(

1

2
+ cos2(η/2)

)

= 0 ,

which is true ∀r and ∀η.

For future convenience, let us calculate the following two quantities [38]:

H :=
Ṙ

R
=

1

R

dR

dη

dη

dt
=

a3

2GM

cos(η/2)

sin3(η/2)
, (2.64)

Ω :=
8πGρ

3H2
=

1

cos2(η/2)
. (2.65)

Vacuum region The vacuum wavefunction is trivially [38]

ψ(r, t) = 0 , (2.66)

since by construction ρ(r, t) = 0. Because of this fact the Newtonian potential must satisfy
the Laplace equation, so it takes the form [38]

V = C +
B

r
, (2.67)

where B and C are functions of time only and must be fixed by appropriate boundary
conditions.

Top-hat wavefunction Now that we have solutions for all the regions of the system we
aim at describing, we are almost ready to write down the solution we are looking for.

Let us indicate with a subscript c (closed) the quantities referring to the inner overdensity,
with a g (gap) the ones referred to the void region and with f (flat) the ones referred to
the external part. The temporal evolution of the inner boundary Rc (see figure 2.1) is
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described by equation (2.61), while the one of the outer boundary Rf can be computed
from (2.56) using M = (4π/3)ρcR

3
c and results4

Rf =

(

9GM

2

)1/3

t2/3 . (2.68)

Since we possess solutions for each "piece" of the system we want to describe, the only
study left concerns the discontinuities at Rc(t) and Rf (t). Johnston et al. then write down
the form of the modulus of ψ, α, in the vicinity of a boundary, let us say Rf [38]:

α(t, r) = f(t)H(r −Rf (t)) , (2.69)

where f(t) describes the time evolution of α within the outer (flat) region of homogeneous
fluid and H(x) is the Heaviside function.
The requirement they demand explicitly in the paper is that this α satisfies the following
equation

∂α

∂t
= −∂α

∂r

∂φ

∂r
− α

r

∂φ

∂r
− α

2

∂2φ

∂r2
. (2.70)

This equation is the continuity one in the hypothesis that α2 and φ are spherically sym-
metric; indeed continuity equation reads

∂ρ

∂t
+∇ · (ρv) = 0

and making the usual assumptions,

ρ = α2 v = ∇φ ,

it becomes

∂α2

∂t
+∇ · (α2∇φ) = 0 ,

which is
∂α2

∂t
+∇α2 · ∇φ+ α2∇2φ = 0 ; (2.71)

then in the case of spherical symmetry, the Laplacian takes the form

∇2 =
∂2

∂r2
+

2

r

∂

∂r
; (2.72)

therefore if spherical symmetry holds, (2.71) is equivalent to

2α
∂α

∂t
+ 2α

∂α

∂r

∂φ

∂r
+ α2∂

2φ

∂r2
+ α2 2

r

∂φ

∂r
= 0 ,

which is trivially equivalent to (2.70).

The solutions written in the previous paragraphs satisfy the continuity equation (2.70),
thus Johnston et al. finally write the following solution for the wavefunction of the system

4This result differs from [38]. The Rf (t) proposed there seems incoherent with an expansion in power
series around t = 0 of the quantity Rf/Rc proposed in the same paper. Contrarily, (2.68) yields that power
series.
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in figure 2.1

α =















√

3ΩH2
c

8πG r ≤ Rc(t)

0 Rc(t) < r < Rf (t)
√

3H2
f

8πG r ≥ Rf (t)

(2.73)

φ =















Hcr2

2 r ≤ Rc(t)

undefined Rc(t) < r < Rf (t)
Hf r

2

2 + 3GM
2

∫ t
0

(

1
Rf

− 1
Rc

)

dt′ r ≥ Rf (t) .

(2.74)

Since the velocity potential is defined only up to the addition of an arbitrary function
of time, the second term of the expression for φ in the r ≥ Rf (t) case has no physical
consequence, but is useful to define a coherent smooth gravitational potential, as we will
see later.

Normalization for r ≤ Rf Let us check that this is the solution of a compensated
overdensity, i.e. let us check if the modulus squared of ψ integrated from 0 to Rf equals
M :

∫

r<Rf

|ψ|2d3r = 4π

∫ Rf

0
|ψ|2(r, t)r2dr = 4π

∫ Rc

0

3ΩH2
c

8πG
r2dr = 4π

ΩcH
2
c

8πG
R3

c =M . (2.75)

The last result was found simply by substituting expressions (2.65), (2.64), (2.61) for Ωc,
Hc and Rc respectively.

Top-hat gravitational potential For the gravitational potential we still have to find
the coefficients B(t) and C(t) in (2.67); to do so we need two boundary conditions: we
can use the potentials prescribed by the Bernoulli equations respectively for r → R−

c and
r → R+

f and demand that V (r) is continuous with continuous first derivative5.

Let us take the Bernoulli equation [19]

V = −1

2

(

∂φ

∂r

)2

− ∂φ

∂t
(2.76)

and let us particularize the study to r ≤ Rc; this implies [38]

φ =
1

2
Hcr

2 ,

and so

V (r) = −1

2

(

H2
c r

2 + Ḣcr
2
)

.

Using

Ḣc =
ä

a
−H2

c

we get

V (r) = −1

2

ä

a
r2 =

1

2

4πG

3
ρcr

2 ,

5V has to be C1 because at each boundary, the fluid "boundary layer" is infinitesimally thin, and
effectively massless. Consequently, it cannot support a force acting on it, which implies that ∂V/∂r must
be continuous at each boundary [38].
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and finally

lim
r→R−

c

V (r) =
GM

2Rc
, (2.77)

where M is as usual M = (4/3)πR3
cρc.

Repeating the reasoning at r ≥ Rf , because of the function of time only added to φ for a
spatially flat Universe in (2.74), we find

lim
r→R+

f

V (r) = −3GM

4Rc
− GM

4Rf
(2.78)

because, since the overdensity is compensated, M is also equal to (4/3)πR3
fρf . Without the

time dependent term added in φ for r ≥ Rf (2.74) [38], it would not have been possible for
the gravitational potential in the void region Vg(r) to match both the boundary condition
at r = Rc and the one at r = Rf .

With these conditions, requiring that V is C1, we find the following unique solution [38]

V =



















GM r2

2R3
c

r ≤ Rc(t)

GM
(

3
2Rc

− 1
r

)

Rc(t) < r < Rf (t)

1
2GM

(

r2

R3
f
− 3

2Rc
− 3

2Rf

)

r ≥ Rf (t) .

(2.79)

Until now we have shown that the above written expression is a good solution for the
gravitational potential of the matter distribution taken in consideration, and that each
piece of the wavefunction is a good solution separately in its domain (i.e. r ≤ Rc, Rc <
r < Rf and r ≥ Rf ). In the article by Johnston et al. it is stated that the global piecewise
solution defined by (2.73) and (2.74) satisfies continuity equation in the form (2.70) at the
boundaries. It is not shown, on the contrary, that it satisfies also Bernoulli equation, or
equivalently that it is solution of the Schrödinger equation with quantum pressure term,
at the boundaries.

Notice that without performing any calculation we can assess that the wavefunction ψ =
α eiφ/ν with α given by (2.73) and φ by (2.74) is a solution of the standard Schrödinger
equation, even at the discontinuities Rc and Rf . Indeed, once it is damped to 0 at r >
Rext for some Rext > Rf to have finite norm, it can describe a particle which we know,
for example after a measurement, it does not occupy positions at radii Rc < r < Rf ,
and has a greater probability of being found at radii r ≤ Rc than r ≥ Rf . Moreover
Schrödinger-Newton equations without quantum pressure term are a possible extension of
Schrödinger equation, as exposed in section 1.8. Then every quantum system described
by a wavefunction solution of Schrödinger equation is described by the same wavefunction
with SN equations. Different is the case of a classical system, as the one considered here,
described by a solution of Schrödinger-Newton equations with the quantum pressure term,
which derives from the classical nature of the system studied, which is simply a fluid. No
a priori arguments seem to hold for ψ to be solution of the SN pair with Bohm quantum
potential. In the appendix it is therefore checked that it actually is. In particular, at
the discontinuities Rc and Rf the quantum potential is nonzero, and it contains terms
proportional to the Dirac delta function and its first derivative. Because of this fact I
got inspiration for my calculation from an article [33] of Griffiths, where he considers the
boundary conditions on a time-independent wavefunction in the presence of a potential
possessing a discontinuity (modelled as a Heaviside function). As stated by Johnston et
al. [38], in the time dependent case we are studying Griffiths’ solutions can’t be used.
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In A.2 I then referred to the calculation of Griffiths to perform a new and different one,
adapted to our case.

In the following section we will use the top-hat solution of Johnston et al. to predict the
evolution of a spherically symmetric primordial overdensity.
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Chapter 3

Evolution of spherically symmetric

compensated overdensities

Let us consider, like in the paper of Johnston et al., a spatially flat background Universe,
with null cosmological constant. For r > Rf let the solution (ψ(r), V (r)) remain the
Johnston et al. one. No matter the exact density profile of a spherically symmetric
compensated overdensity at r < Rf , it is known in literature its evolution towards a
spherical collapse, as it was recalled in section 2.1. Let us here study the evolution of such
an overdensity with various techniques in the Schrödinger equation approach to CDM
modelling.

3.1 SN solution for a spherically symmetric compensated over-

density which does not undergo shell crossing

Let us consider as initial condition at a reference time ti the dark matter distribution
described by a spherically symmetric density profile of the form

ρ(r, θ, φ, ti) =

{

ρ(r) r ≤ Rf (ti)

ρf r > Rf (ti)
(3.1)

satisfying the following three requirements:

• being compensated, i.e.

∫

r<Rf (ti)
ρ(r)d3r =

4

3
π [Rf (ti)]

3 ρf :=M ;

• being continuous in the region r < Rf (ti);

• not giving rise to shell crossing. In order to state a criterion for this requirement, let
us define the quantity mi(r) to be the mass enclosed by a spherical shell of radius r
at t = ti

mi(r) := 4π

∫ r

0
ρ(r) r′2dr′ . (3.2)

From equations (2.3) and (2.7), we can see that the evolution of a shell of initial
radius ri is completely specified, in absence of shell crossing, once we know the initial
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mean overdensity inside it, ρ̄i(ri), from which one can easily deduce the parameter
δ̄i appearing in (2.7). For our density profile

ρ̄i(ri) =
3mi(ri)

4πr3i
. (3.3)

As said in the last section, the turnaround of a shell takes place at [50]

tmax =
9π

20

ti
δ̄i
, rmax =

3

5

ri
δ̄i
.

Therefore mass shells which enclose an higher density experience turnaround before
and at an inner radius than shells which enclose a lower density. In other words,
shell crossing does not take place ⇐⇒ δ̄i(r1) ≥ δ̄i(r2) ∀ r1 ≤ r2, or equivalently

mi(r1)

r31
≥ mi(r2)

r32
∀ r1 < r2 . (3.4)

If (3.4) holds, every shell starts to collapse before and at a lower radius than every
external one; this fact ensures the absence of shell crossing.

In the last section we saw how the evolution of a shell is completely determined, by equation
(2.1), once we know the radius of the shell and the mass m within it. In absence of shell
crossing this mass is independent of time. Since the parameter appearing is the mass m
and not the density ρ, the evolution of a shell is insensible of the actual shape of the density
profile inside it [56]. This fact ensures that, when we consider the behaviour of a certain
shell, if we suppose that, inside it, the matter m was distributed homogeneously, we obtain
the same temporal evolution that we would have recalled considering the actual density
profile. In other words, the evolution of a shell of radius r is influenced solely by the mean
density within it, which is [56]

ρ̄ =
3m

4πr3
=

3m

4πA3(1− cos η)3
. (3.5)

The special case in which the average density calculated above is also the actual density
is called top-hat profile. Therefore in order to compute the temporal evolution of a shell
we can use the top-hat solution exposed in last section; let us see how.

Let us consider n initial radii rj(ti) := ri,j , with j = 1...n, in the range (0, Rf (ti)]. Let
us choose the indices such that ri,j ≤ ri,k ⇐⇒ j < k. Let us moreover call for notational
convenience mj := mi(ri,j), i.e. the mass enclosed by the j−th considered shell. We know
the temporal evolution of each ri,j , which is predicted by eq. (2.3). For what just said,
every shell at r(ti) = rj behaves like a top-hat and we can use the solution exposed in
last chapter to build the following SN solution ψ for a discretized version of the density
profile (3.1)

ψ(r, t) = α(r, t) e
i
ν
φ(r,t) , (3.6)
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with

α(r, t) =































√

3Ω1(t)H2
1 (t)

8πG r < r1(t)
√

3Ω2(t)H2
2 (t)

8πG r1(t) ≤ r < r2(t)

... ...
√

3H2
f (t)

8πG r ≥ rn(t)

(3.7)

φ(r, t) =































H1(t)r2

2 r < r1(t)
H2(t)r2

2 − G
2

∫ t
0

(

m1
r1(t)

− m2 r21(t)

r32(t)

)

dt′ r1(t) ≤ r < r2(t)

... ...

Hf (t)r
2

2 − G
2

∫ t
0

(

m1
r1(t)

+ ...+ mn
rn(t)

− m2 r21(t)

r32(t)
− m3 r22(t)

r33(t)
− ...− M r2n(t)

R3
f (t)

)

dt′ r ≥ rn(t)

(3.8)

V (r, t) =































Gm1
r2

2r31(t)
r ≤ r1(t)

Gm2
r2

2r32(t)
+ G

2

(

m1
r1(t)

− m2 r21(t)

r32(t)

)

r1(t) < r ≤ r2(t)

... ...

GM r2

2R3
f (t)

+ G
2

(

m1
r1(t)

+ ...+ mn
rn(t)

− m2 r21(t)

r32(t)
− m3 r22(t)

r33(t)
− ...− M r2n(t)

R3
f (t)

)

r > rn(t)

(3.9)

where

Hj =
a3j

2Gmi(rj)

cos(η/2)

sin3(η/2)
, (3.10)

Ωj =
1

cos2(η/2)
, (3.11)

Hf =
2

3t
, (3.12)

where in turn

t =
Gmi(rj)

a3j
(η − sin η) , (3.13)

aj =

√

2Gmi(rj)

rmax,j
, (3.14)

rmax,j =
3rj

5δ̄i(rj)
. (3.15)

In the limit n → ∞ this solution describes exactly the density profile (3.1). Let us note
that the conversion between η and t (3.13), depends on the shell considered, therefore
for example Ω is function of r too, differently from last chapter. The integrals over time
present in the expression of φ, which are not functions of r and therefore do not contribute
to the definition of the velocity field, are added to ensure that φ and V satisfy Bernoulli
equation. Similarly the time dependent coefficients appearing in the expression of V do
not have any physical counterpart, but ensure continuity of the gravitational potential.
It is important to note that the Newtonian potential proposed here is only continuous
and differentiable, and not C1 as it was required by Johnston et al.; we relaxed this
requirement because in the top-hat case there are only two huge discontinuities, where the
separation surface is two-dimensional and therefore effectively massless, and hence unable
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to support a force acting just on it, as it would happen if ∂V/∂r were discontinuous at the
boundary. In the case of a tessellation of a continuous profile as the one considered here
for r < Rf (ti), this requirement can be neglected, since in the limit of large n, which we
consider, the discontinuities of ∂V/∂r at the boundaries become tiny, and go to zero in the
limit n→ ∞.

From what said in chapter 2.4, we know that the radius of each mass shell obey eq.
(2.61) [38]:

rj(t) =
2Gmi(ri,j)

a2
sin2(η/2) , (3.16)

which, using the trigonometric identity

sin2(η/2) =
1− cos η

2

and substituting expression (3.14) for a and (3.15) for rmax, turns out to be exactly what
predicted in last section, i.e. equation (2.3).

The time conversion t(η) happens to be the same in the two treatments too, provided that
we use as reference initial time

ti =
2 r

3/2
i

√

30 δiGmi(ri)
=

Hfr
3
i

G
√

15mi[m(ri)−M ]
. (3.17)

Therefore the Schrödinger-Newton approach yields the exact same result of the usual ana-
lytical treatment discussed in section 2.1: they both forecast the formation of a black hole.
In literature it is well known that this is not the reality: numerical simulations [69] show
that at t ≃ 2tmax a collapsing overdensity reaches a virialized state of equilibrium instead
of forming the singularity predicted by (2.3). The reason of this discrepancy lays in fact
that the just exposed treatment steams from a too strongly idealized model for the system.
Indeed with a more realistic density profile, shell crossing would eventually occur, produc-
ing mixing, and therefore allowing violent relaxation to take place. The study held until
now is therefore not completely satisfactory. But in order to make other predictions, the
solution (3.7) (3.8) (3.9) is too analytically involved; let us therefore simplify our treatment
using the free-particle approximation.

3.2 Evolution of the shells of the overdensity in the free-

particle approximation

In the last section, we found expressions for the physical velocity potential φ(r, t) and the
Newtonian potential V (r, t) of a compensated spherically symmetric overdensity divided
in shells which do not cross each other. Let us now recast the same solution in terms of
comoving coordinates, and the potentials Φ and ϕ introduced in section 2.2.

The potential ϕ (defined by (2.26)) in the region rj−1 < r < rj with j = 1 ... n (where in
the case j = 1, r0 := 0) is

ϕj :=
2Vj

3a3H2
f

=
2

3a3H2
f

(Vj − Vf ) , (3.18)

where Vj is the Newtonian potential in the region rj−1 < r < rj and Vf is the one valid
for r > rn(t).
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The velocity potential Φ, for what stated in chapter 2, is defined as follows

∇xΦ := u :=
1

a

(v

ȧ
− x

)

:=
1

a

(∇rφ

ȧ
− x

)

. (3.19)

Supposing spherical symmetry, both u and v have to be radial, therefore x is like that too,
thus eq. (3.19) is nothing more than its projection onto the radial direction

∂Φ

∂rx
=

1

a

(

1

ȧ

∂φ

∂r
− rx

)

, (3.20)

where rx is the radial coordinate of a system of comoving spherical coordinates (rx, θx, φx).
Equation (3.20) is solved by the following potential, as always defined up to the addition
of a function of time only

φ = Hf
r2

2
+ a2ȧΦ . (3.21)

Let us now study the evolution of the shells in which we divided the profile (3.1) in the
free particle approximation. Let us start form the matter distribution (3.7):

α(rx, a) =































√

3Ω1(a)H2
1 (a)

8πG rx < rx,1(a)
√

3Ω2(a)H2
2 (a)

8πG rx,1(a) ≤ rx < rx,2(a)

...
√

3H2
f (a)

8πG rx ≥ rx,n(a) ,

(3.22)

where rx,j = rj/a. Using the notation introduced in section 2.2, the free-particle approxi-
mation prescribes Ṽ = 0 and therefore, as we saw, Poisson equation provides the relation-
ship (2.46) between the amplitude and phase of the wavefunction Ψ := χ exp(iΦ/ν) [72]:

ν∇2
x[arg(Ψ)] +

1

a
(|Ψ|2 − 1) = 0 .

In the j-th shell this equation prescribes

∇2
xΦj = − δ̄j(a)

a
= −

3ΩjH
2
j − 8πGρf

8πGaρf
, (3.23)

where the mean density contrast δ̄i is defined by (2.6). Since the Laplacian of Φj is a
function of the time coordinate only, in our spherically symmetric system the velocity
potential becomes

Φj(rx, a) = − δ̄j(a)
a

r2x
6
. (3.24)

Let us now address the question: what gravitational potential are we considering is acting
on the j-th shell when we perform the free particle approximation? We know that, to
realize Ṽ = 0, the following relation must hold

ϕj = −Φj ; (3.25)

which is, plugging expressions (3.24) and (3.23) for Φj and (3.18) for ϕj ,

2

3a3H2
f

(Vj − Vf ) =
3Ω1H

2
1 − 8πGρf

48πGaρf
r2x ,
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which gives for the gravitational potential of the j-th shell

Vj =
3Ω1H

2
1 − 8πGρf
12

r2 + Vf .

Making use of (3.9) and getting rid of additive factors functions of time only, we can write
the Newtonian potential Vj in the following more transparent form

Vj =

(

3Ω1H
2
1 − 8πGρf
12

+
GM

2R3
f (t)

)

r2 =

=

(

Ω1H
2
1

4
− 2πGρf

3
+

2πGρf
3

)

r2 =

=
Ω1H

2
1

4
r2 =

=
2πG

3
ρjr

2 .

This potential should be confronted with the exact gravitational potential acting on the
shell, as prescribed by (3.9):

Vj,exact = Gmj
r2

2r3j (a)
=

2πG

3
ρjr

2 . (3.26)

Therefore the gravitational potential considered by the free particle approximation to act
on the j-th shell is the exact one.
The difference of the approximated approach respect to the exact one, lays in the velocity
potential Φ. We will deepen the study of this diversity later (in section 3.5), by considering,
for a specific density profile, the difference between the two potentials as a perturbation
to the study held here.

With (3.22) and (3.24) we can write the wavefunction describing the j-th shell in the
free-particle approximation at some initial reference time ai

Ψj(rx, ai) =
αj(ai)
√

ρf (ai)
e

i
ν
Φj(rx,ai) . (3.27)

Let us now compute its temporal evolution, as it is prescribed by the free-particle Schrödinger
equation [72]

iν
∂Ψj

∂a
= −ν

2

2
∇2

xΨj , (3.28)

the solution of which can be written as [?]

Ψj(rx, a) =

∫

G(rx, a|q, ai)Ψj(q, ai) dq , (3.29)

where G is the free particle propagator, given by [?] [61]

G(rx, a|q, a(ti)) = [2πiν∆a]−1/2e
i
ν

(rx−q)2

2∆a , (3.30)

where we defined ∆a := a− a(ti). Therefore

Ψj(rx, a) =

∫ ri,j/a

ri,j−1/a
[2πiν∆a]−1/2e

i
ν

(rx−q)2

2∆a
αj(ai)
√

ρf (ai)
e

i
ν
Φj(q,ai) dq , (3.31)
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where ri,j−1 and ri,j are the radii which delimit the shell at the initial time ai.

Plugging (3.24), (3.31) is equivalent to

Ψj(rx, a) =
1√

2πiν∆a

√

ρj(ai)
√

ρf (ai)

∫ ri,j/a

ri,j−1/a
e

i
ν

[

(rx−q)2

2∆a
+Φj(q,ai)

]

dq

=

√

χj(ai)√
2πiν∆a

∫ ri,j/a

ri,j−1/a
e

i
ν

[

(rx−q)2

2∆a
− δ̄j(ai)

6ai
q2
]

dq . (3.32)

In the case of thin shell, in particular in the limit n→ ∞ where n is the number of shells in
which we divided our profile (3.1), the amplitude of the shell becomes infinitesimal and the
integral in (3.32) can be computed by its integrand multiplied by the infinitesimal thickness
of the shell ri,j/a− ri,j−1/a = drx,i. In a more realistic case in which n is large but finite,
we can take this passage as an approximation and define δrx,i := ri,j/a − ri,j−1/a. The
result is as follows

Ψj(rx, a) =

√

χj(ai)√
2πiν∆a

δrx,i e
i
ν

[

(rx−rx,i)
2

2∆a
− δ̄j(ai)

6ai
r2x,i

]

. (3.33)

In order to understand the physics of this solution, let us rewrite it by completing the
square at the exponential. The calculation reported in the appendix leads to the following,
more transparent, result:

Ψj(rx, a) = δrx,i

√

χj(ai)√
2πiν∆a

e
i
ν

δ̄j(ai)

2∆a δ̄j(ai)−6ai
r2x
e

i
2(

rx−µ
σ )

2

(3.34)

if one defines

µ(rx,i,∆a) = rx,i

(

1− ∆a

ai

δ̄j(ai)

3

)

, (3.35)

σ(∆a) =

√

ν

[

∆a− (∆a)2

ai

δ̄j(ai)

3

]

. (3.36)

This is the result for the evolution of a shell of a spherically symmetric matter configuration
in the free-particle approximation of the Schrödinger equation approach to cosmic structure
formation.

Let us now interpret it. Looking at (3.36) we find that for a→ a+i , σ → 0+ and eq. (3.53)
tells us that Ψj(rx, ai) in the thin shell case (3.34) becomes, as it should, proportional to
a Dirac delta peaked at µ(rx,i,∆a = 0) = rx,i where rx,i in the thin shell case represents
the initial position of the shell.

The evolution, for ∆a > 0, is more complicated to study, since Ψj(rx, a) has an oscillating
behaviour, and is different in the Zel’dovich approximation, which is recovered in the ν → 0
limit of free-particle approximation, and in the adhesion one, realized by a finite value of
ν. For ∆a > 0, we can map the regions in which the matter density is important and
those in which it is negligible: the latter are those in which the wavefunction is rapidly
oscillating. Indeed since the first work proposing to use SN equations to model collisionless
self gravitating dark matter by Widrow and Kaiser [81], and also later in many other papers,
like [21] and [29], the density in phase space f(r,p, t) is not obtained by simply taking the
modulus squared of the solution ψ of SN equations, but it is defined as

f(r,p, t) := |ψH(r,p, t)|2 (3.37)
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where ψH(r,p, t) is a coarse-grained wavefunction, which can be obtained by using for
smoothing the Husimi representation, which is a windowed Fourier transform. In one
dimension ψH reads

ψH(r, p, t) =

∫

dyKH(r, y, p)ψ(y) , (3.38)

with the Husimi kernel

KH(r, y, p) =
exp

[

− (r−y)2

4ǫ2
− i

~
py
]

(2π~)1/2(2πǫ2)1/4
, (3.39)

where ǫ has units of length and roughly gives the resolution in position space. As it is clear
from simulations performed for example in [29], the matter density in regions in which ψ
is rapidly oscillating is the modulus squared of the average of ψ in the region. Since the
complex exponentials in (3.34) can be seen as complex superpositions of sines and cosines,
their average on a length ǫ significantly greater than their wavelength λ is zero, therefore
matter density is negligible in areas in which λ≪ ǫ.

Another way, less rigorous but more fundamental, to approach the fact that regions in
which Ψj is oscillating on smaller length scales are those in which matter density is closer
to zero, is the following. Consider a particle in a position eigenstate |xi〉 = δ(x − xi) and
compute its temporal evolution by means of eq. (3.29). It is easy to deduce that the
wavefunction at generic time t is nothing more than the propagator. As it is well known in
literature, regions in which the propagator oscillates with higher frequencies are less likely
to be crossed by the particle1 in its evolution than regions in which it has a lower frequency
of oscillation; the classical path is indeed given by the stationary points of the phase [61].
For our particle initially in a position eigenstate, asking what is the probability that it
passes in its evolution by position x at time t, happens to be the same as asking what is
the probability to find the particle at x at time t if a measure is performed. Therefore we
expect the probability amplitude to be negligible in highly oscillating areas, and vice versa
to be important near the stationary points of the phase of the propagator.

In (3.34) in particular there are two complex exponentials to consider, in order to study
where in spacetime the wavefunction is rapidly or slowly oscillating. In the first one

e
i
ν

δ̄j(ai)

2∆a δ̄j(ai)−6ai
r2x

(3.40)

the term r2x, and therefore the spatial dependence of the factor, has no physical meaning.
It indeed tells us that the frequency of oscillation of Ψ(rx, a) increases proportionally to
r2x, but the volume element to which a certain coordinate rx refers to is

dV = r2x sin θx dθx dφx drx

and therefore it scales as r2x; thus it has only a geometrical meaning: it would ensure, in
absence of other terms, a constant wavelength throughout all space. The effects of the
factor (3.40) are therefore homogeneous in space, but they depend on time:, in a way that
depends on the sign of

δ̄j(ai) =
2G

H2
f (ai)

(

mj

r3j (ai)
− M

R3
f (ai)

)

.

1In saying so rigorously I would implicitly suppose that quantum particles possess trajectories in their
evolution; this is never true for example in some versions of Copenhagen interpretation of quantum me-
chanics, and in the modal one it is only true if the position is part of the complete set of commuting
observables simultaneously defined. In truth I am not supposing one particular interpretation, I am only
using what an Fraassen calls the scientific image: I am writing as if particles would have trajectories, in
order to think, and convey to the reader an image which leads to correct results.
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If the region enclosed by the shell is initially overdense respect to the background, then
mj/r

3
j (ai) > M/R3

f (ai) and δ̄j(ai) > 0. In this case, as time flows, initially the factor
(3.40) decreases the wavelength of the oscillations, and therefore the areas in which λ≪ ǫ
grow, for a fixed ǫ in the Husimi transform. In other words in this case the factor reduces,
over time, the area in comoving coordinates occupied by the matter distribution.

In the case of an underdense region, vice versa, mj/r
3
j (ai) < M/R3

f (ai) and δ̄j(ai) < 0. As
time flows the factor (3.40) increases the wavelength of the oscillations, enlarging the area
in comoving coordinates occupied by the matter distribution.

The second complex exponential appearing in (3.34) is

e
i
2(

rx−µ
σ )

2

(3.41)

with

µ(rx,i,∆a) = rx,i

(

1− ∆a

ai

δ̄j(ai)

3

)

, (3.42)

σ(∆a) =

√

ν

[

∆a− (∆a)2

ai

δ̄j(ai)

3

]

. (3.43)

This factor tells us that the regions in which the oscillations have a lower frequency, hence
the matter density is higher, are the ones near µ(∆a), in a range defined by σ(∆a). At
a = ai (i.e. ∆a = 0), we already saw that the shell is peaked at rx = rx,i, as it should.
When times flows, i.e. for ∆a > 0, the shell migrates towards rx = 0, determining a
spherical collapse, if (and only if) δ̄j(ai) is positive, i.e. if the shell encloses initially a
region overdense respect to the background. On the contrary, µ moves in the direction of
growing rx if the inner region is initially underdense respect to the background, making
matter dispersing away. Overdense regions therefore collapse and underdense ones become
more and more void. Posing µ(∆a) = 0 we can figure out that perturbations collapse at a
time coordinate

∆acoll

ai
=

3

δ̄j(ai)
, (3.44)

which is positive for an overdensity and negative for an underdensity. Indeed a spherical
expansion can be seen as a time reversed collapse. Expression (3.44) shows also that
slighter overdensities collapse later than denser ones. As a consistency check, this value
(3.44) can be confronted with the value of the scale factor at shell crossing prescribed by
Zel’dovich approximation [17]:

asc = − 1

λei
(3.45)

where λei is the eigenvalue relative to the eigenvector which generate the direction ei which
is collapsing.

For the case we are studying, the deformation tensor for the j-th shell is (for the calculation
see the appendix)

dkl =
∂2Φj

∂qk∂ql
= − δ̄j(ai)

3ai
I3×3 (3.46)

where I3×3 denotes the three-dimensional identity matrix. Therefore collapse happens at
the same instant in all the three spatial directions, as it is required by spherical symmetry,
and equation (3.45) prescribes that shell crossing happens at time coordinate

asc = −1/

[

− δ̄j(ai)
3ai

]

,
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but since shell crossing happens exactly at the collapse for our distribution, this is precisely
the same result stated in (3.44).
The form (3.46) for the deformation tensor implies also that Zel’dovich approximation is
not exact, since λ2 6= 0 ∧ λ3 6= 0 and the quantity (2.40) reads (for the calculation see the
appendix)

δ̃ = −a
2

a2i

δ̄2j (ai)

3
− 2

27

a3

a3i
δ̄3j (ai) .

The evolution computed until now is in comoving coordinate space: in physical ones the
peak of the matter distribution of the j-th shell has the following evolution in time

rpeak(a) = aµ(∆a) =

= rx,i

(

a− a∆a

ai

δ̄j(ai)

3

)

=

= rx,i

(

ai +∆a− (ai +∆a)∆a
δ̄j(ai)

3ai

)

=

= ri + rx,i

[

∆a

(

1− δ̄j(ai)

3

)

− (∆a)2
δ̄j(ai)

3ai

]

. (3.47)

Let us study the sign of the coefficient of the addendum linear in ∆a:
(

1− δ̄j(ai)

3

)

> 0 ⇐⇒ δ̄j(ai) < 3 . (3.48)

Therefore the evolution of the peak of the matter distribution of a shell can be of three
types depending on the initial mean value of the density contrast inside the shell δ̄j(ai) :

• δ̄j(ai) < 0
in this case both the coefficients of the terms linear and quadratic in ∆a, in (3.47),
are positive, therefore the peak of the shell increase its radial coordinate indefinitely
and the shell expands forever.

• 0 < δ̄j(ai) < 3
in this case the coefficient of the linear term in (3.47) is positive, while the one of
the quadratic term is negative. Therefore initially, i.e. for small values of ∆a, the
shell expands, then it turns around and for larger values of ∆a the quadratic term
dominates and the shell collapses. The turn around time coordinate ∆ata can be
computed as follows

drpeak

dt

∣

∣

∣

∣

tta

= 0

drpeak

d(∆a)

∣

∣

∣

∣

(∆a)ta

d(∆a)

dt

∣

∣

∣

∣

tta

= 0

rx,i

[

1− δ̄j
3

− (∆a)ta
2δ̄j
3ai

]

2

3
√
ata

= 0

1− δ̄j
3

− (∆a)ta
2δ̄j
3ai

= 0

(∆a)ta
ai

=
3− δ̄j(ai)

2 δ̄j(ai)
(3.49)

The denominator in this range of density contrast is positive, therefore the numerator
needs to be positive too in order for the collapse to happen in the future; imposing
this inequality we recover again the constraint δj < 3.
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The estimation (3.49) can moreover be confronted with (2.8), which gives the turnaround
time of a top-hat overdensity of initial density contrast δi:

(

tta
ti

)

exact

=
9π

20

1

δi
.

Since in a matter dominated Universe a ∝ t2/3, the just written expression implies

(

ata

ai

)

exact

=

(

9π

20

1

δi

)2/3

. (3.50)

On the other hand, the result (3.49) of free-particle approximation implies

(

ata

ai

)

free-particle

=
3

2

1

δ̄(ri)
+

1

2
. (3.51)

Because of Birkhoff theorem, (3.50) and (3.51) are different estimations of the same
quantity. The discrepancy is due to the approximation introduced to calculate (3.51).
In particular (3.50) and (3.51) both tend to infinity when the density contrast tends
to 0 (a region which is not overdense never collapse), but while (3.50) prescribes that
every overdensity initially expands and then turns around and collapse, (3.51) fore-
casts this behaviour only for shells that enclose an overdensity with average density
contrast inferior to 3.

After turnaround, the collapse ends in the formation of a singularity, as I will soon
clarify. As previously mentioned, simulations [69] show that collapse happens at
tcoll ≃ 2tta; with (3.44) and (3.49) we can compute the following ratio

tcoll
tta

=

(

(∆a)coll
(∆a)ta

)3/2

=

(

6

3− δ̄j(ai)

)3/2

(3.52)

where in the first step I supposed a matter dominated Universe. Hence for small
values of δ̄j(ai), as the ones which describe primordial overdensities, tcoll does not
differ too much from 2tta.

• δ̄j(ai) > 3
in this case both the coefficients in (3.47) are negative, therefore the shell directly
contracts, till it forms a singularity.

While the evolution of the peak of the matter distribution of a shell is insensible of the
value of the parameter ν chosen, the details on how matter is disposed around that peak
differ in Zel’dovich (ν → 0 case) and adhesion approximation (finite ν case).

Zel’dovich approximation When considering smaller values for the parameter ν, the
exponential (3.40) sharpens the matter distribution, making thinner the structure formed
by the j-th shell. The second exponential (3.41) is affected by the limit ν → 0 by the
decrease of σ(∆a). In particular, recalling the following definition of the Dirac delta
function as a limit of oscillating functions [82]

δ(x) := lim
σ→0+

1√
2πiσ

e
i
2

x2

σ . (3.53)

we directly see that the distribution becomes proportional to a Dirac delta peaked at
rx = µ(∆a).
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A limit of Zel’dovich approximation is that, in the collapsing case δ̄j(ai) > 0, nothing
prevents µ of eq. (3.42) to become negative. This is mathematically erroneous, but apart
from that, it would mean physically that a particle coming from a certain direction (θx, φx),
once it reaches rx = 0 it continues straight in the opposite direction (−θx,−φx). This fact
could seem reasonable but we have to recall that spherical symmetry ensures that when
this particle reaches rx = 0, it crosses the trajectories of all the other particles forming the
shell from which it comes from; this means that a shell which before occupied an extended
region is now collapsed into a caustic. Adhesion approximation rightfully predicts the
stability of caustics; let us study what the arbitrary ν case of free-particle approximation,
which is proposed as similar to adhesion approximation in [72], forecasts.

Adhesion approximation If ν can take arbitrary high values, the first complex expo-
nential (3.40) prescribes that the structures formed are generally thicker than in the low ν
case, and the second one (3.41) predicts that matter density were non negligible in a range
defined by σ(∆a). This factor, (3.43), is monotonously growing with ∆a, hence the shell
of an overdensity, while collapsing towards lower rx, expands in thickness. The behaviour
prescribed by the second exponential (3.41) is in accordance with what stated by Garny et
al. in [29], that the quantum pressure term prohibits the formation of structures on length
scales shorter than

x .

√

ν

Hf
. (3.54)

Indeed in an EdS matter dominated Universe, since Hf = 2/(3t), x is proportional to t1/2;
therefore every shell has to spread in time, in order to avoid the formation of structures
of increasing minimal length scale. This behaviour is also in accordance with the result of
simulations performed in [72].
While the constraint (3.54) is respected for the evolution of an underdense region, an
overdensity eventually collapses to a singularity, as we will see right after, so the constraint
is eventually violated, for the compelling effect of the exponential (3.40).

To understand what finally the free-particle approximation predicts for our spherical
perturbation (3.1), it is important to notice that the constraint (3.4), which ensures the
absence of shell crossing, coupled to the requirement for the perturbation of being com-
pensated, forces that perturbation to be an overdensity.
Therefore both in the small ν case as well as in the arbitrary ν one, the free-particle ap-
proximation predicts an initial expansion, followed by a turnaround and a collapse, which
leads to the formation of a singularity at r = 0 at the time coordinate ∆a = 3ai/δ̄j(ai). In
the arbitrary ν case the shell spreads in space during the collapse, while in the analogous
of Zel’dovich approximation it remains thinner, but the final state is identical in the two
cases: the exponential (3.40) in both cases at ∆a = 3ai/δ̄j(ai) makes non negligible the
matter density only at the precise stationary point of the other exponential (3.41), which
is

µ(∆acoll) = 0 .

Neither of the two assumptions on the value of the parameter ν are unfortunately able to
model the stability of caustics.
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3.3 Global evolution of the overdensity in Zel’dovich approx-

imation

Another legitimate approach to the study of the evolution of the overdensity (3.1), is the
one which considers it globally, without decomposing the profile in shells.

Since the spherically symmetric overdensity (3.1) is compensated, Birkhoff theorem ensures
that the evolution of the region at r ≥ Rf (ti) is not affected by the region at r < Rf (ti),
and therefore in the region external to Rf (ti) matter just dilutes scaling like ρf ∝ a−3 ∝ t−2

(where the last passage holds in a matter dominated Universe). Therefore let us restrict
our study at the region r < Rf ; here, using the coordinates (x, a), we can define

Ψ(rx, a) =

√

ρ(rx, a)

ρf (a)
e

i
ν
Φ(x,a) , (3.55)

and the evolution of the overdensity will be predicted by the Schrödinger-Newton equations
(2.31) (2.32) [?]

iν
∂Ψ

∂a
= −ν

2

2
∇2

xΨ+ Ṽ ψ +
ν2

2

∇2
xR

R

∇2
x

[

Ṽ +
3iν

4a
ln

(

Ψ

Ψ∗

)]

=
3

2a2
(|Ψ|2 − 1) .

Since the potential is time dependent we are not allowed to write the time independent
Scrödinger equation, and therefore the system is solvable only numerically. Let us therefore
make use of approximations, and in particular of the free-particle approximation. As done
in section 3.2, following [72] let us consider the quantum pressure term into Bernoulli
equation and put Ṽ = 0. With this assumptions, Poisson equation provides us with an
expression (2.46) for the Laplacian of the velocity potential at a = ai [72]

∇2
xΦ(x, ai) = −δ(rx, ai)

ai
(3.56)

where as usual δ(rx, a) := [ρ(rx, a)−ρf (a)]/ρf (a). Restricting to a zero angular momentum
configuration, we can rewrite (3.56) in the following form, in order to solve it for Φ

1

r2x

d

drx

(

r2x
dΦ

drx

)

=− δ(rx, ai)

ai

r2x
dΦ

drx
+ C =− 1

ai

∫

δ(r′x, ai) r
′
x
2
dr′x

Φ+D =− 1

ai

∫

∫

δ(r′x, ai) r
′
x
2 dr′x

r′′2x
dr′′x −

∫

C

r′x
2dr

′
x
2

Φ(rx, ai) =− 1

ai

∫

∫

δ(r′x, ai) r
′
x
2 dr′x

r′′2x
dr′′x +

C

rx
−D . (3.57)

Since D is a function of time only, it can be set to 0 without loss of generality, and C has
to be set to zero too if one requires the potential not to diverge in rx = 0.

With those choices of the coefficients and the definition of mean interior overdensity (2.6),
Φ results

Φ(rx, ai) = −(V/a3i )

4π ai

∫ rx

0

δ̄(r′x, ai)
rx′2

dr′x . (3.58)
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Let us now compute the temporal evolution of the initial configuration, described by
Ψ(rx, ai) of eq. (3.55), as it is prescribed by the free-particle Schrödinger equation (2.44),
which is solved by (3.29) [?]:

Ψ(rx, a) =

∫

G(rx, a|q, ai)Ψ(q, ai) dq

=

∫ Rf/ai

0
[2πiν∆a]−1/2e

i
ν

(rx−q)2

2∆a

√

ρ(q, ai)

ρf (ai)
e

i
ν
Φ(q,ai) dq

=
1

√

ρf (ai) 2πiν∆a

∫ Rf/ai

0

√

ρ(q, ai) e
i
ν

(rx−q)2+2∆aΦ(q,ai)

2∆a dq . (3.59)

Recall that, since the profile (3.1) does not give rise to shell crossing, Zel’dovich approxi-
mation is the ν → 0 limit of the free-particle one [72]. In this limit the integral in (3.59) is
dominated by the stationary points of the phase [?], since in all the other regions in which
we are integrating, in the ν → 0 limit the phase is oscillating on a length scale λ→ 0, and
therefore mediates to zero the integral. The stationary points q̄s of the phase are the ones
satisfying

[

∂

∂q

(

(rx − q)2 + 2∆aΦ (q, ai)

2∆a

)]

q̄s

= 0

[

−2(rx − q) + 2∆a
∂

∂q
Φ(q, ai)

]

q̄s

= 0

rx = q̄s + ∆a
∂

∂q
Φ(q, ai)

∣

∣

∣

∣

q̄s

, (3.60)

where in the last line we solved for rx and we recovered the Zel’dovich trajectories (2.33).
This can be seen as a consistency check, that the ν → 0 limit of the free-particle ap-
proximation is effectively equal to Zel’dovich approximation. The second passage of (3.57)
provides an expression for the first derivative of Φ, which can be plugged in (3.60) to obtain

rx = q̄s − ∆a
1

ai q2

∫

δ(r′x, ai) r
′
x
2
dr′x

∣

∣

∣

∣

q̄s

= q̄s +
1

3

∆a

ai
q̄s −

∆a

ai

1

ρf

1

q̄2s

∫ q̄s

0
ρ(r′x, ai) r

′
x
2
dr′x . (3.61)

Therefore in free-particle approximation a fluid element that initially, at time coordinate
ai, occupied a position at radial comoving coordinate q̄s is mapped, after a time ∆a, in
the position rx prescribed by (3.61).

A particle of our matter distribution, initially in a position denoted by a physical radial
coordinate r = aiq̄s := ri, evolves therefore in Zel’dovich approximation in the following
way (multiple writings of the same quantity are presented, because they highlight different
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aspects of the evolution):

r(ri, a) = arx(q̄s, a) =
a

ai
ri − a∆a

1

a2i r
2
i

∫ ri

0
δ(r′, ai) r

′2 dr′ =

=
a

ai
ri +

1

3

a∆a

a2i
ri − a∆a ai

1

ρf

1

r2i

∫ ri/ai

0
ρ(r′x, ai) r

′
x
2
dr′x =

= a

[

2

3

1

ai
ri + a2i

1

ρf

1

r2i

∫ ri/ai

0
ρ(r′x, ai) r

′
x
2
dr′x

]

+

+ a2

[

1

3

1

a2i
ri − ai

1

ρf

1

r2i

∫ ri/ai

0
ρ(r′x, ai) r

′
x
2
dr′x

]

=

= ri +∆a

[

4

3

1

ai
ri − a2i

1

ρf

1

r2i

∫ ri/ai

0
ρ(r′x, ai) r

′
x
2
dr′x

]

+

+ (∆a)2

[

1

3

1

a2i
ri − ai

1

ρf

1

r2i

∫ ri/ai

0
ρ(r′x, ai) r

′
x
2
dr′x

]

. (3.62)

We can see two compelling effects taking place: for ∆a > 0, the terms

4

3

∆a

ai
ri +

1

3

(∆a)2

a2i
ri (3.63)

make r grow and represent the effect of the expansion of the Universe, while

−(ai +∆a)∆a ai
1

ρf

1

r2i

∫ ri/ai

0
ρ(r′x, ai) r

′
x
2
dr′x (3.64)

makes, as time flows, r decrease, and represents the effect of the gravitational interaction
of the element of the fluid considered with the rest of the matter distribution constituting
the overdensity.

Initially, i.e. for small values of ∆a, the leading term in (3.62) is the linear one in ∆a, and
therefore the behaviour of a fluid element in this period is determined by the sign of the
coefficient of ∆a:

[

4

3

1

ai
ri − a2i

1

ρf

1

r2i

∫ ri/ai

0
ρ(r′x, ai) r

′
x
2
dr′x

]

> 0

1

3

1

ρf

a3i
4
3πr

3
i

4π

∫ ri/ai

0
ρ(r′x, ai) r

′
x
2
dr′x <

4

3

ρ̄(r < ri, ai)

ρf
< 4

δ̄(ri, ai) < 3 .

Hence fluid elements placed at radii ri inside which the density contrast is lower than 3
initially drift towards larger radii, while an element at a radius inside which the density
contrast exceeds the critical value 3 initially decreases its radius.

Later, for larger values of ∆a, the higher power of this parameter become dominant in
(3.62) and therefore the behaviour of a fluid element initially at ri is determined by the
sign of the coefficient of (∆a)2:

[

1

3

1

a2i
ri − ai

1

ρf

1

r2i

∫ ri/ai

0
ρ(r′x, ai) r

′
x
2
dr′x

]

> 0 ⇐⇒ δ̄(ri, ai) < 0 .
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Hence a fluid element on the edge (or inside) of an underdensity will drift towards larger
radii, and one placed on the edge (or inside) of an overdensity will eventually move towards
smaller radii.

In summary, in perfect accordance with what previously stated in section 3.2, if it exists,
the central part of the overdensity for which δ̄(r, ai) > 3, just collapses; the peripheral
part, on the contrary, with a density contrast δ̄(r, ai) < 3 initially expands. For this region
too, eventually the effect of the gravitational interaction, encoded by (3.64), grows till it
becomes predominant and the fluid elements of which the region is composed turn around
(each one at a different time, depending on its initial radial coordinate) and collapse.

Let us compute now the turnaround time coordinate of a fluid element initially at ri. To
do so, we have to impose the condition

dr

dt
(ri,∆a)

∣

∣

∣

∣

∆a=(∆a)ta

= 0 . (3.65)

Using (3.62) and recalling that there is no shell crossing, in the appendix the following
solution of (3.65) is explicitly found

(∆a)ta
ai

=
3− δ̄(ri, ai)

2δ̄(ri, ai)
. (3.66)

This equation prescribes that (∆a)ta/ai > 0 (i.e. it is physically acceptable), only for
0 < δ̄(ri, ai) < 3. Indeed from our previous study we know that underdensities (δ̄(ri, ai) ≤
0) never collapse, and overdensities with δ̄(ri, ai) ≥ 3 do not turn around because they
directly collapse, from a = ai. Expression (3.66) is precisely equal to (3.49) found applying
the free-particle approximation to a single shell.

An equation for the scale factor at the instant of collapse of a fluid element initially at ri
can be found instead by imposing

r(ri, a)|∆a=(∆a)coll
= 0 ,

which is solved by (for the calculation see the appendix)

(∆a)coll
ai

=

{

−1,
3

δ̄(ri)

}

. (3.67)

The first solution, being negative, is unphysical, while the second one, which is accept-
able, is identical to the result (3.44) found in section 3.2 while applying the free-particle
approximation to a shell.

We are then finally ready to compute the temporal evolution of the whole profile (3.1)
under Zel’dovich approximation: it is the ν → 0 limit of (3.59). As said, the complex
exponential makes more and more negligible in the integration the regions far from q̄s as
ν approaches zero. Let us make more rigorous this passage by explicitly computing the
limit.

If we define

Iν =

∫ b

a
g(t)e

i
ν
h(t) dt , (3.68)

the stationary phase approximation consists in equating Iν with the following expression
(readapted from [85] and [12]), valid for small ν, which becomes exact in the limit ν → 0

I(ν) ≃ g(q̄s)

√

2πν

|h′′(q̄s)|
exp

{

i

[

h(q̄s)

ν
+ σ

π

4

]}

, (3.69)
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where σ(a) := sgn(h′′(q̄s)).

Therefore

lim
ν→0

Ψ(rx, a) := lim
ν→0

1
√

ρf (ai) 2πiν∆a

∫ Rf/ai

0

√

ρ(q, ai) e
i
ν

(rx−q)2+2∆aΦ(q,ai)

2∆a dq =

= lim
ν→0

√

ρ(q̄s, ai)
√

ρf (ai) i∆a

√

1

|∇2
qf(q̄s,∆a)|

e
i
ν

(rx−q̄s)
2+2∆aΦ(q̄s,ai)

2∆a eiµπ/4 , (3.70)

where it was defined

f(q,∆a) :=
(rx − q)2 + 2∆aΦ(q, ai)

2∆a

and
µ(q,∆a) := sgn(∇2

qf(q̄s)) .

Let us then compute the Laplacian of the phase

∇2
qf(q) =

1

2∆a

[(

∂2

∂q2
+

2

q

∂

∂q

)

(rx − q)2 + 2∆a∇2
qΦ(q, ai)

]

=

=
1

∆a

[

1− 2
rx − q

q
−∆a

δ(q, ai)

ai

]

.

From (3.61) we know

−rx + q̄s = ∆a
1

ai q2

∫

δ(r′x, ai) r
′
x
2
dr′x

∣

∣

∣

∣

q̄s

,

which can be plugged into the following expression

∇2
qf(q̄s) =

1

∆a

[

1 +
2

q̄s
(−rx + q̄s)−∆a

δ(q̄s, ai)

ai

]

=

=
1

∆a

{

1 +
2

q̄s

[

∆a
1

ai q̄2s

∫ q̄s

0
δ(r′x, ai) r

′
x
2
dr′x

]

−∆a
δ(q̄s, ai)

ai

}

to finally obtain the desired result

∇2
qf(q̄s) =

1

∆a

{

1− ∆a

ai

[

− 2

q̄3s

∫ q̄s

0
δ(r′x, ai) r

′
x
2
dr′x + δ(q̄s, ai)

]}

. (3.71)

Plugging (3.71) into (3.70) we deduce

lim
ν→0

|Ψ(rx, a)|2 =
ρ(q̄s, ai)

ρf (ai)∆a

1

|∇2
qf(q̄s, a)|

=

=
ρ(q̄s, ai)

ρf (ai)

1
∣

∣

∣1− ∆a
ai

[

− 2
q̄3s

∫ q̄s
0 δ(r′x, ai) r′x

2 dr′x + δ(q̄s, ai)
]∣

∣

∣

.

Therefore in Zel’dovich approximation2

χ(rx, a) =
ρ(q̄s, ai)

ρf (ai)

1
∣

∣

∣
1− ∆a

ai

[

− 2
q̄3s

∫ q̄s
0 δ(r′x, ai) r′x

2 dr′x + δ(q̄s, ai)
]∣

∣

∣

,

2here we are omitting the Husimi transform of Ψ because the wavefunction, in the ν → 0 limit, is
no more oscillating, and as we will see it is some continuous deformation of the initial smooth profile.
Therefore it would be left unchanged by a coarse graining over some reasonably small length scale ǫ.
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which implies, using physical coordinates,

ρ(r, a) =
ρf (a)

ρf (ai)

1
∣

∣

∣1− ∆a
ai

[

− 2
(aiq̄s)3

∫ aiq̄s
0 δ(r′, ai) r′

2 dr′ + δ(aiq̄s, ai)
]∣

∣

∣

ρ(aiq̄s, ai) ,

and thus finally

ρ(r, a) =
a3i
a3

1
∣

∣

∣1− ∆a
ai

[

δ(aiq̄s, ai)− 2
3 δ̄(aiq̄s, ai)

]

∣

∣

∣

ρ(aiq̄s, ai) . (3.72)

Equation (3.72) tells us that the initial Gaussian overdensity ρ(aiq̄s, ai) gets deformed, as
time flows, by the two factors in front of it:

•

a3i
a3

just rescales the density by taking into account the expansion of the Universe be-
tween the initial scale factor ai and the final one a, and the fact that the density of
pressureless matter scales like a−3 as the Universe expands;

•

1
∣

∣

∣
1− ∆a

ai

[

δ(aiq̄s, ai)− 2
3 δ̄(aiq̄s, ai)

]

∣

∣

∣

(3.73)

where recall that δ̄(aiq̄s, ai) indicates the average of the contrast δ(r, ai) in the region
r < aiq̄s. The term (3.73) expresses the effect of gravitational interaction. It is the
one responsible for the stretching of the profile described until now, and eventually of
the collapse. As time goes on the whole factor (3.73) increase, but non homogeneously
in the initial position aq̄s := ri: inner regions have a larger term in square bracket
and therefore grow in density faster than external ones. When the density becomes
infinite (in the first place where it happens i.e. at r = 0), Zel’dovich approximation
breaks down, because shell crossing takes place and a caustic forms.
It is interesting to note that (3.73) is simply 1 for r ≥ Rf , as it should since the
only evolution of the density in that area is the dilution due to the expansion of the
Universe.

The instant at which ρ(r = 0) becomes infinite provides an estimation of the collapse time
of the whole overdensity. Let us compute it. The term (3.73) is not defined in aq̄s = 0,
but we can define it there as its limit for aq̄s → 0. Let us therefore compute the following
quantity.

lim
(aiq̄s)→0

[

− 2

(aiq̄s)3

∫ aiq̄s

0
δ(r′, ai) r

′2 dr′ + δ(aiq̄s, ai)

]

H
=

H
= lim

(aiq̄s)→0
−2δ(aiq̄s, ai) (aiq̄s)

2

3(aiq̄s)2
+ δ(0, ai) =

=
1

3
δ(0, ai)

where the "H" on the top of the equal sign indicates the use of the de l’Hôpital theorem. We
can hence impose the instant of collapse to be the one which makes null the denominator
of (3.73) for r = 0:

1− ∆acoll

ai

1

3
δ(0, ai) = 0

∆acoll

ai
=

3

δ(0, ai)
; (3.74)
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this is the same result as (3.67), and as (3.44) found in section 3.2 applying the same
free-particle approximation to the shells of the density profile. Moreover the estimation
(3.74) can be confronted with the exact one recalled in section 2.1

tcoll, exact

ti
=

9π

10

1

δ(0, ai)
,

in the following way:

tcoll, Zel’dovich

tcoll, exact

=
10

3π

(

3

δ(0, ai)

)1/2

. (3.75)

We can see that the two expressions are similar for small enough initial overdensities, and
in particular they tend to be equal for δ(0, ai) ≃ 3.

The global evolution of the overdensity in consideration therefore is as follows: inner
regions, for which the condition δ(rx, ai) > 3 is fulfilled, directly contract; regions more
external initially expand and then start to contract, at later times for more external regions.
The distribution therefore becomes more peaked as time goes on until at

∆acoll

ai
=

3

δ(0, ai)

a singularity at the origin of the coordinate system forms. This result is identical to the
one of section 3.2.

In addition to confirming the previously stated results, what the study held in this section
adds to our knowledge on the evolution of a spherically symmetric CDM fluctuation is
that the behaviour of a small region of the perturbation, placed initially around r = ri,
depends (in free-particle approximation) both on the value of the initial density contrast
in the region itself δ(ri, ai) and on δ̄(ri, ai), which is the initial average density contrast
inside a sphere of radius ri, centred in the centre of symmetry of the configuration.

3.4 SN solution for a Gaussian overdensity

Scope of this section is to actualize the study held till now in a quite abstract fashion, by
considering a specific initial density profile which meets the requirements of section 3.1.

We take as such a profile the one depicted in figure 3.1 and defined by the following
analytical expression

ρ(r, θ, φ, ti) =







M

(
√
2πσ)

3 e
− 1

2(
r
σ )

2

r ≤ Rf (ti)

ρf r > Rf (ti) ,
(3.76)

where, as before, M = (4/3)πR3
f ρf .

σ can be taken arbitrary in a range for which the overdensity is not too peaked, in order to
model a realistic primordial fluctuation, and at the same time the integral of the Gaussian
for r > Rf is negligible, to ensure the fact that the overdensity is compensated. By
orders of magnitude, a good choice could be taking 3σ < Rf < 4σ. Indeed for Rf = 3σ,
ρ(r = 0, ti)/ρf ≃ 7 and the overdensity is compensated with a relative error of 0.3%;
instead for Rf = 4σ, ρ(r = 0, ti)/ρf ≃ 17 but the overdensity is compensated with a
relative error of 0.006%. For Rf < 3

√
3 6
√

π/2σ ≃ 1.55σ, (3.76) cease to describe an
overdensity which eventually collapse, and describes an underdensity in the region r < Rf ,
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Figure 3.1: ρ(r) of a spherically symmetric Gaussian compensated overdensity described by the
density profile (3.76) with M = σ = 1.

which expands at a faster rate than the surroundings; in this case the perturbation is
obviously not compensated.

In order to check if the overdensity described by this ρ(r) is compensated, we need to
calculate the following integral

∫

r<Rf

ρ(r) d3r = 4π
M

(√
2πσ

)3

∫ Rf

0
e−

1
2(

r
σ )

2

r2dr ; (3.77)

in the hypothesis that the integral from Rf to ∞ was negligible, and using the fact that
the integrand is even, (3.77) equals

M√
2πσ3

∫ +∞

−∞
e−

1
2(

r
σ )

2

r2dr =
M√
2πσ3

√
2πσ3 =M .

Therefore it is compensated.

The mass mi(r) enclosed by a spherical shell of radius r at t = ti reads

mi(r) =
M√
2πσ3

∫ r

0
e
− 1

2

(

r′

σ

)2

r′2dr′ . (3.78)

Let us now check if the criterion (3.4) for the absence of shell crossing

mi(r1)

r31
>
mi(r2)

r32
∀ r1 < r2

is satisfied. The first inequality is equivalent to

∫ r1
0 e

− 1
2

(

r′

σ

)2

r′2dr′

r31
>

∫ r1
0 e

− 1
2

(

r′

σ

)2

r′2dr′ +
∫ r2
r1
e
− 1

2

(

r′

σ

)2

r′2dr′

r32
.
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Let us now take r2 = r1 + dr; with this hypothesis, neglecting powers of the differential
higher than the first, we obtain

∫ r1
0 e

− 1
2

(

r′

σ

)2

r′2dr′

r31
>

∫ r1
0 e

− 1
2

(

r′

σ

)2

r′2dr′ + e−
1
2(

r
σ )

2

r2dr

r31 + 3r21dr

which is satisfied if
e−

1
2(

r
σ )

2

r2dr < 3r21dr

and therefore if

−1

2

( r

σ

)2
< ln 3

which is satisfied in turn ∀r since the left hand side is negative and the right hand one is
positive.
We just demonstrated that every shell starts to collapse before and at a lower radius than
the adjacent external one; this fact ensures the absence of shell crossing.

The Gaussian profile can be divided in shells, and the results of the previous sections are
valid for it: an exact SN solution can be found with the exact form and procedure of section
3.1, the free-particle approximation predicts an initial expansion of the less overdense shells
(i.e. the external part of the Gaussian), followed by a contraction which eventually leads
to the formation of a singularity at the origin of the coordinates.

Also the global evolution of the overdensity in Zel’dovich approximation can be partic-
ularized to the density profile (3.76). The two quantities which determines the initial
wavefunction Ψ(rx, ai) in the region rx ≤ Rf/ai are

δ(rx, ai) =
ρ− ρf
ρf

=

M

(
√
2πσ)

3 e
− 1

2(
airx
σ )

2

− ρf

ρf
(3.79)

and (for the derivation from (3.58) see the appendix)

Φ(rx, ai) =
1

ai

r′′2x
6

− M

ai ρf
(√

2πσ
)3

∫ rx

0
dr′′x

1

r′′2x

∫ r′′x

0
e
− 1

2

(

r′x
σ/ai

)2

r′x
2
dr′x . (3.80)

The Zel’dovich trajectories are

rx = q̄s − ∆a
1

ai q2

∫

δ(r′x, ai) r
′
x
2
dr′x

∣

∣

∣

∣

q̄s

= q̄s +
1

3

∆a

ai
q̄s −

∆a

ai

M

ρf
(√

2πσ
)3

1

q̄2s

∫ q̄s

0
e
− 1

2

(

r′x
σ/ai

)2

r′x
2
dr′x . (3.81)

Since the overdensity is compensated, with an error assumed to be negligible, a fluid
element initially at rx = Rf/a := Rx,f should stay forever at the same comoving coordinate.
In the appendix this result is explicitly found, as a consistency check.

The free-particle one is an approximation, and therefore it can be improved. In par-
ticular, in the next section we will refine the prediction of the evolution of the Gaussian
distribution computed in free-particle approximation, with the use of Time Dependent
Perturbation Theory (TDPT).
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3.5 Time Dependent Perturbation Theory

In section 3.2 we started from a spherically symmetric density profile, we divided it in shells,
we wrote for a generic j-th shell the wavefunction satisfying the Schrödinger equation for
a free particle [72]

iν
∂Ψj

∂a
= −ν

2

2
∇2

xΨj (3.82)

at initial time t = ti, and we computed its temporal evolution. We moreover discovered
that the velocity potential Φ which realized the free particle approximation in the j-th
shell is

ΦZ,j = −ϕj := − 2

3a3H2
f

(Vj − Vf ) , (3.83)

while the corresponding exact peculiar velocity potential can be expressed by means of
equation (3.21) as a function of the known, physical velocity potential (3.8); the result is

Φj =
Hj −Hf

ȧ

r2x
2
. (3.84)

The velocity potential (3.84) is exact in the limit of shells of infinitesimal thickness. Us-
ing it, the effective potential introduced in section 2.2, which is null in the free particle
approximation, would result3

Ṽ ′
j =

3

2a
(Φj + ϕj) =

=
3

2a2

(

Hj

Hf
+

1

3

ΩjH
2
j

H2
f

− 4

3

)

r2x
2
. (3.85)

If there was no overdensity, Hj = Hf , Ωj = 1, and Ṽ ′
j would be null. As it is known in

literature, from for example CMB observations, primordial density fluctuations were tiny,
and therefore so was Ṽ ′

j , at least in the early stages of the collapse. Hence, at least in a

certain range of time, we are allowed to consider Ṽ ′
j a small perturbation respect to the

null potential of last section. Since this perturbation is evidently time-dependent, we will
make use of time-dependent perturbation theory (TDPT).
Let us consider the following quantity: the modulus of the ratio of the perturbed velocity
potential Φj over the unperturbed one −ϕj

R :=

∣

∣

∣

∣

Φj

−ϕj

∣

∣

∣

∣

=
Hj −Hf

ȧ

r2x
2

3a3H2
f

2(Vj − Vf )
=

=
(Hj −Hf ) 3a

2Hf

2G r2

2 (
mj

r3j (a)
− M

R3
f (a)

)

r2x
2

=

=
3Hf (Hj −Hf )

ΩjH2
j −H2

f

; (3.86)

the last passage makes use of a calculation performed in deriving (3.85), reported in the
appendix. I propose the following criterion to state whether (3.85) could be safely consid-
ered a perturbation: when the parameter R takes values < 1, (3.85) is a small perturbation
to the free-particle case.

Hj and Ωj are functions of the mean density inside the j-th shell. If we study shells
of infinitesimal thickness, the mass of the shell itself is negligible, and therefore we can

3For the derivation, see the appendix.
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assume it does not influence the density inside it. This fact together with the absence of
shell crossing decouples the potential Ṽ from the evolution of the Ψ describing the shell;
therefore Schrödinger-Newton equations become linear, and we can use the superposition
principle.

Let us start therefore finding a basis of free particle solutions in which we can write the
wavefunction Ψj of a single shell, known which, with the piecewise solutions (3.7) (3.8),
we can describe the whole Gaussian overdensity. Let us notice that the Gaussian density
profile (3.76) has the property of having a negligible matter density at r = Rf . Therefore
let us search for solutions of the free particle Schrödinger equation (3.82) in the region
r < Rf , which go to zero at r = Rf . For achieving this task, let us make use of a
mathematical artifice: let us consider the potential of an infinite spherical well

V0(rx) =

{

0 rx ≤ Rx,f

∞ rx > Rx,f

, (3.87)

where Rx,f := Rf/a; it is worth noting that, since the overdensity is compensated, Rf is a
function of time, but Rx,f is constant. The potential (3.87) is the free-particle one inside a
sphere of radius Rx,f , and then it is infinite outside it, just to ensure that the wavefunction
be null in that region. In fact we are interested in an overdensity localized at r ≤ Rf , with
the property of having negligible matter density at r = Rf , and we are not interested in
describing the evolution of the homogeneous region at R > Rf . In other words this trick
makes the wavefunction describing just the overdensity and not the background too.
As said, the potential V0 (3.87) is introduced in order to find a basis for the vector space of
which the wavefunction Ψj of a shell is an element. Therefore during its whole evolution,
the shell has to be writeable as a superposition of the eigenfunctions of a Hamiltonian
which contains the potential V0. This would not be possible if a shell would expand at
radii r > Rf := aRx,f at a certain point of its evolution. Since, in the last section, we
demonstrated that the Gaussian profile satisfies the criterion (3.4), shell crossing does not
occur during the whole evolution of the overdensity. This means in particular that each
shell turns around at a lower radius than every outer shell, and therefore that there is not
a shell whose distribution peak ever goes outside Rf .
This would be enough to justify the choice (3.87) for V0 in the ν → 0 limit, where the
thickness of the shell does not increase with time. Unfortunately for finite ν, a shell spreads
in thickness of a length σ(∆a) (3.43).
We can consider the shell at time coordinate ∆a as included between µ(∆a)− σ(∆a) and
µ(∆a) + σ(∆a), where µ is given by (3.42). This is a conservative choice, because the
exponential (3.40), which appears in the expression of Ψj , makes the shells of overdensi-
ties focus, i.e. becoming thinner, as time flows. With our conservative convention, the
maximum radius reached by a generic j-th shell is

rMAX := amax [µ(∆amax) + σ(∆amax)] , (3.88)

with ∆amax the turn around time coordinate of the j-th shell (3.49). Only shells which
enclose an initial overdensity δ̄j(ai) < 3 turn around, as discussed in section 3.2; let us
restrict to those, which constitute the external, initially expanding part of the overdensity.
Let us omit the temporal dependence of the initial mean overdensity inside the j-th shell
δ̄j(ai) in order to keep the notation readable; therefore in the following δ̄j := δ̄j(ai). With
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this convention, for those peripheral shells, the condition (3.88) reads:

rMAX,j = amax rx,i

(

1

2
+
δ̄j
6

)

+ amax

√

ν
ai (3− δ̄j)

2 δ̄j

[

1

2
+
δ̄j
6

]

=

= ri

(

1

2
+
δ̄j
6

)

+ ri
9− δ̄2j

12 δ̄j
+

[

ai (3− δ̄j)

2 δ̄j
+ ai

]

√

ν
ai (3− δ̄j)

2 δ̄j

[

1

2
+
δ̄j
6

]

,

where it was plugged

∆amax =
ai (3− δ̄j)

2 δ̄j(ai)
.

For what just said, the j-th shell does not ever overcome aRx,f if and only if

rMAX,j < amaxRx,f

amax rx,i

(

1

2
+
δ̄j
6

)

+ amax

√

ν
ai (3− δ̄j)

2 δ̄j(ai)

[

1

2
+
δ̄j
6

]

< amaxRx,f

√

ν
ai (3− δ̄j)

2 δ̄j(ai)

[

1

2
+
δ̄j
6

]

< Rx,f − rx,i

(

1

2
+
δ̄j
6

)

0 ≤ ν <
12 δ̄j(ai)

ai (9− δ̄2j )

[

Rx,f − rx,i

(

1

2
+
δ̄j
6

)]2

.

Since the right hand side of the last written inequality is always positive for δ̄j < 3 and
rx,i < Rx,f , there exist small enough finite values of ν for which every shell is always
confined at radii r < aRx,f . Therefore the potential (3.87) is useful to find a basis of the
space of states of the shells of the Gaussian profile (3.76) in Zel’dovich approximation. Let
us see in detail how.

Let us define the Hamiltonian

H0 := T + V0 = −ν
2

2
∇2

x + V0 , (3.89)

where T represents the kinetic energy. The form of the term T is a 3D generalization of
the free-particle kinetic term written by Short and Coles in [72].

Let us therefore search for solutions of the Schrödinger equation

H0Ψ = iν
∂Ψ

∂t
(3.90)

which can be written as the product of a radial portion and an angular one [28]:

Ψ(rx, θx, φx) = R(rx)Y (θx, φx) .

As it is well known in literature (see for example [28]), for a spherically symmetric poten-
tial, with spherically symmetric boundary conditions, the angular part Y turns out to be
the spherical harmonics Y m

l (θx, φx). Let us focus on the zero angular momentum case,
therefore [28]

Y (θx, φx) = Y 0
0 =

√

1

4π
.
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On the other hand the equation (3.90) for R can be simplified in form by substituting
u(rx) = rxR(rx) [28]:

−ν
2

2

d2u

dr2x
+

[

V̄ +
ν2

2

l(l + 1)

r2x

]

u = iν
∂u

∂t
. (3.91)

For zero angular momentum, in the region r < Rf , (3.91) becomes

−ν
2

2

d2u

dr2x
= iν

∂u

∂t
.

The operator on the left hand side does not depend on time, therefore we can separate
variables and write

−ν
2

2

d2u

dr2x
= E0 u , (3.92)

which becomes
d2u

dr2x
= −k2u

if we define k :=
√
2E0/ν. The regular solution of this equation is

u(rx) = A sin(krx) ,

where A ensures normalization and k can assume values only in a countable set4 {kn}, n ∈
N0. These values can be found by knowing that, because of the form of the potential, in
the region rx > Rx,f , u(rx) = 0. Hence requiring that the solution vanishes at Rx,f singles
out the values of k for which at rx = Rx,f the sine has a node [28]:

kn =
nπ

Rx,f
n ∈ N0 .

Finally, a basis of free particle solutions which go to zero at r = Rf is given by

Ψn(rx, θx, φx) = A

√

1

4π

sin(knrx)

rx
; (3.93)

A can then be set by demanding

M =

∫

rx<Rx,f

|Ψn(rx, θx, φx)|2d3x = A2 1

4π
4π

∫ Rx,f

0
sin2(knrx) drx = A2 1

2
,

hence
A =

√
2M .

Therefore (3.93) becomes

Ψn(rx, θx, φx) =

√

M

2π

sin(knrx)

rx
. (3.94)

For developing TDPT we have to consider the following Hamiltonian [34]

H = H0(x) +H
′(x, a) . (3.95)

Let us recall that the unperturbed Hamiltonian (3.89) in the region rx < Rx,f and for zero
angular momentum reads

H0(rx) = −ν
2

2

d2

dr2x
.

4With N0 I designate N \ {0}.
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The perturbation is

H
′(rx, a) = Ṽ ′

j =
3

2a2

(

Hj

Hf
+

1

3

ΩjH
2
j

H2
f

− 4

3

)

r2x
2
,

where Ṽ ′
j is given by (3.85).

In terms of the discrete solutions Ψn (3.94), the static Schrödinger equation (3.92), reads
[34]

H0Ψn = EnΨn

with En := k2nν
2/2.

Because of the fact that the superposition principle is valid and that the Ψn form a basis
of wavefunctions of free particle with the boundary condition Ψ(Rx,f ) = 0, every density
profile, and in particular the one of the j-th shell of the Gaussian (3.76), can be written
as [34]

Ψj(a) =
∑

cn(a)Ψn e
−iEna/ν (3.96)

where the evolution of the coefficients is given by (the dot denotes derivation respect to
the scale factor a) [34]

ċn = − i

ν

∑

m

cmH
′
nm e

i(En−Em)a/ν , (3.97)

where [34]
H ′

nm := 〈Ψn|H ′ |Ψm〉 . (3.98)

Let us calculate explicitly H ′
nm for two generic n and m 6= n.

H ′
nm := 〈Ψn|H ′ |Ψm〉 =

=

∫

rx<Rx,f

ΨnH
′Ψm d

3x =

=4π
M

2π

∫ Rx,f

0

sin(knrx)

rx
H ′(rx, a)

sin(kmrx)

rx
r2x drx =

=2M

∫ Rx,f

0
sin(knrx)

3

2a2

(

Hj

Hf
+

1

3

ΩjH
2
j

H2
f

− 4

3

)

r2x
2
sin(kmrx) drx =

=
3M

a2

(

Hj

Hf
+

1

3

ΩjH
2
j

H2
f

− 4

3

)

∫ Rx,f

0
sin(knrx) sin(kmrx)

r2x
2
drx =

=
3M

2a2

(

Hj

Hf
+

1

3

ΩjH
2
j

H2
f

− 4

3

)

∫ Rx,f

0
{cos[(km − kn) rx]− cos[(km + kn) rx]}

r2x
2
drx =

=
3M

2a2

(

Hj

Hf
+

1

3

ΩjH
2
j

H2
f

− 4

3

)

{∫ Rx,f

0
cos[(km − kn) rx]

r2x
2
drx −

−
∫ Rx,f

0
cos[(km + kn) rx]

r2x
2
drx

}

=

=
3M

2a2

(

Hj

Hf
+

1

3

ΩjH
2
j

H2
f

− 4

3

)

{

Rx,f

(km − kn)
2 − Rx,f

(km + kn)
2

}

=

=
3M

2a2

(

Hj

Hf
+

1

3

ΩjH
2
j

H2
f

− 4

3

)

Rx,f
4kmkn

(k2m − k2n)
2
.

(3.99)
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The solution of the integrals performed in the seventh step was done by parts and is
reported in the appendix. For m = n instead

H ′
nn =

3M

2a2

(

Hj

Hf
+

1

3

ΩjH
2
j

H2
f

− 4

3

)

{∫ Rx,f

0
cos[0]

r2x
2
drx −

∫ Rx,f

0
cos[2kn rx]

r2x
2
drx

}

=

=
3M

2a2

(

Hj

Hf
+

1

3

ΩjH
2
j

H2
f

− 4

3

){

R3
x,f

3
− Rx,f

(2kn)
2

}

=

=
3M

2a2

(

Hj

Hf
+

1

3

ΩjH
2
j

H2
f

− 4

3

)

Rx,f

{

R2
x,f

3
− 1

4k2n

}

.

With these results and (3.97) we can compute

ċn = − i

ν

∑

m

cmH
′
nm e

i(En−Em)a/ν

= − i

ν

3M

2a2

(

Hj

Hf
+

1

3

ΩjH
2
j

H2
f

− 4

3

)

Rx,f







∑

m 6=n

cm
4kmkn

(k2m − k2n)
2
ei(En−Em)a/ν +

+ cn

(

R2
x,f

3
− 1

4k2n

)}

. (3.100)

It is worth noting that |ċn| ∝ ν−1, while in absence of perturbation, ċn = 0. In general the
i-th correction Ψ(i) computed with TDPT to the unperturbed wavefunction Ψ(0) has the
following dependence on ν [72]

Ψ(i) ∝ 1

νi
.

Therefore in order to have corrections smaller in modulus respect to Ψ(0), we cannot take
the limit ν → 0, which would dump the quantum pressure term. We have to adopt
a compromise, keeping ν small enough to make the effect of QPT not dominating over
gravity, and large enough to make sense of the concept of perturbation theory [72]. To find
the n-th coefficient, we need to integrate (3.100):

cn(a)− cn,i = −3MiRx,f

2ν







∑

m 6=n

4kmkn
(k2m − k2n)

2

∫ a

ai

cm
1

a′2

(

Hj

Hf
+

1

3

ΩjH
2
j

H2
f

− 4

3

)

×

× ei(En−Em)a′/ν da′ +

(

R2
x,f

3
− 1

4k2n

)

∫ a

ai

cn
1

a′2

(

Hj

Hf
+

1

3

ΩjH
2
j

H2
f

− 4

3

)

da′
}

.

In the long timescales, for

a− ai ≫
E1 − E2

ν
,

the first integral mediates to zero for every m. Therefore in this limit every cn,i of the
unperturbed eigenfunction decomposition of the initial state is mapped in a cn(a) which
satisfy

cn(a)− cn,i = −3MiRx,f

2ν

(

R2
x,f

3
− 1

4k2n

)

∫ a

ai

cn
1

a′2

(

Hj

Hf
+

1

3

ΩjH
2
j

H2
f

− 4

3

)

da′ . (3.101)

In particular, for a fixed a = a1 ≫ (E1 − E2)/ν + ai

|cn(a1)− cn,i| ∝
∣

∣

∣

∣

∣

R2
x,f

3
− 1

4k2n

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

R2
x,f

3
−

R2
x,f

4π2n2

∣

∣

∣

∣

∣

∝
∣

∣

∣

∣

1

3
− 1

4π2n2

∣

∣

∣

∣

. (3.102)
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The succession defined by last term is monotonously growing for n ≥ 1.

For shorter periods of time, the first integral is non negligible, and in particular it couples
more efficiently coefficients which refers to levels which differ less in energy. In particular,
since energy levels scale ∝ n2, with n ∈ N, lower energy states are coupled more efficiently
to their neighbours than higher ones.

Since a shell is localized in space in the radial direction within an indetermination equal to
the thickness of the shell, which we supposed to be very small, its decomposition in energy
eigenfunctions (3.96) has many coefficients cn with similar non vanishing moduli, because
of Heisenberg principle. The overall effect of the time dependent perturbation introduced
is the following. In the short timescales, it varies the energy spectral decomposition of the
shell in a inhomogeneous way: the low-energy part of it undergoes more rapid and effective
modifications than the high momentum one.
More importantly, in the long timescales that spectral decomposition varies in a way which
makes the expectation value of the unperturbed energy of the shell increase. This can be
seen by the proportionality (3.102): coefficients referring to higher energy states undergo
greater modifications. One could argue that these modifications could lower or higher the
modulus of a certain cn in an a priori unpredictable way, but this is not true because the
variation of a certain coefficient is weighted by the integral in (3.101); to better understand
its behaviour, let us compute the following quantity, by means of eq. (3.101):

cn(ai + da) = cn(ai)− i F (ai) cn(ai) (3.103)

where

F (a) :=
3M Rx,f

2ν

(

R2
x,f

3
− 1

4k2n

)

1

a2

(

Hj

Hf
+

1

3

ΩjH
2
j

H2
f

− 4

3

)

≥ 0 .

Four situations can occur:

1. ℜ(cn,i) > 0 ∧ ℑ(cn,i) < 0 ,

2. ℜ(cn,i) < 0 ∧ ℑ(cn,i) > 0 ,

3. ℜ(cn,i) > 0 ∧ ℑ(cn,i) > 0 ,

4. ℜ(cn,i) < 0 ∧ ℑ(cn,i) < 0 ,

where ℜ(c) denotes the real part of a complex number c and ℑ(c) its imaginary one.
In the first two cases eq. (3.103) shows that a positive feedback sets in, and both |ℜ(cn)|
and |ℑ(cn)| grow with time.
In the second two cases (i.e. 3. and 4.), equations (3.101) and (3.103) show that a negative
feedback sets in, and initially |ℜ(cn)| and |ℑ(cn)| decrease with time. If they do not
reach zero at the same time, when the first, between |ℜ(cn)| and |ℑ(cn)|, change sign,
the previously considered situations sets in, and they start growing in modulus. Since
the equations governing the evolution of the real and the imaginary part of cn are the
same, they reach zero at the same time coordinate a if and only if ℑ(cn,i) = ℜ(cn,i). This
condition defines a line in the complex plane, therefore it singles out a set of null measure
in the space of possible cn,i.

Therefore this demonstrates that in a large timescale every cn of the unperturbed energy
spectral decomposition of a shell grows in modulus, but with different rates: as (3.102)
states, a coefficient cn grows faster than a cm iff n > m. Therefore in the limit of large a,
the perturbation acts by making every shell gain momentum: the expectation value of the
unperturbed energy, i. e. of momentum, increases at late times respect to the initial time
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at which we start to consider the effect of the perturbation, and therefore respect to the
free-particle prediction.

Moreover because of the presence of the term

(

Hj

Hf
+

1

3

ΩjH
2
j

H2
f

− 4

3

)

in (3.101), shells which enclose an higher overdensity gain momentum faster than ones
enclosing slighter overdense regions, respect to the prediction of the free-particle approxi-
mation we saw in the previous section.
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Chapter 4

Evolution of a spherically symmetric

configuration coherent with the

initial conditions of the Universe

Until now, we considered a perturbation that was arbitrary both in shape and in amplitude.
In this section we will ground the study on a more realistic case: we will still consider a
spherically symmetric overdensity arbitrarily shaped, but with an amplitude coherent with
the initial density contrast of the Universe δ(r) := [ρ(r)− ρ̄] /ρ̄ being a Gaussian random
field.

4.1 Characterization of the primordial density field of the

Universe

Let us use, as before, comoving coordinates x = (rx, θx, φx) such that r = ax.

If we assume that the initial density field δ(x) is Gaussian [51], it is completely specified
by its power spectrum [68], defined as [51]

P (k) = 〈|δk|2〉 , (4.1)

where δk denotes the Fourier transform of δ(x) and the angular brackets a mean over space.

The field δ(x) can be smoothed by convolving it with a filter W . As a filter we can choose
the following spherically symmetric top-hat window [51]

W (R0; rx) :=

{

1 rx ≤ R0

0 rx > R0

,

for some comoving radius R0. With this choice, the smoothed field reads [51]

δ(R0;x) =

∫

W (R0; |x − y) δ(y) d3y

=
∑

k

δk Ŵ (R0; k) e
ik·x , (4.2)

where Ŵ (R0; k) is the Fourier transform of W (R0; r).
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A useful quantity characterising the overdensity field is the rms fluctuation of mass in a
given smoothing window R0 [51]:

∆2(R0) = 〈|δ(R0;x)|2〉 =
∑

k

P (k)Ŵ 2(R0; k) , (4.3)

where in the last passage we plugged expression (4.2) for the smoothed overdensity field
expressed in terms of its Fourier decomposition, and used the definition (4.1) of the power
spectrum.

The Gaussian nature of the field δ(x) allows us to statistically characterize δ̄(R0), the mean
initial overdensity of a spherical region with comoving radius R0, defined by (2.6). This
quantity has the following Gaussian one-point distribution function [52]

p(δ̄(R0)) =
1√

2π∆(R0)
exp

[

−1

2

δ̄2(R0)

∆2(R0)

]

. (4.4)

In [6] (the famous BBKS paper) Bardeen et al. find that in the standard CDM model
(Blumenthal et al. 1984; Davis et al. 1985) the power spectrum (4.1) of the mass density
fluctuations is given by

P (k) = P0κT
2(κ) , (4.5)

with [51]

T (κ) =
ln(1 + 2.34κ)

2.34κ

[

1 + 3.89κ+ (16.1κ)2 + (5.46κ)3 + (6.71κ)4
]−1/4

,

where [24]

κ :=
k

hΓMpc−1 ,

where in turn Γ was defined by Bardeen et al. [6] to be Γ = Ωmh; this was later generalized
by Sugiyama [74] to

Γ = Ωmh e−Ωb(1+
√
2h/Ωm) .

The coefficient P0 in (4.5) can be set normalizing the power spectrum by imposing [51] [24]

∆(8h−1Mpc) = σ8 ,

where σ8 can be estimated from observations [66] [24]. The value R0 = 8h−1Mpc for the
smoothing radius is chosen because of the observational result that the variance of counts
of galaxies in spheres of this size is of order unity [18].

Recalling the following expression for the top-hat filter function in Fourier space [24]

Ŵ (R0; k) =
3j1(kR0)

kR0
, (4.6)

where j1 is the first-order spherical Bessel function, we can finally write the r.m.s. fluctu-
ation (4.3) for the power spectrum (4.5); it reads

∆2(R0) =
∑

k

P (k) Ŵ 2(R0; k) =
∑

k

P0κT
2(κ)

9j21(kR0)

k2R2
0

=
9P0

R2
0hΓMpc−1

∑

k

T 2(κ)
j21(kR0)

k
.

(4.7)
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In order to state for which values of the smoothing radius R0 the last written series con-
verges, let us calculate the following quantity

l := lim sup
k→∞

k

√

T 2(κ)
j21(kR0)

k

= lim sup
k→∞

k

√

ln2(1 + 2.34κ)

2.342κ2 [1 + 3.89κ+ (16.1κ)2 + (5.46κ)3 + (6.71κ)4]1/2

{

sin
(

kR0 +
π

4

)

×

×
[

3

4
√
2π

(

1

kR0

)3/2

+O

(

(

1

kR0

)7/2
)]

+

+cos
(

kR0 +
π

4

)

[

−
√

2

π

(

1

kR0

)1/2

+O

(

(

1

kR0

)5/2
)]}

=

=0 .

Being l < 1 regardless of the value of R0, for the root test the series is convergent for every
value of the smoothing radius.

With the theory recalled in this section, in the next one we will build a model for a
primordial overdensity δi(r) coherent with the initial conditions of the Universe.

4.2 Specification of a model for a spherically symmetric over-

density coherent with the initial conditions of the Uni-

verse

Let us consider at an initial reference time t = ti the spherically symmetric overdensity
described by the following density contrast (which is a model for (4.2))

δi(R0; rx) =







N

(
√
2πσ)

3 exp
[

−1
2
r2x
σ2

]

rx ≤ R0

0 rx > R0

. (4.8)

Then at t = ti the mean overdensity inside a sphere of comoving radius R0 is

δ̄(R0) =
4π

V

∫ R0

0

N
(√

2πσ
)3 e

− 1
2(

r
σ )

2

r2dr =

=
2

V

N√
2π

∫ R0

0
e−

1
2(

r
σ )

2 ( r

σ

)2 dr

σ
=

=
N

V

[

erf

(

R0√
2σ

)

− 1√
2π

R0

σ
e
− 1

2

(

R0
σ

)2]

. (4.9)

If we assume the primordial density contrast of the Universe to be a Gaussian random
field, the above written quantity is distributed according to the probability distribution
(4.4). It appears hence meaningful to study an overdensity as big as the square root of the
variance of that distribution, as a fair model for a primordial fluctuation.
With this condition we can constrain one of the three parameters defining our density
profile (4.8): N , σ and R0.
In order to make our Gaussian profile (4.8) the most possible adherent to the initial condi-
tions of the Universe, we could impose that at two radii the mean interior overdensity were
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equal to the one placed at 1σ of its probability distribution in the primordial Universe. In
formulae we could impose simultaneously

1. δ̄(R0) = ∆(R0) , which sets the global amplitude of the fluctuation, inside the
smoothing radius R0;

2. δ̄(R0/2) = ∆(R0/2) , which tunes how much the Gaussian has to be peaked to best
model a realistic initial overdensity.

In order to find expressions for the right hand sides of these two constraints using (4.7) we
must normalize the power spectrum, and thus set the value of P0. To do so, we have to
impose

∆2(8h−1Mpc) = σ28 .

If we define for notational clearness R8 as the comoving radius that in current units mea-
sures 8h−1Mpc, we obtain

P0 = σ28
R2

8hΓMpc−1

9
∑

k T
2(κ)

j21(kR8)
k

. (4.10)

Then using (4.9) for the left hand sides and (4.7) for the right hand ones, the two constraints
read respectively

N
4
3πR

3
0

[

erf

(

R0√
2σ

)

− 1√
2π

R0

σ
e
− 1

2

(

R0
σ

)2]

= σ8
R8

R0

√

√

√

√

∑

k T
2(κ)

j21(kR0)
k

∑

k T
2(κ)

j21(kR8)
k

(4.11)

N
π
6R

3
0

[

erf

(

R0/2√
2σ

)

− 1√
2π

R0/2

σ
e
− 1

2

(

R0/2
σ

)2]

= σ8
R8

R0

√

√

√

√

∑

k T
2(κ)

j21(kR0/2)
k

∑

k T
2(κ)

j21(kR8)
k

(4.12)

For every choice of the smoothing radius R0, the one written above is a system of two
transcendental equations in two variables: N and σ. Unfortunately, being transcendental,
these equations do not have closed-form solutions and even numerical methods of resolution
do not converge, even for the easiest sensible choice of the smoothing radius R0 = R8.

On the other hand, the fact that our density profile at r ≤ R0 is determined by two
parameters is incidental, since it follows from our arbitrary choice of the shape of the
configuration we are studying. Imposing the two just exposed constraints it would possibly
lead to the system most adherent to reality one can construct with a spherically symmetric
overdensity with a Gaussian density contrast profile. Here we choose instead to pay the
price of studying a model less adherent to the reality of primordial fluctuations, in order
to be easy enough to allow us to make predictions on its evolution. In order to do so, let
us impose

R0 = 4σ , (4.13)

an assumption whose consequences will be evaluated once the other parameters of the
profile (4.8) will be set.

With this assumption, the integral

4π

V

∫ +∞

R0

N
(√

2πσ
)3 e

− 1
2(

r
σ )

2

r2dr

becomes negligible and therefore the expression (4.9) simplifies in

δ̄(R0) =
N

V
=

3N

4πR3
0

. (4.14)
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Now let us impose the constraint

δ̄(R0) = ∆(R0) .

Combining (4.14), (4.7) and (4.10), one finds that to ensure this condition the normalization
must read

N(R0) =
4π

3
R2

0R8σ8

√

√

√

√

∑

k T
2(κ)

j21(kR0)
k

∑

k T
2(κ)

j21(kR8)
k

. (4.15)

We should now set the smoothing radius R0, which determines the size of the system we
are describing. To do so, let us recall that what our spherically symmetric configuration,
described by the profile (4.8), models are clusters of galaxies. They typically have radii
ranging from ∼ 1 to ∼ 10 Mpc [18]. In 1958 Abell proposed a criterion of classification
for galaxy clusters based on the number of galaxies with a certain magnitude, that have
distances to the cluster centre smaller than the "Abell radius", which is of 1.5h−1 Mpc [50].
The virialized structure of which our Milky Way is part is not strictly speaking a galaxy
cluster but a group. By definition, groups are systems of galaxies smaller than clusters,
although the dividing line between groups and clusters is quite arbitrary [50]. This Local
Group that contains our galaxy, has a radius RLG = (1.18 ± 0.15)Mpc [78]. Always in
order to convey an idea of the average dimension of a galaxy cluster, in table 4.1 are listed,
for some galaxy clusters, the radii R200. For each cluster, R200 is the clustocentric radius
at which the mean interior density is 200 times the critical density ρcrit := 3H2/8πG. Data
are taken from [65].

Table 4.1: Radii of some galaxy clusters. From [65].

Name R200 (Mpc)

Abell 85 1.80
Abell 119 1.83
Abell 660 1.36

ZwCl 1215.1+0400 1.73
Abell 1775 3.27
Abell 1795 1.44
Abell 1800 2.04

ZwCl 1518.8+0747 2.13
Abell 2061 1.63
Abell 2065 3.77
Abell 2199 1.52
Abell 2255 2.45

Coma 3.28

All these dimensions should be confronted with the radius rvir at which a matter overdensity
virializes, which is given by (2.12):

rvir =
rmax

2
=

3

10

R0

δ̄(R0)
. (4.16)

Let us now make the guess R0 = R8 and see at which present-day radius it would virialize
an overdensity described by our profile (4.8) with the choices (4.13) for σ, (4.15) for N ,
and 8h−1Mpc for the comoving smoothing radius R0 in current units. Using the Planck
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2018 [66] measure of the power spectrum normalization σ8 = 0.8102 ± 0.0060, (4.16)
predicts

rvir(R0 = R8) =
3

10

R8

σ8
= (2.96± 0.02) h−1Mpc ≃ 4Mpc ,

where in the last passage it was assumed h = 0.7. This value of rvir happens to be slightly
greater than the values mentioned above, but comparable to them. It is worth noting that
R200 and rvir(R0) do not measure exactly the same quantity. We can model for concreteness
the density profile of a virialized halo of dark matter as isothermal, i.e. ρ ∝ 1/r2. R200 is
the radius inside which the mean density is 200 times the critical one, while rvir(R0) is the
radius occupied by the outermost shell of the virialized overdensity, the one placed at R0

at t = ti. Therefore, for every continuous density profile, R200 < rvir(R0).

Let us hence also compute the mass M8 which would constitute our overdensity in the case
R0 = R8 (V8 is the volume of a sphere of radius R8):

M8 = V8 ρ̄
[

δ̄(R8) + 1
]

= (5.12× 106)Mpc km2/s2 × Ωm(σ8 + 1)

G
h−1

= (6.8± 0.2)× 1014 h−1M⊙ . (4.17)

In the last passage there were substituted the numerical values Ωm = 0.3153± 0.0073 and
σ8 = 0.8111 ± 0.0060 from the Planck 2018 data release [66], G = (6.67430 ± 0.00015) ×
10−11 m3kg−1s−2 from the NIST reference on constants [75], M⊙ = (1.9884 ± 0.0002) ×
1030 kg from the Astronomical Almanac [76].
The value (4.17) forM8 is perfectly plausible as mass of a cluster of galaxies, because cluster
masses typically range between ∼ 1014 h−1M⊙, which can be taken as critical value which
separates groups (lighter) and clusters (heavier), and ∼ 1015 h−1M⊙, the characteristic
mass of rich clusters [50]. Curiously, 6.8 × 1014 h−1M⊙ is precisely the mass within the
Abell radius of the Coma cluster1 [18].

Therefore the guess of taking the smoothing radius equal to R8 is motivated, in order to
describe an overdensity of the LSS of the Universe. We therefore have to study the matter
configuration described by the density contrast (4.8) with the following parameters (which
completely specify it)

R0 = R8 , (4.18)

N =
4π

3
R3

8σ8 , (4.19)

σ =
R8

4
. (4.20)

As promised, before going on let us evaluate the consequences of our arbitrary choice of
the parameter σ.

Reminiscent of the constraint we could not impose,

∆(R8/2) = δ̄(R8/2) ,

let us characterize σ by looking at which mean overdensity δ̄(R8/2) a certain choice of σ
leads to. In figure 4.1 it is plotted the mean overdensity inside a comoving radius of R8/2
versus different values of σ, once N and R0 are set by (4.18) and (4.19).

1Nonetheless, the Coma cluster in its whole is more massive: within its radius R200 = 1.99+0.21
−0.22 h−1 Mpc,

it has a mass of M200 = 1.88+0.65
A−0.56 × 1015h−1 M⊙ [40].
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Figure 4.1: Mean overdensity inside a sphere of comoving radius R8/2 as a function of different
values of σ, for the density contrast profile (4.8) with N and R0 set by respectively (4.18) and
(4.19).

The rms fluctuation of density contrast in a comoving radius of R8/2 prescribed by the
power spectrum (4.5) is

∆(R8/2) = 2σ8

√

√

√

√

∑

k T
2(κ)

j21(kR8/2)
k

∑

k T
2(κ)

j21(kR8)
k

= 2.09± 0.02 .

This value was computed knowing that only certain terms of the series are relevant: for
large k, both T 2(k) and the filter function become negligible. In [24], Docters argues
that an integral closely related to the series in (4.2) is mostly determined by the power
spectrum within the approximate range 0.1 ≤ k ≤ 2. The two series in (4.2) were evaluated
by summing their first 146 terms.

Let us now call δ̄σ4(r) the mean overdensity determined with the parameter choices (4.18),
(4.19), (4.20). Then

δ̄σ4(R8/2) = 8

[

erf
(√

2
)

− 2√
2π

e−2

]

= 6.77 .

We know that the quantity δ̄(R8) is distributed according to

p(δ̄(R8)) =
1√

2π∆(R8)
exp

[

−1

2

δ̄2(R8)

∆2(R8)

]

. (4.21)

Therefore in a sphere of comoving radius R8/2, fluctuations of the mean density contrast
large at least δ̄σ4(R8/2) occur with a probability of 3.2σ.

The probability of having a fluctuation in an infinitesimal interval dδ around δ̄σ4(R8/2) is

p(δ̄σ4(R8/2)) dδ =
1√

2π∆(R8/2)
exp

[

−1

2

δ̄2σ4
(R8/2)

∆2(R8/2)

]

dδ = 0.0010 dδ . (4.22)
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Then we have finally defined our model: we will study in the following the evolution of
the primordial spherically symmetric density fluctuation given by

δi(rx) =

{

43
√
2σ8

3
√
π

exp
[

−1
2

r2x
(R8/4)2

]

rx ≤ R8

0 rx > R8

. (4.23)

4.3 SN solution for the overdensity

The evolution of the system can be predicted, in the SN approach to CDM modelling,
with a calculation analogous to the one of section 3.1. For the profile that we are here
considering, (4.23), as well as for the one of section 3.1, shell crossing does not take place
during its evolution, since δi(r1) ≥ δi(r2) ∀ r1 ≤ r2. Moreover the initial (i.e. at a = ai)
density profile

ρi(rx) := ρ̄(ai) [1 + δi(rx)] (4.24)

is continuous in the region r ≤ R0, because product of continuous functions. However the
overdensity, contrarily to the case studied in section 3.1, is not compensated.

Consider then n initial comoving radii ri,j , with j = 1... n, in the range (0, R0]. Choose
the indices such that ri,j ≤ ri,k ⇐⇒ j < k. Let it be mj the mass enclosed by the shell of
radius ri,j , as it was in section 3.1. The temporal evolution rj(t) of each ri,j is predicted
by eq. (2.3). For the considerations exposed in section 3.1, we can write the following ψ
for a discretized version of the density profile (4.24)

ψ(r, t) = α(r, t) e
i
ν
φ(r,t) , (4.25)

which is solution of Schrödinger-Newton equations (1.19) (1.11)

iν
∂ψ

∂t
= −ν

2

2
∇2ψ + V ψ

∇2V = 4πG|ψ|2

with

α(r, t) =































√

3Ω1(t)H2
1 (t)

8πG r < r1(t)
√

3Ω2(t)H2
2 (t)

8πG r1(t) ≤ r < r2(t)

... ...
√

3H2
f (t)

8πG r ≥ rn(t)

φ(r, t) =































H1(t)r2

2 r < r1(t)
H2(t)r2

2 − G
2

∫ t
0

(

m1
r1(t)

− m2 r21(t)

r32(t)

)

dt′ r1(t) ≤ r < r2(t)

... ...

Hf (t)r
2

2 − G
2

∫ t
0

(

m1
r1(t)

+ ...+ mn
rn(t)

− m2 r21(t)

r32(t)
− m3 r22(t)

r33(t)
− ...− M r2n(t)

R3
f (t)

)

dt′ r ≥ rn(t)

V (r, t) =































Gm1
r2

2r31(t)
r ≤ r1(t)

Gm2
r2

2r32(t)
+ G

2

(

m1
r1(t)

− m2 r21(t)

r32(t)

)

r1(t) < r ≤ r2(t)

... ...

GM r2

2R3
f (t)

+ G
2

(

m1
r1(t)

+ ...+ mn
rn(t)

− m2 r21(t)

r32(t)
− m3 r22(t)

r33(t)
− ...− M r2n(t)

R3
f (t)

)

r > rn(t) ,
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where

Hj =
a3j

2Gmj

cos(η/2)

sin3(η/2)
,

Ωj =
1

cos2(η/2)
,

Hf =
2

3t
,

where in turn

t =
Gmj

a3j
(η − sin η) ,

aj =

√

2Gmj

rmax,j
,

rmax,j =
3rj

5δ̄i(rj)
.

In the limit n→ ∞ this solution describes exactly the density profile (4.24).

This solution predicts that the overdensity initially expands, reaching the turnaround ra-
dius of the outermost shell (see (2.9))

rmax =
3

5

R8

δ̄i(R8)
=

9
√
2π e8

640σ8
R8 = (1036± 8)h−1 Mpc (4.26)

at (see (2.8))

tta =
9π

20

ti
δ̄i(R8)

=
3π

4

9
√
2πe8

640σ8
ti = (305± 2)ti .

Inner shells turn around earlier and at smaller radii, as it is clear from the just written
equations. The first to undergo collapse is the densest innermost shell, which forms a
singularity at r = 0 at time

tcoll = 2 tta,1 =
9π

10

ti
δi(0)

=
27π3/2

43 · 10
√
2σ8

ti = (0.205± 0.002) ti . (4.27)

Deriving other predictions from the solution (4.25) is hard, because of its great analytical
complexity. In order to simplify, and clarify, the treatment, we can use the free-particle
approximation.

4.4 Zel’dovich approximation

Let us define
Ψ(x, a) =

√

1 + δ(rx, a) e
i
ν
Φ(x,a) ,

where
dx

da
:= ∇xΦ .

Then the time evolution of the overdensity Ψ(x, ai), where ai := a(ti), is predicted by the
Schrödinger equation (2.31) coupled to the modified Poisson equation (2.32)

iν
∂Ψ

∂a
= −ν

2

2
∇2

xΨ+ Ṽ ψ (4.28)

∇2
x

[

Ṽ +
3iν

4a
ln

(

Ψ

Ψ∗

)]

=
3

2a2
(|Ψ|2 − 1) . (4.29)
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Let us recall that in these equations (see section 2.2)

Ṽ :=
3

2a
(Φ + ϕ) , ϕ :=

2V

3a3H2
, V := V − V̄ .

We can then impose Ṽ = 0 (free-particle approximation), and hence (4.29) becomes (2.46),
which at initial time, a = ai, becomes the following relation between modulus and phase
of the wavefunction

∇2
xΦ(x, ai) = −δi(rx)

ai
, (4.30)

with δi(rx) given by (4.23).

If we restrict to zero angular momentum configurations, which allow the existence of a
solely radial velocity field, we can impose spherical symmetry on Φ, and therefore (4.30)
becomes (3.58):

Φ(rx, ai) = −(V/a3i )

4π ai

∫ rx

0

δ̄(r′x, ai)
rx′2

dr′x .

As it was done in section 3.2, the temporal evolution of the initial configuration Ψ(rx, ai)
can be computed using the free-particle propagator G via (3.29):

Ψ(rx, a) =

∫

G(rx, a|q, ai)Ψ(q, ai) dq ,

where G is given by (3.30).

If we define ∆a := a− ai, we obtain

Ψ(rx, a) =(2πiν∆a)−1/2

∫

e
i
ν

(rx−q)2

2∆a

√

1 + δi(q) e
i
ν
Φ(q,ai) dq =

=(2πiν∆a)−1/2





∫ R8

0
e

i
ν

(rx−q)2

2∆a

√

1 +
43
√
2σ8

3
√
π

e
− 1

2
q2

(R8/4)
2 e

i
ν
Φ(q,ai) dq+

+

∫ +∞

R8

e
i
ν

[

(rx−q)2

2∆a
+Φ(q,ai)

]

dq

]

. (4.31)

Let us now focus on the second term, the integral between R8 and +∞. In order to
compute it, let us before calculate the following limit

lim
q→+∞

Φ(q, ai) = − 1

ai

[

∫ R8

0

∫ r′′x
0 δi r

′2
x dr

′
x

r′′2x
dr′′x +

1

R8

∫ R8

0
δi r

′2
x dr

′
x

]

∈ R .

Making use of this result, it is easy to see that

lim
q→+∞

1

ν

[

(rx − q)2

2∆a
+Φ(q, ai)

]

= +∞ (4.32)

for every (fixed) (ν,∆a, rx) ∈ R
3
+.

Therefore the integrand of the second integral in the last line of (4.31) oscillates infinite
times, with constant amplitude, in the domain of integration ]R8,+∞[. Because of that,
the integral is null and we recover

Ψ(rx, a) = (2πiν∆a)−1/2

∫ R8

0

√

1 +
43
√
2σ8

3
√
π

e
− 1

2
q2

(R8/4)
2 e

i
ν

[

(rx−q)2

2∆a
+Φ(q,ai)

]

dq . (4.33)
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This is exactly equal to expression (3.59), if one performs the substitutions

ρ(q, ai)

ρf (ai)
→ [1 + δi(q)] ,

Rf

a
→ R8 .

This allows us to recover predictions for our density profile (4.23) just re-interpreting the
results found in section 3.3 for the profile (3.1). In particular, since the profile (4.23) does
not give rise to shell crossing, we have to take the ν → 0 limit of Ψ(rx, a) in order to recover
the Zel’dovich approximation from the free-particle one [72]. We can therefore make once
again use of the stationary phase approximation, which becomes exact in this limit. The
stationary points q̄s of the phase are (3.60):

rx = q̄s + ∆a
∂

∂q
Φ(q, ai)

∣

∣

∣

∣

q̄s

= q̄s − ∆a
1

ai q2

∫

δi(r
′
x) r

′
x
2
dr′x

∣

∣

∣

∣

q̄s

=







q̄s −∆a 1
ai q̄2s

∫ q̄s
0

43
√
2σ8

3
√
π

exp
[

−1
2

r2x
(R8/4)2

]

r′x
2 dr′x q̄s ≤ R8

q̄s −∆a 1
ai q̄2s

∫ R8

0
43

√
2σ8

3
√
π

exp
[

−1
2

r2x
(R8/4)2

]

r′x
2 dr′x q̄s > R8

. (4.34)

From the study held in chapter 3 we hence know that the overdensity (4.23) can be de-
composed in two parts: an internal one, for which δ̄(rx) ≤ 3, that directly collapse, and a
complementary external one which initially expands, then turns around and collapse. The
initial time mean overdensity inside a sphere of comoving radius rx is given by (4.9):

δ̄(rx) =
R3

8

r3x
σ8

[

erf

(

rx√
2(R8/4)

)

− 1√
2π

rx
(R8/4)

e
− 1

2

(

rx
(R8/4)

)2]

. (4.35)

The just written function is a monotonous decreasing one, therefore the critical comoving
radius r̃x for which

δ̄(r̃x) = 3

is uniquely defined, and it is

r̃x = (5.13± 0.01) h−1 Mpc . (4.36)

This value was computed with numerical methods [84] using the already mentioned Planck
2018 [66] value for σ8; the error was computed with the formula reported in the appendix.

Zel’dovich approximation predicts moreover that regions of the overdensity (4.23) placed
at a comoving radius rx > r̃x turn around at a time coordinate given by (3.66):

(∆a)ta
ai

=
3− δ̄(ri)

2δ̄(ri)
.

Eventually every shell collapses into a singularity in the centre of symmetry of the config-
uration, at a time coordinate given by (3.67):

(∆a)coll
ai

=
3

δ̄(ri)
.
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The perturbation, globally, is described by the following density profile as a function of
the scale factor a (3.72)

ρ(r, a) =
a3i
a3

1
∣

∣

∣
1− ∆a

ai

[

δ(aiq̄s, ai)− 2
3 δ̄(aiq̄s, ai)

]

∣

∣

∣

ρ(aiq̄s, ai) . (4.37)

As already discussed in the last chapter, the first factor accounts for the dilution of pres-
sureless matter due to the expansion of the Universe, while the second one is due to the
gravitational auto-interaction of matter.

As time goes on the density profile becomes more peaked in r = 0, until a caustic forms
there when the denominator of the second factor of (4.37) becomes null, i.e. at (for the
demonstration see section 3.3)

∆acoll

ai
=

3

δ(0, ai)
= 0.217± 0.002 . (4.38)

This estimation can be confronted with the exact one (4.27) by means of (3.75):

tcoll, Zel’dovich

tcoll, exact

=
10

3π

(

3

δ(0, ai)

)1/2

= 0.495± 0.004 . (4.39)

For our profile (4.8) the collapse therefore happens in Zel’dovich approximation twice as
fast as predicted by the exact treatment.

In the following section we will describe the evolution of a matter distribution close to the
one studied until now, but with a new element.

4.5 Perturbing the system by adding a test body

Let us now consider a test body (i.e. a mini halo) placed inside the spherical configuration
which we described in this chapter. Be the mini halo small enough to not perturb sensibly
the dynamics of the large-scale distribution (4.23), and in particular to left approximately
untouched the average density contrast δ̄(r). Then all the passages which lead to (4.37)
can be repeated and the following expression for the temporal evolution of the system in
Zel’dovich approximation is still valid

ρ(rx, a) =
a3i
a3

1
∣

∣

∣1− ∆a
ai

[

δ(q̄s, ai)− 2
3 δ̄(q̄s, ai)

]

∣

∣

∣

ρ(q̄s, ai) . (4.40)

But now, δ(q̄s, ai) presents a bump, where the test halo is initially placed, let us say at a
comoving radius rx = rt (where t stands for test). Let therefore the mini halo be modelled
as point-like.

Obviously, the presence of the test halo destroys the spherical symmetry and it is no more
valid that points placed on the same shell have common evolutions. But if the halo is small
enough, we can come arbitrarily close to spherical symmetry. If this is the case, δ̄(q̄s, ai)
is solely influenced by the large-scale matter distribution (4.23), and

δ(rt, ai) = α δi(rt)

where δ(rt, ai) is the perturbed density contrast, which accounts fot the presence of the
test halo, δi(rt) is (4.23), and α > 1 tunes the dimension of the mini halo.
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Since the turnaround time depends only on δ̄(r) at the initial time, the shell at r = rt
turns around as before, at a time coordinate given by (3.66). What differs, is that (4.40)
predicts that the density at comoving radius rt diverges at

1− (∆a)coll, t
ai

[

α δi(rt)−
2

3
δ̄(rt, ai)

]

= 0

which is solved by
(∆a)coll, t

ai
=

1

α δi(rt)− 2
3 δ̄(rt, ai)

. (4.41)

We moreover know that Zel’dovich approximation is valid only until shell do not cross.
Therefore we can conclude that a singularity forms at rx = rt instead than at rx = 0 if

(∆a)coll, t
ai

<
(∆a)coll
ai

(where the right hand side is given by (4.38)), which means if

α >
1
3δi(0) +

2
3 δ̄(rt, ai)

δi(rt)
. (4.42)

δi(0) is fixed and δ̄(r, ai) is a more slowly varying function of r than δi(r); therefore (4.42)
predicts that regions closer to rx = 0, where δi(rt) is bigger, need a less massive mini halo
placed there (i.e. a lower α) to give rise to a singularity.

4.6 Equilibrium configurations

Until now we saw, with the aid of different techniques, that a spherically symmetric pri-
mordial overdensity first of all expands, but at a slower rate than its surroundings, then its
shells reach a maximum expansion, and then they "turn around" and collapse. In absence
of shell crossing they continue collapsing till they form a singularity, while in a realistic
case shell crossing provides the mixing necessary to make violent relaxation take place [50].
At the end of this phase the system approaches a virialized state of equilibrium. Once the
system has virialized, its density and size do not change [56]. In other words, its internal
evolution decouples from the expansion of the Universe. Because of that, in this phase
the CDM evolution can be fairly described by SN equations in a static background (1.19),
(1.20) [17]:

iν
∂ψ

∂t
=

(

−ν
2

2
∇2 + V

)

ψ (4.43)

∇2V = 4πG |ψ|2 . (4.44)

Moroz, Penrose and Tod in [53] found solutions of this system valid once two assumptions
are made:

• spherical symmetry : for what concerns their spatial dependence, ρ := |ψ|2 and sub-
sequently V , in a 3D spherical system of coordinates, are functions of the radial one
only;

• stationarity : the matter distribution does not evolve, i.e. ρ does not depend on time.
Consequently, neither the gravitational potential V vary in time.
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Figure 4.2: The four lowest energy solutions of Schroedinger-Newton equations. From [35].

The first assumption is true by construction for the profile we studied until now, while the
second becomes valid once virialization is achieved.

The solution of Poisson equation in this hypothesis takes the form

V (r) = −4πG

∫ r
0 r

′2ρ(r′) dr′

r
. (4.45)

Since we made the assumption that the gravitational potential V doesn’t vary in time, we
can separate the variables of the Schrödinger equation, obtaining the static Schrödinger
equation [53]

−ν
2

2
∇2ψ + V ψ = Eψ (4.46)

still coupled to the Poisson one.

Because of stationarity, φ(x, t) is constant. Since therefore the phase of the wavefunction ψ
(1.14) is constant too, we can make use of the global U(1) symmetry of states in Quantum
Mechanics and consider ψ real without loss of generality [53].

Demanding only that ψ and V be finite and smooth everywhere, Tod and Moroz in [77]
show analytically that there is a discrete family of solutions of equations (4.43) and (4.44),
the bound-state solutions, labelled by natural numbers. The wavefunction of the nth
solution has n zeros, and the wavefunctions are normalizable. The corresponding energy
eigenvalues are negative, converging monotonically to zero as n increases. These solutions
are the only finite and smooth ∀r; other solutions tend to infinity at a finite value of the
coordinate r.

The explicit analytical expression for the ψn(r) is not known, but Moroz et al. in [53]
calculate them numerically. In figure 4.2 is plotted the result for the first four eigenfunc-
tions, normalized such that

∫

|ψ|2 d3x = 4π. The first eigenvalues En in units of G2/ν2

are collected in the table in figure 4.3 and plotted in figure 4.4. Since they are negative,
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Figure 4.3: In the first column the number of zeros n of the eigenfunction, and in the second one
the corresponding energy eigenvalues in units of G2/ν2. From [35].

in order to use a log scale, in the y axis is shown (the logarithm of) the absolute value of
the energy.
In the paper the authors actually consider a different version of SN equations, in which ν
is replaced by ~/m. In that context, the parameter m represents the mass of the particle
described by the wavefunction ψ, and it appears in the unit of measure of the energy eigen-
values. Definitions in the paper are different from the ones adopted here in two aspects:
(4.46) is written in a way which imply that the energy eigenvalue, for a certain potential
V , is defined as EMPT = mE. Moreover, the gravitational potential obeys to a Poisson
equation in which in the right hand side a term m2 more than in (4.44) appear.

These stationary solutions represent, once averaged with Husimi procedure and squared,
the possible density profile to which an halo can settle down when virialized.
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Figure 4.4: Log-log plot of the energy eigenvalues vs the number of nodes n of the corresponding
eigenfunction. From [35].
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Chapter 5

Top-hat SN solution in a ΛCDM

background

The standard model of cosmology contemplates the existence of a non vanishing cosmo-
logical constant Λ in order to properly forecast the observed accelerated expansion of the
Universe, and a number of other characteristics of its, such as age, flatness, number of
galaxies at high redshift and large-scale structure, as it is resumed in [41].
It is therefore worth considering the same homogeneous overdensity of mass M studied by
Johnston et al. in [38] and exposed in section 2.4, in a Universe with non null cosmological
constant. This will indeed provide a more accurate description of spherical collapse in our
Universe. Moreover, since we used the Johnston et al. top-hat solution to find solutions of
SN equations for the overdensities treated in the previous chapter, with this generalization
we can comment also on the evolution of those overdensities in a ΛCDM background.

In the paper of Johnston et al. [38] SN solutions for a flat and a closed universe with non
null cosmological constant are presented, but without explicitly computing the piecewise
solution of the top-hat overdensity (for which care has to be taken to match the potentials at
boundaries). Here, by constructing the compensated top-hat solution and by studying the
temporal evolution of the quantities appearing in it, we will see the qualitative evolution of
the overdensity in a Universe with Λ 6= 0, in comparison with the one in an EdS background.
Moreover, a way of generalizing a solution of SN equation in a certain background to
another arbitrary background, is presented, using equations derived in [72].

In this chapter we therefore aim at finding a solution of Schrödinger-Newton equations for
the overdensity depicted in figure 2.1 in a Universe with Λ 6= 0.

5.1 Top-hat solution in terms of physical coordinates

Flat region For the flat region at r ≥ Rf we already know the solution from the work
of Johnston et al. [38]: as demonstrated in chapter 2.4, the following expressions for the
matter density and the velocity and gravitational potentials hold (I am following the same
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notation adopted in chapter 2.4) [38]

ρf (t) =
Λc2

8πG
cosech2 (λt) , (5.1)

φf (r, t) =
Hfr

2

2
+ C(t) , (5.2)

Vf (r, t) =
Λc2

12

[

coth2(λt)− 3
]

r2 + c(t) , (5.3)

where

λ :=
3

2

√

Λc2

3
,

Hf (t) =

√

8πG

3
ρf (t) +

Λc2

3
, (5.4)

and C and c are generic functions of time only. The form of the velocity potential is
motivated by the fact that, as in the work by Johnston et al., the only motion of the
matter present is the one due to the Hubble expansion of the Universe. From (5.1) we can
deduce the temporal evolution of Rf knowing that the overdensity is compensated (i.e.
M = (4/3)πR3

fρf ):

Rf (t) =
3

√

6GM

Λc2
sinh2/3 (λt) . (5.5)

Void region Let us define the energy density associated to a certain cosmological con-
stant Λ as follows

ρv =
Λc2

8πG
.

We know that in the case of an energy density which is constant in a comoving volume,
like the pressureless matter one ρf , which scales like a−3, the following equation [55]

∇2
rVf =

1

a2
∇2

xVf = 4πGρf (5.6)

is solved by [55]

Vf =
2πG

3
ρf |x|2 . (5.7)

Now as ρf is constant in comoving coordinates, ρv is constant in physical ones, therefore
multiplying both sides of (5.6) by a2 and operating the substitution x → r, the solution to

∇2
rVv = 4πGρv (5.8)

happens to be

Vv =
2πG

3
a2ρv|r|2 =

Λc2

12
a2|r|2 . (5.9)

The matter density in the void region Rc < r < Rf is null by definition, and therefore the
velocity potential is undefined.
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Closed region To find the SN solution valid in the region r ≤ Rc, we will rely on the
description of the temporal evolution of an homogeneous spherical overdensity in a Λ 6= 0
Universe held in [79] by Wang et al.. Let us define the following two parameters

x :=
a

a0
, (5.10)

y :=
Rc

Rmax
, (5.11)

where a0 is the value of the scale factor today and Rmax is the radius of the overdensity
at turn-around time. With these, the time evolution of the matter density in the region
r ≤ Rc, ρc is [79]

ρc =
3

8πG

1

y3
H2

f (tta) Ωm(tta)χc(tta) , (5.12)

where tta is the instant of turnaround of the overdensity. In the just written expression
they appear a few quantities which need to be defined and require an expression for their
temporal evolution:

• H2
f is given by (5.4).

• Ωm(tta) is the following matter energy density parameter, computed at tta

Ω :=
8πGρf
3H2

f

.

• χc(tta) is the ratio

χc(tta) :=
ρc(tta)

ρf (tta)
.

In [79] the following approximate expression for this parameter is provided

χc(tta) =

(

3π

4

)2

Ω−0.85+0.26Ωm
m (tta) . (5.13)

In a calculation reported in the appendix, it is shown that using the values ρc(tta)
and ρf (tta) valid in a Universe with Λ = 0, i.e. the ones exposed in chapter 2.4, the
parameter χc(tta) takes the value (3π/4)2 as (5.13) prescribes.

• The parameter y can be computed once we know Rc and Rmax. The latter can be
computed as

Rmax =
Rf (tta)
3
√

χc(tta)
,

where we know the denominator from (5.13) and the numerator from (5.5) once
we know tta. Let us find tta and an expression for Rc(t), relying on the results of
Coquereaux et al. in [20].
Let us define the following length scale [20]

Λc :=
( π

2GM

)2
. (5.14)

Analytical expressions for Rc(t) are different if the parameter

L :=
Λ

Λc
(5.15)

89



takes values higher or lower than 1 [20]. Let us compute the critical mass Mcr which
realizes the condition L = 1.

Mcr =
πc3

2GΛ1/2
=

πc4

2GH0

√
3ΩΛ

; (5.16)

substituting the Planck 2018 values for the cosmological parameters [66]

H0 = (67.36± 0.54)
km/s

Mpc
and ΩΛ = 0.6847± 0.0073

one obtains

Mcr ∼ 1023M⊙ . (5.17)

If with the top-hat solution we are considering, we aim at studying a dark matter
halo, M is far below this critical mass, since gravitational lensing based mensurations
show that a galaxy cluster has typically a mass around Mgc ∼ 1015M⊙ [16]. Moreover
theories of structure formation in a Cold Dark Matter dominated Universe predict
that massive clusters of galaxies assemble from the hierarchical merging of lower mass
subhalos [64]. Therefore in the hypothesis of describing a CDM halo, we can safely
restrict to the L < 1 case.

Let us define the reduced blackbody temperature T in the following way [20]

Rc(τ) =
1

Λ
1/2
c T (τ)

, (5.18)

where τ is the conformal time defined by dτ = dt/Rc. In terms of this variable the
we can define the following parameter too [20]

Hc(τ) =
Ṙc

Rc
= −Λ1/2

c

dT

dτ
. (5.19)

In the L < 1 case, neglecting radiation pressure, [20] gives the following expression
for the reduced blackbody temperature

T (τ) = 6

(

℘(τ ;
1

12
,
1− 2L

63
) +

1

12

)

, (5.20)

where ℘ denotes Weierstrass p-function, defined as [71]

℘(z; g2, g3) =
1

z2
+

∑

g∈Γ\{0}

(

1

(z − g)2
− 1

g2

)

, (5.21)

with Γ = 2g1Z+2g2Z. The behaviour of T (τ) is shown by figure 5.1. We can notice
it is periodic and it ranges from a minimum, TN , to infinity (the period P and TN
can be both calculated, for details see [20]). Referring to (5.18), we can see that
this means that Rc(τ) is periodic too, and limited. It grows from Rc(0) = 0 to a
maximum

Rmax =
1

Λ
1/2
c TN

,

then it turns around and decreases until Rc(P ) = 0.

In order to confront this result for the temporal evolution of Rc with the ones of
quantities of the other regions, it is necessary to relate conformal and physical time.
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Figure 5.1: Graph of the reduced blackbody temperature T of a closed Universe with non vanishing
cosmological constant versus conformal time τ (in the case L < 1). Adapted from [20].

Integrating the definition of the former, we obtain

∫

dt =

∫

Rc(τ) dτ (5.22)

t =
1

Λ
1/2
c

∫

1

T (τ)
dτ (5.23)

t =
2

Λ
1/2
c

∫

1
(

12℘(τ ; 1
12 ,

1−2L
63

) + 1
) dτ , (5.24)

where all the integrals should be considered between the instant of Big Bang and a
generic time t or τ .

We have therefore an expression for Rc(t), (5.18,) and tta = t(P ).

In [38] the following expression for αc :=
√
ρc, equivalent to (5.12), is proposed:

αc = constant × exp

(

−3

2

∫

Hcdt

)

.

Knowing Hc(τ), (5.19), and t(τ), (5.24), we can write the velocity potential valid in the
r ≤ Rc in analogy with the one for r ≥ Rf [38]:

φc =
1

2
Hcr

2 +K(t) , (5.25)

with K generic.

Now that we know φc , we can calculate the gravitational potential Vc by means of Bernoulli
equation (1.13) in the following way: let us write K(t) in the form

φc =
Hcr

2

2
−
∫ t

0
κ(t′) dt′ .

Then Bernoulli equation [19]
∂φc
∂t

+
1

2
(∇φc)2 = −Vc

becomes

r2

2

(

R̈c

Rc
−H2

c

)

− κ = −1

2
H2

c r
2 − Vc ,
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and

r2

2

(

R̈c

Rc

)

− κ = −Vc , (5.26)

and hence, using Friedmann equations,

Vc(r, t) =

[

4πG

3

(

ρc + 3
PΛ

c2

)]

r2

2
+ κ(t) . (5.27)

PΛ is the pressure due to the effect of the cosmological constant, which obeys the following
equation of state

PΛ = −ρv = − Λc2

8πG
. (5.28)

Johnston et al. write equation (5.26) in terms of the deceleration parameter, defined as

q = −R̈cRc/Ṙc
2

and thus find [38]

Vc(r, t) =
1

2
qH2r2 + κ . (5.29)

In the Λ 6= 0 case, for arbitrary spatial curvature the deceleration parameter reads [38]

q =

(

1

2
Ωc − ΩΛ

)

,

where [38]

Ωc :=
8πGρc
3H2

c

, ΩΛ =
Λc2

3H2
.

The two expressions (5.27) and (5.29) are equivalent.

Piecewise SN solution for the top-hat We are now ready to write the modulus of
the wavefunction solution of SN equations for a top-hat overdensity as the one in figure
2.1 in presence of cosmological constant:

α =











√
ρc r ≤ Rc(t)

0 Rc(t) < r < Rf (t)
√
ρf r ≥ Rf (t) .

(5.30)

Let us now consider its phase, therefore the velocity potential φ. We need to determine the
constants of time only C in (5.2) and K in (5.25). They can be set by imposing Bernoulli
equation at the discontinuities Rc and Rf . The result is as follows

φ =















Hcr2

2 +
∫ t
0

[

−Λc2

12 a
2R2

c +
4πG
3 ρc

R2
c
2

]

dt′ r ≤ Rc(t)

undefined Rc(t) < r < Rf (t)
Hf r

2

2 +
∫ t
0

Λc2

12

[

−a2 + coth2(λt′)− 3
]

R2
f dt

′ r ≥ Rf (t) .

(5.31)

Meanwhile to set the constants c(t) and κ(t) present respectively in the expression found
for Vf and for Vc we have to impose continuity of the gravitational potential, and Bernoulli
equation to relate c(t) and κ(t) with C and K of the velocity potentials; the result is as
follows

c(t) =
Λc2

12

[

a2 − coth2(λt) + 3
]

R2
f , (5.32)
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κ(t) =
Λc2

12
a2R2

c −
2πG

3
ρcR

2
c . (5.33)

The scale factor a(t) has to be proportional to Rf (t), but we can set freely the proportion-
ality constant. If we set

a :=
Rf

3

√

6GM
Λc2

, (5.34)

c takes a simpler form:

c(t) =
Λc2

12

[

sinh4/3 (λt)− coth2(λt) + 3
]

R2
f . (5.35)

Therefore, the Newtonian potential of a homogeneous compensated spherically symmetric
overdensity in a ΛCDM background is

V =











2πG
3 ρcr

2 + κ(t) r ≤ Rc

Λc2

12 a
2r2 Rc < r < Rf

Λc2

12

[

coth2(λt)− 3
]

r2 + c(t) r ≥ Rf .

(5.36)

Because of discontinuities of the first derivative at both boundaries, this potential is not
C1 as the one in [38]; it is only C0.

The explicit expression of ρc as a function of time can’t be found analytically, from the
quantities we defined above. In the following we propose therefore an alternative path,
which leads to the same solution.

5.2 Schrödinger-Newton equations in a generic background

In section 2.2 we considered how to write SN equations in an Einstein-de Sitter (EdS)
Universe (i.e. spatially flat with vanishing cosmological constant). In this section, we will
resume the generalization of SN equations to Universes with generic density parameter Ω
and cosmological constant Λ, done by Short and Coles in [72].

Writing the Newtonian dynamical equations governing the evolution of fluctuations δ in a
fluid of collisionless self-gravitating CDM in an expanding Universe, one can show (see [2])
that, to first order in Eulerian PT, δ grow according to δ = Dδi where δi is the density
contrast at some initial time ti and the linear growth factor D = D(t) is the growing mode
solution of [14]

D̈ + 2HḊ − 4πGρ̄D = 0 (5.37)

normalized so that Di = D(ti) = 1.

The dependence of D on t is in general quite complicated [14] (as previously mentioned, in
the Einstein-de Sitter case D(t) ∝ a(t) [14]), nonetheless using the linear growth factor as
time coordinate has the advantage of keeping the generalization to an arbitrary Universe
of CDM fluid equations (1.9), (1.13) and (1.11) in a simple form: defining [72]

w =
dx

dD
(5.38)

we find [72]
∂χ

∂D
+∇x · (χw) = 0 , (5.39)
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∂w

∂D
+ (w · ∇x)w +

3Ω̄

2f2D
w = −∇xΘ , (5.40)

∇2
xΘ =

3Ω̄

2f2D2
δ ; (5.41)

where [72]

fg :=
d lnD

d ln a
=

Ḋ

HD
(5.42)

is called growth index [79] and [72]

Θ :=
V

a2Ḋ2
, (5.43)

where V is the peculiar gravitational potential and Ω̄ is as usual

Ω̄ :=
8πGρ̄

3H2
. (5.44)

Assuming an irrotational velocity field we can define the velocity potential once again
as [72]

u := ∇xΦ . (5.45)

With that we can integrate (5.40) obtaining Bernoulli equation [72]

− ∂Φ

∂D
− 1

2
|∇xΦ|2 = Ṽ , (5.46)

where, as in the flat case, the effective potential Ṽ depends on both the modified peculiar
gravitational potential Θ and the velocity potential Φ [72]:

Ṽ = Θ+
3Ω̄

2f2D
Φ . (5.47)

We possess now all the ingredients to perform the Madelung transformation [72]

ψ :=
√
χ eiΦ/ν (5.48)

which leads to the following Schrödinger-Poisson system [72]

iν
∂ψ

∂D
= −ν

2

2
∇2

xψ + (Ṽ +Q)ψ (5.49)

∇2
x

[

Ṽ − 3Ω̄

2f2D
ν arg(ψ)

]

=
3Ω̄

2f2gD
2
(|ψ|2 − 1) . (5.50)

5.3 Top-hat solution in terms of comoving adapted coordi-

nates

We can perform the generalization of the solution found by Johnston et al. to a Universe
in which the cosmological constant is not null by using the above written equations. Let
us use as background the matter density, velocity and gravitational potential of the flat
region (ρf , φf , Vf ).
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In order to find the temporal variable D(t), let us define the following parameter [41]

λ0 :=
Λ

3H2
0

; (5.51)

present observations suggest λ0 ≃ 0.8.

Health (1977) showed that the growing mode D(t), which obeys equation (5.37), is [41]

δ ∝ H−2
0 X1/2x−1

∫ x

0
X−3/2dx , (5.52)

where x is given by (5.10) and X := 1 + Ω0(a
−1 − 1) + λ0(a

2 − 1). For a derivation of
the exact D(t) see the appendix, let us here recall some approximate expressions for the
growth index (5.42) (knowing it determines also D(t)).

Wang et al. in [79] propose the following approximation

fg = Ωα
m(s) , (5.53)

where, once set the following equation of state for dark energy

pΛ = wρΛ , (5.54)

α is given by

α =
3

5− w
1−w

+
3

125

(1− w)(1− 3
2w)

(

1− 6
5w
)3 (1− Ωm) + o(1− Ωm) , (5.55)

and therefore for ΛCDM (w = −1) α ≃ 6/11 ≃ 0.55.

Lahav et al. in [41] improve the approximation with the following expression, valid in the
range −5 ≤ λ ≤ 5, 0.03 ≤ Ω ≤ 2

fg(x) ≃ Ω0.6(x) +
1

70
λ(x)

(

1 +
1

2
Ω(x)

)

, (5.56)

with λ(x) := Λ/[3H2(x)]; the mean error in this approximation is 2 per cent (with a
maximum error of 33 per cent in the low-Ω0 case) [41]. Let us set D(t) by (5.56).

Let us now concentrate on the region at r < Rc(t). There the Newtonian potential Vc
satisfies

∇2
rVc = 4πGρc = 4πG(ρf + ρv +∆ρc) , (5.57)

where ρf is the matter density in the region r > Rf and ρv is the energy density of the
void, i.e. of dark energy; therefore the background energy density in the r > Rf region is
ρ̄ = ρf + ρv. We know from section 2.2 that the solution to the following equation

∇2
rV̄ = 4πGρ̄ (5.58)

is given by eq. (2.49)

V̄ =
Λc2

12

[

coth2(λt)− 3
]

r2 , (5.59)

where

λ :=
3

2

√

Λc2

3
. (5.60)
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The peculiar gravitational potential Vc in the region r < Rc, defined by

Vc = V̄ + Vc , (5.61)

obeys the following Poisson equation

∇2
xVc = 4πGa2(ρc − ρ̄) = 4πGa2ρ̄δc . (5.62)

With Vc we can find Θ of last section and with that the effective potential Ṽ

Θ :=
Vc

a2Ḋ2
Ṽ = Θ+

3Ω̄

2f2D
Φ .

Defining

ψ :=

√

ρc
ρ̄
eiΦ/ν (5.63)

the SN equations governing the evolution of the region r < Rc become (5.49) and (5.50).

But also the Λ = 0 case studied by Johnston et al. can be described by the same equations,
once

• we use as time variable the EdS growing mode solution of (5.37) D(t) ∝ aΛ=0(t); an
explicit expression for aΛ=0(t) is (2.68);

• we define the effective potential VΛ=0 as

VΛ=0 =
VΛ=0

a2Λ=0ȧ
2
Λ=0

+
3

2aΛ=0
ΦΛ=0 , (5.64)

where VΛ=0 is given by the potential in (2.79) valid for r < Rc minus the one valid
for r > Rf , and ΦΛ=0 is given by equation (3.20), which gives

ΦΛ=0(φΛ=0) =
1

a2Λ=0ȧΛ=0
φΛ=0 −

1

aΛ=0

r2x
2
; (5.65)

• we define

ψΛ=0 :=

√

ρc,Λ=0

ρf,Λ=0
e

i
ν
ΦΛ=0 . (5.66)

Therefore, knowing that the Johnston et al. one, with this formalism, is a solution of (5.49)
and (5.50), we can exploit the formal equality of equations with and without cosmological
constant, and find the solution in presence of dark energy just interpreting differently (i.e.
in the light of a different background), the quantities appearing in the Λ = 0 case. Starting
therefore with the expression for ψΛ=0 known from Johnston et al., we must interpret VΛ=0

as V , ψΛ=0 as ψ and the time variable as D(t), i.e.:

VΛ=0 =
Vc

a2Ḋ2
+

3Ωf

2f2D
Φ , (5.67)

√

ρc,Λ=0

ρf,Λ=0
e

i
ν
ΦΛ=0 =

√

ρc
ρ̄
eiΦ/ν , (5.68)

where ρf,Λ=0(t) is given by (2.47) and

Ωf :=
8πGρf
3H2

f

. (5.69)
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Therefore these two equations, together with the Poisson one for the peculiar gravitational
potential (5.62), form a system of three coupled equations in three unknowns: ρc, Φ, Vc.

The path followed until now is completely general: it allows, knowing a solution of SN
equations in a certain background, to find its equivalent in another background, defined
by its energy density, velocity and gravitational potential.

Solving equation (5.67) for the gravitational potential in the overdense region, one obtains

Vc =
GMa2Ḋ2

a2Λ=0ȧ
2
Λ=0

(

a2Λ=0r
2
x

2R3
c,Λ=0

− a2Λ=0r
2
x

2R3
f,Λ=0

+
3

4Rc,Λ=0
+

3

4Rf,Λ=0

)

+
3a2Ḋ2

2aΛ=0
(
Hc,Λ=0r

2
x

2ȧΛ=0
− r2x
2aΛ=0

)+

− 3Ωfa
2Ḋ2

2f2D
(
Hcr

2
x

2ȧ
− r2x

2a
) +

Λc2

12

[

coth2(λt)− 3
]

r2 + c(t) (5.70)

with c(t) (for continuity):

c(t) =
2πG

3
a2ρvR

2
c −

a2Ḋ2GM

a2Λ=0ȧ
2
Λ=0

(

1

2Rc,Λ=0
−

R2
c,Λ=0

2R3
f,Λ=0

+
3

4Rc,Λ=0
+

3

4Rf,Λ=0

)

+

−
[

3

2aΛ=0
(
Hc,Λ=0R

2
c

2ȧΛ=0
− R2

c

2aΛ=0
)− 3Ωf

2f2D
(
HcR

2
c

2ȧ
− R2

c

2a
)

]

Ḋ2 − Λc2

12

[

coth2(λt)− 3
]

R2
c .

(5.71)

With this potential one can solve Schrödinger equation (5.49) for ρc. Then φc = (1/2)Hcr
2,

where the Hubble function can be easily computed with Friedmann equations knowing ρc.

The analytical complexity of the solution has, in any case, increased respect to the Λ =
0 case of chapter 2.4. What however has not changed is its qualitative behaviour for
an overdensity with M < Mcr ∼ 1023M⊙ (with Mcr precisely given by (5.16)): the
overdense region is expected to expand, with a slower rate than the void one, until it
reaches a maximum radius and then starts to collapse finally giving rise to a singularity.
The qualitative behaviour of the overdensity studied in chapters 3 and 4 in an Einstein de
Sitter background would be therefore the same in a ΛCDM one.
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Chapter 6

Conclusions

In this thesis the collapse of spherically symmetric CDM overdensities has been studied
using techniques which are signature of quantum mechanics.

This has been possible thanks to the wave-mechanical approach to the study of collisionless
self-gravitating matter exposed in chapter 1. The justification of this approach lays in the
mathematical equivalence of a system of coupled Schrödinger and Poisson equations, which
takes the name of Schrödinger-Newton equations, and a slightly modified version of the
equations describing a fluid: continuity and Bernoulli ones.

In the second chapter we recalled some theory which has been used to treat the evolution
of spherically symmetric overdensities in the following chapters. In particular they have
been of capital importance the free-particle approximation proposed by Short and Coles
in [72] and the solution of Schrödinger-Newton equations for a matter distribution similar
to a top-hat overdensity, found by Johnston et al. in [38].

In chapter 3 this solution has been used to build a root of Schrödinger-Newton equations for
an overdensity which satisfies two requirements: being spherically symmetric and having a
density profile which ensures absence of shell crossing during its evolution. The principle
used to find this solution is that such an overdensity can be decomposed in an arbitrary
number of shells, which, because of Birkhoff theorem, are not influenced by matter outside
the shell itself. Their evolution is driven instead by the matter inside them, in a way that
makes possible to describe them in terms of the solution found by Johnston et al..
The path integral representation of quantum mechanics has then been used to find the tem-
poral evolution of a generic one of these shells in the free-particle approximation. Zel’dovich
approximation and a slightly modified version of the adhesion one are recovered imposing
different conditions on the results of the free-particle approximation.
Zel’dovich approximation has moreover been used to compute the temporal evolution of
a spherically symmetric density profile that avoids shell crossing, without dividing it in
shells, and making use, this time, of the stationary phase approximation.
The results found until there have then been applied to a specific density profile which
meets the requirements of spherical symmetry and no shell crossing.
For that profile, seen that the free-particle one is an approximation, it has been refined
with the use of time dependent perturbation theory.
Some differences are present in the predictions of different approximations, but it is gener-
ally true that the evolution of the overdensity computed with every technique is a collapse
towards a singularity in the origin of the coordinates.
In particular, the free-particle approximation already forecasts the formation of this sin-
gularity; TDPT tells us that, for the specific profile for the evolution of which TDPT
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were used, the collapse predicted by the approximation is slower than the actual one, a
description of which would be obtained solving Schrödinger-Newton equations without ap-
proximations: to first order in perturbation theory, shells gain momentum as time flows,
because of the potential which constitutes the perturbation, respect to the prediction of
the free-particle approximation alone.

In chapter 4, it is studied an overdensity coherent with the initial conditions of the Universe,
after the end of inflation. For this system it is once again found a shell-by-shell SN exact
solution, the results of free-particle approximation are derived and it is briefly discussed
the effect of such an overdensity on a small test halo which occupy a position internal to
the overdensity itself. Unsurprisingly, this overdensity too ends up in a singularity.

Despite the fact that the final formation of a singularity is a common prediction of every
technique, it is not the destiny of a real primordial overdensity of our Universe. Indeed
it is a correct prediction for the density profile studied, but the latter is a very idealized
system: a spherically symmetric one, tailored to avoid shell crossing. A realistic matter
distribution evolves as calculations performed in this thesis predict, until a process called
violent relaxation sets in. It is described in section 2.1 and it drives the system to a final
virilized state of equilibrium instead that to a singularity. Once again this equilibrium
configuration can be described by a wavefunction obeying Schrödinger-Newton equations:
the countably infinite possible final-state wavefunctions are presented in section 4.6.

Finally in chapter 5, relying once again on the work of Johnston et al. [38], it is found a
solution for the matter distribution considered in their paper, but in a Universe with non
null cosmological constant. That solution was expressed both in terms of physical coordi-
nates, to have a more transparent description, and in the adapted comoving coordinates
proposed in [72], to draw a general procedure to embed a solution in a background different
from the one in which it was conceived.
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Appendix

A.1 The cosmological theory of Empedocles

Empedocles was a Greek philosopher born in Akragas (Agrigento) between 484 and 481
b.C. and dead there when he was almost sixty [1]. He has been also a politician, a physician,
a thaumaturge and a scientist [1]. We posses fragments of two of his poems: On nature,
cosmological, and Purifications, which is theological.

In On nature Empedocles presents the cycle which he believes the Universe undergoes.
He believes in the existence of a material content of the Universe which is never created
nor destroyed, but just transformed in different kinds of aggregation of the "four roots":
earth, water, air and fire. What drives this transformations are two forces: one cohesive,
which is love, and one which tends to detach things one from the other, which is hate. The
cosmic cycle starts with the Universe in a state of pure dominance of cohesion, in which
the matter is all stuck together and no life can form, then hate starts to disaggregate the
roots, and our present Universe lays in a phase in which love and hate coexist compelling,
and make life possible. Eventually hate will dominate and the Universe will be in a state
of chaos, from which love will start to act again, until it gradually becomes dominant and
closes the circle in the initial state, giving rise to a never ending process [1].

I find that interesting because such a description have some common traits with the evolu-
tion of a closed Universe with low enough cosmological constant: it expands until it reaches
a turning point and then contracts back to a singularity which can lead to a "Big Bounce":
a new expansion, establishing a cycle. Obviously the idea of expansion is absent in the
writings of Empedocles, and also the fundamental idea of the impossibility of destroying
or creating matter is erroneous, since the presence of expansion makes the Universe not
invariant under time translations and therefore Noether theorem cannot be used to ensure
energy conservation in the Universe; indeed, even at this very moment, some dark energy
creates and some energy of radiation fades away.
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A.2 Johnston et al. SN solution checked at its discontinuities

As previously shown, the wavefunctions and gravitational potentials found by Johnston
et al. in [38] for each piece of the system studied, correctly satisfy Schrödinger and Pois-
son equations. The global discontinuous wavefunction on the contrary has been explicitly
checked to satisfy at the boundaries only continuity equation in the paper [38]. The fol-
lowing calculation checks its validity as solution of the Schrödinger equation with quantum
pressure term (1.16) with the appropriate gravitational potential (2.79) on the boundaries
Rc and Rf .

I will restrict to an infinitesimal neighbourhood of the discontinuities of the solution (2.73).
I expect only the quantum potential to be relevant there, since I expect V , being C1, to
vary slowly enough to be approximable by a constant in a small enough neighbourhood of
a point, and thus being irrelevant in such a range. This negligibility will be analytically
justified in the following.

Let us recall the form of the Schrödinger equation equivalent to the hydrodynamical treat-
ment of CDM [19]:

iν
∂ψ

∂t
= −ν

2

2
∇2ψ + (V +Q)ψ , (1)

where [19]

Q =
ν2

2

∇2|ψ|
|ψ| . (2)

Let us concentrate on the neighbourhood of a discontinuity; let us consider Rc for con-
creteness, but the reasoning can be repeated almost identical for Rf .
In such a range [38]

|ψ| =
√

3ΩH2
c

8πG
[1−H(r −Rc)] , (3)

where H is the Heaviside step function.
Let us define for notational convenience

f(t) :=

√

3ΩH2
c

8πG
. (4)

Because of spherical symmetry, the Laplacian takes the form (2.72) [38]:

∇2 =
∂2

∂r2
+

2

r

∂

∂r
.

It is consequently useful to compute the following quantities

∂|ψ|
∂r

= −f δ(r −Rc)

∂2|ψ|
∂r2

= −f δ′(r −Rc)

in order to find an expression for the quantum potential:

Q = −ν
2

2

δ′(r −Rc) +
2
r δ(r −Rc)

1−H(r −Rc)
. (5)
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Computing the time partial derivative of ψ and plugging the expressions for the Laplacian
(2.72) and for the quantum potential (5) in (1) we obtain

− ν2

2

[

∂2ψ

∂r2
+

2

r

∂ψ

∂r

]

+ V ψ − ν2

2

δ′(r −Rc) +
2
r δ(r −Rc)

1−H(r −Rc)
ψ =

= iν

{

e
i
2ν

Hcr2
(

ḟ + f
i

2ν
r2Ḣc

)

[1−H(r −Rc)] + f e
i
2ν

Hcr2δ(r −Rc)Ṙc

}

.

In order to make sense of the Dirac deltas we need to integrate in dr, and since we already
know ψ is a solution in each of the three regions separated by Rc and Rf , let us integrate
from Rc(t)− ǫ to Rc(t)+ ǫ, where the solution has not been checked yet. Indicating ∂ψ/∂r
as ψ′ for notational convenience we obtain

− ν2

2

[

ψ′(Rc + ǫ)− ψ′(Rc − ǫ) +

∫ Rc+ǫ

Rc−ǫ

2

r
ψ′ dr

]

+

∫ Rc+ǫ

Rc−ǫ
V ψ dr+

− ν2

2

∫ Rc+ǫ

Rc−ǫ

δ′(r −Rc) +
2
r δ(r −Rc)

1−H(r −Rc)
ψ dr =

iν

∫ Rc+ǫ

Rc−ǫ
e

i
2ν

Hcr2
(

ḟ + f
i

2ν
r2Ḣc

)

[1−H(r −Rc)] dr+iν

∫ Rc+ǫ

Rc−ǫ
f e

i
2ν

Hcr2δ(r−Rc)Ṙc dr .

(6)

Using integration by parts the second term can be expressed as

∫ Rc+ǫ

Rc−ǫ

2

r
ψ′ dr =

(

2

r
ψ

]Rc+ǫ

Rc−ǫ

+

∫ Rc+ǫ

Rc−ǫ

2

r2
ψ dr . (7)

Moreover, let us recall a result found in [33] using again integration by parts: for a generic
quantity g(r)

∫ Rc+ǫ

Rc−ǫ
δ′(r −Rc)g(r) dr = −

∫ Rc+ǫ

Rc−ǫ
δ(r −Rc)g

′(r) dr = −ḡ′(Rc) , (8)

where the bar over last g denotes an average, defined even for discontinuous g, as follows [33]

ḡ (Rc) :=
[g(R+

c ) + g(R−
c )]

2
, (9)

where in turn I introduced the following shortage

g
(

R+
c

)

:= lim
r→R+

c

g(r)

g
(

R−
c

)

:= lim
r→R−

c

g(r) .

Let us now take the ǫ → 0 limit of equation (6). All the integrals of limited functions go
to zero, since the measure of the space of parameters in which we are integrating tends to
zero. In particular it goes to zero the second term of the right hand side of expression (7),
the third term of (6) and the first integral on the right hand side of the same equation.
We are left with

ψ′ (R+
c

)

− ψ′ (R−
c

)

+ 2

[

ψ (R+
c )− ψ (R−

c )

Rc

]

−
(

ψ

1−H

)′
(Rc)+

+
2

Rc

(

ψ

1−H

)

(Rc) = −2i

ν
ψ
(

R−
c

)

Ṙc . (10)
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Let us calculate
(

ψ

1−H

)′
(Rc) =

ψ′

1−H
(Rc) + ψ

δ

1−H
(Rc) , (11)

where it has been used (1−H)2 = 1−H.

In order to compute the first term of the right hand side we recall a definition of the
Heaviside step function H(x) [83]

H(x) = lim
t→0

[

1

2
+

1

π
tan−1

(x

t

)

]

. (12)

With this we can compute the following two limits

lim
r→R−

c

ψ′(r)
1−H(r −Rc)

= lim
r→R−

c

lim
t→0

ψ′(r)

1−
[

1
2 + 1

π tan−1
(

r−Rc
t

)] = lim
t→0

ψ′(R−
c )

1− 1
2

= 2ψ′(R−
c ) ,

lim
r→R+

c

ψ′(r)
1−H(r −Rc)

= lim
r→R+

c

lim
t→0

ψ′(r)

1−
[

1
2 + 1

π tan−1
(

r−Rc
t

)] = lim
t→0

0
1
2

= 0 .

Thus using formula (9) we can compute

ψ′

1−H
(Rc) =

2ψ′ (R−
c ) + 0

2
= ψ′ (R−

c

)

. (13)

In order to compute the second term on the right hand side of (11) we need to evaluate

lim
r→R−

c

[

ψ(r)
δ(r −Rc)

1−H(r −Rc)

]

= 0 ,

lim
r→R+

c

[

ψ(r)
δ(r −Rc)

1−H(r −Rc)

]

= 0 .

Therefore

ψ
δ

1−H
(Rc) = 0 . (14)

Thus we finally obtain, from (10),

−ψ′ (R−
c

)

− 2

[

ψ (R−
c )

Rc

]

− ψ′ (R−
c

)

+ 2
ψ (R−

c )

Rc
+

2i

ν
ψ
(

R−
c

)

Ṙc = 0 ; (15)

or, by simplifying,

2ψ′ (R−
c

)

− 2iṘc

ν
ψ
(

R−
c

)

= 0 .

Plugging in this the following expression for the derivative of ψ

ψ′ (R−
c

)

=
i

ν
ψ
(

R−
c

)

HcRc

one obtains the following identity

2i

ν
Ṙcψ

(

R−
c

)

− 2i

ν
Ṙcψ

(

R−
c

)

= 0 . (16)

This confirms the validity of the solution at its discontinuity at Rc.
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Let us repeat the reasoning at r = Rf , in order to check if solutions are well behaved at
that discontinuity too. In a neighbourhood of that point [38]

|ψ| =

√

3H2
f

8πG
[H(r −Rf )] := f̃(t) [H(r −Rf )] . (17)

Thus

∂|ψ|
∂r

= f̃ δ(r −Rf ) ,

∂2|ψ|
∂r2

= f̃ δ′(r −Rf ) ,

and so the quantum potential becomes

Q =
ν2

2

δ′(r −Rf ) +
2
r δ(r −Rf )

H(r −Rf )
. (18)

Computing the time partial derivative of ψ and plugging the expressions for the Laplacian
(2.72) and for the quantum potential (18) in (1) we obtain

− ν2

2

[

∂2ψ

∂r2
+

2

r

∂ψ

∂r

]

+ V ψ +
ν2

2

δ′(r −Rf ) +
2
r δ(r −Rf )

H(r −Rf )
ψ =

iν

{

e
i
2ν

Hf r
2

(

ḟ + f
i

2ν
r2Ḣf

)

H(r −Rf )− f e
i
2ν

Hf r
2
δ(r −Rf )Ṙf

}

. (19)

Let us now once again integrate in dr from Rf (t) − ǫ to Rf (t) + ǫ. Indicating ∂ψ/∂r as
ψ′, as before, we obtain

− ν2

2

[

ψ′(Rf + ǫ)− ψ′(Rf − ǫ) +

∫ Rf+ǫ

Rf−ǫ

2

r
ψ′ dr

]

+

∫ Rf+ǫ

Rf−ǫ
V ψ dr+

+
ν2

2

∫ Rf+ǫ

Rf−ǫ

δ′(r −Rf ) +
2
r δ(r −Rf )

H(r −Rf )
ψ dr =

iν

∫ Rf+ǫ

Rf−ǫ
e

i
2ν

Hf r
2

(

ḟ + f
i

2ν
r2Ḣf

)

ψH(r−Rf ) dr− iν

∫ Rf+ǫ

Rf−ǫ
f e

i
2ν

Hf r
2
δ(r−Rf )Ṙf dr .

(20)

The second term once again turns out to be

∫ Rf+ǫ

Rf−ǫ

2

r
ψ′ dr =

(

2

r
ψ

]Rf+ǫ

Rf−ǫ

+

∫ Rf+ǫ

Rf−ǫ

2

r2
ψ dr . (21)

Let us now take the ǫ→ 0 limit of equation (20), obtaining

−







ψ′
(

R+
f

)

− ψ′
(

R−
f

)

+ 2





ψ
(

R+
f

)

− ψ
(

R−
f

)

Rf











−
(

ψ

H

)′
(Rf )+

+
2

Rf

(

ψ

H

)

(Rf ) = −2i

ν
ψ
(

R+
f

)

Ṙf . (22)

Calculating

(

ψ

H

)′
(Rf ) =

(

ψ′

H

)

(Rf )−
(

ψ
δ

H

)

(Rf ) =

(

ψ′

H

)

(Rf )−
(

ψ

H

)

(Rf )
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and repeating the same reasoning for the limits at Rc we finally obtain

−ψ′
(

R+
f

)

− 2





ψ
(

R+
f

)

Rf



− ψ′
(

R+
f

)

+ 2
ψ
(

R+
f

)

Rf
+

2i

ν
ψ
(

R+
f

)

Ṙf = 0 . (23)

We are thus left with

−2ψ′
(

R+
f

)

+
2i

ν
Ṙfψ

(

R+
f

)

= 0 ; (24)

plugging in this the following expression for the derivative of ψ

ψ′
(

R+
f

)

=
i

ν
ψ
(

R+
f

)

HfRf , (25)

one obtains, as for r = Rc,

−2i

ν
Ṙfψ

(

R+
f

)

+
2i

ν
Ṙfψ

(

R+
f

)

= 0 . (26)

What we have just shown is that the wavefunction for a top-hat proposed in [38] is solution
of the Schrödinger equation with quantum pressure term even at the discontinuities.
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A.3 Calculations

Chapter 3

Section 2.2: Schrödinger-Newton equations in a spatially flat expanding back-
ground

Derivation of the formula (2.19) for continuity in an Einstein de Sitter back-
ground

ρ ˙̄ρ

ρ̄
+
∂χ

∂a
ȧρ̄−H(r · ∇rρ) + ρ̄ȧ [∇r · (χx) +∇r · (χa∇xΦ)] = 0

χ

ȧ
˙̄ρ+

∂χ

∂a
ρ̄− 1

a
(r · ∇rρ) + ρ̄∇r · (χx) + ρ̄a∇r · (χ∇xΦ) = 0

−a−1H−1χ3Hρ̄+
∂χ

∂a
ρ̄− (x · ∇rρ) +∇r · (ρx) + ρ̄a∇r · (χ∇xΦ) = 0

−3
ρ

a
+
∂χ

∂a
ρ̄− (x · ∇rρ) +∇rρ · x + ρ

1

a
∇x · x + ρ̄a∇r · (χ∇xΦ) = 0

−3
ρ

a
+
∂χ

∂a
ρ̄+ ρ

1

a
3 + ρ̄∇x · (χ∇xΦ) = 0

∂χ

∂a
+∇x · (χ∇xΦ) = 0 (27)

In the second passage I used Friedmann equations.

Section 3.2: Evolution of the shells of the overdensity in the free-particle ap-
proximation

Let us define here, for notational convenience,

Bj(a) := − δ̄j(a)
6a

.

Derivation of expression (3.34) Now let us start from expression (3.33) and complete
the square:

Ψj(rx, a) = δrx,i

√

χj(ai)√
2πiν∆a

e

i
2

[

(rx−rx,i)
2+2∆aBj(ai) r

2
x,i

ν∆a

]

=

= δrx,i

√

χj(ai)√
2πiν∆a

e

i
2

[

(2∆aBj(ai)+1) r2x,i+r2x−2rxrx,i

ν∆a

]

=

= δrx,i

√

χj(ai)√
2πiν∆a

e

i
2 ν∆a





(√
2∆aBj(ai)+1 rx,i− 1√

2∆aBj(ai)+1
rx

)2

+
2∆aBj(ai)

2∆aBj(ai)+1
r2x





=

= δrx,i

√

χj(ai)√
2πiν∆a

e

i
2 ν ∆a

(√
2∆aBj(ai)+1 rx,i− 1√

2∆aBj(ai)+1
rx

)2

e
i
ν

Bj(ai)

2∆aBj(ai)+1
r2x =

= δrx,i

√

χj(ai)√
2πiν∆a

e

i
2 ν ∆a

(

rx−[2∆aBj(ai)+1]rx,i√
2∆aBj(ai)+1

)2

e
i
ν

Bj(ai)

2∆aBj(ai)+1
r2x ,
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which is

Ψj(rx, a) = δrx,i

√

χj(ai)√
2πiν∆a

e
i
ν

Bj(ai)

2∆aBj(ai)+1
r2xe

i
2(

rx−µ
σ )

2

if one defines

µ(rx,i,∆a) = rx,i (1 + 2∆aBj(ai)) ,

σ(∆a) =
√

ν[∆a+ 2(∆a)2Bj(ai)] .

Derivation of the deformation tensor (3.46) Let us, just for this calculation, sim-
plify the notation and call (x, y, z) the Cartesian comoving coordinates x and (r, θ, φ) the
spherical comoving coordinates, which are called (rx, θx, φx) in the rest of the thesis.
We will make use of Cartesian partial derivatives in spherical coordinates [30]:

∂

∂x
=
∂r

∂x

∂

∂r
+
∂θ

∂x

∂

∂θ
+
∂φ

∂x

∂

∂φ

= sin θ cosφ
∂

∂r
+

1

r
cos θ cosφ

∂

∂θ
− sinφ

r sin θ

∂

∂φ

∂

∂y
= sin θ sinφ

∂

∂r
+

1

r
cos θ sinφ

∂

∂θ
+

cosφ

r sin θ

∂

∂φ

∂

∂z
= cos θ

∂

∂r
− 1

r
sin θ

∂

∂θ
.

The deformation tensor of the j-th shell is defined as [67]

dkl =
∂2Φj

∂qk∂ql
,

where qk and ql are Cartesian coordinates and

Φj = −
3ΩjH

2
j − 8πGρf

48πGaρf
(ai) r

2 := Bj(ai) r
2 . (28)

Therefore

dkl :=
∂2Φj

∂qk∂ql

:=
∂

∂qk

(

∂Φj

∂x ,
∂Φj

∂y ,
∂Φj

∂z

)

=

= 2Bj(ai)
∂

∂qk
r
(

sin θ cosφ, sin θ sinφ, cos θ
)

=

= 2Bj(ai)×





a11, a12, a13
a21, a22, a23
a31, a32, a33



 , (29)
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where

a11 = sin2 θ cos2 φ+
sin2 φ

r sin θ
r sin θ +

cos θ cosφ

r
r cos θ cosφ

a12 = cosφ sin2 θ sinφ− sinφ

r sin θ
r sin θ cosφ+

cosφ cos θ

r
r sinφ cos θ

a13 = cosφ sin θ cos θ + cosφ cos θ (− sin θ)

a21 = sin2 θ cosφ sinφ+ cosφ(− sinφ) + sinφ cos θ cosφ

a22 = sin2 θ sin2 φ+ cos2 φ+ sin2 φ cos2 θ

a23 = sinφ sin θ cos θ + sinφ cos θ(− sin θ)

a31 = cos θ cosφ sin θ − sin θ cosφ cos θ

a32 = cos θ sinφ sin θ − sin θ sinφ cos θ

a33 = cos2 θ + sin2 θ .

Using trigonometric identities, (29) reads

dkl = 2Bj(ai) I3×3 , (30)

where I3×3 is the three-dimensional identity matrix.

The three invariant of the deformation tensor, defined in section 2.3 then read

I1 = 6Bj , I2 = 12B2
j , I3 = 8B3

j .

Therefore the fractional difference (2.40) between the density predicted by the free-particle
approximation and the exact one is

δ̃ = −12a2B2
j + 16a3B3

j .

Section 3.5: Time Dependent Perturbation Theory

Derivation of the formula (3.85) for the exact effective potential of the Gaussian
overdensity (3.76)

V :=
3

2a
(Φ + ϕ) =

=
3

2a

[

1

a2ȧ

(

φj −Hf
r2

2

)

+
2

3a3H2
f

(Vj − Vf )

]

=

=
3

2a

[

Hj −Hf

a2 ȧaa

r2

2
+

2

3a3H2
f

G

(

mj

r3j (a)
− M

R3
f (a)

)

r2

2

]

=

=
3

2a4Hf

[

(Hj −Hf ) +
2G

3Hf

4π

3
(ρj − ρf )

]

r2

2
=

=
3

2a4Hf

[

Hj −Hf +
ΩjH

2
j −H2

f

3Hf

]

r2

2
=

=
3

2a2

[

Hj

Hf
+

1

3

ΩjH
2
j

H2
f

− 4

3

]

r2x
2

where in the first passage I used formulae (3.21) and (2.26), in the second one (3.8) and
(3.9), and in the fourth I used Friedmann equations and the definition of density parameter
Ω.
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Solution of the integrals appearing in (3.99)

∫ Rx,f

0
cos[(km + kn) rx]

r2x
2
drx =

=
r2x sin[(km + kn) rx]

2 (km + kn)

∣

∣

∣

∣

Rx,f

0

−
∫ Rx,f

0

sin[(km + kn) rx]

(km + kn)
rx drx =

= − 1

(km + kn)

∫ Rx,f

0
sin[(km + kn) rx] rx drx =

= − 1

(km + kn)

[

−r cos[(km + kn) rx]

(km + kn)

∣

∣

∣

∣

Rx,f

0

+

∫ Rx,f

0
cos[(km + kn) rx] drx

]

=
Rx,f

(km + kn)
2

The other one is completely analogous.

Section 3.3: Global evolution

Derivation of the turnaround time coordinate of a fluid element, of the Gaussian
overdensity, initially at ri (3.66) Let us recall the following expression for the radial
coordinate of a fluid element at generic time coordinate a

r(ri, a) =
∆a+ ai
ai

ri − (∆a+ ai)∆a
1

a2i r
2
i

∫ ri

0
δ(r′, ai) r

′2 dr′ (31)

In order to determine the turnaround time coordinate (∆a)ta of the fluid element described
by 31, let us impose

dr

dt
(ri,∆a) = 0 , (32)

which can be written as

∂r

∂(∆a)
(ri,∆a)

d(∆a)

dt
= 0 .

Since d(∆a)/dt 6= 0 and making use of (31), this is equivalent to

∂r

∂(∆a)
(ri,∆a) = 0

ri
ai

− (2∆a+ ai)
ri
3a2i

4π
4π
3 r

3
i

∫ ri

0
δ(r′, ai) r

′2 dr′ = 0

3− (2∆a+ ai)
1

ai
δ̄(ri) = 0

(∆a)ta
ai

=
3− δ̄(ri)

2δ̄(ri)
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Derivation of the time coordinate of collapse (3.67) of a fluid element initially
at ri

r(ri, a) = 0

∆a+ ai
ai

ri − (∆a+ ai)∆a
1

a2i r
2
i

∫ ri

0
δ(r′, ai) r

′2 dr′ = 0

∆a+ ai
ai

ri − (∆a+ ai)∆a
ri
3a2i

δ̄(ri) = 0

− ri
3a2i

δ̄(ri) (∆a)
2 +

[

ri
ai

− ri
3ai

δ̄(ri)

]

∆a+ ri = 0 .

The solutions are therefore
(∆a)coll
ai

=

{

−1,
3

δ̄(ri)

}

.

Section 3.4: SN solution for a Gaussian overdensity

Derivation of the formula (3.80)

Φ(rx, ai) = − 1

ai

∫

1

r′′2x

∫

1

ρf





M
(√

2πσ
)3 e

− 1
2

(

ai r
′
x

σ

)2

− ρf



 r′x
2
dr′x dr

′′
x

= − 1

ai

1

ρf

∫

dr′′x
1

r′′2x



−ρf
r′′3x
3

+

∫

M
(√

2πσ
)3 e

− 1
2

(

r′x
σ/ai

)2

r′x
2
dr′x





= − 1

ai

1

ρf







−ρf
r′′2x
6

+
M

(√
2πσ

)3

∫

dr′′x
1

r′′2x

∫

e
− 1

2

(

r′x
σ/ai

)2

r′x
2
dr′x







=
1

ai

r′′2x
6

− M

ai ρf
(√

2πσ
)3

∫ rx

0
dr′′x

1

r′′2x

∫ r′′x

0
e
− 1

2

(

r′x
σ/ai

)2

r′x
2
dr′x (33)

Derivation of the formula (3.81)

rx = q̄s − ∆a
1

ai q2

∫

δ(r′x, ai) r
′
x
2
dr′x

∣

∣

∣

∣

q̄s

= q̄s − ∆a
1

ai q2

∫

1

ρf





M
(√

2πσ
)3 e

− 1
2

(

r′x
σ/ai

)2

− ρf



 r′x
2
dr′x

∣

∣

∣

∣

∣

∣

q̄s

= q̄s −∆a
1

ai q̄2s

∫ q̄s

0





M

ρf
(√

2πσ
)3 e

− 1
2

(

r′x
σ/ai

)2

− 1



 r′x
2
dr′x

= q̄s +∆a
1

ai q̄2s

q̄3s
3

−∆a
1

ai q̄2s

∫ q̄s

0

M

ρf
(√

2πσ
)3 e

− 1
2

(

r′x
σ/ai

)2

r′x
2
dr′x

= q̄s +
1

3

∆a

ai
q̄s −

∆a

ai

M

ρf
(√

2πσ
)3

1

q̄2s

∫ q̄s

0
e
− 1

2

(

r′x
σ/ai

)2

r′x
2
dr′x (34)
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Consistency check Since the overdensity is compensated, with an error assumed to be
negligible, a fluid element initially at rx = Rf/a := Rx,f should stay forever at the same
comoving coordinate. Let us find this result:

rx(Rx,f , ∆a) = Rx,f +
1

3

∆a

ai
Rx,f − ∆a

ai

M

ρf
(√

2πσ
)3

1

2R2
x,f

∫ Rx,f

−Rx,f

e
− 1

2

(

r′x
σ/ai

)2

r′x
2
dr′x ≃

≃ Rx,f +
1

3

∆a

ai
Rx,f − ∆a

ai

M

ρf
(√

2πσ
)3

1

2R2
x,f

√
2π
σ3

a3i
=

= Rx,f +
1

3

∆a

ai
Rx,f − ∆a

3 ai

M
4π
3 ρf

Rx,f

a3iR
3
x,f

= Rx,f +
1

3

∆a

ai
Rx,f − 1

3

∆a

ai
Rx,f

= Rx,f .
(35)

Chapter 4

Formula for the error of the critical radius (4.36) Let us call σb the error associated
of a certain quantity b. Then

σr̃x =

∣

∣

∣

∣

∂rx
∂σ8

∣

∣

∣

∣

× σσ8 =

=
8192 exp(r̃2x/8)

√
π r̃x erf[r̃x/(2

√
2)]

−4096
√
2σ8r̃x + 4

√
2r̃4x −

√
2r̃6x + 24576σ8 exp(r̃2x/8)

√
πerf[x/(2

√
2)]

× σσ8 =

= 0.013 h−1Mpc ,

where in the last passage it was used the Planck 2018 value for σ8 and its error.

Chapter 5

Calculation of the parameter χc at turnaround time (5.13) in a Λ = 0 Universe

χc(tta) :=
ρc(tta)

ρf (tta)
=

M
4
3
πR3

max

M
4
3
πR3

f (tta)

=
R3

f (tta)

R3
max

=
9GM
2 t2ta
R3

max

=

9GM
2

(GMπ)2
(

2GM
Rmax

)3

R3
max

=
9π2

24

The first passage is just the definition of the parameter, in the fourth one I used eq. (2.68),
in the next one I deduced the value of ηmax from the expression of Rc as a function of η
(2.61), then I substituted it in the expression for t(η) (3.13) in order to finally find the
expression for tta written above.

Exact expressions for D(t) in a ΛCDM cosmology In a model with non vanishing
cosmological constant the following Friedmann equation holds [58]

ä

a
= −4πG

3
ρ+

Λ

3
. (36)

Therefore it exists an inflection point at

ρe =
Λ

4πG
. (37)
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If we call ae the scale factor at the inflexion, we can define the following dimensionless
quantities [58]

x :=
a

ae
1− ǫ =

kc2

Λa2e
(38)

with k the curvature parameter appearing in Robertson-Walker metric (1.1).

In terms of the above defined quantities, the solutions of eq. 5.37 in a Universe with Λ 6= 0
take the form (see [58])

D2(x) =
[x3 − 3(1− ǫ)x+ 2]1/2

x3/2
(39)

D1(x) = D2(x)

∫

x3/2 [x3 − 3(1− ǫ)x+ 2]−3/2 dx . (40)

If moreover such a Universe is flat, as the background we want to consider, k = 0 by
definition and hence

D2(x) =

√

x3 + 2

x3
. (41)

This solution is monotonously decreasing from lim
a→0+

D2(x) = +∞ to lim
a→+∞

D2(x) = 1,

therefore it is the decreasing one. The other one reads

D1(x) =

√

x3 + 2

x3

∫ (

x

x3 + 2

)3/2

dx =
x
√
x3 + 2

5
√
2

2F1

(

5

6
,
3

2
;
11

6
;−x

3

2

)

, (42)

where 2F1(a, b; c; z) is the Gauss hypergeometric function defined as [11]

2F1(a, b; c; z) = 1 +
ab

1!c
z +

a(a+ 1)b(b+ 1)

2!c(c+ 1)
z2 + ... =

∞
∑

n=0

(a)n(b)n
(c)n

zn

n!
. (43)

A Gauss hypergeometric function with c > b > 0 and a > 0, as the one in (42), is

"completely monotonic" [49], i.e. it possesses derivatives 2F
(n)
1 (z) for all n = 0, 1, 2, ...

and they satisfy [49]

(−1)n2F
(n)
1 (z) ≥ 0 . (44)

Therefore, its first derivative is never positive, and hence

2F1

(

5

6
,
3

2
;
11

6
;−x

3

2

)

is monotonously non decreasing (because of the change of sign of the argument). Since the
product of two non decreasing functions is non decreasing, D1(x) defined by (42) is the
growing solution.

113



114



Bibliography

[1] N. Abbagnano, G. Fornero, La ricerca del pensiero, vol. 1A, Pearson Italia, Milano-
Torino, 2012

[2] Abel et al., Measurement of the Permanent Electric Dipole Moment of the Neutron,
Phys. Rev. Lett. 124 (2020)

[3] S. Arnouts, N. Malavasi and the VIPERS Collaboration, A slice through the Universe
(2016) https://www.eso.org/public/videos/ann16086a

[4] E. R. Arriola, J. Soler, Asymptotic Behaviour for the 3-D Schrödinger-Poisson System
in the Attractive Case with Positive Energy, Applied Mathematics Letters 12 (1999)
1-6

[5] M. Bahrami, A.Großardt, S. Donadi, A. Bassi, The Schrödinger–Newton equation and
its foundations, New Journal of Physics 16 (2014)

[6] J. M. Bardeen, J. R. Bond, N. Kaiser, A. S. Szalay, The statistics of peaks of Gaussian
random fields, The Astrophysical Journal, 304:15-61 (1986)

[7] B. Berenji, J. Gaskins, M. Meyer, Constraints on Axions and Axionlike Particles from
Fermi Large Area Telescope Observations of Neutron Stars, Physical Review D, January
2016, arXiv:1602.00091v1

[8] Bernardeau, Colombi, Gaztañaga, Scoccimarro, Physics Reports 367 (2002) 1-248

[9] D. H. Bernstein, E. Giladi, K. R. W. Jones, Eigenstates of the gravitational Schrödinger
equation, Modern Physics Letters A, Vol. 13, No. 29 (1998) 2327-2336

[10] E. Bertschinger, Self-similar secondary infall and accretion in an Einstein-de Sitter
Universe, The Astrophysical Journal Supplement Series, 58: 39-66 (1985)

[11] F. Beukers, Gauss’ hypergeometric function, https://xxyyzz.cc/beukers\

%20hypergeometric\%20functions.pdf

[12] N. Bleistein, R. Handelsman, Asymptotic Expansions of Integrals, Dover Publications
Inc., New York (1975, 1986) p. 219-223

[13] S. Bose, A. Mazumdar, G.W. Morley, H. Ulbricht, M. Toroš, M. Paternostro, A.A.
Geraci, P.F. Barker, M.S. Kim, G. Milburn, Spin entanglement witness for quantum
gravity, Phys. Rev. Lett. 119(24) (2017) 240401, arXiv:1707.06050

[14] P. Catelan, F. Lucchin, S. Matarrese, L. Moscardini, Eulerian perturbation theory in
non-flat universes: second-order approximation, Mon. Not. R.Astron. Soc. 276, 39-56
(1995)

[15] M. Christodoulou, C. Rovelli, On the possibility of laboratory evidence for quantum
superposition of geometries, Physics Letters B 792 (2019) 64–68

115



[16] D. Coe, N. Benitez, T. Broadhurst, L. A. Moustakas, A high-resolution mass map of
galaxy cluster substructure: LensPerfect analysis of A1689, The astrophysical journal,
723:1678–1702 (2010 November 10)

[17] P. Coles, The wave-mechanics of large-scale structure, arXiv:astro-ph/0209576v1 (27
Sep 2002)

[18] P. Coles, F. Lucchin, Cosmology, 2nd edition, John Wiley and sons, LTD, Chichester
(2002)

[19] P. Coles, K. Spencer, A wave-mechanical approach to cosmic structure formation,
Mon. Not. R. Astron. Soc., (2003), 342, 176–184

[20] R. Coquereaux, A. Grossmann, Analytic Discussion of Spatially Closed Friedman Uni-
verses with Cosmological Constant and Radiation Pressure, Annals of physics 143, 296-
356 (1982)

[21] G. Davies, L. M. Widrow, Test-bed simulations of collisionless self-gravitationg systems
using the schrödinger method, The Astrophysical Journal, 485: 484-495 (1997 August
20)

[22] F. D’Eramo, AstroParticle Physics, notes for the master degree in Physics (2019)

[23] L. Diósi, Gravitation and quantummechanical localization of macroobjects, Phys. Lett.
A 105 199–202 (1984)

[24] W. Docters, S. Zaroubi, Determining the cosmological parameters Ωm and σ8 from
peculiar velocity and density-contrast data (2008)

[25] D. J. D. Earn, J. A. Sellwood, the optimal n-body method for stability of galaxies, The
Astrophysical Journal 9504047 (14 Apr 95)

[26] M. Eliade, Trattato di storia delle religioni. Torino, Boringhieri, p.113.

[27] J.-P. Ernenwein, Lecture notes for his course on Astroparticles, held at Aix-Marseille
University for the master M2 in Fundamental Physics, academic year 2019/2020

[28] L. Fortunato, Appunti di fisica nucleare, Rotomail Italia (2018)

[29] M. Garny, T. Konstandin, Gravitational collapse in the Schrödinger-Poisson system,
JCAP 01 (2018) 009

[30] S. Gasiorowicz, Quantum Physics, 3rd edition, John Wiley and sons Inc., Hoboken
NJ (2003) p. W30

[31] M. Giannotti, L.D. Duffy, R. Nita New constraints for heavy axion-like particles from
supernovae, JCAP 01 (2011) 015, arXiv:1009.5714

[32] D. Giulini, A. Großardt, Gravitationally induced inhibitions of dispersion according to
the Schrödinger–Newton equation, Class. Quantum Grav. 28 195026 (2011)

[33] D. J. Griffiths, Boundary conditions at the derivative of a delta function J. Phys. A:
Math. Gen. 26 2265 (1993)

[34] D. J. Griffiths, Introduzione alla Meccanica Quantistica, Casa editrice ambrosiana,
Rozzano (MI) (2005)

[35] R. Harrison, A numerical study of the Schrödinger-Newton equations, thesis submitted
for the degree of Doctor of Philosophy, Oxford (2001)

116



[36] D. Horns, L. Maccione, M. Meyer, A. Mirizzi, D. Montanino, M. Roncadelli, Hardening
of TeV gamma spectrum of active galactic nuclei in galaxy clusters by conversions of
photons into axionlike particles, Physical Review D 86, 075024, 17 October 2012

[37] T. Ishiyama, Supercomputer simulation of large scale structures in the Universe,
https://www.youtube.com/watch?v=nHvcqV92oqY

[38] R. Johnston, A. N. Lasenby, M. P. Hobson, Cosmological fluid dynamics in the
Schrödinger formalism, Mon. Not. R. Astron. Soc. 402, 2491–2502 (2010)

[39] D. Kaiser, The Sacred, Spherical Cows of Physics, http://nautil.us/issue/13/

symmetry/the-sacred-spherical-cows-of-physics

[40] J. M. Kubo et al., The Mass of the Coma Cluster from Weak Lensing in the Sloan
Digital Sky Survey, ApJ 671 1466 (2007)

[41] O. Lahav, P. B. Lilje, J. R. Primack, M. J. Rees, Dynamical effects of the cosmological
constant Mon. Not. R. astr. Soc. (1991) 251, 128-136

[42] O. Lahav, Y. Suto, Measuring our universe from galaxy redshift surveys, Living Re-
views in Relativity 7 (2004) 1-81, arXiv:astro-ph/0310642

[43] E. Madelung, Quantum Theory in Hydrodynamical Form , Zeit. f. Phys., (1927), 40,
322

[44] R. Mandelbaum, U. Seljak, R. J. Cool, M. Blanton, C. M. Hirata, J. Brinkmann,
Density profiles of galaxy groups and clusters from SDSS galaxy–galaxy weak lensing,
Monthly Notices of the Royal Astronomical Society, Volume 372, Issue 2, Pages 758–776
(2006)

[45] J. E. Marsden, A. Tromba, Vector Calculus, W H Freeman and Co; 6th edition (2011)

[46] D. J. E. Marsh, Axions and ALPs: a very short introduction, 8 Dec 2017,
arXiv:1712.03018v1

[47] C. Marletto, V. Vedral, Gravitationally induced entanglement between two massive
particles is sufficient evidence of quantum effects in gravity, Phys. Rev. Lett. 119(24)
(2017) 240402, arXiv:1804.11315

[48] S. Matarrese, Notes on gravitational instability, Lectures given at Scuola Normale
Superiore, Pisa, between 2002 and 2005 (december 2006)

[49] K.S. Miller and S.G. Samko, Completely monotonic functions, Integral Transforms
and Special Functions, Vol. 12, No. 4 (2001) 389-402

[50] H. Mo, F. van den Bosch, S. White, Galaxy formation and evolution, Cambridge
University Press, Cambridge (2010)

[51] H. J. Mo, S. D. M. White, An analytic model for the gravitational clustering of dark
matter haloes, MNRAS submitted, arXiv:astro-ph/9412088 (1994)

[52] H. J. Mo, S. D. M. White, An analytic model for the gravitational clustering of dark
matter haloes, MNRAS submitted, astro-ph/9512127 (1995)

[53] I. M. Moroz, R. Penrose, P. Tod, Spherically-symmetric solutions of the Schrödinger-
Newton equations, Class. Quantum Grav., (1998), 15 2733

[54] D. Nadali, A. Polcaro, The sky from the high terrace: study on the orientation of the
Ziqqurat in ancient Mesopotamia, Mediterranean Archaeology and Archaeometry, Vol.
16, No 4, pp. 103-108 (2016)

117



[55] U. Natale, Note di cosmologia, UNIPD (2017). Notes of the course in cosmology held
by prof. S. Matarrese in the academic year 2016-2017 at the University of Padua.

[56] T. Padmanabhan, Structure Formation in the Universe, Cambridge University Press,
The Edinburgh Building, Cambridge CB2 8RU, UK (1993)

[57] A. Payez, C. Evoli, T. Fischer, M. Giannotti, A. Mirizzi, A. Ringwald, Revisiting the
SN1987A gamma-ray limit on ultralight axion-like particles, JCAP 1502 (2015) 006,
arXiv:1410.3747v2

[58] P. J. E. Peebles , The Large-scale Structure of the Universe, Princeton University
Press (1980)

[59] R. Penrose, On Gravity’s Role in Quantum State Reduction, General Relativity and
Gravitation, Vol. 28, No. 5, 581–600 (1996)

[60] J. Peñarrubia, Y. Ma, M. G. Walker, and A. McConnachie, A dynamical model of the
local cosmic expansion, MNRAS 443, 2204–2222 (2014)

[61] A. Perez, Notes on the path integral representation of quantum mechanics, Marseille
(2019)

[62] Perseus Digital Library, http://www.perseus.tufts.edu

[63] M. E. Peskin, D. V. Schroeder, An introduction to Quantum Field Theory, CRC press,
Boca Raton (2018)

[64] P. Peter, J.P. Uzan, Primordial Cosmology, Oxford University Press, 2005

[65] K. A. Pimbblet, S. J. Penny, R. L. Davies, How typical is the Coma cluster?, MNRAS
438, 3049–3057 (2014)

[66] Planck Collaboration, Planck 2018 results. I. Overview and the cosmological legacy of
Planck, arXiv:1807.06205v2 [astro-ph.CO], 3 Dicembre 2019

[67] V. Sahni, P. Coles, Approximation Methods for Non–linear Gravitational Clustering
Phys.Rept. 262 (1995) 1-135, arXiv:astro-ph/9505005v1 2 May 1995

[68] C. Schimd, Lecture notes for the course on Primordial Cosmology held in Aix-
Marseille University, for the master M2 in Fundamental Physics, in the academic year
20219/2020

[69] A.E. Schulz, W. Dehnen, G. Jungman and S. Tremaine, Gravitational Collapse in One
Dimension, Mon. Not. Roy. Astron. Soc. 431 (2013) 49 [arXiv:1206.0299]

[70] SDSS, https://www.sdss.org

[71] A. Sebbar, A. Sebbar, Equivariant functions and integrals of elliptic functions, Geom
Dedicata DOI 10.1007/s10711-011-9688-7 (2011)

[72] C. J. Short, P. Coles, Gravitational instability via the Schrödinger equation,
JCAP12(2006)012

[73] V. Springel, S. D. M. White, A. Jenkins, C. S. Frenk, N. Yoshida, L. Gao, J. Navarro,
R. Thacker, D. Croton, J. Helly, J. A. Peacock, S. Cole, P. Thomas, H. Couchman, A.
Evrard, J. Colberg, F. Pearce, Simulating the joint evolution of quasars, galaxies and
their large-scale distribution, Nature 435:629-636 (2005), arXiv:astro-ph/0504097

[74] N. Sugiyama, Cosmic background anistropies in cold dark matter cosmology, Astro-
physical Journal Supplement v.100, p.281, arXiv:astro-ph/9412025 (1995)

118



[75] The NIST reference on constants, units and uncertainty, https://www.nist.gov/pml

[76] The Astronomical Almanac, http://asa.hmnao.com

[77] P. Tod, I. M Moroz, An analytical approach to the Schrödinger–Newton equations,
Nonlinearity 12 201 (1999)

[78] S. van den Bergh, The local group of galaxies, Astronomy and Astrophysics Review
v.9 (1999)

[79] L. Wang, P. J. Steinhardt, Cluster Abundance Constraints on Quintessence Models,
Astrophys.J. 508: 483-490 (1998) arXiv: astro-ph/9804015

[80] N. Wheeler, Dirac delta function identities, Reed College Physics Department, Novem-
ber 1997

[81] L. M. Widrow, N. Kaiser, Using the Schrödinger equation to simulate collisionless
matter, The Astrophysical Journal, 416: L71-L74 (1993)

[82] Wolfram Research, The wolfram functions site, https://functions.wolfram.com/

GeneralizedFunctions/DiracDelta/09/0005/

[83] Wolfram Research, Wolfram MathWorld, https://mathworld.wolfram.com/

HeavisideStepFunction.html

[84] https://www.wolframalpha.com

[85] R. Wong, Asymptotic Approximations of Integrals, Academic Press, First edition
(1989) p. 76-77

[86] Y. Xu, H. J. Newberg, J. L. Carlin, C. Liu, L. Deng, J. Li, R. Schönrich, B. Yanny,
Rings and Radial Waves in the Disk of the Milky Way, arXiv:1503.00257, [astro-ph.GA]
(2015)

[87] Y. B. Zel’dovich, Gravitational instability: an approximate theory for large density
perturbations, Astronomy and Astrophysics 5 (1970) 84-89

Ai miei genitori ed Edoardo.

119


