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Abstract

In this thesis the extremely low frequency magnetic field generated by twisted
tripolar cables is calculated through different methods in order to compare them
in terms of computational velocity and the efficiency in the evaluation of the
field, with the objective to find an alternative method, simpler and faster re-
spect to the classical Biot-Savart integration. Firstly the Biot-Savart Law is
implemented on a twisted cable of finite length and its results are used as ref-
erence for all the other methods found in literature. These methods considers
three infinitely long twisted helices and consists of an infinite series formula-
tion, which contains the modified Bessel functions and their first derivatives;
other simpler formulations are derived by reducing the series to the first terms.
Finally a parametric equation is studied and the same heuristic method is ap-
plied directly on the Biot-Savart, which results in one new formulation, that can
estimate the field values with really low errors respect to the Biot-Savart Law.
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Sommario

Nella tesi sono stati implementati tutti i metodi per il calcolo del campo
magnetico generato da cavi trifase elicordati, al fine di confrontarli e ricercare
un metodo di buon compromesso fra l’efficienza e la velocità di calcolo.

Innanzitutto viene implementata su Matlab la classica formulazione utiliz-
zata per i calcoli del campo magnetico, che è la Legge di Biot Savart, sia nella
formulazione bidimensionale che tridimensionale. Quella bidimensionale viene
implementata per la verifica della correttezza del metodo tridimensionale, allo
scopo viene utilizzata come caso esempio una linea trifase interrata con posa
in trifoglio (caso particolare del cavo elicordato se il passo dell’elica p tende a
infinito). Una volta confermata la validità dei codici del Biot-Savart 3D, essa
viene applicata nel calcolo del campo generato dal cavo tripolare elicordato, i
suoi risultati sono utilizzati come riferimento per tutti gli altri metodi.

In secondo luogo, viene implementata la formulazione della serie di Hagel
(che include le funzioni di Bessel modificate e le sue derivate prime) in coordinate
cilindriche, i suoi risultati possono essere buoni per i casi con bassi valori del
raggio di elica a e maggiori passo di elica p, ma generalmente gli errori sono
elevati; inoltre, poiché va a zero molto rapidamente, per la stima della fascia di
rispetto devono essere considerate cautelativamente un paio di metri addizionali.

Poiché le funzioni di Bessel sono complesse, altri metodi alternativi sono
stati derivati attraverso semplificazioni di Hagel, in particolare Pettersson pro-
pone la riduzione della serie al primo termine, con ulteriori approssimazioni
considerando a << p e r >> p, ma queste formulazioni forniscono risultati
con errori elevati nelle immediate vicinanze del cavo, comunque per distanze
sufficientemente lontane danno risultati prossimi alla formulazione della serie
completa.

Infine, viene analizzato il metodo euristico parametrico proposto da Landini
basato sull’espansione in serie approssimata ai primi due termini, i risultati
ottenuti sono molto buoni rispetto alla serie completa, ma questa soluzione
mostra ancora errori non trascurabili rispetto ai valori di Biot-Savart.

Si decide quindi di applicare lo stesso metodo euristico di Landini diretta-
mente sui risultati di Biot-Savart ottenendo la seguente formulazione paramet-
rica

ln(Bnew) = ln

(
2.4π2

a

p2

)
+ ln(I) + a0 + a1r + a2r

2 +
a3 + a4r

ra5

(1)

questa equazione può fornire stime del campo magnetico quasi coincidente con
la legge Biot-Savart nel range di distanze da 0.2m a 5m. Per distanze maggiori
i risultati divergono, ma a 5m il campo è sicuramente molto inferiore ai limiti
di qualità di 3µT , anzi potrebbe essere considerato nullo.

I parametri a0÷5 (eccetto a3 che è fissato a 40) possono essere sostituiti
rapidamente nell’equazione per mezzo di lookup tables in funzione dei valori di
a e p; le relazioni tra i parametri e le caratteristiche geometriche dell’elica, a
e p, possono essere espresse approssimativamente mediante polinomi, di grado
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non superiori a 3. La formulazione risultante è più lunga di quella proposta da
Landini, ma fornisce risultati migliori.

In conclusione, (1) è certamente più semplice delle formulazioni in serie,
fornisce risultati migliori delle approssimazioni in serie ridotte, è più complesso
dell’equazione parametrica proposta da Landini, ma i suoi risultati rispetto ai
risultati di riferimento presentano errori molto più bassi di Landini, richiede
un tempo computazionale sicuramente inferiore ottenendo al contempo circa le
stesse stime di campo rispetto al metodo tridimensionale Biot-Savart. Si può
dire che nel complesso un ottimo compromesso tra buoni risultati e velocità di
calcolo.
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Chapter 1

Introduction

Nowadays we are immersed in the electromagnetic fields: the electric field is
generated whenever there is a difference of the electrical potential between two
conductive elements, independently on the electrical devices switching on or
not, and its strength increase with the voltage; the magnetic field is generated
by the passage of an electric current through wires, electrical devices or cables,
thus the electrical devices or the power system have to be activated, and its
entity is proportional to the value of the current. The electromagnetic fields are
divided into three classes according to the frequency:

• extremely low frequency field (ELF): that propagate with frequency rang-
ing from 0 Hz up to 300 Hz, generated for example by electrical generation
and distribution systems and household appliances;

• intermediate frequency field: with frequency between 300 Hz and 10 MHz,
generated for example by computers;

• radio frequency field: with frequency ranging between 10 MHz and 30
GHz, propagated for example from radio, television, mobile phone anten-
nas and microwave ovens.

The thesis deals with the magnetic field generated by the three-phase twisted
cables for electric transmission application, which works at 50 Hz or 60 Hz,
therefore it concerns the first group.

There are scientific researches which proves that the electromagnetic fields
interact with biological tissues, its effects depends on the frequency and its entity
increase by getting closer to the field source. The main effect of electromagnetic
fields (especially radio frequency one) on the human body is heating, like when
the microwave ovens heat food. However the levels at which we are normally
exposed are much lower than the values required to produce significant warming,
in addition, an Italian legislation was drawn up in 2003 imposing limits on the
electromagnetic field that are lower than these threshold values,if these limits
are respected, there is no scientific evidence of health risks[1].
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The thesis interest only concerns the part of the limits for the protection of
the population from exposure to the magnetic fields at the network frequency
(50 Hz) generated by the power lines, three values are set down[2]:

1. an exposure limit equal to 100µT : it must not to be exceeded in any
condition of exposure of the population and precautionary measure for
protection against acute effects are mandatory;

2. an attention values equal to 10µT : it must not to be exceeded in residen-
tial, school and any other places used for prolonged stays higher than 4
hours/day, it is mandatory to adopt precautionary measure for protection
against possible long-term effects;

3. a quality objective value equal to 3µT : it is set because of the progres-
sive mythologizing of the exposure to electromagnetic fields, it must be
respected during the design of new power lines in the vicinity of children’s
play areas, schools, residential zones and any other places used for the stay
not less than 4 hours/day, the same on the contrary, thus in the buffer
zone delimited by 3µT there can be no buildings nor its pertinence such
as balconies, terraces, courtyards, gardens and no parks or any equipped
outdoor spaces that involve stays higher than 4 hours/day.

The twisted three-phase cables has the main characteristic of generating a
lower magnetic field, because of the reduced distance between the conductors
and their continuous transposition given by the twist. Due to this property
they are frequently used for the electrical distribution in high, medium and low
voltage, they are the most common type of the cable used for the network con-
nection of renewable power plants, for example for connection to the transformer
cabins of a wind farm or to the inverter modules for photovoltaic plant.

The widespread use makes the calculation of the ELF magnetic field in the
immediate vicinity of twisted cables essential both to evaluate the magnetic im-
pact of the power lines constructed close to the sensitive peoples or to determine
the buffer zone beyond which it is respected the above mentioned quality ob-
jective limit[4]. Generally, the limit of 3µT is achieved at a very short distance
from the axis of the cable, around 50÷80 cm[3].

For the calculation of the magnetic induction field generated by the twisted
tripolar cable, the simple two-dimensional Biot-Savart formulation based on the
hypothesis of straight and parallel conductors proposed by the Italian regulation
CEI 211-4 cannot be used, although it is suitable for most practical situations
found for overhead and underground power lines. It is necessary to apply the
Biot Savart three-dimensional integral, which require very long computational
times[3].

There is in the literature a formulation in series expansions containing the
modified Bessel functions and its derivatives in a reference system with cylindri-
cal coordinates (reducible to 2 components in natural coordinates) that provides
good approximate results respect to the Biot-Savart one. There are other sim-
plified derived formulation that give nice estimations only beyond a certain
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distance from the axis of the cable, anyway it is not a far distance, already
at distances comparable to the helix pitch length the approximations could be
considered acceptable, but the errors presented in the vicinity of the cable is
really high and it is necessary to turn to the complete series formulation.

However the series formulation is more complex than the Biot-Savart one
although it is faster, because of the presence of the Bessel functions and their
derivatives. So further studies are made to find a parametric equation based on
the first two terms of the series, it turns out an equation that always overestimate
the series formulation.

The aim of the thesis is to implement and compare all the methodologies in
terms of the effectiveness in the magnetic field evaluation, the simplicity of the
formulation and the computational speed required by the calculation, with the
final intent of seeking a method which results in a good compromise between
the efficiency, the simplicity and the speed.
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Chapter 2

Biot-Savart Law

2.1 General theory

The magnetic field generated by an alternating current flowing along a generic
path γ is analytically described by the Biot-Savart Law:

B⃗(xP , yP , zP ) =
µ0I

4π

∫

γ

d⃗l × ûr
r2

(2.1)

r =
√
(xP − xi)2 + (yP − yi)2 + (zP − zi)2

where µ0 = 4π10−7[H/m] is the magnetic permeability in the vacuum, I is
the phasor of the circulating alternating current; along path γ are considered
innumerable infinitely distanced source points Qi(xi, yi, zi) and vectors d⃗l =
(dlx, dly, dlz) of infinitesimal stretches of line current tangent to them; r⃗ = rûr
is the vector distance between source points and observation point P (xP , yP , zP )
with module r and direction ûr = (urx, ury, urz).

Figure 2.1: Biot-Savart Law: vectors disposition
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From (2.1) are derived the following equations for phasors of spatial com-
ponents of the magnetic induction field generated by a generic line current of
finite length with N source points considered along it:

Bx =
µ0I

4π

N∑

i=1

dlyiurzi − dlziuryi
r2i

By =
µ0I

4π

N∑

i=1

dlziurxi − dlxiurzi
r2i

(2.2)

Bz =
µ0I

4π

N∑

i=1

dlxiuryi − dlyiurxi
r2i

therefore, the effective value of the magnetic flux density field in the observation
point P (xP , yP , zP ) is:

B(xP , yP , zP ) =
√
B2

x +B2
y +B2

z (2.3)

where Bx, By and Bz are modules of corresponding phasors[5].
These formulations could require very long computational time in case of

complex current configuration, such as twisted cables or simultaneous presence
of several power lines, because the expressions (2.2) have to be computed for
every single current carrying conductor and the overall magnetic field is obtained
by superposition of all their results; in addition, in case that a large observation
area is under analysis, longer conductors with much higher number of source
points are often required to be considered to get a correct estimation of the
magnetic field, this causes further slowdowns of the algorithm.

However, for a line current configuration with point symmetry property and
infinite length, the calculation can be simplified. Considering, for example, an
infinite straight line current parallel to z-axis, the z components of the mag-
netic field in any observation point P (xP , yP , zP ) generated by source points
at its left side are all compensated by those at its right side, so that the over-
all z component of the magnetic field is null and remain only two transversal
components:

Bx =
µ0I

4π

N∑

i=1

−dlziuryi
r2i

By =
µ0I

4π

N∑

i=1

dlziurxi
r2i

(2.4)

B(xP , yP , zP ) =
√
B2

x +B2
y

Not only, the magnetic induction field generated by this infinite straight line
current can be calculated by implementing the bi-dimensional formulation of
the Biot-Savart Law[3]:

Bx =
µ0I

2π

yQ − yP
R2
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By =
µ0I

2π

xP − xQ
R2

(2.5)

R =
√
(xP − xQ)2 + (yP − yQ)2

that means for any plane transversal to z-axis, only the source point Q(xQ, yQ)
at the intersection between the line and the plane have to be computed, so the
effective value of the magnetic flux density field in the observation point depends
only on the radial distance R, as well as the effective value of the alternating
current I:

B(xP , yP , zP ) =
√
B2

x +B2
y =

µ0I

2πR
(2.6)

In the simpler case of a power line with straight, parallel, and infinitely
long conductors, the total magnetic field is obtained by superposition of all
contribution from each current carrying conductor as before, but these last
formulations are faster allowing to save a lot of computational time. A practical
example of this case can be the underground power line, even though in the
reality line current of infinite length does not exist it can still be considered as
such, because electrical cables are generally long enough so that the magnetic
field on the cross section at the half-length calculated by the three-dimensional
method could coincides with the result obtained by the two-dimensional one,
therefore the simpler bi-dimensional method is often used for a quick magnetic
field evaluation.

For overhead power lines, the bi-dimensional method can still be applied,
but electrical cables are arranged according to a catenary and towers or poles at
two sides could be placed at different ground levels, thus the three-dimensional
method is more accurate, but the bi-dimensional one can still be used for a first
determination of the buffer zone widths[3].

Instead, for more complex configuration like twisted cables and multiple
intersected power lines, the bi-dimensional Biot-Savart method cannot be ap-
plied. In the case of twisted cables there are other bi-dimensional formulations
derived from the series expansions of the magnetic vector potential by means of
the modified Bessel functions, which will be studied in the following chapters.

2.2 Comparison between Biot-Savart 3D and 2D

To compare the two Biot-Savart formulations, (2.2) and (2.5) are applied to
examine a high voltage 132kV power line with three single-core cables in trefoil
formation, which is a special case of twisted cables with pitch length tending
to infinity. The system is symmetrical and it’s carrying balanced three-phase
currents with effective value equal to Irms = 1kA; three conductors are centered
at the vertices of an equilateral triangle with sides of length equal to the diameter
of conductors which is set to D = 0.1m; the axis of the power line passing
through the barycenter of conductors is taken to coinciding with the z-axis; the
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encumbrance of the trefoil disposition has a radius equal to Rline:

Rline = AG+
D

2
=

2

3
median+

D

2
=

D√
3
+
D

2
= 0.1077m (2.7)

median =
1

2

√
2(AC

2

+AB
2

)−BC
2

=

√
3

2
D

therefore the minimum radial distance from which magnetic field is evaluated
is equal to Rmin = 0.11m.

Figure 2.2: Cross-section of the trefoil formation

In order to making the comparison, the convergence of the three-dimensional
method and the minimum length of conductors required by it are evaluated.
Since Biot-Savart Law demonstrate that the magnetic field is inversely propor-
tional to the square of the distance r between observation and source points, it
is possible to suppose that above a certain length of conductors, source points at
two extremes are too faraway and provides negligible contribution of the mag-
netic field to the observation point on the cross-section at the half-length, then
when the three-dimensional method converge, its results should be infinitely
close to the theoretical values provided by the bi-dimensional method.

An iterative method is adopted: the algorithm begins with a fixed R, a
specified segmentation dl and an initial length of conductors L = 2dl; then 2dl
are added to L at every iteration (1dl for extreme) until the effective values of
the magnetic induction field at half-length present a relative deviation minor
than 10−4% respect to those of previous iteration, when this occurs results can
be considered established and the method achieves the convergence. Theoreti-
cally source points for the three-dimensional method have to be considered at
infinitesimal distances, but in order to reduce the computational time longer
segmentation length is set for higher radial distance under analysis, anyway at-
tention should be pay to maintain dl relatively small respect R. In the table 2.1
are ordered all the obtained results.

7



Table 2.1: Convergence of the Biot-Savart 3D method on the trefoil formation
Segmentation Distance from the z-axis Length of conductors

dl[m] R[m] L[m]

0.11 7.72
0.12 7.96
0.13 8.2
0.14 8.42

0.01 0.15 8.64
0.16 8.84
0.17 9.04
0.18 9.22
0.19 9.42
0.2 9.58
0.2 20.8
0.31 24.2
0.41 26.8
0.61 30.6
0.81 34

0.1 0.91 35.4
1.01 36.8
1.11 38
1.31 40.6
1.51 43
1.81 46.4
2 48.6
2 102

3.11 120
5.11 152
8.11 196

1 11.11 240
13.11 270
15.11 298
18.11 338
20 364
20 640

30.11 840
40.11 1020
50.11 1200

10 60.11 1380
70.11 1540
80.11 1720
90.11 1880
100.11 2040
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First of all, it is possible to observe that two types of segmentation are
used for R = 0.2m, 2m and 20m, taking as example R = 0.2m: with dl =
0.01m and L = 9.58m the number of source points along one conductor is
equal to 959, but with dl = 0.1m and L = 20.8m there are only 209 source
points, less than a quarter from before, therefore a longer segmentation works
faster although it requires longer conductors for the convergence, because the
algorithm have to compute much minor amount of source points . However,
as said previously, attention should be pay to not consider an excessively long
segmentation, because the method returns wrong and underestimated results
due to the lose of important contributions from the nearest local source points
even if it converges, tests proves that R have to be at least twice dl.

Figure 2.3: Example of a bad choice of dl:
the mean value of the magnetic field around the power line obtained with the Biot-Savart

2D method is equal to B2D
mean = 24.0515µT , while from the Biot-Savart 3D result

B3D
mean = 22.9377µT , with a relative error equal to e = (B2D

mean −B3D
mean)/B

2D
mean = 4.6307%

In the second place, from results of L it is possible to notice that for different
segmentations, to a fixed increase of the radial distance corresponds a more or
less regular rise of L, therefore with a set segmentation, the length of conductors
required to get a correct estimation of the magnetic field at a certain radial
distance is predictable and, as clearly shown by the figure 2.5, it initially increase
exponentially with exponent minor than 1 then linearly, the exponent of the first
part can be more or less near to 1 and the slope of the second part more or less
marked depending on the case.

A linear approximation that better fit the second part of the obtained data
sets is considered for all the cases, this choice is made principally because this is
the most simply and direct way to make a initial prediction of the length of con-
ductors necessary for the analysis; furthermore coefficients are taken cautiously

9



Figure 2.4: L as a function of R: case dl = 0.01m

Figure 2.5: L as a function of R: case dl = 0.1m
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Figure 2.6: L as a function of R: case dl = 1m

Figure 2.7: L as a function of R: case dl = 10m
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so that L is mainly overestimated and the correct evaluation of the magnetic
field is guaranteed:

L0.01m = 19R+ 5.8 (2.8)

L0.1m = 11.5R+ 25.5 (2.9)

L1m = 14R+ 85 (2.10)

L10m = 16R+ 440 (2.11)

In the reality, by testing the considered segmentation at greater distances respect
to the tabulated data, it result that for cases with dl = 0.1m, 1m and 10m
the approximated lengths Ldl are always overestimating the effective necessary
length L in not excessive way and without burden on the calculation process, so
(2.9)-(2.11) could still be considered valid; instead for dl = 0.01m the calculation
range 0.11−0.2m results included in the first exponential part, then (2.8) provide
a high overestimation for the increasing of R, in this case (2.8) could be correct
until 0.3m and over that distances a new approximation should be used:

L
′

0.01m = 8.5R+ 9.2 (2.12)

Figure 2.8: L as a function of R: case dl = 0.01m
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Finally, the results obtained by the three-dimensional method at its conver-
gence are effectively coincident with those from the bi-dimensional one, indeed
the maximum punctual relative error presented by the first respect to the last
among all performed simulations is equal to 0.1876%, so the differences can be
considered negligible. In the figure 2.9 it can be see that magnetic field as a
function of radial distances at different heights obtained by two methods are
overlapping, while figures 2.10 and 2.11 show identical equifield lines of the
magnetic induction field in a cross-section area of 16 × 16m2; since the radial
distances under analysis range from Rmin = 0.11m to 16

√
2 ≈ 23m, segmenta-

tion dl = 0.01m and length of conductors L = 204.7m obtained from (2.12) are
considered for the three-dimensional method, the maximum punctual relative
error get from the calculation is equal to 0.0611%, therefore results could be
considered coincident.

Figure 2.9: Results of Biot-Savart 3D and 2D at different heights
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Figure 2.10: Biot-Savart 2D: equifield lines

Figure 2.11: Biot-Savart 3D: equifield lines
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2.3 Twisted Tripolar Cables

Once demonstrated the validity of the Biot-Savart 3D programming code and
shown the correctness of its results, now it can be applied to evaluate the mag-
netic field generated by a twisted tripolar cable carrying balanced three-phase
current with Irms = 200A. In this configuration the three conductors parallel
to z-axis are twisted together into three parallel helices centered on the z-axis
and shifted by 2π/3 each other, the parametrisation in Cartesian coordinates of
the three helices are as follows:

x(t) = a cos(t+ i
2π

3
)

y(t) = a sin(t+ i
2π

3
) (2.13)

z(t) = pt

with i = 0, 1 or 2 respectively for phase conductor a, b or c.

Figure 2.12: Cross-section of the twisted tripolar cable with a = 0.1m

The cross-section is analogous to the trefoil formation, but with conductors
that continuously rotate around the barycenter moving along the z-axis; the
distance between the axes of the conductors and the barycenter coincides with
the radius of helices a, so a depends on the diameter of conductors, but here are
considered simply 10 values of a from 0.01m to 0.1m with step of 0.01m; after
having covered a certain distance p, called the pitch length of the helix, all the
conductors complete a round of 2π and return to the initial position, 13 values
of p from 0.8m to 2m with step of 0.1m are take in consideration[4].

The diameter of conductors D and the radius of their encumbrance Rline

are calculated backwards from values of the helices radius a by using (2.7):

D =
2√
3
median =

2√
3

3

2
a =

√
3a (2.14)
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Rline = a+
D

2
=

(
1 +

√
3

2

)
a

from results it have been decided that the minimum radial distance Rmin from
which magnetic field is evaluated is equal to 0.1m for a = 0.01 ÷ 0.05m and
equal to 0.2m for a = 0.06÷ 0.1m.

Table 2.2: D, Rline and Rmin as a function of the considering a
a[m] D[m] Rline[m] Rmin[m]

0.01 0.0173 0.0187 0.1
0.02 0.0346 0.0373 0.1
0.03 0.0520 0.0560 0.1
0.04 0.0693 0.0746 0.1
0.05 0.0866 0.0933 0.1
0.06 0.1039 0.1120 0.2
0.07 0.1212 0.1306 0.2
0.08 0.1386 0.1493 0.2
0.09 0.1559 0.1679 0.2
0.10 0.1732 0.1866 0.2

As previously done with trefoil formation, the convergence have to be ana-
lyzed before going to study the results, because there is a risk of having incorrect
magnetic field values if a short cable is considered. The same iterative method
as before is adopted: the parameter t is taken at distances of π/100 between
−T = −2kπ and T = 2kπ, with k a natural number; then 2π are added to each
side at every iteration until the effective values of the magnetic field on the cross
section at t = 0 (z = 0) present a relative deviation minor than 10−3% respect
to those of previous iteration. The radial distance in which the magnetic field
are evaluated is set to 5m, sufficiently far away that the field can be considered
to be zero or almost zero within it, therefore later the observation distances will
cover ranges between Rmin and 5m, but it cannot exceed 5m.

In the table 2.3 are ordered the convergence length of the considered twisted
cable configurations: it can be observed that the helix radius do not effect on the
convergence; instead the cable length increases when the pitch length decreases,
that because the shorter is the p the more complex (twisted) is the configuration,
so the required cable length for the convergence is greater, while for increasing
p the configuration become more and more like the trefoil formation then L
decrease. The maximum of the parametrisation is set to a cautionary value of
T = 300π for all the twist cables configuration in the subsequent analysis.

Firstly, the general behaviour of the magnetic field is evaluated by consid-
ering a twisted cable with fixed a = 0.1m and p = 1m. At very close distances
from the cable, the magnetic field present a sinusoidal variation with period
2π/3 at different angular position: it is maximum at the axes of the conductors
where it is supposed to be concentrated the current (θ = 0◦, 120◦ and 240◦),
then it decrease moving away until it reaches the minimum at θ = 60◦, 180◦
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Table 2.3: Convergence of the Biot-Savart 3D method on twisted tripolar cables
Helix radius Pitch length Parameter maximum Cable length

a[m] p[m] T = 2kπ[m] L[m]

0.8 129·2π 1296.7992
0.01 1 80·2π 1005.2468

1.5 41·2π 772.8318
2 29·2π 728.8495
0.8 129·2π 1296.7992

0.05 1 80·2π 1005.2468
1.5 42·2π 791.6813
2 29·2π 728.8495
0.8 128·2π 1286.7461

0.1 1 80·2π 1005.2468
1.5 42·2π 791.6813
2 29·2π 728.8495

and 300◦, that are the furthest positions from the currents, after that it increase
again by getting closer to the next conductors; the amplitude of the variations
decrease with the distancing from the cable until to be almost null at around
R = 0.37m, from here the magnetic field presents approximately constant val-
ues around the cable and could be considered uniform; however to be precise,
the magnetic field is keeping to vary slightly with the same frequency, but as
opposed to before it presents higher value at θ = 60◦ respect to θ = 0◦.

Figure 2.13: The magnetic field around a twisted cable
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Figure 2.14: The magnetic field from 0.2m to 1m at different angular position

Figure 2.15: The magnetic field from 0.35m to 1m at different angular position
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Since the magnetic field at higher radial distances is of more practical inter-
est, it is more convenient and cautionary to take the magnetic field at θ = 60◦

as reference[4].
Secondly, the behaviour of the magnetic field at the variation of the param-

eters a and p are observed. By set the radius of the helices at 0.1m and varying
the pitch length from 0.8m to 2m the magnetic field present extremely small
variations: at θ = 60◦ it initially decrease with the rise of p, but for the radial
distance after around 0.45m, the magnetic field is higher for increasing p [figure
2.16]; instead, at θ = 0◦ the magnetic field is always higher with greater p,
graphically it means that the curve of the magnetic induction as a function of
the radial distance B(r) is shifting upwards vertically for increasing p [figure
2.17]; these differences decrease with minor a. While with pitch length fixed to
2m and the helix radius varying from 0.01m to 0.1m, the magnetic field increase
proportionally with the rise of a, at both 0◦ and 60◦ [figure 2.18].

All these results perfectly reflect the theory: the magnetic field should be
lowered by twisting the conductors and the level of the reduction depends on
the entity of the twisting, that is the pitch length; instead the helix radius do
not influence on the magnetic field, lower field intensity is presented with lower
a at the same radial distance only because the cables have minor encumbrance
and the magnetic field start to decrease at lower radial distances.

Finally, the results of the magnetic field generated by the twisted tripolar
cable are compared respect to those of the trefoil formation with the same di-
ameter of conductors. In the table 2.4 below are indicated for some of twisted
configurations the radial distances at which the fixed percentages of reduction
are reached, and at the last column the reduction percentage at distance of 5m.
As anticipated, lower pitch length has higher reduction effect, in particular this
effect is accentuated with increasing helix radius and at minor radial distances;
after a certain r and a reduction of around 20% the advantage of the config-
urations with higher a is nullified and at 5m those with a = 0.01m have even
reduction slightly higher respect to a = 0.1m. In the figure 2.19 are represented
two cases of the comparison between trefoil and twisted configuration, one with
the maximized reduction effect (a = 0.1m and p = 0.8m) and the other one
with the lowest reduction percentage (a = 0.01m and p = 2m).

Table 2.4: The level of the field reduction at different p and a
p[m] a[m] 1% 5% 15% 30% 50% 5m

2 0.01 1.16m 1.89m 2.83m 3.89m / 46.2800%
0.1 0.68m 1.83m 2.81m 3.88m / 46.2766%

1.6 0.01 0.92m 1.51m 2.26m 3.11m 4.22m 62.1071%
0.1 0.35m 1.45m 2.25m 3.11m 4.22m 62.0741%

1.2 0.01 0.69m 1.13m 1.70m 2.33m 3.17m 80.5695%
0.1 0.20m 1.07m 1.68m 2.33m 3.17m 80.5261%

0.8 0.01 0.45m 0.75m 1.13m 1.56m 2.11m 95.8001%
0.1 0.20m 0.69m 1.12m 1.56m 2.12m 95.7766%
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Figure 2.16: The magnetic field at θ = 60◦ with constant a and variable p

Figure 2.17: The magnetic field at θ = 0◦ with constant a and variable p
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Figure 2.18: The magnetic field at θ = 60◦ with constant p and variable a

Figure 2.19: The field reduction effect of twisted cables
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2.4 Matlab codes

Two important Matlab functions are adopted in this chapter: the first function
is BiotSavart3D, that implements the three-dimensional Biot-Savart formulation
as the name suggests, the second function is obviously BiotSavart2D, used to
check the correct functioning of the previous one on the trefoil formation. The
BiotSavart3D function require 6 inputs, that are:

1. a vector q indicating z-position of parameters along straight conductors
or a vector t containing parameters along helices;

2. a structured matrix C where are ordered separately x, y and z coordinates
of the development of each conductors in the space;

3. a variable Pz that indicate the z-position of the cross-section, it is always
fixed to zero where is the middle-length of the cables;

4. two vectors Px, Py with indicated the Cartesian coordinates of observation
points on the cross-section where is wanted to calculate the magnetic field;
if Polar coordinates are used, they have to be converted into Cartesian
coordinates before to enter them into the function:

Px = r cos θ Py = r sin θ

5. a matrix I with the effective values of the current circulating in each con-
ductor on the first column and the correspondent phases on the second
column.

Bellow are input data for the trefoil formation and the twisted configuration:

Listing 2.1: Cables in trefoil formation

%% THREE SINGLE -CORE CABLES IN TREFOIL FORMATION

D1f =0.1; % conductor diameter [m]

median=sqrt (3) /2* D1f; % [m]

R=2/3* median+D1f/2; % [m]

% observation points P have to be taken outside cables

% R is rounded up to the nearest [dm] dimenion

Rmin=ceil(R*10) /10;

dq=round (0.01 ,4); % segmentation of conductors [m]

L=round (204.7 ,4); % conductor length [m]

q=-L/2:dq:L/2; % parametrisation along conductors

l=ones(1,length(q));

% Cables disposition:

% {C} = { [x] [y] [z] }

% [x/y/z] = [phase a; phase b; phase c]

% 3(row)xlength(q)(column)
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C.x=[D1f/2*l; 0*l; -D1f/2*l];

C.y=[-median /3*l; 2/3* median*l; -median /3*l ];

C.z=[ q; q; q ];

Irms =1000; % current effective value [A]

I=[Irms 120

Irms 240

Irms 360];

Px = -16:0.1:16; Py=Px; Pz=0; % calculation area

% recall function

[Beff ,Q,dl]= BiotSavart3D(q,C,Px,Py,Pz,I);

Listing 2.2: Twisted tripolar cable

%% TWISTED TRIPOLAR CABLE

a=0.01; % helices radius [m]

median =3/2*a; % median=sqrt (3) /2* D1f [m]

D1f =2/ sqrt (3)*median;

R=a+D1f/2;

Rmin=ceil(R*100) /100;

p=1; % pitch length [m]

dt=pi/100; % segmentation of conductors [m]

t= -300*pi:dt:300* pi; % parametrisation

l=p*t; % cable length [m]

h=0; % height of the cable respect to the ground [m]

C.x=[a*cos(t); a*cos(t+2*pi/3); a*cos(t-2*pi/3)];

C.y=[a*sin(t)+h;a*sin(t+2*pi/3)+h;a*sin(t-2*pi/3)+h];

C.z=[l; l; l];

Irms =200; % current effective value [A]

I=[Irms 0

Irms 120

Irms 240];

r=Rmin :0.1:3; theta =0:pi /30:2* pi; % calculation area

Px=zeros(length(theta),length(r));

Py=zeros(length(theta),length(r));

Beff3D=zeros(length(theta),length(r));

for ir=1: length(r)

for ia=1: length(theta)

Px(ia ,ir)=r(ir)*cos(theta(ia));

Py(ia ,ir)=r(ir)*sin(theta(ia));

[Beff ,Q,dl]= Laplace(t,C,Px(ia,ir),Py(ia,ir) ,0,I);
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Beff3D(ia,ir)=Beff;

end

end

After received input data, the function begin its work: it calculates phasors
of currents for each conductor and already multiply them by 0.1 derived from

µ0

4π
106 =

4π10−7

4π
106 = 0.1

so that the results of magnetic field is expressed in [µT ] when Irms is expressed
in [A]; with a cycle for, it define a structured matrix dl where are saved the

components of tangent vectors d⃗l as the difference between two consecutive pa-
rameters of the matrix C, and a structured matrix Q with Cartesian coordinates
of source points Qi taken as midpoints; with three cascading cycles for, it con-
sider one by one the observation points P calculating the distances r = PQi

and the unit vector ûr for all the source points (saved in a structured matrix
R), then it calculate all the contribution (saved in a structured matrix dB)

dB(x, y, z) =
d⃗l × ûr
r2

and finally, by summing up the product of each single contribution dB.x, dB.y
and dB.z with the corresponding phasor current, the phasors of spatial compo-
nents of the magnetic field in the observation points are obtained, the effective
magnetic field is calculated from the square root of the sum of the squared
modules of the phasors components.

The function BiotSavart3D returns three output: the three-dimensional ma-
trix Beff containing the effective value of the magnetic field in each observation
point expressed in [µT ]; and the two structured matrix dl and Q, used only to
verify that source points and their related tangent vector are placed properly.

The following is the Matlab script of the function BiotSavart3D:

Listing 2.3: Three-dimensional Biot-Savart method

%% BIOT -SAVART 3D METHOD

function [Beff ,Q,dl]= BiotSavart3D(q,C,Px,Py,Pz,I)

% muo Ifase

% B(x,y,z) = --- * integral ( ---- dl x Ru )

% 4*pi r^2

%% Data

alfa=I(:,2)*pi /180;

Ifase=I(:,1).*(cos(alfa)+1i*sin(alfa))*0.1;

% the coefficient 0.1 is given by mu *10^6/(4* pi)=0.1

% (mu= 4*pi*10^ -7), thus B results in [microT]

% when I is expressed in [A]

n=length(q) -1; % number of segments along conductors

f=size(C.x,1); % number of conductors
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for i=1:n

% components of vector tangent to each

% segment (n column) of each conductor (f row)

dl.x(:,i)=C.x(:,i+1)-C.x(:,i);

dl.y(:,i)=C.y(:,i+1)-C.y(:,i);

dl.z(:,i)=C.z(:,i+1)-C.z(:,i);

% coordinates of source point Q of each

% segment (n column) of each conductor (f row)

Q.x(:,i)=C.x(:,i)+dl.x(:,i)/2;

Q.y(:,i)=C.y(:,i)+dl.y(:,i)/2;

Q.z(:,i)=C.z(:,i)+dl.z(:,i)/2;

end

%% Calculation

% counters

nx=length(Px); ny=length(Py); nz=length(Pz);

Beff=zeros(nx ,ny ,nz);

for ix=1:nx

% components of vector r from source point Qi to

% calculation point P(ix,iy,iz): R.x/y/z=[f x n]

R.x=Px(ix)-Q.x;

for iy=1:ny

R.y=Py(iy)-Q.y;

for iz=1:nz

R.z=Pz(iz)-Q.z;

r=sqrt(R.x.^2+R.y.^2+R.z.^2); % distance QP

% unit vector u_r

R.xu=R.x./r; R.yu=R.y./r; R.zu=R.z./r;

% dB=dlxR/r^2

dB.x=(dl.y.*R.zu -dl.z.*R.yu)./r.^2;

dB.y=(-dl.x.*R.zu+dl.z.*R.xu)./r.^2;

dB.z=(dl.x.*R.yu -dl.y.*R.xu)./r.^2;

% Ifase .*sum(dB.x,2)=total x-contribution of

each single conductor [f x 1]

% phasor Bx=sum(I.*sum(dB.x,2))=total x-

contribution of all condustors [1 x 1]

% Bx=abs(phasor Bx)=module

% Beff(ix,iy,iz)=sqrt(Bx^2+By^2+Bz^2)

Beff(ix,iy ,iz)=...

sqrt(abs(sum(Ifase .*sum(dB.x,2)))^2+ ...

abs(sum(Ifase.*sum(dB.y,2)))^2+ ...
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abs(sum(Ifase.*sum(dB.z,2)))^2);

end

end

end

end

The function BiotSavart2D that implement the bi-dimensional Biot Savart
formulation use the same logic although much simpler. It require only four
inputs:

1. the same vectors Px, Py as before, with indicated the coordinates of ob-
servation points on the cross-section where is wanted to calculate the mag-
netic field;

2. the structured matrix C, from which only the x and the y coordinates
of the position of conductors on the cross-section at the mid-length are
extracted, for the straight lines all columns are the same, so actually any
plane can be considered;

3. and the matrix I with the effective values of the circulating current on the
first column and the relative phases on the second column.

This time the function calculates phasors of currents as before, but it multiplies
them by 0.2 derived from

µ0

2π
106 =

4π10−7

2π
106 = 0.2

thus the results of magnetic field is expressed with [µT ] when Irms is in [A].
Then, with only two cascading cycles for, it calculate directly the magnetic
components, Bpx and Bpy, in every observation point exercised by each source
points by means of (2.5); the effective magnetic field is calculated from the
square root of the sum of the squared modules of all the contributions and is
saved in the two-dimensional matrix Beff, that is returned as output.

Listing 2.4: Bidimensional Biot-Savart Method

%% BIOT -SAVART 2D

function Beff=BiotSavart2D(Px,Py,C,I)

%% Data

Cx=C.x(:,1); Cy=C.y(:,1); % source points position

alfa=I(:,2)*pi /180;

Ic=I(:,1).*( cos(alfa)+1i*sin(alfa))*0.2;

% the coefficient 0.2 is given by mu *10^6/(2* pi)=0.2

% (mu= 4*pi*10^ -7) thus B results in [microT]

% when I is expressed in [A]

%% Calculation
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nx=length(Px); ny=length(Py); % counters

Beff=zeros(nx ,ny);

for ix=1:nx

for iy=1:ny

% Magnetic components exercised by each source

% points in the point P(ix,iy)

Bpx = Ic.*((Cy -Py(iy))./ ...

((Px(ix)-Cx).^2+(Py(iy)-Cy).^2));

Bpy = Ic.*((Px(ix)-Cx)./ ...

((Px(ix)-Cx).^2+(Py(iy)-Cy).^2));

% Bx=sum(Bpx) = comprehensive phasor component

% abs(Bx) = the module

% Beff=sqrt(Bx^2+By^2)

Beff(ix ,iy)=(sqrt(abs(sum(Bpx))^2 ...

+abs(sum(Bpy))^2));

end

end
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Chapter 3

The magnetic field of an

infinitely long helical line

current

3.1 Pioneering works

Traditionally the Biot-Savart Law is often used in the calculation of the magnetic
fields of differently configured current lines, and among these also the twisted
three-phase line currents, but it requires very long computational time, so there
are other simpler and faster methods that can provide at the same time a good
evaluation of the the magnetic field generated by twisted cables?

Let’s consider an infinitely long helical line current with radius a and pitch
length p, it is centered along z-axis and intersects the plane z = 0 at an angular
position φ0.

Figure 3.1: The helical line current
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The magnetic field generated by this line current can be evaluated consider-
ing the magnetic vector potential:

B⃗ = ∇× A⃗ (3.1)

A⃗ =
µ0I

4π

∫

γ

d⃗l

r
(3.2)

where µ0 = 4π10−7[H/m] is the magnetic permeability in the vacuum, I is the

phasor of the circulating alternating current; the vector element d⃗l represents
infinitesimal stretches of field sources on the line current, with its same direction;
and r is the distance between observation point P and source point Q.

Firstly Buchholz H. derived from (3.2) the following cylindrical components
of the magnetic vector potential:

Aρ(ρ, φ, z) = −µ0I

4π
ak

∫ ∞

−∞

sin(φ0 − φ+ kz
′

)

r
dz

′

Aϕ(ρ, φ, z) =
µ0I

4π
ak

∫ ∞

−∞

cos(φ0 − φ+ kz
′

)

r
dz

′

(3.3)

Az(ρ, φ, z) =
µ0I

4π

∫ ∞

−∞

dz
′

r

where k = 2π/p is a coefficient depending on the pitch length[5].
The distance between the observation point and the variable source point

on the line current can be expressed by the following series expansion:

1

r
=

∞∑

n=0

(2− δ0n)cos(n(φ0 − φ+ kz
′

))

∫ ∞

0

e−|z−z
′

|λJn(ρλ)Jn(ρ
′

λ)dλ (3.4)

where Jn is the n−th order Bessel function of the first kind, δ0n is the Kronecker
symbol, and λ is the variable of the integration. Therefore, by substituting (3.4)
into (3.3) and by means of some trigonometric theorems and Bessel functions’ in-
tegral properties, Hagel R. rewritten the magnetic vector potential components
considering the observation point in the region ρ > a:

Aρ = −µ0I

2π
ak

{
I0(ak)K0(ρk)sin(φ0 − φ+ kz)+

+I1(2ak)K1(2ρk)sin(2(φ0 − φ+ kz))+

+

∞∑

n=2

[
In((n+ 1)ak)Kn((n+ 1)ρk)sin((n+ 1)(φ0 − φ+ kz))+

−In((n− 1)ak)Kn((n− 1)ρk)sin((n− 1)(φ0 − φ+ kz))

]}
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Aϕ =
µ0I

2π
ak

{
a

2ρ
+ I0(ak)K0(ρk)sin(φ0 − φ+ kz)+

+I1(2ak)K1(2ρk)sin(2(φ0 − φ+ kz))+

+

∞∑

n=2

[
In((n+ 1)ak)Kn((n+ 1)ρk)cos((n+ 1)(φ0 − φ+ kz))+

+In((n− 1)ak)Kn((n− 1)ρk)cos((n− 1)(φ0 − φ+ kz))

]}

(3.5)

Az =
µ0I

2π

[∫ ∞

0

J0(aλ)J0(rλ)

λ
dλ+ 2

∞∑

n=1

In(nak)Kn(nρk)cos(n(φ0 − φ+ kz))

]

By applying the curl operation to these last formulations with the use of the re-
currence relations of the modified Bessel functions, in the end Hagel R. obtained
the cylindrical components of the magnetic field as infinite series:

Bρ(ρ, φ, z) = −µ0I

π
ak2

∞∑

n=1

nI
′

n(nka)K
′

n(nkρ)sin(n(φ0 − φ+ kz))

Bϕ(ρ, φ, z) =
µ0I

2πρ
+
µ0I

πρ
ak

∞∑

n=1

nI
′

n(nka)Kn(nkρ)cos(n(φ0 − φ+ kz)) (3.6)

Bz(ρ, φ, z) = −µ0I

π
ak2

∞∑

n=1

nI
′

n(nka)Kn(nkρ)cos(n(φ0 − φ+ kz))

where In and Kn are the modified Bessel functions of first and second kind, I
′

n

and K
′

n their respective first derivative.
It should be pointed out that these components are valid only for the cal-

culation range outside the helix (ρ > a) that is on the interests of the thesis,
but Hagel derived the formulations also for observation points inside the helix
(ρ < a) adopting the same procedure[7].

3.2 Three infinitely long twisted helices

The Hagel’s formulations describes the magnetic field generated only by one
conductor under helix form, it cannot be applied to the three-phase system,
since the superposition of effects is not valid due to the impossibility to consider
current phasors disposition on an infinite path. However the alternating currents
circulating in the twisted tripolar cable can be expressed as a function of the
time:

Ii =
√
2I sin(ωt+ ψi) =

√
2I sin

(
ωt+ (i− 1)

2π

3

)
(3.7)

with I the effective value of the currents, ω the angular frequency and ψi the
phase angle of the current in the i-th conductor (i = 1,2,3). The helices are
considered to intersect the plane z = 0 at angular positions

φ0i = (i− 1)
2π

3
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By replacing (3.7) to the current phasors in (4.1), the sum of the three
currents contributions can be obtained with few mathematical steps:

Bρ = −µ0

√
2I

π
ak2

∞∑

n=1

3∑

i=1

nI
′

n(nka)K
′

n(nkρ)sin(ωt+ ψi)sin(n(φ0i − φ+ kz))

Bϕ =
µ0

√
2I

2πρ

3∑

i=1

sin(ωt+ ψi)+

+
µ0

√
2I

πρ
ak

∞∑

n=1

3∑

i=1

nI
′

n(nka)Kn(nkρ)sin(ωt+ ψi)cos(n(φ0i − φ+ kz))

Bz = −µ0

√
2I

π
ak2

∞∑

n=1

3∑

i=1

nI
′

n(nka)Kn(nkρ)sin(ωt+ ψi)cos(n(φ0i − φ+ kz))

where
3∑

i=1

sin(ωt+ ψi)sin(n(φ− φ0i − kz)) = ∓3

2
cos(ωt± nΦ) (3.8)

3∑

i=1

sin(ωt+ ψi)cos(n(φ− φ0i − kz)) =
3

2
sin(ωt± nΦ) (3.9)

3∑

i=1

sin(ωt+ ψi) = 0 (3.10)

with Φ = φ− kz. It have to be pointed out that the summation (4.4) and (3.9)
are zero for n = 3, 6, 9... and not null for all the remain value of n; furthermore,
the lower sign applies for n = 1, 4, 7 . . . and the upper for n = 2, 5, 8 . . . .

Thus the total effective value of the magnetic field components generated by
an infinitely long twisted tripolar cable at observation distances ρ > a are the
following:

Bρ(ρ, φ, z) =
3µ0I

2π
ak2

[
∞∑

n=1

∞∑

m=1

(∓n)(∓m)I
′

n(nka)I
′

m(mka)·

·K
′

n(nkρ)K
′

m(mkρ)cos((±n∓m)Φ)

]1/2

Bϕ(ρ, φ, z) =
3µ0I

2πρ
ak

[
∞∑

n=1

∞∑

m=1

nmI
′

n(nka)I
′

m(mka)Kn(nkρ)·
·Km(mkρ)cos((±n∓m)Φ)

]1/2
(3.11)

Bz(ρ, φ, z) =
3µ0I

2π
ak2

[
∞∑

n=1

∞∑

m=1

nmI
′

n(nka)I
′

m(mka)Kn(nkρ)·
·Km(mkρ)cos((±n∓m)Φ)

]1/2

then the magnetic field is [5]

B(ρ, φ, z) =
√
B2

ρ +B2
ϕ +B2

z (3.12)
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These formulations are not simpler than the Biot-Savart integral, on the
contrary they are more hard to comprehend conceptually, principally due to
the presence of the modified Bessel function of the first Iν(z) and the second
kind Kν(z), but Matlab provide functions that compute directly the results
for established argument z and order ν, also their first derivative can be easily
calculated by means of the recurrence relations

I
′

ν(z) = Iν−1(z)−
ν

z
Iν(z) (3.13)

K
′

ν(z) = −Kν−1(z)−
ν

z
Kν(z)

thus it is not difficult to implement the programming codes.
Furthermore, the method do not have to compute vector distances or cross

products for hundreds or even thousands source points as the Biot-Savart Law,
but only dozens orders of the Bessel functions, so the required computational
time is reduced a lot. Indeed the functions I

′

n(nka), K
′

n(nkρ) and Kn(nkρ) get
to zero quickly with the increase of orders so that the contribution of higher
orders can be neglected, in particular it can be observed that: I

′

n(nka) is higher
with the increasing of the helices radius a and the decreasing of pitch length p,
it diverges to infinity for the two cases with p = 0.8m, a = 0.09m and a = 0.1m
[figure 3.2]; instead K

′

n(nkρ) in absolute values and Kn(nkρ) are rising for the
increase of p and the decrease of the radial distances r, they are divergent for
the case with p = 2m and r = 0.2m [figures 3.3 and 3.4]; these functions are
compensating each other, because when I

′

n(nka) divergesK
′

n(nkρ) andKn(nkρ)
drop to zero immediately and so on the contrary.

The two extreme cases of the divergence are analysed, with a relative error
tolerance set to 10−4% between the magnetic field values calculated by con-
sidering consecutive orders n of Bessel functions for the summations, it results
that in the case with p = 0.8m and a = 0.1m the method converges for n = 13,
while in the case of p = 2m and a = 0.1m the convergence order is equal to
n = 19, even if the maximum error presented at order 13 is already very small
(equal to 0.004µT ) and the contributions provided by higher orders could be
neglected. By making some tests it result that for all other cases the method
converge for order around n = 13, therefore a cautionary value for the order of
Bessel functions set to n = 50 is more than enough for the convergence.

The drawback is that the series of the modified Bessel functions cannot
provide a correct estimation of the magnetic field, the absolute error can reach
order of magnitude of 101µT in the vicinity of the cable and it is approximately
10−1µT for radial distances above 3m, where also the magnetic field is almost
null; the errors are minor with the decreasing of the helices radius a and the
increasing pitch length p, in other word the lower is the magnetic field and the
straighter are the cables the less is the error, as the trends of I

′

n(nka). Anyway
the formulations (3.11) can be adopted only for a fast estimation for an initial
feasibility study.
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Figure 3.2: I
′

n(nka) as a function of the order n with p = 0.8m

Figure 3.3: K
′

n(nkρ) as a function of the order n with p = 2m
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Figure 3.4: Kn(nkρ) as a function of the order n with p = 2m

Figure 3.5: the magnetic field at varying orders of Bessel functions
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Figure 3.6: The series formulation compared to the Biot-Savart Law
In this case the magnetic field reaches the legislation limits of 3µT at around 0.7m, while in
the reality it is at distances twice higher (about 1.5m), therefore a few of additional meters

should be reserved in the feasibility study in order to be precautionary.

3.3 Matlab codes

The formulations (3.11) are not implemented as a Matlab function, since in
literature are often used its approximations, which will be treated in the next
chapters. The script requires only few set data:

1. geometrical parameters describing the helices: the radius a and the pitch
length p;

2. parameters indicating the calculation range: the z-coordinate of the con-
sidering cross-section, the radial distances r and the angular position θ;

3. about the three-phase currents only the effective value Irms is necessary,
instead the currents configuration (phase angle and the angular position
on the plane z=0) is not needed.

From these data are derived input arguments and parameters for the calcula-
tion of the Bessel functions and the magnetic field; for the first, Matlab func-
tions besseli(n, nka) and besselk(n, nkr), which calculate results of In(nka) and
Kn(nkr), are used together with the recurrence relations (3.13) into a cycle for;
while for the last, each single summands of the double summation in (3.11) is

35



calculated with two cascading cycles for by considering only three cases instead
of five since cos(α) = cos(−α):

1. both lower sign or both upper sign for indices n and m;

2. one index with lower sign and the other with the upper sign;

3. indices equal to 3 and its multiples.

Then, the effective value of the magnetic field components and the total mag-
netic field is calculated using (3.11) and (3.12).

Listing 3.1: Series formulation (cylindrical coordinates)

% Data

a=0.1; p=0.8;

z=0; theta =0; r=0.2:0.01:5; % [m]

Irms =200; % [A]

% Data for modified Bessel functions

k=2*pi/p; eta=k*a; g=k*r;

N=50; % order of Bessel functions

% indices for lower/upper sign and zero values

low =1:3:N; up =2:3:N; zero =3:3:N;

% Data for the magnetic field

phi=theta -k*z;

muo =4*pi*1e-7*1e6; % Beff expressed in [microT]

Br=zeros(1,length(r));

Bt=zeros(1,length(r));

Bz=zeros(1,length(r));

Btot=zeros(1,length(r));

% Bessel functions calculation

dIn=zeros(N,1);

Kn=zeros(N,length(r)); dKn=zeros(N,length(r));

for i=1:N

dIn(i)=besseli(i-1,i*eta)-besseli(i,i*eta)/eta;

Kn(i,:)=besselk(i,i*g);

dKn(i,:)=-besselk(i-1,i*g)-Kn(i,:)./g;

end

% The magnetic field calculation

for j=1: length(r)

% summands of the series

Brn=zeros(N,N); Btn=zeros(N,N); Bzn=zeros(N,N);

for n=1:N

for m=1:N
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if (any(low==n) && any(low==m)) ||

(any(up==n) && any(up==m))

Brn(n,m)=n*m*dIn(n)*dIn(m)*dKn(n,j)*

dKn(m,j)*cos((-n+m)*phi);

Btn(n,m)=n*m*dIn(n)*dIn(m)*Kn(n,j)*

Kn(m,j)*cos((-n+m)*phi);

Bzn(n,m)=n*m*dIn(n)*dIn(m)*Kn(n,j)*

Kn(m,j)*cos((-n+m)*phi);

end

if (any(low==n) && any(up==m)) ||

(any(up==n) && any(low==m))

Brn(n,m)=-n*m*dIn(n)*dIn(m)*dKn(n,j)*

dKn(m,j)*cos((-n-m)*phi);

Btn(n,m)=n*m*dIn(n)*dIn(m)*Kn(n,j)*

Kn(m,j)*cos((-n-m)*phi);

Bzn(n,m)=n*m*dIn(n)*dIn(m)*Kn(n,j)*

Kn(m,j)*cos((-n-m)*phi);

end

if any(zero==n) && any(zero==m)

Brn(n,m)=0; Btn(n,m)=0; Bzn(n,m)=0;

end

end

end

% the magnetic field components

Br(j)=3* muo*Irms*a*k^2/(2* pi)*sqrt(sum(sum(Brn)));

Bt(j)=3* muo*Irms*a*k/(2*pi*r(j))*

sqrt(sum(sum(Btn)));

Bz(j)=3* muo*Irms*a*k^2/(2* pi)*sqrt(sum(sum(Bzn)));

end

% the total magnetic field

Btot=sqrt(Br.^2+Bt.^2+Bz.^2);
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Chapter 4

Pettersson

4.1 Hagel’s formulation simplification

An infinitely long helical line current with phasor I, radius a and pitch p gener-
ates at its outside (r > a) a magnetic field with the following radial, azimuthal
and axial components (cylindrical coordinates):

Br(r, φ, z) = −µ0I

π
ak2

∞∑

n=1

nI
′

n(nka)K
′

n(nkr)sin(n(φ0 − φ+ kz))

Bϕ(r, φ, z) =
µ0I

2πr
+
µ0I

πr
ak

∞∑

n=1

nI
′

n(nka)Kn(nkr)cos(n(φ0 − φ+ kz)) (4.1)

Bz(r, φ, z) = −µ0I

π
ak2

∞∑

n=1

nI
′

n(nka)Kn(nkr)cos(n(φ0 − φ+ kz))

where k = 2π/p; In and Kn are the modified Bessel functions of first and second
kind, I

′

n and K
′

n their respective first derivative; and φ0 is the angular position
of the intersection point between the helix and the plane z = 0[5].

By neglecting the single term of Bϕ it results Bz = −krBϕ, this means that
the field component in the φz-plane is perpendicular to an imaginary helix of
pitch p passing through the observation point, then considering the natural coor-
dinates with the tangential Bs, the binormal Bb and the normal Bn components
defined as follow

Bs = Bz sinΨ +Bϕ cosΨ

Bb = Bz cosΨ−Bϕ sinΨ (4.2)

Bn = −Br

where Ψ = arctan(kr) is the pitch angle of the imaginary helix, the magnetic
field is described by only two components, the radial and the binormal ones,
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since the tangential component is null

Br = −µ0I

π
ak2

∞∑

n=1

nI
′

n(nka)K
′

n(nkr)sin(n(φ0 − φ+ kz)) (4.3)

Bb = −µ0I

πr
ak
√

1 + (kr)2
∞∑

n=1

nI
′

n(nka)Kn(nkr)cos(n(φ0 − φ+ kz))

where the cylindrical coordinates are retained for the radial field component
and the observation points.

For the three-phase configuration, the i-th line current intersects the plane
z = 0 at angular position φ0i and the correspondent i-th circulating current Ii
is expressed with time dependent formulations, where i = 1, 2, 3

φ0i = (i− 1)
2π

3
Ii =

√
2I sin(ωt+ ψi) =

√
2I sin

(
ωt+ (i− 1)

2π

3

)

By considering the expressions below derived from the trigonometric properties

3∑

i=1

sin(ωt+ ψi)sin(n(φ− φ0i − kz)) = ∓3

2
cos(ωt± nΦ) (4.4)

3∑

i=1

sin(ωt+ ψi)cos(n(φ− φ0i − kz)) =
3

2
sin(ωt± nΦ)

the magnetic field components as the sum of contributions from the three cur-
rents are as a function of the time

Br =
3µ0

√
2I

2π
ak2

∞∑

n=1

(∓n)I
′

n(nka)K
′

n(nkr)cos(ωt± nΦ) (4.5)

Bb = −3µ0

√
2I

2πr
ak
√

1 + (kr)2
∞∑

n=1

nI
′

n(nka)Kn(nkr)sin(ωt± nΦ)

where Φ = φ − kz. It is recalled that the summations range over all positive
integers except n = 3, 6, 9 . . . and the lower sign applies for n = 1, 4, 7 . . . while
the upper for n = 2, 5, 8 . . . .

The effective values of the two components and the total magnetic field result
[6]

Br =
3µ0I

2π
ak2

[
∞∑

n=1

∞∑

m=1

(∓n)(∓m)I
′

n(nka)I
′

m(mka)·

·K
′

n(nkr)K
′

m(mkr)cos((±n∓m)Φ)

]1/2

Bb =
3µ0I

2πr
ak
√
1 + (kr)2

[
∞∑

n=1

∞∑

m=1

nmI
′

n(nka)I
′

m(mka)Kn(nkr)·
·Km(mkr)cos((±n∓m)Φ)

]1/2
(4.6)
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Figure 4.1: Comparison between the natural and the cylindrical formulations

B =
√
B2

r +B2

b

The formulation in the natural coordinates is analogous to the one in the
cylindrical coordinates, they provide the same results and all the considerations
made for the three-phase version of the Hagel’s formulation in the previous chap-
ter are valid also for (4.6), therefore these latest formulations is more advanta-
geous, because it speeds up computational time while maintaining the results,
since it nullifies one component and reduces the calculation to two dimension
just rotating the reference axes.

4.2 Series expansions reduction

In the previous chapter were shown graphs of the functions I
′

n(nka), K
′

n(nkr)
andKn(nkr), it can can be summarized that their values are higher at low terms
and drop to zero quickly with the increase of order n (except three borderline
cases), in particular when the cable has a loose twist configuration so that the
helices radius is much smaller than the pitch length a << p, and the observation
point is taken at far distances much greater than the pitch length r >> p,
the first terms are so dominant that all the subsequent addends of the series
expansions could be neglected, therefore the formulations (4.6) become

Br1 =
3µ0I

2π
ak2I ′

1
(ka)K ′

1
(kr) (4.7)
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Bb1 =
3µ0I

2πr
ak
√
1 + (kr)2I ′

1
(ka)K1(kr)

and as result the effective total field value can be quite simplified [6]

B1 =
√
B2

r +B2

b =
3µ0I

2π
ak2I ′

1
(ka)

[
K ′2

1
(kr) +

1 + (kr)2

(kr)2
K2

1
(kr)

]1/2
(4.8)

But it have to be evaluated the range of the ratios a/p and r/p within
which the terms of higher orders could be actually neglected and the results of
the reduced series considered still valid. The formulations (4.6) is implemented
with Bessel orders equal to N = 50 in comparison with (4.8); and the considered
values for parameters are a = 0.01÷0.1m, p = 0.8, 1.2, 1.6, 2m and r = 0.2÷5m.
In the table 4.1 are listed the minimum value of a above which the effective total
field B1(r, b) obtained from (4.8) presents relative errors higher than 1% respect
to B50(r, b) obtained from (4.6), it can be noted that generally the errors rise
for higher a and lower r with fixed p, in particular for a/p > 0.1 and r/p < 0.25;
good field estimation is provided for a < 0.1p and r > 0.3m for p = 0.8 ÷ 2m,
but if lower r/p is wanted to be considered the limits for a/p have to be lowered
too; for the radial distances of practical interests the reduced series presents the
same results as the complete formulation.

Table 4.1: Borderline cases of the reduced series with relative errors above 1%
r = 0.2m r = 0.3m

p [m] r/p amin [m] amin/p r/p amin [m] amin/p
0.8 0.25 0.08 0.1 0.375 / /
1.2 0.1667 0.06 0.05 0.25 / /
1.6 0.125 0.06 0.0375 0.1875 0.1 0.0625
2 0.1 0.05 0.025 0.15 0.09 0.045

4.3 Further approximations

Since (4.8) contains still three Bessel functions, Pettersson made further sim-
plifications by considering the small argument approximation for the modified
Bessel function of the first kind and the large argument approximation for the
second kind

I ′
1
(ka) ≈ 1

2
for

a

p
<< 1 (loose twist) (4.9)

K1(kr) ≈ −K ′
1
(kr) ≈

√
π

2kr
e−kr for

r

p
>> 1 (far distances)

so the final formulation he obtained is

B1 ≈ 3

4

µ0Iak
2

π

√
π

2kr
e−kr

√
1 + 2(kr)2

(kr)2
≈ 3

4

µ0Iak
2

√
π

e−kr

√
kr

(4.10)
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Figure 4.2: Comparison between B1(r, b) and B50(r, b) at fixed p = 2m
At r = 0.2m the error rise from 1% at a = 0.05m up to 15.16% at a = 0.1m, which is the
highest error among all the considered cases, but it is principally due to the low r/p = 0.1
since a/p = 0.025÷ 0.05 < 0.1; at r = 0.3m with a = 0.1m the error is reduced to 2.38%;
above 0.4m errors are all under 1% and the reduced series could represents a nice simple

method for the magnetic field estimation.

where the second term under the square root could be approximated to
√
2,

since kr = 2πr/p >> 1[6].
As previously done for the reduced series, the same evaluation on the valida-

tion range of the ratios a/p and r/p is made. It results that there are borderline
cases with p = 0.8m and a = 0.07 ÷ 0.1m that present relative errors always
higher than 10% respect to B50(r, b), because the Pettersson’s formulation runs
to zero at lower radial distances due to the approximations, therefore the maxi-
mum admissible relative error is set to 10%. From the table 4.2, where are listed
the limiting value of a for p = 0.8, 1.2, 1.6, 2m and r = 0.2, 1, 5m, it results that
the errors are higher than 10% for a/p > 0.0875 and r/p < 6.25.

4.4 Matlab codes

For briefness of the codes some parameters are introduced:

B0 =
µ0Ia

πr2
η = ka =

2πa

p
γ = kr =

2πr

p
(4.11)

Therefore the formulations (4.6), (4.8) and (4.10) are rewritten as follows:
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Table 4.2: Pettersson’s borderline cases with relative errors above 10%
r = 0.2m r = 1m r = 5m

p r/p amin amin/p r/p amin amin/p r/p amin amin/p
[m] [m] [m] [m]
0.8 0.25 0.01 0.0125 1.25 0.04 0.05 6.25 0.07 0.0875
1.2 0.1667 0.01 0.0083 0.8333 0.01 0.0083 4.1667 0.09 0.075
1.6 0.125 0.01 0.0063 0.625 0.01 0.0063 3.125 / /
2 0.1 0.01 0.005 0.5 0.01 0.005 2.5 / /

Figure 4.3: Comparison between Pettersson and B50(r, b) at fixed p = 2m
At r = 0.2m there are the highest errors that ranges from 66% (a = 0.01m) up to 72%
(a = 0.1m), principally due to the low r/p = 0.1 since a/p = 0.005÷ 0.05 < 0.0875; at

r = 1m the errors are still around 20%; the errors result minor than 10% only for r > 3m.

• the two-dimensional series formulation

Br =
3

2
B0γ

2

[
∞∑

n=1

∞∑

m=1

(∓n)(∓m)I
′

n(nη)I
′

m(mη)·

·K
′

n(nγ)K
′

m(mγ)cos((±n∓m)Φ)

]1/2

Bb =
3

2
B0γ

√
1 + γ2

[
∞∑

n=1

∞∑

m=1

nmI
′

n(nη)I
′

m(mη)Kn(nγ)·
·Km(mγ)cos((±n∓m)Φ)

]1/2
(4.12)

B =
√
B2

r +B2

b

• the series reduced to order N=1

B1 =
3

2
B0γ

2I ′
1
(η)

[
K ′2

1
(γ) +

1 + γ2

γ2
K2

1
(γ)

]1/2
(4.13)
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Figure 4.4: Comparison between Pettersson and B50(r, b) at fixed p = 0.8m
In this case the errors at r = 0.2m are lower (36÷ 52%), because the ratio r/p = 0.25 is

higher respect to p = 2m, but at r = 1m the errors are still around 20% for a = 0.06÷ 0.1m,
because the ratio a/p is closer or even higher respect to the limit of 0.0875.

• the Pettersson’s formulation

B1 ≈
√
π

2
γ3/2e−γ · 3

4

√
2B0 = F · 3

4

√
2B0 (4.14)

The two-dimensional series formulation is codified as a function called Bessel3F,
because it is taken as reference for the other two simplified methods and also for
the Landini’s formulation which will be exposed in the next chapter. It requires
six inputs:

1. the helices geometrical parameters: the radius a and the pitch length p;

2. the calculation area: described by the radial distances r and the angular
position Φ = θ − kz;

3. the order of the Bessel functions N , which coincides with the upper bound
of the summations;

4. the effective value of the balanced three-phase currents I.

It calculate with the variation of a and p the effective values of the magnetic
field and its two components for all the considered radial distances and saves
the results in three three-dimensional matrices. The calculation steps follow the
same logic implemented with the three-phase version of the Hagel’s formulation
explained in the previous chapter.
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Listing 4.1: Series formulation (natural coordinates)

function [B]= Bessel3F(a,p,r,N,phi ,I)

% Data

muo =4*pi*1e-7*1e6; % Beff expressed in [microT]

k=2*pi./p;

eta=zeros(length(a),length(p));

Bo=zeros(length(a),length(r));

for i=1: length(a)

eta(i,:)=k*a(i);

Bo(i,:)=muo*I*a(i)./(pi*r.^2);

end

gamma=zeros(length(p),length(r));

for i=1: length(p)

gamma(i,:)=k(i)*r;

end

% Calculation

B=zeros(length(a),length(r),length(p));

Br=zeros(length(a),length(r),length(p));

Bb=zeros(length(a),length(r),length(p));

% indices for lower / upper sign and zero values

down =1:3:N; up =2:3:N; zero =3:3:N;

for ia=1: length(a)

for ip=1: length(p)

dIn=zeros(N,1);

Kn=zeros(N,length(r)); dKn=zeros(N,length(r));

for i=1:N

dIn(i)=besseli(i-1,i*eta(ia ,ip))-

besseli(i,i*eta(ia ,ip))/eta(ia ,ip);

Kn(i,:)=besselk(i,i*gamma(ip ,:));

dKn(i,:)=-besselk(i-1,i*gamma(ip ,:))-

Kn(i,:)./ gamma(ip ,:);

end

for ir=1: length(r)

Brn=zeros(N,N); Bbn=zeros(N,N);

for n=1:N

for m=1:N

if (any(down (:)==n) && any(down (:)==m)) ||

(any(up(:)==n) && any(up(:)==m))

Brn(n,m)=n*m*dIn(n)*dIn(m)*dKn(n,ir)*

dKn(m,ir)*cos((-n+m)*phi);

Bbn(n,m)=n*m*dIn(n)*dIn(m)*Kn(n,ir)*

Kn(m,ir)*cos((-n+m)*phi);

45



end

if (any(down (:)==n) && any(up(:)==m)) ||

(any(up(:)==n) && any(down (:)==m))

Brn(n,m)=-n*m*dIn(n)*dIn(m)*dKn(n,ir)*

dKn(m,ir)*cos((-n-m)*phi);

Bbn(n,m)=n*m*dIn(n)*dIn(m)*Kn(n,ir)*

Kn(m,ir)*cos((-n-m)*phi);

end

if any(zero==n) && any(zero==m)

Brn(n,m)=0; Bbn(n,m)=0;

end

end

end

Br(ia ,ir ,ip)=3/2*Bo(ia ,ir)*gamma(ip ,ir)^2*

sqrt(sum(sum(Brn)));

Bb(ia ,ir ,ip)=3/2*Bo(ia ,ir)*gamma(ip ,ir)*

sqrt (1+ gamma(ip,ir)^2)*

sqrt(sum(sum(Bbn)));

end

end

end

B=sqrt(Br.^2+Bb.^2);

end

The reduced series and the Pettersson’s formulations require the same pa-
rameters and save the effective field values in three-dimensional matrices just
as the function Bessel3F.

Listing 4.2: Pettersson’s approximation

%% Data

muo =4*pi*1e-7*1e6; % Beff expressed in [microT]

I=200; % rms value [A]

a=0.01:0.01:0.1;

p=0.8;

r=0.2:0.01:1;

z=0; theta =0;

k=2*pi./p; phi=theta -kz;

eta=zeros(length(a),length(p));

Bo=zeros(length(a),length(r));

for i=1: length(a)

eta(i,:)=k*a(i);

Bo(i,:)=muo*I*a(i)./(pi*r.^2);

end

g=zeros(length(p),length(r));
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for i=1: length(p)

g(i,:)=k(i)*r;

end

%% Bessel order 1

% hp a<<p & r>>p -> neglect all higher orders

B1=zeros(length(a),length(r),length(p));

for ia=1: length(a)

for ip=1: length(p)

I1=besseli(1,eta(ia ,ip));

K1=besselk(1,g(ip ,:));

dI1=besseli(0,eta(ia ,ip))-I1/eta(ia ,ip);

dK1=-besselk(0,g(ip ,:))-K1./g(ip ,:);

B1(ia ,:,ip)=3/2* Bo(ia ,:).*g(ip ,:) .^2* dI1.*

sqrt(dK1 .^2+(1+g(ip ,:) .^2)./g(ip ,:) .^2.*K1.^2);

end

end

%% Pettersson 's approximations

Bpett=zeros(length(a),length(r),length(p));

for ia=1: length(a)

for ip=1: length(p)

F=sqrt(pi/2).*g(ip ,:) .^(3/2) .*exp(-g(ip ,:));

Bpett(ia ,:,ip)=F*3/4* sqrt (2).*Bo(ia ,:);

end

end
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Chapter 5

Landini

5.1 Landini’s parametric equation

As mentioned in the previous chapters the Biot-Savart Law provide a correct
estimation of the magnetic field generated by a finite twisted tripolar cable, but
it takes too long computational time; the series formulation that considers three
infinitely long helical line currents contains modified Bessel functions and their
derivatives, that make its application difficult although the calculation speed
is reduced; the simplified formulations proposed by Pettersson, that consist in
keeping only the first order of the Bessel functions as an approximation for the
whole series, give good estimations only for far distances and loose twist, oth-
erwise the errors respect the infinite series are very high. Therefore Landini
thought to carry out a heuristic parametric analysis based on the approxima-
tion to the first two terms for the infinite series, because he deducted from a
convergence analysis that for distances greater than 1m the two-terms solution
constitute a very good approximation that always overestimates the series.

The series formulation is re-elaborated by replacing the whole square root
with a function A2

A2 =

[ 2
∑

n=1

2
∑

m=1

nmI
′

n(nka)I
′

m(mka)

(

(∓1)(∓1)K
′

n(nkr)K
′

m(mkr)+

+
1 + (kr)2

(kr)2
Kn(nkr)Km(mkr)

)

cos((±n∓m)Φ)

]1/2
(5.1)

B ≈ B2 =
3µ0I

2π
ak2A2 =

3(4π10−7)Ia

2π

(

2π

p

)2

A2 · 10
−6 = 2.4π2

a

p2
I ·A2 (5.2)

where B2 is multiplied for 10−6 so that it directly results in [µT ]. It can be
observed that only the function A2 determines the dependence of the magnetic
field on the radial distance r; and by representing the graph of the field B2 as
a function of r on a semi-logarithmic scale, it can be noted that it is almost all
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linear with a slight hyperbolic deviation at small values of r, thus the logarithm
of the function A2 can be approximated with an equation of a line at which it
is added a hyperbolic term that quickly goes to zero for the increasing of r:

ln(A2) = a0 + a1r +
a2
ra3

(5.3)

Figure 5.1: Example case of 2-terms series compared to 50-terms series
B2 almost coincides with B50 along r, it presents small overestimation only in the close
proximity of the twisted cable (that is advantageous); moreover the magnetic field is

principally linear with a curvature at low distances.

The parametric equation for the magnetic field results

ln(B) ≈ ln(B2) = ln

(

2.4π2
a

p2
IA2

)

= ln(G) + ln(I) + a0 + a1r +
a2
ra3

(5.4)

where the field is still directly proportional to the current I, the dependence on
r is approximated by A2 and the dependence on the geometrical characteristics
(radius a and pitch p) is expressed clearly by the constant G = 2.4π2a/p2 and
roughly by the parameters a0, a1, a2 and a3 of the function A2.

To calculate the parameters, Landini considered essential to determine with
precision the values of the a0 and a1 that govern the linear part, which con-
cerns the calculation range of more practical interest for the human exposure.
Secondarily the calculation of a2 and a3 is made by attempt to minimise the
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overall error, after some tests it is established to maintain constant a2 = 0.1,
while a3 is calculated by considering the linearity from r = 1.2m to 2m, so that
the errors are minimized favouring at the same time the overestimation (anyway
not higher than10%).

The results obtained are ordered in lookup tables as a functions of the helix
radius a = 0.01 ÷ 0.1m and the pitch length p = 0.8 ÷ 2; as the second step
polynomial expressions are derived to approximate the dependence of the pa-
rameters on a and p, in particular it is find that a0 is a second-degree function
of both a and p, a1 is a third-degree function of p and is not dependent on a,
a3 is a linear function of both a and p:

a0(a, p) =
[

12.8712a2 + 0.2107a− 0.1383
]

p2+

+
[

−48.4318a2 − 0.6919a+ 0.9094
]

p+

+
[

49.6932a2 + 0.5724a− 1.3991
]

(5.5)

a1 = 2.1018p3 − 11.6186p2 + 23.2879p− 20.4446 (5.6)

a3 = (0.2739a+ 0.2430)p+ 0.1036a+ 1.4444 (5.7)

The Landini’s parametric formulation (5.4) is implemented with the poly-
nomial functions (5.5÷5.7) and examples of results are shown in figures 5.2 and
5.3. Actually for r above 0.8m it provides good estimation of the magnetic
field without excessive overestimation and the errors are always lower than the
Pettersson’s approximation; but for radial distances minor than 0.4m the errors
could reach at a maximum of around 65% with a = 0.1m at r = 0.2m, anyway
it is still lower respect to those presented by Pettersson that is equal to 70%;
instead for distances between 0.3 ÷ 0.8m the field is underestimated, however
the errors are really small and perfectly admissible. This considerations are
valid for all other values of p = 0.8 ÷ 2m, the only difference is that the errors
are generally reduced with the decreasing of p, in particular the maximum error
presented for p = 0.8m is equal to 40% (with a = 0.1m at r = 0.2m), against
the 50% of the Pettersson’s approximation.

It can be said that even if the parametric formulation has a more complex
expression than the Pettersson’s one, it is nevertheless considerably simplified
with respect to the series expansions, since it is composed by polynomials with
at most 3 degree, instead of the complex Bessel functions and their derivatives.
Anyway its greater complexity compared to the Pettersson’s formulation is jus-
tified by its better performance on the magnetic field evaluation[1].
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Figure 5.2: Example case: p = 2m a = 0.1m

Figure 5.3: Example case: p = 0.8m a = 0.1m
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5.2 Landini’s method applied on Biot-Savart

Since the series expansion present not negligible errors respect to the Biot-Savart
integral, it is decided to adopt the same heuristic method based on the results
of the three-dimensional Biot-Savart formulation by means of the Matlab Curve
Fitter application.

The graphs on the semi-logarithmic scale of the magnetic field obtained
with the Biot-Savart Law are still meanly linear with smalls deviations near
to the twisted cable, but it goes to zero slowly, not as the Bessel functions
series that drop quickly to zero, so the linear part present a minor slope; also,
the hyperbolic part present a greater curvature with a steeper increase at low
distances. Therefore one degree is added to the numerator of the hyperbolic
equation and one quadratic term is added to the linear equation in order to
enlarge the curved part

Anew = a0 + a1r + a2r
2 +

a3 + a4r

ra5

(5.8)

ln(Bnew) = ln

(

2.4π2
a

p2

)

+ ln(I) +Anew (5.9)

where it results from testing that for a3 = 40 the magnetic field curves are well
fitted, while all other parameters are dependent on a and p (the obtained lookup
tables are in the appendices of this chapter).

Figure 5.4: Example case of 2-terms series compared to Biot-Savart Law
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Figure 5.5: Bnew compared to Biot-Savart with p = 2m a = 0.01÷ 0.1m
The blue solid lines are the Biot-Savart results and the yellow dashed lines are the results of

the parametric equation Bnew, which are perfectly stacked on the blue lines.

Figure 5.6: Bnew compared to Biot-Savart with p = 2m a = 0.01÷ 0.1m
At very close distances (r = 0.2÷ 0.4m), the parametric equation underestimate a little bit

the field, but the errors are very small (around 3%)
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Figure 5.7: Bnew compared to Biot-Savart with p = 2m a = 0.01÷ 0.1m

It should be stressed out that the parametric equation (5.9) with the tabu-
lated parameters in the appendices works only until r = 5m, outside this range
of the distances the curves diverge due to those added terms. The field is overes-
timated for the cases with a = 0.08÷0.1m, but for lower a it is underestimated,
although at r = 5m the field is of the order of magnitude around 10−1µT , so the
uncertainty presents on the second decimal place and beyond, thus the absolute
error is very small.

Once obtained the exact values of the parameters, these have to be expressed
as functions of the helix radius a and the pitch p, By observing the graphics of
the parameters separately for varying of a and p, the relationship between them
can be deduced, then an approximated polynomial equation can be obtained by
means of the Matlab Curve Fitter application. It is thought to not exceed the
polynomials over 3 degrees in order to avoid too long and complex formulations.

5.2.1 The parameter a0

The parameter a0 is a two-degree function of both the helix radius a and the
pitch p, therefore it could be approximated as

a0 ≈ c00 + c10 · p+ c01 · a+ c20 · p
2 + c11 · pa+ c02 · a

2 (5.10)

where the coefficients are automatically calculated by Matlab obtaining

a0 ≈ −47.85 + 4.301p+ 2.21a− 0.8089p2 + 1.17pa− 143.7a2 (5.11)
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Figure 5.8: The parameter a0 as a function of p

Figure 5.9: The parameter a0 as a function of a
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Figure 5.10: The parameter a0 and its approximation as a function of p

Figure 5.11: The parameter a0 and its approximation as a function of a
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5.2.2 The parameter a1

The parameter a1 has a quadratic dependence on both the helix radius a and
the pitch p as well

a1 ≈ −34.35 + 32.2p+ 41.63a− 7.11p2 − 23.54pa− 1013a2 (5.12)

Figure 5.12: The parameter a1 as a function of p

Figure 5.13: The parameter a1 as a function of a
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Figure 5.14: The parameter a1 and its approximation as a function of p

Figure 5.15: The parameter a1 and its approximation as a function of a
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5.2.3 The parameter a2

Also the parameter a2 could be considered as a two-degree function of both the
helix radius a and the pitch p

a2 ≈ 0.1719− 0.2132p− 0.1793a+ 0.05702p2 − 0.07299pa+ 9.837a2 (5.13)

Figure 5.16: The parameter a2 as a function of p

Figure 5.17: The parameter a2 as a function of a
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It can be noticed that the (5.13) does not approximate very properly the
exact values of a2, indeed higher polynomial degree have to be considered to
reduce the errors, but it is shown later that the final results are still good enough,
so it is not necessary to further complicate the formulation.

Figure 5.18: The parameter a2 and its approximation as a function of p

Figure 5.19: The parameter a2 and its approximation as a function of a
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5.2.4 The parameter a4

As the previous parameters, a4 has a quadratic dependence on both a and p

a4 ≈ 35.14− 32.82p− 43.74a+ 7.188p2 + 22.44pa+ 1147a2 (5.14)

Figure 5.20: The parameter a4 as a function of p

Figure 5.21: The parameter a4 as a function of a
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Figure 5.22: The parameter a4 and its approximation as a function of p

Figure 5.23: The parameter a4 and its approximation as a function of a
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5.2.5 The parameter a5

The parameter a5 has a cubical dependence on p and a quadratic on a

a5 ≈ 0.05075 + 0.004659p− 0.03289a− 0.007306p2 − 0.01004pa+

+ 1.635a2 + 0.00195p3 + 0.00222p2a− 0.02515pa2
(5.15)

Figure 5.24: The parameter a5 as a function of p

Figure 5.25: The parameter a5 as a function of a
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Figure 5.26: The parameter a5 and its approximation as a function of p

Figure 5.27: The parameter a5 and its approximation as a function of a
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The results obtained by substituting the approximate polynomial equations
(5.11÷5.15) in the equation of the field (5.9) are not bad: generally the results
coincides or even overestimate the field; the errors are higher for the increase of
r; the highest error equal to 8.1067% is obtained with a = 0.06m, p = 0.8m at
r = 2m, but in this case the field is overestimated, so it is advantageous; there
are cases where fields are underestimated, the highest one present an error equal
to −6.1140% with a = 0.1m, p = 1m at r = 2m, but the field present a value
equal to 1.4495µT , so the uncertainty is on the second decimal place and could
be neglected. In conclusion, the results are good, although much more complex
than Landini’s one, however the field can be calculated by means of the lookup
tables with a simply calculator.

Figure 5.28: Approximated Bnew compared to Biot-Savart
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Figure 5.29: Approximated Bnew compared to Biot-Savart

5.3 Matlab codes

The Curve Fitter codes are automatically generated by Matlab, then they will
not be shown. Instead the codes used to implement the Landini’s approximated
parametric equation is really simply

Listing 5.1: Landini’s parametric equation

%% Data

I=200; % rms value [A]

a=0.01:0.01:0.1; % helix radius [m]

p=0.8; % helix pitch [m]

r=[0.2:0.02:2 2:0.5:5]; % radial distances [m]

N=2; phi=0;

[Besatto ]= Bessel3F(a,p,r,N,phi ,I);

%% Landini

% ln(B) = ln(2.4* pi^2*a/p^2) + ln(I) + [ao+a1*r+a2/(r^

a3)]

% = ln(G) + ln(I) + [ao+a1*r+a2/(r^a3)]
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a0lan=zeros(length(a),length(p));

a1lan=zeros(length(a),length(p));

a3lan=zeros(length(a),length(p));

Blan2=zeros(length(a),length(r),length(p));

for ia=1: length(a)

a0lan(ia ,:) =(12.8712*a(ia)^2+0.2107*a(ia) -0.1383)*p

.^2+( -48.4318*a(ia)^2 -0.6919*a(ia)+0.9094)*p

+49.6932*a(ia)^2+0.5724*a(ia) -1.3991;

a1lan(ia ,:) =2.1018*p.^3 -11.6186*p.^2+...

23.2879*p -20.4446;

a3lan(ia ,:) =0.2739*a(ia)*p+0.2430*p+...

0.1036*a(ia)+1.4444;

for ip=1: length(p)

Blan2(ia ,:,ip)=log (2.4* pi^2*a(ia)/p(ip)^2)+...

log(I)+a0lan(ia ,ip)+a1lan(ia ,ip)*r+...

0.1./(r.^ a3lan(ia ,ip));

end

end

dBlan2=exp(Blan2)-Besatto;

dBrellan2 =(Besatto -exp(Blan2))./ Besatto *100;

5.4 Appendices

Table 5.1: Parameter a0
p a [m]
[m] 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09 0,1

0,8 -44,90 -44,93 -44,98 -45,05 -45,14 -45,26 -45,41 -45,59 -45,82 -46,09
0,9 -44,61 -44,64 -44,68 -44,75 -44,84 -44,96 -45,10 -45,29 -45,51 -45,78
1 -44,33 -44,35 -44,40 -44,46 -44,55 -44,67 -44,81 -44,99 -45,21 -45,48
1,1 -44,06 -44,09 -44,13 -44,20 -44,28 -44,40 -44,54 -44,72 -44,94 -45,20
1,2 -43,82 -43,84 -43,89 -43,95 -44,03 -44,15 -44,29 -44,46 -44,68 -44,94
1,3 -43,59 -43,61 -43,66 -43,72 -43,80 -43,91 -44,05 -44,23 -44,44 -44,70
1,4 -43,38 -43,40 -43,44 -43,51 -43,59 -43,70 -43,84 -44,01 -44,22 -44,48
1,5 -43,19 -43,21 -43,25 -43,31 -43,39 -43,50 -43,64 -43,81 -44,02 -44,28
1,6 -43,01 -43,03 -43,07 -43,13 -43,21 -43,32 -43,46 -43,63 -43,84 -44,09
1,7 -42,84 -42,87 -42,91 -42,96 -43,04 -43,15 -43,29 -43,46 -43,67 -43,92
1,8 -42,69 -42,71 -42,75 -42,81 -42,89 -43,00 -43,13 -43,30 -43,51 -43,76
1,9 -42,55 -42,57 -42,61 -42,67 -42,75 -42,85 -42,99 -43,16 -43,36 -43,61
2 -42,42 -42,44 -42,48 -42,53 -42,61 -42,72 -42,85 -43,02 -43,23 -43,48
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Table 5.2: Parameter a1
p a [m]
[m] 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09 0,1

0,8 -12,95 -13,21 -13,60 -14,14 -14,85 -15,71 -16,75 -17,94 -19,28 -20,76
0,9 -10,86 -11,12 -11,52 -12,07 -12,79 -13,69 -14,77 -16,01 -17,41 -18,95
1 -8,955 -9,211 -9,613 -10,18 -10,93 -11,86 -12,97 -14,26 -15,72 -17,33
1,1 -7,240 -7,493 -7,899 -8,478 -9,246 -10,21 -11,36 -12,70 -14,22 -15,89
1,2 -5,712 -5,962 -6,370 -6,962 -7,750 -8,741 -9,934 -11,32 -12,89 -14,62
1,3 -4,361 -4,607 -5,019 -5,621 -6,428 -7,447 -8,675 -10,10 -11,72 -13,51
1,4 -3,173 -3,416 -3,831 -4,443 -5,268 -6,312 -7,573 -9,043 -10,71 -12,54
1,5 -2,135 -2,375 -2,793 -3,414 -4,255 -5,322 -6,614 -8,120 -9,825 -11,71
1,6 -1,232 -1,469 -1,890 -2,520 -3,376 -4,465 -5,783 -7,322 -9,065 -10,99
1,7 -0,450 -0,686 -1,109 -1,747 -2,616 -3,724 -5,067 -6,635 -8,411 -10,37
1,8 0,225 -0,010 -0,436 -1,081 -1,962 -3,087 -4,451 -6,045 -7,851 -9,846
1,9 0.805 0.572 0.143 -0.509 -1.401 -2.541 -3.925 -5.541 -7.372 -9.394
2 1.301 1.069 0.638 -0.020 -0.921 -2.074 -3.475 -5.111 -6.964 -9.008

Table 5.3: Parameter a2: it have to be multiplied by 10−3 for the application
p a [m]
[m] 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09 0,1

0,8 36,22 38,30 41,52 46,10 52,28 60,29 70,38 82,80 97,89 116,02
0,9 23,41 25,36 28,44 32,88 38,91 46,76 56,67 68,91 83,78 101,69
1 12,20 14,01 16,96 21,26 27,15 34,85 44,60 56,68 71,38 89,10
1,1 2,638 4,328 7,147 11,33 17,09 24,66 34,28 46,22 60,78 78,35
1,2 -5,359 -3,779 -1,068 3,003 8,657 16,12 25,63 37,46 51,91 69,37
1,3 -11,95 -10,46 -7,841 -3,861 1,704 9,079 18,50 30,24 44,60 61,98
1,4 -17,30 -15,89 -13,35 -9,441 -3,949 3,355 12,71 24,38 38,68 55,98
1,5 -21,59 -20,24 -17,76 -13,91 -8,479 -1,232 8,068 19,68 33,93 51,19
1,6 -24,97 -23,67 -21,24 -17,44 -12,05 -4,850 4,407 15,98 30,19 47,41
1,7 -27,59 -26,33 -23,94 -20,18 -14,82 -7,654 1,571 13,12 27,29 44,48
1,8 -29,57 -28,35 -25,98 -22,25 -16,92 -9,778 -0,576 10,95 25,10 42,26
1,9 -31,02 -29,82 -27,48 -23,77 -18,46 -11,34 -2,154 9,351 23,48 40,61
2 -32,04 -30,86 -28,53 -24,84 -19,54 -12,43 -3,263 8,227 22,34 39,43
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Table 5.4: Parameter a4
p a [m]
[m] 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09 0,1

0,8 13,23 13,52 13,96 14,56 15,34 16,32 17,49 18,86 20,41 22,14
0,9 11,13 11,41 11,85 12,47 13,28 14,28 15,50 16,91 18,51 20,30
1 9,185 9,467 9,911 10,54 11,37 12,41 13,66 15,11 16,78 18,63
1,1 7,423 7,700 8,146 8,785 9,634 10,70 11,99 13,50 15,21 17,13
1,2 5,843 6,116 6,564 7,213 8,080 9,176 10,50 12,05 13,82 15,79
1,3 4,439 4,707 5,158 5,817 6,702 7,823 9,183 10,77 12,59 14,62
1,4 3,202 3,466 3,918 4,586 5,488 6,634 8,025 9,655 11,52 13,59
1,5 2,117 2,378 2,833 3,509 4,426 5,594 7,014 8,680 10,58 12,70
1,6 1,172 1,430 1,887 2,571 3,502 4,690 6,136 7,834 9,771 11,93
1,7 0,352 0,608 1,067 1,758 2,702 3,908 5,378 7,104 9,074 11,27
1,8 -0,356 -0,103 0,358 1,056 2,012 3,235 4,725 6,477 8,475 10,70
1,9 -0,966 -0,714 -0,251 0,453 1,419 2,656 4,166 5,939 7,962 10,22
2 -1,489 -1,238 -0,773 -0,064 0,911 2,162 3,687 5,480 7,524 9,800

Table 5.5: Parameter a5: it have to be multiplied by 10−3 for the application
p a [m]
[m] 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09 0,1

0,8 50,36 50,65 51,14 51,85 52,84 54,12 55,74 57,75 60,18 63,10
0,9 50,09 50,39 50,87 51,59 52,57 53,85 55,47 57,46 59,88 62,79
1 49,69 49,98 50,46 51,17 52,15 53,42 55,03 57,01 59,42 62,31
1,1 49,22 49,51 49,98 50,69 51,65 52,92 54,52 56,49 58,89 61,76
1,2 48,74 49,02 49,49 50,19 51,14 52,40 53,99 55,96 58,34 61,20
1,3 48,27 48,54 49,01 49,70 50,65 51,90 53,48 55,44 57,81 60,66
1,4 47,83 48,10 48,55 49,24 50,18 51,42 53,00 54,95 57,31 60,15
1,5 47,43 47,69 48,14 48,81 49,75 50,99 52,56 54,50 56,86 59,69
1,6 47,06 47,31 47,76 48,43 49,36 50,59 52,16 54,09 56,44 59,27
1,7 46,73 46,98 47,42 48,09 49,02 50,24 51,80 53,73 56,08 58,89
1,8 46,44 46,69 47,12 47,79 48,71 49,93 51,48 53,41 55,75 58,56
1,9 46,19 46,43 46,86 47,52 48,44 49,66 51,20 53,12 55,46 58,27
2 45,96 46,20 46,63 47,28 48,20 49,41 50,96 52,88 55,21 58,01
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Chapter 6

Conclusions

In the thesis all the methods for the calculation of the magnetic field generated
by twisted three-phase cables were implemented in order to compare them and
to looking for the more simpler and the fast between them.

First of all it is implemented on Matlab the classic formulation used for
the magnetic field calculations, that are the Biot savart Law in both the two-
dimensional and the three-dimensional formulation, the bidimensional one is
used for the verification of the three-dimensional method’s correctness on the
case of a single-circuit underground power line in trefoil formation, once the
validity of the Biot-Savart 3D codes is confirmed, it is applied in the field calcu-
lation of the twisted tripolar cable, its results are used as reference for all other
methods.

Secondly, Hagel series formulation (which include the modified Bessel func-
tions and its first derivatives) in cylindrical coordinates is implemented, it turns
out that its results may be good for cases with lower helix radius a and greater
helix pitch p, but generally errors are high, since it goes to zero very quickly,
thus for the buffer zone estimation some cautionary distances have to be added.

Since the Bessel functions are complex, alternative methods are derived from
Hagel, in particular Pettersson proposes the reduction of the series at the first
term with further approximations considering a << p and r >> p, but these
formulations provide results with really high errors in the immediate vicinity
of the cable, anyway they give still valid results for sufficiently far distances in
comparison respect to the complete series formulation.

Finally, it is analyzed the parametric method proposed by Landini based on
the approximation to the first two terms of the series, the results he obtained are
very good in comparison to the series, but this solution still shows not negligible
errors compared to the values of Biot-Savart.

Then it is decided to apply Landini’s method directly on the results of Biot-
Savart obtaining the following parametric formulation

ln(Bnew) = ln

(

2.4π2
a

p2

)

+ ln(I) + a0 + a1r + a2r
2 +

a3 + a4r

ra5

(6.1)
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this equation can provide estimates of the magnetic field almost coincident with
Biot-savart Law in the range of distances from 0.2m to 5m. The parameters
a0÷5 (except a3 which is fixed to 40) can be used quickly by means of lookup
tables as a function of a and p; the relationship between the parameters with
a and p can be expressed approximately with polynomials. The overall the
formulation is longer than the one proposed by Landini, but it provides better
results.
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