
University of Padova

Department ofMathematics

Master Thesis in Big DataManagement and Analytics

A General Framework of Automated User

Intent Mapping to Complex Analytical

Workflows

Local Supervisor Master Candidate
Massimiliano de Leoni Zyad AbduljabbarMoqbel Al-Azazi
University of Padova

Co-supervisors
Sergi Nadal
Petar Jovanovic
Universitat Politècnica de Catalunya

Academic Year
2023-2024

ii

Tomy beloved parents, whose unwavering support and unconditional love
have been my guiding light and the cornerstone of all my achievements.

To mywife, my steadfast companion, whose encouragement and resilience
carried me through every challenge, never letting me falter in pursuit of

my dreams.

To my brother, whose presence inspires me to strive to be the best version
of myself.

To my extended family, whose prayers and support have been a source of
strength during this journey.

To my dear friends, whose unwavering kindness and support, even through
the simplest gestures, have made this milestone possible.

iv

Abstract

The emergence of numerous AutoML (Automated Machine Learning) tools, such as Auto-
sklearn andTPOT, as solutions to the challenges surrounding the utilization ofMachineLearn-
ing and Data Science by non-technical users to solve di昀昀erent problems related to data has
been driven by prior e昀昀orts dedicated towards the automatic creation of data pipelines. Fur-
thermore, the creation of these ML-specialized pipelines is only the tip of the iceberg in terms
of the challenges on the road to 昀椀nding the optimal set of pipelines. Thus, existing solutions
specialize in the process of selecting the most e昀昀ective candidate pipelines (or more accurately
limiting the search space for these pipelines), whether through the optimization of data prepro-
cessors, the optimization of model choice, or the optimization of the hyperparameter tuning
process. However, there are other challenges that are not addressed enoughwithin these e昀昀orts.
The 昀椀rst challenge is the generation of complex analytical work昀氀ows that satisfy the needs of
users aside from their di昀昀erences; the AutoML tools specialize in ML-focused tasks, such as
classi昀椀cation and regression, without considering other data-centered tasks, such as descrip-
tive analytics or data visualization. Additionally, the work昀氀ows generated from these tools are
designed to run on speci昀椀c execution engines regardless of the preferences of users and their
limited scope of expertise.

This work focuses on generalizing the framework for generating engine-agnostic complex
analytical work昀氀ows using Knowledge Graphs (KGs) as a method to automate the work昀氀ow
creation process, as well as encode the metadata and real-world knowledge relevant to it. Thus,
it addresses the previously mentioned challenges by developing a new generalized and exten-
sible ontology that represents the entire process of generating analytical work昀氀ows from user
intents. In addition, a more generalized work昀氀ow generation algorithm is adopted to ensure
the generationofwork昀氀ows that satisfy other user intents beyond classi昀椀cation, in this case data
visualization. Finally, a rule-based optimization technique is incorporatedwithin thework昀氀ow
generation framework to enable the selection of data preprocessing operators instead of using
all possible operator combinations.

The experimental setting consists of comparisons between the previous work昀氀ow genera-
tion proposal and the work proposed in this thesis, in addition to comparisons between the
work昀氀ows selected by the rule-based selective generation and all the other possible work昀氀ows
for each intent, separately.

v

vi

Contents

Abstract v

List of figures ix

List of tables xiii

Listing of acronyms xv

1 Introduction 1
1.1 Context and Topic . 1
1.2 Objectives and Contributions . 3
1.3 Thesis Outline . 4

2 RelatedWork 7
2.1 AutoML Tools . 7
2.2 Data Mining Ontologies . 9
2.3 Work昀氀owOptimization . 10

3 General Overview 15
3.1 Approach Overview . 15
3.2 Formal De昀椀nitions . 19

4 Ontology 23
4.1 TBOX . 23
4.2 CBOX . 30

4.2.1 Engine-agnostic CBOX . 31
4.2.2 Engine-speci昀椀c CBOX . 33

4.3 ABOX . 34
4.4 Comparison with Other Ontologies . 35

5 WorkflowGeneration 37
5.1 Overview of Work昀氀ow Generation Process 37
5.2 Generalizing the Work昀氀ow Generation Process 45
5.3 Rule-based Selective Work昀氀ow Generation 49

6 Extending theWorkflowGeneration Framework 55

vii

6.1 General Guidelines on Extending theWork昀氀ow Generator 55
6.1.1 Engine-Agnostic Extension . 55
6.1.2 Engine-Speci昀椀c Extension . 57

7 Experimentation 61
7.1 Experimental Setting . 61

7.1.1 Performance Benchmarking . 61
7.1.2 Evaluating the Rule-based Optimization 63

7.2 Results . 65
7.2.1 Results for Performance Benchmarking 65
7.2.2 Results for Rule-based Optimization 68

8 Conclusion 79

References 81

Acknowledgments 85

A WorkflowGeneration Extension Guidelines 87

viii

Listing of 昀椀gures

1.1 A diagram illustrating a simpli昀椀ed view of the overall ExtremeXP project . . . 3

2.1 A diagram illustrating how decision tree model learned the relation between
the entropy of a feature and the appropriate feature engineering operators in [1] 12

3.1 Scale across ontology layers. Diagram inspired from a presentation by theGist
Council (https://www.youtube.com/watch?v=0-j9nWFVoYc) 16

3.2 A diagram illustrating the overall approach of the proposed work 17

4.1 A diagram illustrating the proposed ontology with the concepts in green high-
lighting the novelty of the ontology in comparison to previous ontologies. . . 24

4.2 A diagram illustrating the DM-Task hierarchy in the DMOP ontology with
the arrows indicating a subclassOf relationship 32

4.3 A diagram illustrating the DM-Algorithm hierarchy in the DMOP ontology
with the arrows indicating a subclassOf relationship 32

4.4 A diagram illustrating the Data classs in the ontology and how it is related
to the hierarchy in the DMOP ontology with the empty arrows indicating a
subclassOf relationship . 33

5.1 Examples illustrating di昀昀erent forms of user intent. 38
5.2 Abstract plans generated from the user intent. 39
5.3 Logical plans expanded from abstract plans. 42
5.4 Work昀氀ow plan created from logical plan. 44
5.5 Parameter Di昀昀erent Relations in Across the Stages. 45
5.6 Example of Python code snippet showing a data partitioning componentwith

the data transformations expressed in SPARQL. 47
5.7 Python code snippet showing data tag example expressed in the form of a

SHACL shape for training data sets . 48
5.8 SPARQL query used to retrieve training data sets from the output of a data

partitioning component . 49
5.9 Di昀昀erent components can achieve the same requirement but in semantically

di昀昀erent manners. 51
5.10 An example of how the component removing null values is connected to the

the data tag related to the dataset possessing low percentage of missing values
and Classi昀椀cation being the task when the rule can be applied. 51

ix

5.11 Python code snippet showing the di昀昀erent scaling components and how the
rules are encoded within each component taking into account the main task
and dataset characteristics essential for the rule to be deemed valid; each rule
has a weigh and each component has an overall rank within each task. 54

6.1 An example of adding a task along with the algorithms capable of solving it to
the CBOX level. 56

6.2 Anexampleof adding anew implementation subclass along existing subclasses
and vocabulary. 57

6.3 Anexampleof adding anew implementation subclass along existing subclasses
and vocabulary. 58

6.4 Python code snippet showing an example of the heatmap visualizer compo-
nent with the set of exposed parameters being “labelColumn” and “chartTi-
tle” . 59

6.5 Pythoncode snippet showing an exampleof an engine-speci昀椀c implementaiton
for the heatmap visualizer KNIME implementation. 60

7.1 Relationship between the number of work昀氀ows and generation time in the
case of the four generation scenarios . 66

7.2 The relation between the number of generated work昀氀ows and components
per precondition (preconditions per component = 3) 67

7.3 The relation between the number of generated work昀氀ows and preconditions
per component (components per precondition = 3) 68

7.4 The relation between the generation time and components per precondition
(preconditions per component = 3) . 69

7.5 The relation between the number of generation time and preconditions per
component (components per precondition = 3) 70

7.6 The relation between the generation time and components per precondition
across di昀昀erent values for preconditions per component in the best case sce-
nario (selection of 1 component) . 70

7.7 The relation between the generation time and preconditions per component
across di昀昀erent values for components per precondition in the best case sce-
nario (selection of 1 component) . 71

7.8 The set of pre-processing combinations producing valid work昀氀ows for the
classi昀椀cation task in theTitanic dataset (selectedwork昀氀ows highlighted in green) 72

7.9 The set of pre-processing combinations producing valid work昀氀ows for the
classi昀椀cation task in the Penguins dataset (selected work昀氀ows highlighted in
green) . 73

7.10 The set of pre-processing combinations producing valid work昀氀ows for the
classi昀椀cation task in theHorses dataset (selectedwork昀氀ows highlighted in green) 74

x

7.11 Box plots representing the di昀昀erences in balanced accuracy statistics across
the di昀昀erent categories for all functional work昀氀ows (on the left) and the valid
functional work昀氀ows (on the right) for the classi昀椀cation task of the Titanic
dataset . 74

7.12 Box plots representing the di昀昀erences in balanced accuracy statistics across
the di昀昀erent categories for all functional work昀氀ows (on the left) and the valid
functional work昀氀ows (on the right) for the classi昀椀cation task of the Penguins
dataset . 75

7.13 Box plots representing the di昀昀erences in balanced accuracy statistics across
the di昀昀erent categories for all functional work昀氀ows (on the left) and the valid
functional work昀氀ows (on the right) for the classi昀椀cation task of the Horses
dataset . 75

7.14 Possible heat maps generated from di昀昀erent scaling and imputation methods . 76
7.15 Possible line plots generated from di昀昀erent scaling methods 77
7.16 A comparison between two scatter plots using two di昀昀erent imputationmeth-

ods: null values removal and mean imputation 77

xi

xii

Listing of tables

2.1 Comparison of some AutoML tools preprocessing capabilities 10

4.1 Object Properties of Intent as a Domain 25
4.2 Object Properties of Data as a Domain . 26
4.3 Object Properties of Task as a Domain . 26
4.4 Object Properties of Algorithm as a Domain 26
4.5 Object Properties of Implementation as a Domain 27
4.6 Object Properties of DataSpec as a Domain 27
4.7 Object Properties of Component as a Domain 28
4.8 Object Properties of Rule as a Domain . 29
4.9 Object Properties of Parameter as a Domain 29
4.10 Object Properties of Step as a Domain . 30
4.11 Object Properties of Work昀氀ow as a Domain 31
4.12 Mapping between the ontology terms between the proposed ontology and the

di昀昀erent ML/DM ontologies and vocabularies 36

5.1 Di昀昀erent parameter requirements for the visualization algorithms 38

7.1 Di昀昀erent Parameters for Synthetic CBox Creation 62
7.2 KNIMEnodes integrated into the ontology as componentswithin theCBOX

to perform the experiments . 64
7.3 Statistics related to thedatasets andgenerated classi昀椀cationwork昀氀ows inbrute-

force generator and selective generator . 69
7.4 Table illustrating the BalancedAccuracy statistics among all the generated and

selected work昀氀ows for solving the classi昀椀cation task in the Titanic dataset . . 71
7.5 Table illustrating the BalancedAccuracy statistics among all the generated and

selected work昀氀ows for solving the classi昀椀cation task in the Penguins dataset . 72
7.6 Table illustrating the BalancedAccuracy statistics among all the generated and

selected work昀氀ows for solving the classi昀椀cation task in the Horses dataset . . . 73

A.1 Table illustrating the engine-agnostic extension guidelines and references . . . 87
A.2 Table illustrating the engine-speci昀椀c extension guidelines and references . . . 90

xiii

xiv

Listing of acronyms

ML Machine Learning

AutoML AutomatedMachine Learning

SOTA State-of-the-Art

RDF Resource Description Framework

TBOX Terminological Box

CBOX Constrained Vocabulary Box

ABOX Assertional Box

DM Data Mining

KG Knowledge Graphs

SHACL Shapes Constraint Language

xv

xvi

1
Introduction

1.1 Context and Topic

The importance of Data Science at the current times, given the vast amounts of data generated
everyday, has led research e昀昀orts toward mobilizing data science into tools that people within
di昀昀erent domains can harness to solve diverse data-related problems. A signi昀椀cant outcome of
this research is the creation of AutoML, a set of tools that enable non-ML-savvy users of har-
nessing the power ofMLmethods to solveML-related problems. Themain advantage of using
these tools is that non-technical users do not need to possess advanced knowledge levels to be
able to utilize them. AutoML tasks can be divided into four main categories: data preparation,
feature engineering, model selection, andmodel evaluation [2]. A great deal of the existing Au-
toML tools are specialized in ML-related tasks, namely classi昀椀cation and regression; however,
ML-related problems are only a subset of the data-focused problems. Popular open-source Au-
toML tools, such as Autogluon[3], H2O AutoML[4] and TPOT[5], only take into account
the extension of the set of algorithms solving certain ML problems without taking into ac-
count the expansion on the level of tasks solved. For example, Autogluon supports integration
with Pytorch* to utilize its built-in classi昀椀ers to perform classi昀椀cation tasks; however, there is
no focus on extending the tool to perform other ML tasks (such as clustering) or other data
tasks (such as visualization). Additionally, theMLwork昀氀ows generated by those tools are only

*https://pytorch.org/

1

executable in their speci昀椀c engines, i.e. the work昀氀ow construction is tightly related to engine-
speci昀椀c execution. More importantly, none of the current SOTA tools supports the mapping
(in some cases dissection) of an input user intent to a set of tasks. In this context, an intent is
de昀椀ned as the set of analytical tasks that a user wants to perform on a dataset, possibly with spe-
ci昀椀c requirements related to the speci昀椀c algorithms or the parameter values to be used. A user
intent can be as simple as “perform a classi昀椀cation task on the penguins dataset” or as speci昀椀c as
“perform a classi昀椀cation task on the penguins dataset using the Decision-Trees algorithm with
the learning rate set to 0.01.”

The 昀椀rst intent example above may re昀氀ect a lack of technical knowledge from the user side;
thus, it is very important for the intent-to-work昀氀owmapping approach to incorporate the vast
domain knowledge relevant to the set of potential data tasks to be solved, algorithms used, rele-
vant parameters, as well as the principles of constructing the work昀氀ows quali昀椀ed to solve those
tasks. Generally, an intent could result in multiple possible work昀氀ows due to factors such as
the number of algorithms capable of solving a task, the number of variations an algorithmmay
have, or the number of possible parameter values for an algorithm parameter. For example, a
classi昀椀cation task could be solved by a Decision Tree algorithm or an SVM algorithm; more-
over, an SVM algorithm has three kernel variations: hypertangent, polynomial, andRBF, with
the latter having a set of possible values for the “gamma” parameter (0.1, 1, 10). Additionally,
the work昀氀ow generation process should not be tightly coupled with a speci昀椀c engine. Thus,
the utilization of Knowledge Graphs for this problem is most suitable due to their ability to
encode the needed domain knowledge, in addition to the advantages related to capturing the
metadata relevant to the process and transformations in昀氀icted on the data. The use of KGs to
automatically compose dataminingwork昀氀ows has been explored in [6] and [7] leveragingKGs
to create work昀氀ows to solve speci昀椀c data use cases.

The ExtremeXP project o昀昀ers a data-driven approach that aims to provide users with rele-
vant information to facilitate the decision making process, protecting users from the technical
complexities surrounding the process of obtaining these insights. One mechanism is the map-
ping of user intents into complex analytical work昀氀ows. As can be seen in Fig.1.1, the process
relies on a work昀氀ow generator backed by a knowledge base and guided by the intent of the
user. The output of the whole process is tailored to the user on the basis of the user’s pro昀椀le,
expressed preferences, and feedback.

The work of this thesis serves within the ExtremeXP project and is concerned with general-
izing the framework of the intent-to-work昀氀owmapping to cover additional data tasks beyond

 https://extremexp.eu/

2

Figure 1.1: A diagram illustra琀椀ng a simpli昀椀ed view of the overall ExtremeXP project

the tasks covered by existingAutoML tools, such asDataVisualization. The framework is pow-
ered by aKnowledgeGraphontology that represents concepts related to the generation process.
Furthermore, the work also takes into account the extensibility of the framework by providing
a set of guidelines allowing the inclusion of more tasks, while maintaining the engine-agnostic
property of the work昀氀ow generation mechanism. This allows the generated work昀氀ows to be
executed in any execution environment, as long as the proper translation method is available.
Additionally, decreasing the number of possible work昀氀ows for each task by supporting the se-
lection from operators performing the same data pre-processing tasks.

1.2 Objectives and Contributions

The main motivation behind this master thesis is to develop an optimized and generalized
method that enables the successful mapping of analytical user intents to executable analytical
work昀氀ows. The term “generalized” in this context is used to refer to the inclusion of di昀昀erent
data analytics tasks besides ML classi昀椀cation tasks, such as data visualization and descriptive
analytics. As for the optimization aspect of this approach, it is aimed towards the generation
of a minimal number of work昀氀ows by limiting the number of logical plans generated from an

3

abstract plan. Hence, the main objectives of this work are as follows:

" Creating a Knowledge Graph ontology that represents the semantics of the work昀氀ow
generation process starting from a user intent resulting in intent-satisfying work昀氀ows.

" Developing a generalized, Knowledge-Graph-backed, engine-agnostic work昀氀ow genera-
tor that is capable of generating valid and functional analyticalwork昀氀ows from the input
of a user intent.

" Optimizing thework昀氀owgenerator to result in aminimal number ofwork昀氀ows for each
task by selecting the appropriate operators for each preprocessing step.

These objectives essentially dictate the contributions this work brings, which are the following:

" The introduction of a generalized and extensible ontology that e昀昀ectively represents the
process of mapping user intents to valid work昀氀ows.

" The development of a generalized, multipurpose, engine-agnostic work昀氀ow generator.
In addition to composing a set of guidelines to facilitate the successful extension of the
work昀氀ow generator to integrate other analytical problems without changing the core
generation algorithm.

" Incorporating a rule-based component selection technique within the general overall
framework to enable the generation of a minimal number of work昀氀ows.

It should be clearly noted that an existing engine-speci昀椀c work昀氀ow translator is used to ensure
the successful conversion of generated work昀氀ows to engine-executable work昀氀ows.

1.3 Thesis Outline

The structure of this thesis is as follows. Chapter 2 provides an overview of the work directly
related to the topics covered by this thesis; AutoML tools, DataMining Ontologies andWork-
昀氀ow Optimization. Next, Chapter 3 presents the overall framework of the approach divided
into steps that demonstrate the di昀昀erent levels of the presented work, in addition to a set of
formal de昀椀nitions of the core concepts within the work. After that comes Chapter 4 where
the ontology that represents the whole process of capturing user intent and generating work-
昀氀ows satisfying the user intent is thoroughly explained, concludingwith a comparison between
the proposed ontology and other DM ontologies. Then, Chapter 5 provides a comprehensive

4

explanation of thework昀氀owgeneration process, a description of the generalization of thework-
昀氀ow generation process, and introduces the integrated rule-based selection mechanism. Next,
Chapter 6 introduces a set of guidelines that will be used in the future to extend the framework
to cover more user intents. As for Chapter 7, it delves deeper into the experimental aspect of
the work by comparing the proposed work with a similar previous work in terms of behavior
under the growth of factors directly a昀昀ecting the complexity of the generation mechanism. Fi-
nally, Chapter 8 states the conclusion of the work, in addition to proposing potential future
directions.

5

6

2
RelatedWork

The work developed and discussed in this thesis is focused on generalizing the framework of
generating data analytical work昀氀ows using knowledge graphs. In this chapter, an overview of
the work related to the problems addressed in this thesis is provided. In Section 2.1, the exist-
ing open-source AutoML tools are reviewed in terms of problems addressed along with their
support for data preprocessing operations. In Section 2.2, the existing data mining ontologies
are reviewed to understand the existing representations of the data and ML processes. Finally,
in Section 2.3, existing work昀氀ow optimization techniques are explored to aid in the design of
the optimization approach to be adopted by the framework.

2.1 AutoMLTools

Over the last fewyears, there has been an immense focus onAutoMLtools as an important com-
ponent that targets those with low to no technical expertise in machine learning to harness the
power of ML to solve di昀昀erent problems. Open-source AutoML tools have taken care of the
accessibility aspect, making this technology available to everyone regardless of their technical
background. Nevertheless, users have found themselves overwhelmed with the number of Au-
toML solutions to choose from; thus, there was a need to be able to compare these solutions
against each other. A challenge that [8], [9], [10] attempted to solve by benchmarking various
tools using di昀昀erent approaches. In this section, some of the most prominent open source Au-
toML tools and frameworks mentioned in the aforementioned benchmarks will be discussed,

7

speci昀椀cally these tools covering the preliminary and necessary data management steps.
Among the most prominent of these tools is Autogluon-Tabular [3]; a tool that o昀昀ers an

”ensembling and stacking models” approach rather than the traditional model and hyperpa-
rameter selection approach. Despite the fact that Autogluon o昀昀ers a two-phase preprocessing
approach; model-agnostic and model-speci昀椀c, some of these techniques o昀昀er quite naive so-
lutions. For example, the model-agnostic approach includes an elimination of uncategorized
features that consist of non-numeric and non-repeating 昀椀elds, as well as the absence of an im-
putation technique for missing discrete variables; instead, a label of ”Unknown” is assigned to
missing discrete 昀椀elds, and they are handled at test time, which could signi昀椀cantly a昀昀ect the
results desired by the user. There are also other tools that are built on existing platforms or li-
braries, such asH2OAutoML [4] built on theH2O.ai * engine alongwithTPOT [5] and auto-
sklearn[11, 12] both built on the well-known scikit-learn library . With auto-sklearn in both
versions incorporating an inclusive set of data processors that includes one-hot encoding, miss-
ing data imputation, target class balancing, and rescaling inputs along with a more extensive
set of 14 di昀昀erent feature processors that include feature selection and kernel approximation,
among others[11]. On the other hand, [5] does not provide any kind of data pre-processing,
but it incorporates many feature processors, including di昀昀erent scaling techniques, along with
feature selection processors, such as Recursive Feature Elimination and Variance Threshold.
As for [4], it also has the unique feature of handling categorical data natively by supporting
group-splits on categorical variables, along with the availability of data processors and other
feature and feature selection processors. Table 2.1 contains a summary of the preprocessing
capabilities of the discussed tools.

Other tools usually associatedwithAutoML include FLAML[13] andHyperOpt[14]; how-
ever, these are not considered in this overview as they are not standalone tools. Both [13] and
[14] are specialized in hyperparameter optimization and model selection (in the case of [13]);
thus, they are usually incorporated into bigger AutoML frameworks, so that other tasks can be
handled by other tools.

It is important to note that all the previouslymentioned tools generate engine-speci昀椀c work-
昀氀ows that are run on speci昀椀c engines, which is a problem that [7] attempted to solve by adopt-
ing an engine-agnostic work昀氀ow generation paradigm. Although this approach works well,
introduces a novel approach in encoding input and output constraints within the KG-backed
generator, and incorporates the necessary data preprocessing steps, it is focused mainly on gen-

*https://docs.h2o.ai/
 https://scikit-learn.org/stable/

8

erating classi昀椀cation work昀氀ows.

2.2 DataMining Ontologies

One of the various reasons behind the existence of many ontologies attempting to represent
the processes composing data mining is the purpose driving the creation of these ontologies.
For instance, OntoDM[15] wasmotivated by the need for a general and formalized framework
for the rapidly developing data mining 昀椀eld. At a later time but with a similar motivation,ML-
schema[16] was then introduced as an attempt to create a uni昀椀ed representation that aims to
facilitate the representation and communication of the ML experiments together with their
associated datasets. Evidently, a close-up inspection of these ontologies will guide us to under-
stand the characteristics of generalized ontologies of data mining. For example, in OntoDM,
themain concepts introduced are: Dataset, DataMiningTask, Algorithm,Generalization (rep-
resenting outputs of data mining algorithms), and Constraint. On the other hand, [16] also
introduces equivalent classes, but with more focus onML-centric data mining activities. This
can be clearly seen in how ML-schema has one type of output, Model, in comparison with
OntoDM which has the concept Generalization covering di昀昀erent types of output, such as
models, patterns, clusters and probability distributions.

The automatic creation of Data Mining work昀氀ows using ontologies has also gained signif-
icant attention. With DMWF[17] being one of the earlier attempts to represent data min-
ing work昀氀ows in a way that users and planners comprehend while also depicting intermedi-
ary stages of work昀氀ow planning. DMWF introduced concepts such as MetaData, Goal, Task,
and Method to clearly distinguish between di昀昀erent levels of work昀氀ow planning. It also in-
troduced operator conditions to ensure the construction of semantically correct work昀氀ows.
As for DMOP[18], the objective was to utilize semantic meta-mining to provide support to
decision-making steps that de昀椀ne the result of a data mining process; it de昀椀ned the concept
of DM-Hypothesis, which can be DM-Model or DM-PatternSet resulting from a DM-Task.
DMOP contains thorough descriptions of tasks, algorithms, data, hypotheses, and work昀氀ows.
Similarly, BIGOWL[6]was introduced to support knowledgemanagement inBigDataAnalyt-
ics while enabling the creation of work昀氀ows that satisfy users’ requirements. BIGOWL does
not di昀昀er much from DMOP in terms of the concepts and relations de昀椀ned, as well as each
class having its own set of conditions and allowing instances to be members of the class (cor-
responding to the description in [18]). In fact, BIGOWL uses the equivalence relation with
DM-Algorithm in DMOP to de昀椀ne its DataMiningAlgorithm subclass [6].

9

AutoML Tool Available Preprocessing Additional Notes
AutoGluon

" Categorizing the datatypes of
the columns.

" Model-agnostic preprocessing:
uncategorized data, non-
numeric, non-repeating 昀椀elds
are discarded.

" Model-speci昀椀c preprocessing:
missing data is only labeled as
”Unknown”; unseen data is
handled at test time.

Two di昀昀erent tools
available for tabular
data and time series
data.

Auto-sklearn (1
& 2) " Preprocessing is comprised of

data preprocessing and feature
preprocessing.

" Data preprocessing is minimal
and only includes: one-hot en-
coding, imputation, balancing
and rescaling.

Feature preprocessing
is more extensive.

H2O AutoML
" General preprocessing: data im-
putation, data normalization
and one-hot encoding.

" Speci昀椀c preprocessing for tree-
based models: group-splits on
categorical variables.

Relies on the H2O li-
brary.

TPOT Incorporates only feature scaling and
feature processors.

Table 2.1: Comparison of some AutoML tools preprocessing capabili琀椀es

2.3 WorkflowOptimization

The term ”Work昀氀ow Optimization” is a very broad term that entails several problems on sev-
eral distinct levels. The word work昀氀ow in this context means data-centric work昀氀ows; work-
昀氀ows that focus on themanipulation and transformationof data throughmany steps intoother
forms of data or data products.

10

The problem of work昀氀ow optimization can be tackled from di昀昀erent aspects; one of the
most researched andwell-developed aspects borrowsdirectly someof its principles fromdatabase
management systems, speci昀椀cally work昀氀ow optimization on the execution engine level. Work-
昀氀ow generation tools such as Helix [19] and KeystoneML [20] are good examples. Helix, for
example, optimizes the time needed to generate intermediate work昀氀ow results by materializ-
ing common intermediate results and intelligently reusing them in other work昀氀ows instead
of executing all the work昀氀ows from scratch. For example, intermediate data results coming
from a min-max normalization step or a mean data imputation step will be the same across
all work昀氀ows regardless of the 昀椀nal algorithm feeding on the data. Meanwhile, KeystoneML,
a work昀氀ow generator backed by Apache Spark ! and specialized in developing end-to-endML
pipelines, incorporates two di昀昀erent levels of optimization: an operator-level optimization and
apipeline-level optimization. Theoperator level optimization is related to the choice of an exact
physical plan to perform a certain step (for example, a normalization step could be done using
z-score scaling, min-max scaling, ...etc); the optimizer on this level is cost-based and is also fur-
ther divided into two levels: operator-speci昀椀c and cluster-speci昀椀c. The costs considered for this
level are related to the computation and communication costs given certain parameters, such
as the size of the input data and the number of workers. On the other hand, the optimization
on the level of the whole pipeline targets the composition of a ”pipeline pro昀椀le” that dictates
the materialization of certain intermediate results, similarly to Helix.

However, such low-level optimizations may not be within the scope of the interest of this
work since the approach under development requires techniques that are compliant with the
generalized, engine-agnostic paradigm that the proposed approach strives to achieve. Thus,
the optimization techniques concerned at this stage are relevant to minimizing the number of
generated work昀氀ows, which translates to the optimization on the operator level; operator-level
optimization that is less dependent on cost optimization and more reliant on general rules for
operator selection.

There has been a great deal of focus on automating the data pre-processing steps required
for ML work昀氀ows. The e昀昀orts of automating the data preprocessing steps include not only
the de昀椀nition of the steps needed, but it also extends to the automatic selection of operators
to accomplish these steps. For example, Auto-Prep[21] is one of the attempts focused on au-
tomating the following data preprocessing steps for classi昀椀cation and regression work昀氀ows:
missing data imputation, categorical features encoding, feature reduction, feature scaling, in
addition to automatic detection of duplicate rows and feature data types. The approach relies

!https://spark.apache.org/

11

Figure 2.1: A diagram illustra琀椀ng how decision tree model learned the rela琀椀on between the entropy of a feature and the
appropriate feature engineering operators in [1]

on prede昀椀ned rules that are taken from an extensive review of the literature. Examples of these
rules include how automatic data imputation operators are selected depending on how the be-
havior of the missing data is categorized: MAR (missing at random), MNAR (missing not at
random), or MCAR (missing completely at random); however, despite the work determining
appropriate imputation techniques for each case, it has been acknowledged that MNAR is a
di昀케cult case to discover and is better handled manually as it requires human intervention. De-
spite Auto-Prep claiming to achieve good results, the tool does not seem to be open for public
access.

Nevertheless, a more modern approach that has been gaining momentum due to its ability
to learn hidden patterns between di昀昀erent preprocessing steps/ operators and data characteris-
tics is meta-learning. PERSISTANT[22] is an assistant for non-experts that utilizes the meta-
learning technique to help select the best data preprocessing operators based on their e昀昀ect on
the 昀椀nal result of the work昀氀ow. PERSISTANT is specialized in classi昀椀cation work昀氀ows that
employ the following algorithms: DecisionTrees, Naive Bayes, PART, Logistic Regression and
Nearest Neighbor. While the experimental results of PERSISTANT did not include a set of
general operator-speci昀椀c set of rules, it resulted in enforcing someheuristics such as concluding
that Decision Trees and Logistic Regression are not a昀昀ected by any data scaling operations, as

12

well as some otherWEKA§-speci昀椀c heuristics related to theNearestNeighbor implementation
in WEKA embedding a scaling step; hence, not being a昀昀ected by any scaling operators. How-
ever, a more recent work in [1] utilized meta-learning to compose a set of rules that dictate the
order of pre-processing steps in classi昀椀cationwork昀氀ows, in addition to employing decision tree
models in meat-learning to determine the relations between the characteristics of the data set
and the operators for data rebalancing and feature engineering (as illustrated in Fig.2.1).

§https://www.weka.io/

13

14

3
General Overview

This chapter is divided into two sections where Section 3.1 provides an overview of the ap-
proach presented in this work, while Section 3.2 formally de昀椀nes important concepts that will
be seen throughout the work.

3.1 ApproachOverview

As stated previously, one of the main purposes of this work is to generalize the framework of
mapping user intents to complex analytical work昀氀ows; thus, it is important to understand the
approach of this work and distinguish it from the earlier solutions proposed.

Before looking at the approach, it is crucial to understand the design of the ontology adopted
by this work, speci昀椀cally the layers of the ontology. The traditional structure of an ontology
is comprised of two layers: the Terminological Box (TBOX) and the Assertional Box (ABOX).
TheTBOXrepresents the schema that hosts themain concepts of thedomain, the relationships
between the concepts, and the properties. On the other hand, the ABOX hosts the instances
belonging to the classes and having the relationships and properties de昀椀ned in the TBOX. In
certain cases, there is a need for more layers that host concepts that cannot be members of the
TBOXor theABOX.This is when the addition of theConstrainedVocabulary Box (CBOX) is
essential to represent the various taxonomies or categories. The importance of adding this layer
is related to improving the governance of the data and avoiding complexity on the TBOX level,
especially when taking scale into consideration. Figure 3.1 shows how the scale could greatly

15

Figure 3.1: Scale across ontology layers. Diagram inspired from a presenta琀椀on by the Gist Council
(h琀琀ps://www.youtube.com/watch?v=0‐j9nWFVoYc)

vary across layers in ontology-backed systems. The concepts hosted by the CBOX are simply
categories (subclasses) of the concepts in theTBOXandmore descriptive of the instances in the
ABOX.For example, if theTBOXhad the conceptAlgorithm, theCBOXwouldhave di昀昀erent
types of algorithms, such asLinearRegression, SVM,KNNand soon. TheABOXwill contain
multiple instances of each of these models. Thus, this approach allows us to introduce more
precise concepts without making the TBOX complex and prone to exploding.

The overall view of the approach is shown in Figure 3.2. The 昀椀rst step of this approach is
the creation of a new, improved, and generalized ontology. The main purpose of the ontol-
ogy is to represent the entire process of generating complex analytical work昀氀ows, starting from
the capture of the user intents and ending with RDF-formatted work昀氀ows that ful昀椀ll the user
intent. Moreover, the ontology not only depicts the generation process, but also captures the
characteristics of all the inputs and outputs resulting from the di昀昀erent steps of the work昀氀ow,
alongwith re昀氀ecting any changes to the data on its annotation. Furthermore, the newontology
takes into account the incorporation of concepts related to user preferences and constraints in-
troduced by the ontology in [23] that serves within the same scope of the ExtremeXP project.
Although the new ontology borrows some of its design principles from some of the existing
ontologies, such as DMOP and the ontology in [7], its novelty lies in its general approach to
creating data mining work昀氀ows that extend beyondMLwork昀氀ows, while maintaining the dis-

16

tinction between engine-agnostic and engine-speci昀椀c levels. In this work, the case ofwork昀氀ows
that solve the problem of data visualization is achieved as a proof-of-concept. Additionally, the
newontology introduces amethod to encode selection rules to aid in preprocessing component
selection, as explained later in Section 5.3.

Figure 3.2: A diagram illustra琀椀ng the overall approach of the proposed work

The second step is related to the population of the TBOX and the CBOX of the ontology.

17

For the TBOX population, it is populated by creating the triplets of the ontology, along with
the corresponding data properties using the rd昀氀ib* in Python. Similarly, for the CBOX, it is
populated using the same method to encode taxonomies that were natively created or directly
borrowed from the DMOP ontology with the additional use of SHACL shapes to represent
constraints related to implementations’ speci昀椀cations of inputs and outputs and the tabular
data characteristics for the selection rules. More details on population techniques are discussed
in Chapter 4 and some other in Chapter 6 as part of the extension guidelines. The next step
after the creation of the ontology and the population of its TBOX and CBOX was to adapt
the entire generation algorithm to the newly created ontology. The 昀椀rst step was to change the
SPARQL queries to become consistent with the new ontology. Then, some operators were
generalized as part of the transformation generalization step, namely the data partitioning op-
erators. Finally, the last step of generalization was to modify the logical planner to create work-
昀氀ows that not only serve ML work昀氀ows reliant on data partitioning, but also more work昀氀ows
achieving solutions to other data mining problems.

After the generalization of the work昀氀ow generator, the generatedwork昀氀ows are tested to de-
termine their validity and functionality; validity is determined by visually inspecting the RDF-
formatted work昀氀ows to check whether there are mistakes in the construction of the steps of
the work昀氀ows, while the functionality of the work昀氀ows is determined after applying engine-
speci昀椀c translation to multiple generated work昀氀ows and running them on the KNIME execu-
tion engine without any failure.

Since one of the main assumptions of the project is that the system users are possessive of
little to no technical knowledge, some technical decisions related to the Logical planner need
to be taken for the purpose of reducing the search space, in addition to the important factor
that users may not be capable ofmaking such decisions. Thus, a rule-based selection technique
is incorporated into the Logical Planner as shown in Figure 3.2. This technique aims at mainly
decreasing the number of possible data pre-processing operators to be used when constructing
the possible logical work昀氀ows, instead of the brute-force method. Components are provided
with a set of rules in the form of SHACL shapes that re昀氀ect the data characteristics the dataset
should possess for a component to be deemed the best choice for the dataset. The set of pref-
erences or rules are provided during the creation of the components based on general rules.
Although the de昀椀nition of these rules is outside the scope of this work, there is plenty of work
that focuses on this speci昀椀c area, some of which utilizes meta-learning to compose these rules,

*https://rd昀氀ib.readthedocs.io/en/stable/
 https://www.w3.org/TR/shacl/

18

as can be seen in [22] and [1]. It should be noted that not all steps are invoked every time the
framework is used; the ontology population needs to be invokedwhenever the framework is ex-
tended (more on extension guidelines in Section6.1). As for the generalization of the pipeline
generation, this was in the scope of the work and is not invoked. Finally, pipeline generation is
the part that is invoked the most by the user (more details on this in Chapter5).

3.2 Formal Definitions

The process of mapping a user intent to an analytical work昀氀ow is an extensive process with
some important concepts to note as part of intent representation and generalization of the
whole process. Hence, the following concepts and their formal de昀椀nitions are presented in
this section.

Task
A term that is used to describe an analytical task to be performed. This de昀椀nition includes
ML tasks such as classi昀椀cation, regression, and clustering, as well as other tasks related to data
transformation, such as data processing and data visualization. The symbol T is used to repre-
sent the set of all tasks, with each task represented as t. In some cases, t implicitly includes a set
of subtasks STt. For example, the task of data processing may include feature scaling, feature
transformation, and data imputation.

Algorithm
A method that can be used to achieve a speci昀椀c task. Algorithms such as SVM and Decision
Trees are used to perform classi昀椀cation tasks. The set of all algorithms is denoted asA, accord-
ingly:

{at : at ∈ At | at solves t, where t ∈ T}

whereAt is the set of algorithms that can solve t andA represents the set of all algorithms.

Data
A term that describes the set of all data instances generated and utilized by work昀氀ows. The
set of all data instances used in a work昀氀ow is denoted asD, where d0 is the input dataset pro-
vided by the user. D includes tabular data annotations along with models, visualizations, and
any other types of inputs and outputs for an algorithm.

19

Implementation
The executable form for an algorithm a where M is the set of all implementations and ma

is the implementation implemening a. It is possible for an algorithm to have multiple imple-
mentations at the same time.

Parameter
A single parameter is a term used to refer to a certain factor con昀椀guration within an algorithm
implementation, which can be related to the algorithm itself or the execution engine. A pa-
rameter is associated with a single value or a set of possible values. The set of all parameters is
denoted byPar, while the set of parameters for a speci昀椀c implementation is denoted byParm

and a speci昀椀c parameter of a speci昀椀c implementation is parm.

Component
A more abstract form of an implementation, where an implementation has at least one com-
ponent. The set of all components is denoted by C . The components of the same implemen-
tation Cm have the same functionality with semantic di昀昀erences caused by each component
overriding a set of implementation parameters OPc. A single overridden parameter opc is a
tuple of (parm, v), where v is a parameter value. A component also exposes some of the other
parameters that require user inputEPc whereEPc ⊆ Pari \OPc.

Intent
A user intent I is de昀椀ned by a tuple in multiple forms (d0, t) or (d0, t, a) or (d0, t, a, EPc)
where d0 is the input dataset, t is the task to complete, a is the algorithm’s speci昀椀c choice and
EPc is a set of tuples (epc, v) where each tuple contains an exposed parameter and the value
chosen by the user.

Transformation Components
A transformation component tci is a component capable of transforming a speci昀椀c input into
a speci昀椀c output and can be represented in a tuple (ta, Im,Om) where ta is the task to be per-
formed by tci, Im is the set of input speci昀椀cations andOm is the set of output speci昀椀cations
that the transformation component will ful昀椀ll. Thus, given din, dout ∈ D, it is necessary for
each d

j
in to conform to Iji , where 1 ≤ j ≤ |Ii| and for each dkout to conform to Ok

i , where
1 ≤ k ≤ |Oi|.

20

Rule
A rule r is de昀椀ned by a tuple (tci, t, dc) where tci is a transformation component, t is the main
task included within the user intent I and dc is a speci昀椀c data characteristic that d0 must meet
for tci to be favored over other transformation components, where ∈TCi \ tci

Abstract Plan
The set of abstract plansAP is represented by a tuple (I, Aap), where I is the user intent moti-
vating the creation of abstract plans, andAap is the set of algorithms to be applied in response
to I . Aap = At if I de昀椀nes an algorithm a; otherwise,Aap = At if Iap de昀椀nes only the task t.

Logical Plan
The set of logical plans for an abstract planLPap is represented by a tuple (ap, TCap, α), where
ap is the abstract plan and TCap is the set of transformation components needed to construct
the logical plans and α is a function that is capable of selecting the most appropriate transfor-
mation components to be applied to the data set d0 based on its characteristics.

Workflow Plan
For each logical plan, a work昀氀ow planwp is created and represented by a tuple (lp,Dlp, Parlp),
where lp is the logical plan andDlp is the set of all data instances utilized and produced by the
components in lp and Parlp is the set of component parameters that each sjwp will use and
0 ≤ j < |SWP|, where SWP is the set of steps to construct lp.

21

22

4
Ontology

In this chapter, the proposed ontology will be discussed in detail. The chapter is organized
as follows: Section 4.1 will delve into the TBOX of the ontology, Section 4.2 will tackle the
two levels of the taxonomies in the ontology’s CBOX, Section 4.3 will be about the ontology’s
ABOX and 昀椀nally in Section 4.4 the proposed ontology will be compared and aligned with
other existing ontologies discussed in Section 2.2.

4.1 TBOX

Figure 4.1 shows the created ontology schema, which in addition to ful昀椀lling the contributions
of this work, also constitutes an e昀昀ort to align the ontologies proposed in [7] and [23] as they
all serve within the ExtremeXP project. For the purpose of this work, the main classes of this
ontology that will be discussed in detail alongwith their object properties are the following: In-
tent, Data, Work昀氀ow, Task, Algorithm, Implementation, Component, Parameter, Parameter
Speci昀椀cation, Transformation, Data Speci昀椀cation, Data Tag andRule. It should be noted that
there are more concepts in the ontology; however, they are outside the scope of this work.

23

Figure 4.1: A diagram illustra琀椀ng the proposed ontology with the concepts in green highligh琀椀ng the novelty of the ontology in comparison to previous ontologies.

24

The proposed ontology introduces a novel concept, tb:Rule, used to encode general domain
knowledge that assists in operator selection (details in Section 5.3). Moreover, the proposed on-
tology represents all the data instances using the concept tb:Data (including the input dataset),
which none of the previous ontologies does, as this ontology distinguishes among the data in-
stances directly using their annotations. The concept tb:ParameterSpeci昀椀cation, although in-
spired from other ontologies, is utilized to imply components overriding parameters as well
as the work昀氀ow planning phase. Additionally, the concept tb:Parameter is connected to the
concepts: tb:Implementation, tb:Component, tb:Step representing the di昀昀erent relations be-
tween a parameter and these concepts across the di昀昀erent work昀氀ow building stages.

Intent
This concept represents the intention of the system user, i.e. task a user wants to perform, the
algorithm speci昀椀ed (if any), the values speci昀椀ed for certain parameters (if any) and any other re-
quirements. Additionally it includes dataset the user inputs. The object properties overData,
speci昀椀es, and speci昀椀esValue connect the user intent to the dataset provided by the user, the algo-
rithm speci昀椀ed and the parameter value speci昀椀ed, respectively (if any).

Object Properties DL
overData ∃ overData.Thing⊑ Intent⊑ ∀ overData.Data
speci昀椀es ∃ speci昀椀es.Thing⊑ Intent⊑ ∀ speci昀椀es.Algorithm

speci昀椀esValue ∃ speci昀椀esValue.Thing⊑ Intent⊑ ∀ speci昀椀esValue.ParameterVal

Table 4.1: Object Proper琀椀es of Intent as a Domain

Data
The concept of Data in this ontology, unlike other ontologies, is a more generic term; it does
not only represent the dataset provided by the user, but it is also extended to include any inputs
or outputs that are generated by the di昀昀erent steps within a work昀氀ow. In other words, Data in-
cludes the initial dataset provided by the user, the intermediary tabular datasets resulting from
the di昀昀erent transformative steps of awork昀氀ow, and any other forms of data, includingmodels,
visualizations, and so on. This de昀椀nition requires data characteristics to be incorporated to be
able to distinguish between possible inputs and outputs. It should be noted that the subclass
of TabularDataset of Data uses the de昀椀nition of the DMOP[18] ontology and its de昀椀ned data
properites. The object property has-quality is directly taken from the DMOP[18] ontology,
which in turn was incorporated from the DOLCE[24] ontology.

25

Object Properties DL
has-quality ∃ has-quality.Thing⊑Data⊑ ∀ has-quality.DataCharacteristic

Table 4.2: Object Proper琀椀es of Data as a Domain

Task
This concept represents the task or set of tasks inferred from the intent of the user; the con-
cept Task includes all possible data mining processes that can be performed on the data. A
task can consist of one simple task (such as Data Visualization or Data Clustering) or a task
that could include other tasks, such as Descriptive Analysis including Data Cleaning andData
Visualization. The object property subtaskOf connects the concept Task to itself to represent
the relation between a set of subtasks achieving a bigger task, while the object property tackles
connects a task to the user intent it ful昀椀lls.

Object Properties DL
subtaskOf ∃ subtaskOf.Thing⊑ Task⊑ ∀ subtaskOf.Task
tackles ∃ tackles.Thing⊑ Intent⊑ ∀ tackles.Task

Table 4.3: Object Proper琀椀es of Task as a Domain

Algorithm
This concept represents all solutions suitable for solving a certain task. For example, the KNN
algorithm is used to solve a clustering task, while a line plot is also an algorithm to solve a vi-
sualization task, and so on. solves is object property that connects an algorithm to the task it
solves.

Object Properties DL
solves ∃ solves.Thing⊑Algorithm⊑ ∀ solves.Task

Table 4.4: Object Proper琀椀es of Algorithm as a Domain

Implementation
A concept that represents the executable code of an algorithm detailing all of its technical spec-
i昀椀cations. An implementation is connected to its corresponding algorithm through the object

26

property implements. An implementation is also connected to its input and output speci昀椀ca-
tions (data speci昀椀cation) through the object properties speci昀椀esInput and speci昀椀esOutput. Ad-
ditionally, it is also connected to its parameters through the hasParameter object property.

Object Properties DL

implements ∃ implements.Thing⊑ Implementation
⊑ ∀ implements.Algorithm

speci昀椀esInput ∃ speci昀椀esInput.Thing⊑ Implementation
⊑ ∀ speci昀椀esInput.DataSepc

speci昀椀esOutput ∃ speci昀椀esOutput.Thing⊑ Implementation
⊑ ∀ speci昀椀esInput.DataSepc

hasParameter ∃ hasParameter.Thing⊑ Implementation
⊑ ∀ hasParameter.Parameter

Table 4.5: Object Proper琀椀es of Implementa琀椀on as a Domain

DataSpec
This concept is used to represent all the possible speci昀椀c types of input and output produced by
the di昀昀erent implementations. As explained above, Data refers to the data instances resulting
from the components, such as: tabular dataset, model, and visualization. DataSpec is used as
a concept that covers all of the subclasses of the main Data subclasses. For example, there are
many subclasses to Model – Decision Tree model, KNNmodel, normalizer model, and so on.
DataSpec is only connected to DataTag using hasDatatag.

Object Properties DL
hasDatatag ∃ hasDatatag.Thing⊑DataSpec⊑ ∀ hasDatatag.DataTag

Table 4.6: Object Proper琀椀es of DataSpec as a Domain

DataTag
This concept is used to represent tags on DataSpec instances based on their characteristics or
the change in characteristics due to various work昀氀ow steps. They are expressed as SHACL
shapes. For example, a splitting component would take as an input a tabular dataset and will
output two datasets with labels: TrainTabularDataset and TestTabularDataset, or in the case
of normalization, the resulting dataset would have the tag NormalizedTabularDataset.

Component
Represents an abstraction on top of the implementation, where each implementation is con-
nected to at least one component. A component usually overrides the value of one or more

27

parameters fromthe implementationparameters, which allows an implementation tohavemul-
tiple components performing the same task but resulting in di昀昀erent results due to di昀昀erent
semantics. For instance, an implementation for a bar chart visualization may have three dif-
ferent components: a sum bar chart, an average bar chart, and a count bar chart. All these
components share the same implementation parameters along with the same input and out-
put speci昀椀cations; nevertheless, each component performs the aggregation di昀昀erently based
on the aggregation type parameter, producing di昀昀erent visualizations. A component is linked
to its corresponding implementation through the hasImplementation object property. A com-
ponent is connected to the parameters it overrides through its parameter speci昀椀cation using the
property overridesParameter and it is also connected to its exposed parameters with the prop-
erty exposesParameter. A component also uses the property hasTransformation to connect to
its corresponding transformation (if it exists). A component is also connected to a rule for the
purpose of selecting the best component of the available components for a certain preprocess-
ing task through hasRule.

Object Properties DL

hasImplementation ∃ implements.Thing⊑ Implementation
⊑ ∀ implements.Component

overridesParameter ∃ implements.Thing⊑Component
⊑ ∀ implements.ParameterSpeci昀椀cation

exposesParameter ∃ exposesParameter.Thing⊑Component
⊑ ∀ exposesParameter.Parameter

hasTransformation ∃ hasTransformation.Thing⊑Component
⊑ ∀ hasTransformation.Transformation

hasRule ∃ hasRule.Thing⊑Component
⊑ ∀ hasPreference.Rule

Table 4.7: Object Proper琀椀es of Component as a Domain

Rule
Represents the heuristic rules used to select the best component for a pre-processing task based
on the input dataset characteristics and the main task of the work昀氀ow. A rule is connected to
a DataTag through the object property relatedtoDatatag, as well as a task through the object
property relatedtoTask.

Transformation
Aconcept that is used to represent the transformations incurredby a component. Since compo-

28

Object Properties DL

relatedtoDatatag ∃ relatedtoDatatag.Thing⊑Rule
⊑ ∀ relatedtoDatatag.DataTag

relatedtoTask ∃ relatedtoTask.Thing⊑Rule
⊑ ∀ relatedtoTask.Task

Table 4.8: Object Proper琀椀es of Rule as a Domain

nents (not all) performoperations on the input dataset that result in a transformeddataset as an
output, these changes need to be recorded and re昀氀ected on the characteristics of the data anno-
tation propagating between the steps. These transformations, expressed in terms of SPARQL
queries, are of three main types:

" Loader Transformation: this transformation is speci昀椀c to the data loader at the begin-
ning of any work昀氀ow where the data annotations of the original dataset are outputted
from the loader component.

" Copy Transformation: a transformation that indicates the direct copy of the contents
of the input directly into the output with minimal to no changes.

" SPARQL Transformation: a customized transformation that is de昀椀ned depending on
the functionality of the component; it mainly consists of INSERT and DELETE state-
ments.

Parameter
A concept that represents the con昀椀guration parameters of an implementation; implementa-
tion parameters include algorithm parameters and engine-speci昀椀c parameters. An example of
an algorithm parameter would be the name of the categorical column to plot in a bar chart
algorithm; whereas, the inclusion of N/A values is an implementation-speci昀椀c parameter (a
parameter in KNIME, in this speci昀椀c case).

Object Properties DL

speci昀椀edBy ∃ speci昀椀edBy.Thing⊑ Parameter
⊑ ∀ speci昀椀edBy.ParameterSpeci昀椀cation

Table 4.9: Object Proper琀椀es of Parameter as a Domain

ParameterSpecification

29

It represents the assignment of a parameter to a value. Initially, not all the parameters of an
implementation are assigned to values (except for the overridden parameters of a component).
The concept is similar to an existing concept in the [16] ontology; however, it was adapted to
the work昀氀ow generation case of this work. This is explained in detail in chapter 5.

Step
A concept that represents the building blocks of a work昀氀ow. It is connected to the following
steps within the same work昀氀ow through followedBy. It is also connected to the input data and
output data of each step using hasInput and hasOutput. It is also connected to the component
it runs and all the parameters used through runs and usesParameter, respectively.

Object Properties DL
followedBy ∃ followedBy.Thing⊑ Step⊑ ∀ followedBy.Step
hasInput ∃ hasInput.Thing⊑ Step⊑ ∀ hasInput.Data
hasOutput ∃ hasOutput.Thing⊑ Step⊑ ∀ hasOutput.Data

runs ∃ runs.Thing⊑ Step⊑ ∀ runs.Component
usesParameter ∃ usesParameter.Thing⊑ Step⊑ ∀ usesParameter.Parameter

Table 4.10: Object Proper琀椀es of Step as a Domain

Workflow
Aconcept that represents the process inwhich auser’s intent is accomplished. It is connected to
its corresponding intent using generatedFor. It is also connected to the steps forming it using
the property hasStep, as well as, to its characteristics, user feedback and work昀氀ow evaluation
through has-quality, hasFeedback, and hasEvaluation.

4.2 CBOX

Since this ontology was created for the purpose of work昀氀ow generation, a set of taxonomies
that complement the existing terminology in the TBOXwith human-level knowledge and con-
straints is needed. In this section, an explanation of the necessary concepts in this ontology level
is given alongwith the correspondingpopulation strategies. Moreover, with the important goal
of extensibility andmaintainability of this ontology, the vocabulary will be divided within two
classes at this level: engine-agnostic concepts and engine-speci昀椀c concepts. Understanding the
details of this section is quite crucial for the upcoming Section 6.1

30

Object Properties DL

generatedFor ∃ generatedFor.Thing⊑Work昀氀ow
⊑ ∀ generatedFor.Intent

hasStep ∃ hasStep.Thing⊑Work昀氀ow
⊑ ∀ hasStep.Step

hasFeedback ∃ hasFeedback.Thing⊑Work昀氀ow
⊑ ∀ hasFeedback.UserFeedback

hasEvaluation ∃ hasEvaluation.Thing⊑Work昀氀ow
⊑ ∀ hasEvaluation.ModelEvaluation

has-quality ∃ has-quality.Thing⊑Work昀氀ow
⊑ ∀ has-quality.Work昀氀owCharacteristics

Table 4.11: Object Proper琀椀es of Work昀氀ow as a Domain

4.2.1 Engine-agnostic CBOX

This class includes all the taxonomies related to the process of generating work昀氀ows and the
domain knowledge necessary to complete the process of work昀氀ow creation independently of
the technical details related to the execution engine. The concepts included in this class are:
tb:Task, tb:Algorithm, tb:Data, tb:DataSpec, tb:DataTag and tb:Rule. Any extensions in this
class includes the addition of new tasks, algorithms, di昀昀erent types of data, or data tags; there
is no change as it is very rare for the requirements of an algorithm, for example, to change.

Task
Tasks are added to the CBOX taking into account existing hierarchies in the categories of data
tasks. In this ontology, the dmop:DM-Task hierarchy is borrowed. The choice of this hierarchy
is due to its comprehensive categorization of data tasks. As shown in Figure 4.2, a task is divided
into an induction task and data processing and each has its own subclasses until the leaves are
reached where a task such as Classi昀椀cation would be categorized under Predictive Modeling
Task.

Algorithm
Figure 4.3 shows the tb:Algorithm hierarchy, which is also very similar to tb:Task in terms
of the hierarchical representation of its instances; hence, the DMOP hierarchy of dmop:DM-
Algorithm is also borrowed for classi昀椀cation and other tasks. However, a similar structure was
adapted to algorithms for other tasks (such as visualization).

31

Figure 4.2: A diagram illustra琀椀ng the DM‐Task hierarchy in the DMOP ontology with the arrows indica琀椀ng a subclassOf
rela琀椀onship

Figure 4.3: A diagram illustra琀椀ng the DM‐Algorithm hierarchy in the DMOP ontology with the arrows indica琀椀ng a subclassOf
rela琀椀onship

Data
As explained in Section 4.1, tb:Data includes all possible abstract types of inputs andoutputs of
di昀昀erent steps. Thus, these types are manually added in this case after anticipating the possible
outcomes of the di昀昀erent algorithms added previously. In this case, tb:Data has three di昀昀er-

32

Figure 4.4: A diagram illustra琀椀ng the Data classs in the ontology and how it is related to the hierarchy in the DMOP ontology
with the empty arrows indica琀椀ng a subclassOf rela琀椀onship

ent subclasses: dmop:TabularDataset, cb:Model and cb:Visualization. Within each of these
subclasses, there are further speci昀椀c subclasses, as illustrated in Figure 4.4.

DataSpec
tb:DataSpec builds on the tb:Data speci昀椀c leaves de昀椀ned; a SHACL shape is created for each
of the leaves shown in Figure 4.4.

DataTag
The instances of tb:DataTagwere createdmanually as SHACLshapesmanually. The tb:DataTag
instances are not expected to grow largely as other previous concepts since they are limited by
the data characteristics of the original dataset and the changes implied by the di昀昀erent transfor-
mative steps within the work昀氀ow.

Rule
The rule instances are associated with tasks, components and, data tags. Thus, the heuristic
instructions they represent do not change across the di昀昀erent engines as they are easily trans-
ferrable but they rely on the aforementioned concepts, so they are not likely to change but they
are very likely to increase as those speci昀椀c concepts increase.

4.2.2 Engine-specific CBOX

This class includes vocabularies with de昀椀nitions that are closely related to the execution engine
and its con昀椀guration. This class includes: tb:Implementation, tb:Component, tb:Parameter

33

and tb:Transformation. While the extension in this class directly builds on the concepts from
the previous class, it is possible to have two implementations for the same algorithm for two
di昀昀erent engines; thus, the creation of instances for this class of concepts is directly related to
the execution requirements. Additionally, unlike previous class concepts, changes are likely to
occur in response to changes in engine requirements or upgrades.

Although the previous iteration of this work [7] proposed an automated approach to gener-
ate the code for instances of this class for the KNIME engine (speci昀椀cally, tb:Implementation
and tb:Parameter instances), it also cited the need for manual revisions. Moreover, the pro-
posed automated approach was able to create con昀氀icts within the ontology due to some of
the generated parameters having the same parameter keys and functionalities in di昀昀erent im-
plementations. Hence, the instances for tb:Implementation, tb:Parameter and tb:Component
were inserted manually to avoid any potential issues or con昀氀icts. As for tb:Transformation in-
stances, they were created manually since they rely on the components de昀椀nitions.

4.3 ABOX

For the last level of the ontology, it consists of instances of the following classes: tb:Work昀氀ow,
tb:Step, tb:ParameterSpec, and tb:Data. All instances belonging to these concepts are gener-
atedmainlyduring thework昀氀owgenerationprocesswith fewexceptions. For tb:ParameterSpec
instances, fewof themaremanually created by specifying the overriddenparameterswhenman-
ually creating tb:Component instances, while themajority of themare created during thework-
昀氀ow generation process.

Additionally, the main exception is the 昀椀rst tb:Data instance – the original dataset provided
by the user; the dataset is imported as an RDF-formatted annotation. This annotation cap-
tures the characteristics of the dataset as a whole (number of columns, number of entries, en-
coding, and so on), along with detailed characteristics of each column (name of the column,
data type of the column, whether a column is unique, or categorical, and so on). Other data
instances are generated during the pipeline generation process either by transforming the orig-
inal dataset and other transformed iterations of it, or by generating instances of other types
as outputs from learner (producing model instances) or visualizer (producing visualization in-
stances) implementations. It should be noted thatwhile the development of the data annotator
is outside the scope of this work, there was a need to slightly tweak the existing data annotator
to correspond to the speci昀椀cations of the KNIME execution engine. For instance, KNIME’s
de昀椀nition of categorical columns does not include numerical columns, i.e. any numerical col-

34

umn is not considered categorical. On the other hand, the data annotator provides a more
comprehensive de昀椀nition of categorical columns that include numerical columns.

4.4 ComparisonwithOther Ontologies

As part of this work, it is very important to understand where the proposed ontology stands
with respect to other ontologies that serve similar purposes. As discussed in section 2.2, there
are many ontologies targeting the representation of machine learning or, more broadly, data
mining processes whether for the purposes of standardizing and representation or automatic
work昀氀ow generation. In table 4.12, it can be observed that the proposed ontology is more
comprehensive in terms of concept coverage due to the nature of the ontology’s purpose of
generating work昀氀ows from user intents taking into consideration di昀昀erent variables, such as
user-speci昀椀ed constraints and user feedback.

Additionally, in the proposed ontology, there are several levels of abstraction that are not
covered by other ontologies. The 昀椀rst evidence on that is the separation among the concepts:
tb: Algorithm, tb:Implementation, and tb:Component, with only BIGOWL[6] adopting a
similar approach. However, none of the ontologies encapsulates the inputs and outputs of
di昀昀erent algorithms in one concept with other ontologies, except for DMWF[17], with other
ontologies opting to separate the main dataset from the products of the di昀昀erent algorithms.
Moreover, the novelty of the proposed ontology is also apparent with the introduction of the
concept tb:Rule used to encode some of the domain knowledge serving the main purpose of
the ontology.

While themain purpose of Table 4.12 is to compare the proposed ontology to other existing
ontologies, it can be utilized in the future as a reference not only to extend the ontology, but
also to enrich it using existing taxonomies from the addressed ontologies.

35

Proposed Ontology DMOP BIGOWL ML-Schema OntoDM DMWF

Intent N/A N/A N/A N/A N/A
Task DM-Task N/A Task Data Mining Task Goal

Algorithm DM-Algorithm Algorithm Algorithm Data Mining Algorithm N/A
Implementation DM-Operator Component Implementation Data Mining Algorithm Task
Component N/A Task N/A Data Mining Component Method
Parameter Parameter Parameter HyperParameter Parameter MetaData

Parameter Speci昀椀cation OpParameterSetting N/A HyperParameterSetting Parameter Setting N/A
Data DM-Data, DM-Hypothesis N/A Data, Model Dataset, Generalization IOObject

Data Characteristics DataCharacteristic N/A DataCharacteristic Data speci昀椀cation MetaData
DataSpec IO-Class Data N/A N/A N/A
DataTag N/A N/A N/A N/A N/A
Work昀氀ow DM-Work昀氀ow Work昀氀ow N/A N/A Work昀氀ow

Work昀氀ow Characteristics N/A N/A N/A N/A N/A
Step N/A N/A N/A N/A N/A
Rule N/A N/A N/A N/A N/A

Model Evaluation ModelPerformance N/A ModelEvaluation Generalization evaluation N/A
Requirement N/A N/A N/A N/A N/A
Constraint N/A N/A N/A Constraint N/A

User Feedback N/A N/A N/A N/A N/A

Table 4.12: Mapping between the ontology terms between the proposed ontology and the di昀昀erent ML/DM ontologies and vocabularies

36

5
Work昀氀ow Generation

This chapter is focused on explaining all the details relevant to thework昀氀ow generation process,
including the steps taken to generalize the work昀氀ow generation process, along with the intu-
ition and implementation of selective work昀氀ow generation. Section 5.1 delves into the details
of the work昀氀ow generation process given a user intent and producing a set of valid work昀氀ow
plans. Section 5.2 tackles the steps taken to generalize certain aspects of thework昀氀ow generator
and other necessary elements. Section 5.3 explains the basis of the selectivework昀氀ow generator;
rule-based preprocessing component selection based on the meta-characteristics of the dataset.

5.1 Overview ofWorkflowGeneration Process

The 昀椀rst step in the work昀氀ow generation process is the ingestion of a single user intent (repre-
sented as a node of type tb:Intent); a user intent de昀椀nes (at least) the main pillars of the gen-
eration process. The requirements needed for each intent depend on the type of task the user
desires. Figure 5.1 shows someof the di昀昀erent possible intent forms. As the diagram shows, the
validity of the intent depends on the task needed. For example, in the intent graph for the classi-
昀椀cation intent, the intent’s requirements include de昀椀ning the task and the dataset, namely the
classi昀椀cation task and the Titanic dataset. Meanwhile, in the graph capturing the visualization
intent, the de昀椀nition of an exact visualization algorithm along with the categorical column to
be visualized is needed due to the nature of the task. Moreover, each visualization algorithm
may require a di昀昀erent set of values for a di昀昀erent set of parameters. Table 5.1 shows the di昀昀er-

37

Figure 5.1: Examples illustra琀椀ng di昀昀erent forms of user intent.

ent parameters needed for each of the visualization algorithms and whether they are optional
or not. Thus, di昀昀erent intents dictate di昀昀erent intent graphs. On the other hand, a regression
intent, similar to a classi昀椀cation intent, may not require the speci昀椀cation of an algorithm; nev-
ertheless, a user intent could capture certain user preferences in terms of algorithms or even
parameter values that go beyond the minimum validity requirements.

Visualization Algorithm Parameter Optional

Pie Chart Categorical Column No
Frequency Column Yes

Bar Chart Categorical Column No
Frequency Columns Yes

Histogram Numerical Column No
Frequency Columns Yes

Heatmap Y-Axis Column No
X-Axis Columns No

Scatter Plot X-Axis Column No
Y-Axis Column No

Line Plot X-Axis Column No
Y-Axis Columns No

Table 5.1: Di昀昀erent parameter requirements for the visualiza琀椀on algorithms

After capturing the user intent, the next stepwould be to generate a set of quite simple plans
that illustrate the main steps needed to ful昀椀ll the intent of the user; abstract plans are very sim-
plistic plans that demonstrate the steps needed to solve the task expressed by the user in their

38

Figure 5.2: Abstract plans generated from the user intent.

intent. Naturally, the 昀椀rst step would be to load the data and then perform the necessary steps
to solve the problem de昀椀ned by the user. In Figure 5.2, di昀昀erent forms of intents are shown
to a昀昀ect the number and forms of possible abstract plans. For example, in the graph illustrat-
ing the classi昀椀cation intent where no speci昀椀c algorithms are de昀椀ned to solve the task, the set
of abstract plans would demonstrate the necessary steps of loading the dataset, partitioning
the dataset (as part of the requirements for the classi昀椀cation algorithms) and then training the
classi昀椀cation model and, consequently, applying the model to the test dataset with di昀昀erent
abstract plans utilizing di昀昀erent algorithms capable of performing the task. However, in the
case of specifying an algorithm, the set of generated abstract plans is more precise; addition-
ally, in the case of visualization tasks, it can be noticed how the process is straightforward with
no need for intermediary steps due to the lack of any speci昀椀c requirements by the scatter plot
visualization algorithm.

Since an abstract plan represents a very broad engine-agnostic conceptualization of the task

39

Algorithm 5.1 Generalized Logical Planner Algorithm
1: a: Main algorithm solving the task
2: d: Dataset of the intent
3: procedure LogicalPlanner(a, d)
4: C ← {c | ∀c = ⟨ac, Ic, Oc⟩ ∈ C : ac = a} ▷Operations applying algorithm
5: W ← {}
6: for each ci in C
7: R← {ri | ∀p ∈ Ici : ¬ρ(p)} ▷Unsatis昀椀ed operation preconditions, including

partitioning
8: T ← {} ▷ T is a matrix
9: for each ri inR

10: ti ← {c | ∀c = ⟨ac, Ic, Oc⟩ ∈ C : ri ∈ Oc} ▷Operations related to ri
11: insert ti into T
12: end for
13: V ← cross product of T ▷Generate every possible combination of operations
14: for each vi in V
15: wi ← BuildPlan(vi, ci)
16: appendwi intoW
17: end for
18: end for
19: returnW
20: end procedure

to be achieved by the work昀氀ow, a more extended, engine-speci昀椀c plan is aimed for at this stage.
The main idea in this phase is to boil down the abstraction of tb:Algorithm nodes in each of
the abstract plans into the corresponding executable tb:Component instances to obtain what
can be described as logical plans. Moreover, logical plans take into account the metadata of the
input dataset in addition to the preconditions of each tb:Algorithm node speci昀椀ed in the ab-
stract plan. Those preconditions are encoded as input requirements in the tb:Implementation
instances corresponding to the tb:Algorithm. The preconditions represent certain dataset char-
acteristics that should be present for the algorithm to be applied on the dataset.

The procedure of generating a set of logical plans from an abstract plan is captured in the
pseudocode provided in Algorithm 5.1. Given a, the main algorithm solving an analytical task
in an abstract plan (SVM, Decision Tree, and Scatter plot in the abstract plans illustrated in
our examples in Figure 5.2), and d, the dataset provided by the user as part of their intent (the
Titanic dataset in our example), a set of logical plans is generated for an abstract plan through
the following steps:

40

1. For each of the components corresponding to the algorithms in the abstract plan, a list
of input preconditions (SHACL shapes labeled as tb:DataTag nodes in the ontology dis-
cussed in Section 4.1) is obtained (lines 4 to 7).

2. For each of the input preconditions that are not satis昀椀ed by the dataset, a list of com-
ponents capable of transforming the dataset so that it satis昀椀es those preconditions is
obtained (lines 9 to 12).

3. Then, using the di昀昀erent lists of transformative components for each of the unsatis昀椀ed
preconditions, a set of logical plans is built using all the possible combinations of trans-
formative components (lines 13 to 16).

In Figure 5.3, examples of the possible logical plans generated from the logical plans can
be observed. It can be deduced from the logical plans that in the SVM classi昀椀cation case, the
data needed to be partitioned, normalized aswell as not containing any null values; whereas, the
preconditions in the case of scatter plot are not as strict. As explained, each logical plan captures
a di昀昀erent combination fromall possible transformative combinations. Someof the di昀昀erences
to be highlighted are the number of components required to apply each transformation; in
the case of simple work昀氀ows (scatter-plot work昀氀ow), one component is needed per work昀氀ow.
However, when partitioning the data (classi昀椀cationwork昀氀ow), the number of components per
work昀氀ow is two, as it corresponds to the number of partitions. Another important aspect to
note is the number of components corresponding to an algorithm as the relation between these
two concepts is not one-to-one as explained previously, which can be clearly seen in the case of
SVM posessing three di昀昀erent components.

The 昀椀nal step in generating the analytical pipelines is the creation of work昀氀ow plans. For
each logical plan created exactly one work昀氀ow plan is created by applying the following steps
for each component (the pseudocode for the algorithm is shown in Algorithm 5.2):

1. A node of type tb:Step is created and connected to the corresponding component using
the tb:runs relation.

2. The speci昀椀cations of inputs and outputs for each component are identi昀椀ed by retrieving
them from the corresponding tb:Implementation node; in the case of simple work昀氀ows,
if there is an output from the previous step that satis昀椀es the conditions, it is plugged in
as an input (the case for second step taking as an input the imputed dataset and not the
imputation model). For work昀氀ows incorporating data partitioning, the output from

41

Figure 5.3: Logical plans expanded from abstract plans.

previous steps is assigned as input for the following steps based on the preconditions of
each step.

3. Assigning values for all component parameters (other than the component overridden
parameters) where the exposed parameters are assigned values expressed in the intent;
for other parameters or if the intent does not include values for the exposed parameters,
they are assigned to the prede昀椀ned default values. In the case of parameters that require
user input,manual reviewwill be needed. The process of assigning values for parameters
is represented by assigning a tb:ParameterSpeci昀椀cation node to the parameter through
a tb:speci昀椀edBy connection.

4. As for the componentoverriddenparameters, the corresponding tb:ParameterSpeci昀椀cation
nodes are retrieved and are then joined with the tb:ParameterSpeci昀椀cation nodes from
the previous step. All the tb:Parameter nodes connected to tb:ParameterSpeci昀椀cation
nodes are then linked to the tb:Step node running the tb:Component node.

5. Finally, the transformation queries are executed to re昀氀ect the changes in the annotation
of the dataset and propagate the changed annotation.

In Figure 5.4, the logical plan for visualizing the dataset is subjected to the previous steps to
produce the 昀椀nal work昀氀ow plan. There is a one-to-one relation between the components of
the logical plan and the steps of the work昀氀ow plan. As can be seen, each of the components in

42

Algorithm 5.2Work昀氀ow Plan Builder
1: V: combination of operations to be applied
2: c: main component in the abstract plan
3: procedure BuildPlan(V, c)
4: dataset_node← original_dataset
5: loader_step ▷ Initialize Data Loader step
6: for each vi in [V, c]
7: test_comp = get_test_component(vi) ▷Get the test component for each of

the components
8: if test_comp =None
9: create_step() ▷Create a step for the component and update the work昀氀ow

10: if component_output = trainData, testData ▷ If the component
outputs split tabular data

11: train_node← trainData

12: test_node← testData

13: end if
14: else
15: create_train_step() ▷Create a step for the training component with

train_node as an input
16: if test_node! = None

17: create_test_step() ▷Create a step for the testing component with
test_node as an input

18: end if
19: end if
20: end for
21: returnW
22: end procedure

this case has at least one transformation (not always the case) with the data loading component
having a very special transformation specialized in providing the original dataset annotation.
As for the other components each contain a copy transformation that directly copies the input
with the speci昀椀ed index and outputs it to a speci昀椀ed index as well. For example, the imputa-
tion step (second step) takes the dataset as an input and outputs it, as it is, as the 昀椀rst output
(of two outputs); however, the main reason for the copy transformations in these components
is to facilitate re昀氀ecting the changes on the dataset annotation instead of deleting the annota-
tion and creating it again. The third type of transformation seen is how the actual changes to
the annotation are re昀氀ected with one example changing the values of the column properties
(second transformation in the second step) and the other example adding a new column to the

43

Figure 5.4: Work昀氀ow plan created from logical plan.

existing dataset annotation through a number of DELETE and INSERT statements.

In Figure 5.5, a clear presentation of the di昀昀erent relations tb:Parameter nodes have across
the di昀昀erent stages. Initially in the CBOX, the tb:Parameter nodes are connected to the cor-
responding tb:Implementation node using the relation tb:hasParameter; at this stage, there
are no di昀昀erences between the nodes. However, the 昀椀rst layer of distinction results from the
abstraction level tb:Component represents with respect to tb:Implementation with some spe-
ci昀椀c parameters being overridden by a component (essentially the main di昀昀erence between the
di昀昀erent components of a single implementation). The indirect connection between the com-
ponent and a parameter through a tb:ParameterSpeci昀椀cationnode is how anoverriddenparam-
eter is represented, while the exposed parameter is directly connected to the component. There
are also other tb:Parameter nodes that are exposed by a component; they remain unassigned to
speci昀椀c values waiting for a user input. After all the parameters of a component are assigned
to tb:ParameterSpec nodes during the work昀氀ow planning stage, all of the parameters, includ-

44

ing the parameters inherited from the implementation other than the exposed and overridden
ones, will be connected to the corresponding tb:Step node, as can be seen in the lower diagram
of the 昀椀gure.

Figure 5.5: Parameter Di昀昀erent Rela琀椀ons in Across the Stages.

5.2 GeneralizingtheWorkflowGenerationProcess

As mentioned in Section 2.2, the proposal in [7] is the only work that tackled the work昀氀ow
generation process from an engine-agnostic perspective; the work昀氀ow generation process is in-
dependent of the execution engine that runs the 昀椀nal work昀氀ows. However, as can be seen from
the pseudocode presented inAlgorithm 5.3, the logical planner di昀昀erentiated between the con-
struction of train-test work昀氀ow plans and simple work昀氀ow plans based on a Boolean variable
(line 2). Moreover, the inclusion of data partitioning components was not includedwithin the
general framework of data transformation components, rather treated as an exception (as can
be seen in lines 13 to 14).

The inclusion of data partitioning components as part of data partitioning components is
a very important step in the generalization of the generation process, as it allows for a better
utilization of the knowledge base at hand. Thus, the 昀椀rst step is to distinguish between the
data partitioning components outputs. The partitioning components take as an input a single

45

Algorithm 5.3 Previous Logical Planner Introduced in [7]
1: : a: main algorithm used in abstract plan
2: : d: Dataset to be used in the work昀氀ow
3: procedure ExpandPlan(a, d)
4: train←whether a requires training
5: C ← {c | ∀c = ⟨ac, Ic, Oc, τc⟩ ∈ C : ac = a} ▷Operations applying algorithm
6: W ← {}
7: for each ci in C
8: R← {ri | ∀p ∈ Ici : ¬ρ(p)} ▷Unsatis昀椀ed operation preconditions
9: T ← {} ▷ T is a matrix

10: for each ri inR
11: ti ← {c | ∀c = ⟨ac, Ic, Oc, τc⟩ ∈ C : ri ∈ Oc} ▷Operations related to ri
12: insert ti into T
13: end for
14: if train
15: p← {c | ∀c = ⟨ac, Ic, Oc, τc⟩ ∈ C : ac = Partitioning} ▷ Partitioning

Operations
16: insert p into T
17: end if
18: V ← cross product of T ▷Generate every possible combination of operations
19: for each vi in V
20: if train
21: wi ← BuildTrainTestPlan(vi, ci)
22: else
23: wi ← BuildPlan(vi, ci)
24: end if
25: appendwi intoW
26: end for
27: end for
28: returnW
29: end procedure

tabular dataset and output twodatasetswith di昀昀erent dimensions depending on the speci昀椀c pa-
rameters of the partitioning component and the component itself. In the Python code shown
in Figure 5.6, the code represents an example of a data partitioning component possessing a set
of transformations (expressesd in SPARQL)with the last one adding the dmop:isTrainDataset
and dmop:isTestDataset to each of the resulting data partitions annotations to distinguish be-
tween the data partitions.

46

random_relative_train_test_split_component = Component(
name='Random Relative Train-Test Split',

.....
transformations=[

CopyTransformation(1, 1),
CopyTransformation(1, 2),
Transformation(

query='''
DELETE {

$output1 dmop:numberOfRows ?rows1.
$output2 dmop:numberOfRows ?rows1.

}
INSERT {

$output1 dmop:numberOfRows ?newRows1 .
$output1 dmop:isTrainDataset True . # a property for the training dataset
$output2 dmop:numberOfRows ?newRows2 .
$output2 dmop:isTestDataset True . # a property for the testing dataset

}
WHERE {

$output1 dmop:numberOfRows ?rows1.
BIND(ROUND(?rows1 * (1 - $parameter3)) AS ?newRows1)
BIND(?rows1 - ?newRows1 AS ?newRows2)

}
''',

),
],

)
})

Figure 5.6: Example of Python code snippet showing a data par琀椀琀椀oning component with the data transforma琀椀ons expressed
in SPARQL.

Consequently, given these added properties to the annotation of intermediate datasets, spe-
ci昀椀c data tags can be assigned to the output datasets as shown by the speci昀椀c SHACL shape
example for the training dataset in Listing 5.7.

These data tags play a very signi昀椀cant role in de昀椀ning the input and output speci昀椀cations of
tb:Implementation nodes and their corresponding tb:Component nodes. For example, in the
case of classi昀椀cation work昀氀ow employing a decision tree model, the decision tree learner com-
ponent will have an input speci昀椀cation of cb:TrainTabularDatasetShape, while the decision
tree applier component will have an input speci昀椀cation of cb:TestTabularDatasetShape. This

47

TrainTabularDatasetShape
cbox.add((cb.isTrainConstraint, RDF.type, SH.PropertyConstraintComponent)

)
cbox.add((cb.isTrainConstraint, SH.path, dmop.isTrainDataset))
cbox.add((cb.isTrainConstraint, SH.datatype, XSD.boolean))
cbox.add((cb.isTrainConstraint, SH.hasValue, Literal(True)))

cbox.add((cb.TrainTabularDatasetShape, RDF.type, SH.NodeShape))
cbox.add((cb.TrainTabularDatasetShape, RDF.type, tb.DataTag))
cbox.add((cb.TrainTabularDatasetShape, SH.property, cb.isTrainConstraint)

)
cbox.add((cb.TrainTabularDatasetShape, SH.targetClass, dmop.

TabularDataset))

Figure 5.7: Python code snippet showing data tag example expressed in the form of a SHACL shape for training data sets

approach eliminates the use of literal assignments when linking between the inputs and out-
puts during logical planning and contributes to the generalization of addingmore partitioning
components that could split the data into more than two partitions in the future (as will be
seen in Section6.1).

The next step in generalizing the work昀氀ow generator is the generalization of the work昀氀ow
builder. As discussed above, in the previous approach, there was a distinction between the con-
struction of a train-test work昀氀ow and a simple work昀氀ow. However, in the generalized logical
planner (shown in Algorithm 5.1), the work昀氀ow builder is more generalized as can be shown
in the pseudocode in Algorithm 5.2. The generalized work昀氀ow builder works the following
way:

" For each logical plan, the set of components constructing the plan is retrieved.

" Each component is checked for the existenceof an equivalent testing component; if there
is not, a simple work昀氀ow is constructed.

" If there is an equivalent testing component, the output speci昀椀cations of the component
are checked to see if they imply the partitioning of the data.

" If the data is partitioned, the following steps consider the existence of the partitioned
data.

" If the data is not partitioned, the following steps assume a simple work昀氀ow structure.

48

train_query = f'''
PREFIX sh: <{SH}>
PREFIX rdfs: <{RDFS}>
PREFIX cb: <{cb}>
PREFIX dmop: <{dmop}>

ASK {{
{{
{io_shape.n3()} a sh:NodeShape ;

sh:targetClass dmop:TabularDataset ;
sh:property [

sh:path dmop:isTrainDataset ;
sh:hasValue true

] .
}}

}}
'''

Figure 5.8: SPARQL query used to retrieve training data sets from the output of a data par琀椀琀椀oning component

Finally, among the most important steps in generalizing the work昀氀ow generator is the cre-
ation of the SPARQLqueries necessary to retrieve the needed information from the generalized
ontology described in detail in Chapter 2. A relevant example of the queries used within the
generation process is the query used to identify the training dataset from the outputs of the
data partitioning component shown in Figure 5.8.

5.3 Rule-based SelectiveWorkflowGeneration

Upon closer inspection of the algorithmdescribed inAlgorithm5.1, it can be observed that the
algorithm is easily prone to rapidly grow in terms of complexity due to the following factors:

" Number of Components (C) capable of solving a certain task (as observed in line 4).

" Number of Component Requirements (R) needed to be satis昀椀ed in the dataset before
a component can be used within a work昀氀ow (as seen in line 7).

" Number ofRequirement-satisfyingComponents (T) available to ful昀椀ll a certain com-
ponent requirement (as seen in line 10).

49

Thus, an approximation of the time complexity ofAlgorithm5.1, assuming that all the com-
ponents inC have the same number of requirements inR and each ri has the same number of
ful昀椀lling components T , would be:

O

(

∑

ci∈C

∏

ri∈Ri

|ti|

)

= O(|C|TR) (5.1)

However, it should be taken into account that this approximate complexity does not take
into account the actual work昀氀ow building process (line 15), in addition to the complexity of
all SPARQL-querying-reliant operations; SPARQLqueries complexity is considered PSPACE-
Complete according to [25].

The 昀椀rst intuitive thought that would come after looking at Equation 5.1 is whether there is
any approach to control any of the factors that in昀氀uence the complexity. As highlighted in Sec-
tion 2.3, the focus of this work will be on operator choice, that is, the selection of requirement-
satisfying component. As can be seen in Figure 5.9, some component requirements or data
transformations can be accomplished using a number of semantically di昀昀erent components.
For example, there are three di昀昀erent scaling methods to scale the features of a dataset, each
having advantages and disadvantages according to the characteristics of the input dataset. Simi-
larly, the choice betweenmean imputation and row removal in the case of empty value presence
depends on the use case and, most importantly, the characteristics of the dataset. Therefore,
themainmotive of this section of the work is to introduce an approach to avoid the generation
of all the possible work昀氀ows from all the preprocessing component combinations by selecting
the most e昀昀ective preprocessing components for each step, which could signi昀椀cantly decrease
the number of generated work昀氀ows and the generation time needed. However, the important
question that arises is regarding the component selection mechanism.

As shown in Figure 5.9, preprocessing component selection is performed considering the
characteristics of the input dataset. For example, the decision on whether to remove null val-
ues or use mean imputation can be made by looking at the percentage of missing values in the
dataset. Thus, it is very important for the dataset to be pro昀椀led; extractmetadata characteristics
of the input dataset, including statistics and the results of some test on dataset features (such as
the normality of features). The pro昀椀ling of the data set will result in the dataset being assigned
to tb:DataTag nodes similar to those specifying the inputs and outputs in the case of tb: Imple-
mentation nodes; an example of this is the shape shown in Figure 5.10, which is assigned to a
dataset based on the percentage of missing values in a data set.

In this case, therewill be a tb:Rulenode that connects thepreprocessingnode to a tb:Problem

50

Figure 5.9: Di昀昀erent components can achieve the same requirement but in seman琀椀cally di昀昀erent manners.

Figure 5.10: An example of how the component removing null values is connected to the the data tag related to the dataset
possessing low percentage of missing values and Classi昀椀ca琀椀on being the task when the rule can be applied.

node and a tb:DataTag node representing that the selection process of the preprocessing com-
ponent takes into consideration the task at hand, in addition to the meta-data characteristics a
dataset must possess.

The process by which the preprocessing components are chosen is described in the pseu-
docode in Algorithm 5.4. For a given task T , a list of components C to select from, and an
input dataset d, the following steps are performed at the logical planner level:

1. For each component inC , the rules to be checked are retrieved from the ontology.

2. Then, each component is assigned to a score that relies on the number of rules it satis昀椀es
with respect to the input dataset, in addition to the weight of the rule satis昀椀ed. In the
case of a component not satisfying a certain rule, the component’s score is penalized.

51

3. The 昀椀nal score of the component is a combination of the actual component score and
the component’s rank within the set of all the components (a rank is a numeric value
that is assigned to each of the components depending on the general preference of the
components).

4. Finally, the components with the highest 昀椀nal scores are selected; in the case of two or
more components having the same score, the rank is used to favor between them.

5. In the case of preprocessing components that do not possess a certain set of rules to be
evaluated against or a predetermined ranking, the user will have the option to input the
percentage of preprocessing components to be used instead of the whole set of compo-
nents. The percentage of components to be selected are chosen randomly.

Themethod of applying the rules and incorporating them into the components is discussed
in details in Section 6.1 but an example to illustrate the main ideas discussed in the steps above
can be seen in the code in Figure 5.11, where the python code shows the di昀昀erent scaling com-
ponents and how the rules are encoded. It should be noted that for each task, there are di昀昀erent
sets of rules; in the case of classi昀椀cation tasks, the choice of the scaling component relies mainly
on the distribution of the data, as well as the existence of outliers. The rules have di昀昀erent
weights in the case of each component depending on the cruciality of the rule. For example, to
select the Z-Score scaling component, it is very important that the data follows a normal distri-
butionmore thanwhether there exist outliers or not; the exact opposite forMin-Max scaling is
the case with the existence of outliers being the most crucial rule regardless of the distribution
of the data.

The details of themethods used to pro昀椀le the data corresponding to the data tags in the rules
highlighted in Figure 5.11 are discussed in Section 7.1.2.

52

Algorithm 5.4 Get Best Components Algorithm
1: G: Ontology
2: t: Task
3: C: List of Components
4: d: Dataset
5: p: Percentage
6: procedureGetBestComponents(G, t, C, d, p)
7: for each ci inC
8: ci_rules = get_component_rules(G, t, ci) ▷Get the rules for each

component corresponding to a task
9: score=0

10: components[ci] = score

11: for each cri in ci_rules
12: if satis昀椀es_shape(ciri, d)
13: score+ = rule_weight ▷Assign a score to each component based on

the weights of the satis昀椀ed rules
14: else
15: score− = rule_weight ▷ Penalize the component for each rule it

violates
16: end if
17: components[ci] = (score, rank) ▷ 昀椀nal score of the component relies on

rule score and assigned rank
18: end for
19: sort(components[ci]) ▷ Sort the components based on their 昀椀nal score
20: end for
21: best_components = highest_scores(components) ▷ return the components with

the best score
22: OR
23: best_components = pick_randomly(components, p) ▷when all the components

have equal 昀椀nal scores, pick p of them randomly
24: return best_components

25: end procedure

53

min_max_scaling_component = Component(
name='Min-Max Scaling',
rules={

(cb.Classification, 2):[
{'rule': cb.NotOutlieredDatasetShape, 'weight': 2},
{'rule': cb.NotNormalDistributionDatasetShape, 'weight': 1}

],
(cb.DataVisualization, 1): [

{'rule': cb.TabularDataset, 'weight': 1}
]

})

z_score_scaling_component = Component(
name='Z-Score Scaling',
rules={

(cb.Classification, 3):[
{'rule': cb.NormalDistributionDatasetShape, 'weight': 2},
{'rule': cb.OutlieredDatasetShape, 'weight': 1}

],
(cb.DataVisualization, 1): [

{'rule': cb.TabularDataset, 'weight': 1}
]

})

decimal_scaling_component = Component(
name='Decimal Scaling',
rules={

(cb.Classification, 1):[
{'rule': cb.NotNormalDistributionDatasetShape, 'weight': 1},
{'rule': cb.OutlieredDatasetShape, 'weight': 1}

],
(cb.DataVisualization, 2): [

{'rule': cb.TabularDataset, 'weight': 1}
]

})

Figure 5.11: Python code snippet showing the di昀昀erent scaling components and how the rules are encoded within each
component taking into account the main task and dataset characteris琀椀cs essen琀椀al for the rule to be deemed valid; each rule
has a weigh and each component has an overall rank within each task.

54

6
Extending theWork昀氀ow Generation

Framework

As a result of the proposed ontology and the generalized work昀氀ow generator, this chapter fo-
cuses on providing clear guidelines on the extension of the work昀氀ow generation framework to
cover more intents without adjusting the work昀氀ow generation algorithm.

6.1 GeneralGuidelinesonExtendingtheWorkflow
Generator

Among the very important results that stem from the generalization e昀昀orts of this work is the
composition of a complete set of guidelines that enable the extension of the work昀氀ow genera-
tion framework to widen the scope of the possible user intents by adding to the existing set of
tasks, algorithms, and non engine-speci昀椀c concepts. Furthermore, a subset of these guidelines
focus on the extension of work昀氀ow generation to speci昀椀c execution engines.

6.1.1 Engine-Agnostic Extension

The following guidelines should be used for the purpose of extending the work昀氀ow generator
on an engine-agnostic level:

55

Figure 6.1: An example of adding a task along with the algorithms capable of solving it to the CBOX level.

" Given a speci昀椀c task t and a set of algorithms At = at where each at solves t, both t

and At must be added to the CBOX of the ontology (example shown in Figure 6.1).
Furthermore, in the case of an added task including a set of subtasks STt = stt, it is
also important to add them within the CBOX (Figure 6.1 shows the example of the
visualization task).

" For at ∈ At, de昀椀ne the set of implementations Ma = ma. Part of the de昀椀nition
of each ma should be assigned to one of the tb:Implementation subclasses. The cur-
rent existing subclasses are: tb:LearnerImplementation, tb:ApplierImplementation and
tb:VisualizerImplementation. For example, in the case of the SVM algorithm, it has two
possible implementations: anSVMlearner implementation (tb:LearnerImplementation)
and an svm applier implementation (tb:ApplierImplementatino); the same case would
be for normalization or imputation algorithms. As for tb:VisualizerImplementation, it
is very speci昀椀c to visualization algorithms, such as heat map. In the event that the new
implementations are not categorized under any of the existing subclasses, a new subclass
could be added within the TBOX of the ontology, or the new implementations will be
of type tb:Implementation by default (see Figure 6.2).

" For each ma, the list of input and output speci昀椀cations (Im, Om) must be de昀椀ned. If
the SHACL shape corresponding to any of the speci昀椀cations does not exist, it must be
added to the CBOX of the ontology according to the way shown in Figure 6.3.

" If there is a need to de昀椀ne new SHACL shapes related to the requirements or transfor-
mations applied by an implementation, a new SHACL shape must be de昀椀ned in the
CBOX (example in Figure 5.7 for one of the partition outputs).

" For each implementationma, a set of componentsCm = {cm}must be de昀椀ned, where
|Cm| ≥ 1. Asmentioned in the formal de昀椀nition of the termComponent3.2, the set of

56

Figure 6.2: An example of adding a new implementa琀椀on subclass along exis琀椀ng subclasses and vocabulary.

exposed and overridden parameters must be chosen for each of the created components
from the set of all implementation parameters. In Figure 6.4, an example of a heatmap
visualizer component is de昀椀ned where the exposed parameters are “label column” and
”chart Title”.

" Another aspect of a component’s de昀椀nition is the creation of the set of transformation
queries; the changes to the input dataset annotations (example in Figure 6.4).

" The 昀椀nal part of the engine-agnostic extension is the addition of the selection rules for
transformation components. As shown in the example showing the selection rules for
the scaling components in Figure 5.11. Each component cm has as set of rules Rc for
each t ∈ T ; each rule has a weight depending on the importance of the rule for the
component. Also the components have ranks within each task that are ordered in a de-
scendingmanner (the greater the rank, themore favorable the component is for a speci昀椀c
task).

6.1.2 Engine-Specific Extension

In the case of engine-speci昀椀c extensibility, the guidelines are mainly based on determining the
execution engine and identifying the important con昀椀gurations needed. The following guide-

57

Figure 6.3: An example of adding a new implementa琀椀on subclass along exis琀椀ng subclasses and vocabulary.

lines will be as general as possible; however, the examples will be mainly from the KNIME
engine use case:

" For each execution engine to be included, there will be customized subclasses for the Im-
plementation and Parameter classes that take into consideration speci昀椀c con昀椀gurations
related to the nodes or components of the execution engine. Through Figure 6.5, it can
be seen that the engine-speci昀椀c subclasses are KnimeImplementation and KnimeParam-
eter; they both have engine-speci昀椀c arguments, such as knime node factory. Moreover,
the input speci昀椀cation has two data tags related to the data not containing null values
and the data being scaled. More importantly, the output speci昀椀cations correspond to
two outputs: a visualization and a tabular dataset.

" The set of engine-speci昀椀c parameters need to be added to the de昀椀nition of the engine-
speci昀椀c implementation. Although one can argue that parameters are uni昀椀ed across the
algorithms since the de昀椀nition of the algorithm, in nature, is engine-agnostic, the issue
is with the values accepted by these parameters along with, most importantly, the exis-
tence of other parameters related to the engine and node con昀椀guration that cannot be
disregarded. An example can be found in Figure 6.5.

" There may be a need to deal with engine-speci昀椀c data speci昀椀cations that may need to be
de昀椀ned; however, this is totally dependent on the engine de昀椀nitions.

58

exposed_params = [
'labelColumn', ### label column
Creating displayed cols depending on the input, ### numeric column
'chartTitle', ### Title of the scatter plot

]

heatmap_visualizer_component = Component(
name = "Heatmap Visualizer",
implementation = heatmap_visualizer_implementation,
exposed_parameters=[

param for param in heatmap_visualizer_implementation.parameters.keys
() if param.knime_key in exposed_params

],
transformations = [

CopyTransformation(1, 2),
Transformation(

query = '''
INSERT DATA {

$output2 dmop:hasColumn _:heatmapColumn .
_:heatmapColumn a dmop:Column ;

dmop:hasName "Selected (Heatmap)" ;
dmop:hasValue false .

}
'''

)
]

)

Figure 6.4: Python code snippet showing an example of the heatmap visualizer component with the set of exposed parame‐
ters being “labelColumn” and “chartTitle”

" Finally, although the development of the dataset annotator and the engine-speci昀椀cwork-
昀氀ow translator was not within the scope of the work presented. It should be noted
that the KNIME work昀氀ow translator introduced by [7] was functional with the need
to tweak some aspects to consider a wider scope of nodes. As for the data annotator,
there was a slight need to change the de昀椀nition of some data types to conform to KN-
IME’s data type de昀椀nitions.

59

heatmap_visualizer_implementation = KnimeImplementation(
name = "Heatmap Visualizer",
algorithm = cb.HeatMap,
parameters = [

KnimeParameter("Label Column", XSD.string, "$$CATEGORICAL$$", '
labelColumn', path="model"),

KnimeParameter("Colunms Included Names Array Size", RDF.List, "
$$NUMERIC_COLUMNS$$", 'included_names', condition="$$INCLUDED$$",
path="model/columns"),

KnimeParameter("Colunms Excluded Names Array Size", RDF.List, "
$$NUMERIC_COLUMNS$$", 'excluded_names', condition="$$EXCLUDED$$",
path="model/columns"),

KnimeParameter("Image Width", XSD.int, 800, 'imageWidth', path="model
"),

KnimeParameter("Image Height", XSD.int, 600, 'imageHeight', path="
model"),

KnimeParameter("Resize to Full Window", XSD.boolean, True, '
resizeToWindow', path="model"),

Definitions for the rest of KNIME parameters
],
input = [

[cb.NonNullTabularDatasetShape, cb.NormalizedTabularDatasetShape, cb.
TabularDataset]

],
output = [

cb.HeatMapVisualizationShape,
cb.TabularDataset

],
implementation_type = tb.VisualizerImplementation,
knime_node_factory = 'org.knime.js.base.node.viz.heatmap.

HeatMapNodeFactory',
knime_bundle = KnimeJSBundle,
knime_feature = KnimeJSViewsFeature

)

Figure 6.5: Python code snippet showing an example of an engine‐speci昀椀c implementaiton for the heatmap visualizer KNIME
implementa琀椀on.

60

7
Experimentation

In this chapter, two di昀昀erent experimental settings are presented, with Section 7.1 delving into
the settings of each experiment. The 昀椀rst experiment setting features synthetic scenarios that
aim to understand the performance of the generation algorithm and compare it to the previ-
ous approach. The second setting focuses more on testing the e昀昀ectiveness of the rule-based
pruning approach in terms of the selected work昀氀ows achieving near-best results to the global
optimum achieved by the work昀氀ows generated in a brute force manner. Section 7.2 discusses
the results of each experimental setting. It should be noted that the experimental runs men-
tioned in this sectionwere performed on a LinuxUbuntu 22.04machinewith anAMDRyzen
7 5800H 4.4GHz CPU and 16GB RAM.

7.1 Experimental Setting

7.1.1 Performance Benchmarking

As concluded previously by the analysis performed in Section 5.3, some of the main factors
a昀昀ecting the complexity of the generation algorithm are the following:

" Number of components solving a task: examples of this would be the di昀昀erent SVM
components along with Decision Trees component that can be used to solve a classi昀椀ca-
tion task.

61

" Number of preconditions for each component: an SVM component has two precon-
ditions that ensure the features of a dataset do not contain any null values and are scaled.

" Number of components satisfying a precondition: the precondition of a dataset to
be scaled can be achieved using three possible components: Z-Score scaling, Decimal
scaling, or Min-Max scaling.

The experimental setting relies on the creation of synthetic CBOXs taking into account the
variables mentioned according to Table 7.1. A single user intent with a single problem and a
single dataset is taken as an input. Then, utilizing one CBOX at a time, the problem is solved
using a single algorithmwith thenumber of components featured in the syntheticCBox; hence,
generating the possible work昀氀ows.

Components # Preconditions # Components per Condition

5 1 1

2 2

10 3 3

4 4

100 5 5

Table 7.1: Di昀昀erent Parameters for Synthe琀椀c CBox Crea琀椀on

The generation experiments take into account four di昀昀erent scenarios:

" Previous Brute-Force Approach: the generation algorithmproposed in [7] taking into
account all the possible combinations of components satisfying each precondition.

62

" Proposed Brute-Force Approach: the generation algorithm proposed in this work,
which also considers all the possible combinations of components to achieve each pre-
condition.

" Proposed Selective Approach with 50% of the Components: the proposed genera-
tion algorithm along with the rule-based pruning technique resulting in the selection of
50% of the components achieving a precondition instead of all of them.

" Proposed SelectiveApproachwith 1Component: theproposedgeneration algorithm
with the rule-based pruning technique being most discriminant and selecting one com-
ponent from all the components available to ful昀椀ll a precondition.

In this experiment, for each scenario, the di昀昀erent parameter values are collected alongwith the
number of generated work昀氀ows and the generation time.

7.1.2 Evaluating the Rule-based Optimization

In this experimental setting, the main goal was to evaluate the performance of the work昀氀ows
selected by the rule-based selection technique for a certain problem with regard to the perfor-
mance of all the possible work昀氀ows generated. For this purpose, it was necessary to populate
the CBOX of the ontology with components that correspond to KNIME components to en-
able the execution and evaluation of the generated work昀氀ows. Table 7.2 shows a list of the
components created to populate the ontology along with the corresponding number of KN-
IME node parameters, overridden parameters, exposed parameters and transformations.

As for the rules incorporated for the purpose of selective generation process, some meta-
characteristics of the dataset were extracted using the available data annotator, then SHACL
shapes corresponding to these meta-characteristics were created. These meta-characteristics
are:

" Feature Normality: each feature in the input dataset was tested to determine whether
it had a normal distribution or not. The main test used is the Shapiro-Wilk test; if the
p-value<0.05, the feature is considerednormally distributed. If p-value>0.05, the skew-
ness and kurtosis tests are used to determine whether the distribution is close to a nor-
mal distribution; if |skewness| < 1 and |kurtosis| < 2, the feature is considered normally
distributed; otherwise, the feature is deemed not normally distributed. If the dataset
contains at least one feature with a normal distribution, the whole dataset is considered
normally distributed.

63

KNIME Node #P Component #OP #EP #T
CSVReader 65 Local CSV Reader 2 1 1

Partitioning 6

RandomRelative 2 2 3
RandomAbsolute 2 2 3
Top K Relative 2 1 3
Top K Absolute 2 1 3

Missing Value 7
Mean Imputation 3 0 2
Drop rows 3 0 4

Missing Value (Applier) 0 Missing Value Applier 0 0 2

Normalizer (PMML) 4
MinMax Scaling 1 2 4
Z-Score Scaling 1 0 4
Decimal Scaling 1 0 4

Normalizer Apply (PMML) 0 Normalizer Applier 0 0 6
Decision Tree Learner 16 Decision Tree Learner 0 16 0
Decision Tree Predictor 5 Decision Tree Predictor 0 5 2

SVM Learner 9
Polynomial SVM Learner 1 5 1
HyperTangent SVM Learner 1 4 1
RBF SVM Learner 1 3 1

SVM Predictor 4 SVM Predictor 0 4 2

Pie Chart 106
Pie Chart Sum Visualizer 1 2 0
Pie Chart Average Visualizer 1 2 0
Pie Chart Count Visualizer 1 2 0

Bar Chart 122
Bar Chart Sum Visualizer 1 2 0
Bar Chart Average Visualizer 1 2 0
Bar Chart Count Visualizer 1 2 0

Histogram 140
Histogram Sum Visualizer 1 2 0
Histogram Average Visualizer 1 2 0
Histogram Count Visualizer 1 2 0

Scatter Plot 75 Scatter Plot Visualizer 0 2 2
Line Plot 85 Line Plot Visualizer 0 2 1
Heatmap 68 Heatmap Visualizer 0 2 2

Table 7.2: KNIME nodes integrated into the ontology as components within the CBOX to perform the experiments

64

" Outlier Detection: each feature in the dataset is tested; if there is one feature that con-
tains an outlier, the whole dataset is deemed to contain outliers. Modi昀椀ed Z-Score was
used for this purposewith points having an absolute score > 3, regarded as outliers. If the
percentage of outlier points is above 25%, the feature is considered to contain outliers.

" MissingValuePercentage: a directmetric containing thepercentageof rows containing
at least one null value.

Moreover, three di昀昀erent datasets were used to create the intents driving the creation of the
work昀氀ows: Titanic* dataset, Penguins dataset, and Horses! dataset. Finally, all generated
work昀氀ows were translated into functional KNIME work昀氀ows using the work昀氀ow translator
proposed by [7].

7.2 Results

7.2.1 Results for Performance Benchmarking

In Figure 7.1, we can see some interesting insights about the relations between the number
of work昀氀ows generated and the time to generate these work昀氀ows under di昀昀erent parameters.
Each point in the graph represents a tuple of three parameters (x, y, z), where x is the num-
ber of components performing a task, y is the number of preconditions for each component
and z is the number of components satisfying a precondition. The scales of both axes are log-
arithmically scaled to facilitate the display of the data points. The general behavior of the rela-
tionship between the number of generated work昀氀ows and execution time across all generation
techniques is linear. However, some important distinctions can be noted among generation
approaches. Firstly, there is a slightly better performance shown by the current brute-force
generator over the previous brute-force generator, indicated by the lower slope of the data in
the linearly scaled data. Secondly, in the case of the 50% selective generator, the main e昀昀ect is
the backward displacement of the curve compared to the brute force curves. Additionally, in
the case of the very discriminant selective generator, the number of work昀氀ows generated seems
to stagnate at certain values despite the increase in generation time.

Looking deeper into the relation between the number of work昀氀ows generated with respect
to the number of components per condition in Figure 7.2, we can clearly see the exponential

*https://www.kaggle.com/datasets/yasserh/titanic-dataset
 https://archive.ics.uci.edu/dataset/690/palmer+penguins-3
!https://archive.ics.uci.edu/dataset/47/horse+colic

65

Figure 7.1: Rela琀椀onship between the number of work昀氀ows and genera琀椀on 琀椀me in the case of the four genera琀椀on scenarios

relationship between these two variables, especially in the case of brute-force generators. How-
ever, in the case of the 50% selective generator, the exponential growth is halted and the curve
becomes composed of linearly increasing and constant lines. More interestingly, in the case
of discriminant genertor, we can understand the reason for the stagnation seen previously in
Figure 7.1; the number of generated work昀氀ows becomes equal to the number of components
capable of solving a certain task.

On the other hand, in Figure 7.3, where the relation between the number of work昀氀ows gen-
erated and the number of preconditions per component, we can see that all generators display
a similar exponential relationship (except in the case of the most discriminant generator). Nev-
ertheless, although both factors have an exponential e昀昀ect on the number of work昀氀ows, the
number of preconditions per component shows a stronger in昀氀uence compared to the number
of components per condition, evident by the higher number of generated work昀氀ows for the
same values of both variables.

As for Figure 7.4, the relationship between the generation time and the number of compo-
nents per condition is demonstrated. As noted previously, the proposed brute-force generator
shows a better performance than the brute-force generator proposed in [7]. The same halting

66

Figure 7.2: The rela琀椀on between the number of generated work昀氀ows and components per precondi琀椀on (precondi琀椀ons per
component = 3)

phenomenapreviously discussed can also be seenwith respect to the generation time. However,
the generation time does not show a constant behavior in the case of the very discriminant gen-
erator (shown in Figure 7.6, second graph), instead it is behaving linearly. This clearly shows
that the execution time for generating the same number of work昀氀ows di昀昀ers and that themain
factors that a昀昀ect it are the complexity parameters.

As for the relationship between the generation time and the number of conditions per com-
ponent (shown in Figure 7.5), the exponential trend continues to prevail in all the genera-
tors, except for themost discriminant generator scenario with the relationship leaning towards
linear-like curves as shown in Figure 7.7. As noted in the case of the number of generatedwork-
昀氀ows, the number of requirements per component seems to have the upper hand in terms of
the greater in昀氀uence over the generation time. In fact, Figure 7.6 shows how the change in the
number of conditions per component contributes to the increase of both slope and displace-
ment of the curves unlike how the change in the number of components per condition seems
to only change the displacement of the curves in Figure 7.7.

In this section, we were able to see the linear relationship between the number of generated
work昀氀ows and the generation time across di昀昀erent generators under di昀昀erent generation pa-

67

Figure 7.3: The rela琀椀on between the number of generated work昀氀ows and precondi琀椀ons per component (components per
precondi琀椀on = 3)

rameters. Moreover, it was evident that the preconditions per component variable seem to
have a stronger in昀氀uence over both the number of generated work昀氀ows and the generation
time, compared to the components per condition variable. The selective generators are able to
halt the rapid growthof thenumber ofwork昀氀owsbydecreasing thenumber of components per
requirement used in generating the work昀氀ows, speci昀椀cally in the case of the most discriminant
generator resulting in the number of work昀氀ows being equal to the number of components.
However, the execution time is not tightly related to the number of generated work昀氀ows as it
was evident that the same number of work昀氀ows does not imply the same generation time as
the generation time is in昀氀uenced by the number of requirements per condition.

7.2.2 Results for Rule-based Optimization

InTable 7.3, the signi昀椀cant di昀昀erences in thenumber of generatedwork昀氀ows and consequently
the generation time can be clearly seen between the brute-force generation algorithm and the
rule-based selection. The di昀昀erence is approximately 4.5 times and almost 80% fewer work-
昀氀ows across the three datasets. Another evident note is how the slight di昀昀erences in generation

68

Figure 7.4: The rela琀椀on between the genera琀椀on 琀椀me and components per precondi琀椀on (precondi琀椀ons per component = 3)

times could be a昀昀ected by the number of features each dataset contains, with theHorses dataset
having the highest generation time in both cases. The generation times seen in the table are the
mean of three generation runs.

Dataset
Generation Time (s) # Work昀氀ows # Features (KNIME)

Instances
Brute Force Selective Brute Force Selective Num. Cat.

Titanic 32.05 6.85 6 6 891
Penguins 28.34 6.30 76 16 4 3 344
Horses 36.40 7.65 11 17 299

Table 7.3: Sta琀椀s琀椀cs related to the datasets and generated classi昀椀ca琀椀on work昀氀ows in brute‐force generator and selec琀椀ve
generator

In the evaluation of the classi昀椀cation work昀氀ows, two important metrics were taken into ac-
count: balanced accuracy and f1-score for each class. The reason being the normal accuracy
metric being easily in昀氀uenced by imbalanced testing datasets which causes, in most cases, the
performance of a model to be overestimated. However, the combination of the f1-score and
balanced accuracy gives a more realistic evaluation of the performance of the model bymeasur-

69

Figure 7.5: The rela琀椀on between the number of genera琀椀on 琀椀me and precondi琀椀ons per component (components per precon‐
di琀椀on = 3)

Figure 7.6: The rela琀椀on between the genera琀椀on 琀椀me and components per precondi琀椀on across di昀昀erent values for precon‐
di琀椀ons per component in the best case scenario (selec琀椀on of 1 component)

ing the accuracy of each class individually and then averaging all of them, in addition to the
f1-score of each class being an important indicator of the model’s ability to generalize over all
the classes.

An important distinction to be made has to do with the number of all generated work昀氀ows
and the number of valid generated work昀氀ows. In the case of a work昀氀ow resulting in a model
with a class f1-score that cannot be calculated,model is deemed invalid since it fails to generalize

70

Figure 7.7: The rela琀椀on between the genera琀椀on 琀椀me and precondi琀椀ons per component across di昀昀erent values for compo‐
nents per precondi琀椀on in the best case scenario (selec琀椀on of 1 component)

over all the classes and failing to produce an accurately representative balanced accuracy score.
Hence, the work昀氀ow is deemed to be invalid.

As can be seen in Table 7.4, the percentage of valid work昀氀ows with respect to all possible
work昀氀ows is approximately 51%; while the number of invalid selected work昀氀ows is one out of
all the selectively generated work昀氀ows. In the case of the Titanic dataset, Decision Treemodels
seem to be the best option yielding the best performance; however, due to decision trees not
needing any preprocessing steps, we end up with all the decision tree work昀氀ows in both cases
of brute force and selective generation attempts. Regarding SVM work昀氀ows, we can see that
the di昀昀erence between the best selected SVMmodel and the best global SVMmodel does not
exceed 2%.

Work昀氀ows All Valid
Categories # Mean Min. Max. # Mean Min. Max.

All Work昀氀ows 76 54.63% 32.6% 82.68% 39 58.67% 32.6% 82.68%
Selected Work昀氀ows 16 59.21% 32.6% 82.68% 15 59.82% 32.6% 82.68%
DTWork昀氀ows 4 77.3% 72.4% 82.68% 4 77.3% 72.4% 82.68%

SVM (All Work昀氀ows) 72 53.42% 32.6% 70.4% 35 56.55% 32.6% 70.4%
SVM (Selected Work昀氀ows) 12 53.17% 32.6% 68.6% 11 53.46% 32.6% 68.6%

Table 7.4: Table illustra琀椀ng the Balanced Accuracy sta琀椀s琀椀cs among all the generated and selected work昀氀ows for solving the
classi昀椀ca琀椀on task in the Titanic dataset

In Figure 7.8, we can get a sense of the average performance of SVM models produced by
valid work昀氀ows adopting di昀昀erent combinations of preprocessing components. A very impor-
tant observation is how the least number of valid work昀氀ows feature the 昀椀rst-relative partition-
ing and dropping rows, which could give insight into a combination that is the least fruitful in
terms of producing valid work昀氀ows.

71

Figure 7.8: The set of pre‐processing combina琀椀ons producing valid work昀氀ows for the classi昀椀ca琀椀on task in the Titanic dataset
(selected work昀氀ows highlighted in green)

As for the Penguins dataset, as can be seen in Table 7.5, SVMmodels seemed to be the better
choice over Decision Trees, with the best selected SVMmodel yielding a very close result to the
best global SVMmodel. However, the overall number of functional generated work昀氀ows is 58
instead of 76 with 18 work昀氀ows not being capable of producing a model due the adopted par-
titioning technique resulting in a training dataset that contains only one class, which returns
a fatal error in KNIME. This is mainly due to the way the dataset is organized (sorted by the
class column). Additionally, we can see a very wide gap between theminimum andmean statis-
tics between all and valid work昀氀ows across all the work昀氀ow categories. This could be mainly
in昀氀uenced by the percentage of valid work昀氀ows – approximately 44.8%.

Work昀氀ows All Valid
Categories # Mean Min. Max. # Mean Min. Max.

All Work昀氀ows 58 54.47% 0.0% 100% 26 93.15% 75.2% 100%
Selected Work昀氀ows 13 52.43% 0.0% 99.2% 6 95.92% 93.03% 99.2%
DTWork昀氀ows 4 46.78% 0.0% 93.6% 2 93.32% 93.03% 93.6%

SVM (All Work昀氀ows) 54 55.04% 0.0% 100% 24 93.14% 75.2% 100%
SVM (Selected Work昀氀ows) 9 54.94% 0.0% 99.2% 4 97.23% 94.4% 99.2%

Table 7.5: Table illustra琀椀ng the Balanced Accuracy sta琀椀s琀椀cs among all the generated and selected work昀氀ows for solving the
classi昀椀ca琀椀on task in the Penguins dataset

If we were to look at the valid combinations in Figure 7.9, it can be clearly noticed how the
organization of the dataset in昀氀uenced the validity of certain partitioning techniques. In fact,

72

all partitioning techniques that feature random sampling were valid, while those that feature
昀椀rst (or top k) sampling were not valid. In addition, the best mean was achieved by a selected
combination.

Figure 7.9: The set of pre‐processing combina琀椀ons producing valid work昀氀ows for the classi昀椀ca琀椀on task in the Penguins
dataset (selected work昀氀ows highlighted in green)

For the dataset with the highest number of dimensions, the overall performance of themod-
els is quite poor (check Table 7.6). In a repetition of a familiar case from the Penguins dataset,
15 work昀氀ows were not functional for the following reasons: 3 work昀氀ows featuring prepro-
cessing combinations resulting in one-class model training, 11 work昀氀ows produced an empty
testing dataset and 1 work昀氀ow produced an empty training dataset. In general, the percentage
of valid work昀氀ows to all the functional work昀氀ows is very low. As for the performance of the
selectedwork昀氀ows, we can see that the selectedwork昀氀owswere able to achieve global optimum
performance despite the overall underwhelming performance of the models.

Work昀氀ows All Valid
Categories # Mean Min. Max. # Mean Min. Max.

All Work昀氀ows 61 47.68% 0.0% 66.6% 6 58.6% 53.3% 61.4%
Selected Work昀氀ows 16 56.83% 50% 66.6% 4 57.98% 53.3% 61.4%
DTWork昀氀ows 4 56.33% 51.4% 59% 1 56.6% 56.6% 56.6%

SVM (All Work昀氀ows) 57 47.08% 0.0% 66.6% 5 59% 53.3% 61.4%
SVM (Selected Work昀氀ows) 12 57.01% 50% 66.6% 3 58.43% 53.3% 61.4%

Table 7.6: Table illustra琀椀ng the Balanced Accuracy sta琀椀s琀椀cs among all the generated and selected work昀氀ows for solving the
classi昀椀ca琀椀on task in the Horses dataset

Looking at the number of valid combinations in 7.10, we can notice the very low number of
valid combinations. This can be attributed to multiple factors. The 昀椀rst being the high rate of
missing values with the combinations featuring 昀椀rst-relative partitioning and dropping empty

73

rows resulting in solely invalidmodels or brokenwork昀氀ows. A second possible reason is the na-
ture of the dataset and the classi昀椀cationmodels at hand, in addition to the high dimensionality
of the data, which begs the need for feature engineering techniques as part of the preprocessing
components.

Figure 7.10: The set of pre‐processing combina琀椀ons producing valid work昀氀ows for the classi昀椀ca琀椀on task in the Horses
dataset (selected work昀氀ows highlighted in green)

The following Figures (7.11, 7.12 and 7.13) express the results in tables 7.4, 7.5 and 7.6,
respectively. We can notice in the case of Figure 7.11 that the elimination of outliers seen on
the left is equivalent to the elimination of all the invalid work昀氀ows. However, in the case of
7.12, the outliers appear after eliminating the invalid work昀氀ows, but the distribution of the
data does not reach very low values; in fact, all balanced accuracy scores are approximately 75%
and higher. Finally, for Figure 7.13, the distribution is condensed due to the elimination of
many invalid data points that are approximately 0.0%with the newdistributions having a lower
bound over 50.0%.

Figure 7.11: Box plots represen琀椀ng the di昀昀erences in balanced accuracy sta琀椀s琀椀cs across the di昀昀erent categories for all
func琀椀onal work昀氀ows (on the le昀琀) and the valid func琀椀onal work昀氀ows (on the right) for the classi昀椀ca琀椀on task of the Titanic
dataset

As for the visualizationwork昀氀ows, themost important part in evaluating the work昀氀owswas
missing, the existence of evaluation metrics for produced visualizations. Although there are
certain standards related to the evaluation of the understandability of di昀昀erent visualizations
from a user point of view (such as the ones introduced in [26]), there is no research or literature

74

Figure 7.12: Box plots represen琀椀ng the di昀昀erences in balanced accuracy sta琀椀s琀椀cs across the di昀昀erent categories for all
func琀椀onal work昀氀ows (on the le昀琀) and the valid func琀椀onal work昀氀ows (on the right) for the classi昀椀ca琀椀on task of the Penguins
dataset

Figure 7.13: Box plots represen琀椀ng the di昀昀erences in balanced accuracy sta琀椀s琀椀cs across the di昀昀erent categories for all
func琀椀onal work昀氀ows (on the le昀琀) and the valid func琀椀onal work昀氀ows (on the right) for the classi昀椀ca琀椀on task of the Horses
dataset

investigating the e昀昀ects of di昀昀erent preprocessing methods on di昀昀erent types of visualization.
One potential reason could be the role of visualization as an analytical technique that steers
the wheel of data understanding as part of the e昀昀orts guiding the selection of appropriate pre-
processing components or even algorithms to solve a problem, i.e., means within the bigger
solution to a problem rather than a stand-alone problem to be solved on its own. Despite all
of this, in this part we will look at some interesting observations on the e昀昀ects of some prepro-
cessing techniques on some visualizations in an e昀昀ort to detect any patterns.

The heat map plots shown in Figure 7.14 are produced using di昀昀erent scaling and impu-
tation techniques using the Titanic dataset; for example, the heat map on the upper left side
is produced after applying mean imputation and z-score scaling. Aside from the di昀昀erences
in scales, the heat map plots produced by the Min-Max scaling seem to show colors from the

75

extreme ends of the scale; meanwhile, Z-Score scaling displays the majority of points around
a certain value (due to the assumption of data normality). As for decimal scaling, the colors
seem to be more balanced and variable but not with the same extreme variability as with the
case in the heat map featuring min-max scaling. On the other end, the use of row removal for
null values seems to also increase the variability in each column, unlike the quite similar color
patterns produced in the heat maps featuring mean imputation.

Figure 7.14: Possible heat maps generated from di昀昀erent scaling and imputa琀椀on methods

Shifting the focus to line plots produced using theDiabetes dataset in Figure 7.15, we can see
very di昀昀erent visualizations resulting from the adoption of di昀昀erent scaling techniques. The
昀椀rst interesting observation is the similarity between the line plot produced using decimal scal-
ing and the line plot with no scaling, apart from the di昀昀erent scales, in a clear signal to the
decimal scaling ability to preserve the magnitudes across values. In the cases of Z-Score and
Min-Max scaling, the produced plots are quite di昀昀erent from the initial plot; Z-score disre-
gards the magnitudes and focuses the data around the means, while Min-Max scaling seems to
amplify the variability of the data possibly due to the existence of extreme outliers.

In the case of scatter plots, scaling the data is not of any in昀氀uence on the overall plot; however,
the adopted imputation method makes a di昀昀erence in how the patterns of the data will be
displayed. On the right of Figure 7.16, we can see how the mean imputation creates a set of

76

Figure 7.15: Possible line plots generated from di昀昀erent scaling methods

points clustered on the mean value. The question here becomes whether this is useful or not
for the analysis of the user or whether it serves as a mere display of data points that serves no
actual purpose.

Figure 7.16: A comparison between two sca琀琀er plots using two di昀昀erent imputa琀椀on methods: null values removal and mean
imputa琀椀on

The previous observations seem to show that the adoption of preprocessing techniques in
producing visualization could be a result of certain user questions to be answered through these
plots. Thus, it seems that the choice of preprocessing techniques for visualization tasks could

77

be entirely reliant on user intents rather than any other factors.
On the other hand, the case for classi昀椀cation work昀氀ows shows some interesting relations.

It seems that there is a direct trade-o昀昀 between the number of components performing a task
and the ability to reach a global optimum in terms of classi昀椀cation work昀氀ow performance, i.e.,
the more components available to solve a task, the more time it will take to generate the work-
昀氀ows. Although the selective generation shows great promise in solving this problem, we were
able to see in the results showcased in Section 7.1.1 that even when we are able to produce a
signi昀椀cantly less number of work昀氀ows, the generation time still increases due to other more
in昀氀uencing factors, namely the preconditions per component. However, it is possible that
future component expansions should focus on the quality rather than the quantity of compo-
nents available to solve a problem. This was clearly seen in the cases of the Penguins andHorses
datasets where a high percentage of work昀氀ows produced were invalid or broken due to speci昀椀c
preprocessing components or component combinations not producing reliable output. Such
a situation could have beenmitigated by having partitioning components that feature strati昀椀ed
sampling, instead of 昀椀rst sampling partitioning. Nevertheless, the rule-based selective genera-
tion mechanism could be used to specify such details given the promising results it yielded in
these experiments.

78

8
Conclusion

This work focused on generalizing the framework of mapping user intents to complex analyti-
cal work昀氀ows taking into account that a user intent is the set of tasks a user wants to perform
on a dataset, with or without specifying certain settings such as the algorithm used or speci昀椀c
parameter values. In this work, the details of the ontology used to represent the main con-
cepts and the entire work昀氀ow generation process are discussed in Chapter4. In Chapter5, the
process of generalized work昀氀ow generation along with the rule-based selective generation were
introduced. As for Chapter 6, the focus was on the set of guidelines to be used to extend the
framework to cover more intents. Finally, in 7, the experimental settings were introduced and
we were able to see that the work昀氀ow generation time was greatly in昀氀uenced by the complexity
of the generation algorithm rather than the number of generated work昀氀ows. Moreover, we
were able to see that the selective work昀氀ow generator was able to produce classi昀椀cation results
that are near the global optimum in less time and generating fewer work昀氀ows.

This work was motivated by the need to generalize the framework of mapping user-de昀椀ned
intents to analytical work昀氀ows and presents the following contributions:

" Creating a generalized extensible Knowledge Graph representation of the entire process
of generating analytical work昀氀ows from a user intent, in addition to populating it.

" Developing a generalized, engine-agnostic work昀氀ow backed by the populated Knowl-
edge Graph to perform the intent-to-work昀氀ow translation, producing analytical work-
昀氀ows covering analytical tasks beyondMachine Learning tasks.

79

" Integrating a rule-based selective generationmechanismwithin the generalizedwork昀氀ow
generator to ensure the appropriate selection of pre-processing components optimizing
both generation time and the number of generated work昀氀ows.

In addition to these objectives, a set of extension guidelines was compiled to constitute the
昀椀rst stepping stone for this framework. Moreover, through the results o昀昀ered by the experi-
ments, itwas concluded that the rule-based selective generation shows great promise in reaching
a near-optimal solution in less time and less number of generated work昀氀ows when compared
to the ordinary brute-force generator.

Futurework to further extend the potential of this framework can focus onmultiple aspects.
The 昀椀rst aspect would be related to further understand the importance of pre-processing com-
ponent choice over the number of components available to perform a task (the trade-o昀昀 be-
tween having numerous options or fewer more e昀昀ective options), as this could lead to further
optimization in generation time. Another important aspect is developing the data annotation
transformation within a work昀氀ow to attempt to eliminate potentially broken work昀氀ows by
analyzing possible invalid component combinations or pointless tabular outputs. A very in-
昀氀uential future direction could be related to the creation of a data pro昀椀ler that is capable of
extracting useful meta-characteristics that could open the door for further optimization prac-
tices or, at the least, enhance the rule-based selective generator. Finally, the integration of an
execution engine within the framework could open the door to adopting more optimization
practices, as well as facilitating the work昀氀ow testing and evaluation processes.

80

References

[1] J. Giovanelli, B. Bilalli, and A. Abelló, “Data pre-processing pipeline generation
for autoetl,” Information Systems, vol. 108, p. 101957, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0306437921001514

[2] X. He, K. Zhao, and X. Chu, “Automl: A survey of the state-of-the-art,” Knowledge-
Based Systems, vol. 212, p. 106622, 2021. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0950705120307516

[3] N. Erickson, J. Mueller, A. Shirkov, H. Zhang, P. Larroy, M. Li, and A. Smola,
“Autogluon-tabular: Robust and accurate automl for structured data,” 2020. [Online].
Available: https://arxiv.org/abs/2003.06505

[4] E. LeDell and S. Poirier, “H2o automl: Scalable automatic machine learning,” 2020.
[Online]. Available: https://api.semanticscholar.org/CorpusID:221338558

[5] R.Olson and J.Moore,TPOT:ATree-BasedPipelineOptimizationTool forAutomating
Machine Learning. Springer, 05 2019, pp. 151–160.

[6] C. Barba-González, J. García-Nieto, M. delMar Roldán-García, I. Navas-Delgado, A. J.
Nebro, and J. F. Aldana-Montes, “Bigowl: Knowledge centered big data analytics,”
Expert Systems with Applications, vol. 115, pp. 543–556, 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0957417418305347

[7] V. D. i Cuesta, “Automated mapping of user intents to complex analytical work昀氀ows,”
Master’s Thesis, University of Padova, Padova, Italy, 2023.

[8] A. Balaji and A. Allen, “Benchmarking automatic machine learning frameworks,”
CoRR, vol. abs/1808.06492, 2018. [Online]. Available: http://arxiv.org/abs/1808.
06492

[9] M. Zöller and M. F. Huber, “Survey on automated machine learning,” CoRR, vol.
abs/1904.12054, 2019. [Online]. Available: http://arxiv.org/abs/1904.12054

81

[10] P. Gijsbers, M. L. P. Bueno, S. Coors, E. LeDell, S. Poirier, J. Thomas, B. Bischl,
and J. Vanschoren, “Amlb: an automl benchmark,” 2023. [Online]. Available:
https://arxiv.org/abs/2207.12560

[11] M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, and F. Hutter, Auto-
sklearn: E昀케cient and Robust AutomatedMachine Learning, 05 2019, pp. 113–134.

[12] M. Feurer, K. Eggensperger, S. Falkner, M. Lindauer, and F. Hutter, “Auto-
sklearn 2.0: Hands-free automl via meta-learning,” 2022. [Online]. Available:
https://arxiv.org/abs/2007.04074

[13] C. Wang, Q. Wu, M. Weimer, and E. Zhu, “Flaml: A fast and lightweight automl
library,” 2021. [Online]. Available: https://arxiv.org/abs/1911.04706

[14] J. Bergstra, B. Komer, C. Eliasmith, D. Yamins, and D. Cox, “Hyperopt: A python
library for model selection and hyperparameter optimization,” Computational Science
Discovery, vol. 8, p. 014008, 07 2015.

[15] P. Panov, S. Džeroski, and L. Soldatova, “Ontodm: An ontology of data mining,” in
2008 IEEE International Conference on DataMiningWorkshops, 2008, pp. 752–760.

[16] G. C. Publio, D. Esteves, A. Ławrynowicz, P. Panov, L. Soldatova, T. Soru,
J. Vanschoren, andH. Zafar, “Ml-schema: Exposing the semantics of machine learning
with schemas and ontologies,” 2018. [Online]. Available: https://arxiv.org/abs/1807.
05351

[17] J. Kietz, F. Serban, A. Bernstein, and S. Fischer, “Data mining work昀氀ow templates for
intelligent discovery assistance in rapidminer,” 09 2010.

[18] C. M. Keet, A. Ławrynowicz, C. d’Amato, A. Kalousis, P. Nguyen, R. Palma,
R. Stevens, and M. Hilario, “The data mining optimization ontology,” Journal of Web
Semantics, vol. 32, pp. 43–53, 2015. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S1570826815000025

[19] D. Xin, L. Ma, J. Liu, S. Macke, S. Song, and A. Parameswaran, “H <scp>elix</scp>:
accelerating human-in-the-loop machine learning,” Proceedings of the VLDB En-
dowment, vol. 11, no. 12, p. 1958–1961, Aug. 2018. [Online]. Available:
http://dx.doi.org/10.14778/3229863.3236234

82

[20] E. R. Sparks, S. Venkataraman, T. Kaftan, M. J. Franklin, and B. Recht, “Keystoneml:
Optimizing pipelines for large-scale advanced analytics,” in 2017 IEEE 33rd Interna-
tional Conference on Data Engineering (ICDE), 2017, pp. 535–546.

[21] M. Bilal, G. Ali, M. W. Iqbal, M. Anwar, M. S. A. Malik, and R. A. Kadir, “Auto-prep:
E昀케cient and automated data preprocessing pipeline,” IEEEAccess, vol. 10, pp. 107 764–
107 784, 2022.

[22] B. Bilalli, A. Abelló, T. Aluja-Banet, and R. Wrembel, “PRESISTANT: learning
based assistant for data pre-processing,” CoRR, vol. abs/1803.01024, 2018. [Online].
Available: http://arxiv.org/abs/1803.01024

[23] G. Pons, “Tfm: Third draft,” Master’s Thesis, Universitat Politècnica de Catalunya,
Barcelona, Spain, 2023.

[24] S. Borgo, R. Ferrario, A. Gangemi, N. Guarino, C. Masolo, D. Porello, E. M.
San昀椀lippo, and L. Vieu, “Dolce: A descriptive ontology for linguistic and cognitive
engineering1,” Applied Ontology, vol. 17, no. 1, p. 45–69, Mar. 2022. [Online].
Available: http://dx.doi.org/10.3233/AO-210259

[25] J. Pérez, M. Arenas, and C. Gutierrez, “Semantics and complexity of sparql,”
ACM Trans. Database Syst., vol. 34, no. 3, Sep. 2009. [Online]. Available: https:
//doi.org/10.1145/1567274.1567278

[26] A. Burns, C. Xiong, S. Franconeri, A. Cairo, and N. Mahyar, “How to evaluate
data visualizations across di昀昀erent levels of understanding,” 2020. [Online]. Available:
https://arxiv.org/abs/2009.01747

83

84

Acknowledgments

Iwould like to expressmyheartfelt gratitude toDTIMatUPCfor givingme theopportunity
to developmymaster’s thesis under their guidance. I want to speci昀椀cally thankDr. SergiNadal
and Dr. Petar Jovanovic for providing me with their exceptional guidance and continuous
support throughout the whole thesis period. I also want to thank Dr. Massimilano De Leoni
from UniPD for his valuable advice and feedback as it has positively impacted the quality of
this thesis.

I would like to also thank the BDMA program for giving me the opportunity to embark
on this challenging, yet rewarding academic journey. I want to thank all the people I had the
chance to meet and learn from during my entire BDMA journey.

85

86

A
Work昀氀ow Generation Extension Guidelines

Table A.1: Table illustra琀椀ng the engine‐agnos琀椀c extension guidelines and references

Concept Description Reference
Task Represents the data tasks possible to perform on a

dataset. All of the tasks are de昀椀ned in the CBOX
of the ontology, so any extension of these tasks
will be in the CBOX.

Refer to the CBOX
generator here.

Algorithm Represents the conceptual de昀椀nition of possible
solutions for each task and are directly connected
to the Task instances they solve. They are also in
the CBOX.

Refer to the CBOX
generator here.

87

Concept Description Reference
Implementation Represents the executable form of an algorithm.

Each algorithm has at least on implementation
instance that references it. The class
Implementation has specialized subclasses such as
Learner Implementation and Visualizer
Implementation. The de昀椀nition of subclasses is
based on possible tasks, and it is performed in the
TBOX. However, this is only an engine-agnostic
extension of this concept.

Refer to the
Implementation class
de昀椀nition here the
TBOX generator
here.

Input &Output
Speci昀椀cations

These two classes are part of the Data
Speci昀椀cation concept and are responsible for
de昀椀ning the constrains of an implementation’s
inputs and outputs. These constraints are
encoded as SHACL shapes and are de昀椀ned in the
CBOX and are referenced in an implementation
de昀椀nition.

Refer to the shapes
de昀椀ned in the CBOX
here.

Component An abstraction level of the implementations
concept. Each implementation has at least one
component; in the case of multiple components,
each component performs the same task but using
di昀昀erent methods. The concept Component also
has similar subclasses to the Implementation
subclasses. The de昀椀nition of new Component
subclasses is performed in the TBOX.

Refer to the
de昀椀nition of the
implementation class
here the TBOX
generator here.

Transformation A set of data annotation transformations
expressed in SPARQL queries that are speci昀椀c for
each component. These are de昀椀ned manually
within each component instance de昀椀nition.
There are also the Copy Transformation and Load
Transformation classes but for the speci昀椀c tasks of
obtaining the annotation of the input dataset and
copying the input of a component as an output.

Refer to the
de昀椀nition of the
Transformation
classes here

88

Concept Description Reference
Rule Represents domain knowledge used to select the

components for preprocessing tasks. These are
de昀椀ned within the preprocessing component
de昀椀nitions.

Refer to the examples
here.

89

Table A.2: Table illustra琀椀ng the engine‐speci昀椀c extension guidelines and references

Concept Description Reference
Parameter Represents the algorithm and execution engine

con昀椀gurations. An engine-speci昀椀c subclass is
created for this class to accommodate speci昀椀c
engine parameters that are vital for a successful
engine translation process.

Refer to the
de昀椀nition of the
Parameter class here
and an example of an
engine-speci昀椀c
subclass here.

Implementation An engine-speci昀椀c subclass is also required to
include the speci昀椀c implementation
con昀椀gurations. Each set of engine-speci昀椀c
implementations related to a certain algorithm is
de昀椀ned separately.

Refer to the
de昀椀nition of the
Implementation class
here and an example
of an engine-speci昀椀c
subclass here. An
example of
engine-speci昀椀c
implementations for
the SVM algorithm
can be found here

Data Annotator It is very crucial to verify that the datatype
de昀椀nitions are consistent between the data
annotator used in the work昀氀ow generator and the
speci昀椀c execution engine targeted.

Refer to the
following
engine-speci昀椀c data
annotator here.

Additional Classes More classes may need to be de昀椀ned depending
on the requirements of the speci昀椀c execution
engine targeted to ensure the successful
engine-speci昀椀c translation process.

Examples of
engine-speci昀椀c classes
can be found here.

90

