

Modelling of multistream heat exchanger for natural gas liquefaction

Anita Dal Porto

Relatore: Fabrizio Bezzo Correlatore: Maarten Nauta

5/12/2014

Introduction

- "green" energy source, with market in expansion.
- Necessity to reduce transported volumes.
- LNG cost distribution.

Why modelling LNG HX

HX is the core equipment in the major 0.259
 LNG processes.

Intellectual property are highly guarded and not freely accessible.

Why modelling LNG HX

Traditional sizing tecnique are not applicable:

- Complex geometry
- Extreme operative conditions $T \rightarrow -160: 30 \ ^{\circ}C$

P → 1 : 70 bar

High efficiency of LNG heat exchanger (

$$\varepsilon = \frac{c_{p,in} \left(T_{C,out} - T_{C,in} \right)}{c_{p,\min} \left(T_{H,in} - T_{C,in} \right)} > 90\%)$$

Thesis objectives

- Development of a model for NG liquefaction HX:
 - Plate and Fin Heat Exchanger (PFHX);
 - Coil Wound Heat Exchanger (CWHX);

MAX: 1.5m·3.0m·8.2m

Diameter ~5m Length ~40m

Plate and Fin Heat Exchanger (PFHX)

© 2014 Process Systems Enterprise Limited

Model structure

© 2014 Process Systems Enterprise Limited

- Development of a general and flexible architecture able to simulate a wide range of operative conditions and designs.
- Development of a model usable by the costumer for the simulation of his LNG HX.
- The model should consider:
 - Specific geometry of the fins,
 - Changes in fluid properties,
 - Variable htc and Fanning factor.

Model structure

PFHX sub-models: offset fins

Shah and Sekulic, Fundamentals of Heat Exchanger Design, 2003

Geometry model

$$\begin{split} A_{frontal} &= L_1 \cdot L_2 \\ A_{cross,ch} &= h \cdot L_2 - (h-t) \cdot t \\ A_{surfacesch} &= 2 \cdot L_2 L_1 - 2 \cdot t \cdot L_1 + 2 \cdot h \cdot L_2 + 2(h+2t) \cdot L_2 + 2(h-t) \cdot L_1 \\ &+ 2(h-2t) \cdot t \cdot n_{offsetstrips} + (s+t)t \cdot (n_{offsetstrips} - 1) + 2(s+t)t \end{split}$$

HTC model

$$j(z) = 0.6522 \operatorname{Re}(z)^{-0.5403} \left(\frac{s}{h}\right)^{-0.1541} \left(\frac{t}{l_f}\right)^{0.1499} \left(\frac{t}{s}\right)^{-0.366} \cdot \left[1 + 5.269 \cdot 10^{-5} \operatorname{Re}(z)^{1.34} \left(\frac{s}{h}\right)^{0.504} \left(\frac{t}{l_f}\right)^{0.456} \left(\frac{t}{s}\right)^{-1.055}\right]^{0.1}$$

• Fanning factor model

$$f(z) = 9.6243 \operatorname{Re}(z)^{-0.7433} \left(\frac{s}{h-t}\right)^{-0.1856} \left(\frac{t}{l_f}\right)^{0.3053} \left(\frac{t}{s}\right)^{-0.2659} \left[1+7.66 \cdot 10^{-8} \operatorname{Re}(z)^{4.429} \left(\frac{s}{h-t}\right)^{0.92} \left(\frac{t}{l_f}\right)^{3.767} \left(\frac{t}{s}\right)^{0.236}\right]^{0.1}$$

Operative conditions.

	NG	MR vapour	MR liquid
Flowrate [kg/s]			
	118	200	400
Temperature [K]	\bigcirc		\frown
	305	305	(167)
Pressure [bar]			\sim
	66.5	38.6	9.8

Design

Tab: Design Hot streams				
Number of channels per stream	150 NG			
	700 MR			
Operation mode	Co-current			
Plate flow length	5	[m]		
Plate width	1.5	[m]		
Spacing between plates	0.665	[mm]		
Spacing between fins	5	[mm]		
Hydraulic radius	0.143	[mm]		
Fin thickness	0.0254	[mm]		

PFHX offset fins: results T, VF

PFHX offset fins: results HTC

Comparison HTC

Conclusions

The final model accounts for:

- fluid properties variation in the axial direction,
- specific geometry of the HX,
- fluid to wall variable convective heat transfer in the axial direction,
- variable friction factor in the axial direction,
- single phase correlations for htc(z) and f(z).

The model structure and the correlations used for the channel simulation have been usefully implemented in the PSE model libraries.

Evaluation of the model with experimental data.

Development of a 2-D model (especially for the CWHX).

Thanks for your attention!

Bibliography

HZ COM

- Air Product and Chemicals, Inc (2003). Patent number EP 1 367 350 B2.
- Foerg W., W. Bach, R. Stockmann (2010). A new LNG baseload process and the manufacturing of the main heat exchangers, Linde AG, Process Engineering and Contracting Division (Linde).
- Process Systems Enterprise Ltd. (May 2013). gPROMS ModelBuilder Guide, Release v3.7.
- Holman J.P. (2002). *Heat Transfer* (9th ed.), McGraw-Hill.
- Kays W.M. and A.L. London (1998). *Compact Heat Exchangers* (3rd ed.), Krieger Publishing Company.
- Linde AG (2013). *Aluminium Plate-Fin Heat Exchangers*, brochure.
- Process Systems Enterprise Ltd. (May 2013). *Multiflash user guide: models and physical properties,* Release v.4.3.
- Pacio J. C. and C. A. Dorao (2011). A review on heat exchanger thermal hydraulic models for cryogenic applications. *Cryogenics* **51**, p.366-379.
- Ramachandra K. and B. Shende (1982). Design a helical-coil heat exchanger. *Chemical Engineering December* **13**, 85-88.
- Rogers G. F. C. and Y. R. Mayhew (1966). Heat transfer and pressure loss in helically coiled tubes with turbulent flow. *Int. J. Heat Mass Transfer* **9**, p.63-75
- Shah R.K. and D.P. Sekulic (2003). *Fundamentals of Heat Exchanger Design* (2nd ed.), John Wiley and Sons, ch. 7 8.
- Shaukat A. and H. Z. Anwar (1979). Head Loss and Critical Reynolds Numbers for Flow in Ascending Equiangular Spiral Tube Coils. *Ind. Eng. Chem. Process Des. Dev.* **18**, No. **2**.
- Sundar R. and G. Ranganath (2013). Development of colburn 'j' factor and fanning friction factor 'f' correlations for compact heat exchanger plain fins by using CFD, *Heat and Mass Transfer*, **49**, 991-1000.
- Zare H., H. Noie and H. Khoshnoodi (2008). Experimental and theoretical investigation of pressure drops across tube bundle of a THPHE and Introducing a new correlation. Presented at 5th International Chemical Engineering Congress and Exhibition, Kish Island.
- Web sites
- http://www.epa.gov/cleanenergy/energy-and-you/affect/natural-gas.html (last access 14/09/2014)
- Programme
- gPROMS Model builder 4.1.0.20140520 (x64) dev

Streams composition

Table A.1. NG stream composition used for the simulations.				
Nitrogen	0.0144	kg/kg		
Methane	0.8622	kg/kg		
Ethane	0.0534	kg/kg		
Propane	0.0328	kg/kg		
2-Methylpropane	0.0033	kg/kg		
Butane	0.0020	kg/kg		
2-Methylbutane	0.0033	kg/kg		
Pentane	0.0020	kg/kg		
Hexane	0.0049	kg/kg		
Heptane	0.0034	kg/kg		

Table A.2. MR stream composition used for the simulations.

Nitrogen	0.03822	kg/kg
Methane	0.4793	kg/kg
Ethane	0.4132	kg/kg
Propane	0.0024	kg/kg
2-Methylpropane	0.02728	kg/kg
Butane	0.03952	kg/kg