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1. INTRODUCTION

The work is about the project of an electric machine, with which is possible to make an energetic 
exchange through an electric form. In this particular case, the machine makes possible an 
electromechanical conversion, i.e. the conversion from one energetic form to another with the 
connection given by the electromagnetic field. These converters can be divided in two categories, 
that is to say: motors, when electric power is converted to mechanical, generators, when the 
conversion goes to the opposite direction.
There are different types of electric machine, with different feeding current shapes, or different 
materials, or geometry.
This thesis is about an important kind of machine, called “Brushless Synchronous Electric 
Machine”, characterized by the fact that the exciting magnetomotive force is given by the 
permanent magnets mounted on the internal side of the rotor of the machine; in this a way is 
possible to get several good effects: first of all, there is no need of brushes, giving the machine 
freedom of movement and less mechanical resistance, and most of all, the efficiency of the system 
is considerately higher, because of the elimination of the exciting current – and of all the losses due 
to this current, such as Joule-effect losses.
The machine is called “synchronous” because the period of rotation is synchronized with the 
frequency of the feeding current, which can be mono-phase or three-phase. 
Permanent magnets are the characterizing element of the machine, and the behaviour and the cost of 
the machine are depending by them. In fact, the disadvantage of this kind of device is the higher 
cost with respect to a traditional synchronous machine.

Brushless synchronous machines can have many ways of application, from the little electronic and 
optical devices such as CD players to the high power electric generators for the great distribution.
The kind of machine which is object of the thesis can be easily adopted for low cost generation, 
with small home-serving eolic generators, and also as motors for fluidodynamic applications, such 
as ventilators and small pumps.
This kind of machine has already a lower volume than other solutions in the field of 
electromechanical converters, but it is still possible to reduce it, making an inversion of the two 
parts of the machine: in fact, while traditionally the rotating part of the machine is the internal one, 
and the fixed part is the external one, in the design of the machine which is the object of the study 
the stator is internal and the rotor is external.



2. MACHINE WITH 2 POLES

2.1 Model of the machine

The machine studied is a 1 pair of poles permanent magnet synchronous generator (Figure 1). It has 
an inner fixed stator with one concentrated coil and an outer movable rotor with two PMs fixed on 
it. The objective of this preliminary calculus is to study the no-load electromotive force induced at 
the terminals of the winding on the stator, when the rotor rotates with a certain angular speed.
To do that, it's necessary to make a simplified model of the machine, taking into account the 
following hypothesis to make the magnetic study:

 iron magnetic permeability infinitive
 no magnetic leakage
 thickness of the air gap significantly lower than the machine's length and P Ms width.

Geometrical parameters:
 g, thickness of the air gap
 d, thickness of PMs 
 β, angle-extension of the magnets
 α, mechanical position of the rotor.

The first steps of the work is the magnetic calculus, which gives some indications about the 
behaviour of the machine, which is going to be verified later with the simulating process.
The analysis takes in account several parameters of the machine, in particular its geometry and the 
characteristics of the magnets.
The first value to calculate is the average magnetic flux density on in the air gap of the machine. To 
get it, it is necessary to increase the value of the thickness of the gap (only in the mathematical 
analysis) to consider the effects of the geometry of the caves on the magnetic distribution, by a 
coefficient called Carter's, which depends by the thickness and by the wideness of them. In this 
project, Carter's coefficient is estimate to be kCar=1,2. This is kind of a high value, but it seems to fit 
with the shape of the machine, which have a low number of poles – and so a higher wideness of the 
caves compared with the whole lateral surface of the internal stator.
This way is possible to get the average magnetic flux density value:

B=BR
1

1+
μr g '

d
eq. 1

The values involved are equal to:
• BR = 0,4211 T
• μr = 1,43486
• g = 0,0005 m
• g' = kCar g
• d = 0,005 m

In the and, the average B value is equal to 0,359 T.
The value of the flux passing through the magnetic circuit is a function of it following the equation:



Φ0=B D
l stk

p
,

eq. 2
which gives a value of the flux, when the machine is in the aligned position, of 0,0215 Wb.

With the purpose of a clear comprehension of the magnetic behaviour of the machine, the next step 
is the search of the time-dependance function of the flux, verifiable later with a FEMM simulation 
coupled with a MatLab script.
As the rotor rotates with a certain angular speed ωr , we can write

α(t )=ωr t .
eq. 3

The model is reported in Figure 1; the machine is represented at the time instant when   α(t )=0 , 
in the situation of maximum coupled flux.

          

                                    
                                        

        
                                       

                                                                                   

                                                                                
                                               

                                       

                                           

 

Figure 1



2.2 Analytic calculus

The polarity of the magnets is the one which produces the magnetic flux in the directions shown in 
Figure 1. The geometrical characteristics of the two magnets are the same, and the configuration is 
symmetric: it is assumed that the flux they produce is exactly the same

 Φm1=Φm2=Φm .
eq. 4

The value of this flux is given by the relationship 

Φm=Bm S m ,
eq. 5

that is to say, if β  is the angle covered by magnets, r  an average value of radius (taken in the 
middle of the air gap) and l  is the length of the machine in the axial direction,

Φm=Bm rl β ;
eq. 6

in fact, the surface offered by the magnets to the flux is

S m=rlβ .
eq. 7

Because of the hypothesis of no flux leakage between the different parts of the machine, when the 
position of the rotor is the aligned one, so the flux is maximum, the flux in the inner stator and in 
the air gap is the same as well. This is the maximum value of the flux and its value is

ΦM=Φ g=Φm .
eq. 8

In this way it's possible to extract the value of the magnetic induction in the magnets as a function 
of the inner stator magnetic flux

Bm=
Φ M

rlβ
.

eq. 9

On the other hand, the magnets-due flux evolution in time Ф0 (t) is given by

Φ0(t )=ϑ(t )ΦM ,
eq. 10

where ϑ(t ) is the evolution of the angle for which the MMF of the magnets is coupled with the 
stator's arm. This angle depends on time both in absolute value both in sign, because of the 
alternative magnetization direction of the magnets. If the rotational speed is imposed at a value ωr , 
constant, we have a dependence of ϑ by time, as shown by its evolution (Figure 2). 



Figure 2

The graph has been obtained by imposing 

β=
5
6
π .

eq. 11

The direct proportionality between the flux and ϑ(t ) is right only if we make the following 
hypothesis: the magnetic flux produced by the the not-faced portions of the PMs is not useful, that 
is to say that it doesn't get coupled with the winding on the inner stator. This means that the air gap 
is much smaller than the magnets width, and d and g are both much smaller than the radius of the 
machine.

In the brushless machines, the flux is given by the sum of two contributes: the permanent magnet 
due-one and the feeding current-due one.
To get the second term of the flux it is necessary to apply the Ampere law on the magnetic circuit, 
with the hypothesis that the magnetic permeability in the iron is infinite, which gives

N i(t )=∫H dl=ɌTOT (t )Φ(t) ,
eq. 12

where H is the magnetic field and N and i , instead, are the number of coils of and the current 
flowing in the winding. With the purpose to have a correct distribution of current in the caves, with 
a proper current density, but wanting to push the simulations towards the most stressing conditions 
by a magnetic point of view, a number N = 250 turns has been chosen.
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Finally, we can obtain the value of the magnetic flux

Φ(t )=
N i(t)

ɌTOT (t)

+Φ0 (t ) .

eq. 13

The total reluctance of the path followed by the flux is, in the hypothesis of infinitive permeability 
of the iron, equal to the sum of the reluctances of the air gap and of the magnets.
Tough, the reluctance in the permanent magnet-given space is not constant, because of the insertion 
of a portion of air during the rotation of the system.
Hence, Ɍ  is not a constant, but it depends by time. In fact, there is an angle, called θ(t ) , which 
represents the angle on which we have the presence of air in the space between the gap and the iron 
part of the rotor. This air causes an increment of the reluctance of the magnetic circuit. In this case 
there is a variation in time of the absolute value of θ(t ) , but not in sign, because the angle is used 
only to calculate the reluctance of the space between the stator and the iron part of the rotor, which 
has a thickness equal to g+d. The evolution of this reluctance, calculated only for one pole, which 
can be called Ɍ(t ) and takes in account both the reluctances of the air and of the magnets, is 
plotted below. Analytically, the expression of the reluctance can be written:

Ɍ(t )=
g

μ0 rlβ
+

d
rl (μ0θ(t )+μmβ−μmθ(t))

 .

eq. 14
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As a result of the magnetic analysis of the machine, the induced flux passing through the internal 
stator has a dependence in time due both to the different contribution given by the magnets for each 
angular position – taken in account with the evolution of ϑ(t ) – and to the behaviours of reluctance 
and current.
Hence, the equation of the flux in time is the following:

Φ(t )=
N i(t)+ϑ (t )Φ M

2 Ɍ(t )

eq, 15

To estimate the electromotive force at the terminal of the windings, it's necessary to calculate the 
magnetic flux coupled with the winding, that is to say

λ(t)=NΦ(t)=
N 2i(t)+N ϑ(t )ΦM

2 Ɍ(t)

.

eq. 16
If we consider the winding as an open circuit, we will have i=0 , so we can write

λ0(t)=NΦ0 (t)=
N ϑ(t)ΦM

2 Ɍ(t )

.

eq. 17

The evolution of the flux Φ0(t ) as a function of α – and so of time – will be:

Figure 3
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The evolution has been obtained for the following the geometrical and magnetic values:

ωr = 314  rad/s
β=5π/6 rad
D = 10 cm
l = 30 cm

BR = 0.4211 T 

In order to calculate the emf per turn produced by the machine in no-load condition, it's necessary 
to start from the coupled-flux expression obtained from the magnetic circuit analysis. For the 
Faraday-Lenz law, the emf is equal to the derivative with respect to time of the coupled flux, with 
opposite sign. It is necessary to remember since now that this analytic calculus is valid only if it is 
assumed that there isn't saturation in the magnetic circuit – that is to say for low values of current.
Anyway, since the value to be calculated in this chapter is the emf originated only by the magnets 
e0(t ) , results can be considered as sufficiently accurate.

e0(t ) = –
dλ0 (t)

dt
= –

d
dt (

N ϑ(t )ΦM

2 Ɍ(t ) ) .

eq. 18

In the quantity between the parenthesis, the only time-depending terms are ϑ(t )  and Ɍ(t ) , so:

e0(t )  = – 
N ΦM

2Ɍ(t)
2 (dϑ(t )

dt
Ɍ(t )−

dɌ(t)

dt
ϑ(t )) .

eq. 19

The derivative with respect to time of Ɍ(t )  can be calculated as

dɌ(t )

dt
 = 

d (μm− μ0)

rl (μ0θ(t )+μmβ−μmθ(t ))
2

d θ
dt

;

eq. 20

the derivative of θ(t) with respect to the angle of rotation is discontinuous, and so will be the one of 
the reluctance “seen” by the magnetic flux.

For a better visualization of the electromotive force induced in the winding, it can be useful to 
report the evolution of the emf at the terminal of the windings, when they are open, divided for the 
number of the turns, so as to get the plot of the emf per turn due to the magnets.
The graph of e0(t )  per turn, in these conditions, is



Figure 5

The formulation of the electromagnetic torque can be obtained as the partial derivative with respect 
to the angular position of the magnetic coenergy, according with the energy conservation principle.
The torque expression is

T=
∂ W m

'

∂ α
.

eq. 21

For the magnetic coenergy calculus, it is necessary to make an integral, considering as the starting 
status the zero point in the (H,B) plane. Because of the normal magnetization of the machine due to 
the permanent magnets, it's necessary to de-magnetize the system. 
This can be obtained if in the winding flows a fictitious current i0 : the Ampere law applied to the 
simplified magnetic circuit of the machine could be written as (eq. 15)

So, with the imposition of Φ=0 , we can find the value i0  

i0=
−ΦM Ɍ

N
.

eq. 22
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The expression of the magnetic coenergy is

W m
'
=∫

i0

i

λdi   = ∫
i 0

i

(L i(t )+λ0)di

eq. 23

The result of the integral, to be clear, cannot be computed in an analytical way, because of the not-
linear nature of the magnetic characteristic of the iron/steel.

Figure 5



2.3 Femm Simulations

To have a reconstruction of the magnetic behaviour of the machine it is necessary to build a 
simulation of it with a Finite Element software, such as FEMM.
Writing a program with MatLab, it is possible to make the simulation run for different values of the 
angular position of the rotor, with no current flowing in the windings, so as to obtain the no-load 
characteristic of the machine, in terms of flux and electromagnetic torque. This torque is the 
cogging torque, typical of the machines equipped with permanent magnets, due to the disturbing 
effect to the rotation of the rotor made from the interaction between the magnetic flux produced by 
the magnets and the shape of the inner stator.
The model used for the simulations is the following:

Figure 6



The representation of the flux and of the cogging torque are below:

Figure 7
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It is now possible to get the evolutions of the electromechanical parameters of the machine when it's 
fed by a sinusoidal current.
Hence, from now on, evolutions will be plotted for different values of feeding current, i(t), which 
follows the cosinusoidal behaviour:

i(t) = IM cos (2ωt + φ)
eq. 24

Values changing for each simulation are both the peak value and the angular phase.
Cosinusoidal law has been chosen instead of sinusoidal one so as to have i(t) and Φ0(t) in phase when
φ=0.

MMF=1000 At, φ=0

Figure 9
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Figure 10

Figure 11
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Figure 12

MMF = 1000 At, φ=30°

Figure 13
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Figure 14

Figure 15
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Figure 16

MMF = 1000 At, φ=60°

Figure 17
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Figure 18

Figure 19
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Figure 20

MMF = 1000 At, φ=90°

Figure 21
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Figure 22

Figure 23
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Figure 24

MMF = 2000 At, φ=0°

Figure 25
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Figure 26
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Figure 28

MMF = 2000 At, φ=30°
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Figure 30

Figure 31
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Figure 32

MMF = 2000 At, φ=60°

Figure 33

0 p i / 3 2 p i / 3 p i 4 p i / 3 5 p i / 3 2 p i
- 1 0 0

- 8 0

- 6 0

- 4 0

- 2 0

0

2 0

4 0

6 0

8 0

1 0 0

A n g l e

T
or

qu
e

0 p i / 3 2 p i / 3 p i 4 p i / 3 5 p i / 3 2 p i
- 2 5

- 2 0

- 1 5

- 1 0

- 5

0

5

1 0

1 5

2 0

2 5

A n g l e

C
ur

re
nt



Figure 34

Figure 35
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Figure 36

MMF = 2000 At, φ=90°
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Figure 38

Figure 39
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Figure 40

MMF = 3000 At, φ=0°
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Figure 42

Figure 43
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Figure 44

MMF = 3000 At, φ=30°
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Figure 46

Figure 47
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Figure 48

MMF = 3000 At, φ=60°
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Figure 50

Figure 51
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Figure 52

MMF = 3000 At, φ=90°
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Figure 54

Figure 55
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Figure 56

MMF = 4000 At, φ=0°
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Figure 58

Figure 59
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Figure 60

MMF = 4000 At, φ=30°
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Figure 62

Figure 63
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Figure 64

MMF = 4000 At, φ=60°
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Figure 66

Figure 67

0 p i / 3 2 p i / 3 p i 4 p i / 3 5 p i / 3 2 p i
- 0 . 0 5

- 0 . 0 4

- 0 . 0 3

- 0 . 0 2

- 0 . 0 1

0

0 . 0 1

0 . 0 2

0 . 0 3

0 . 0 4

0 . 0 5

A n g l e

F
lu

x

0 p i / 3 2 p i / 3 p i 4 p i / 3 5 p i / 3 2 p i
0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1

A n g le

In
d

u
c

ta
n

c
e



Figure 68

MMF = 4000 At, φ=90°
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Figure 70

Figure 71
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Figure 72
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3. MACHINE WITH 4 POLES

3.1 Model of the machine

Once that the 2-poles machine magnetic analysis is completed, it's possible to make the same thing 
for a 4-poles machine with the same equivalent structure. The geometrical model is represented in 
the figure below

Figure 15

Figure 73

Once again, the first steps of the work is the magnetic calculus, which gives some indications about 
the behaviour of the machine, which is going to be verified later with the simulating process.
The analysis takes in account several parameters of the machine, in particular its geometry and the 
characteristics of the magnets.



3.2 Analytic calculus

The first value to calculate is the average magnetic flux density on in the air gap of the machine. To 
get it, it is necessary to increase the value of the thickness of the gap (only in the mathematical 
analysis) to consider the effects of the geometry of the caves on the magnetic distribution, by a 
coefficient called Carter's, which depends by the thickness and by the wideness of them. In this 
project, Carter's coefficient is estimate to be kCar=1,2. This is kind of a high value, but it seems to fit 
with the shape of the machine, which have a low number of poles – and so a higher wideness of the 
caves compared with the whole lateral surface of the internal stator.
This way is possible to get the average magnetic flux density value:

B=BR
1

1+
μr g '

d
eq. 1

The values involved are:

• BR = 0,4211 T
• μr = 1,43486
• g = 0,0005 m
• g' = kCar g
• d = 0,005 m

In the and, the average B value is equal to 0,359 T.
The value of the flux passing through the magnetic circuit is a function of it following the equation:

Φ0=B D
l stk

p
,

eq. 2

which gives a value of the flux, when the machine is in the aligned position, of 0,0107 Wb.

In this case the winding is coupled with four arms, so the analysis will have to take in account the 
equivalent inductance of the system. As for the 2-poles model, there is an inner stator with 
concentrated windings and an outer rotor with Permanent Magnets mounted on the internal surface.
The orientation of the magnetic field given by the PMs is the one shown in Figure 15.
The rotation of the rotor makes the flux induced in the internal part of the magnetic circuit change, 
producing at the terminals of the windings an electromotive force, that is the output of the system.
The geometrical definitions and the hypothesis about the magnetic behaviour of the machine are 
just like the ones made for the 2-poles machine.
Once again, it is assumed that the magnetic characteristics and the geometrical shapes of the 
magnets are the same for all the P Ms, so the flux produced by them is identical

Φm1=Φm2=Φm3=Φm4=Φm

eq. 25
Because of the magnetic flux conservation, it can be assumed that the flux passing through each 
arm of the inner stator and in the air gap are the same as well:

Φm1=Φg1=Φ1=Φ2=Φ3=Φ 4

eq. 26



From now on, the analytic calculus of the flux 1 will be considered; the magnets-due flux evolution 
in time Ф0 (t) is given by

Φ0(t )=ϑ(t )ΦM ,

eq. 10

If S (t ) is the surface on which we have the superposition of the permanent magnets with the inner 
stator, this surface depends on time by the law

S (t )=ϑ(t)rl ,
eq. 11

having defined ϑ(t ) as the angle of superposition. If the rotational speed is imposed at a value ωr ,
constant, we have a dependence of ϑ by time, as shown by its evolution (Figure 16)

Figure 74

The wideness of the magnets has been chosen equal to

β=
5π
12

.

This variation of the superposition angle between the two iron-made surfaces makes the magnetic 
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reluctance of the air gap change as well. This will generate the variation of the coupled flux 
inducing the emf at the terminals of the windings.
The purpose now is to calculate the flux flowing through the arm 1 of the stator, the one coupled 
with winding 1. This flux, in the hypothesis of linearity – valid for low values of current, and in 
particular for the no-load analysis – is given by the sum of the fluxes originated by the magnets and 
the current.
It is possible to write the equation (Ampere's law):

6 N i(t )=∫H dl=ɌTOT (t )Φ( t)

eq. 27

from which it is possible to extract the values of the magnetic flux due to the current, which, 
summed with the magnets-due, gives the total one:

Φ(t )=
3N i(t )
2 Ɍ(t)

+Φ0(t ) ,

eq. 28
The total reluctance opposed by the machine to the flux is given by the product of the reluctance on 
each arm of the inner stator times the number of them.
This is the plot of one of these reluctances:

Figure 75

As it can be seen, the reluctance in this case is the half of the one with 2 poles: this is because of the 
half wideness of the useful path for the flux.
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It is possible to plot the evolution valid for the flux passing through arm 1:

Figure 76

Now it's easy to get the formulation of the coupled flux:

λ(t)=NΦ(t)=
3 N 2 i(t )+2 N ϑ(t )ΦM

2 Ɍ(t)

eqs. 28

These formulations can be re-written in another way

λ(t)=L(t ) i(t )+λ0(t )

eqs. 29
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Proceeding as did for the 2-poles machine, the first electric values to be calculated are the no-load 
electromotive forces at the terminals of the windings. They are given by the derivative by respect to 
time of the coupled fluxes, but having previously imposed the no-load condition.

This way the value of e0(t ) can be calculated

e0(t )=
dλ01

dt
= –

d
dt (

N ϑ(t )Φ M

Ɍ(t) ) ;

eq. 30

 The result of the derivative gives

e0(t )  = – 
N ΦM

2Ɍ(t)
2 (dϑ(t )

dt
Ɍ(t )−

dɌ(t)

dt
ϑ(t )) .

eq. 31

it is possible to see that the resulting formula (for number of spires) is exactly the same found for 
the previously analysed  machine. This is also true for the no-load condition flux, as it can be seen

The Figure 20 shows the evolution in time of the electromotive force per spire:

Figure 77

Also in this case, the emf found is the half of the previous one.
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In order to calculate the expression of the magnetic torque it is necessary to find the one of the 
magnetic coenergy; in this case, it is given by the sum of the four values of coenergy given by the 
four windings. 

W m
'
=W m1

'
+W m2

'
+W m3

'
+W m4

' .
eq. 32

That is to say

W m
'
=∫

i01

i1

λ1 di+∫
i02

i2

λ2 di+∫
i 03

i3

λ3 di+∫
i 04

i4

λ4 di ,

eq. 33

where the i0j are the currents needed to de-magnetize the system by one of the windings when in 
the others doesn't flow any current. As the expression of the flux is the one got before,
it is possible to obtain the expressions of i0

i0=
−ΦM Ɍ

N
.

eq. 34

As said before, coenergy cannot be computed analytically, because of the non-linear behaviour of 
the system.
Hence, the most powerful tool to use is the FEMM analysis.



3.3 FEMM Simulation

As did for the 2-poles machine, the behaviour of the 4-poles one has been simulated with a finite 
elements software.
This is the model used:

Figure 78

In this case there are four windings.
Each one will be coupled with a correspondent flux, but the four fluxes, for the assumptions made, 
are all equal, so it's enough to report the evolutions of one of them for each feeding condition.

The firsts evolutions plotted are the ones obtained with no current flowing in the windings. As a 
consequence, the reported torque is the cogging torque.

There are also detailed pictures of the evolutions.



The representation of the flux and of the cogging torque are below:

Figure 79

Figure 80
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Figure 81
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It is now possible to get the evolutions of the electromechanical parameters of the machine when it's 
fed by a sinusoidal current.
Hence, from now on, evolutions will be plotted for different values of feeding current, i(t), which 
follows the cosinusoidal behaviour:

i(t) = IM cos (2ωt + φ)
eq. 32

Values changing for each simulation are both the peak value and the angular phase.
Cosinusoidal law has been chosen instead of sinusoidal one so as to have i(t) and Φ0(t) in phase when
φ=0.

MMF=250 At, φ=0

Figure 82
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Figure 83

Figure 84
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Figure 85

MMF = 250 At, φ=30°

Figure 86
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Figure 87

Figure 88
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Figure 89

MMF = 250 At, φ=60°

Figure 90
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Figure 91

Figure 92
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Figure 93

MMF = 250 At, φ=90°

Figure 94

0 p i / 3 2 p i / 3 p i 4 p i / 3 5 p i / 3 2 p i
- 1 0 0

- 8 0

- 6 0

- 4 0

- 2 0

0

2 0

4 0

6 0

8 0

1 0 0

A n g l e

T
or

qu
e

0 p i / 3 2 p i / 3 p i 4 p i/ 3 5 p i / 3 2 p i
-2 5

-2 0

-1 5

-1 0

-5

0

5

1 0

1 5

2 0

2 5

A n g le

C
u

rr
e

n
t



Figure 95

Figure 96
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Figure 97

MMF = 500 At, φ=0°
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Figure 101

MMF = 500 At, φ=30°
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Figure 103
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Figure 105

MMF = 500 At, φ=60°
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Figure 109

MMF = 500 At, φ=90°
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Figure 113

MMF = 750 At, φ=0°
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Figure 117

MMF = 750 At, φ=30°
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Figure 119
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Figure 121

MMF = 750 At, φ=60°
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Figure 123
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Figure 125

MMF = 750 At, φ=90°
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Figure 129

MMF = 1000 At, φ=0°
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Figure 131
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Figure 133

MMF = 1000 At, φ=30°
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Figure 135
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Figure 137

MMF = 1000 At, φ=60°
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Figure 141

MMF = 1000 At, φ=90°
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Figure 143
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Figure 145
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4. Inductances

As it has been said before, the iron with which the machine is built is not linear, as it can be shown 
in the figure which reports its B – H characteristic

Figure 6

As a consequence, inductances of the two machines are not constant but decreasing with 
magnetomotive force. As it can be easily understood, the 4-poles configuration has a bigger electric 
load, due to the higher number of caves.To avoid the saturation phenomenon, and also to keep the 
value of the current density under certain safety values (J=10 A/mm2), the MMF with which 
simulations have been made are different for the two configurations.
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However, the behaviour is very similar in terms of self-inductance – with the parity of electric linear 
load, as it can be seen in the figures. The first one, Figure , has been obtained for the first 
configuration, and the second one, the following, for the 4-poles machine

Figure 147

5. Starting Strategy

For many applications needing electromechanical machines the induction motor is chosen instead of 
other solutions. In fact its working principle is simple, the machine is usually robust and self-
starting, with a pre-determined direction of rotation. However, this solution is not always the best, 
because of some characteristics of it, and in particular its non-constant speed of rotation when the 
load changes – for environmental reasons, for example. The synchronous permanent magnet-motor 
has all the advantages of the induction motor, but moreover it has a constant speed, whatever 
happens to the load.
On the other hand, there are some issues the brushless machine brings, such as: his magnetic field is 
not rotating but pulsing, so it is not self-starting, and the direction of rotation depends by the initial 
position of the rotor and by the initial phase of the feeding current. All these problems can be solved 
through an appropriate design of the machine and an efficient control system.
One way to make the machine become self-starting is to insert a coil which covers only a portion of 
the pole, making it become a shaded-pole machine. This shading coil makes the magnetic field non-
symmetric, because of the opposing current which rises in the coil (short-circuited), and makes the 
rotor move. The disadvantage of this solution is the low efficiency of the machine.
The problem of the starting can also be solved through a specific geometry of the pole: if the pole is 
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asymmetric, in fact, the equilibrium position when the machine is not fed is not the aligned one, 
with the presence of an angle between the rotor direct axis and the stator one in position of rest. 
This angle is much bigger as bigger is the asymmetry in the geometry of the pole. This kind of 
shape permits the rotor to move when the current-due flux rises, because the shading coil makes the 
flux pass through the not shaded part of the pole in the firsts instants, but lets the flux itself pass 
once that the transient goes lower, making the rotor reach different positions for having the lowest 
energy: this makes the necessary starting torque take place.

6. Conclusions

The magnetic analysis of the machine has been concluded, and the profiles of reluctance, 
inductance and torque have been compared with the objective to give the best current feeding the 
machine.
As it was proposed, the analysed solution permits a reduction of the dimensions with respect to the 
traditional C-nucleus shape: the torque, in fact, is directly proportional to the volume of the machine 
in around the air gap. To have the same torque, it is necessary to have the same air-gap volume, but 
if the stator is outside, all the space necessary for the windings must go to increase the total volume 
of the machine.
Instead, with the internal stator solution, the windings are already inside the air gap volume, 
necessary to get the requested torque, and the additional volume outside of it is occupied only by 
the permanent magnets and by a crown of magnetic steel whose thickness is just the one needed not 
to saturate with the values of the flux passing through it.
This kind of machine can be an alternative to c-shaped nucleus synchrounous motors, or claw-pole 
ones.



7. Appendix

In the following chapter MatLab scripts used for simulations will be reported.

Macc1pp.m

clc
clear all
close all
 
turns=250;
u0=4*pi*10^-7;
um=u0*1.43486;
Br=0.4211;
r=0.05;
l=0.3;
beta=5*pi/6;
d=0.005;
Sm=r*l*beta;
 
addpath('C:\femm42\mfiles');
openfemm
 
opendocument('Macc1ppSilverio.fem');
mi_saveas('temp.fem');
n=71;
m=4;
zeta=4;
alfa=zeros(n,1); 
f1=zeros(n,1);
f2=zeros(n,1);
L=zeros(n,1);
f0=zeros(n,1);
torque=zeros(n,1);
coenergy=zeros(n,1);
i=zeros(n,1);
 
for k=1:n
    disp(fprintf('iteration %i of %i',k,n));
    mi_analyze;
    mi_loadsolution;
    mo_groupselectblock(1);
    alfa(k)=2*pi*(k-1)/(n-1);
    mo_seteditmode('contour')
    mo_addcontour(-1.6,0)
    mo_addcontour(1.6,0)
    flux=mo_lineintegral(0);
    mo_clearcontour
    f0(k)=flux(1);
    mo_seteditmode('area')
    mo_groupselectblock(1)
    torque(k)=mo_blockintegral(22);
    coenergy(k)=mo_blockintegral(17);
    mi_selectgroup(1);
    mi_moverotate(0, 0, 360/(n-1));
    mi_clearselected
end
 
figure(101)
plot(alfa,f0)
xlabel('Angle');
ylabel('Flux 0');



set(gca,'XTick',0:pi/3:2*pi);
set(gca,'XTickLabel',{'0','pi/3','2pi/3','pi','4pi/3','5pi/3','2pi'});
axis([0,2*pi,-0.05,0.05]);
grid on
 
figure(106)
plot(alfa,torque)
xlabel('Angle');
ylabel('Torque');
set(gca,'XTick',0:pi/3:2*pi);
set(gca,'XTickLabel',{'0','pi/3','2pi/3','pi','4pi/3','5pi/3','2pi'});
axis([0,2*pi,-20,20]);
grid on
 
figure(107)
plot(alfa,coenergy)
xlabel('Angle');
ylabel('Coenergy');
set(gca,'XTick',0:pi/3:2*pi);
set(gca,'XTickLabel',{'0','pi/3','2pi/3','pi','4pi/3','5pi/3','2pi'});
axis([0,2*pi,0,150]);
grid on
 
for z=1:zeta
    I=2^(z-1);
    Ieff=I/sqrt(2);
    for j=1:m    
        mi_selectgroup(1);
        mi_moverotate(0, 0, -360/(n-1));
        mi_clearselected
        phi=(j-1)*(pi/6);
        for k=1:n
            disp(fprintf('iteration %i of %i',k,n));
            i(k)=I*cos(alfa(k)+phi);
            mi_modifycircprop('Current',1,i(k));
            mi_modifycircprop('-Current',1,-i(k));
            mi_analyze;
            mi_loadsolution;
            mo_groupselectblock(1);
            mo_seteditmode('contour')
            mo_addcontour(-1.6,0)
            mo_addcontour(1.6,0)
            flux=mo_lineintegral(0);
            mo_clearcontour
            f1(k)=flux(1);
            mo_seteditmode('area')
            mo_groupselectblock(1)
            torque(k)=mo_blockintegral(22);
            coenergy(k)=mo_blockintegral(17);
            L(k)=turns*abs((f1(k)-f0(k))./i(k));
            mi_selectgroup(1);
            mi_moverotate(0, 0, 360/(n-1));
            mi_clearselected
            
        end
        
    figure(100*z+10*j+1)
    plot (alfa,f1)
    set(gca,'XTick',0:pi/3:2*pi);
    set(gca,'XTickLabel',{'0','pi/3','2pi/3','pi','4pi/3','5pi/3','2pi'});
    xlabel('Angle');
    ylabel('Flux');
    axis([0,2*pi,-0.05,0.05]);
    grid on



    
    figure(100*z+10*j+5)
    plot (alfa,L)
    set(gca,'XTick',0:pi/3:2*pi);
    set(gca,'XTickLabel',{'0','pi/3','2pi/3','pi','4pi/3','5pi/3','2pi'});
    xlabel('Angle');
    ylabel('Inductance');
    axis([0,2*pi,0,1]);
    grid on
 
    figure(100*z+10*j+6)
    plot (alfa,torque)
    set(gca,'XTick',0:pi/3:2*pi);
    set(gca,'XTickLabel',{'0','pi/3','2pi/3','pi','4pi/3','5pi/3','2pi'});
    xlabel('Angle');
    ylabel('Torque');
    axis([0,2*pi,-100,100]);
    grid on
 
    figure(100*z+10*j+7)
    plot (alfa,coenergy)
    set(gca,'XTick',0:pi/3:2*pi);
    set(gca,'XTickLabel',{'0','pi/3','2pi/3','pi','4pi/3','5pi/3','2pi'});
    xlabel('Angle');
    ylabel('Coenergy');
    axis([0,2*pi,0,150]);
    grid on
 
    figure(100*z+10*j+8)
    plot (alfa,i)
    set(gca,'XTick',0:pi/3:2*pi);
    set(gca,'XTickLabel',{'0','pi/3','2pi/3','pi','4pi/3','5pi/3','2pi'});
    xlabel('Angle');
    ylabel('Current');
    axis([0,2*pi,-25,25]);
    grid on
    
    end
 
end
 
closefemm

Macc2pp.m

clc
clear all
close all
 
turns=100;
u0=4*pi*10^-7;
um=u0*1.43486;
Br=0.4211;
r=0.05;
l=0.3;
beta=5*pi/12;
d=0.005;
Sm=r*l*beta;
omegar=2*pi*50;
 
addpath('C:\femm42\mfiles');
openfemm



opendocument('Macc2pp(2).fem');
mi_saveas('temp.fem');
n=71;
m=4;
zeta=4;
 
x=zeros(n,1);
alfa=zeros(n,1);
f1=zeros(n,1);
f01=zeros(n,1);
L1=zeros(n,1);
torque=zeros(n,1);
coenergy=zeros(n,1);
i=zeros(n,1);
 
for k=1:n
    disp(fprintf('iteration %i of %i',k,n));
    mi_analyze;
    mi_loadsolution;
    mo_seteditmode('contour')
    mo_addcontour(-3,6)
    mo_addcontour(3,6)
    flux1=mo_lineintegral(0);
    alfa(k)=2*pi*(k-1)/(n-1);
    x(k)=2*pi*(k-1)/(n-1);
    f01(k)=flux1(1);
    mo_seteditmode('area')
    mo_groupselectblock(1)
    torque(k)=mo_blockintegral(22);
    coenergy(k)=mo_blockintegral(17);
    mi_selectgroup(1);
    mi_moverotate(0, 0, 360/(n-1));
    mi_clearselected
end
 
figure(101)
plot (x,f01)
set(gca,'XTick',0:pi/3:2*pi);
set(gca,'XTickLabel',{'0','pi/3','2pi/3','pi','4pi/3','5pi/3','2pi'});
xlabel('Angle');
ylabel('Flux 01');
axis([0,2*pi,-0.05,0.05]);
grid on
 
figure (106)
plot (x,torque)
set(gca,'XTick',0:pi/3:2*pi);
set(gca,'XTickLabel',{'0','pi/3','2pi/3','pi','4pi/3','5pi/3','2pi'});
xlabel('Angle');
ylabel('Torque')
axis([0,2*pi,-100,100]);
grid on
 
figure (1062)
plot (x,torque)
set(gca,'XTick',0:pi/3:2*pi);
set(gca,'XTickLabel',{'0','pi/3','2pi/3','pi','4pi/3','5pi/3','2pi'});
xlabel('Angle');
ylabel('Torque')
axis([0,2*pi,-20,20]);
grid on
 
figure (107)
plot (x,coenergy)



set(gca,'XTick',0:pi/3:2*pi);
set(gca,'XTickLabel',{'0','pi/3','2pi/3','pi','4pi/3','5pi/3','2pi'});
xlabel('Angle');
ylabel('Coenergy')
axis([0,2*pi,0,100]);
grid on
 
figure (1072)
plot (x,coenergy)
set(gca,'XTick',0:pi/3:2*pi);
set(gca,'XTickLabel',{'0','pi/3','2pi/3','pi','4pi/3','5pi/3','2pi'});
xlabel('Angle');
ylabel('Coenergy')
axis([0,2*pi,0,50]);
grid on
 
figure (1073)
plot (x,coenergy)
set(gca,'XTick',0:pi/3:2*pi);
set(gca,'XTickLabel',{'0','pi/3','2pi/3','pi','4pi/3','5pi/3','2pi'});
xlabel('Angle');
ylabel('Coenergy')
axis([0,2*pi,30,36]);
grid on
 
for z=1:zeta
    I=(z)*2.5;
    Ieff=I/sqrt(2);
    for j=1:m    
        mi_selectgroup(1);
        mi_moverotate(0, 0, -360/(n-1));
        mi_clearselected
        phi=(j-1)*(pi/6);
        for k=1:n
            disp(fprintf('iteration %i of %i',k,j));
            i(k)=I*cos(2*alfa(k)+phi);
            mi_modifycircprop('Current1',1,i(k));
            mi_modifycircprop('-Current1',1,-i(k));
            mi_analyze;
            mi_loadsolution;
            mo_seteditmode('contour')
            mo_addcontour(-3,6)
            mo_addcontour(3,6)
            flux1=mo_lineintegral(0);
            mo_clearcontour
            f1(k)=flux1(1);
            L1(k)=4*turns*abs((f1(k)-f01(k))./I);
            mo_groupselectblock(1)
            torque(k)=mo_blockintegral(22);
            coenergy(k)=mo_blockintegral(17);
            mi_selectgroup(1);
            mi_moverotate(0, 0, 360/(n-1));
            mi_clearselected
        end
 
        figure(100*z+10*j+1)
        plot (x,f1)
        set(gca,'XTick',0:pi/3:2*pi);
        set(gca,'XTickLabel',{'0','pi/3','2pi/3','pi','4pi/3','5pi/3','2pi'});
        xlabel('Angle');
        ylabel('Flux1');
        axis([0,2*pi,-0.05,0.05]);
        grid on
 



        figure(100*z+10*j+5)
        plot (x,L1)
        set(gca,'XTick',0:pi/3:2*pi);
        set(gca,'XTickLabel',{'0','pi/3','2pi/3','pi','4pi/3','5pi/3','2pi'});
        xlabel('Angle');
        ylabel('Inductance');
        axis([0,2*pi,0,1]);
        grid on
 
        figure(100*z+10*j+6)
        plot (x,torque)
        set(gca,'XTick',0:pi/3:2*pi);
        set(gca,'XTickLabel',{'0','pi/3','2pi/3','pi','4pi/3','5pi/3','2pi'});
        xlabel('Angle');
        ylabel('Torque');
        axis([0,2*pi,-100,100]);
        grid on
 
        figure(100*z+10*j+7)
        plot (x,coenergy)
        set(gca,'XTick',0:pi/3:2*pi);
        set(gca,'XTickLabel',{'0','pi/3','2pi/3','pi','4pi/3','5pi/3','2pi'});
        xlabel('Angle');
        ylabel('Coenergy');
        axis([0,2*pi,0,100]);
        grid on
        
        figure(100*z+10*j+8)
        plot (x,i)
        set(gca,'XTick',0:pi/3:2*pi);
        set(gca,'XTickLabel',{'0','pi/3','2pi/3','pi','4pi/3','5pi/3','2pi'});
        xlabel('Angle');
        ylabel('Current');
        axis([0,2*pi,-25,25]);
        grid on
 
    end
    
end
 
closefemm
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