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Introduction

The theory of dilute Bose gas has been studied for a long time and now is a
standard condensed-matter physics subject, well known and well understood
[1]. However, this field has seen an increased interest since the observation,
for the first time, of Bose-Einstein condensation in rubidium-87 atoms in
1995 by E. Cornell and C. Weiman at JILA [2].
The theory, within the framework of path integrals, has also been extended
to treat systems that share some properties with Bose gases while being
strongly interacting, such as Helium-4 and Helium-3, in which the conden-
sation involves Cooper pairs of two atoms. So far, the field of pure bosonic
superfluids has been extensively studied.
However, much less focus and effort has been put in understanding how
quenched disorder, even very weak one, affects the correlation functions of a
system and ultimately the physical behavior, in particular of quantities such
as condensate fraction and normal-fluid particle density. The first efforts in
this direction have been in somewhat recent times, starting from the work of
Huang and Meng [3].
The problems of the effects of quenched impurities on bosonic systems, apart
from the fact that irregularities are an unavoidable feature of real-life sys-
tems, is interesting for many reasons. The first one is that disorder can
actually be controlled using laser speckles [4]. Moreover it is well known
that cold atoms are could be used to simulate and reproduce other physical
systems (Feynman’s quantum simulator [5]).
Another reason to study disordered Bose fluids is the fact that the formalism
can be extended to include the study of magnetic flux lines in type-II su-
perconductors with high critical temperature Tc, exploiting a formal analogy
between the dynamic of two dimensional bosons and the dynamic of (2+1)
dimensional directed lines [6]. Starting from this analogy it is possible to re-
alize a mapping between the descriptions of the two systems. In this context,
the mass m of the bosons can be mapped onto the line tension η, the density
n and chemical potential µ onto the magnetic flux density B and externally
applied field H. One relevant difference that has to be dealt with while work-
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ing with magnetic flux lines is that the periodic boundary condition is too
artificial for these systems; therefore we shall impose free boundary condition
and, to find averaged values, we shall integrate over them.
So, for the all mentioned reasons, in this work we shall present a review of
a modern and general approach to disordered bosonic systems in the path-
integral approach. The first chapter shall present basic notions about pure
bosonic systems, the definition of the relevant quantities ( such as the normal-
fluid particle density nn considered as transport coefficient of a response func-
tion) and the discussion of the approximations we shall use (mainly harmonic
approximation).
In the second chapter we shall present the formalism that can be used to
study disorder and find the impurities contribution to the quantities defined
in the first chapter. We shall do this in a general way, not specifying the
shape of the disorder self-correlator UD(r, τ)UD(r′, τ ′), where UD(q, ω) is the
Fourier transform of the disorder potential U(r, τ).
In the third chapter we shall present the results for relevant kind of disor-
ders, showing explicitly the results for condensate depletion and normal-fluid
particle density, along with leading-order corrections in finite temperature.
In particular, in section 3.3 we shall extend some results of the previous sec-
tions to the case of finite-range interaction potential, meaning that V (q) =
g0 + g2q

2 + O(q4). Moreover, we will also consider the case of a Lorentzian
correlator with finite-range interaction. This is an interesting situation be-
cause this kind of correlation can be created experimentally through laser
speckles. This analysis of finite-range interaction in disordered systems is, at
the best of our knowledge, a new result.
Finally, in the fourth chapter we shall briefly show how the formalism can be
extended to treat magnetic flux lines, comparing the analogies and differences
with the case of real bosonic superfluids.
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Chapter 1

Weakly interacting Bose gas

Consider the Hamiltonian for N bosons of mass m, in D spatial dimensions,
interacting through a two body potential V (r):

H =
N∑
i=1

− ℏ2

2m
∇2

i +
1

2

∑
i ̸=j

V (
∣∣ri − rj

∣∣) (1.0.1)

In order to study the statistical properties of many-particle systems at finite
temperature we need to compute the partition function of the system, in the
grand canonical ensamble [7]:

Z = Tr[e−β(H−µN)] =
∑

bosonic states n

⟨n|e−β(H−µN)|n⟩ (1.0.2)

where µ is the chemical potential and β = 1
kBT

, where T is the temperature.
This trace can be evaluated within the functional integral approach.
This approach uses coherent bosonic fields as dynamical variables and com-
putes the partiton function of the system, Z, via integration on all possible
field configurations, with each configuration weighted by a factor propor-
tional to the action.
The fact that we are integrating on all possible configurations means we are
taking into account the quantum nature of the system. More specifically we
have

Z =

∫
ψ(r,βℏ)=ψ(r,0),
ψ∗(r,βℏ)=ψ∗(r,0)

Dψ(r, τ)Dψ∗(r, τ)e−
S(ψ,ψ∗)

ℏ ≡ e−βΩ (1.0.3)
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Where Ω is called grand potential and is the fundamental object to compute
physical quantities. The action is given by

S =

∫ βℏ

0

dτ

∫
dDrL =

∫ βℏ

0

dτ

∫
dDr

{
ℏψ∗(r, τ)

∂ψ(r, τ)

∂τ
+

ℏ2

2m

∣∣∇ψ(r, τ)
∣∣2

− µ
∣∣ψ(r, τ)∣∣2 + 1

2

∫
dDr′U(

∣∣r− r′
∣∣)∣∣ψ(r, τ)∣∣2∣∣ψ(r′, τ)∣∣2 } (1.0.4)

where L is the Euclidean lagrangian density and ψ is the complex scalar field
such that

N =

∫
dDr

∣∣ψ(r, τ)∣∣2 (1.0.5)

where N is the total number of bosons, and the field is a function of the
space coordinates r in RD and imaginary time τ .
This equation can be obtained from Eq (1.0.1) after rewriting the Hamilto-
nian in second quantization language and then performing Wick rotation to
obtain imaginary-time action (for a complete introduction to coherent state
path-integral see [8]).
While working within this framework, it is possible to evaluate correlation
functions by functional derivatives. In fact, adding a source term to the
action we get

Z[J ] = Z[0]

∫
ψ(r,βℏ)=ψ(r,0),
ψ∗(r,βℏ)=ψ∗(r,τ)

Dψ(r, τ)Dψ∗(r, τ)e
∫
dτ

∫
dDrJ(r,τ)ψ∗(r,τ)+J(r,τ)∗ψ(r,τ)

(1.0.6)
which let us write, for example

⟨ψ(r, τ)⟩ ≡ 1

Z[J ]

∫
ψ(r,βℏ)=ψ(r,0),
ψ∗(r,βℏ)=ψ∗(r,0)

Dψ(r, τ)Dψ∗(r, τ)ψ(r, τ)e−
S(ψ,ψ∗)

ℏ =

δ lnZ[J ]

δJ(r, τ)
|J=0 (1.0.7)

Of course it is, in general, impossible to compute the action in closed form,
due to the presence of the two-body potential. There are, however, many
interesting cases that can be evaluated, such as the free field case and the
contact interaction approximation.
We shall use these easy cases as a device to show how to find relevant physical
quantities starting from the partition function sum and to introduce correla-
tion functions and quantities such as superfluid fraction that will be affected
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by disorder. Moreover, for simplicity sake, we shall work in the superfluid
phase, in which the U(1) simmetry is broken. This allows us to write

ψ(r, τ) = ψ0 + η(r, τ) (1.0.8)

where η(r, τ) describes fluctuations around the order parameter ψ0, which
describes the condensate. We assume that ψ0 is constant in space and time
and real.

1.1 Non interacting Bose gas
In the non interacting Bose gas we assume the interparticle two-body poten-
tial to be zero. Therefore we have the following lagrangian density

L = −µψ2
0 + η∗(r, τ)

[
ℏ
∂

∂τ
− ℏ2

2m
∇2 − µ

]
η(r, τ) (1.1.1)

We can cast the action into a more manageable by using Fourier decomposi-
tion:

η(r, τ) =
1√
ℏβV

∑
Q

ηQe
i(qr−ωτ) (1.1.2)

where Q is a short hand notation for aD+1 vector: Q = (q, iωn), where ωn =
2πn
βℏ are the so-called bosonic Matsubara frequencies [9] and V is the volume
of the system. These frequencies form a discrete spectrum as a consequence
of the periodicity of η(r, τ). The action is then:

S = −µψ2
0ℏβV +

∑
Q

ℏλQ
∣∣ηQ∣∣2 (1.1.3)

where
λQ = β(−iωn +

ℏ2

2m
q2 − µ). (1.1.4)

This allows us to write the partition function as

Z = Z0

∫
D[η, η∗]e−

∑
Q ℏλQ|ηQ|2 = 1

ΠQλQ
(1.1.5)

where Z0 is the partition function related to the condensate. Note that we
were able to carry out the partition function sum because the action is at
most quadratic in the bosonic field.
Considering that

+∞∑
n=−∞

ln(−in+ a) =
1

2

+∞∑
n=−∞

ln(n2 + a2) (1.1.6)
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We can finally conclude that the grand potential is

Ω = − 1

β
ln(Z) = −µψ2

0V +
1

2β

∑
q

n=+∞∑
n=−∞

ln[β2(ℏ2ω2
n + ξ2q )] (1.1.7)

where ξq is the shifted free-particle energy:

ξq =
ℏ2q2

2m
− µ (1.1.8)

To evaluate the summation over Matsubara frequency we can first take the
derivative with respect to ξq, which gives us (see [10])

1

β

n=+∞∑
n=−∞

ξq
ω2
n + ξ2q

=
1

2
+

1

eβξq − 1
(1.1.9)

This, finally, leads to
Ω = Ω0 + Ω(0) + Ω(T ) (1.1.10)

where the first term Ω0 = −µψ2
0V is the grand potential of the condensate,

Ω(0) =
1

2

∑
q

ξq (1.1.11)

is the zero point energy of the bosonic single-particle excitations and

Ω(T ) =
1

β

∑
q

ln(1− e−βξq) (1.1.12)

We still need to carry out the momentum sum. To do this we can consider
the continuum limit, in which the integrals take the form:

Ω(0)

V
=

1

2D(π)
D
2 Γ(D

2
)

∫ ∞

0

dqqD−1

(
ℏ2q2

2m
− µ

)
(1.1.13)

This integral is clearly ultraviolet divergent when D=1,2,3. However it can
be proven that, for an ideal Bose gas, dimensional regularization completely
cancels this term. For this reason, we are left with the following contribution

Ω

V
= −µψ0 +

1

β(2π)D

∫
dDqln(1− e−βξq) (1.1.14)

At this point we can notice what ψ0 is not a free parameter, but is rather
determined by the following relation(

∂Ω0

∂ψ0

)
µ,T,V

= 0, (1.1.15)
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which leads to

ψ0 =

{
0 if µ ̸= 0
any value if µ = 0

(1.1.16)

Remembering the well known thermodynamic relation

n =
N

V
= − 1

V

(
∂Ω

∂µ

)
T,V,ψ0

(1.1.17)

gives us (after passing to the continuum limit and setting µ to zero, since we
are in the condensate phase)

n = ψ2
0 +

∫
dDq

(2π)D
1

e
ℏ2q2

2mkBT − 1
= n2

0 +

∫
dDq

(2π)D
1

e
ℏ2q2

2mkBT − 1
(1.1.18)

From this equation we can find the condensation temperature Tc by setting
ψ0 = 0 in the previous equation. This leads to the following well known
result [7]

kBTc =

{ 1

2πζ( 3
2
)
2
3

ℏ2
m
n

2
3 for D = 3

0 for D = 2
no solution for D = 1

(1.1.19)

The fact that, when D=2, there is no condensation at finite temperature for a
non interacting system can be generalized: Mermin and Wagner proved that
this statement holds true even for interacting systems, provided they are ho-
mogeneous and with short-range interaction. From Eq (1.1.17), taking D=3,
we can express che condensate fraction n0

n
as a function of the temperature

n0

n
= 1−

(
T

Tc

) 3
2

(1.1.20)

which is the same result derived by Einstein and Bose, as it should be [7].

1.2 Interacting Bose gas in Bogoliubov Approx-
imation

Next, we focus our attention to the simplest non trivial interaction: contact
interaction.
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This is carried out by considering V (|r− r′|) = g0δ(r − r′). Clearly, the
Fourier transform of this potential reads:

Ṽ (q) = g0 (1.2.1)

The constant g0 can be expressed in terms of measurable quantities through
scattering theory. For example, when D=3

g0 =
4πℏ2as
m

(1.2.2)

where as is the s-wave scattering length. This greatly simplifies Eq (1.0.4),
leading to the following lagrangian density:

L = ℏψ∗(r, τ)
∂ψ(r, τ)

∂τ
+

ℏ2

2m

∣∣∇ψ(r, τ)
∣∣2−µ∣∣ψ(r, τ)∣∣2 +1

2
g0
∣∣ψ(r, τ)∣∣4 (1.2.3)

Considering the mean-field approximation, we can write the partition func-
tion as

Z = e−βΩ0 (1.2.4)

where
Ω0 = V(−µψ2

0 +
1

2
g0ψ

4
0) (1.2.5)

Fig. 1.1 shows the two shapes of the grand potential, according to the value
of µ. Minimising the grand potential with respect to the order parameter we
find that in the superfluid phase the chemical potential is positive

µ = g0ψ
2
0 (1.2.6)

We can then express the grand potential as a function of µ

Ω0 = −Vµ2

2g0
(1.2.7)

In this phase the mean field value of the order parameter is

|ψ0| =
√
µ

g0
(1.2.8)

which gives us the expression for the condensate particle density

n0 = |ψ0|2 =
µ

g0
(1.2.9)
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Figure 1.1: Mean-field potential for interacting bosons. We can the effect of
the sign of the chemical potential on the shape of Ω0, see Eq (1.2.5).

The next step is to take into account fluctuations around the mean-field
value. To do this we can switch to the polar parametrization, using real
fields:

ψ(r, τ) =
√
n0 + π(r, τ)eiΘ(r,τ) (1.2.10)

From this equation follow immediately that the field π(r, τ) describes density
fluctuations:

n(r, τ) =
∣∣ψ(r, τ)∣∣2 = n0 + π(r, τ) (1.2.11)

where n0 is the boson order parameter in the superfluid phase in the mean-
field approximation. We see that, if we allow the boson field to fluctuate,
i.e. not to be constant in space and time, then not all the particles enter the
condensate and n0 ̸= n.
We can then define the superfluid velocity vs

vs(r, τ) = ℏ∇Θ(r, τ)/m (1.2.12)

and the mass current g(r,τ)

g(r, τ) = mj(r, τ) =
ℏ
2i

[
ψ∗(r, τ)∇ψ(r, τ)− ψ(r, τ)∇ψ∗(r, τ)

]
(1.2.13)
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In the context of superfluid bosons, it is often useful to imagine the system
as composed by two kind of fluids (two-fluid model): one is in the superfluid
state and the other is the normal fluid.
These two fluids have in general different velocities and particle densities
ns = ρs/m and nn = ρn/m such as n = ns + nn. It is important to evaluate
this quantites, since disorder will affect them: we expect that, in presence of
impurities, the superfluid fraction will decrease.

We can then rewrite the partition function using the new degrees of free-
dom:

Z =

∫
Dπ(r, τ)DΘ(r, τ)e−S0[π,Θ]+Sint[π,Θ]/ℏ (1.2.14)

The new fields still satisfy periodic boundary conditions. Here S0 denotes
the quadratic or gaussian part of the action:

S0[π,Θ] =

∫ βℏ

0

dτ

∫
dDr iℏπ(r, τ)

∂Θ(r, τ)

∂τ
+

ℏ2

8mn0

[∇π(r, τ)]2+

ℏ2n0

2m
[∇Θ(r, τ)]2 +

g0
2
π(r, τ)2 (1.2.15)

While Sint[π,Θ] is the anharmonic part

Sint[π,Θ] =

∫ βℏ

0

dτ

∫
dDr

−ℏ2

8mn0

π(r, τ)

n0 + π(r, τ)
[∇π(r, τ)]2+

ℏ2

2m
π(r, τ)[∇Θ(r, τ)]2 (1.2.16)

The physical meaning behind this splitting is the fact the first part of the
action describes single-quasiparticle excitations, while the second one multi-
quasiparticle ones [11].
In the Bogoliubov approximation we neglect the interacting part and consider
just S0. By doing this we can derive exact results, since the resulting action
is gaussian in the fields.
Passing in the reciprocal space gives us:

S0[π,Θ] =
1

2βℏV
∑
q,ωn

(
Θ(−q,−ωn), π(−q,−ωn)

)
A(q, ωn)

(
Θ(q, ωn)
π(q, ωn)

)

− 1

2
n2
0βℏVV0 (1.2.17)

where

A(q, ωn) =

(
n0ℏ2q2/m −ℏωn

ℏωn g0 + ℏ2q2/4mn0

)
(1.2.18)
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The inverse of this matrix is usually called Feynman propagator. The poles of
the propagator give us the energy spectrum (remember that in the imaginary-
time formalism the excitations correspond to iωn = ϵ(q)) .

∆F (q, ωn) = ℏA−1(q, ωn) =
1

ω2
n + EB(q)2/ℏ2

(
mEB(q)

2/n0ℏ3q2 ωn
−ωn n0ℏq2/m

)
(1.2.19)

with EB(q) the Bogoliubov quasi-particle spectrum

EB(q) =
√
n0g0ℏ2q2/m+ (ℏ2q2/2m)2 =

√
ϵ2(q) + 2µϵ(q) (1.2.20)

where ϵ(q) = ℏ2q2
2m

is the free particle energy.
In the long wavelenght limit we find a linear spectrum EB(q) = ℏ

√
µ/m q =

ℏcq, where c is called sound speed. This spectrum is gapless and describes a
frictionless fluid (following a famous argument from Landau).
We can then evaluate the grand potential after integration on the quadratic
degrees of freedom. We get

Ω =
1

2β

n=+∞∑
q,n=−∞

log
[
β2(ℏ2 + EB(q)

2)
]

(1.2.21)

Summing over Matsubara frequencies we get

Ω = Ω0 + Ω(0)
g + Ω(T )

g (1.2.22)

where Ω0 is the mean-field contribution and

Ω(0)
g =

1

2

∑
q

EB(q) (1.2.23)

Ω(T )
g =

1

β

∑
q

log
(
exp−βEB(q)

)
(1.2.24)

The first term represent the zero-point energy, while the second one the ter-
mal fluctuations. In the following we shall use the Feynman propagator to
compute correlation functions.
Before doing that, however, we shall briefly touch on the topic of the dimen-
sional regularization of Bogoliubov theory.
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1.3 Dimensional regularization
In the continuum limit the gaussian fluctuation contribution to the grand
potential is

Ω
(0)
g

V
=

SD
2(2π)D

∫ ∞

0

dqqD−1

√
ℏ2q2
2m

(
ℏ2q2
2m

+ 2µ

)
(1.3.1)

which is clearly ultraviolet divergent for any D.
There are a couple ways to regularize (i.e. remove the divergent behavior)
these kind of expressions. We shall show the dimensional regularization ap-
proach that was used for the first time by t’Hooft and Veltman in the context
of quantum field theory [12].

In this approach we treat D as a parameter that can assume any value,
not necessarily integer. We can introduce Euler’s gamma function

Γ(z) =

∫ ∞

0

dttz−1e−z (1.3.2)

that is convergent for z>0. However we can extend the domain via analytic
continuation, at the price of developing poles for negative integers. Moreover,
we can define Euler’s beta function

B(x, y) =

∫ ∞

0

dt
tx − 1

(1 + t)x+y
(1.3.3)

which is well defined for Re(x), Re(y)>0. This function can be continued to

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
(1.3.4)

Using these functions we can write [13]

Ω
(0)
g

V
=
SD(2µ)

D/2+1

4(2π)D

(
2m

ℏ

)D/2
B(

D + 1

2
,−D + 2

2
) (1.3.5)

These expression can be evaluated for D=3, which leads to

Ω
(0)
g

V
=

8m3/2

15π2ℏ3/2
µ5/2 (1.3.6)

For D=2 however, we run into some issues, since Γ(−2) is ill-defined. The
workaround consists into considering Γ(2− ϵ) and then take the limit ϵ→ 0
at the end of the calculation. Considering that

Γ(2− ϵ) =
1

ϵ
+O(ϵ0) (1.3.7)
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we have that
Ω

(0)
g

V
= − mµ2

4πℏ2kϵ
Γ(2− ϵ) = − mµ2

4πℏ2ϵkϵ
(1.3.8)

where we have introduced an arbitrary ave-number regulator k, for dimen-
sional consistency. This leads to a renormalized interaction constant, mean-
ing

1

gr
kϵ
(
1

g
+

m

2πℏ2kϵϵ

)
(1.3.9)

The renormalization procedure led us to a running coupling constant gr. We
can obtain the differential flow equation

k
dgr
dk

=
m

2πℏ2
g2r (1.3.10)

which leads to
1

gr(k0)
− 1

gr(k)
= − m

2πℏ2
log

k0
k

(1.3.11)

We can set the Landau pole (i.e. the energy at which the coupling diverges)
at the energy E0 = ℏ2k20/2m (for a more extensive analysis of this issues, see
[13]).
This leads to

1

gr(k)
=

m

4πℏ2
log

E0

µ
(1.3.12)

when k is such as ℏ2k2/2m = µ.
These results are in agreement with the ones found by Popov [14] using the
T-matrix cutoff approach.

1.4 Correlation functions in Bogoliubov approx-
imation, condensate depletion and normal-
fluid particle density

In this section we shall show how to derive condensate depletion and normal-
fluid particle density using the functional approach in the Bogoliubov approx-
imation. This will result in the evaluation of specific correlation functions,
built upon the fundamental correlators between the phase field Θ(r, τ) and
the density field π(r, τ).
We shall closely follow the steps of [15]. The first correlator we can evaluate
is the density-density correlation function

S(r, τ, r′, τ ′) = ⟨n(r, τ)n(r′, τ ′)⟩ − n2 ≈ ⟨π(r, τ)π(r′, τ ′)⟩ (1.4.1)
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This can be quickly evaluated by adding a density source term∫ βℏ
0
dτ
∫
dDrπ(r, τ)J(r, τ) in the action and taking functional derivatives:

S(r, τ, r′, τ ′) = ℏ2
δ2 lnZ[J ]

δJ(r, τ)δJ(r′, τ ′)
|J=0 (1.4.2)

In the reciprocal space, assuming our system to be invariant for space and
time translation we get:

S(q, ωm;q
′, ωm′) = βℏS(q, ωm)(2π)Dδ(q+ q′)δm,−m′ (1.4.3)

whit
S(q, ωm) =

n0ℏq2/m
ω2
m + EB(q)2/ℏ2

. (1.4.4)

The Matsubara frequencies summation can be performed in a standard fash-
ion by continuing the variable iωn to a generic complex value z and using
contour integration. This yields:

S(q, τ) =
1

βℏ
∑
m

S(q, ωm)e
−iωmτ =

n0ℏ2q2

2mEB(q)

e(β−τ/ℏ)EB(q) + eEB(q)τ/ℏ

eβEB(q) − 1

(1.4.5)
We can take the static limit: τ = 0

S(q, 0) =
n0ℏ2q2

2mEB(q)
coth

βEB(q)

2
(1.4.6)

which is the form factor we can find in the Bogoliubov quasi-particle approx-
imation [16].
Going back from imaginary to real time, we get the dynamic structure factor

S(q, ω) =

∫
dtS(q, t)eiωt =

2πn0ℏ2q2

2mEB(q)
(
eβEB(q) − 1

)[eβEB(q)δ
(
ω − EB(q)/ℏ

)
+ δ(ω + EB(q)/ℏ)

]
(1.4.7)

This is a very important relation, because the dynamic structure factor can
br directly measured in scattering experiments. In particular, we expect to
see peaks that follow the dispersion relation of the Bogoliubov spectrum.
These kind of experiments can also give some insight on the interparticle
potential V (q). For example, for strongly interacting liquids, such as Helium
4 we would see a spectrum like that of Fig. 1.2.
In these spectra we have both a linear, phonon-like part, for small values of
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Figure 1.2: Elementary excitation spectrum in Helium-4. Note the local
minimum that corresponds to roton excitations.

q and a local minimum that corresponds to rotons. This kind of excitations
can be pictured as almost free particles surrounded by a cloud of phonons
[17]. The second correlation function we want to compute is the mass current
one, which is defined as:

Cij(r, τ ; r
′, τ ′) = ⟨gi(r, τ)gj(r′, τ ′)⟩ − ⟨gi(r, τ)⟩⟨gj(r′, τ ′)⟩ (1.4.8)

where

g(r, τ) = mj(r, τ) =
ℏ
2i

[
ψ∗(r, τ)∇ψ(r, τ)− ψ(r, τ)∇ψ∗(r, τ)

]
(1.4.9)

Using Wick theorem we can evaluate a four-point correlation function in
terms of lower order ones. In this case, though, we don’t have any three-
point function, due to the fact the action is quadratic in the fields. This
leads to:

Cij(q, ωm;q
′, ωm′) = −ℏ2n2

0qiq
′
j⟨Θ(q, ωm)Θ(q′, ωm′)⟩

− 1

(βV)2
∑
p,ωn

∑
p′,ω′

n

pip
′
j

[
⟨π(q− p, ωm−n)π(q

′ − p′, ωm′−n′)⟩⟨Θ(p, ωn)Θ(p′, ωn′)⟩

+ ⟨π(q− p, ωm−n)Θ(p′, ωn′)⟩⟨Θ(p, ωn)π(q
′ − p′, ωm′−n′)⟩

]
(1.4.10)
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We can then define the transverse current response function χ⊥:

χ⊥(q, ωm) ≡
1

(D − 1)ℏ
∑
ij

P T
ij (q)Cij(q, ωm) (1.4.11)

where P T
ij (q) = δij − qiqj/q

2 is the transverse projector.
We then find:

χ⊥(q, ωm) =
1

(D − 1)βV
∑
p,ωn

q2p2 − (qp)2

q2p2

(q− p)2EB(p)
2/ℏ2 + p2ωm−nωn[

ω2
m−n + EB(|q− p|)2/ℏ2

][
ω2
n + EB(p)2/ℏ2

] (1.4.12)

Had we not included the nonlinear terms of Eq (1.4.10) the transverse re-
sponse function would have vanished.
We can finally define the normal-fluid particle density nn by taking the limit
q → 0 for χT after ωm has been set to zero. The reason for this is that the
normal-fluid particle density is defined as the transport coefficient related to
the reaction to transverse motion [18]. We find that

nn =
1

m
lim
q→0

χT (q, 0) =
1

mDβV
∑
p,ωn

p2
EB(p)

2/ℏ2 − ω2
n[

EB(p)2/ℏ2 + ω2
n

]2 (1.4.13)

We can then sum over the Matsubara frequencies, obtaining

nn =
βℏ2

4mD

∫
dDq

(2π)D

(
q

sinh βEB(q)/2

)2

(1.4.14)

We shall explicitly evaluate this integral later on, after showing an alternative
derivation of the normal density that uses Green’s functions.
The last important correlation function for superfluid bosons systems is the
vorticity correlation function. This is defined, in two and three dimensions
as:

Vij(r, τ ; r
′, τ ′) ≡=

1

m2

⟨[
∇× g(r, τ)

]
i

[
∇× g(r′, τ ′)

]
j

⟩
(1.4.15)

After using again Wick’s theorem, we get in Fourier space:

Vij(q, ωm;q
′, ωm′) =

∑
k,l,k′,l′

ϵiklϵjk′l′
1

(mβV)2
∑
p,ωn

∑
p′,ωn′

(qk − pk)pl(q
′
k − p′k)p

′
l′[

⟨π(q− p, ωm−n)π(q
′ − p′, ωm′−n′)⟩⟨Θ(p, ωn)Θ(p′, ω′

n)⟩

⟨π(q− p, ωm−n)Θ(p′, ωn′)⟩⟨Θ(p, ωn)π(q
′ − p′, ωm′ − n′)⟩

]
(1.4.16)
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It is possible to show, through brute force, that the longitudinal component
of this correlation function vanishes: V∥ =

∑
ij P

L
ijVij = 0.

Moreover, after plugging in the density-phase correlators, we find that:

V⊥(q, ωm) = ℏq2χ⊥(q, ωm) (1.4.17)

This relation shows that the intrinsic vortex-vortex correlations make the
transverse response function, and therefore the normal-fluid particle density,
non zero ad finite temperatures.
In fact, considering an effective theory in which the density degree of freedom
have been integrated out (phase-only approximation) one would find that nn
is zero even at finite temperature. This is the case for Kosterlitz-Thouless
superfluid films.
To understand and calculate quantites suchs as condensate depletion it is
useful to define the following Green functions [8]:

G(r, τ ; r′, τ ′) = ⟨ψ(r, τ)ψ∗(r′, τ ′)⟩ − n0 (1.4.18)
G12(r, τ ; r

′, τ ′) = ⟨ψ(r, τ)ψ(r′, τ ′)⟩ − n0 (1.4.19)

To compute these Green functions we can expand ψ, as defined in Eq (1.2.10),
in powers of the density and phase fields:

ψ(r, τ) ≈
√
n0

[
1−π(r, τ)

2n0

+iΘ(r, τ)−π(r, τ)
2

8n2
o

+
i

2n0

π(r, τ)Θ(r, τ)−1

2
Θ(r, τ)2

]
(1.4.20)

To leading order this gives, in Fourier space

G(q, ωm;q
′, ωm′) ≈ 1

4n0

⟨π(q, ωm)π(q′, ωm′)⟩ − i

2
⟨π(q, ωm)Θ(q′, ωm′)⟩

+
i

2
⟨Θ(q, ωm)π(q

′, ωm′)⟩+ n0⟨Θ(q, ωm)Θ(q′, ωm′)⟩ (1.4.21)

G12(q, ωm;q
′, ωm′) ≈ 1

4n0

⟨π(q, ωm)π(q′, ωm′)⟩+ i

2
⟨π(q, ωm)Θ(q′, ωm′)⟩

+
i

2
⟨Θ(q, ωm)π(q

′, ωm′)⟩ − n0⟨Θ(q, ωm)Θ(q′, ωm′)⟩ (1.4.22)

After inserting the gaussian two-point correlators we get:

G(q, ωm) =
iωm + ℏq2/2m+ n0g0/ℏ

ω2
m + EB(q)2/ℏ2

, (1.4.23)

G12(q, ωm) =
−n0g0/ℏ

ω2
m + EB(q)2/ℏ2

(1.4.24)
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It is useful to rewrite this functions in terms of poles and residues:

G(q, ωm) =
|u(q)|2

−iωm + EB(q)/ℏ
+

|v(q)|2

iωm + EB(q)ℏ
, (1.4.25)

G12(q, ωm) = −u(q)v(q)
(

1

−iωm + EB(q)/ℏ
+

1

iωm + EB(q)ℏ

)
(1.4.26)

Here we introduced the weight functions u(q) and v(q) defined as

∣∣u(q)∣∣2 = 1

2

(
n0g0 + ℏ2q2/2m

EB(q)
+ 1

)
, (1.4.27)

∣∣v(q)∣∣2 = 1

2

(
n0g0 + ℏ2q2/2m

EB(q)
− 1

)
(1.4.28)

Note that these are exactly the coefficients of the Bogoliubov transfor-
mation. This proves once again the equivalence between the classic tran-
sormation approach and the gaussian approximation. We are now ready to
evaluate relevant physical quantities.

1.5 Explicit evaluation of condensate depletion
For the condensate depletion, we can write

N −N0 =

∫
dDr

(
⟨ψ(r, τ − η)ψ∗(r′, τ + η)⟩ − n0

)
=∫

dDq

(2π)D
1

(βℏ)2
∑
m,m′

e−i(ωm+ωm′ )τe
′(ωm−ωm′ )ηG(q, ωm;−q, ω′

m) (1.5.1)

Here, the η factor, which is crucial for convergence sake, comes from the time
ordering of the fields. We shall take the limit η → 0 at the end.
Supposing time and space translation invariance we have

n− n0 =

∫
dDq

(2π)D
1

βℏ
∑
m

eiωmηG(q, ωm) (1.5.2)

Using eq (1.4.23) and then performing the Matsubara frequency summation
we arrive to

n− n0 =

∫
dDq

(2π)D

[
v(q)2 +

u(q)2 + v(q2)

eβEB(q) − 1

]
(1.5.3)

From this equation we can easily read that the first term describes the zero-
temperature depletion, caused by interaction between particles and quantum
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fluctuations, while the second term describes the depletion caused by thermal
fluctuations.
Since we have assumed contact interaction, we can easily evaluate this inte-
gral at T = 0:

n(T = 0)− n0 =
1

2

∫
dDq

(2π)D
n0g0 + ℏ2q2/2m

EB(q)
− 1 (1.5.4)

Defining

x2 =
ℏ2q2

4mn0g0

We get

(mn0g0)
D
2

2ℏDπD/2Γ(D
2
)

∫ ∞

0

dx xD−2

[√
1 + x2 − 2x− x2√

1 + x2

]
(1.5.5)

As we expected from Mermin-Wagner theorem, this integral diverges as a
logarithm at the lower limit for D=1, meaning that there is no condensation.
In D=2 the final result is

n(T = 0)− n0 =
mn0g0
4πℏ2

(1.5.6)

while for D=3 we have

n(T = 0)− n0 =
(mn0g0)

3/2

3ℏ3π2
(1.5.7)

We can evaluate the lowest order finite-temperature corrections by taking the
phonon limit for the Bogoliubov spectrum EB(q) ≈ ℏcq. Within this limit
we have v(q)2 + u(q)2 ≈ mc/ℏq. This leads us to

n(T )− n0 ≡ ∆n(T ) =

∫
dDq

(2π)D
mc/ℏq

eβEB(q) − 1
(1.5.8)

defining t = βℏcq we get

∆n(T ) =
1

2D−1π
D
2 Γ(D

2
)ℏDcD−2

β1−D
∫
dt
tD−2

et − 1
=

Γ(D − 1)ζ(D − 1)

2D−1π
D
2 Γ(D

2
)ℏDcD−2

β1−D (1.5.9)

In two dimensions the ζ function diverges. This means that a non zero order
parameter is possible only at zero temperature. The interesting fact is that,
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as we shall see below, at finite temperature in D=2 the superfluid particle
density ns will be non zero.
The last equation, in D=3, gives:

∆n(T ) =
m(kBT )

2

12ℏ3c
(1.5.10)

To keep track of all the different contributions, from here on, we shall use
the following conventions: n0 denotes the condensate particle density, as
given by Eq (1.2.9) while all the other contributions ( quantum, thermal,
and eventually disorder) will be denoted as nout.
For example, at finite temperature and in D=3 we would write

n = n0 + nout (1.5.11)

where
nout = nQ + nth (1.5.12)

In this case nQ is given by Eq (1.5.7) and nth by Eq (1.5.10).

1.6 Explicit evaluation of normal-fluid particle
density

As we have said, it is possible to derive Eq (1.4.13) using Green functions.
Let’s imagine a cylindrical pipe whose walls are moving with velocity v with
respect to the superfluid. In this case the superfluid velocity is zero and the
normal-phase fluid velociy is v. This is because, in the two-fluid picture, only
normal fluid can be dragged by the moving walls. This leads to:

⟨g(r, τ)⟩ = m⟨j(r, τ)⟩ = mnnv (1.6.1)

We now have to compute g(r,τ). Remembering the definiton in terms of the
bosonic field, we have

⟨g(r, τ)⟩ =
∫

dDq

(2π)D
ℏq

1

(βℏ)2
∑
m,m′

e−i(ωm+ωm′ )τe−iωm′ηG(q, ωm;−q, ωm′)−v

(1.6.2)
Here, the subscript is put to remember that we need the Green function of a
system with relative velocity between the walls and the superfluid.
Moreover, assuming we have time translation invariance, we get the reduced
formula

⟨g(r, τ)⟩ =
∫

dDq

(2π)D
q

β

∑
m

eiωmηG(q, ωm)−v (1.6.3)
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We can obtain G(q, ωm)−v by performing a Galilean transformation with
velocity -v from G(q, ωm), i.e. the Green functions for a still system. This
results in a shift in the Matsubara frequencies. In fact we have

ψ′(r′, τ ′) = ψ(r+ ivτ, τ) =
1

βℏV
∑
q,ωm

ψ(q, ωm) exp
iqr−i(ωm−iqv)τ = (1.6.4)∑

q′,ω′
m

ψ′(q′, ω′
m) exp

iq′r′−iω′
mτ

′
(1.6.5)

This means that, under Galilean transformation we have

q → q′ = q (1.6.6)
ωm → ω′

m = ωm − iqv (1.6.7)

By plugging in the shifted Matsubara frequencies in Eq (1.4.23) we get

G(q, ωm)−v =
1− |v(q)|2

−iωm + EB(q)/ℏ− qv
+

|v(q)|2

iωm + EB(q)/ℏ+ qv
(1.6.8)

After summing over ωm we arrive at Landau’s formula

⟨g(r, τ)⟩ =
∫

dDq

(2π)D
ℏq

expβ[EB(q)−ℏqv] −1
(1.6.9)

We see that the moving walls resulted in a reduction in energy eigenvalues of
the quasiparticles. This equation reduces to the Eq. (1.4.13) once we expand
up to linear order in v
To evaluate this integral we restrict ourselves to phonon spectrum i.e. EB(q) ≈
ℏcq.
Defining t = ℏβcq/2, in the above limit, Eq. (1.4.13) becomes

nn(T ) =
2(kBT )

D+1

mDπ
D
2 Γ(D

2
)ℏDcD+1

∫
dt

tD+1

sinh(t)
= (1.6.10)

Γ(D + 2)ζ(D + 1)(kBT )
D+1

m2D−1Dπ
D
2 Γ(D

2
)ℏDcD+1

(1.6.11)

This equation, then, gives for D=2

nn,th =
3ζ(3)(kBT )

3

2πℏ2c4m
(1.6.12)

and for D=3
nn,th =

2π2(kBT )
4

45ℏ3c5m
(1.6.13)
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Here we have introduced the subscript "th" to remark the fact that this
normal-fluid particle density is caused by thermal fluctuations. After intro-
ducing disorder, we shall see that also impurities contribute to the normal-
fluid particle density. It is very important to note, once again, that these
results are derived taking into account both phase and amplitude fluctua-
tions. While dealing with low-energy modes, it is customary to integrate out
the π fields, since the most relevant degrees of freedom are the Θ fields and
depending on what features one is interest in this could work.
However we have already seen that, in this context, neglecting amplitude fluc-
tuations would result in having no vorticity in the system and, as a result,
no normal-fluid particle density at T>0.

26



Chapter 2

Disorder in bosonic systems

In the first chapter we introduced superfluid bosons systems and discussed
their properties. Moreover we derived the expression of physical quantities of
interest in harmonic approximation, using Green functions. We shall retain
this approach while discussing the role of disorder on these kind of systems.
This section follows the approach to disorder of reference [15].
To account for the role of defects in the system, we add an extra term to the
action in Eq (1.0.4), obtaining

S =

∫ βℏ

0

dτ

∫
dDrL =

∫ βℏ

0

dτ

∫
dDr

{
ℏψ∗(r, τ)

∂ψ(r, τ)

∂τ
+

ℏ2

2m

∣∣∇ψ(r, τ)
∣∣2

−
[
µ+ UD(r, τ)

]∣∣ψ(r, τ)∣∣2 + 1

2

∫
dDrV (

∣∣r− r′
∣∣)∣∣ψ(r, τ)∣∣2∣∣ψ(r′, τ)∣∣2 }

(2.0.1)

where UD(r, τ)
∣∣ψ(r, τ)∣∣2 describes the coupling between the disorder poten-

tial and the bosons density field and can be thought as a local ridefinition of
the chemical potential: ˜µ(r, τ) = µ+ UD(r, τ).
The disorder potential satisfies the following relations:

UD(r, τ)UD(r′, τ) = kR(r− r′)H(τ − τ ′) (2.0.2)

UD(r, τ) = 0 (2.0.3)

Disorder affects even the mean-field approximation. In fact it shifts the
transition point according to:

n0 = 0 for µ+ UD ≤ 0 (2.0.4)

n0 =
µ+ ŪD

g
for µ+ UD ≥ 0 (2.0.5)
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Here UD denotes the configurational average for the disorder potential. For
now, the space and time self-correlation functions will be left general. After
developing a general formalism, we shall consider some concrete cases.
We can now take the same steps we followed in the previous chapter, to get
to the action in Bogoliubov approximation, this time with disorder.

S0[π,Θ] =
1

2βℏV
∑
q,ωn

[(
Θ(−q,−ωn), π(−q,−ωn)

)
A(q, ωn)

(
Θ(q, ωn)
π(q, ωn)

)

− 2

(
Θ(−q, ωm), π(−q,−ωm)

)(
0

UD(q, ωn)

)]
− 1

2
n2
0V0βℏV (2.0.6)

We can define the disorder correlator in Fourier space as the two point func-
tion:

Λ(q, ωm;q
′, ωm′) = UD(q, ωm)UD(q′, ωm′) (2.0.7)

we shall work to first order in this correlator.

Let us call, for simplicity sake, X =

(
Θ
π

)
.

To obtain the correlation matrix ⟨X(q, ωm)X
T (q′, ω′

m)⟩ in Fourier space we
use the following change of variables(

Θ̃(q, ωm)
π̃(q, ωm)

)
=

(
Θ(q, ωm)
π(p, ωm)

)
−A(q, ωm)−1

(
0

UD(q, ωm)

)
(2.0.8)

Expressed in these fields, the action is purely Gaussian and can be readily
evaluated.
Using the source method, we can find the correlation matrix for the shifted
fields:

⟨X̃(q, ωm)X̃
T (q′, ωm′)⟩ = ℏA−1(q, ωm)βℏδ(q+ q′)δm,−m′ (2.0.9)

Switching back to the original fields, using the fact the single-field correlation
functions are vanishing, the fact that AT (q, ωm) = A(−q,−ωm) and taking
the quenched average, we finally arrive at

⟨Θ(q, ωm)Θ(q′, ωm′)⟩ = mEB(q)
2/n0ℏ3q2

ω2
m + EB(q)2/ℏ2

(2π)Dδ(q+ q′)βδm,−m′+

ωmωm′/ℏ2[
ω2
m + EB(q2/ℏ2)

][
ω2
m′ + EB(q)2/ℏ2

]Λ(q, ωm;q′, ωm′) (2.0.10)
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⟨Θ(q, ωm)π(q′, ωm′)⟩ = ωm
ω2
m + EB(q)2/ℏ2

(2π)Dδ(q+ q′)βδm,−m′+

n0q
′2ωm/ℏm[

ω2
m + EB(q2/ℏ2)

][
ω2
m′ + EB(q)2/ℏ2

]Λ(q, ωm;q′, ωm′) (2.0.11)

⟨π(q, ωm)π(q′, ωm′)⟩ = ℏn0q
2/m

ω2
m + EB(q)2/ℏ2

(2π)Dδ(q+ q′)βδm,−m′+

n2
0q

2q′2ωm/m
2[

ω2
m + EB(q2/ℏ2)

][
ω2
m′ + EB(q)2/ℏ2

]Λ(q, ωm;q′, ωm′) (2.0.12)

It is not restrictive to assume that, on average, the system will be invariant
under space and time translations. Therefore

Λ(q, ωm;q
′, ωm′) = Λ(q, ωm)ℏβ(2π)Dδ(q+ q′)δm,−m′ (2.0.13)

This leads to, for the structure factor

S(q, ωm) =
n0ℏq2/m

ω2
m + EB(q)2/ℏ2

+

(
n0q

2/m

ω2
m + EB(q)2/ℏ2

)2

Λ(q,m) (2.0.14)

As a result of impurities being added in the system, the structure factor has
an extra Lorentzian term.
The static structure factor then becomes

S(q, τ = 0) =
ℏ2q2n0

2mEB(q)
coth

βEB(q)

2
+

(
n0q

2

m

)2
1

βℏ
∑
m

Λ(q, ωm)[
ω2
m + EB(q)2/ℏ2

]
(2.0.15)

Before moving on to the evaluation of the correlation functions with impu-
rities we want to show how the fundamental correlators Eqs (2.0.10)-(2.0.12)
can be derived using the replica trick.
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2.1 Replica method for disordered systems

The replica trick is a mathematical device that is commonly used in disorder
theory to evaluate the partition function of a system in presence of impurities
(For a more extensive introduction and implementation of the replica trick
see [19]).
In general, we can define observable O through functional differentiation

O = − δ

δJ
logZ|J=0 (2.1.1)

If the system is disordered, however, this is very hard to do.
We can, however, use the following identity:

O = − δ

δJ
logZ|J=0 = − δ

δJ
lim
R→0

(
eR logZ−1

)
|J=0 = − δ

δJ
lim
R→0

ZR|J=0 (2.1.2)

We can then average over the disorder to obtain an easier expression to
evaluate. Here, the Rth power of the partition function can be thought as
the partition function of R identical copies of the system.
To obtain the final result we then have to implement analytical continuation
R → 0. In general there is no way to tell if this limit exists. This shortcoming
reflects the fact that, in general ZR ̸= ZR

.
This fact may undermine the trust we can put in this method; however in the
very large majority of situations in which there is an alternative solution, the
replica trick gives the right answer, as in the case we are about to present.
We shall derive the expression for the structure factor S(q, τ) working with
δ- function self-correlated disorder, i.e.

R(r− r′) = δ(r− r′) (2.1.3)
H(τ − τ ′) = δ(τ − τ ′) (2.1.4)

In the replica trick scheme, we have that

⟨π(r, τ)π(r′, τ ′)⟩ = lim
R→0

R∑
α=1

⟨πα(r, τ)πα(r′, τ ′)⟩ (2.1.5)

where the ensamble average on the right side is evaluated with respect to the
replicated action:

S[ψ, ψ∗]R =
R∑
α

S0[ψα, ψ
∗
α]−

Λ

2

∫
dDr

∫
dτ
∑
α,β

|ψα|2
∣∣ψβ∣∣2 (2.1.6)
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where Λ is the disorder coupling constant. This action leads to a replicated
partition function in the form of

ZR =

∫ m∏
α=1

DψαDψ∗
αe

−S[ψ,ψ∗]R/KBT (2.1.7)

Using the usual expansion in terms of π and θ, and defining Xα =

(
Θα

πα

)
We see that the quadratic form that defines the action takes the recursive
form [20]

Ã =


A1 A2 · · · A2

A2 A1 · · · A2
...

... · · · ...
A2 A2 · · · A1

 (2.1.8)

where A1 A2 are 2x2 matrices

A1(q, ωn) =

(
n0ℏ2q2/m −ℏωn

ℏωn g0 + ℏ2q2/4mn0 − Λ

)
(2.1.9)

A2 =

(
0 0
0 −Λ

)
(2.1.10)

We can put Ã in block diagonal form using the transformation

Ya =
R∑
α=1

e2πia(α/R)Xα (2.1.11)

Note that the zero mode is the sum of the original vector : Y0 =
∑

αXα.
This way we obtain

Ã′ =


A1 0 · · · 0
0 A0 0 · · ·
... 0

. . . 0
0 · · · · · · A0

 (2.1.12)

where A0 is the matrix that describes the pure system.
Using the fact that

∑
a e

2πia(α/R)e2πia(β/R) = Rδαβ we find that

⟨π(q, ωm)π(q′, ωm′)⟩ = lim
n→0

1

n

R∑
a≤1

⟨πn(q, ωm)πn(−q,−ωm)⟩ =

lim
R→0

1

R

[
(n− 1)

n0ℏq2/m
ω2
m + EB(q)2/ℏ2

+
n0ℏq2/m

ω2
m + EB(q)2/ℏ2 −RΛn0ℏq2/m

]
(2.1.13)

31



In the limit R → 0 we can expand the denominator of the second term and
find the same result we had already found.

2.2 Disorder contribution to condensate deple-
tion

From the fundamental correlators we can derive the expression on disorder-
averaged Green functions:

G(q, ωm;q′, ωm′) =
iωm + ℏq2/2m+ n0g0/ℏ

ω2
m + EB(q)2/ℏ2

(2π)Dβℏδ(q+ q′)δm,−m′+

n0

ℏ2

(
iωm + ℏq2/2m

)(
− iωm′ + ℏq′2/2m

)[
ω2
m + EB(q)2/ℏ2

][
ω2
m′ + EB(q′)2/ℏ2

]Λ(q, ωm;q′, ωm′) (2.2.1)

Remembering that

N −N0 =

∫
dDr

(
⟨ψ(r, τ − η)ψ∗(r′, τ + η)⟩ − n0

)
(2.2.2)

we can evaluate the contribution of disorder to the condensate depletion.

n(τ)− n0 =

∫
dDq

(2π)D

[
|v(q)|2 + 1 + 2|v(q)|2

eβEB(q) − 1

]
+

n0

ℏ4β2V
∑
m,m′

(
e−i(ωm+ωm′ )τ

(
iωm + ℏq2/2m

)(
− iωm′ + ℏq′2/2m

)[
ω2
m + EB(q)2/ℏ2

][
ωm′ + EB(q′)2/ℏ2

]Λ(q, ωm;−q, ωm′)

)
(2.2.3)

We can see that this expression is not time independent in the general case.
If, however, we assume time translation invariance to be true, we find a
simplified disorder contribution:

nΛ =
n0

βℏ3

∫
dDq

(2π)D

∑
m

(ℏq2/2m)2 − ω2
m[

EB(q)2/ℏ2 + ω2
m

]Λ(q, ωm) (2.2.4)

Assuming static disorder this further reduces to

nΛ =
n0

4m2

∫
dDq

(2π)D

(
ℏq

EB(q)

)4

Λ(q) (2.2.5)

We can clearly see that, under the assumption of static impurities, the dis-
order contribution to condensate depletion is temperature-independent.
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2.3 Disorder contribution to normal-fluid par-
ticle density

We can now repeat the steps that lead us to the evaluation of the current
and vorticity correlators, considering now the extra disorder term.
Assuming the system is, on average, isotropic we can define again the trans-
verse and longitudinal parts of the mass flow correlator.
Even with disorder, the relation between the transverse vorticity correlator
and the transverse current response function holds true

m2V⊥(q, ωm) = ℏq2χ⊥(q, ωm) =

ℏ
(D − 1)Vβ

∑
q,ωm

[
q2p2 − (qp)2

][
(q− p)2EB(q

2)/ℏ2 + p2ωm−nωn
]

p2
[
ω2
m−n + EB(|q− p|)/ℏ2

][
ω2
n + EB(p)2/ℏ2

]
+

n0

(D − 1)mβV
∑
p,ωn

q2p2 − (qp)2[
ω2
m−n + EB(|q− p|)/ℏ2

][
ω2
n + EB(p)2/ℏ2

][
(q− p)2

p2
(q− p)2EB(p)

2/ℏ2 + p2ωm−nωn
ω2
m−n + EB(|q− p|)2/ℏ2

Λ(q− p, ωm−n)

− (q− p2)ω2
n − p2ωm−nωn

ω2
n + EB(q)2/ℏ2

Λ(p, ωn)

]
(2.3.1)

This is clearly a very cumbersome expression. Luckily, to evaluate the
normal-fluid particle density we need to take the limit q → 0. This yields

nnΛ =
1

m
lim
q→0

χ⊥(q,0) =
1

mVDβ
∑
p,ωn

p2
EB(p)

2ℏ2 − ω2
n[

EB(p)2/ℏ2 + ω2
n

]2+
n0

DmβℏV
∑
p,ωn

p4
EB(p)

2/ℏ2 − 3ω2
n[

EB(p)2/ℏ2 + ω2
n

]3Λ(p, ωn) (2.3.2)

Assuming static disorder, i.e. Λ(q, ωm) = βℏΛ(q)δm,0 we find in the contin-
uum limit:

nn =
ℏ2β
4mD

∫
dDq

(2π)D

(
q

sinh βEB(q)/2

)2

+
n0

Dm2

∫
dDq

(2π)D

(
ℏq

EB(q)4
Λ(q)

)
(2.3.3)

This equations shows two interesting facts.
The first one is that, assuming static disorder, the second term, that describes
the impurities contribution to normal-fluid particle density is temperature-
independent.

33



The second one is that there is a close relation between condensate depletion
and normal-fluid particle density in isotropic systems:

nΛ =
D

4
nnΛ (2.3.4)

This is the same relation derived by Huang and Meng in [3] using Bogoli-
ubov transformation approach and by Schakel in [17] using the path-integral
approach.
To conclude the general treatment of disorder in harmonic approximation,
we shall derive the effects of impurities on the normal-fluid particle density
using Landau’s argument in the two-fluid model.
As we have seen in the previous section, the relative motion between fluid
and walls can te taken into account by shifting the Matsubara frequencies
according to ωm → ωm − iqv. In the comoving reference frame the disorder
correlator is

Λ(q, ωm;q
′, ωm′)v = Λ(q, ωm + iqv;q′, ωm′ + iq′v) (2.3.5)

This leads to the following comoving Green’s function:

G(q, ωm;q′, ωm′)−v =

iωm + ℏq2/2m+ n0g0/ℏ+ qv

(ω−
mßqv)

2 + EB(q)2/ℏ2
(2π)Dβℏδ(q+ q′)δm,−m′+

n0

ℏ

(
iωm + ℏq2/2m+ qv

)(
− iωm′ + ℏq′2/2m− q′v

)[
(ωm − iqv)2 + EB(q)2/ℏ2

][
(ωm′ − iq′v)2 + EB(q′)2/ℏ2

]Λ(q, ωm;q′, ωm′)

(2.3.6)

Expanding this equation in the velocity terms, and comparing with the re-
lation ⟨g(r, τ)⟩ = mnnv we can find the normal-fluid particle density. The
effects of disorder, in general, turn the normal density into a tensor nn,ij.
Assuming static disorder we find:

nn,ij =
βℏ2

4mD
δij

∫
dDq

(2π)D

(
q

sinh βEB(q)/2

)2

+
n0

m2

∫
dDq

(2π)D
qiqj

(
ℏ2q

EB(q)2

)2

Λ(q)

(2.3.7)

34



Chapter 3

Explicit results for various kind of
disorder

We shall now start our analysis of the effects of various kind of disorder
on bosonic systems, in particular regarding response functions, ground-state
depletion and normal-fluid density.
As we have said, this is equivalent to choosing a specific form for the disorder
correlator, either in real or reciprocal space.

3.1 Point, linear and planar defects

The first kind of impurities we are considering are static and spatially un-
correlated, either point-like or extended. Here the words point and line are
used to indicate the dimension of the disorder in D-dimensional space.
We shall begin our analysis starting from spatially-uncorrelated, static dis-
order to work up to more complicated situations.

3.1.1 Spatially-uncorrelated, static disorder

Under our assumptions, the disorder correlator takes the form

Λ(r, τ ; r′, τ ′) = Λδ(r− r′) (3.1.1)
Λ(q, ωm) = ∆ℏβδm,0 (3.1.2)

The density correlation function then reads

S(q, ωm) =
n0ℏq2/m

ω2
m + EB(q)2/ℏ2

+ Λ

(
n0ℏq2/m
EB(q)2

)2

βℏδm,0 (3.1.3)
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This yields, for the static structure factor

S(q, τ = 0) =
n0ℏ2q2

2mEB(q)
coth

βEB(q)

2
+ Λ

(
n0ℏ2q2

2mEB(q)

)2

(3.1.4)

For the condensate depletion we find

nΛ =
n0Λ

4m2

∫
dDq

(2π)D

(
ℏq

EB(q)

)4

(3.1.5)

Assuming that V (q) ≈ g0 = we find

nΛ =
Λn0

4m2(2π)D

∫
dDq

ℏ4q4(
ℏ2n0g0q2/m+

(
ℏ2q2/2m

)2)2 (3.1.6)

Setting x2 = ℏ2q2/4mn0g0 we can solve the integral. For D=2 this leads to

nΛ =
Λm

4πℏ2g0
(3.1.7)

while for D=3 we have

nΛ =
Λm3/2n

1/2
0

4ℏ3πg1/20

(3.1.8)

These are the results for point-like impurities. Putting all the pieces together,
we have that at zero temperature the total number density can be written as

n = n0 + nout (3.1.9)

where
nout = nQ + nth + nΛ (3.1.10)

Here nQ describes the particles that have been expelled by the ground state
due to quantum fluctuations and is given by Eqs. (1.5.6)-(1.5.7),nth describes
the thermal depletion and is given by Eq. (1.5.10) and the disorder contri-
bution is given by the previous equations.
Another way to summarize these results is by expressing the ratio n0

n
in terms

of the above quantities. For D=2, at zero temperature (remember that the
thermal corrections diverge when D=2, see Eq (1.5.9) ) this leads to

n0

n
= 1− mn0g0

4πℏ2n
− Λm

4πℏ2g0n
≈ 1− mg0

4πℏ2
− Λm

4πℏ2g0n
(3.1.11)
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While for D=3 we have

n0

n
= 1− (mn0g0)

3/2

3ℏ3π2n
− m(kBT )

2

12ℏ3cn
− Λm3/2n

1/2
0

4ℏ3πg1/20 n
≈

1− (mg0)
3/2n1/2

3ℏ3π2
− m(kBT )

2

12ℏ3cn
− Λm3/2

4ℏ3πg1/20 n1/2
(3.1.12)

On the right hand side we have used the approximation n0 ≈ n, which, even
though it is not exact, gives a useful expression of the condensate fraction in
terms of the total particle density, which is a controllable parameter. Since
we are dealing with static disorder, we can immediately find the normal-fluid
particle density caused by the impurities using Eq (2.3.4). This means that
when D=2 we have

nnΛ =
Λm

2πℏ2g0
(3.1.13)

while for D=3 we have

nnΛ =
Λm3/2n

1/2
0

3ℏ3πg1/20

(3.1.14)

In this case we can write
nn = nn,th + nnΛ (3.1.15)

where nn,th is the thermal contribution and is given by Eqs. (1.6.12)-(1.6.13),
and the disorder contribution follows from the previous equations.
In the same vein of before, remembering that n = nn + ns, where ns is the
superfluid particle density, we can write, when D=2

ns
n

= 1− 3ζ(3)(kBT )
3

2πℏ2c4mn
− Λm

2πℏ2g0n
(3.1.16)

When D=3 we have

ns
n

≈ 1− 2π2(kBT )
4

45ℏ3c5mn
− Λm3/2

3ℏ3πg1/20 n1/2
(3.1.17)

We can easily generalize them to the case of static parallel defects, extended
alond a d∥ supsbace r∥.
If d∥ = 1 we have line-like defects, for d∥ = 2 we have planar defects and so
on.
Therefore, the disorder is uncorrelated only in the d⊥ transverse spatial di-
rections

Λ(r, τ ; r′, τ ′) = Λδ(r⊥ − r′⊥) (3.1.18)
Λ(q, ωm) = Λ(2π)D∥δ(q∥)βℏδm,0 (3.1.19)
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This leads to a different density correlation function

S(q, ωm) =
n0ℏq2/m

ω2
m + EB(q)2/ℏ2

+ Λ

(
n0ℏq2⊥/m
EB(q⊥)2

)2

(2π)d∥δ(q∥)βℏδm,0 (3.1.20)

then the structure factor becomes

S(q, τ = 0) =
n0ℏ2q2

2mEB(q)
coth

βEB(q)

2
+ Λ

(
n0ℏ2q2⊥

2mEB(q⊥)

)2

(2π)d∥δ(q∥)

(3.1.21)
and finally we get, for the disorder-caused depletion

nΛ =
n0Λ

4m2

∫
dDq

(2π)D

(
ℏq

EB(q)

)4

= Λ
mD⊥/2n

D⊥/2−1
0 g

D⊥/2−2
0

2πD⊥/2Γ(D⊥/2)ℏD⊥

∫ ∞

0

dx
xD⊥−1

(1 + x2)2

(3.1.22)
The presence of extended defects makes the system non isotropic, as we have
already said.
Therefore the normal-fluid particle density, defined as the transport coeffi-
cient describing response to movement with respect to its walls, will depend
on the direction relative to the disorder.
This means that, for motion happening along the disorder direction, the im-
purities will have no effect and their contribution to the normal-fluid particle
density will vanish: nn∥Λ = 0. This can be obtained from Eq (2.2.12) setting
qi = q∥,i
However,considering the perpendicular direction to the defects, we find a
result similar to that of point-like defects, only scaled to the number of per-
pendicular dimension.
So, for planar disorder three dimensions, or line-like disorder in two dimen-
sion (in both cases we have D⊥ = 1)

nΛ =
Λm1/2

8ℏn0g
3/2
0

(3.1.23)

while for line impurities in D=3 we have, i.e. when D⊥ = 2

nΛ =
Λm

4ℏ2πg0
(3.1.24)

In this case the total particle density is still described by Eq. (3.1.10), but
with the disorder contribution given by Eqs. (3.1.19)-(3.1.20).
The same considerations apply to the normal-fluid particle density. We have
that, when D⊥ = 1

nnΛ =
Λm1/2

4ℏn0g
3/2
0

(3.1.25)
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while for D⊥ = 2 we have

nnΛ =
Λm

3ℏ2πg0
(3.1.26)

Also in this case the total normal-fluid particle particle density is describes by
Eq (3.1.13), with the disorder contribution given by the previous equations.
It is worth noting that in the Bogoliubov approximation, for d⊥ < 4 the
consdensate depletion caused by the impurities is smaller than the normal-
fluid density enrichment. This means that, when ns,⊥ → 0 the bosons will
become localized. This new phase is called Bose glass (for a detailed analysis
of the properties of this phase, see for example [22]).
Within this classification of disorders falls another interesting case.
Let’s consider a Helium film on a substrate with impurities such as lines
(deposited with lithography, for example) randomly positioned and randomly
oriented. We can think that lines are grouped in clusters, each described by a
two-dimensional vector, perpendicular to each lines within the same cluster.
Inside a cluster, the disorder correlator in reciprocal space is

Λn̂(q, ωm) = 2Λδ(n̂q)βℏδm,0 (3.1.27)

Writing the delta function in integral form 2πδ(x) =
∫ +∞
−∞ eixsds, we can then

average over all the possible directions, obtaining

Λ(q.ωm) =
Λβℏδm,0

4π2

∫ 2π

0

dϕ

∫ 1

−1

dθ sin θ

∫ +∞

−∞
dseiq cos θs =

Λβℏδm,0
2πiq

∫ ∞

−∞
ds
eiqs − e−iqs

s
=

Λ

q
βℏδm,0 (3.1.28)

Hence, we have a slight variation of the disorder contribution

S(q, ωm) =
n0ℏq2/m

ω2
m + EB(q)2/ℏ2

+
Λ

q

(
n0ℏq2⊥/m
EB(q⊥)2

)2

(2π)d∥δ(q∥)βℏδm,0

(3.1.29)

S(q, τ = 0) =
n0ℏ2q2

2mEB(q)
coth

βEB(q)

2
+

Λ

q

(
n0ℏ2q2⊥

2mEB(q⊥)

)2

(2π)d∥δ(q∥)

(3.1.30)

For the condensate depletion we have, similarly

nΛ =
n0Λ

4m2

∫
dDq

(2π)D
1

q

(
ℏq

EB(q)

)4

≈

Λ
n
(D−3)/2
0 g

(D−5)/2
0 m(D−1)/2

4ℏD−1πD/2Γ(D/2)

∫ ∞

0

dx
xD−2

(1 + x2)2
(3.1.31)
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This time the integral diverges as a logarithm when D=1.
For D=2 this leads to

nΛ =
Λm1/2

16ℏn1/2
0 g

3/2
0

(3.1.32)

while for D=3 we have
nΛ =

Λm

4ℏ2π2g0
(3.1.33)

We see that, even though the correlator is divergent as for q → 0, the disorder
contribution is finite and the disorder effect on condensate depletion is larger
than the one caused by point-like disorder.
We can again summarize the results saying that the total number density in
two dimensions at zero temperature is given by

n0

n
≈ 1− mg0

4πℏ2
− Λm1/2

16ℏg3/20 n3/2
(3.1.34)

While for D=3 we have

n0

n
≈ 1− (mg0)

3/2n1/2

3ℏ3π2
− m(kBT )

2

12ℏ3cn
− Λm

4ℏ2π2g0n
(3.1.35)

The same considerations apply to the total normal-fluid particle density. we
can therefore write, when D=2

ns
n

≈ 1− 3ζ(3)(kBT )
3

2πℏ2c4mn
− Λm1/2

8ℏg3/20 n3/2
(3.1.36)

While in three dimensions we have
ns
n

≈ 1− 2π2(kBT )
4

45ℏ3c5mn
− Λm

3ℏ2π2g0n
(3.1.37)

3.1.2 Spatially and time-uncorrelated disorder

We shall now focus on extending the results for space-uncorrelated disorder
to the case of impurities that are not correlated both in r and τ . In this case
we have that

Λ(q, ωm;q
′, ωm′) = Λ(2π)Dδ(q+ q′)βℏδm,−m′ (3.1.38)

These kind of disorder can be found in cuprate superconductors and describes
the oxygen vacancies in these materials. In this case the disorder-dependent
structure factor becomes

SΛ(q) =
Λ

ℏEB(q)

(
n0ℏ2q2

2mEB(q)

)2

coth
βEB(q)

2

(
1 +

βEB(q)

sinh βEB(q)

)
(3.1.39)
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where we have already summed over the Matsubara frequencies. In this case
the condensate depletion yields (remembering Eq (2.2.7)):

nΛ =
n0

4

∫
dDq

(2π)D
Λ

ℏEB(q)
coth

βEB(q)

2[(
ℏ2q2

2, EB(q)

)2(
1 +

βEB(q)

sinh βEB(q)

)
−
(
1− βEB(q)

sinh βEB(q)

)]
(3.1.40)

We can evaluate the zero-temperature limit βℏ → ∞:

nΛ =
n0

4

∫
dDq

(2π)D
Λ

ℏEB(q)

[(
ℏ2q2

2mEB(q)

)2

− 1

]
= −Λ

n2
0ℏ
4m

∫
dDq

(2π)D
q2V (q)

EB(q)3

(3.1.41)
Assuming contact interaction we get

nΛ = −Λn
D/2
0 g

(D−2)/2
0 mD/2

4ℏD+1πD/2Γ(D/2)

∫ ∞

0

xD−2

(1 + x2)3/2
dx (3.1.42)

This yields for D=2

nΛ = −Λmn0

4πℏ3
(3.1.43)

and, for D=3,

nΛ = −Λn
3/2
0 g

1/2
0 m3/2

2ℏ4π2
(3.1.44)

Since we are considering a zero-temperature case, we have that, when D=2

n0

n
≈ 1− mg0

4πℏ2
+

Λm

4πℏ3
(3.1.45)

While for D=3

n0

n
≈ 1− (mg0)

3/2n1/2

3ℏ3π2
+

Λn1/2g
1/2
0 m3/2

2ℏ4π2
(3.1.46)

We can also evaluate the leading order finite temperature corrections in the
phonon approximation. Manipulation of Eq. (3.1.25) gives

nΛ(T ) = −Λ
n0

4ℏ

∫
dDq

(2π)D
n0ℏ2q2V (q)

mEB(q)3

(
coth

βEB(q)

2
− 1

)
− β/2

sinh2 βEB(q)/2

[
1 +

(
ℏ2q2

2mEB(q)

)2]
(3.1.47)

41



Using the fact that EB(q) ≈ ℏcq , setting x = βℏcq/2 and using the following
identity∫ ∞

0

dx

[
xD−2(cothx− 1)− xD−1

sinh2 x

]
= −δD,2 −

[
D − 2

D − 1

] ∫ ∞

0

dx
xD−1

sinh2 x
(3.1.48)

We finally get

nΛ(T ) ≈
Λn0(kBT )

D−1

4πD/2Γ(D/2)ℏD+1cD

[
δD,2 +

D − 2

D − 1

∫ ∞

0

dx
xD−1

sinh2 x
+

(kBT )
2

m2c4

∫ ∞

0

dx
xD+1

sinh2 x

]
(3.1.49)

When evaluated for D=2 this leads to

nΛ(T ) =
Λn0kBT

4πℏ3c2
+O(T 3) (3.1.50)

while for D=3 we have

nΛ(T ) =
Λn0(kBT )

2

24ℏ4c3
(3.1.51)

At finite temperature, in D=3 (remember that according to Eq (1.4.36) ther-
mal corrections diverge when D=2) we can write

n0

n
≈ 1− (mg0)

3/2n1/2

3ℏ3π2
− m(kBT )

2

12ℏ3cn
+

Λn1/2g
1/2
0 m3/2

2ℏ4π2
− Λ(kBT )

2

24ℏ4c3
(3.1.52)

. We point out the fact that both the thermal depletion ad the disorder
depletion are quadratic in the absolute temperature.
In a similar fashion we can derive the disorder contribution to normal-fluid
particle density. Since we are dealing with isotropic disorder we have

nnΛ =
1

m
lim
q→0

χ⊥(q,0) =
1

mVDβ
∑
p,ωn

p2
EB(p)

2ℏ2 − ω2
n[

EB(p)2/ℏ2 + ω2
n

]2+
n0

Dm2βℏV
∑
p,ωn

p4
EB(p)

2/ℏ2 − 3ω2
n[

EB(p)2/ℏ2 + ω2
n

]3Λ(p, ωn) (3.1.53)

which leads, after summing over Matsubara frequencies

nnΛ =
n0βℏ4

8Dm2

∫
dDq

(2π)D
Λq4

ℏEB(q)
cosh βEB(q)/2

sinh3 βEB(q)/2
(3.1.54)
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It is easy to see that in this case

nnΛ(T = 0) = 0 (3.1.55)

We can find the leading-order temperature corrections in phonon approxi-
mation by using the fact that∫ ∞

0

dxxD+2 coshx

sinh3 x
=
D + 2

2

∫ ∞

0

dx
xD+1

sinh2 x
(3.1.56)

This leads to

nnΛ(T ) =
Γ(D + 3)ζ(D + 1)

2D+1πD/2Γ(1 +D/2)

Λn0(kBT )
D+1

m2ℏD+1cD+4
(3.1.57)

when D=2 this yields

nnΛ(T ) =
3ζ(3)Λn0(kBT )

3

πℏ3c6m2
(3.1.58)

while for D=3 we have

nnΛ(T ) =
Λn0(kBT )

4π2

9mℏ4c7m2
(3.1.59)

Again, the total normal-fluid particle density takes into account the thermal
contribution given by Eqs (1.6.12)-(1.6.13). However, for this kind of disor-
der, there is no normal-fluid particle density contribution for T=0, as can be
seen by eq (3.1.55). Therefore qe have that, when D=2

ns
n

≈ 1− 3ζ(3)(kBT )
3

2πℏ2c4mn
− 3ζ(3)Λ(kBT )

3

πℏ3c6m2
(3.1.60)

While for D=3
ns
n

≈ 1− 2π2(kBT )
4

45ℏ3c5mn
− Λ(kBT )

4π2

9mℏ4c7m2
(3.1.61)

Also, in this case, the thermal and impurities contribution are of the same
order in the temperature.

3.2 Correlated, nearly isotropic splay
This kind of disorder models the situation in which columnar defects are
inserted in the system. Assuming the z direction as a preferred direction, we
can parametrize the impurities as ri(z) = Ri + viz.
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Supposing a gaussian distribution for the velocities vi, meaning P [vi] ∝∏
i e

−v2i /2v2D , we obtain in Fourier space

Λ(q, qz) =
Λ√

2πvdq
e−q

2
z/2v

2
Dq

2

(3.2.1)

where vD is a dispersion parameter and q is a two-dimensional vector, de-
scribing the motion in the plane perpendicular to the z axis.
To get a more manageable expression we can take the limit vD → ∞ while
keeping the ratio Λ

vD
fixed, obtaining

Λ(q, qz) ∝ 1/q (3.2.2)

an almost isotropic situation. This is not exactly isotropic because we have
started from a system with a preferred direction. A truly isotropic correlator
would be in the form of

Λ(q, qz) ∝
1√

q2 + q2z
(3.2.3)

We shall discuss the case of nearly isotropic splay, since it makes the calcu-
lations easier.
With this said, the impurities correlator is

Λ(q, ωm;q
′, ω′

m) =
Λ

q
(2π)Dδ(q+ q′)δm,−m′ (3.2.4)

We can use the results from the previous section, since the Matsubara sum-
mation is untouched. This leads to

SΛ(q) =
Λ

ℏqEB(q)

(
n0ℏ2q2

2mEB(q)

)2

coth
βEB(q)

2

(
1 +

βEB(q)

sinh βEB(q)

)
(3.2.5)

For the condesate depletion we get

nΛ =
n0

4

∫
dDq

(2π)D
Λ

ℏqEB(q)
coth

βEB(q)

2[(
ℏ2q2

2, EB(q)

)2(
1 +

βEB(q)

sinh βEB(q)

)
−
(
1− βEB(q)

sinh βEB(q)

)]
(3.2.6)

Taking the zero temperature limit we find

nΛ =
n0

4

∫
dDq

(2π)D
Λ

ℏqEB(q)

[(
ℏ2q2

2mEB(q)

)2

− 1

]
= −Λ

n2
0ℏ
4m

∫
dDq

(2π)D
qV (q)

EB(q)3

(3.2.7)
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Assuming contact interaction V (q) ≈ g0this yields

nΛ = −Λn
(D−1)/2
0 g

(D−3)/2
0 m(D−1)/2

8ℏDπD/2mΓ(D/2)

∫ ∞

0

xD−3

(1 + x2)3/2
dx (3.2.8)

This expression is logarithmically divergent when D=2. Since we can write
n− n0 = n−|ψ|2, this fact means that |ψ|2 becomes unbound from above.
One possible explanation for this is the idea that, in this case, the motion of
the superfluid becomes superdiffusve, leading to the divergence.
In three dimension the correction is finite and is

nΛ = −Λn0m

4ℏ3π2
(3.2.9)

Therefore, at zero temperature and for D=3 we have

n0

n
≈ 1− (mg0)

3/2n1/2

3ℏ3π2
+

Λm

4ℏ3π2
(3.2.10)

Repeating the same steps of the previous section we find expressions for
finite temperature corrections

nΛ(T ) ≈
Λn0(kBT )

D−2

8πD/2Γ(D/2)ℏDcD−1

[
δD,3 +

D − 3

D − 2

∫ ∞

0

xD−2

sinh2 x
dx+

(kBT )
2

m2c4

∫ ∞

0

xD

sinh2 x
dx

]
(3.2.11)

This yields for D=3

nΛ(T ) =
Λn0kBT

4π2ℏ3c2
+O(T 3) (3.2.12)

Therefore we can write

n0

n
≈ 1− (mg0)

3/2n1/2

3ℏ3π2
+

Λm

4ℏ3π2
− m(kBT )

2

12ℏ3cn
− ΛkBT

4π2ℏ3c2
(3.2.13)

In this case the normal-fluid density can be written as

nnΛ =
Γ(D + 2)ζ(D)

2D+1πD/2Γ(1 +D/2)

Λn0(kBT )
D

m2ℏDcD+3
(3.2.14)

This expression, finally, gives in D=2

nnΛ =
Λn0π(kBT )

2

8m2ℏ2c5
(3.2.15)
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and when D=3
nnΛ =

2Λζ(3)n0(kBT )
3

π2m2ℏ3c6
(3.2.16)

These gives, when D=2

ns
n

≈ 1− 3ζ(3)(kBT )
3

2πℏ2c4mn
− Λπ(kBT )

2

8m2ℏ2c5
(3.2.17)

while for D=3 we have
ns
n

≈ 1− 2π2(kBT )
4

45ℏ3c5mn
− 2Λζ(3)(kBT )

3

π2m2ℏ3c6
(3.2.18)

Unlike other cases, there is no easy relation between the normal-fluid density
and the condensate depletion.
In all these calculations we have always assumed that the disorder only cou-
ples to the particle density. This can be thought as local variations in the
chemical potential.
While this coupling is the most relevant one, it is still possible to consider
another disorder field H(r, τ)D that couples to the mass current g(r, τ).

3.3 Disorder corrections with finite range in-
teraction

The next situation we are going to discuss is the effects of disorder in systems
with finite range interactions. In ultracold, dilute boson gases it is customary
to consider contact interaction i.e. V (r) ∝ δ(r). To take into account the
effects of the finite range interatomic potential, however, we can consider the
following low-momentum expansion in Fourier space

V (q) ≈ g0 + g2q
2 +O(q4) (3.3.1)

The first order term is not present for symmetry reasons. In general it is use-
ful to connect the two parameters that describe the expansion to measurable
quantities, such as the scattering length as and the effective range re.
This connection is given by scattering theory. For example, in D=1 [23], we
can describe the scattering amplitude for an even scattering wave function
in terms of the phase shift [24]

f0(q) = qeiδ0(q) sin δ0(q) (3.3.2)

The phase shift function is useful beacuse we can define the scattering length
and the effective range as

q tan δ0(q) =
1

as
+

1

2
req

2 +O(q4) (3.3.3)
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The T matrix can then be written as

T0(q) =
−2ℏ2

m
f0(q) (3.3.4)

On the other hand, the T matrix can be found as the solution of [24]

T0(q) =

[
1

V (q)
− m

2πℏ2

∫
dp

p2 − q2 + iϵ

]−1

(3.3.5)

Inserting the low momentum expansion of V(q) in the previous equation we
get

T0(q) =

[
1

g0
− g2q

2

g20 +
im
2ℏ2q

]−1

(3.3.6)

Confronting this expression with Eq.(3.3.4) and with some manipulation we
find

g0 = − 2ℏ2

mas
(3.3.7)

and
g2 = −ℏ2re

m
(3.3.8)

For a more thorough derivation of these results and their consequences see
[23]. For the analysis of a similar problem in D=3 see [25].

3.3.1 Uncorrelated static disorder

We shall start our discussion with the most simple case. We shall assume
uncorrelated static disorder. This means that the disorder correlator is

Λ(q, ωm) = ∆ℏβδm,0 (3.3.9)

For this reason, the impurities contribution to condensate depletion is

nΛ =
n0

4m2

∫
dDq

(2π)D

(
ℏq

EB(q)

)4

Λ(q) (3.3.10)

Assuming finite range for the interatomic potential, V (q) = g0+g2q
2+O(q4),

the Bogoliubov excitations assume the form of

EB(q) =
√
α0ℏ2q2 + α2ℏ2q4 (3.3.11)

where
α0 =

n0g0
m

(3.3.12)
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and
α2 =

n0g2
m

+
ℏ2

4m2
(3.3.13)

Therefore we can rewrite (3.3.10) as

nΛ =
Λn0

2D+1m2πD/2Γ(D/2)

∫ ∞

0

dq
qD−1

(α0 + α2q2)2
(3.3.14)

At this point we can change variables as t = α2

α0
q2 we get

nΛ =
Λn0α

D/2−2
0

2D+2m2πD/2Γ(D/2)α
D/2
2

∫ ∞

0

dt
tD/2−1

(1 + t)2
=

Λn0α
D/2−2
0

2D+2m2πD/2α
D/2
2

Γ(2−D/2)

Γ(2)
(3.3.15)

where we used the properties of Euler beta function. This leads to, for D=2

nΛ =
Λn0

16m2πα0α2

(3.3.16)

When D=3, on the other hand, we get

nΛ =
Λn0

32m2πα
3/2
2 α

1/2
0

(3.3.17)

Since we are considering isotropic disorder, the normal-fluid particle density
is related to the disorder-induced condensate depletion by

nnΛ =
4

D
nΛ (3.3.18)

We can now summarize the obtained results in terms of the quotient n0

n
.

When D=2, at zero temperature we have

n0

n
= 1−mn0g0

4πℏ2n
− Λn0

16m2πα0α2n
≈ 1−mg0

4πℏ2
− Λ

16m2π(ng0/m)(ng2/m+ ℏ2/4m2)
(3.3.19)

While for D=3

n0

n
= 1− (mn0g0)

3/2

3ℏ3π2n
− m(kBT )

2

12ℏ3cn
− Λn0

32m2πα
1/2
0 α

3/2
2 n

≈

1− (mg0)
3/2n1/2

3ℏ3π2
− m(kBT )

2

12ℏ3cn
− Λ

32m2π(ng0/m)1/2(ng2/m+ ℏ2/4m2)3/2

(3.3.20)
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For the superfluid fraction, we can write, when D=2

ns
n

≈ 1− 3ζ(3)(kBT )
3

2πℏ2c4mn
− Λ

8m2π(ng0/m)(ng2/m+ ℏ2/4m2)
(3.3.21)

And when D=3

ns
n

≈ 1− 2π2(kBT )
4

45ℏ3c5mn
− Λ

24m2π(ng0/m)1/2(ng2/m+ ℏ2/4m2)3/2
(3.3.22)

In the above expression, on the right hand side, we have approximated the
condensate fraction with the total particle density, which is a fixed param-
eter and we have used the definition of the coefficients α0 and α2 (see Eqs.
(3.3.12) and (3.3.13)). This, albeit non exact, is very useful to compare ex-
perimental data with the calculation results. The first term describes the
depletion caused by quantum fluctuations, while the second one the disorder
contribution.
We can now extend the above analysis to the case with disorder uncorre-
lated in both space and time. This contribution is, in the general case, very
complicated to evaluate, since it is given by

nΛ =
n0

4

∫
dDq

(2π)D
Λ

ℏqEB(q)
coth

βEB(q)

2[(
ℏ2q2

2, EB(q)

)2(
1 +

βEB(q)

sinh βEB(q)

)
−
(
1− βEB(q)

sinh βEB(q)

)]
(3.3.23)

This is a very complicated expression. In the previous sections we were able
to find explicit results at finite temperature at the price of approximating
the dispersion relation with the phonon limit. However, when studying the
finite range corrections, we can not use this approximation. To obtain exact
results, therefore, we shall focus on the zero temperature limit, in which the
condensate depletion takes the form of

nΛ = − Λn2
0ℏ

2D+1mπD/2Γ(D/2)

∫ ∞

0

dq
qD+1(g0 + g2q

2)(
α0ℏ2q2 + α2ℏ2q4

)3/2 (3.3.24)

Therefore, after some manipulations, we have two terms that contribute to
disorder-induced condensate depletion

nΛ = − Λn2
0

2D+2ℏ2α3/2
0 mπD/2Γ(D/2)

[
g0

(
α0

α2

)D−1
2
∫ ∞

0

dt
t(D−3)/2

(1 + t)3/2

+ g2

(
α0

α2

)D+1
2
∫ ∞

0

dt
t(D−1)/2

(1 + t)3/2

]
(3.3.25)
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The first term of the sum in square brackets in Eq. (3.3.21) gives a finite
result. However, the second term is clearly ultraviolet-divergent. Using Euler
beta function we can regularize the divergence with ease when D=3. There-
fore we can write

nΛ = − Λn2
0

16ℏ2mπ2α
3/2
0

[
2g0

α0

α2

+ g2

(
α0

α2

)2
Γ(2)Γ(1/2)

Γ(3/2)

]
=

− Λn2
0

8ℏ2mπ2α
3/2
0

[
g0
α0

α2

+ g2

(
α0

α2

)2]
(3.3.26)

The case with D=2, however, needs more attention. In this case, in fact,
even using beta function regularization does not neutralize the divergence.
Let us focus on this contribution and write

I =

(
α0

α2

)D+1
2
∫ ∞

0

dt
t(D−1)/2

(1 + t)3/2
(3.3.27)

If we let D be a complex parameter, we can then consider the quantity
ϵ = 2−D and the integral becomes

I =

(
α0

α2

)3/2(
α2κ

2

α0

) ϵ
2 Γ((3− ϵ)/2)Γ(ϵ/2)

Γ(3/2)
(3.3.28)

Here κ is a parameter introduced for dimensional reasons and describes a
high energy scale for the system. We now wish to evaluate the limit ϵ → 0
and isolate the divergent contribution. Remembering that

Γ(ϵ/2) =
2

ϵ
+ ψ̃(1) +O(ϵ) (3.3.29)

where ψ̃(z) is the digamma function

ψ̃(z) =
d

dx
log Γ(z) (3.3.30)

When z = 1 we have ψ̃(1) = −γ, where γ is the Eulero-Mascheroni constant.
Moreover we can write(

α2κ
2

α0

) ϵ
2

= e
ϵ
2
log

(
α2κ

2

α0

)
= 1 +

ϵ

2
log

(
α2κ

2

α0

)
+O(ϵ2) (3.3.31)

Putting all together we find

I =

(
α0

α2

)3/2(
2

ϵ
+ log

e−γα2κ
2

α0

+O(ϵ)

)
(3.3.32)

50



We have successfully isolated the divergent part of the integral. Therefore
we can remove it and, taking the ϵ → 0, putting all the pieces together, we
find that the disorder-induced condensate depletion when D=2 is

nΛ = − Λn2
0

8ℏ2α3/2
0 π

[
g0

√
α0

α2

+
2√
π

(
α0

α2

) 3
2

g2 log
e−γα2κ

2

α0

]
(3.3.33)

We can, again, summarize the results as

n0

n
= 1− mn0g0

4πℏ2n
+

Λn2
0

8ℏ2α3/2
0 π2n

[
g0

√
α0

α2

+
2√
π

(
α0

α2

) 3
2

log
eγα2κ

2

α0

]
≈

1− mg0
4πℏ2

+
Λn

8ℏ2(ng0/m)3/2π2

[
g0

√
ng0/m

ng2/m+ ℏ2/4m2
+

2√
π

(
ng0/m

ng2/m+ ℏ2/4m2

) 3
2

log
e−γα2κ

2

α0

]
(3.3.34)

This is valid when D=2.
When D=3 we have

n0

n
= 1− (mn0g0)

3/2

3ℏ3π2n
+

Λn2
0

8ℏ2mπ2α
3/2
0 n

[
g0

α0

α2

+ g2

(
α0

α2

)2]
≈

1− (mg0)
3/2n1/2

3ℏ3π2
+

Λn

8ℏ2mπ2(ng0/m)3/2

[
g0

ng0/m

ng2/m+ ℏ2/4m2
+

g2

(
ng0/m

ng2/m+ ℏ2/4m2

)2]
(3.3.35)

In this limit, we have that the normal-fluid particle density is still given
by Eq. (3.1.54), with a different expression for the Bogoliubov spectrum.
Therefore, at zero temperature, this contribution is zero.

3.3.2 Lorentzian correlation

In this section we calculate the effects of a Lorentzian disorder correlator
both for contact and finite range interaction. This is motivated by the fact
that this kind of disorder can be artificially implement in a system by using
laser speckle techniques.
In this case, the disorder correlator is

Λ(q) =
Λ

1 + σq2
(3.3.36)
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where Λ describes the strength of the disorder and σ describes the correlation
length. We shall calculate the disorder contribution with contact interaction
first

nΛ =
n0

4m2

∫
dDq

(2π)D

(
ℏq

EB(q)

)4

Λ(q). (3.3.37)

After the substituting for the specific case, and remembering that V (q) ≈ g0
we get

nΛ =
mD/2n

(D−2)/2
0 g

(D−4)/2
0

2ℏDπD/2Γ(D/2)

∫ ∞

0

dt
tD−1

(1 + t2)2(1 + σ̃t2)
(3.3.38)

Where
σ̃ =

4n0g0m

ℏ2
σ (3.3.39)

Finally, we can set D=2 and we find

nΛ =
Λm

2πℏ2g0
f2(σ̃) (3.3.40)

where
f2(σ̃) =

1− σ̃ + σ̃ log σ̃

2(1− σ̃)2
(3.3.41)

When D=3 we have

nΛ =
Λn

1/2
0 m3/2

πℏ3g1/20

f3(σ̃) (3.3.42)

where
f3(σ̃) =

1

4(1 +
√
σ̃)2

(3.3.43)

These equations describe the static impurities contribution to condensate
depletion in case of Lorentzian-correlated disorder with contact interaction.
We can generalize the analysis to the case of finite range interaction.
In fact, remembering Eqs. (3.3.12)-(3.3.13), we can write the disorder con-
tribution as

nΛ =
Λn0

2D+1m2πD/2Γ(D/2)

∫ ∞

0

dq
qD−1

(α0 + α2q2)2
1

1 + σq2
(3.3.44)

By changing variables t =
√

α2

α0
q and by defining

σ =
α0

α2

σ (3.3.45)
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we get

nΛ =
Λn0

2D+1m2πD/2Γ(D/2)α2
0

(
α0

α2

)D/2
fD(σ) (3.3.46)

Therefore we get, for D=2,

nΛ =
Λn0

8m2πα0α2

f2(σ) (3.3.47)

While for D=3 we get

nΛ =
Λn0

16m2πα
1/2
0 α

3/2
2

f3(σ) (3.3.48)

We can summarize these results in the following equations.
When D=2 we have at zero temperature

n0

n
≈ 1− mg0

4πℏ2
− Λ

8m2π(ng0/m)(ng2/m+ ℏ2/4m2)
f2(σ) (3.3.49)

When D=3 we have

n0

n
≈ 1− (mg0)

3/2n1/2

3ℏ3π2
− m(kBT )

2

12ℏ3cn
−

Λ

16m2π(ng0/m)1/2(ng2/m+ ℏ2/4m2)3/2
f3(σ) (3.3.50)

We want to stress the fact that, since these results have been found assuming
static disorder, Eq. (3.3.18) holds true, so there is an easy relation between
condensate depletion and normal-fluid particle density.
Finally, we wish to find results for time-uncorrelated Lorentzian disorder.
This means that the correlator function in Fourier space is

Λ(q, ωm) = Λ
ℏβ

1 + σq2
δm,−m′ (3.3.51)

This, as we have already showed, leads to the following equation for the
condensate depletion.

nΛ =
n0

4

∫
dDq

(2π)D
Λ

ℏEB(q)(1 + σq2)
coth

βEB(q)

2[(
ℏ2q2

2, EB(q)

)2(
1 +

βEB(q)

sinh βEB(q)

)
−
(
1− βEB(q)

sinh βEB(q)

)]
(3.3.52)
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Taking the zero temperature limit, this leads to

nΛ(T = 0) = −Λ
n2
0ℏ
4m

∫
dDq

(2π)D
q2V (q)

EB(q)3
1

1 + σq2
(3.3.53)

Remembering that
EB(q) =

√
α0ℏ2q2 + α2ℏ2q4 (3.3.54)

And that
V (q) = g0 + g2q

2 +O(q4) (3.3.55)

We can rewrite the previous integral as

nΛ(T = 0) = − Λn2
0

2D+1mℏ2πD/2Γ(D/2)α3/2
0[(

α0

α2

)D−1
2

g0

∫ ∞

0

tD−2dt

(1 + t2)3/2(1 + σt2)
+

(
α0

α2

)D+1
2

g2

∫ ∞

0

tDdt

(1 + t2)3/2(1 + σt2)

]
(3.3.56)

where
t =

√
α2

α0

q (3.3.57)

and σ is given by Eq. (3.3.29). This leads to the following results. When
D=2 we have

nΛ(T = 0) = − Λn0

8mℏ2πα3/2
0

[√
α0

α2

g0f2(σ) +

(
α0

α2

)3/2

g2h2(σ)

]
(3.3.58)

Where

f2(σ) =
1

1− σ
+
σ sec−1(

√
σ)

(−1 + σ)3/2
(3.3.59)

and

h2(σ) =
1

−1 + σ
− sec−1(

√
σ)

(−1 + σ)
(3.3.60)

Finally, when D=3 we get

nΛ(T = 0) = − Λn2
0

8mℏ2π2α
3/2
0

[
α0

α2

g0f3(σ) +

(
α0

α2

)2

g2h3(σ)

]
(3.3.61)

where

f3(σ) =
1− σ −

√
σ(1− σ) cos−1(

√
σ)

(σ − 1)2
(3.3.62)
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and

h3(σ) =
−1 + σ +

√
−1 + 1/σ cos−1(

√
σ)

(σ − 1)2
(3.3.63)

Therefore, we can write that, when D=2

n0

n
≈ 1− mg0

4πℏ2
+

Λ

8mℏ2π(ng0/m)3/2

[√
ng0/m

ng2/m+ ℏ2/4m2
g0f2(σ)+(

ng0/m

ng2/m+ ℏ?4/4m2

)3/2

g2h2(σ)

]
(3.3.64)

When D=3 we can write

n0

n
≈ 1− (mg0)

3/2n1/2

3ℏ3π2
+

Λn

8mℏ2π2(ng0/m)3/2

[
ng0/m

ng2/m+ ℏ2/4m2
g0f3(σ)+(

ng0/m

ng2/m+ ℏ2/4m2

)2

g2h3(σ)

]
(3.3.65)
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Chapter 4

Magnetic Flux Lines in type-II
superconductors

Type-II superconductors are materials characterized by the formation of
quantized vortices inside them, when a external magnetic field Hc1 is ap-
plied. Moreover, there is also an upper limit for the external field Hc2 over
which the superconductive state is broken.
Another interesting feature of type-II superconductors is the absence of com-
plete Meissner effect. This means that it is possible for magnetic fields to
penetrate the bulk of the sample. As a relevant consequence, this kind of
superconductive materials are subject to flux pinning when in the vortex
state, i.e they can be pinned in space over a magnet. This is a very relevant
feature, since there have been works that suggests that the right kind of dis-
order could actually increase flux pinning [26].
The first theory that tried to explain the nature of this behavior is the
Ginzburg-Landau theory. In this theory, there are two relevant length scales,
the coherence length ξ and the penetration length λ. The first one, ξ is related
to the length over which the electron density correlation function relaxes to
the mean-field value. The second one λ arises from the phenomenological
London theory and describes the depth of the penetration of the magnetic
field inside the bulk of a superconductor.
Working in the London limit (i.e. very short coherence length) the Gibbs free
energy of a slab of superconductive material of lenght L in the z direction in
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the vortex state, with N flux lines takes the form of [6]:

GN(H) =

∫ L

0

dz

N∑
i=1

(
α

√
1 +

m⊥

mz

∣∣∣∣dri(z)dz

∣∣∣∣2 + UD(ri(z))

)
+

1

2

∑
i ̸=j

V (
∣∣ri(z)− rj(z)

∣∣)− H

4π

∫
d3rb(r) (4.0.1)

Here we have parametrized the planar coordinates of each flux line with the
z coordinate. In the path integral formulation, z will become the imaginary
time τ .
Here α = α′ log κ, where α′ =

(
ϕ0
4πλ

)2 where ϕ0 is the vortex quantum and
κ = λ

ξ
is an adimensional parameter that in the Ginzburg-Landau theory

discriminates between type-I (0 < κ <
√

1/2) and type-II (κ >
√
1/2) mate-

rials.
We have taken into consideration eventual material anisotropies by defining
an effective mass ratio m⊥

mz
. Finally, the last term describes the interaction

between the local magnetic field density b(r) and the external magnetic field.
We can assume that the lines are almost parallel to the z direction, so that
the square root can be expanded. Moreover, we can express the last piece in
terms of the number of lines and the flux quantum. This leads to

GN(H) = µNL+FNri(z) = µNL+

∫ L

0

dz
N∑
i=1

(
α̃

2

∣∣∣∣dri(z)dz

∣∣∣∣2+UD(ri(z)))+
1

2

∑
i,j

V (
∣∣ri(z)− rj(z)

∣∣) (4.0.2)

where µ is the flux-line equivalent of the chemical potential and is defined as

µ =
ϕ0

4π
(H −Hc1) (4.0.3)

where Hc1 is the critical field above which we have magnetic vortices and is
given by Hc1 =

4πα
ϕ0

.
In Eq (4.0.2) we have introduced a new parameter α̃ = m⊥α

mz
. Looking at

the problem from a statistical point of view, we would have to compute the
grand canonical partition function (i.e summation over all the possible vertex
trajectories)

Zfl
gr =

∞∑
N=0

1

N !
eβµNLZfl

n (4.0.4)
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where the canonical partition function for N flux lines them can be written
in the functional form

Zfl
N =

N∏
i=1

∫
D[ri(z)]e

βFN [ri(z)] (4.0.5)

where FN [ri(z)] is given by Eq. (4.0.2). Eq. (4.0.5) can be interpreted as a
quantum-mechanical partition function in the path integral representation.
It would describe particles of effective mass α̃ moving through imaginary
time z. To further the analogy with the quantum bosonic case, we can
compare the role of the external field to the that of the chemical potential.
For example, when T=0, vortices will penetrate in the bulk of the sample
when H>Hc1. The analogy with bosonic systems can be made more precise.
The last partition sum can be written in terms of the transfer matrix [27]
e−LβH

fl
N , connecting neighboring slices at constant z. The Hamiltonian is

given by

Hfl
N =

N∑
i=1

[
−(kBT )

2

2α̃
∇2

i + UD(ri)

]
+

1

2

∑
i ̸=j

V (|ri − rj|) (4.0.6)

This Hamiltonian is remarkably similar to Eq (1.0.1). This let us write

Zfl
N =

N∏
i,i′

∫
dr′idri⟨r′1 · · · r′N |e−LβH

fl
N |r1 · · · rN⟩ (4.0.7)

here the states ⟨r′1 · · ·r′N | and |r1 · · ·rN⟩ describe the points of entry and exit
of the vortices. Introducing energy eigenstates |n⟩, and defining the zero-
momentum state (this is a consequence of the orthogonality of position and
momentum eigenvectors)

|p1 = 0 · · · pN = 0⟩ =
n∏
i=1

∫
dri|ri · · · rN⟩ (4.0.8)

We can rewrite Eq (4.0,7) as

Zfl
N = ⟨p1 = 0 · · · pN = 0|e−βLH

fl
N |p1 = 0 · · · pN = 0⟩∑
n

|⟨n|p1 = 0 · · · pN = 0⟩|2e−βLE
fl
N (4.0.9)

We can interpret this matrix element as if we had a system in the ground-state
|p1 = 0 · · · pN = 0⟩ of the ideal Bose gas at z=0 and we let it evolve under
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the action of interaction and disorder up to time L and then we projected it
onto the ideal Bose gas ground state.
The reason we have only bosonic state is that the zero-momentum state
onto which we are projecting, and the Hamiltonian (4.0.6) are symmetrical
under the exchange of any two fictitious particles. Therefore the states that
contribute to the partition sum are symmetric themselves. We can therefore
write

Zfl
N =

∑
bosonic states |n⟩

|⟨n|p1 = 0 · · · pN = 0⟩|2e−βLE
fl
N (4.0.10)

Comparing this partition function with the pure bosonic one (1.0.2) we can
see that there is a difference in the weights of the projections on the ground
state. However, if we consider the thermodynamical limit L → ∞ then only
the lowest energy state contributes to sum (4.0.10) and we have a complete
mapping between the quantum behavior of superfluids bosons at T=0 and
the statistical behavior of flux lines in the thermodynamical limit. If we im-
pose periodic boundary conditions to the flux lines, for example considering
a thoroidal geometry, this mapping survives even at finite temperature.
However, periodic boundary conditions are very artificial and don’t suit many
physical situations very well. Therefore it is better to assume opening bound-
ary conditions in the flux lines picture, as in Eq (4.0.7), and integrate over the
entry and exit points. This assumption is translated in the boson language
using an ideal Bose gas with boundary conditions

ψ(r, 0) = ψ(r, L) =
√
n (4.0.11)

Imposing this constraint, however, has consequences that need to be ad-
dressed. Eq. (4.0.11) implies that, while studying the flux lines problem
using the boson fictitious particles formalism, the boson order parameter can
not fluctuate at the edges of the sample. This means that, within the har-
monic approximation in the path integral approach, the fields π(r, τ) and
Θ(r, τ) will have additional constraints. In the following section we shall
discuss the properties of flux lines using the boson formalism, to provide a
unified framework. The following table summarizes the correspondence of
the quantities in the two pictures

Superfluid bosons m ℏ βℏ n µ
Vortex liquid α̃ T L B/ϕ0 (H-Hc1)ϕ0/4π

In particular we can see how, in the flux lines picture, the size of the sam-
ple in the z-direction is equivalent to the temperature in the boson case.
Therefore, when we shall talk about finite-temperature corrections in open
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boundary conditions, we shall be describing the effects of the finite size of
the superconductiong slab.
Before moving on, however, it is very important to understand the mean-
ing of the bosonic order parameter n0 and the normal-fluid particle density
nn in the flux line picture. A non-zero order parameter, associated to su-
perfluidity, implies a long-range order for the system, which in turn implies
non-vanishing correlation functions

lim
|r−r′|→∞

⟨ψ(r, τ)ψ∗(r′, τ ′)⟩ = n0 ̸= 0 (4.0.12)

Therefore, in the flux line picture, the order parameter describes the entan-
glement of the directed magnetic lines.
To better understand the meaning of nn we have to go back at the defini-
tion in terms on the appropriate limit of a response function. In the case
of bosonic superfluids it was the coefficient associated to the perturbation
induced by a velocity field; in the flux lines picture, on the other hand, this
transport coefficient is associated to a tilt in the external magnetic field.
Therefore we have a H⊥(r, z), perpendicular to the z-direction ( the imagi-
nary time in the bosonic picture). This tilt can be taken into consideration
by adding an extra term to the lagrangian∫ βℏ

0

dτ

∫
dDr iv(r, τ)g(r, τ)−mv(r, τ)2n(r, τ)/2 (4.0.13)

where
v(r, τ) =

ϕ0

4πα̃
H⊥(r, τ) (4.0.14)

and g(r, τ) si given by Eq. (1.2.13). We can then define

Tij(r, τ ; r
′, τ ′) =

ℏ2

m2

δ2 logZ[v]

δviδvj
|v=0 (4.0.15)

In Fourier space this can be expressed as

Tij(q, ωm) =
nℏ
m
δij − Cij(q, ωm)/m

2 (4.0.16)

where Cij(q, ωm) is given by Eq. (1.4.8). Therefore, evaluating this expres-
sion in the limit q → 0 and then ωm → 0 we can extract a matrix of transport
coefficients

(cvij)
−1 =

1

n2ℏ
lim
ωm→0

Tij(0, ωm) =
1

nm

(
δij −

1

nmβV
∑
p,ωn

pipj
EB(p)

2/ℏ2 − ω2
n

[E(p)2/ℏ2 + ω2
n]

2

)
(4.0.17)
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For an isotropic system the matrix reduces to the tilt modulus (cvij)−1 = c̃−1δij
where

c̃ =
(nm)2

mn−mnn
(4.0.18)

This is the definition of normal-fluid particle density in the flux line picture
and is related to the response of the system to a tilting external magnetic
field.

4.1 Corrections for open boundary condtions
As we have discussed in the previous section, we can study the flux lines
in superconductors with open boundary conditions using bosonic path inte-
gral with constraints on the fields, embodied by Eq. (4.0.11). This results
in the following constraints for the fields π(r, τ) and Θ(r, τ) introduces in
Eq.(1.2.10)

π(r, 0) = π(r, βℏ) = 0 (4.1.1)

and
Θ(r, 0) = Θ(r, βℏ) = 0 (4.1.2)

These constraints can be included in the path-integral formulation. For no-
tation clarity, we can introduce the vector

X(r, τ) =

(
Θ(r, τ)
π(rτ)

)
(4.1.3)

Then, we can write the correlation matrix as

⟨X(r, τ)XT (r′, τ ′)⟩ =
∫
D[X(r, τ)]X(r, τ)XT (r′, τ ′)e−S[X]/ℏ∏

r δ(X(r, 0))∫
D[X(r, τ)]e−S[X]/ℏ

∏
r δ(X(r, 0))

=∫
D[X(r, τ)]D[σ(r)]X(r, τ)XT (r′, τ ′)e−S[X]/ℏ+i

∫
dDrσ(r)X(r)∫

D[X(r, τ)]D[σ(r)]−S[X]/ℏ+i
∫
dDrσ(r)X(r)

(4.1.4)

In the second line we have introduces an auxiliary field that realizes the
constraints of Eqs. (4.1.1)-(4.1.2). To compute this functional integral we
can rewrite it in the following form

⟨X(r, τ)XT (r′, τ ′)⟩ =
∫
D[σ(r)]⟨X(r, τ)XT (r′, τ ′)ei

∫
dDrσ(r)X(r)⟩0∫

D[σ(r)]⟨ei
∫
dDrσ(r)X(r)⟩0

(4.1.5)

where the average ⟨· · ·⟩0 is taken with respect to the dynamical fields and
the harmonic action. We can easily evaluate the gaussian averages in Fourier
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space. Doing so let us split the integration in two steps, averaging out the
dynamical degrees of freedom at first, and then the static field [27]. In this
way, we can write the correlation matrix as

⟨X(q, ωm)X
T (q′, ωm′)⟩ = (2π)Dδ(q+ q′)ℏA−1(q, ωm)

[
βℏδm,−m′−A(q)A−1(q,−ωm′)

]
(4.1.6)

Here, we have that ℏA−1(q, ωm) is given by Eq.(1.2.19) and A(q) is the
inverse of A−1(q, τ = 0) =

∑
mA−1(q, ωm). The explicit form is then

A(q) =

(
n0ℏ2q2/mEB(q) 0

0 mEB(q)/n0ℏ2q2

)
2ℏ tanh βEB(q)/2 (4.1.7)

By direct matrix multiplication we can find the correlation matrix, and in
particular the density-density correlation function (under open boundary
conditions)

S(q, ωm;q
′, ωm′) = (2π)Dδ(q+ q′)

n0ℏq2/m
ω2
m + EB(q)2/ℏ2

(
βℏδm,m′

− 2ℏ
EB(q)

ωmωm′ + EB(q)
2ℏ2

ω2
m + EB(q)2/ℏ2

tanh βEB(q)/2

)
(4.1.8)

We can repeat the same steps as in the first chapter to find the relevant
physical quantities, starting from the structure factor. The result is

S(q, 0) =
n0ℏ2q2

2mEB(q)
coth βEB(q)/2

(
1− 1

cosh2 βEB(q)/2

)
=

n0ℏ2q2

2mEB(q)
tanh βEB(q)/2 (4.1.9)

An interesting feature of the structure factor with open boundary conditions
is that is proportional to the hyperbolic tangent, as if the quasi-particle
excitations followed the Fermi-Dirac distribution, instead of the bosonic dis-
tribution implied by Eq.(1.4.6). Again, we can find the condensate depletion
following the same steps of chapter 1. This leads to

n− n0 =

∫
dDq

(2π)D

(
|v(q)|2 − |u(q)|2 + |v(q)|2

eβEB(q) + 1

)
(4.1.10)

Here, the order parameter n0 can be thought as describing the entanglement
of the flux lines in the superconducting sample.
Compared to what we found in the case of periodic boundary conditions,
there are a couple relevant differences.
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The first one is that the excitations are explicitly distributed according to
a Fermi-Dirac distribution with vanishing chemical potential. The second
one is that the finite-temperature corrections have the opposite sign to what
we had previously found. Choosing the phonon branch of the Bogoliubov
spectrum, we can evaluate in close form Eq.(4.1.10).
When D=2 we find

n− n0 = − log 2mkBT

2πℏ2
(4.1.11)

which is a finite correction, in sharp contrast to the pure bosonic case. In two
dimensions we can have long-range order because the static field strengthens
the order parameter, favoring condensation in the bulk of the material. When
D=3 we get

n− n0 = −m(kBT )
2

24ℏ3c
(4.1.12)

Following the same Landau argument as in the first chapter we can find the
normal-fluid particle density. We find

nn(τ) =
ℏ
mD

∫
dDq

(2π)D
q2
(
2τ

sinh[(βℏ− 2τ)EB(q)/ℏ]
sinh βEB(q)

− βℏ
4 sinh2 βEB(q)/2

)
(4.1.13)

We can evaluate this equation in the center of the sample , when τ = βℏ/2

nn(τ = βℏ/2) = − βℏ2

4mD

∫
dDq

(2π)D

(
q

sinh βEB(q)/2

)2

(4.1.14)

which is the same result we found for the case with periodic boundary condi-
tions but with the opposite sign. For the finite-temperature / finite thickness
situation,we can use the phonon approximation to find the following results.
When D=2 we have

nn(T ) = −3ζ(3)(kBT )
3

2πmℏ2c4
(4.1.15)

and when D=3 we get

nn(T ) = −2π2(kBT )
4

45mℏ3c5
(4.1.16)

4.2 Disorder with open boundary conditions

So far we have derived the effects of thermal fluctuations on the physical
properties of the flux lines inside superconducting samples. We now want
to show how to include disorder, through an extra term in the lagrangian
density describing the system. With respect to the analysis shown in chapter
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2, we now have to take into account the extra static field σ(r). This section
will closely follow [15]. To begin, we define the vector

γ(q, ωm) =

(
0

UD(q, ωm)

)
+ iℏσ(q) (4.2.1)

Using this convention, the harmonic effective action can be cast into the
following form

˜S0[σ,X] =
1

2βℏV
∑
q,ωm

[
XT (−q,−ωm)A(q, ωm)X(q, ωm)

− 2XT (−q,−ωm)γ(q, ωm)

]
(4.2.2)

Using the change of variable

X̃ = X −A−1γ (4.2.3)

the action becomes purely quadratic and can be easily integrated. Therefore
we can easily evaluate the original fields correlation matrix

⟨XT (q, ωm)X(q′, ωm′)⟩ = ℏ2βVA−1(q, ωm)δq+ q′δm,−m′

+A−1(q, ωm)⟨γ(q, ωm)γT (q′, ωm′)⟩σA−1(q′,−ωm′) (4.2.4)

where

⟨γ(q, ωm)γT (q′, ωm′)⟩σ =

∫
D[σ(q)]γ(q, ωm)γ

T (q′, ωm′)eSγ [σ]/ℏ∫
D[σ(q)]e−Sγ [σ]/ℏ

(4.2.5)

and

Sγ[σ] = − 1

2βℏV
∑
q,ωm

γT (−q,−ωm)A−1(q, ωm)γ(q, ωm) (4.2.6)

To evaluate more easily this expression we can define

a(q) =
1

βℏ
∑
m

A−1(q, ωm)

(
0

UD(q, ωm)

)
(4.2.7)

and then switch to shifted fields

˜σ(q) = σ(q)− iA(q)a(q)/ℏ (4.2.8)
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where A(q) is defined in Eq. (4.1.7). This allows us to perform a second
gaussian integration in σ. The final result for the quenched-disorder averaged
correlation matrix

⟨X(q, ωm)XT (q′, ωm′)⟩
= (2π)Dδ(q+ q′)

[
βℏδm,−m′ −A−1(q, ωm)A(q)

]
ℏA−1(q,−ωm′)

]
+

1

(βℏ)2
∑
n,n′

[
βℏδm,n −A−1(q, ωm)A(q)

]
A−1(q, ωn)

(
0
1

)
{
[βℏδm′,n′ −A−1(q′, ωm′)A(q′)]A−1(q′, ωn′)

(
0
1

)T }
Λ(q, ωm;q

′, ωn′)

(4.2.9)

This is, of course, a very unwieldy expression. From this expression we can
derive the structure factor in the center of the material , when τ = βℏ/2

S(q, τ =
βℏ
2
) =

n0ℏ2q2

2mEB(q)
tanh βEB(q)/2+

1

(βℏ)2V
∑
n,n′

(n0q
2/m)2Λ(q, ωn;−q, ωn′)[

ω2
n + EB(q)2/ℏ2

][
ω2
n′ + EB(q)2/ℏ2

](
e−iωnβℏ/2 − 1

cosh βEB(q)/2

)(
e−iωn′βℏ/2 − 1

cosh βEB(q)/2

)
(4.2.10)

If we consider the static impurities

Λ(q, ωm) = Λ(q)βℏδm,0 (4.2.11)

and remembering that e−iωnβℏ/2 = (−1)n we can find the static structure
factor in presence of disorder

S(q, τ = βℏ/2) =
n0ℏ2q2

2mEB(q)
tanh βEB(q)/2 + Λ(q)

(
n0ℏ2q2

mEB(q)2

)2(
1− 1

cosh βEB(q)/2

)2

(4.2.12)

In the same vein of chapter 2 , we can use the disorder averaged correlation
matrix to find condensate depletion. However, since the expression are very
lengthy and not transparent at all, we shall show the explicit formulas only
for static disorder in the bulk of the material. Therefore, we find that

(nΛ(τ = βℏ/2)) =
n0

4m2

∫
dDq

(2π)D

(
ℏq

EB(q)

)4

Λ(q)

(
1− 1

cosh βEB(q)/2

)2

(4.2.13)
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and, for the normal-fluid particle density we have

nn,ij,Λ(τ = βℏ/2) =
n0

m2

∫
dDq

(2π)D
qiqj

(
ℏ2q

EB(q)2

)2

Λ(q)(
1− 1

cosh βEB(q)/2
− βEB(q)/2

sinh βEB(q)/2
+

βEB(q)

sinh βEB(q)

)
(4.2.14)

4.3 Uncorrelated disorder

We have already discussed this kind of disorder for bosonic superfluids in
subsection (3.1.2). Here we shall show the difference of the results assuming
open boundary conditions instead of periodic ones. The disorder correlator
is

Λ(q, ωm;q
′, ωm′) = Λ(2π)Dδ(q+ q′)δm,−m′βℏ (4.3.1)

We shall evaluate the condensate depletion and the normal-fluid particle den-
sity in the bulk of the sample. when τ = βℏ/2. For the disorder contribution
to condensate depletion we find

nΛ =
n0

4

∫
dDq

(2π)D
Λ

ℏEB(q)
tanh βEB(q)/2[(

ℏ2q2

2mEB(q)

)(
1− βEB(q)

sinh βEB(q)

)2

− 1− βEB(q)

sinh βEB(q)

]
(4.3.2)

Considering the phonon branch of the Bogoliubov spectrum, we can rewrite
the integral as

nΛ(T ) ≈
Λn0(kBT )

D−1

4πD/2Γ(D/2)ℏD+1cD

[
D − 2

D − 1

∫ ∞

0

xD−1

cosh2 x
dx+

(kBT )
2

m2c4

∫ ∞

0

xD+1

cosh2 x

]
(4.3.3)

where x = βℏcq/2. When D=2 this leads to

nΛ(T ) = −O(T 3) (4.3.4)

while for D=3 we have

nΛ(T ) = −Λn0(kBT )
2

48ℏ4c3
(4.3.5)
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We can clearly see that both of this corrections have the opposite sign com-
pared to what we find for periodic boundary conditions (Eqs. (3.1.50)-
(3.1.51)). In a similar fashion we can derive the normal-fluid particle density.
We find that

nnΛ = −n0β
2ℏ4

8Dm2

∫
dDq

(2π)D
Λq4

ℏEB(q)
1

sinh βEB(q)
(4.3.6)

We can see that there is no infinite thickness correction. In fact

nnΛ(T = 0) = 0 (4.3.7)

In the phonon branch, we find for D=2

nnΛ(T ) = −93ζ(5)Λn0(kBT )
3

64πm2ℏ3c6
(4.3.8)

while for D=3 we find

nnΛ(T ) = −π
4Λn0(kBT )

4

192m2ℏ4c7
(4.3.9)

Again, we can see that these finite thickness corrections, which are the equiva-
lent of finite temperature corrections in the bosonic picture, have the opposite
sign to what we had found in chapter 3.
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Chapter 5

Conclusions

In this work we showed and reviewed a formalism to deal with disorder in
bosonic systems using the path-integral approach. This method extends the
previous results by Huang and Meng [3] and by Giorgini et al. [21] because
allows the systematic evaluation of the quantities of interest.
In particular, in the first chapter we defined the condensate depletion and
the normal-fluid particle density nn, the transport coefficient associated with
transverse motion of the system, in terms of simple two-point correlation
functions. The evaluation of these correlators, at least in harmonic approx-
imation, is straightforward and yielded explicit formulas both at zero and
finite temperature. In the second chapter, following [15], we showed how to
take into consideration the effects of a disorder potential coupled to the par-
ticle density UD(r, τ)|ψ(r, τ)|2. The machinery presented in the first chapter
easily allowed to take into account this effects, for a general potential. There-
fore we showed how to derive general formulas for the response function, the
condensate depletion and the normal-fluid particle density.
In the third chapter we then discussed in detail some particular kinds of
disorder, starting from the static one up to tilted and extended defects, high-
lighting the physical situations associated with those kind of impurities dis-
tributions.
Moreover,in the third chapter, we extended the analysis of the effects of dis-
order to the case of finite-range interaction. This is a very important topic,
because the finite-range represents a more realistic situation than contact in-
teraction. Taking into account these corrections led to an interesting result:
in fact, we showed that, when considering zero-temperature corrections in
D=2 the results are divergent and it is necessary to introduce a energy scale
to regularize the calculations.
In the same section, we considered the effects of finite range in case of
Lorentzian-correlated disorder. Finally, in the last chapter, we discussed
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the application of the boson superfluids formalism to type-II superconduc-
tors. This application stems from the fact that the statistical mechanics of
magnetic flux lines in (D+1) dimensions, where the extra dimension cor-
responds to the imaginary time in the boson picture, is equivalent to the
quantum mechanical problem of superfluid bosons in D spatial dimensions.
We have showed how to argue this equivalence and in particular how only
states symmetric under the exchange of any pair of particles contribute to the
partition function of the superconducting system (see Eqs. (4.0.8)-(4.0.10)).
We also discussed the meaning of the order parameter and the normal-fluid
particle density in this case: the first one describes how much the flux lines
are entangled or correlatd, while the second one characterizes the response
of the system to a tilt in the external magnetic field. However, there is a
difference between the two picture: while periodic boundary conditions are
good to describe bosonic superfluids, in the case of magnetic lines are quiet
artificial. Therefore we adopted open boundary conditions, summing over all
the possible entry and exit points of the flux lines. In order to implement this
different constraint in the path integral formulation, we introduced an extra
auxiliary fields. Moreover, open boundary conditions, that ensure that the
fluctuations of the bosonic order parameter are vanishing at the surfaces of
the sample, greatly change the physics of the system. In particular thermal
fluctuations result in an enhancement of the order parameter of the system.
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Appendix A

Matsubara Frequency
summations

The idea behind performing Matsubara frequency summation is to switch
this infinite sum with a contour integral that involves the evaluation of a
finite number of residues [19]. The following formulas apply to the bosonic
case, i.e. with even integers.

1

βℏ
∑
n

e−iωnτ

iωn + EB(q)/ℏ
=

eτEB(q)/ℏ

eβEB(q) − 1
(A.0.1)

−1

βℏ
∑
n

e−iωnτ

iωn − EB(q)/ℏ
=
e(β−τ/ℏ)EB(q)

eβEB(q) − 1
(A.0.2)

1

βℏ
∑
n

e−iωnτ

ω2
n + EB(q)2/ℏ2

=
ℏ cosh[(βℏ− 2τ)EB(q)/2ℏ]

2EB(q) sinh βEB(q)/2
(A.0.3)

1

βℏ
∑
n

iωne
−iωnτ

ω2
n + EB(q)2/ℏ2

=
sinh[(βℏ− 2τ)EB(q)/2ℏ]

2 sinh
(
βEB(q)/2

) (A.0.4)

Moreover, we can take derivatives with respect to EB(q). This yields

1

βℏ
∑
n

e−iωnτ

(ω2
m + EB(q)2/ℏ2)2

=
ℏ2

4EB(q)3 sinh βEB(q)/2

{
cosh

(βℏ− 2τ)EB(q)

2ℏ
−

τEB(q)

ℏ
sinh

(βℏ− 2τ)EB(q)

2ℏ
+
βEB(q)

2

cosh τEB(q)/ℏ
sinh βEB(q)/2

}
(A.0.5)
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and

1

βℏ
∑
n

iωne
−iωnτ

(ω2
n + EB(q)2/ℏ2)2

=
ℏ

4EB(q) sinh βEB(q)/2

{
τ cosh

(βℏ− 2τ)EB(q)

2ℏ

− βℏ sinh τEB(q)/ℏ
2 sinh βEB(q)/2

}
(A.0.6)
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