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Introduction

When Bachelier presented his doctoral thesis in Mathematics at the University of Paris

in 1900, he brought to life the idea that financial assets could be described through

collections of random variables. Since that time, stochastic processes have played a

leading role in the modelling of prices and returns on assets, bonds and stocks, deriva-

tives and cash. Many models were built upon the idea that prices evolve continuously

in time following a Brownian motion, a probabilistic process initially widely used to

describe physical phenomena and later adopted to deal with financial economics prob-

lems. Black and Scholes model and stochastic volatility models for option pricing were

those of greater impact.

Alternative approaches were later introduced, with the aim on filling the gaps of the

Brownian motions modelling. In particular, it was observed empirically that correla-

tions between observations that were far apart in time decayed to zero at a slower rate

than one would expect from independent data or data following classic models. As a

result, self-similar and stationary processes were introduced as valid building blocks

for new models and long-range dependence became a rapidly developing subject. Par-

ticular importance was attributed to the fractional Brownian motion process, whose

characteristics perfectly fitted the new long-memory approach. The peculiarity of the

model, in comparison to Brownian motion, consisted in its dependence on the Hurst

parameter, whose value determined the short-term and long-term behaviour of the

process.

The idea behind this project is then to present the most relevant stochastic processes

and to study the application of these processes to financial modelling under a statis-

tical point of view. The central focus is on fractional Brownian motion and the Hurst

parameter estimation, whose significance has increased in the last years.

In particular the first chapter introduces the concept of stochastic process and de-

scribes white noises and random walks, as well as Martingale and Markov properties,

concluding with a comprehensive introduction to Brownian motion. Then, the sec-

ond chapter focuses on fractional Brownian motion, on its long-range dependence and

self-similarity properties. The third chapter presents the notion of financial modelling

and the most important result obtained in the last five decades. More precisely, Black
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and Scholes model, stochastic volatility models, fractional stochastic volatility models

and rough fractional stochastic volatility models are introduced. The fourth chapter

provides an introduction on both heuristic and maximum likelihood estimation meth-

ods for the Hurst parameter H, together with an example of estimation on real data.

Finally, in Appendix A some important definitions can be found and in Appendix B

the R code used in the project is reported.



Chapter 1

Stochastic Processes

1.1 Definitions and characteristics

Definition 1.1. A time series is a sequence of numerical data points, each associated

to a specific instance of time or time interval.

Most commonly, a time series is a sequence taken at successive equally spaced points

in time, thus it is a sequence of discrete-time data. Time series are usually considered

as finite realizations of stochastic processes, since they represent only a limited sample

chosen among the infinite possible realizations of the processes.

Definition 1.2. Let (Ω,F, P ) be a probability space where Ω is the sample space,

F is a σ−algebra and P is a probability measure. Given a parametric space T , a

stochastic process is a finite function of ω ∈ Ω and t ∈ T such that Xt : ω 7→ R is

an (Ft)-measurable function for every t ∈ T , where (Ft)t∈T is the filtration1 on the

given probability space.

The set T , used to index the random variables, is called index set. A stochastic

process is called discrete-time stochastic process if T has a finite or countable

number of elements or continuous-time stochastic process if T is some interval

of the real line R.

A stochastic process is usually indicated as (Xt)t∈T , but it can also be written as

{X(t, ω) : t ∈ T } to highlight that it is a function of two variables: t ∈ T that usually

represents time, and ω ∈ Ω that indicates a possible state of the world. It is important

to notice that:

• for every given ω = ω0, X·(ω0) is a function of t called path or trajectory;

• for every given t = t0, Xt0(·) is a measurable function of ω ∈ Ω, hence a random

variable.

1For an overview on filtrations see Appendix B.
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Definition 1.3. An increment of a stochastic process is the difference between two

random variables Xt and Xs of the same stochastic process, with t > s.

For a stochastic process with an index set that can be interpreted as time, an incre-

ment indicates how much the stochastic process changes over a certain time period.

For example, let t1 and t2 be two elements of the index set T such that t2 > t1. Then

Xt2 −Xt1 is a random variable called increment.

To satisfactorily describe a stochastic process it would be necessary to specify the

joint probability distribution of (Xt1 , ..., Xtn) for every set of instances t1, ..., tn and

for every n. This procedure is usually complicated and it is preferable to define the

process through the first moments of the random variable Xt.

Let (Xt)t∈T be a stochastic process. Its mean, variance and autocovariance can be

defined as functions of the random variable Xt and time t:

• mean function µt = E(Xt);

• variance function σ2
t = V ar(Xt) = E(Xt − µt)2;

• autocovariance function γt,s = Cov(Xt, Xs) = E[(Xt − µt)(Xs − µs)].

Furthermore, to facilitate the interpretation of the autocovariance function, the fol-

lowing definition can be considered:

Definition 1.4. The autocorrelation function - ACF - is the scale-independent

version of the autocovariance function and it is defined as

ρt,s = Corr(Xt, Xs) =
Cov(Xt, Xs)√
V ar(Xt)V ar(Xs)

=
γt,s
σtσs

where γ is the autocovariance function and σ the variance function of the process.

It is now possible to introduce the concept of stationarity. A stochastic process is

stationary if its mean and variance do not show systematic swings and if its dynamics

does not show periodic variations, or in other words if it evolves smoothly rather than

by abrupt changes.

Definition 1.5. The process (Xt)t∈T is strictly stationary if

(Yt1 , ..., Ytn)
d
= (Yt1+τ , ..., Ytn+τ ) ∀n ∈ N,∀τ ∈ R+

where
d
= denotes equality in distribution, i.e. the two processes are governed by the

same probability measure and their joint probability density functions are equivalent.

These conditions impose constraints on the whole distribution of the process and there-

fore on the moments of every order. An alternative to the notion of strict stationary

process is weak or second order stationarity, which only limits the first two moments

of the distribution.
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Definition 1.6. The process (Xt)t∈T is weakly stationary if

E(Xt) =µ ∀t ∈ T

Cov(Xt, Xt+k) = γt,t+k =γk ∀t ∈ T , k = 0,±1, ..

Definition (1.6) implies that the mean of the process is constant and, specifically, time-

invariant, and that the autocovariance function depends only on k, called lag.

Since the correlation between two variables Xt and Xt+k is often due to the correlation

these variables have with Xt+1, .., Xt+k−1, it is useful to consider the partial autocor-

relation function as a valid alternative for measuring connection between variables.

Definition 1.7. The partial autocorrelation function - PACF - measures the cor-

relation between Yt and Yt−k after their linear dependence on the intervening random

variables Yt−1, ..., Yt−h+1 has been removed. More precisely,

Pk = Corr(Xt, Xt+k|Xt+1, .., Xt+k−1).

As described in Wei (2006), the PACF can be computed considering a regression

model in which the dependent variable Xt+k is regressed on the k lagged variables

Xt+k−1, Xt+k−2, .., Xt. Through recursive substitutions, one can find a system of k

linear equations which can be solved applying the Cramer’s rule, to obtain

Pk =

∣∣∣∣∣∣∣∣∣∣
1 ρ1 · · · ρk−2 ρ1

ρ1 1 · · · ρk−3 ρ2

...
...

...
...

...

ρk−1 ρk−2 · · · ρ1 ρk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 ρ1 · · · ρk−2 ρk−1

ρ1 1 · · · ρk−3 ρk−2

...
...

...
...

...

ρk−1 ρk−2 · · · ρ1 1

∣∣∣∣∣∣∣∣∣∣
where | · | represents the determinant of a matrix.

The notion of weak stationary is usually considered sufficient to conduct an analysis

on many types of processes. In general, the following property holds, as explained and

proved in Di Fonzo et al. (2005):

Proposition 1.1. It can be shown that if (Xt)t∈T is a strictly stationary process, then

it is also weakly stationary if and only if V ar(Xt) <∞. Furthermore, if (Xt)t∈T is a

Gaussian process, then the notions of strict and weak stationary are equivalent.

Given a sample of an unknown process, its characteristics have to be estimated

based on the observed time series (yt)
n
t=1. An estimator for a characteristic T is a

function of the sample and will be denoted by T̂ . If the process is stationary and

ergodic, i.e. its statistical properties can be deduced from a single and sufficiently
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long sample of the process, then one can estimate its moments consistently, as follows.

A consistent and unbiased estimator for the mean µ of the process is

µ̂ =
1

n

n∑
t=1

yt

and a consistent estimate for the autocovariance of the process can be

γ̂k =
1

n

n−k∑
t=1

(yt − µ̂)(yt+k − µ̂) (1.1)

It can be proved that

E(γ̂k) = γk −
k

n
γk −

n− k
n

V ar(µ̂)

hence γ̂k is biased. In order that γ̂k can be considered a valid estimator, it is necessary

for n to be enough big and for k to be much smaller that n. From (1.1), the estimator

for σ2 can be obtained by imposing k = 0:

σ̂2 = γ̂0 =
1

n

n∑
t=1

(yt − µ̂)2.

Consequently an estimate for the autocorrelation function can be formulated as

ρ̂k =
γ̂k
γ̂0
,

which is biased but consistent. In particular, V ar(ρ̂k) can be approximated with

V ar(ρ̂k) ' 1

n

∞∑
i=−∞

(
ρ2
i + ρi−kρi+k + 2ρ2

i ρ
2
k − 4ρiρkρi−k

)
.

Moreover, if ρk ' 0 for k ≥ q, the Bartlett’s approximation is valid

V ar(ρ̂k) ' 1

n

q∑
i=−q

ρ2
i =

1

n

(
1 + 2

q∑
i=1

)
.

More details and all the proves can be found in Wei (2006).

1.2 Fundamental stochastic processes

There are numerous types of stochastic processes, each one with different characteris-

tics and applied in different fields. Two of the most important ones, white noise and

random walk, will be discussed in this section.
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1.2.1 White noise

One of the most important continuous stochastic processes is white noise, as it can be

considered a building block for many other stationary processes.

Definition 1.8. A process (εt)t∈T is a white noise if

E(εt) = 0 ∀t ∈ R+

V ar(εt) = σ2 <∞ ∀t ∈ R+

Cov(εt, εs) = 0 ∀t 6= s

Hence a white noise process consists of a sequence of serially uncorrelated random

variables with zero mean and finite variance, and is often indicated as εt ∼WN(0, σ2).

The autocorrelation function can be easily calculated and is clearly equal to

ρk =

1 k = 0

0 k = ±1,±2, ..

as shown in Figure 1.2.

Figure 1.1: Simulated White Noise process.

Figure 1.2: ACF for simulated WN process.

Remark 1.1. Technically, a process with a finite variance whose observations are

independent and identically distributed is a white noise process but a white noise

process is not necessarily generated from an i.i.d. random variable, since the εt are

not necessarily identically distributed or independent.

If the random variables εt are normally distributed, the process is called Gaussian

white noise.
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1.2.2 Random walk

A random walk is a mathematical object that describes a path consisting of a succes-

sion of random steps on some mathematical space. For example, the path traced by a

molecule as it travels in a liquid or a gas, the price of a stock and the financial status

of a gambler can all be approximated by random walk models, even though they may

not be truly random in reality.

Various types of random walks are of interest, which can differ in several ways. The

term itself most often refers to a special category of Markov chains or Markov pro-

cesses, but many time-dependent processes are referred to as random walks, with a

modifier indicating their specific properties.

Definition 1.9. A random walk is a process (Xn)n∈N where the current value of

the variable is defined as the sum of the past value and an error term represented by

a white noise. Algebraically a random walk is described as follows:

Xn = Xn−1 + εn

X0 = µ

εn ∼WN(0, σ2
ε).

Through recursive substitutions, Xn can be represented as a sum of white noises at

different times

Xn = µ+

n∑
i=1

εi.

Furthermore, it can be easily shown that the mean of a random walk process is constant

and equal to

E(Xn) = E

(
µ+

n∑
i=1

εi

)

= µ+

n∑
i=1

E(εi) = µ,

but its variance is not, as described in the following passages

V ar(Xn) = V ar

(
µ+

n∑
i=1

εi

)

=

n∑
i=1

V ar(εi) = tσ2
ε

Therefore a random walk process is non stationary, since its variance increases with t.

The process can be made stationary through an appropriate transformation, called first

differentiation, which consists in computing the difference between every observation

and the one immediately preceding.
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Figure 1.3: Simulated Random Walk processes.

Assuming µ = 0, the autocorrelation function of a random walk can be computed as

ρk =
Cov(Xt, Xt+k)√
V ar(Xt)V ar(Xt+k)

=
E((ε1 + ..+ εt)(εk+1, .., εt+k))√

tσ2
ε · (t+ k)σ2

ε

=
tσ2
ε

σ2
ε

√
t(t+ k)

=

√
t

t+ k
.

Hence it can be inferred that

ρk =

√
t

t+ k
−→
t→∞

1

which indicates that the process has infinite memory, as shown in Figure 1.4.

Figure 1.4: ACF for simulated RW process.

1.3 Martingale

A martingale is a model of fair game where the knowledge of past events never helps

predicting the mean of the future winnings and only the present event matters.

In particular, a martingale is a stochastic process for which, at a particular time in

the realized sequence, the expectation of the next value in the sequence is equal to

the present observed value even given knowledge of all prior observed values. More

precisely, the following definition is given
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Definition 1.10. A random process (Xt)t∈T is a martingale with respect to the

filtration (Ft)t∈T if

• (Xt)t∈T is adapted to (Ft)t∈T ;

• E(|Xt|) <∞ ∀t;

• E(Xs|Ft) = Xt ∀s ≥ t.

Furthermore a process satisfying the inequality E(Xs|Ft) ≤ Xt ∀s ≥ t, is called a

supermartingale, and a process satisfying E(Xs|Ft) ≥ Xt ∀s ≥ t is called a sub-

martingale.

Note that the martingale property is always given with respect to a filtration. The

first condition says that we can observe the value Xt at time t, and the second con-

dition is just a technical condition. The really important condition is the third one,

which says that the expectation of a future value of X, given the information available

today, equals today’s observed value of X, or, in other words, that a martingale has

no systematic drift.

Moreover, in probability theory, a martingale difference sequence - MDS - is a

martingale for which the expectation, with respect to the past, is zero. By construc-

tion, this implies that if Yt is a martingale, then Xt = Yt − Yt−1 is an MDS. In

particular, (Xt)t∈T , is a conditionally homoskedastic martingale difference sequence

if E(Xt|Ft−1) = 0 and V ar(Xt|Ft−1) = σ2. It is a conditionally heteroskedastic mar-

tingale difference sequence if E(Xt|Ft−1) = 0 and V ar(Xt|Ft−1) = σ2
t .

MDSs are useful components in probability theory, as they imply less restrictive con-

ditions on the memory of sequences than independence.

1.4 Markov processes

In probability theory and related fields, a Markov process, named after the Russian

mathematician Andrey Markov, is a stochastic process characterized by the ’memory-

lessness’ propriety. Loosely speaking, a process satisfies this property if one can make

predictions for the future of the process based solely on its present state just as well as

one could knowing the process’s full history, hence independently from such history.

Definition 1.11. A stochastic process is called Markovian if it has the Markov

property.

Proposition 1.2. Given a probability space (Ω,F, P ) where F is a σ-algebra endowed

with a filtration (Ft)t≥0, and given a bounded Borel function f 2, a stochastic process

2A Borel function is a function that is Borel measurable, i.e. the inverse image of any open set in
its codomain is a Borel set of its domain.
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has the Markov property if

P (f(Xt) ∈ A|Fs) = P (f(Xt) ∈ A|Xs) ∀t > s ≥ 0 ∀A ∈ B(R)

Remark 1.2. Note that Proposition (1.2) shows how the probability distribution of

Xs given the information available at time t < s, which is embodied in the σ-algebra

Ft, is equal to the probability distribution of Xs given the value taken by Xt.

In other words, the behaviour of the process in the future is stochastically independent

of its behaviour in the past, given the current state of the process.

1.5 Brownian motion

Brownian movement is the name given to the irregular movement of pollen, suspended

in water, observed by the botanist Robert Brown. In 1828, while looking through a

microscope at particles trapped in pollen grains in water, he noticed that the particles

moved through the water, but he was not able to determine the mechanisms that

caused this motion. Albert Einstein published a paper in 1905 that explained in pre-

cise detail how the motion that Brown had observed was a result of the pollen being

moved by individual water molecules. This random movement results in a dispersal

or diffusion of the pollen in the water.

The range of application of Brownian motion as defined here goes far beyond the

study of microscopic particles in suspension and includes modelling of stock prices, of

thermal noise in electrical circuits, of certain limiting behaviour in queueing and inven-

tory systems, and of random perturbations in a variety of other physical, biological,

economic and management systems.

Definition 1.12. A real valued stochastic process (Bt)t≥0 on a probability space

(Ω,F, P ) is called a Brownian motion or Wiener process, with starting point x ∈ R,

if the following holds:

• B(0)=x;

• the process has independent increments, i.e. for 0 ≤ t1 ≤ t2 ≤ ... ≤ tn the

increments Btn − Btn−1
, Btn−1

− Btn−2
, .., Bt2 − Bt1 are independent random

variables;

• for all t ≥ 0 and h > 0, the increments Bt+h −Bt are normally distributed with

expectation zero and variance h, i.e. Bt+h −Bt ∼ N(0, h);

• almost surely, the function t 7→ Bt is continuous i.e. Bt has continuous trajec-

tories.

Moreover (Bt)t≥0 is a standard Brownian motion if x=0.



16 CHAPTER 1. STOCHASTIC PROCESSES

Remark 1.3. The second condition is a Markov property saying that, conditional on

the present value Bt, any past information of the process Bj with j < t is irrelevant

to the future Bt+h with h > 0.

In other words, a Weiner process is a special stochastic process with zero drift and

variance proportional to the length of the time interval. This means that the rate of

change in expectation is zero and the rate of change in variance is 1.

Remark 1.4. An important property of the Brownian motion is that its paths are

not differentiable almost surely. In other words, for a standard Brownian motion Bt

it can be shown that dBt/dt does not exist for all elements of Ω. As a result, the

usual integration in calculus can not be used to handle integrals involving a standard

Brownian motion. An alternative approach is the introduction of Itô’s calculus, which

will be presented e.g. in Theorem (1.1).

In practice, the mean and variance of a stochastic process can evolve over time in

a more complicated manner. Hence, a further generalization of the stochastic process

is needed. To this aim, we need to consider the generalized Brownian motion in

which the expectation has a drift rate µ and the rate of variance change is σ2.

Let (Xt)t≥0 be such a process. Its local dynamics can be approximated by a stochastic

differential equation - SDE - of the following type:

dXt = µdt+ σdBt

where B is a Brownian motion. In literature, µ ∈ R and σ ∈ R are referred to as the

drift and volatility parameters of the generalized Brownian motion (Xt)t≥0 and the

process itself is called a diffusion.

The drift and volatility parameters are time invariant, but if one extends the model

by allowing µ and σ to be functions of the stochastic process X, then an Itô drift-

diffusion process is generated, such that

dXt = µ(t,Xt)dt+ σ(t,Xt)dBt.

This process is known as a stochastic diffusion function, with µ(t, x) : R+ × R → R
and σ(t, x) : R+ × R→ R being the drift and diffusion functions.

This process plays an important role in mathematical finance and it can be written as

Xt = X0 +

∫ t

0

µ(s,Xs)ds+

∫ t

0

σ(s,Xs)dBs, (1.2)

or, equivalently, as

dXt = µ(t,Xt)dt+ σ(t,Xt)dBt (1.3)

X0 = a (1.4)

where (1.3) represents a stochastic differential of Xt and (1.4) the initial condition
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of the process. Note that Equation (1.2) has two parts: a deterministic integral and

a stochastic integral. The first one can be solved via Riemann integration theory,

whereas the second is an Itô integral. The following formula has to be considered

when dealing with Itô integrals:

Theorem 1.1 (Itô’s formula). Assume that the process (Xt)t∈T is a generalized

Brownian motion that satisfies the following stochastic differential equation

dXt = µ(t,Xt)dt+ σ(t,Xt)dBt,

where µ and σ are adapted processes, and let f be a C1,2-function. Define the process

Z by Z(t) = f(t,Xt). Then Z has a stochastic differential given by

df(t,Xt) =

[
∂f

∂t
+ µ

∂f

∂Xt
+

1

2
σ2 ∂

2f

∂X2
t

]
dt+ σ

∂f

∂Xt
dBt

where B is a Brownian motion.

A complete proof is outside the scope of this text, but it can be found in Björk

(2009). To briefly describe it, the formula can be derived by forming the Taylor series

expansion of the function up to its second derivatives and retaining terms up to first

order in the time increment and second order in the Brownian motion increment.

In general, Itô’s lemma, or formula, is used to find the differential of a time-dependent

function of a stochastic process. Its best known application is in the derivation of the

Black-Scholes equation for option values.

1.5.1 Geometric Brownian Motion

A geometric Brownian motion - GBM -, also known as exponential Brownian motion,

is a continuous-time stochastic process in which the logarithm of the randomly varying

quantity follows a Brownian motion with drift. It is often used in mathematical finance

to model stock prices in the Black-Scholes model. Formally:

Definition 1.13. Let σ > 0 and µ ∈ R. The geometric Brownian motion with

drift parameter µ and volatility parameter σ is the solution to the stochastic differential

equation

dXt = µXtdt+ σXtdBt

where B is a standard Brownian motion.

When X0 > 0, the application of Itô’s lemma to f(t,Xt) = lnXt = Yt gives

df(t,Xt) =

[
∂f

∂t
+ µXt

∂f

∂Xt
+

1

2
σ2X2

t

∂2f

∂X2
t

]
dt+ σXt

∂f

∂X
dBt
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Performing further calculations, one can obtain

dYt =

[
∂Yt
∂t

+ µXt
∂Yt
∂Xt

+
1

2
σ2X2

t

∂2Yt
∂X2

t

]
dt+ σXt

∂Yt
∂X

dBt

=

[
µXt

1

Xt
− 1

2
σ2X2

t

1

X2
t

]
dt+ σXt

1

Xt
dBt

d ln(Xt) =

(
µ− σ2

2

)
dt+ σdBt.

The result shows that the logarithm of a GBM X follows a generalized Brownian mo-

tion with drift parameter
(
µ− σ2/2

)
and scale parameter σ. The geometric Brownian

motion itself is simply the exponential of the non-differentiated process Yt

Xt = X0 exp

{(
µ− σ2

2

)
t+ σBt

}
The process is clearly always positive, and this is one of the main reasons why it has

been so widely adopted to describe financial markets.



Chapter 2

Fractional Brownian Motion

Most real-world problems encountered in financial economics consider Brownian mo-

tion as the source of randomness and uncertainty. It is for example used in the pricing

of options in the popular Black-Scholes-Merton theory.

Despite its common application in numerous situations, empirical evidence has failed

to prove Brownian motion as the source of uncertainty, for two main reasons. First,

several studies have shown that asset return distributions observed in financial mar-

kets do not follow the Gaussian law, since they tend to have a positive excess kurtosis

and heavy tails. Second, time series of return distribution exhibit long-range de-

pendency. To overcome the criticism, several heavy tailed distributions, such as the

stable and Laplace, have been evaluated as possible alternatives in the description of

return distribution and fractional Brownian motion has been introduced to capture

the long-range dependency of financial time series.

2.1 Definition

Fractional Brownian motion, introduced in 1968 by Mandelbrot and Van Ness, is

an extension of Brownian motion obtained by adding one parameter, called Hurst

parameter, which can take on a value between 0 and 1. The parameter takes is name

after the hydrologist Harold Edwin Hurst, who first studied long-range dependence,

documenting and mathematically describing the dependence properties of the water

level of the river Nile.

Definition 2.1. Let H ∈ (0, 1]. A fractional Brownian motion - fBm - with

Hurst parameter H is a continuous Gaussian process BH = (BHt )t≥0 such that:

• BH0 = 0;

• E(BHt ) = 0 ∀t ∈ R+;

• E(BHt B
H
s ) = 1

2 (s2H + t2H − |t− s|2H) ∀s, t ∈ R+.
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Remark 2.1. In order to specify the distribution of a Gaussian process, it is sufficient

to indicate its mean and covariance functions, therefore the distribution of BH is

uniquely determined by Definition (2.1).

It is important to notice that this definition does not guarantee the existence of fBm,

as to show that the fBm exists one needs to check that the covariance function is

non-negative defined. The constraint imposed on H parameter is yet strongly linked

with the existence of the covariance function of the process, as showed and proved in

Nourdin (2012):

Theorem 2.1. Let H > 0 be a real parameter. Then, there exists a continuous

Gaussian process BH = (BHt )t≥0 with covariance function given by

ΓH(s, t) =
1

2
(s2H + t2H − |t− s|2H)

if and only if H ≤ 1.

It can be shown that if H = 1
2 , then the fBm is just a standard Brownian motion. This

property justifies the name ”fractional Brownian motion”: BH is a generalization of

Brownian motion obtained by allowing the Hurst parameter to differ from 1/2.

Figure 2.1: Simulated paths for fBm with different values of the Hurst parameter.
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Figure 2.1 shows different simulated fBm paths we obtained through the use of

specific R packages. In particular, one can see that, when H is close to 0, the process

is characterized by a high number of fluctuations, whereas for values of the parameter

close to 1, the process presents reduced fluctuations. When H = 0.5, the sample paths

are trajectories of a Brownian motion.

There are three different integral representations for an fBm. In particular, assuming

H ∈ (0, 1) and H 6= 1/2:

• the so-called time representation for the process BH = (BHt )t≥0 is given by

BHt =
1

cH

(∫ 0

−∞

(
(t− u)H−

1
2 − (−u)H−

1
2

)
dBu +

∫ t

0

(t− u)H−
1
2 dBu

)
where

cH =

√
1

2H
+

∫ +∞

0

(
(1 + u)H−

1
2 − uH− 1

2

)2

du <∞

and Bu is a standard Brownian motion;

• the spectral representation, also called harmonized representation, for the

process BH = (BHt )t≥0 is given by

BHt =
1

dH

(∫ 0

−∞

1− cos(ut)

|u|H+ 1
2

dBu +

∫ +∞

0

sin(ut)

|u|H+ 1
2

dBu

)
where

dH =

√
2

∫ +∞

0

1− cos(ut)

u2H+1
du <∞

and Bu is a standard Brownian motion;

• the Volterra process is based on

BHt =

∫ t

0

KH(t, s)dBs

where Bs is a standard Brownian motion and KH is a square integrable kernel.

A detailed description of the representations, which goes beyond the scope of this text,

can be found in Nourdin (2012).

Fractional Brownian motion has many really interesting properties, that have been

investigated by researchers in many fields because of their uniqueness.

First of all, the process has stationary increments, i.e. the distribution of the increment

BHt+h−BHt is independent of t for any h. In particular, the increment process is known
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as fractional Gaussian noise - FGN. Moreover, fBm is not a Markovian process

neither a semi-martingale, so the usual Itô stochastic calculus does not apply. Yet, the

two most important properties of fBm are long-range dependence and self-similarity,

and they will be discussed in the next sections.

2.2 Long-range dependency

Long-range dependency - LRD - is a measure of decay of statistical dependency.

From a financial economic prospective, the measure can be an autocorrelation function

of lags of a time series.

Definition 2.2. Let (Xt)t≥0 be a stationary process for which the following holds:

there exists a real number α ∈ (0, 1) and a finite positive constant cρ such that

lim
k→∞

ρ(k)/
[
cρk
−α] = 1. (2.1)

Then (Xt)t≥0 is called a stationary process with long memory (or long range

dependence, or strong dependence), or a stationary process with slowly decaying or

long-range correlations.

Remark 2.2. Definition (2.2) implies that

ρ(k) = Corr(Xt, Xt+k) ' cρk−α

or, in other words, that the correlations ρ(k) are asymptotically equal to a constant

cρ times k−α for some α ∈ (0, 1).

The interpretation of Definition (2.2) is that the dependence between events that are

far apart diminishes very slowly with increasing distance, more specifically slower than

an exponential function.

Hurst parameter H can be obtained from α as H = 1 − α/2. According to this

identity, H itself is a measure of the extent of long-range dependence in a time series.

As we know, H takes on values from 0 to 1, and in particular:

• a value of 0.5 indicates the absence of long-range dependence, as H = 0.5 implies

α = 1 and ρ(k) ' 0 for k →∞;

• a value close to 1 indicates an high persistence or long-range dependence and,

in particular, the higher the value, the stronger the dependence;

• a value of H smaller than 0.5 corresponds to anti-persistency, which indicates

strong negative correlation so that the process fluctuates violently.
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Hence, in term of parameter H, long-range dependency occurs in fBm when H > 1
2 .

In this case, the covariance of the increments decays very slowly, as it can be seen in

Figure 2.2.

Figure 2.2: ACF for simulated fBm with H = 0.8.

It is important to notice that the definition of LRD by (2.1) is an asymptotic defini-

tion. It only tells something about the ultimate behaviour of the correlations as the

lag tends to infinity. Moreover it only determines the rate of convergence but not the

absolute size.

An alternative approach to LRD is the spectral or frequency domain approach.

While the time domain approach to time series analysis originates from mathematical

statistics, the spectral or frequency domain approach has its root in communication

engineering. Whenever a signal fluctuates around a certain stable state we might use

periodic functions to describe its behaviour. Spectral analysis aims at splitting the

total variability of a stationary stochastic process into contributions related to oscil-

lations with a certain frequency. In this context, the fundamental notion of spectral

density needs to be introduced before an analysis can be conducted:

Definition 2.3. The spectral density f(λ) of a function with ACF ρ(k) and variance

σ2 can be defined as

f(λ) =
σ2

2π

∞∑
k=−∞

ρ(k)eikλ

where λ is the frequency, σ2 is the variance of the observations and i =
√
−1. An

alternative definition is given by

f(λ) = 2cf (1− cosλ)

∞∑
j=−∞

|2πj + λ|−2H−1

with λ ∈ [−π, π] and cf = cf (H,σ2) = σ2(2π)−1 sin(πH)Γ(2H + 1).

Loosely speaking, the spectral density within a particular interval of frequencies can

be viewed as the amount of the variance explained by those frequencies. In other

words, it shows at which frequencies variations are strong and at which ones they are
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weak. A deeper analysis is out of the scope of this text, but more information can be

found in Priestley (1981).

If Equation (2.1) holds, then a similar definition can be shown to hold in the

frequency domain. Hence, according to this Definition (2.3), long-range dependency

can be also described as:

Definition 2.4. Let (Xt)t≥0 be a stationary process for which the following holds:

there exist a real number β ∈ (0, 1) and a finite positive constant cf such that

lim
λ→0

f(λ)/
[
cf |λ|−β

]
= 1.

Then (Xt)t≥0 is called a stationary process with long memory.

Remark 2.3. Definition (2.4) implies that

f(λ) ' cf |λ|−β ,

or, in other words, that the spectral density f(λ) has a pole at zero that is equal to a

constant cf times λ−β for some β ∈ (0, 1).

Moreover, it can be shown that the parameter β ∈ (0, 1) is related to the Hurst

parameter by H = (1 + β)/2.

As the spectral density and the ACF are equivalent descriptions of the linear dynamic

properties of a process, knowing the covariances is equivalent to knowing the spectral

density. Hence, definitions (2.2) and (2.4) are equivalent in the following sense:

Theorem 2.2. (1) Suppose (2.2) holds with 0 < α = 2− 2H < 1. Then the spectral

density f exists and

lim
λ→0

f(λ)/
[
cf (H)|λ|1−2H

]
= 1,

where σ2 = V ar(Xt) and cf = σ2π−1cρΓ(2H − 1) sin(π − πH).

(2) Suppose (2.4) holds with 0 < β = 2H − 1 < 1. Then

lim
k→∞

ρ(k)/
[
cρk

2H−2
]

= 1,

where cρ = cγ/σ
2 and cγ = 2cfΓ(2− 2H) sin(πH − 1

2H).

For a proof of Theorem (2.2) see Zygmund (1959).

It is finally possible to recall a fundamental theorem from Beran (1994), which

allows to consider all the correlations together instead of separately. This property

will be used in Chapter 3 to estimate the Hurst parameter.
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Theorem 2.3. Let (Xt)t∈T be a stationary process with long-range dependence. Then

lim
n→∞

V ar

(
n∑
i=1

Xi

)
/
[
cγn

2H
]

=
1

H(2H − 1)
.

Remark 2.4. Theorem (2.3) implies that the variance of the sample mean V ar(X̄n)

is asymptotically equal to a constant cγ times n−α for some α ∈ (0, 1).

2.3 Self-Similarity

Since the LRD property is based on autocorrelation function for large lags, quantifying

this property is sometimes a difficult task. An alternative is represented by the use of

self-similar processes in empirical applications.

Self-similar processes were introduced by Kolmogorov in 1941 in a theoretical context,

but the idea of self-similarity can be attributed to Leonardo da Vinci. In the context

of stochastic processes, self-similarity is defined in terms of the distribution of the

process.

Definition 2.5. The stochastic process (Xt)t≥0 is said to be a self-similar process

if there is a value for H such that for all c > 0 one has

Xct
d
= cHXt (2.2)

i.e. if for any positive stretching factor c, the rescaled process with time scale ct,

c−HXct, is equal in distribution to the original process Xt.

This means that, for any sequence of time points t1, ...tk, and any positive constant c,

c−H(Xct1 , Xct2 , ..., Xctk) has the same distribution as (Xt1 , Xt2 , ..., Xtk).

Remark 2.5. The parameter H is referred to as self-similarity exponent, scaling ex-

ponent, and Hurst exponent.

Suppose that (Xt)t≥0 is a self-similar process with parameter H. By setting c =

1/t, Equation (2.2) can be written as follows:

tHX1
d
= Xt t > 0.

The following limiting behaviour of Xt as t tends to infinity can be inferred:

• if H < 0, then Xt converges in distribution to 0, Xt
d→ 0;

• if H = 0, then Xt
d
= X1;

• if H > 0 and Xt 6= 0, then |Xt|
d→∞.
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Analogously, for t going to 0, we have:

• if H < 0 and Xt 6= 0, then |Xt|
d→∞;

• if H = 0, then Xt
d
= X1;

• if H > 0, then Xt
d→ 0.

If the case Xt ≡ 0 is excluded, then these properties imply that Xt is stationary

only if H = 0, but this exception is not interesting because it indicates that Xt

is equal to X1 for every t with probability 1. For the purpose of modelling data

that look stationary and of explaining the relationship between fBm long-dependency

and self-similarity, only self-similar processes with stationary increments will then be

considered. Therefore the range of H will be restricted to H > 0, as for H < 0 the

process would not be measurable. Furthermore it is supposed that X0 = 0.

To obtain the covariance function γX(t, s) = Cov(Xt, Xs) of a self-similar process Xt

with stationary increments the following properties have to be considered. Assume

E(Xt) = 0 and denote by σ2 the variance of the increments, given by

σ2 = E
[
(Xt −Xt−1)2

]
= E

[
(X1 −X0)2

]
= E

[
X2

1

]
.

Then, for t > s

E
[
(Xt −Xs)

2
]

= E
[
(Xt−s −X0)2

]
= E

[
(Xt−s)

2
]

= E
[
((t− s)HX1)2

]
=

= σ2(t− s)2H .

On the other hand,

E
[
(Xt −Xs)

2
]

= E
[
X2
t

]
+ E

[
X2
s

]
− 2E [XtXs] =

= σ2t2H + σ2s2H − 2γX(t, s).

Hence, matching the two equations, the following expression for the covariance func-

tion is obtained

γX(t, s) =
1

2
σ2
[
t2H − (t− s)2H + s2H

]
Let now Yi = Xi − Xi−1 be the increment at time i, for i ∈ N. The covariances

between two elements of the increment sequence can be calculated as

γY (k) = Cov(Yi, Yi+k) = Cov(Y1, Y1+k)

= Cov(X1 −X0, Xk+1 −Xk) = Cov(X1, Xk+1 −Xk)



CHAPTER 2. FRACTIONAL BROWNIAN MOTION 27

γY (k) = E(X1(Xk+1 −Xk))− E(X1)E(Xk+1 −Xk)

= E(Xk+1X1)− E(XkX1)

= γX(k + 1, 1)− γX(k, 1)

= 1
2σ

2
[
(k + 1)2H − k2H + 12H − k2H + (k − 1)2H − 12H

]
Therefore the following formula is obtained

γY (k) = 1
2σ

2
[
(k + 1)2H − 2k2H + (k − 1)2H

]
for k ≥ 0 and γ(k) = γ(−k) for k < 0

The correlations are then given by

ρ(k) = 1
2

[
(k + 1)2H − 2k2H + (k − 1)2H

]
for k ≥ 0 and γ(k) = γ(−k) for k < 0

The equation can be written as

ρ(k) = 1
2k

2Hg(k−1) where g(x) = (1 + x)2H − 2 + (1− x)2H

The asymptotic behaviour of ρ(k) follows by the Taylor expansion of g(x) at the origin.

More precisely

g(x) = g(0) + g′(0)(x− 0) +
1

2
g′′(0)(x− 0)2 + · · ·

= 2Hx− 2Hx+
1

2
[2H(2H − 1) + 2H(2H − 1)]x2 + · · ·

= 2H(2H − 1)x2 + · · ·

So, if 0 < H < 1 andH 6= 1/2, the first non-negative term of the series is 2H(2H−1)x2.

Hence, as k tends to infinity, ρ(k) is equivalent to H(2H − 1)k2H−2, which implies

that

ρ(k)

H(2H − 1)k2H−2

k→∞−→ 1.

For 1/2 < H < 1, the correlations decay to zero so slowly that the process (Yt)t≥0 has

long memory, according to Definition (2.2). Moreover, the correlations are such that

+∞∑
k=−∞

ρ(k) =∞.

For H = 1/2, all correlations at non-zero lags are zero, which implies that the ob-

servations Yi are uncorrelated. Finally, for 0 < H < 1/2 the process has short-range

memory and the correlations sum up to zero. To conclude, what happens when H ≥ 1

has to be considered. For H = 1, all correlations are equal to 1, no matter how far

apart in time the observations are. For H > 1, the function g(k−1) diverges to infinity

and contradicts the fact that ρ ∈ [−1, 1].
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It can be then inferred that if the increments of a self-similar process are stationary,

then the increments themselves show the property of long-range dependence when

1/2 < H < 1 and fBm is itself an example of a self-similar process with stationary

increments.

Alternatively, in order to better understand the structure of the power law for a

self-similar process the following quantities can be considered

Ft(x) = F1(
x

tH
)

ft(x) =
1

tH
f1(

x

tH
)

where F and f are respectively the cumulative distribution function and the proba-

bility density function of the process Xt.

By setting x = 0, ft is represented by the scaled probability function at time 1

ft(0) =
1

tH
f1(0). (2.3)

Remark 2.6. In general, there are two approaches to check self-similarity. The first

one is based on Equation (2.3) for estimating the Hurst parameter, initially evaluating

ft(0) through an empirical histogram and then using regression for an estimation of H.

The second approach is called the curve fitting method and is based on the comparison

of the aggregation properties of empirical densities.
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Modelling Financial Data

Stochastic modelling is a form of financial modelling that includes one or more random

variables. The purpose of such modelling is to estimate how probable outcomes are

and to forecast the variations of prices and returns on assets and asset classes, such

as bonds and stocks, over time. For example, when used for portfolio evaluation,

various simulations of how a portfolio may perform are developed based on probability

distributions of individual stock returns.

In particular, Brownian motion models for financial markets are based on the work of

Robert C. Merton and Paul A. Samuelson and are concerned with defining the concepts

of financial assets and markets, portfolios, gains and wealth in terms of continuous-

time stochastic processes. Under this models, assets have continuous prices evolving

continuously in time, driven by Brownian motion processes.

3.1 Distribution of Stock Prices and Log Returns

Before presenting various types of stochastic models, it is necessary to introduce the

quantities that will be used in the following sections.

If one assumes that the price of a stock P follows a geometric Brownian motion

dPt = µPtdt+ σPtdBt

then the logarithm of the price follows a generalized Brownian motion

d ln(Pt) =

(
µ− σ2

2

)
dt+ σdBt

where Pt is the price of the stock at time t and B is a Wiener process. Therefore the

change in log price from t to T , ln(PT )− ln(Pt), is normally distributed as

ln(PT )− ln(Pt) ∼ N
[(
µ− σ2

2

)
(T − t), σ2(T − t)

]
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ln

(
PT
Pt

)
∼ N

[(
µ− σ2

2

)
(T − t), σ2(T − t)

]
.

Consequently, conditional on the price Pt at time t, the log price at time T > t is

normally distributed as

ln(PT ) ∼ N
[
ln(Pt) +

(
µ− σ2

2

)
(T − t), σ2(T − t)

]
As shown in Tsay (2015), the conditional mean and variance of PT are

E(PT ) = Pte
µ(T−t)

V ar(PT ) = P 2
t e

2µ(T−t) {exp
[
σ2(T − t)

]
− 1
}

Knowing prices and their distributions, one can calculate the log returns, or continu-

ously compound returns, of an asset as

rT−t = ln

(
PT
Pt

)
= pT − pt

Their distribution is clearly given by

rT−t ∼ N
[(
µ− σ2

2

)
(T − t), σ2(T − t)

]
.

3.2 The Black-Scholes-Mertons Model

The Black-Scholes-Merton, or Black-Scholes, model is a mathematical model, devel-

oped by F.Black and M.Scholes in the late 60s, that provides a closed-form formula for

European call and put options pricing. This model assumes that the market consists

of at least one risky asset, called stock, and one riskless asset, called bond or cash.

The following assumptions have to be made on the assets:

• the rate of return of the riskless asset is constant and equal to r;

• the instantaneous log returns of the stock price follow a geometric Brownian

motion with constant drift and volatility;

• the stock does not pay dividends;

and on the market:

• there is no arbitrage opportunity, i.e. there is no chance to make riskless profit;

• any quantity of cash can be sold and bought at the riskless rate;

• short selling is allowed for every amount of money;

• transactions don’t require any additional cost, i.e. the market is frictionless.



CHAPTER 3. MODELLING FINANCIAL DATA 31

In the hypothesis that the prices of the financial assets at time t, St, satisfy the

following equation, i.e. follow a geometric Brownian motion

dSt = rStdt+ σStdBt,

where r and σ are the risk-free interest rate and the volatility, the stochastic differential

equation of the Black-Scholes model for the pricing of a European option on a non-

dividend paying stock is given by

St = S0 +

∫ t

0

rSudu+

∫ t

0

σSudBu.

Let V (t, St) be the price of a derivative in function of time t and stock price St. With

the application of Itô’s formula, the differential of V (t, St) is obtained as

dV (St, t) =

[
∂V (t, St)

∂t
+ rSt

∂V (t, St)

∂St
+

1

2
σ2S2

t

∂2V (t, St)

∂S2
t

]
dt+ σSt

∂V (t, St)

∂St
dBt.

Then one can consider a certain portfolio, called the delta-hedge portfolio, consisting

of ∂V (t,St)
∂St

shares of the risky asset St and the derivative on that asset. Its value is

φ(t) =
∂V (t, St)

∂St
St − V (t, St)

Calculating the total profit or loss from changes in the values of the holdings over

time and considering the absence of arbitrage, one can derive the partial differential

equation for a European option, called Black-Sholes equation, which is given by

∂V (t, St)

∂t
+ rSt

∂V (t, St)

∂St
+

1

2
σ2S2

t

∂2V (t, St)

∂S2
t

− rV (t, St) = 0. (3.1)

More details about the derivation of the model can be found in Focardi et al. (2017).

Recalling that the value of an option at the time that the option matures, i.e. T , is

C(T, ST ) = max {ST −K, 0} for European call options

P (T, ST ) = max {K − ST , 0} for European put options

Black, Scholes and Merton obtained from Equation (3.1) the following closed-form

formulas for the prices of European call options, C(T, ST ), and European put options,

P (t, St), at time t < T :

C(t, St) = G(d1)St −G(d2)Ke−r(T−t)

P (t, St) = Ke−r(T−t) − St + C(t, St)

= G(−d2)Ke−r(T−t) −G(−d1)St
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where

d1 =
1

σ
√
T − t

[
ln

(
S

K

)
+

(
r +

σ2

2

)
(T − t)

]
d2 = d1 − σ

√
T − t

and where G, S and K are the cumulative distribution of the standard Gaussian dis-

tribution, spot price, and strike price, respectively.

The Black-Scholes model is widely employed as a useful approximation to reality,

but proper applications require an understanding of its limitations. First of all the

Black-Scholes model cannot capture the behaviour of tails and central peaks that have

been noticed for empirical returns distribution. The Black-Scholes equation assumes

a Gaussian distribution for the price changes of the underlying asset, but it has been

observed that asset prices have significant skewness and kurtosis. This means high-risk

downward moves often happen more often in the market than a Gaussian distribution

predicts. Furthermore, in order to be able to use the theory in a real situation, numer-

ical estimates of all the input parameters are needed. In the Black-Scholes model the

input data consists of S,K, r, σ, T and t. Out of these six parameters, S,K, r, T and t

can be observed directly, whereas an estimate of the volatility σ is needed. There are

two basic approaches to find it: historic volatility and implied volatility. Historical

volatility is the realized volatility of the underlying asset over a previous time period.

It is determined by measuring the standard deviation of the underlying asset from the

mean during that time period. This differs from the implied volatility determined

by the Black-Scholes method, as it is based on the actual volatility of the underlying

asset. Implied volatility is a measure of the estimation of the future variability

for the asset underlying the option contract. The value of σ is obtained through the

valuation of a benchmark option by the market.

In both estimation methods, volatility is assumed to be constant, while in reality

it is often varying over time. If one plots implied volatility as a function of the exercise

price, an horizontal straight line should be obtained. Contrary to this, the graph of

the observed implied volatility function often looks like the smile of the Cheshire cat

and for this reason the implied volatility curve is termed the volatility smile. The

main reason for this distortion is the fact that the volatility heavily depends on the

calendar time, the time to maturity and the moneyness of the option.

3.3 Stochastic Volatility Models

Stochastic volatility models - SV models - for options were developed because of

a need to modify the Black-Scholes model for option pricing, as it failed to effectively

take into account the volatility in the price of the underlying asset. In particular,
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models based on Black-Scholes assume that the underlying volatility is constant over

the life of the derivative, and unaffected by the changes in the price level of the

underlying security. Furthermore, these models cannot explain long-observed features

of the implied volatility surface such as volatility smile and skew. By assuming that

the volatility of the underlying price is a stochastic process rather than a constant, it

becomes possible to price derivatives more accurately.

The basic model for SV models is given by

dSt = µStdt+
√
νtStdB

S
t

dνt = αν,tdt+ β0ν,tdB
ν
t

where S, the derivative’s underlying asset price, follows a geometric Brownian motion

BS and νt, the variance function of St, is also driven by a Brownian motion Bν ; BSt
and Bνt are correlated with correlation ρ.

Different specifications of the volatility process are possible. Widely used specifications

are the Hull and White model (1993), the Heston model (1993) and the SABR model

(2002).

Hull and White model Hull and White have proposed an option pricing model

in which the volatility of the underlying asset appears not only time-varying, but also

associated with a specific risk, according to the following paradigm

dSt = µStdt+ σtStdB
S
t (3.2)

d(lnσt) = k(θ − lnσt)dt+ γdBνt (3.3)

where St is the price of the stock, σt is its instantaneous volatility and (BSt , B
ν
t ) is a

standard bivariate Brownian process.

Heston Model The basic Heston model assumes that the randomness of the vari-

ance process varies as the square root of variance:

dSt = µStdt+
√
νtStdB

S
t

dνt = κ(θ − νt)dt+ ξ
√
νtdB

ν
t

where:

• µ is the rate of return of the asset;

• θ is the long variance and the limit, as t tends to infinity, for the expected value

of νt;

• κ is the rate at which νt reverts to θ;

• ξ is the volatility of the volatility and determines the variance of νt.
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In other words, the Heston SV model assumes that the variance is a random process

that exhibits a tendency to revert towards a long-term mean θ at a rate κ, exhibits a

volatility proportional to the square root of its level and whose source of randomness

is correlated with the randomness of the underlying’s price processes.

SABR Model The SABR model, standing for Stochastic Alpha, Beta, Rho, is

specified by the system of SDEs

dSt = σtS
β
t dB

S
t

dσt = ασtdB
ν
t

where σ0 = α > 0, 0 ≤ β ≤ 1, ν ≥ 0, and BS and Bν are Brownian motion with

correlation ρ. The main feature of the SABR model is being able to reproduce the

smile effect of the volatility smile.

For more details about the models see Hull and White (1993), Heston (1993) and

Hagan et al. (2002).

3.4 Fractional SV models

Since empirical studies have shown that the decay of the autocorrelation of volatility

follows a power law, an extension to SV models has been presented. In particular,

in order to respect the evidence of volatility persistence, it was proposed to model

volatility via fractional processes.

The first continuous-time fractional stochastic volatility model - FSV model

- was introduced by Comte and Renault in 1998. With their studies, they were able

to extend the Hull and White SV model to a continuous-time long-memory model, by

replacing the Brownian motion Bν in (4.3) with a fBm BH , considering H restricted

to H ∈ (1/2, 1). The FSV model is then described as

dSt = µStdt+ σtStdB
S
t

d(lnσt) = k(θ − lnσt)dt+ γdBHt .

Under this model, the volatility process is described by a fractional Ornstein-Uhlenbeck

process, that is the standard Ornstein-Uhlenbeck process where the Brownian motion

is replaced by a fractional Brownian motion.

The Ornstein-Uhlenbeck process is a stochastic process that is both a Gaussian

and Markovian process and that allows linear transformations of the space and time

variables. Furthermore, it is a mean-reverting process, which tends to drift towards its

long-term mean. The process can be hence considered to be a modification of the ran-

dom walk in continuous time in which the properties of the process have been changed
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so that there is a tendency of the walk to move back towards a central location, with

a greater attraction when the process is further away from the centre.

In particular, a fractional Ornstein-Uhlenbeck process (Xt)t≥0 is defined as the solu-

tion to the stochastic differential equation

dXt = k(θ −Xt)dt+ γdBHt

where θ ∈ R and γ,k are positive parameters. An explicit solution can be found in

Focardi at al. (2017) and is given by

Xt = γ

∫ t

−∞
e−k(t−s)dBHt + θ. (3.4)

One of the main problems in using fBm is that this kind of model is not arbitrage-

free. In particular, it is know that arbitrage possibilities can be eliminated if and

only if the underlying asset price is a semimartingale, as the semimartingale property

provides the general framework for the theoretical development of arbitrage pricing.

The following theorem holds, proving the possibility of the existence of arbitrage for

fractional Brownian motion.

Theorem 3.1. Let (Bt)t≥0 a stochastic process with Hurst parameter H ∈ (0, 1/2) ∪
(1/2, 1), then the process is not a semimartingale.

For a proof of Theorem (3.1) see Rogers (1997).

3.5 Rough FSV model

An alternative to traditional models was presented in 2014 by Jim Gatheral, Thibault

Jaisson and Mathieu Rosenbaum. Their work gave life to a new generation of stochas-

tic volatility models, as they proved that, in order to be realistic and to better forecast

future behaviours, the driving processes of the model should be considered of short-

memory nature.

Empirically, it has been proven that the distribution of increments of the log-volatility

is close to a Gaussian and that its smoothness is constant in time. This analysis

suggest the following model

log σt+∆ − log σt = ν(BHt+∆ −BHt ) (3.5)

where ν is a positive constant and BH is a fractional Brownian motion with Hurst

parameter equal to the measured smoothness of the volatility. The previous equation
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can be written as

σt = σ exp
{
νBHt

}
where σ is another positive constant. The main issue with the proposed model would

be the fact that it is not stationary, whereas stationarity is required to ensure mathe-

matical tractability. Hence, the final specification of the Rough Fractional Stochas-

tic Volatility model equation for volatility in [0, T ] is

σt = exp {Xt}

where Xt satisfies Equation (3.4) for some γ > 0, k > 0, θ ∈ R and H < 1/2.

Remark 3.1. Taking k � 1/T implies that the dynamics of our process is close to

that of a fBm. Furthermore one can notice that the choice of H < 1/2 permits to

reproduce the observed smoothness of the volatility process. Moreover this constraint

is also coherent with mean-reversion.

It can be demonstrated that the following property holds:

Proposition 3.1. Let q > 0, t > 0, ∆ > 0 and let Xk be defined by (3.4) for some

k > 0. As k tends to zero,

Cov(Xk
t , X

k
t+∆) = V ar(Xk

t )− 1

2
ν∆2H + o(1).

As a consequence, for fixed t, the covariance between Xt and Xt+∆ is linear with

respect to ∆2H . The covariance function of the volatility in the RFSV model is then

obtained as

E(σt+∆σt) = e2E(Xk
t )+2V ar(Xk

t )e−ν
2 ∆2H

2 .

Hence, in the RFSV model, log(E(σt+∆σt)) is linear in ∆2H .

Finally, regarding long-memory existence, this model proves that, although the volatil-

ity may exhibit some form of persistence, it does not present any long-memory in the

classical power law sense.

More details about the concept of this section and the all the proves can be found in

Gatheral et al. (2014).



Chapter 4

The Hurst Parameter

Since ancient times, the Nile River has been known for its characteristic long-term

behaviour, as long periods of dryness were followed by long periods of yearly return-

ing floods. In 1951 the celebrated British hydrologist H.E. Hurst published a paper

entitled, “The Long-Term Storage Capacity of Reservoirs”, in which he investigated

the question of how to regularize the flow of the Nile River so that architects could

construct an appropriately sized reservoir system. The paper dealt specifically with

the modelling of reservoirs, but as it turned out, the results also held for a number of

other natural systems.

In fact, many years later, while investigating the fractal nature of financial markets,

Benoit Mandelbrot came across Hurst’s work and, recognizing the potential therein,

introduced to fractal geometry the term Generalized Hurst Exponent, referring to the

measure of the long-term memory of a time series.

The phenomenon of long memory was observed in applications long before appropriate

stochastic models were known. Several methods have been now introduced to estimate

the long-memory parameter. Despite their different applications and characteristics,

it is extremely important to introduce both heuristic and more theoretical procedure

based on Maximum Likelihood.

4.1 Heuristic methods for H estimation

Several heuristic methods to estimate the long-memory parameter H were suggested,

such as the R/S statistic, the log-log correlogram, the log-log plot of V ar(X̄n) versus

n, least squares regression in the spectral domain and periodogram.

These non-parametric methods are mainly useful as diagnostic tools, and, in particu-

lar, they are adopted to identify an initial estimation of H. They are yet less suitable for

statistical inference, as, for most of these methods, it is not easy to obtain confidence

intervals.
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4.1.1 R/S Statistic

The rescaled range statistic, or R/S statistic, is a statistical measure of the vari-

ability of a time series introduced by the British hydrologist Harold Edwin Hurst in

1951. Its purpose is to provide an assessment on how the apparent variability of a

series changes with the length of the time-period being considered.

The R/S statistic is given by the ratio between the range of the data aggregated over

blocks of length k and the sample standard deviation of the data aggregated at the

same scale. More precisely, let (yt)
N
t=1 be a time series. Its range is defined according

to the following relation

R(ti, k) =

[
max

0≤u≤k
(W (ti, k, u))− min

0≤u≤k
(W (ti, k, u))

]
where W (ti, k, u) is considered equal to

W (ti, k, u) = yti+u − yti − uE(ti, k)

and E(ti, k) is the sample mean with index ti in the interval (ti, ti + k), that is

E(ti, k) =
1

k

ti+k∑
j=ti

yj .

Moreover, the sample standard deviation in the interval (ti, ti + k) is

S(ti, k) =

√√√√1

k

ti+k∑
j=ti

(yj − E(ti, k))2.

Hence, the rescaled range statistic is given by

R

S
(ti, k) =

R(ti, k)

S(ti, k)
∀ti∀k.

The ratio R/S generally behaves like a power law, i.e. E
[
R
S (ti, k)

]
= CkH where C is

a positive, finite constant independent of k. To calculate the estimation of parameter

H, one can consider that

logE
[
R

S
(ti, k)

]
≈ c+H log k.

and plot the logarithm of the size of each series, i.e. k, versus the logarithm of the

rescaled range, in what is called a pox plot. A straight line can then be fitted, that

represents the ultimate behaviour of the data, corresponding to their expected value.

The coefficients can be estimated by least square: the slope of the line gives Ĥ.
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Remark 4.1. For any stationary process with short-range dependence, R/S should

behave asymptotically like a constant times k1/2, so log(R/S) should be scattered

around a straight line with slope 1
2 . On the other hand, for long-memory processes,

R/S behaves like a constant times kH for some H > 1
2 .

One of the problems with this technique, which is common to many Hurst parameter

estimators, is knowing which value of k to consider. For small k short term correla-

tions dominate and the analyses are not valid. For large k then there are few samples

and the value of (R/S)k will not be accurate. Furthermore, the exact distribution of

(R/S)k seems to be difficult to derive and depends on the actual distribution of the

data generating the process.

Two algorithms have been proposed for computing the Hurst parameter: dynamic

blocks R/S Statistic algorithm and static blocks R/S Statistic algorithm. The first

one is usually applied to financial, economic and hydrological time series, whereas the

second one is used in computer engineering. The dynamic blocks R/S Statistic

algorithm partitions the original length N of the time series in blocks of size k,

and computes the R/S Statistic for each block, i.e., obtains R(ti, k), ti = ik and

i = 0, 1, 2, ..., N/k. This procedure is repeated for several blocks size values k. A

log-log plot of R/S Statistic values versus the k values results in an estimate of the

Hurst parameter H. When the algorithm has been implemented, it is really important

to select the cut-offs points, to guarantee the highest accuracy possible. Their values

depend on the data that are considered and on the required accuracy.

4.1.2 Log-log correlograms analysis

Correlograms, i.e. plots of empirical correlations ρ̂(k) against the lag k, are useful

diagnostic plots for short-memory processes, but they can be used even for detecting

long-memory.

As we know, long-memory is characterized by a slow decay of correlations proportional

to k2H−2 for some 1
2 < H < 1. Despite standard correlograms show this behaviour, it

is difficult to tell whether ultimately correlations follow an hyperbolic curve, proving

long-range dependency, or an exponential curve. Furthermore, distinguishing different

values of H results to be complicated, as well as effectively estimating correlations at

big lags.

A more suitable plot to identify long-memory can be obtained by representing log |ρ(k)|
against log k, in what is called a log-log correlogram. In this case, if the asymptotic

decay follows k2H−2, then the points in the graph should be scattered around a straight

line with negative slope approximately equal to 2H − 2. It results that

Ĥ = 1 +
1

2
(slope)
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On the other hand, for short memory processes, the log-log correlogram should show

divergence to −∞ at an exponential rate.

Despite being a useful diagnostic method for very long time series, for relatively short

ones and if H is close to 1/2, it is very difficult to detect long-memory in the data by

looking at the correlogram only.

4.1.3 Aggregate variance technique

An important property of long-memory processes is that the variance of the sample

mean converges slower to zero than n−1 according to the Theorem (2.3), where N is

dimension of the sample. Hence, it can be inferred that V ar(X̄n) ≈ cn2H−2, where

c > 0 and X̄n = 1
n

∑n
t=1Xi.

This consideration allows to introduce the following procedure to estimate H:

1. Let k be an integer. For different values of k in 2 ≤ k ≤ dN/2e and a sufficient

number, mk, of subset of length k, calculate the sample means X̄1(k), .., X̄mk
(k)

and the overall mean

X̂(k) =
1

mk

mk∑
j=1

X̂j(k)

2. For each k, calculate the sample variance of the sample means X̄1(k), .., X̄mk
(k)

s2(k) =
1

mk − 1

mk∑
k=1

(
X̂j(k)− X̂(k)

)2

3. Plot log s2(k) against log(k), in what is called a variance plot, and fit a simple

least square line through the resulting points in the plane.

As well as in log-log correlograms, for large values of k, the points in the plot are

expected to be scattered around a straight line with a negative slope 2H-2. It results

that

Ĥ = 1 +
1

2
(slope).

For short-range dependence or independence among the observations, the slope is

equal to −1.

The problems with this method are clearly the same as for R/S statistic and log-log

correlograms.

4.1.4 Least square regression in spectral domain

In the frequency domain, analysis of time series is merely the analysis of a stationary

process by means of its spectral representation at the origin. So the least square
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regression in the spectral domain exploits Remark (2.3):

f(λ) ' cf |λ|1−2H ,

or equivalently log f(λ) ' log cf + (1− 2H) log |λ|.

An estimator for the spectral density function f(λ) is the periodogram, given by

I(λj) =
1

2πn

∣∣∣∣∣
n∑
t=1

(Xt − X̂n)eitλj

∣∣∣∣∣
2

=
1

2π

n−1∑
k=−(n−1)

γ̂(k)eikλj

where λj = 2πj/n are the Fourier frequencies. In practice, the periodogram is the

sample equivalent of the spectral density in which the covariances γ(k) are replaced

by γ̂(k). As the estimator is asymptotically unbiased the following holds

lim
n→∞

E (I(λ)) = f(λ).

Usually, I(λ) is calculated at the Fourier frequencies λk,n = 2πk/n, for k = 1, .., n∗

where n∗ is the integer part of (n − 1)/2. For long-memory processes, the following

result can be demonstrated:

log I(λk,n) ' log cf + (1− 2H) log λk,n + log ξk (4.1)

where ξk are independent standard exponential random variables. If one defines

yk = log I(λk,n)

xk = log λk,n

β0 = log cf − C β1 = 1− 2H

and the error terms ek = log ξk + C, then (4.1) can be written as

yk = β0 + β1xk + ek.

This is a regression equation with i.i.d. errors ek with zero mean, so the coefficients

β0 and β1 can be estimated by least square regression. The estimation of H is then

Ĥ =
1− β̂1

2

One of the main problems with this method is that LRD, as known, has an asymptotic

definition. So the spectral density is proportional to λ1−2H only in a small neighbour-

hood of zero, but not in the whole interval [−π, π], where the estimation could be

highly biased. A deep analysis on spectral density estimations goes beyond the scope

of the text, but more details can be found in Beran (1994).
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4.1.5 Examples on real data

In the following section a real data example will be presented and the estimation

methods introduced in the chapter will be tested and compared through the use of R.

Figure 4.1 displays the series of daily stock closing prices for Tesla Motors Inc (TSLA),

from 29/06/2010 to 23/06/2017. The data are available on Yahoo Finance.

We will focus on the adjusted close prices because they have been corrected to include

any distributions and corporate actions that occurred at any time prior to the next

day’s open and, for this reason, they are more useful when examining daily returns.

> library(timeSeries)

> TSLA <- read.csv("TSLA.csv", header = T)

> head(TSLA)

Date Open High Low Close Adj.Close Volume

1 2010 -06 -29 19.00 25.00 17.54 23.89 23.89 18766300

2 2010 -06 -30 25.79 30.42 23.30 23.83 23.83 17187100

3 2010 -07 -01 25.00 25.92 20.27 21.96 21.96 8218800

4 2010 -07 -02 23.00 23.10 18.71 19.20 19.20 5139800

5 2010 -07 -06 20.00 20.00 15.83 16.11 16.11 6866900

6 2010 -07 -07 16.40 16.63 14.98 15.80 15.80 6921700

> date <- as.Date(TSLA[, "Date"])

> adj.close <- TSLA[, "Adj.Close"]

> prices <- timeSeries(adj.close , date)

> head(prices)

TSLA

2010 -06 -29 23.89

2010 -06 -30 23.83

2010 -07 -01 21.96

2010 -07 -02 19.20

2010 -07 -06 16.11

2010 -07 -07 15.80

> seriesPlot(prices)

Figure 4.1: TSLA daily close prices.
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When studying the characteristics of financial time series, it is preferable to consider

returns instead on prices, because they are a complete and scale-free summary of the

investment opportunities and because they have more attractive statistical properties.

In particular, we will consider log returns or continuously compound returns, given by

rt = ln
Pt
Pt−1

= pt − pt−1

where Pt is the asset price at time t and pt = lnPt. In R they can be obtained as

> logprices <- log(prices)

> returns <- diff(logprices , 1)

> returns <- removeNA(returns)

> head(returns)

TSLA

2010 -06 -30 -0.002514628

2010 -07 -01 -0.081722720

2010 -07 -02 -0.134312240

2010 -07 -06 -0.175470072

2010 -07 -07 -0.019430319

2010 -07 -08 0.099902553

Alternatively, the function returns can be used

> returns <-returns(prices , methods="continuous")

> head(returns)

TSLA

2010 -06 -30 -0.002514628

2010 -07 -01 -0.081722720

2010 -07 -02 -0.134312240

2010 -07 -06 -0.175470072

2010 -07 -07 -0.019430319

2010 -07 -08 0.099902553

To estimate the value of H one can use different R packages. One of the most com-

plete is the fArma package, which includes many different functions to estimate the

parameter. In particular the R/S Rescaled Range Statistic method estimation can be

obtained with the function rsFit(), defined as follows

rsFit(x, levels = 50, minnpts = 3, cut.off = 10^c(0.7, 2.5),

doplot = FALSE , trace = FALSE , title = NULL)

The arguments of the function are:

• x is the numeric vector of data, an object of class timeSeries, or any other object

which can be transformed into a numeric vector;

• levels is the number of aggregation levels or number of blocks for which the

variances or moments are computed;
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• minnpts is the minimum number of points or blocksize to be used to estimate

the variance or moments at any aggregation level, i.e. k;

• cut.off is a numeric vector with the lower and upper cut-off points for the

estimation, with default values c(0.7, 2.5).

The function can be applied to the time series returns, considering 100 blocks for the

iterations and at least 2 points per each block. Applying the algorithm explained in

Section 4.1.1 one obtains:

> library(fArma)

> RS <- rsFit(returns , levels = 100, minnpts = 2, doplot = T,

trace = F)

> RS

Title:

Hurst Exponent from R/S Method

Call:

rsFit(x = returns , levels = 100, minnpts = 2, doplot = T)

Method:

R/S Method

Hurst Exponent:

H beta

0.5049195 0.5049195

Hurst Exponent Diagnostic:

Estimate Std.Err t-value Pr(>|t|)

X 0.5049195 0.02809711 17.97051 3.392375e-31

Parameter Settings:

n levels minnpts cut.off1 cut.off2

1759 100 2 5 316

The returned estimation of H is 0.5049 and it indicates that the returns of the TSLA

stocks are very close to be truly independent and uncorrelated and that there is no

trend effect in the stock prices.

In Figure 4.2 different values of log(k) versus the corresponding values of log(R/S)

have been plotted. In particular, green points represent those values that resulted in

being out of the cut-off points and that have not been considered for the estimation

of the regression line.
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Figure 4.2: R/S statistic method. H=0.5049.

As explained in the previous sections, an alternative to R/S statistic method is the

aggregate variance method. To apply it to a financial time series, the function

aggvarFit() can be used, which is given by

aggvarFit(x, levels = 50, minnpts = 3, cut.off = 10^c(0.7, 2.5),

doplot = FALSE , trace = FALSE , title = NULL)

The parameters have the same meanings as for rsFit() function.

In particular, considering 100 blocks and at least 2 elements per block, an estimation

of H for the TSLA daily returns is obtained as

> aV <- aggvarFit(returns , levels = 100, minnpts = 2, doplot = T)

> aV

Title:

Hurst Exponent from Aggregated Variances

Call:

aggvarFit(x = returns , levels = 100, minnpts = 2, doplot = T)

Method:

Aggregated Variance Method

Hurst Exponent:

H beta

0.5416380 -0.9167239

Hurst Exponent Diagnostic:

Estimate Std.Err t-value Pr(>|t|)

X 0.541638 0.02265854 23.90437 1.121317e-42

Parameter Settings:

n levels minnpts cut.off1 cut.off2

1759 100 2 5 316
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The estimation of H obtained through this method is slightly different from the one

obtained through the R/S statistic, but in both cases the value of H is close to 0.5,

to indicate the absence of persistence in the data. Figure 4.3 shows the values of the

logarithm of the aggregated variance for every value of the logarithm of k. The green

points resulted in being out of the cut-off points and have not been considered for the

estimation of the regression line.

Figure 4.3: Aggregate variance method. H=0.5416.

4.2 Maximum Likelihood Estimators

In the previous section, an introduction to the main heuristic methods for estimating

H has been presented. These methods are useful as first informal diagnostic tool for

checking the existence of long-memory, but they are not sufficient if an analysis on

short-term properties wants to be conducted and, moreover, they are not suitable for

statistical inference. A possible alternative approach is to use parametric models and

estimate the parameters by maximizing the likelihood. One of the most used methods

is Whittle’s estimator, which assumes a functional form for the spectral density f(λ)

and seeks to minimize parameters based upon specific assumptions on the model.

Suppose that (Xt)t≥0 is a Gaussian stationary process with mean µ and variance σ2,

and, more specifically that X1, .., Xt, .. are the Gaussian independent increments of

a fBm, i.e. fractional Gaussian noises. Moreover assume that Definition (2.2) and

Definition (2.4) hold for 1/2 < H < 1. Let the spectral density f be characterized by

the parameter vector θ = (σ2
ε , H) or, in other words, suppose that the spectral density

comes from a parametric family of densities f(λ) = f(λ; θ) where θ ∈ Θ ⊂ R2. The

following notation will be used:

x = (x1, .., xn)t

Σn(θ) = [γ(j − l)]j,l=1,..,n covariance matrix of x

|Σn| determinant of Σn



CHAPTER 4. THE HURST PARAMETER 47

Furthermore, µ will be considered equal to 0 and (Xt)t≥0 will be assumed to be an

invertible linear process, i.e. it can be described as a linear combination of its past

values. This last condition implies that Xt can be written as

Xt =

∞∑
s=0

b(s)Xt−s + εt (4.2)

Xt =

∞∑
s=0

a(s)εt (4.3)

where εt are uncorrelated random variables with zero mean and variance σ2
ε . Moreover,

the asymptotic behaviours of b(s) and a(s) as k →∞ are given by

b(s) ∼ cbk−H−
1
2 with cb ∈ R+

a(s) ∼ cakH−
1
2 with ca ∈ R+.

Equations (4.2) and (4.3) imply that the new observations Xt depend only on the

past, in a linear way. For more details about equations (4.2) and (4.3) see Beran,

p.103 (1994).

Remark 4.2. The presented method is based on the Gaussian likelihood function,

as it can be characterized by mean and variance only. Through the use of the central

limit theorem, this hypothesis can be carefully extended to other distributions.

Given the observations x1, .., xn one wants now to estimate the unknown parame-

ters in θ = (σ2
ε , H). The joint probability density function, i.e. the density function of

a n-dimensional Gaussian distribution, is associated with the likelihood function and

is given by

L(x; θ) = (2π)−
n
2 |Σn(θ)|−

1
2 e−

1
2x

tΣ−1
n (θ)x.

The log-likelihood function is then obtained as

`(x; θ) = logL(x, θ) = −n
2

log 2π − 1

2
log |Σn(θ)| − 1

2
xtΣ−1

n (θ)x.

The maximum likelihood estimator - MLE - for θ is obtained by maximizing `(x; θ)

with respect to the vector θ. If one defines the bi-dimensional vector

`′(x; θ) =
(

∂
∂σ2

ε
`(x; θ) ∂

∂H `(x; θ)
)t

then the estimator θ̂ is the solution to the system of two equations

`′(x; θ̂) = 0.

In particular, the MLE for H is obtained by maximizing the H-dependent part of the
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log-likelihood function. In general, θ̂ is unbiased as n→∞ and its asymptotic distri-

bution can be computed by looking at the Taylor expansion of `′.

The MLE estimators are clearly more efficient that those studied in the previ-

ous section, but the calculation of the exact MLE poses computational problems, as

the evaluation of the inverse and the determinant of the variance matrix may be nu-

merically unstable and the number of operations needed grows as the square of the

dimension of the dataset. It is therefore necessary to approximate the MLE, to ob-

tain a more computationally efficient procedure. The Whittle’s approximation MLE

is based on Whittle’s approximation for Gaussian processes and can be derived as

follows.

The terms in the log-likelihood function that depend on θ are the determinant of the

covariance matrix log |Σn(θ)| and the quadratic form xtΣ−1
n (θ)x. More specifically:

• log |Σn(θ)| can be replaced by

n(2π)−1

∫ π

−π
log f(λ; θ)dλ, (4.4)

according to Grenander et al. (1958);

• Σ−1
n can be replaced by a matrix whose elements are easier to calculate:

A(θ) = [α(j − l)]j,l=1,..,n (4.5)

where α(j − l) = (2π)−2

∫ π

−π

1

f(λ; θ)
ei(j−l)λdλ, (4.6)

according to Beran, p.109 (1994).

Combining (4.4) and (4.5), the log-likelihood function becomes

`∗(x; θ) = −n
2

log 2π − n

2

1

2π

∫ π

−π
log f(λ; θ)dλ− 1

2
xtA(θ)x

As only the last two terms depend on θ, the Whittle’s approximated MLE is

obtained by minimizing the function

`W (θ) =
1

2π

∫ π

−π
log f(λ; θ)dλ+

xtA(θ)x

n
(4.7)

with respect to θ. This operation is equivalent to solving the system of nonlinear

equations given by

∂

∂θj
`W (θ)|θ=θ̂ = 0 j = 1, 2.

It can be demonstrated that Whittle’s approximated MLE has the same asymptotic

distribution as the exact one, thus it is asymptotically efficient for Gaussian processes.
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Despite being an efficient alternative to exact MLE, Whittle’s approximated MLE

requires the computation of n integrals for each value of θ. To solve this issue, one

can observe that (4.6) can be approximated reasonably well by the Riemann sum

α̃ = 2
1

(2π)2

m∑
j=1

1

f(λj,m)
eikλj,m

2π

m
,

having

λj,m =
2πj

m
for j = 1, ..,m∗

where m∗ is given by the integer part of (m−1)/2. Furthermore, (4.7) can be written

in terms of the periodogram as

`W (θ) =
1

2π

[∫ π

−π
log f(λ; θ)dλ+

∫ π

−π

I(λ)

f(λ)
dλ

]
,

hence Whittle’s approximated MLE can alternatively be obtained by minimizing the

function

˜̀
W (θ) = 2

1

2π

m∗∑
j=1

log(λj,m; θ)
2π

m
+

m∗∑
j=1

I(λj,m)

f(λj,m; θ)

2π

m

 .
Because the periodogram can be calculated by the fast Fourier transformation, ˜̀

W (θ)

can be easily obtained.

4.2.1 Examples on real data

In the following section, as well as for heuristic methods, a real data example will be

presented and the estimation methods introduced in the chapter will be tested and

compared through the use of R.

Through the use of package FGN, one can calculate the exact MLE and the Whittle’s

MLE of H, considering model fitting for fractional Gaussian noises. In particular, the

function of interest, GetFitFGN, has the following specification

GetFitFGN(z, MeanZeroQ = FALSE , algorithm = c("emle", "wmle"),

ciQ = FALSE)

where

• z is a time series data vector;

• MeanZero is an optional argument, whose value is TRUE if the mean is known to

be zero;

• algorithm indicates which estimation has to calculated, where emle stands for

exact MLE and wmle for Whittle’s MLE;
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• ciQ takes values TRUE or FALSE and returns, or not, the 95% confidence interval.

Considering the daily log returns for Tesla Motors Inc, derived in Section 4.1.5, the

exact MLE of H is

> library(FGN)

> emle <- GetFitFGN(as.vector(returns), algorithm = "emle", ciQ =

TRUE)

> emle

$H

[1] 0.5029346

$loglikelihood

[1] 6034.394

$alpha

[1] 0.9941308

$algorithm

[1] "emle"

$ci

[1] 0.4738316 0.5335103

Figure 4.4: Exact MLE. H=0.5029.

The exact MLE of H is equal to 0.5029 and the 95% confidence interval is given by

[0.4738, 0.5335].

On the other hand, the Whittle’s MLE of H is obtained as

> wmle <- GetFitFGN(as.vector(returns), algorithm = "wmle", ciQ =

TRUE)

> wmle
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$H

[1] 0.5025828

$loglikelihood

[1] 15291.9

$alpha

[1] 0.9948344

$algorithm

[1] "wmle"

$ci

[1] 0.4836450 0.5245051

Figure 4.5: Whittle’s MLE. H=0.5025.

The Whittle’s MLE of H is equal to 0.5026, which is very close to the estimation

obtained through the exact method. The 95% confidence interval is [0.4836, 0.5245]

and is more narrow than the first one, to indicate higher accuracy and precision.
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Conclusions

The characteristics of stochastic processes described in this work make them suitable

tools for modelling financial time series. Because of their capability to describe every

kind of financial instruments in different ways, all the models presented are nowadays

widely used and daily improved.

Concerning Hurst parameter estimations, the examples on real data presented in Sec-

tions 4.1.5 and 4.2.1 have allowed us to study and compare the different estimation

procedures. More precisely, the estimations obtained through MLE are more accu-

rate, but still very close to the heuristic values. However, as confidence intervals are

more explanatory than punctual estimations, the first ones are more suitable for fur-

ther analysis on H parameter. Depending on his needs, one can decide whether to use

heuristic or parametric methods (or both), finding a compromise between computation

time and precision.

“Essentially, all models are wrong, but some are useful.”

– George E. P. Box
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Appendix A

R Code

The following chapter explains the basic code and the packages that have been used

to produce the graphs in this work.

Chapter 1

Simulation of a White Noise process.

The arima.sim() function can be used to simulate data from a variety of time series

models. In particular, an ARIMA with all parameters equal to 0 is a WN process.

> WN <- arima.sim(model = list(order = c(0, 0, 0)), n = 500)

> head(WN)

[1] 0.06471903 0.31413574 0.81477864 1.97200008 0.46459139

> plot(WN , col = 3, main = ’WN simulated paths ’)

> acf(WN)

Simulation of a Random Walk process.

As well as for WN, one can consider the arima.sim() function to simulate a model

with order of integration 1, which consists in a Random Walk.

> RW <- arima.sim(model = list(order = c(0,1,0)), n = 500)

> head(RW)

[1] 0.0000000 -0.5672244 -0.7136835 -0.5740660 -3.1056595

> plot(RW ,col = 2, main = ’Simulated Random Walk’)

> acf(RW)
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Chapter 2

Simulation of Fractional Brownian Motions.

The package somebm includes some functions to generate the time series of Brownian

motions. In particular, the function fbm() generates a time series of one dimension

fractional Brownian motion.

> install.packages("somebm")

> library(somebm)

> m1 <- NULL

> for(i in 1:5){

f <- fbm(hurst = 0.3, n = 1000)

m1 <- rbind(m1, f)}

> plot.new()

> plot(m1[1, ], type = "l", ylim = range(min(m1), max(m1)))

> for(i in 2:5){

lines(m1[i, ], col = i)}

> m2 <- NULL

> for(i in 1:5){

f <- fbm(hurst = 0.5, n = 1000)

m2 <- rbind(m2, f)}

> plot.new()

> plot(m2[1, ], type = "l", ylim = range(min(m2), max(m2)))

> for(i in 2:5){

lines(m2[i, ], col = i)}

> m3 <- NULL

> for(i in 1:5){

f <- fbm(hurst = 0.7, n = 1000)

m3 <- rbind(m3, f)}

> plot.new()

> plot(m3[1, ], type = "l", ylim = range(min(m3), max(m3)))

> for(i in 2:5){

lines(m3[i, ], col = i)}



Appendix B

Definition 4.1. A filtration (Ft)t≥0 on a probability space (Ω,F, P ) is an indexed

non-decreasing family of sub-σ-algebras on Ω such that

Ft ⊆ F,∀t ≥ 0

s ≤ t⇒ Fs ⊆ Ft.

Intuitively, Ft represents the available information up to the instance t: more precisely,

Ft includes all the events that have occurred (or not) by time t.

If FXt = σ(Xu, 0 ≤ u ≤ t) is the natural filtration of the process (Xt)t≥0, FXt contains

the history of the process until t.

Definition 4.2. A stochastic process (Xt)t≥0 is said to be adapted to the filtration

(Ft)t≥0 if

σ(Xt) ⊆ Ft ∀t ≥ 0

which means that Xt is an Ft-measurable random variable for each time t ≥ 0.
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