
UNIVERSITÀ DEGLI STUDI DI PADOVA
Dipartimento di Ingegneria dell’Informazione

Corso di Laurea Triennale in Ingegneria dell’Informazione

Tesi di Laurea

Lossless compression of LiDAR frames

Relatore Laureando

prof. Andrea Zanella Davide Peressoni

Correlatori 1167497

dott. Marco Giordani

dott. Paolo Testolina

Anno Accademico 2019/2020

14 Luglio 2020

i

Abstract

LiDARs are sensors which obtain a three-dimensional mapping of the surrounding
environment. In addition to provide accurate localization and mapping information, Li-
DARs can be used in object detection and in autonomous driving. These sensors produce
a large amount of data and so it is necessary to implement compression techniques, espe-
cially if the data has to be processed in real time, e.g., for safety-critical services.

In this thesis two different techniques for LiDAR frame compression were compared
and implemented, 2D- and 3D-oriented. The performance had been analyzed in terms of
compression efficiency, quality of the decompressed frame compared to the original one
and time spent to do the compression. Only lossless compression methods have been
examined, limited to intraframe operations. We demonstrated that, thanks to the form
in which LiDAR frames are saved, compression methods already known like those for
two-dimensional images have given equivalent results, if not better, than those designed
for three-dimensional point clouds.

This thesis also presented some advanced strategies based on spherical coordinates to
improve image-based compression results.

ii

Sommario

I LiDAR sono sensori in grado di ottenere una mappatura tridimensionale dell’am-
biente circostante. In aggiunta, trovano impiego per il riconoscimento di oggetti e nella
guida autonoma. Questi sensori generano una gran mole di dati e pertanto è necessa-
rio adottare delle tecniche di compressione, in particolare nel caso i dati debbano essere
elaborati in tempo reale, ad esempio per servizi safety-critical.

In questa tesi sono state confrontate e implementate due metodologie di compressio-
ne di frame LiDAR: una 2D-, l’altra 3D-oriented. Se ne sono analizzate le prestazioni
in termini di efficienza di compressione, qualità del frame decompresso rispetto all’origi-
nale e velocità di compressione. Si sono presi in esame metodi di compressione lossless
limitandosi a quelli che operano intraframe. Grazie alla forma in cui vengono salvati i
frame LiDAR, i metodi di compressioni già noti per immagini bidimensionali hanno dato
risultati in linea, se non migliori, di quelli pensati per nuvole di punti tridimensionali.

Si sono inoltre cercate delle strategie volte a migliorare i risultati della compres-
sione image-based, utilizzando le coordinate sferiche al posto delle classiche coordinate
cartesiane.

Contents

Contents iii

List of Figures iv

Acronyms v

1 Introduction 1
1.1 Compression importance . 1
1.2 Thesis overview . 2

2 Related Works 3
2.1 PCD and LASzip . 3
2.2 LASComp . 4
2.3 Geometric Methods . 4
2.4 Image Methods . 5
2.5 Further Methods . 6

3 Proposed trials 7
3.1 Data Acquisition . 7
3.2 Geometry-based compression . 9
3.3 Image-based compression . 9

4 Performance Results 13
4.1 Performance metrics . 13
4.2 Geometry-based compression . 14
4.3 Image-based compression . 17
4.4 Comparison . 21

5 Conclusion 25

References 27

List of Figures

3.1 The room during data collection. 8

4.1 Octree savings rates. 15
4.2 Octree Bytes per Point. 15
4.3 Octree compression PSNRs. 16
4.4 Octree compression times. 17
4.5 Image-based cartesian 3 × 1 rates. 17
4.6 Image-based cartesian 1 × 3 rates. 18
4.7 Image-based spherical 3 × 1 rates. 18
4.8 Image-based spherical differences 3 × 1 rates. 19
4.9 Image-based spherical differences 1 × 3 rates. 19
4.10 Image-based compression PSNRs. 20
4.11 Image-based compression times. 22
4.12 Overall Rates. 23
4.13 Overall PSNRs. 23
4.14 Compression time comparison. 24

Acronyms

Bpp Bytes per Point. 13, 19

FOW Field Of View. 11

GPS Global Positioning System. 1

JPEG-LS Lossless JPEG (Joint Photographic Experts Group). 3–5, 9, 18, 20, 21

LiDAR Light Detection and Ranging or Laser Imaging Detection and Ranging. i, ii, 1, 3–7,
9–11, 13, 16, 20, 21, 25

MSE Mean Squared Error. 13

PCD Point Cloud Data. 2, 3

PCL Point Cloud Library. 9, 14–16

PNG Portable Network Graphics. 3–5, 9, 18, 21, 25

PPM Portable Pixmap Format. 9, 18–21, 23

PSNR Peak Signal to Noise Ratio. 3, 6, 10, 13–16, 20, 21, 23, 25

RGB Red Green Blue. 5, 10

SNR Signal to Noise Ratio. 20, 21

TIFF Tagged Image File Format. 4, 5, 9, 18, 21

ZIP Compression using Deflate algorithm. 3, 9

Chapter 1

Introduction

LiDARs (Light Detection and Ranging or Laser Imaging Detection and Ranging) are sen-
sors for three-dimensional environment mapping via distances measuring (ranging), done by
illuminating the target with laser light and measuring the reflection with a sensor.

Differences in laser return times and wavelengths can then be used to make digital 3D
representations of the target. It has terrestrial, airborne, and mobile applications.

LiDARs can map in addition to point positions also the surface reflectance, but, in contrast
to traditional photography, cannot map any color. The peculiarity of the LiDAR is that provides
three-dimensional information, so it is often used along with other bi-dimensional cameras like
the thermal imager.

Today the combination of GPS and airborne LiDAR systems is widely used to monitor
glaciers (this sensor has the ability to reveal the slightest growth or decrease) or to study the
tree coverings of a forest, measuring the foliage density.

However, in the future, a widespread use of the sensor is expected to achieve autonomous
driving in the automotive industry thanks to computer vision and/or object detection tech-
niques [LKK19]. As a matter of fact the information from LiDARs arranged over the car body
is very useful to detect pedestrians, cyclists and other vehicles. In a V2X system the vehicles
share this information in order to extend the visibility field.

This hypothetical scenario is based on the speed of 5G technology [DS17]. The key is that
each vehicle equipped with this sensor will not process the data collected in a local computer.
Rather, it will send them in real-time to a data center from where, once processed, instructions
will be sent back (thanks to the low latency of 5G) to the on-board computer for driving the
vehicle.

1.1 Compression importance
Therefore, in order to avoid buffering problems and reduce the storage costs for this amount of
information, it is important to compress the data generated by the LiDAR sensor as much as
possible before sending it through the 5G network [Mäm+19].

A LiDAR in fact generates many points every second (for example in our tests it generated
about 300 000 point

s , in 1200 RPM configuration).
Another challenge is represented by the real-time compression (to send frames to the data

center and get an immediate response). Therefore the compression must take as short time as

2 CHAPTER 1. INTRODUCTION

possible and cannot be based on future frames, but only on the present one and, possibly, the
past ones.

1.1.1 State of the art
Currently there is not a compression standard for this type of data. However, the most com-
monly used formats are PCD (Point Cloud Data) [Lib11] and LASzip [Ise13]. The performance
of these two solutions will be discussed in Sec. 2.1.

Some developed methods are based on geometric compression (such as octree and triangular
meshes). These methods are described in Sec. 2.3.

Other methods, described in Subsec. 2.4.1, are based on image compression. They usually
give better results than geometric-based methods, as confirmed also by the results (presented
in Sec. 4.3) of the trials proposed in this thesis.

1.1.2 Improvements
Other than implementing already existing imaged-based and geometric-based compression
methods, for this thesis there have been made some improvements in imaged-based compres-
sion. Using spherical coordinates instead of cartesian ones there is a correlation between the
coordinate angles and the point position in the 2D projection. This correlation brings to better
compression results, as we can see in Subsec. 4.3.2.

Furthermore this correlation can be used to make a prediction of the angles. Predicting the
angles allows us to save only the prediction error, and so achieve a better quality, as can be
seen in Subsec. 4.3.2.

1.2 Thesis overview
We will now see in a more detailed way some exiting compression methods (Ch. 2). This
description is followed by and overview of the trials made (Ch. 3) and the obtained results
(Ch. 4).

As said before, some image-based compression methods give better results than the geometric-
based tested. With the improvements proposed the results are beyond enhanced.

Chapter 2

Related Works

In this chapter we will analyze the main existing compression methods for LiDAR point clouds.
The following methods are specifically designed for point clouds, except the image-based ones
which are designed for 2D images, but can be used along with a bi-dimensional projection of
the LiDAR point cloud.

2.1 PCD and LASzip
In the introduction (Ch. 1) the currently most used formats for storing and processing point
clouds has been mentioned. They are the PCD format [Lib11] and LASzip [Ise13].

Now we want to describe these formats and to express considerations on their limits.
First of all, the PCD (Point Cloud Data) is directly supported by Matlab’s Computer Vision

ToolBox and it has two different encoding: ’ascii’ or ’binary’.
Using binary PCD the results are as follows:

Savings Rate [%] Bytes per Point [byte] PSNR [dB]
−104.8 7.10 ∞

PCD is a format that has the advantage of a quick saving time compared to other standards.
It is lossless, as evidenced by the PSNR (Peak Signal to Noise Ratio), but it has a negative
Savings Rate (defined in Sec. 4.1). This implies that it needs more than double the storage
space compared to the original file saved in PCAP. Obviously this is not a good result for a
compression algorithm.

In fact PCD is not a compression algorithm: it saves all the points coordinates, one after
another1.

LASzip is an evolution of the ZIP format2 (lossless), specifically designed to compress point
clouds. It saves the difference between two adjacent points using an entropy encoding, so
LASzip performance depend on the point order.

The results of this method are reported in [Ise13]. They are comparable with those obtained
during our tests, instead of classical ZIP where the overall compression is not very efficient.

Note however that comparing LASZip with Image-based Compression (Ch. 3.3), 2D-oriented
methods based on PNG or JPEG-LS result more effective.

1The coordinates are saved in a table space/row separated with the ’ascii’ encoding.
2The ZIP format usually uses the DEFLATE algorithm, based on Huffman coding [Deu96].

4 CHAPTER 2. RELATED WORKS

2.2 LASComp
Another compression method is LASComp, which is based on predicted coordinates (x, y, z)
of a point from the previous one, and the prediction error is saved with a VLC encoding. The
results (shown in [MŽ11]) are intermediate between the Cartesian and the Spherical compres-
sion obtained by us in PNG, JPEG-LS and TIFF formats. Because LASComp predicts the
coordinates (x, y, z), and then calculates the error between them and the "true" position of the
point.

A similar method will be described in Subsec. 3.3.2, where the error is very small, so
it implies a restricted domain of possible values and therefore the use of an efficient saving
format.

However, the 3.3.2 strategy results better as we have implemented the elevation angle pre-
diction. This prediction is perfect, resulting in the benefit of not having to save any errors,
which obviously implies less storage space.

2.3 Geometric Methods
These methods map LiDAR points into geometrical structures and use the structure proper-
ties to store them efficiently. Since point clouds have a three-dimensional nature, geometric
compression methods are the most common in the literature.

2.3.1 Triangular meshes
The pioneering work of compressing geometrical data was carried out by Taubin and Rossignac
(1998) [TR98], who published a method for compressing triangular meshes. Their algorithm
divided the triangle mesh into triangular strips. The vertices were then arranged according to
their appearances in the triangular strips and coded with a linear prediction schema. In this
way, instead of storing the absolute coordinates, only differences between the predicted and the
actual positions of vertices were stored. Needing a topology, this algorithm cannot be directly
applied to LiDAR datasets.

2.3.2 Octree
The geometric-based algorithms usually use the spatial organization of the points to encode
them in a structure like an Octree in order to reduce the amount of information.

Octrees are an extension of binary trees, useful for partitioning three-dimensional spaces.
Specifically, an octree is a tree in which each internal node has exactly eight children. Each child
represents 1/8 of the parent space (analogously with binary search tree, each level of the space
is half splitted along each axis, therefore in 23 = 8 partitions) [Sam88]. Each point collected by
the LiDAR is represented by the leaf which contains it, so the encoding precision grows with
the growing of the number of levels. [SK06]. However, there is always a quantization error: the
only way to avoid it would be to have unlimited levels, which is impossible.

The geometry-based solution presented in this thesis (Sec. 3.2) is based on octree compres-
sion.

2.4. IMAGE METHODS 5

2.3.3 Other geometrical structures
Another structure similar to the Octree approach is the Voxel Grid (VG). The VG sub-sampling
technique is based on a grid of 3D Voxels. This technique has been traditionally used in the area
of computer graphics to subdivide the input space and reduce the number of points [KB04].
VG algorithm defines a Voxel grid in the 3D space and for each voxel a centroid is chosen as
the representative of all the points that lie on that Voxel (LiDAR compression on Voxel in
[Kam+12]).

Moreover in [SPS12], considering the Voxel as spheres, a fast algorithm was developed.
The use of a structure allows to perform some operations like fast searching of the neighbors,

reduce the amount of points visualized or get a more or less precise representation of the point
cloud. In this case the key point is to find an efficient representation by removing redundancy.

Hence a lossy compression system based on plane extraction which represent the points of
each scene plane as a Delaunay triangulation and a set of points/area information is discussed
in [Mor+14].

2.4 Image Methods
As mentioned, this thesis is based also on the use of classical image compression techniques
and therefore on the conversion from point clouds to two-dimensional images.

This expedient is already used in scientific papers but is quite rare compared with the
geometric one.

In [HN15] mapping a spherical coordinate on to 2D coordinates was deeply analyzed, from
cartographic considerations to equirectangular projection maps and then a compression based
on panoramas was discussed.

An alternative solution can be the one presented in [GK15] based on height map encoding
over a planar (2D) domain as a basis.

Anyway after the conversion process, these methods propose to compress those images by
well-known file formats, like PNG, TIFF and JPEG-LS. These three methods before using a
Huffman-like entropy coding apply a filtering for differential predicting [W3C03]. The value
of each pixel is predicted from the values of previous neighboring pixels (above and left in the
matrix): in such way the compression takes advantage of image continuity and achieves better
results than using a generic compression.

2.4.1 Matrix form
In [Bee19] a different strategy that outperform the previous methods and standards is described.
Although LiDAR data is often visualized as point clouds in a 3D space, it is important to note
that the raw measurement is simply a distance value (at specific angles) and it is no longer
necessary to choose a wise 3D into 2D mapping.

Since LiDAR frames have a matrix form (we will discuss that in Sec. 3.1), it is very easy
to apply the existing algorithms for 2D image compression. In fact 2D images are processed
as one (grayscale) or three (RGB) matrices, therefore seeing the matrix of tuples (x, y, z) given
by the LiDAR like three matrices (one per coordinate) allows us to apply the already existing
algorithms for 2D image compression.

6 CHAPTER 2. RELATED WORKS

Because the matrix form is due to the data collecting method3, there is a strong correlation
between a field content and its position, which grants a value continuity and so a proper
functioning of the image compression algorithms, as can be proved by the results (visible in
Sec. 4.3).

To treat the matrix like an image, it is needed to cast the coordinates from float to unsigned
integers (in our trials it was chosen 16 bits because with 32 bits we have not got any improve-
ment), this causes a data quantization (Subsec. 4.3.2) and so a limited PSNR (not infinite like
in the theoretical lossless), but it is still very high.

Before the casting, the coordinates must be remapped with the Eq. 2.1 in order to reduce
the quantization error on a 16 bits encoding.

img =
⌊︄
(original − ⌊min⌋) ·

⌊︄
216 − 1

max − min

⌋︄⌉︄
(2.1)

where max e min are respectively the maximum and minimum coordinate value in the frame.
The image-based solution presented in this thesis (Sec. 3.3) is based on this method.

2.5 Further Methods
Also there are other interesting methods that we have not considered because they do not
match with the specifications of this research:

1. [CD19]: A bit mask is applied on the raw data packet in order to set to zero the n
least significant bits of each measurement, thus creating repeating zero patterns. A
conventional lossless data compression algorithm is then used to compress the raw data.
This simple method is designed to be used in embedded applications with low available
processing power (compatible with existing processing chains) but it introduces a loss of
accuracy.

2. [Tu+19a]: it uses a neural network for prediction, but this does not guarantee that the
encoding is lossless.

3. [Tu+19b]: it was designed for real-time application, it uses a neural network and also
interframe compression.

4. [Al213]: the distribution of the LiDAR points is approximated in one or more planes
and the further away points are discarded, reducing the storage space for the dataset.
Compression ratios of 17.8% are reported. Since the methods we tested have better
performance, this method was not examined.

3In fact, as we will see in Sec. 3.1, each row corresponds to a beam and each column to a sequential measure.

Chapter 3

Proposed trials

In this thesis are presented the results (visible in Ch. 4) of LiDAR frames compression from
five datasets, using the octree method as geometry-based compression and various strategies
of image-based compression.

In this chapter the datasets creation and the used compression methods will be described.

3.1 Data Acquisition

3.1.1 Datasets
The results presented in this thesis are the outcome of the compression performed on five
different datasets created with the frames acquired from a LiDAR Velodyne VLP-16 (16 beam)
in dual mode1. Three datasets were collected at 600 RPM2, while the other two at 1200 RPM.
For each rotational speed, a dataset was captured both in a static scenario and in a movement
scenario (of people, the LiDAR remained stationary) plus a dataset at 600 RPM. In every
dataset, the LiDAR was located on a table in an internal environment (a small conference
room in the Department of Information Engineer of the University of Padova, which can be
seen in Fig. 3.1) with multiple objects (chairs, table, etc.). In dynamic datasets there are also
people.

Each dataset was saved in PCAP format with the VeloView application, then opened in
Matlab thanks to the velodyneFileReader module and converted in CSV3 to be used in Python
and C++.

Each CSV file represents a frame that is organized in a 16-line matrix (corresponding to
the 16 beams) whose inputs are tuples (x, y, z, i) containing the coordinates and the intensity
of the point detected by that beam, the columns represent the temporal instants of sample
collection.

In the trials the intensity was not taken into consideration as the objective was to compress
only the information relative to the position of the points.

1In dual mode two points are saved for each beam: the nearest and that with the strongest intensity. If the
points coincide only one point is saved.

2Rotations Per Minute. At each rotation of the beams one frame is collected, so 600 RPM means
600 frame/ min or 10 fps.

3One CSV per frame.

8 CHAPTER 3. PROPOSED TRIALS

Figure 3.1: The room during data collection.

3.2. GEOMETRY-BASED COMPRESSION 9

3.1.2 Points Extraction
The Matlab module imports PCAP files produced by LiDAR, and organizes the point cloud
in a tensor whose format is not documented. To the best of our ability we have reconstructed
the possible scheme used to store the data into tensor and an extractor has been implemented
from it.

We have experimentally verified that this scheme allows us to distinguish the dual points 4

from the normal ones and to obtain a final tensor with only valid points.

3.2 Geometry-based compression
In the trials, the PCL (Point Cloud Library) library5 [RC11] has been used to do a geometry-
based compression using octrees (as described in Subsec. 2.3.2).

This library offers 12 different resolution profiles (see Tab. 3.1). Each profile sets the most
suitable number of levels for a fixed resolution. All the profiles were tested.

1. LOW_RES_ONLINE_COMPRESSION_WITHOUT_COLOR 1 cm3 resolution, without color, online fast encode

2. LOW_RES_ONLINE_COMPRESSION_WITH_COLOR 1 cm3 resolution, color, online fast encode

3. MED_RES_ONLINE_COMPRESSION_WITHOUT_COLOR 5 mm3 resolution, without color, online fast encode

4. MED_RES_ONLINE_COMPRESSION_WITH_COLOR 5 mm3 resolution, color, online fast encode

5. HIGH_RES_ONLINE_COMPRESSION_WITHOUT_COLOR 1 mm3 resolution, without color, online fast encode

6. HIGH_RES_ONLINE_COMPRESSION_WITH_COLOR 1 mm3 resolution, color, online fast encode

7. LOW_RES_OFFLINE_COMPRESSION_WITHOUT_COLOR 1 cm3 resolution, without color, offline efficient encode

8. LOW_RES_OFFLINE_COMPRESSION_WITH_COLOR 1 cm3 resolution, color, offline efficient encode

9. MED_RES_OFFLINE_COMPRESSION_WITHOUT_COLOR 5 mm3 resolution, without color, offline efficient encode

10. MED_RES_OFFLINE_COMPRESSION_WITH_COLOR 5 mm3 resolution, color, offline efficient encode

11. HIGH_RES_OFFLINE_COMPRESSION_WITHOUT_COLOR 1 mm3 resolution, without color, offline efficient encode

12. HIGH_RES_OFFLINE_COMPRESSION_WITH_COLOR 1 mm3 resolution, color, offline efficient encode

Table 3.1: List of octree compression profiles.

3.3 Image-based compression
The image-based compressor (in the matrix form presented in Subsec. 2.4.1) has been im-
plemented in Python, using traditional lossless image compression algorithms. The involved
codecs were PNG, TIFF, JPEG-LS, PPM and zipped PPM6. These formats were selected in
order to compare the trial results with those in [Bee19].

4The dual points are those for which a single incident ray sent by LiDAR returns two distinct echoes.
5A C++ library for point clouds management.
6It is the PPM file saved with a ZIP compression.

10 CHAPTER 3. PROPOSED TRIALS

Different strategies had been used to pack LiDAR points into images. Each of them is
presented below.

3.3.1 Cartesian compressions
In the cartesian compression the data is simply packed into one or three images. From the
matrix of tuples (x, y, z) three matrices are extracted: one per coordinate (X, Y and Z). Then
each matrix is remapped (as explained in Subsec. 2.4.1).

Cartesian single-channel compression

The points have been saved in three single-channel images, assigning each coordinate (X, Y
and Z) to the unique channel of the three images.

Cartesian tri-channel compression

The points have been saved in a tri-channel (RGB) image, assigning the X coordinate to channel
R, Y to G and Z to B.

3.3.2 Spherical compressions
As said in Subsec. 1.1.2, some improvements in imaged-based compression have been made.
They are now presented in this subsection.

To achieve better results (visible in Sec. 4.3), the points have been converted into spherical
coordinates7: a radius (ρ) and two angles (elevation θ and azimuth ϕ), using the following
formulas:

ρ =
√︂

x2 + y2 + z2

θ = arctan
√

x2 + y2

z

ϕ = arctan y

x

(3.1)

Real angles

The three spherical coordinated have been saved in three grayscale images.

Angles difference

Trying to take a better advantage from the elevation and azimuth channels, compared to the
previous trial, it has not been saved the absolute angle, but its difference with the value obtained
by a linear interpolation. This allows us to save some space and to raise the PSNR (about
5 dB).

7We will see in Ch. 5 that such conversion is not needed if the compression in implemented on-board, since
LiDARs natively work in spherical coordinates.

3.3. IMAGE-BASED COMPRESSION 11

The elevation and azimuth angles are linearly interpolated from the row and column indexes.
To be more precise, given the LiDAR FOW (Field Of View) (the angle between two outer
beams) and the image shape is N × M , it is possible to estimate azimuth and elevation angles
(in radians) of the point in the i-th row and j-th column of the image:

θ̂ = FOW
2 − i

FOW
N

(3.2)

ϕ̂ = π

2 − j
2π

M
(3.3)

The Eq. 3.2 and 3.3 are linear interpolations. The extreme values are the same of that given
by Matlab library; other environments (or other LiDARs) could organize data in a different
way, however this does not affect the goodness of the linear approximation just described.

To minimize the dispersion and achieve values close to zero, the angle differences had been
remapped in (−π, π].

Chapter 4

Performance Results

Now the trial results will be analyzed: for both methods we will describe the compression
efficiency, the quality of the compression and the time spent to compress. Then this chapter
will be ended by a comparison between geometry-based and image-based compression results.

Before the analysis we will describe the performance metrics used to compare these results.

4.1 Performance metrics
The following metrics have been used to measure the performance of our algorithms:

1. Savings rate: let compr be the size (in bytes) of the compressed dataset and raw be
the size of the raw dataset, which is the PCAP file from the LiDAR. The savings rate is
given by the following formula:

savings rate = 1 − compr
raw (4.1)

2. Bpp (Bytes per Point): let compr be the size (in bytes) of the compressed dataset
and p be the total number of points contained in it. The Bpp is defined by the following
formula:

Bpp = compr
p (4.2)

3. PSNR: the MSE is the mean squared error between two matrices, I and K of equal size,
defined as follows:

MSE(I, K) = 1
m n

m−1∑︂
i=0

n−1∑︂
j=0

[I(i, j) − K(i, j)]2

The PSNR, used to quantitatively evaluate the introduced error, is defined by the follow-
ing formula:

PSNR(I, K) = 20 · log10

⎛⎝ MAXI,K√︂
MSE(I, K)

⎞⎠ (4.3)

where MAXI,K = the maximum value in matrices I and K

14 CHAPTER 4. PERFORMANCE RESULTS

4. Computation time
The compression times had been measured on a machine with Intel Core i5-4210U @
1.70GHz running Linux 5.4.40-1, Python 3.8.2, g++ 9.3.0 and using the library PCL 1.9.
All the trails had been run single-threaded.

For each method we will see the following plots:

1. Compression efficiency
The plots of the Saving rates and Bpp: for each format/profile it is shown the mean on
all the datasets of these metrics.

2. Compression quality
For each strategy/profile it is shown the mean of the PSNR on all the frames from
datasets.

3. Compression time
The plot of the computation time for compression in function of the number of points.
In this times it is not included the time to load a frame because it could be very different
on each scenario (internal or external drive, HDD or SDD, on-board, . . .).

4.2 Geometry-based compression

4.2.1 Compression efficiency
As shown in Fig. 4.1 the octree savings rate decreases with the increasing of resolution1. In
color (even numbered) and without color (odd numbered) profiles the rate is the same, since
there is not any stored information about the point color. Between online (the first six profiles,
which favor encoding speed) and offline (the last six, which favor encoding efficiency) modes
there is only little difference.

The profiles with the best resolution (5, 6, 11 and 12) do not give good results as they save
little more than half space.

According to the saving rates, the bytes required to store a point (Fig. 4.2) increase with
the resolution increasing. They are however limited from 1 to 4 bytes per point.

4.2.2 Compression quality
In order to compare the geometry-based compressor with the image-based one, it was chosen to
use PSNR as quality metric. However, with the octree it is not feasible to use the usual PSNR,
due to the possible merging of two, or more, points. As a matter of fact, if some points are very
close to each other (the distance between them is in the same order of the quantization one),
they are merged in only one point of the octree (and consequently in the final cloud, obtained
after the decompression); this makes not clear how to calculate the MSE (which is required to
evaluate the PSNR).

The solution is to pair each point in the original cloud with the corresponding one in the
final cloud, even if more than one point of the original is matched with the same point of the
final cloud.

1As can be seen in Tab. 3.1, profiles 5, 6, 11 and 12 have the higher resolution, while 1, 2, 7 and 8 the
lowest.

4.2. GEOMETRY-BASED COMPRESSION 15

1 2 3 4 5 6 7 8 9 10 11 12

85.6% 85.6%
79.8% 79.8%

54.3% 54.3%

85.6% 85.6%
80.5%79.83%

53.11%54.3%

Profile

Sa
vi

ng
s

ra
te

[%
]

Figure 4.1: Octree savings rates.

1 2 3 4 5 6 7 8 9 10 11 12

1.16 1.16
1.64 1.64

3.75 3.75

1.16 1.16
1.59 1.64

3.86 3.75

Profile

B
pp

[b
yt

e]

Figure 4.2: Octree Bytes per Point.

Unfortunately, the used library (PCL), does not offer any tool to allow this pairing.
For the implementation, it has been necessary to resort to some approximate methods for

matching the points between the two clouds. These methods do not provide the real PSNR
(like said above), but they can yield a good estimation of it. The trials have been made with
the following two methods:

1. Clouds with unique point: It is not really a pairing method: for each point of the
original cloud a new cloud with only that point is generated, that cloud is compressed
in octree and then decompressed; eventually is evaluated the MSE between the point in
question and the lonely one in the final cloud.

2. Minimum Euclidean distance: Each point from the original cloud is paired with the
point from the final cloud at the minimum Euclidean distance.

16 CHAPTER 4. PERFORMANCE RESULTS

The achieved results are very similar. In Fig. 4.3 are reported the PSNRs obtained with the
second method. Color and without color profiles gave the same results, so we grouped them
into one column.

1, 2 3,4 5, 6 7, 8 9, 10 11, 12

75 dB 75 dB

108 dB

75 dB 76 dB

110 dB

Profile

PS
N

R
[d

B
]

Figure 4.3: Octree compression PSNRs.

As we can see the best results are taken by the profiles 5, 6, 11, 12 but they gave also
the worst result in savings rate. Anyhow all profiles are over 75 dB and so can be considered
lossless.

4.2.3 Compression time
The compression time can be seen in Fig. 4.4. Leaving out the profile 112 (which gives also
the worst savings rate), the color profiles are equally or slightly slower than the corresponding
without color.

In the offline profiles without color the octree is rebuild storing only positions. This should
lead to a higher savings rate since only the hierarchical octree data structure is encoded3. This
rebuilding is very heavy, in particular for profile 11 which has a lot of nodes.

In spite of the name the online fast encode profiles are slower than the corresponding
offline efficient encode ones, because they are intended to be faster on interframe compression4.
Profiles with a higher resolution takes more time to compress data, as expected.

The mean compression time is around 1.19 µs
point which allows to compress 840 336 point

s .
Using profile 11 we can handle 434 622 point

s , so also with the slowest profile we can compress
in real-time5.

2High resolution, offline, without color.
3In the results here presented this is not true, perhaps because the default profiles provided by the PCL

library are optimized for structured-light 3D scanner point clouds and not for LiDAR point clouds.
4The PCL library support differential encoding between subsequent frames, but in this thesis only intraframe

compression methods have been considered.
5As said in Sec. 1.1, in our trials the LiDAR had generated about 300 000 point

s @ 1200 RPM.

4.3. IMAGE-BASED COMPRESSION 17

0 1 2 3 4 5 6 7 8

·107

20

40

60

80

100

120

140

160

180

Points

T
im

es
[s]

Profiles
1
2
3
4
5
6
7
8
9
10
11
12

Figure 4.4: Octree compression times.

4.3 Image-based compression

4.3.1 Compression efficiency
Firstly we can observe that saving three grayscale images gives slightly better results than
saving one tri-channel image, both for cartesian (Fig. 4.5, 4.6) and spherical (Fig. 4.8, 4.9)
methods.

PNG TIFF JPEG-LS PPM PPM-zip

72.7%
67.7%

73.4%

13.6%

64.2%

Sa
vi

ng
s

ra
te

[%
]

PNG TIFF JPEG-LS PPM PPM-zip

1.89
2.24

1.85

6

2.48

B
pp

[b
yt

e]

Figure 4.5: Frame packed in three single-channel images, the first for the X coordinate, the
second for Y and the last for Z.

18 CHAPTER 4. PERFORMANCE RESULTS

PNG TIFF PPM PPM-zip

72.3%
66.8%

13.4%

63.5%

Sa
vi

ng
s

ra
te

[%
]

PNG TIFF PPM PPM-zip

1.91
2.3

6

2.53

B
pp

[b
yt

e]
Figure 4.6: Frame packed in a tri-channel image, where the coordinates XYZ have been saved
in the three color channels.

With savings rates over 65 % for cartesian methods (Fig. 4.6) and over 80 % for spherical
ones (Fig. 4.9) PNG an TIFF give an excellent compression level, and nowadays they are two
of the most common codecs. On the other hand, the JPEG-LS is not much used, but obtains
results comparable with those of PNG and TIFF. Finally PPM is not a compression codec6,
so it gives much worse results compared to the other investigated methods; however its zipped
version obtains results only slightly lower than the other formats.

PNG TIFF JPEG-LS PPM PPM-zip

85.2% 85.5%
78.6%

13.4%

75.8%

Sa
vi

ng
s

ra
te

[%
]

PNG TIFF JPEG-LS PPM PPM-zip

1.02 1
1.48

6

1.68

B
pp

[b
yt

e]

Figure 4.7: Frame packed into three single-channel images, in the first has been saved the
radius, in the second the elevation and in the third the azimuth.

Saving the points using spherical coordinates, instead of cartesian ones, gives better results
in terms of compression (Fig. 4.5 and 4.7).

6PPM uses always 6 B to store a point: 3 coordinates as 16 bit integers.

4.3. IMAGE-BASED COMPRESSION 19

The higher savings rate is due to the elevation angle, which is constant for each beam (every
row in the matrix has the same elevation angle). In fact the Bpp (left out PPM) is around 2⁄3

times that of cartesian method, since only radius and azimuth are stored for each point while
the elevation is stored only for the first column7.

PNG TIFF JPEG-LS PPM PPM-zip

87% 85.6% 85.5%

13.4%

83.9%

Sa
vi

ng
s

ra
te

[%
]

PNG TIFF JPEG-LS PPM PPM-zip

0.91 0.99 1

6

1.12
B

pp
[b

yt
e]

Figure 4.8: Frame packed in three single-channel images, the first containing the radius, the
second the difference between real elevation and its interpolation and the third the difference
between real azimuth and its interpolation.

PNG TIFF PPM PPM-zip

83.7% 81.9%

13.4%

78.6%

Sa
vi

ng
s

ra
te

[%
]

PNG TIFF PPM PPM-zip

1.13 1.25

6

1.49

B
pp

[b
yt

e]

Figure 4.9: Frame packed in a tri-channel image, the first channel containing the radius, the
second the difference between real elevation and its interpolation and the third the difference
between real azimuth and its interpolation.

7This thanks to the differential predicting filter of image compression algorithms (see Sec. 2.4).

20 CHAPTER 4. PERFORMANCE RESULTS

Furthermore saving the difference between angles and their prediction allows to raise a
little the savings rate, in particular for JPEG-LS and zipped PPM, this because the difference
is often null and these codecs work well with zeros.

4.3.2 Compression quality
We can identify the source of errors in quantization: the type of LiDAR generated points is a
single precision floating point; so it is necessary to remap them in the range of 16 bit unsigned
integers and round the result to the nearest integer (Eq. 2.1 in Subsec. 2.4.1).

On the other hand, the codecs used to compress the images, are all lossless, therefore they
do not introduce any loss.

Cartesian Real Diff

106 dB 107 dB 112 dB

PS
N

R
[d

B
]

Spherical

Figure 4.10: Image-based compression PSNRs.

As can be seen in Fig. 4.10, using cartesian coordinates or spherical ones with real angles
leads to similar PSNRs. Instead, saving the differences between real angles and their predic-
tion gives a higher PSNR because the difference is very little8 and so we achieve a smaller
quantization error on the angles.

PSNR values exceed 100 dB for all packing strategies, so this compression method can be
considered lossless.

Quantization error

As said before all the error is due to quantization. There is a way to calculate the theoretical
uniform quantization error via the quantization SNR (Signal to Noise Ratio) Λq [Lau11]:

Λq = 3 Ma

V 2
sat

22b (4.4)

8the difference is null for elevation and in the order of 1 % of the real value for azimuth.

4.4. COMPARISON 21

where Ma = σ2
a +m2

a is the statistical power of the coordinates, Vsat = max−min
2 half of the range

of coordinate values and b the number of bits used in the coding.
The quantization PSNR9 can be estimated from the SNR in this way:

PSNRq
∼= Λq

max2

Ma

(4.5)

Where max is the maximum coordinate value.
In the proposed trials the estimated PSNRq is 107 dB10, which is coherent with the obtained
result (Fig. 4.10).

4.3.3 Compression time
We saw before that in terms of compression saving three grayscale images is better than saving
one tri-channel image; now we can see that this is true also in terms of compression time
(Fig. 4.11).

In terms of compression time PPM is the winner (as it does not compress) despite its low
performance in terms of savings rate, as illustrated in Fig. 4.6; but its zipped version takes the
worst compression time (since it needs the PPM encoding and makes a generic compression).
PNG and TIFF are slightly faster than JPEG-LS.

Saving the points using spherical coordinates, instead of cartesian ones, gives better results
in terms of compression paying only a little increase in compression time (for the coordinate
conversion). Moreover the computation of the difference between angles and predictions does
not lead to significant time increasing, but rather this method takes fewer time than that with
real angles. This could be attributed to the fact that the elevation channel is totally null and
so easy to compress.

Using PNG and TIFF with spherical coordinates, which were the winner methods in com-
pression efficiency, it takes about 177 ns to compress a point, so we can compress around
5 650 000 point

s .
Since the slowest method (zipped PPM with spherical coordinates difference using one tri-

channel image) can compress 1 968 687 point
s , each of the image-based methods here presented

can widely handle a real-time compression.

4.4 Comparison
The results between the various datasets were comparable, as could be expected since intraframe
compression does not involve the adjacent frames. Therefore, there are no differences between
static or dynamic scenarios, also the number of frames per minute does not affect the efficiency
of compression. For this reason only the average results have been shown.

Let’s now compare the results of the geometry-based compressor (which is specific for 3D
point clouds like LiDAR observations) with the most efficient image-based compressors (specif-
ically designed for 2D frames).

In terms of savings rate (Fig. 4.12) the winner is PNG using spherical coordinates with
angles differences, which obtains a savings rate of 87 %. In general all the results of image-
based compression using differential spherical coordinates, except PPM, are the best of all.

9In linear scale.
10Evaluated on the original tensors, so valid for cartesian methods.

22 CHAPTER 4. PERFORMANCE RESULTS

0 2 4 6 8

·107

5

10

15

Points

T
im

es
[s]

PNG
TIFF
PPM

PPM-zip
JPEG-LS

(a) Cartesian. Three single-channel images.

0 2 4 6 8

·107

5

10

15

Points

T
im

es
[s]

PNG
TIFF
PPM

PPM-zip

(b) Cartesian. Tri-channel image.

0 2 4 6 8

·107

5

10

15

20

Points

T
im

es
[s]

PNG
TIFF
PPM

PPM-zip
JPEG-LS

(c) Spherical coordinates with real angles.

0 2 4 6 8

·107

5

10

15

Points

T
im

es
[s]

PNG
TIFF
PPM

PPM-zip
JPEG-LS

(d) Spherical with angle differences. Three single-
channel images.

0 2 4 6 8

·107

5

10

15

20

25

30

35

40

45

Points

T
im

es
[s]

PNG
TIFF
PPM

PPM-zip

(e) Spherical with angle differences. Tri-channel
image.

Figure 4.11: Image-based compression times.

4.4. COMPARISON 23

There are several results over 80 % both in geometry-based and in image-based, excluding
the cartesian methods. Though, leaving out PPM, all the image-based methods deliver better
saving rates than the profiles which offer the highest PSNR among octree.

PNG TIFF JPEG-LS PPM PPM-zip PNG TIFF JPEG-LS PPM PPM-zip PNG TIFF JPEG-LS PPM PPM-zip 1, 2 3, 4 5, 6 7, 8 9, 10 11, 12

72.7%
67.7%

73.4%

13.6%

64.2%

85.2% 85.5%
78.6%

13.4%

75.8%

87% 85.6% 85.5%

13.4%

83.9% 85.6%
79.8%

54.3%

85.6%
79.84%

53.2%

Sa
vi

ng
s

ra
te

[%
]

XYZ (3 single channel img) Spherical real angles Spherical diff (3 single channel img) Octree

Figure 4.12: Overall Rates.

In fact, as we can see in Fig. 4.13, only four profiles achieve a PSNR in the order of that
of image-based algorithms. The winner method is the image-based with differential spherical
coordinates (112 dB), as for savings rate.

While in image-based methods the PSNR grows with the growing of the savings rate, using
octrees the PSNR is lower for higher savings rate.

Cartesian Real Diff 1, 2 3, 4 5, 6 7, 8 9, 10 11, 12

106 dB 107 dB
112 dB

75 dB 75 dB

108 dB

75 dB 76 dB

110 dB

C
om

pr
es

sio
n

PS
N

R
[d

B
]

Image-based Octree

Figure 4.13: Overall PSNRs.

Comparing the compression time we can see that image-based compression is on average
four time faster than geometry-based (Fig. 4.14). So using octree is not a good choice even for
compression time, besides the savings rate / PSNR trade-off.

As said before, using spherical coordinates is slower than using cartesian ones, but the
difference is very small (around 50 ns

point), so it is worth to use spherical coordinates which
achieve better results in terms of savings rate and PSNR.

24 CHAPTER 4. PERFORMANCE RESULTS

0 2 4 6 8

·107

20

40

60

80

100

120

140

160

180

Points

T
im

es
[s]

PNG
TIFF
PPM

PPM-zip
JPEG-LS

(a) Compression time for spherical coordinates
with angle differences saved as three single-channel
images.

0 2 4 6 8

·107

20

40

60

80

100

120

140

160

180

Points

T
im

es
[s]

Profiles
1
2
3
4
5
6
7
8
9
10
11
12

(b) Octree compression time.

Figure 4.14: Compression time comparison.

Chapter 5

Conclusion

In this thesis two different techniques have been implemented to compress point-clouds gen-
erated by a LiDAR sensor. The first one is a transformation of the points within a frame
into two-dimensional pictures and then compressing them via traditional imaging algorithms.
Instead, the second one consists in point cloud codification into a tree structure called octree,
which allows us to save disk space compared to a direct coding.

Compression by images (2D-oriented) leads to better results than compression by octree
(3D-oriented), this fact is explained by the nature of the LiDAR frames which, despite being
clouds of three-dimensional points, are collected by 16 rotating lasers. Hence they are like two-
dimensional images with the projection of the surrounding space; instead of colors, distances
are saved as information.

Very high savings rate were obtained in both algorithms: in particular the image compres-
sion with PNG codec reaches 87 % of Savings Rate, while the octree compression with profiles
1 and 2 reaches 85.6 % of Savings Rate.

In terms of speed the image-based is about 4 times faster than the octree compressor. Image
compression algorithms can be also easily implemented on-board [YVS09; Li+12; Lam+02],
further reducing the compression time. Since LiDAR natively works with spherical coordinates1

implementing the image-based compression with spherical coordinates on-board removes the
task to convert the coordinates.

Furthermore, as PSNR values exceed 100 dB for the image compressor and 75 dB for the
octree compressor, them both can be considered lossless.

A possible future work for improving the obtained results could be using existing video
compression techniques, along with the differential spherical coordinates packing presented in
this thesis. This method should achieve a higher savings rate (since the video compression
operates inter frame) keeping the high PSNR offered by this packing solution.

Another future work could be study if there are some predicting techniques which can be
applied to the radius for the differential spherical coordinates packing strategy.

1The LiDAR measures the radius and knows the elevation from the beam number and the azimuth from its
rotation position.

References

[Al213] T. Al2. “Compression of LiDAR Data Using Spatial Clustering and Optimal Plane-
Fitting”. In: vol. 2 No. 2. 2013, pp. 58–62. doi: 10.4236/ars.2013.22008.

[Bee19] Peter van Beek. “Image-based compression of LiDAR sensor data”. In: Electronic
Imaging (2019). issn: 2470-1173. doi: 10.2352/ISSN.2470-1173.2019.15.AVM-
043.

[CD19] Paul Caillet and Yohan Dupuis. “Efficient LiDAR data compression for embedded
V2I or V2V data handling”. In: 2019. arXiv: 1904.05649 [cs.RO].

[Deu96] L. Peter Deutsch. DEFLATE Compressed Data Format Specification version 1.3.
RFC 1951. May 1996. doi: 10.17487/RFC1951.

[DS17] Ž. Lukač D. Bećirbašić M. Molnar and D. Samardžija. “Video-processing platform
for semi-autonomous driving over 5G networks”. In: 2017 IEEE 7th International
Conference on Consumer Electronics - Berlin (ICCE-Berlin) (2017), pp. 42–46.
doi: 10.1109/ICCE-Berlin.2017.8210584.

[GK15] T. Golla and R. Klein. “Real-time point cloud compression”. In: 2015 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). 2015, pp. 5087–
5092. doi: 10.1109/IROS.2015.7354093.

[HN15] H. Houshiar and A. Nüchter. “3D point cloud compression using conventional im-
age compression for efficient data transmission”. In: 2015 XXV International Con-
ference on Information, Communication and Automation Technologies (ICAT).
2015, pp. 1–8. doi: 10.1109/ICAT.2015.7340499.

[Ise13] Martin Isenburg. “LASzip: lossless compression of LiDAR data”. In: Photogram-
metric Engineering & Remote Sensing 79 (Feb. 2013). doi: 10.14358/PERS.79.
2.209.

[Kam+12] J. Kammerl et al. “Real-time compression of point cloud streams”. In: 2012 IEEE
International Conference on Robotics and Automation. 2012, pp. 778–785. doi:
10.1109/ICRA.2012.6224647.

[KB04] Leif Kobbelt and Mario Botsch. “A survey of point-based techniques in computer
graphics”. In: Computers Graphics 28.6 (2004), pp. 801–814. issn: 0097-8493. doi:
10.1016/j.cag.2004.08.009.

[Lam+02] Catherine Lambert-Nebout et al. “On-board Optical Image Compression for Fu-
ture High Resolution Remote Sensing Systems”. In: Proceedings of SPIE - The
International Society for Optical Engineering 4115 (Sept. 2002). doi: 10.1117/
12.411557.

https://doi.org/10.4236/ars.2013.22008
https://doi.org/10.2352/ISSN.2470-1173.2019.15.AVM-043
https://doi.org/10.2352/ISSN.2470-1173.2019.15.AVM-043
https://arxiv.org/abs/1904.05649
https://doi.org/10.17487/RFC1951
https://doi.org/10.1109/ICCE-Berlin.2017.8210584
https://doi.org/10.1109/IROS.2015.7354093
https://doi.org/10.1109/ICAT.2015.7340499
https://doi.org/10.14358/PERS.79.2.209
https://doi.org/10.14358/PERS.79.2.209
https://doi.org/10.1109/ICRA.2012.6224647
https://doi.org/10.1016/j.cag.2004.08.009
https://doi.org/10.1117/12.411557
https://doi.org/10.1117/12.411557

28 REFERENCES

[Lau11] N. Laurenti. “Sources of Digital Information”. In: Principles of Communications
Networks and Systems. Ed. by N. Benvenuto and M. Zorzi. 2011. Chap. 3.1.6,
pp. 137–196. doi: 10.1002/9781119978589.ch3.

[Li+12] Yunsong Li et al. “FPGA Design of Listless SPIHT for Onboard Image Compres-
sion”. In: Jan. 2012, pp. 67–85. doi: 10.1007/978-1-4614-1183-3_4.

[Lib11] The Point Cloud Library. “The PCD (Point Cloud Data) file format”. In: http:
//www.pointclouds.org/documentation/tutorials/pcd_file_format.php
(2011).

[LKK19] G. H. Lee, K. H. Kwon, and M. Y. Kim. “Ambient Environment Recognition Algo-
rithm Fusing Vision and LiDAR Sensors for Robust Multi-channel V2X System”.
In: 2019 Eleventh International Conference on Ubiquitous and Future Networks
(ICUFN). July 2019, pp. 98–101. doi: 10.1109/ICUFN.2019.8806087.

[Mäm+19] O. Mämmelä et al. “Evaluation of LiDAR Data Processing at the Mobile Network
Edge for Connected Vehicles”. In: 2019 European Conference on Networks and
Communications (EuCNC). June 2019, pp. 83–88. doi: 10.1109/EuCNC.2019.
8802049.

[Mor+14] Vicente Morell et al. “Geometric 3D point cloud compression”. In: Pattern Recog-
nition Letters 50 (2014). Depth Image Analysis, pp. 55–62. issn: 0167-8655. doi:
10.1016/j.patrec.2014.05.016.

[MŽ11] Domen Mongus and Borut Žalik. “Efficient method for lossless LIDAR data com-
pression”. In: International Journal of Remote Sensing (2011). doi: 10.1080/
01431161003698385.

[RC11] Radu Bogdan Rusu and Steve Cousins. “3D is here: Point Cloud Library (PCL)”.
In: IEEE International Conference on Robotics and Automation (ICRA). Shang-
hai, China, May 2011. doi: 10.1109/ICRA.2011.5980567.

[Sam88] Hanan Samet. “An Overview of Quadtrees, Octrees, and Related Hierarchical Data
Structures”. In: Theoretical Foundations of Computer Graphics and CAD. Ed. by
Rae A. Earnshaw. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988, pp. 51–68.
isbn: 978-3-642-83539-1. doi: 10.1007/978-3-642-83539-1_2.

[SK06] Ruwen Schnabel and Reinhard Klein. “Octree-based Point-Cloud Compression”.
In: Eurographics Symposium on Point-Based Graphics (2006). doi: 10 . 2312 /
SPBG/SPBG06/111-120.

[SPS12] J. Smith, G. Petrova, and S. Schaefer. “Encoding normal vectors using optimized
spherical coordinates”. In: Computers Graphics 36.5 (2012). Shape Modeling In-
ternational (SMI) Conference 2012, pp. 360–365. issn: 0097-8493. doi: 10.1016/
j.cag.2012.03.017.

[TR98] Gabriel Taubin and Jarek Rossignac. “Geometric Compression through Topolog-
ical Surgery”. In: ACM Trans. Graph. 17.2 (Apr. 1998), pp. 84–115. issn: 0730-
0301. doi: 10.1145/274363.274365.

[Tu+19a] Chenxi Tu et al. “Point Cloud Compression for 3D LiDAR Sensor using Recurrent
Neural Network with Residual Blocks”. In: May 2019. doi: 10.1109/ICRA.2019.
8794264.

https://doi.org/10.1002/9781119978589.ch3
https://doi.org/10.1007/978-1-4614-1183-3_4
https://web.archive.org/web/20190807094835/http://www.pointclouds.org/documentation/tutorials/pcd_file_format.php
https://web.archive.org/web/20190807094835/http://www.pointclouds.org/documentation/tutorials/pcd_file_format.php
https://doi.org/10.1109/ICUFN.2019.8806087
https://doi.org/10.1109/EuCNC.2019.8802049
https://doi.org/10.1109/EuCNC.2019.8802049
https://doi.org/10.1016/j.patrec.2014.05.016
https://doi.org/10.1080/01431161003698385
https://doi.org/10.1080/01431161003698385
https://doi.org/10.1109/ICRA.2011.5980567
https://doi.org/10.1007/978-3-642-83539-1_2
https://doi.org/10.2312/SPBG/SPBG06/111-120
https://doi.org/10.2312/SPBG/SPBG06/111-120
https://doi.org/10.1016/j.cag.2012.03.017
https://doi.org/10.1016/j.cag.2012.03.017
https://doi.org/10.1145/274363.274365
https://doi.org/10.1109/ICRA.2019.8794264
https://doi.org/10.1109/ICRA.2019.8794264

REFERENCES 29

[Tu+19b] Chenxi Tu et al. “Real-time Streaming Point Cloud Compression for 3D LiDAR
Sensor Using U-net”. In: IEEE Access PP (Aug. 2019), pp. 1–1. doi: 10.1109/
ACCESS.2019.2935253.

[W3C03] W3C. “Portable Network Graphics (PNG) Specification (Second Edition)”. In:
http://www.w3.org/TR/2003/REC-PNG-20031110 (Nov. 2003).

[YVS09] Guoxia Yu, Tanya Vladimirova, and Martin N. Sweeting. “Image compression
systems on board satellites”. In: Acta Astronautica 64.9 (2009), pp. 988–1005.
issn: 0094-5765. doi: 10.1016/j.actaastro.2008.12.006.

https://doi.org/10.1109/ACCESS.2019.2935253
https://doi.org/10.1109/ACCESS.2019.2935253
https://web.archive.org/web/20200602190739/https://www.w3.org/TR/2003/REC-PNG-20031110/
https://doi.org/10.1016/j.actaastro.2008.12.006

	Contents
	List of Figures
	Acronyms
	Introduction
	Compression importance
	Thesis overview

	Related Works
	PCD and LASzip
	LASComp
	Geometric Methods
	Image Methods
	Further Methods

	Proposed trials
	Data Acquisition
	Geometry-based compression
	Image-based compression

	Performance Results
	Performance metrics
	Geometry-based compression
	Image-based compression
	Comparison

	Conclusion
	References

