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Abstract

Recently Wireless Sensor Networks (WSNs) with energy harvesting capabilities are experi-
encing increasing interest with respect to traditional ones, due to their promise of extended
lifetime. In this work we consider three di�erent scenarios with one or two Energy Harvest-
ing Devices (EHDs). In all the cases the main goal is to maximize the long-term average
importance associated with the transmitted data. The devices, at each time instant, have
data of di�erent importance levels to be transmitted, as well as di�erent battery energy
levels.

In the �rst part we consider the case of a pair of devices coordinated by a Central
Controller (CC). Assuming a negligible processing cost in terms of energy, our objective
is to identify low-complexity transmission policies, that achieve good performance with
respect to the optimal one. We numerically show that two policies, namely the Balanced
Policy (BP) and the Heuristic Constrained Energy Independent Policy (HCEIP), despite
being independent of the battery energy levels, achieve near optimal performance in most
cases of interest, and can be easily found with an adaptation to the ambient energy supply.
Moreover, we derive an analitycal approximation of the BP and show that this policy can
be considered as a good lower bound for the performance of the Optimal Policy.

In the second part we analyse the case of two devices, an Energy Harvesting Transmitter
(EHTX) that sends data to an Energy Harvesting Receiver (EHRX). We consider several
scenarios: centralized case, semi-independent case and totally-independent case. In the
last two, we analyze di�erent cases as a function of the quantity of information the devices
have. We �nd that the outage information is essential for the performance of the system.

Finally, we study the case of one EHD with a FIFO data queue. We derive an analytical
su�cient condition for the queue stability and we use this information to design a Low
Complexity Policy (LCP). This is a particular case of Energy Independent Policy (EIP)
and it is easy to implement with the knowledge of the ambient energy supply and the
packets arrival rate. We numerically verify that LCP achieves good performance with
respect to the Optimal Policy.
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Sommario

Recentemente le reti di sensori wireless (WSNs) con capacità di energy harvesting
stanno suscitando crescente interesse rispetto a quelle tradizionali, grazie alla loro capacità
di aumentare la durata operativa della rete. In questa tesi si considerano tre diversi scenari
con uno o due Energy Harvesting Devices (EHDs). In tutti i casi l'obiettivo principale è
massimizzare, in condizioni asintotiche, l'importanza media associata ai dati trasmessi.
I dispositivi in ogni istante temporale possono trasmettere dati di diversa importanza e
possiedono vari livelli d'energia della batteria.

Nella prima parte si considera il caso di una coppia di dispositivi coordinati da un
controllore centrale. Assumendo un costo di elaborazione trascurabile in termini energeti-
ci, l'obiettivo è identi�care strategie di trasmissione a basse complessità che raggiungano
buone prestazioni rispetto a quelle ottime. Si veri�ca numericamente che due strategie,
la Balanced Policy (BP) e la Heuristic Constrained Energy Independent Policy (HCEIP),
indipendentemente dal livello energetico delle batterie, hanno prestazioni quasi ottime in
molti casi d'interesse e possono essere facilmente trovate con un semplice adattamento alla
disponibilità energetica dell'ambiente. Inoltre, si deriva un'approssimazione analitica di
BP e si mostra che questa strategia può essere considerata un buon limite inferiore alle
prestazioni della Optimal Policy.

Il secondo problema consiste nell'analisi del comportamento di una coppia di dispositivi:
un Energy Harvesting Transmitter (EHTX) che trasmette dati a un Energy Harvesting
Receiver (EHRX). Si considerano i diversi scenari di caso centralizzato, semi indipendente
e totalmente indipendente. Negli ultimi due, si analizzano diversi casi in funzione della
quantità dell'informazione che i dispositivi possiedono. Si veri�ca inoltre che l'informazione
di outage è essenziale per le prestazioni del sistema.

In�ne, si studia il caso di un EHD con una coda di dati FIFO. Si deriva una condizione
analitica su�ciente per la stabilità della coda e si utilizza tale informazione per costruire
una strategia di trasmissione a bassa complessità. Questa è un caso particolare di Energy
Independent Policy (EIP) e può essere facilmente implementata conoscendo la probabilità
d'arrivo dei quanti energetici e dei pacchetti. Si veri�ca numericamente che la strategia
ideata ottiene buone prestazioni rispetto a quella ottima.
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Chapter 1

Introduction

Wireless Sensor Networks (WSNs) have been designed to sense the environment using IT
equipment placed in every object in our daily life. Their application �elds span from
area monitoring to industrial processes monitoring and health care monitoring. Moreover,
the devices can be deployed really close to the phenomenon to sense, e.g., in inacces-
sible or disaster areas [1].The reference scenario for this kind of networks is multi-hop,
distributed, autonomous and battery-powered; the sensor nodes have sensing and trans-
mitting/receiving capabilities but they are subject to energy and computational resources
constraints due to their limited power source. Generally, in a WSN, nodes report data
to a particular device called sink, who has higher computational and storage capabilities.
The sink can be considered as a gateway between the WSN and other networks. A node
sends a packet towards the sink when it senses something or if the sink explicitly sends a
query message. Packets can reach the sink through the WSN, with a multi-hop mecha-
nism. This strategy is used in order to reduce the energy expenditure, that is a common
problem in this scenarios. Indeed, in WSNs, reducing the energy cost may greatly reduce
the devices maintenance cost: the nodes are distributed in a wide area or in a complex
environment, therefore it is di�cult to replace their batteries. Thus, di�erently from wired
networks, WSN algorithms have to focus also on power conservation, considering both the
throughput and the energetic constraint. To increase the lifetime of the network, many
strategies are adopted: choosing the best modulation strategy [2], exploiting a duty cycle
mechanism (sleep/listen) [3], reducing the amount of data to transmit [4,5], optimizing the
routing techniques [6, 7] or/and MAC [8] or using an e�cient transmission scheduling [9].
Beyond these, in the last years, the Energy Harvesting mechanism [10], that is the process
of exploiting the ambient energy to power a device, is steadily gaining popularity in deploy-
ments. In nature there are several free source of energy [11, 12], e.g., solar, heat, motion
or electromagnetic, thus this technique was already used for many other reasons [13].

A device with harvesting capabilities is de�ned as an Energy Harvesting Device (EHD).
For an EHD, energy conservation is no longer the main concern. Di�erently from traditional
networks, where the main objective is to minimize a particular metric, e.g., delay [14], with
EHDs the goal is to e�ciently manage the energy gathered from the environment. Intu-
itively, when a �nite battery is available, an EHD should judiciously perform its assigned
task based on its available energy, becoming more �conservative" as its energy supply runs
low to ensure uninterrupted operation, and more �aggressive" when energy is abundant, to
avoid that harvested energy is wasted due to lack of storage space.
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CHAPTER 1. INTRODUCTION

Problems addressed in this thesis

In this work we consider several problems:

1. two EHDs with a Central Controller (CC);

2. an Energy Harvesting Transmitter (EHTX) and Energy Harvesting Receiver (EHRX)
pair;

3. an EHD with a data queue.

In all these problems, we consider system models consisting of EHDs that report data
of varying �importance� levels, with the aim of maximizing the long-term average impor-
tance of the reported data. Practical examples of these scenarios include: a network of
temperature sensing EHDs, where a high temperature measurement can be an indicator
of overheating or �re; a sensor network which routes di�erent priority packets [15]; data
transmission over a fading channel where the EHDs adjust the transmitted redundancy
according to the instantaneous channel realization, in which case the importance level cor-
responds to the instantaneous rate [10]. As in prior works, e.g., see [16], [17] and [18], we
assume a slotted-time system and i.i.d. Bernoulli energy arrivals, where the importance
values follow an arbitrary continuous distribution.

In the �rst problem we consider the centralized case of two EHDs, in which a Central
Controller (CC) allows at most the transmission of one EHD at the same time. CC knows
the battery energy levels and the packet importance levels of each EHD. This approach
can be considered as an upper bound to the decentralized scenario in terms of overall
performance and is a �rst step towards the study of multi-user EHD networks. It was
shown in [17] that, for the class of binary (transmit/no transmit) policies, the optimal
policy dictates the transmission of data with importance above a given threshold, which
is a function of the joint energy levels available at the two EHDs. In this work, using the
structure of the Optimal Policy (OP), we derive di�erent suboptimal policies which are
shown to perform closely to the optimal one. Firstly, we introduce the Energy Indepen-
dent Policy (EIP), i.e., a threshold policy which, on average, transmits with a constant
probability, independent of the battery energy levels. Furthermore, in accordance to the
values of the average energy harvesting rates, we de�ne the Balanced Policy (BP) and the
Heuristic Constrained Energy Independent Policy (HCEIP), that are particular cases of
EIP. These are low-complexity policies, that do not require any optimization to compute
the transmission probabilities. The main implication of these results is that near-optimal
performance can be obtained without precise knowledge of the energy stored in the sensor
batteries at any given time and with a simple adaptation to the ambient energy supply.
Moreover, we �nd an analytical approximation of the BP, numerically showing that this
can be considered as a good analytical lower bound for the Optimal Policy in most cases
of interest. The results of this �rst part were published in [19].

The second problem consists of the study of a system with an EHTX and an EHRX.
We consider several cases:

1. Centralized case: the EHDs are coordinated by a Central Controller. We suppose
that EHTX transmits if and only if EHRX can receive. This is the optimal scenario
because energy is never wasted.

2



2. Semi-Independent case: the EHDs are not coordinated but we assume that if there
are no transmissions, then EHRX does not waste energy listening to the channel.
For example, in a real scenario, EHRX can listen to the channel at the beginning of
a slot and if it does not sense anything, then it goes to sleep for that slot. We make
several assumptions on the amount of information the devices have:

• global knowledge: each EHD knows the energy state of the other one;

• partial knowledge: each EHD knows if the battery of the other device is empty
or not (outage information);

• local knowledge: the EHDs do not have any information about the energy level
of the other device.

3. Totally-Independent case: the EHDs are not coordinated, i.e., they take every action
independently from the other device. Also here the device may have di�erent degrees
of knowledge of the overall energy status as in the previous case.

The last considered problem deals with an EHD with a First In First Out (FIFO)
data queue. Initially we analyze the case of an in�nite data queue and we suppose that
the transmission of a packet requires the expenditure of one energy quantum. We show
that if the average number of packet arrivals is greater than the average number of energy
arrivals, then a policy that makes the queue stable may not exist. Furthermore, we �nd an
analytical stability condition and we use this one to design a Low Complexity Policy (LCP)
(with two variations), that is a particular case of Energy Independent Policy. Finally, we
show that LCP achieves good performance with respect to the Optimal Policy.

In [20] the problem of maximizing the average value of the reported data was addressed,
considering an energy-aware replenishable sensor in a continuous-time system, using policy
iteration to derive the optimal thresholds. A network of energy-limited sensors was studied
in [15], where the objective was the investigation of the relaying of packets of di�erent
priorities, but without focusing on energy harvesting capabilities. [10] studied heuristic
delay-minimizing policies and su�cient stability conditions for an EHD with a data queue.
In addition, [21, 22] dealt with a system model similar to ours, but had the objective of
evaluating the probability of detection of a randomly occurring event, and [23] devoted the
use of RF-energy harvesting to the performance improvement of passive RFID systems. In
[24] and [25] energy harvesting receivers were studied, but the relation with the transmitter
was not considered. Also, in [25] the energy harvest model assumed deterministic energy
quanta arrivals. The Energy Harvesting Transmitter and Energy Harvesting Receiver pair
was analyzed in [26], but without a Markov model and without considering several degrees
of knowledge of the system. [10] dealt with the case of a data queue, but did not consider
a small queue. Also in [27] an EHD with a data queue was treated, but the impact of a
small battery was not examined.

This work is organized as follows. In Chapter 2 we study the two users centralized
case. In Chapter 3 we analyze the EHTX and EHRX case. In Chapter 4 we present the
case of one EHD with a data queue. Chapter 5 concludes the thesis.
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Chapter 2

Two EHDs - Centralized case

2.1 System Model

We analyze the case of two Energy Harvesting Devices (EHDs) that report data to a
common Central Controller (CC). Since our next results are based on the system model
proposed in [17], we report it here for the sake of completeness.

Time is slotted and slot k corresponds to the time interval [k, k + 1), k ∈ N0. Each
device, in every slot k, has a packet to transmit, i.e., its data queue is always nonempty.
We assume that:

• in slot k, the nodes can transmit over the intervals [k, k + δi,k), i ∈ {1, 2}, where
δi,k ∈ (0, 1] are the duty cycles;

• the channel is ideal, i.e., it does not introduce any errors;

• retransmissions are not considered, therefore, if a packet is not transmitted, it is lost;

• since the CC coordinates the two devices, the EHDs cannot transmit simultaneously,
so as to avoid collisions.

We model the energy storage capability of each EHD as a bu�er of size emax,i + 1, i ∈
{1, 2}, where emax,i is the maximum amount of energy that the EHD i can store in its
battery. Each position in the bu�ers can hold one energy quantum and the transmission
of one packet requires the expenditure of one energy quantum. The set of energy levels
of the i-th device is Ei = {0, 1, . . . , emax,i}. The energy status at k + 1 depends upon the
energy state in slot k, the choice of transmitting or not in that slot and the arrival process.
In particular, the following equation holds:1

Ei,k+1 = min{[Ei,k −Qi,k]+ +Bi,k, emax,i}, i ∈ {1, 2}, (2.1)

where {Bi,k} is the arrival process, that models the randomness in the energy that can be
harvested from the environment. {Bi,k} is equal to one if an energy quantum is harvested,
and to zero otherwise. We assume that {Bi,k} is an i.i.d. Bernoulli random arrival process
with mean b̄i ∈ (0, 1] independent over time and across EHDs. Note that we exclude the
case b̄i = 0 because this is the single EHD scenario, already largely studied (e.g., see [16]).

1with the notation [a]+ we indicate max{0, a}
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CHAPTER 2. TWO EHDS - CENTRALIZED CASE

Furthermore, an energy quantum harvested in the slot k can be used only in a time slot
> k.
{Qi,k} is the action process, that represents the amount of energy devoted to the transmis-
sion in the slot k. {Qi,k} is equal to one if a packet is transmitted, zero otherwise. Note
that we adopt a model without collisions, therefore the pair (Q1,k, Q2,k) is always di�erent
from (1, 1).

Since the batteries are �nite, the de�nition of energy outage and energy over�ow can
be introduced:

De�nition 1 (energy outage). In slot k, for EHD i, energy outage occurs if Ei,k = 0.

De�nition 2 (energy over�ow). In slot k, for EHD i, energy over�ow occurs if (Ei,k =
emax,i) ∩ (Bi,k = 1) ∩ (Qi,k = 0).

An EHD is in outage when its battery is empty. In this condition, no transmissions can
be performed, regardless of the importance of the current data packet. Di�erently, energy
over�ow occurs when the battery is fully charged, a device does not transmit any packets
and Bi,k = 1. In this case, the quantum energy is lost, therefore this event may represent
a future lost transmission opportunity.

We introduce the importance value of the current data packet for the EHD i as Vi,k.
We model Vi,k as a continuous random variable with probability density function (pdf)
fVi(vi), vi ≥ 0. We also suppose that {Vi,k} are i.i.d over time and across the two devices.

With the introduced quantities, we de�ne the state of the system

Sk = (E1,k, E2,k, V1,k, V2,k). (2.2)

The assumption of two users can be relaxed in order to consider larger networks, but
would require a higher computational cost. However, conceptually, the step from one to
two users is the most interesting as it introduces access-related problems (contention and
collisions) that do not exist in single-user systems. Furthermore, our model assumes that
the process of harvested energy Bi,k is statistically independent in di�erent time slots.
This is a particular case of the Generalized Markov model described in [28], where Bk
depends on the values of an underlying �scenario� process, which is itself modeled as a
Markov Chain with memory L. In [28], it is shown that di�erent energy sources can be
e�ciently modeled by means of di�erent values of L. In particular, piezoelectric energy is
well described using L = 0, while solar is better characterized by L = 1. In this work, we
use L = 0 to maintain the analysis simpler: the case for L > 0 can be modeled, though
at the price of additional complexity, following an approach similar to [29], and is left for
future study.

2.2 Policy De�nition and General Optimization Problem

We consider a policy µ that, �xed a value of Sk, determines which device transmits at
the time slot k, i.e., µ gives the pair (Q1,k, Q2,k) ∈ Q = {(0, 0), (0, 1), (1, 0)}. Formally, a
policy is a probability measure on the action space Q, parameterized by state Sk: given
Sk = (e1, e2, v1, v2) ∈ E1 × E2 × R+ × R+,2

µ((i, j); e,v) = P(draw i from EHD 1 ∩ draw j from EHD 2|Sk), (i, j) ∈ Q. (2.3)

2in the next, we indicate a pair (a1, a2) with the bold notation �a�
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2.2. POLICY DEFINITION AND GENERAL OPTIMIZATION PROBLEM

For notational simplicity we introduce the following three probabilities:

µ0(e,v) , µ((0, 0); e,v) = P(none transmits|Sk), (2.4)

µ1(e,v) , µ((1, 0); e,v) = P(only EHD 1 transmits|Sk), (2.5)

µ2(e,v) , µ((0, 1); e,v) = P(only EHD 2 transmits|Sk). (2.6)

We de�ne the long-term average reward G, using a policy µ, as:

G(µ,S0) = lim
K→∞

inf
1

K
E

[
K−1∑
k=0

(Q1,kV1,k +Q2,kV2,k|S0)

]
, (2.7)

where:

• S0 = (E1,0, E2,0, V1,0, V2,0) is the initial system state;

• the expectation is taken with respect to {Q1,k, Q2,k, V1,k, V2,k, B1,k, B2,k};

• the policy µ selects Q1,k and Q2,k.

The optimization problem is to determine the optimal policy µ∗ such that:

µ∗ = arg max
µ

{G(µ,S0)}. (2.8)

It can be proved (see [17]), that the optimal policy µ∗ must have a threshold struc-
ture with respect to the importance of the current data packet: a pair of thresholds
(v1,th(e), v2,th(e)) is associated to every pair of joint energy level e. In particular it holds:

µ0(e,v) = 1, if v1 ≤ v1,th(e), v2 ≤ v2,th(e),

µ1(e,v) = 1, if v1 > v1,th(e), v1 − v1,th(e) ≥ v2 − v2,th(e),

µ2(e,v) = 1, if v2 > v2,th(e), v2 − v2,th(e) > v1 − v1,th(e).

(2.9)

Therefore, in the next, we consider only policies with a threshold structure.
We de�ne the marginal transmission probability of the EHD i as:

ηi(e) , EV [µi(e,v)] = P(Qi,k = 1|Ek = e), i ∈ {1, 2}. (2.10)

ηi(e) represents the probability that the device i is the only transmitter given the global
energy status. Note that η1(e) + η2(e) ≤ 1, and in particular we de�ne the probability
that no EHD transmits as:

η0(e) , 1− η1(e)− η2(e). (2.11)

An important point is that, due to the threshold structure of the policy, there is a
one-to-one mapping between µ, vi,th and ηi. Therefore, even if the devices make choices
based upon µ, in the next analysis we deal with η1, η2.

The expected reward can be de�ned as a function of the marginal transmission proba-
bilities pair η , [η1, η2]:

g(η(e)) = E[Q1,kV1,k +Q2,kV2,k|Ek = e]. (2.12)

7



CHAPTER 2. TWO EHDS - CENTRALIZED CASE

Both the policy µ and the transition probabilities of the time-homogeneous Markov
Chain (MC) related to the energy states can be formulated as a function of η. Conse-
quently, if η induces an irreducible Markov Chain, (2.7) does not depend on the initial
state S0, and the long-term average reward given a policy η can be rewritten as

Gη =

emax,1∑
e1=0

emax,2∑
e2=0

πη(e)g(η(e)), (2.13)

where πη(e) is the steady-state probability of being in the energy state e, given a policy
η. Thus, the optimization problem (2.8) can be formulated as:

η∗ = arg max
η

{Gη} (2.14)

and can be solved via standard optimization techniques, like the Policy Iteration Algorithm
(PIA) [30].

2.2.1 Maximization of the Transmission Rate

Until the meaning of Vi,k is not speci�ed, Gη is only a mathematical expression. A practical
important case to study is when Vi,k is the achievable rate by the EHD i in the slot k.
With this assumption, the function Gη becomes the long-term average transmission rate
from the two EHDs to a Receiver (RX) and the problem is to maximize this quantity.

Through Shannon's formula, the transmission rate can be related to the normalized
channel gains H1,k and H2,k and to the average Signal to Noise Ratio (SNR) of the link i
Λi as Vi,k ∝ ln(1 + ΛiHi,k). In particular we assume

Vi,k = ln(1 + ΛiHi,k). (2.15)

We also suppose that H1,k and H2,k are i.i.d. across EHDs and over time and that Hi,k

has pdf fHi(hi) = e−hi , hi > 0, that is an exponential distribution with unit mean. The
total SNR enjoyed by the device i in slot k is ΛiHi,k.

Since we are dealing with threshold policies, we are interested in the threshold value of
Vi,k, that corresponds to a threshold value of Hi,k:

vi,th = ln(1 + Λihi,th)⇔ hi,th =
evi,th − 1

Λi
. (2.16)

As in [17], in the next, we consider Λi � 1 (low SNR regime [10]), therefore the
expression (2.15) becomes:

Vi,k ≈ ΛiHi,k (2.17)

and the marginal transmission probabilities can be written as (see [17]):

η0(e) =
(

1− e−h1,th
)(

1− e−h2,th
)
, (2.18)

η1(e) = e−h1,th
(

1− Λ2

Λ1 + Λ2
e−h2,th

)
, (2.19)

η2(e) = e−h2,th
(

1− Λ1

Λ1 + Λ2
e−h1,th

)
. (2.20)
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2.2. POLICY DEFINITION AND GENERAL OPTIMIZATION PROBLEM

The reward function (2.15) is (we neglect the dependence on the joint energy state e for
notational convenience):

g(η) =
2∑
i=1

Λie
−hi,th(hi,th + 1)− Λ1Λ2

Λ1 + Λ2
e−(h1,th+h2,th)(h1,th + h2,th + 1) (2.21)

In addition, it is possible to derive the channel thresholds h1,th and h2,th as functions of
the marginal probabilities η1 and η2 by performing the inversion of (2.19) and (2.20):

h1,th = ln

(−(η1 + η2)Λ2 + (Λ1 + Λ2)(η1 + 1) + ∆

2(Λ1 + Λ2)η1

)
,

h2,th = ln

(
2Λ2

(η1 + η2)Λ2 + (Λ1 + Λ2)(1− η1)−∆

)
, (2.22)

where

∆=
√

[(η1 + η2)Λ2+(Λ1+Λ2)(1− η1)]2−4Λ2η2(Λ1+Λ2).

2.2.2 De�nition of the Analyzed Policies

The Optimal Policy (OP) dictates the transmission of data with importance above a given
threshold, which is a function of the global system energy status e. In the next, using
the structure of the OP, we derive several suboptimal policies which are shown to perform
close to the optimal one. These are low-complexity policies, that, di�erently from the
OP, do not require any computationally demanding optimization processes to compute
the transmission probabilities. Furthermore, the transmission probabilities do not require
a precise knowledge of the energy stored in the sensor batteries at any given time and they
can be evaluated with a simple adaptation to the ambient energy supply.

• Optimal Policy (OP): the optimal policy that, for each b̄ and emax, identi�es the
values of η(e) maximizing (2.7). This optimization problem requires to determine
approximately 2 · (emax,1 +1)(emax,2 +1) variables. Since a rough optimization would
not be computationally e�cient, the PIA can be used. However, when the batteries
sizes are not small, this process is still costly from a computational point of view.

• Energy Independent Policy (EIP): a policy in which

ηi(e) = ηiχ{ei > 0}, i ∈ {1, 2}, ηi ∈ [0, 1], (2.23)

η1 + η2 ≤ 1, (2.24)

where χ is the indicator function. With this policy, the values of η1(e) and η2(e)
do not depend on the batteries status, provided that they are not empty. This is
interesting because, generally, the devices do not know precisely the state of charge
of the batteries (see [31] and [32]).
In particular, we are interested in the Optimal-EIP (OEIP), that maximizes the
long-term average reward Gη under the constraints (2.23) and (2.24). Note that an
optimization problem should be solved also in this case, but now the variables are
only two, independently from the maximum batteries capability.
Special cases of EIP include:

9



CHAPTER 2. TWO EHDS - CENTRALIZED CASE

� Balanced Policy (BP): a particular case of EIP where

ηi = b̄i, i ∈ {1, 2} (2.25)

and, obviously, it is de�ned only for b̄1 + b̄2 ≤ 1, otherwise the constraint (2.24)
would not be satis�ed. It can be shown that this policy is asymptotically optimal
for large batteries (see [17]). Note that no optimization is required to �nd η.
BP, in each nonzero energy state, �balances� the EHD operations because it
matches the energy consumption rate to the energy harvesting rate.
An approximation of the performance obtained with the BP will be discussed
in Section 2.3.1.

� Constrained Energy Independent Policy (CEIP): a particular case of EIP where

η1 + η2 = 1, (2.26)

min{η1, η2} ≤ min{b̄1, b̄2}. (2.27)

Even if this policy can be de�ned for every value of b̄, we focus on the case
b̄1 + b̄2 > 1, because in the other case we have already de�ned the BP. In
particular, we are interested in the Optimal-CEIP (OCEIP), that maximizes
the long-term average reward Gη under the constraints (2.26) and (2.27). Note
that even in this case an optimization process is required, but the variable to
optimize is only one (η1 or η2) due to the constraint (2.26).

∗ Heuristic Constrained Energy Independent Policy (HCEIP): a particular
case of CEIP. We de�ned this policy only when emax , emax,1 = emax,2. If
we suppose b̄1 ≤ b̄2, we use the following marginal transmission probabili-
ties

η1 =


b̄1 if b̄1 ≤ Ψ1

0.5−Ψ1
Ψ2−Ψ1

(b̄1 −Ψ1) + Ψ1 if Ψ1 < b̄1 < Ψ2

0.5 if b̄1 ≥ Ψ2

,

η2 = 1− η1,

(2.28)

where Ψ1 and Ψ2 are two thresholds that depend upon b̄2 and emax. The
case b̄2 ≤ b̄1 is obtained by symmetry. Note that, for �xed emax and b̄,
the probabilities are immediately determined, without any optimization.
Indeed, the HCEIP was designed in order to achieve the performance of
the OCEIP without a high computational cost. We discuss the HCEIP in
Section 2.4.1.

In Table 2.1 we compare the previous policies, according to the value of b̄1 + b̄2.

Table 2.1: Available policies for di�erent values of b̄1 + b̄2

EH condition Available policies

b̄1 + b̄2 ≤ 1 OP, EIP, BP

b̄1 + b̄2 > 1 OP, EIP, CEIP, HCEIP

10



2.3. BALANCED POLICY

In the next we de�neGP as the long-term average rewardGη under a policy P. Similarly,
η1,P, η2,P and πP (e) are the marginal transmission and the steady-state probabilities under
a policy P.
The following inequalities chains hold:{

GOP ≥ GOEIP ≥ GBP when b̄1 + b̄2 ≤ 1

GOP ≥ GOEIP ≥ GOCEIP ≥ GHCEIP when b̄1 + b̄2 > 1
(2.29)

and in particular we compare the performance of two policies according to the following
metric.

De�nition 3 (reward precision). The reward precision of two policies A and B is de�ned
as:

RB
A ,

GA −GB

GA
(2.30)

Note that:

• if RB
A ≥ 0, then policy A has better performance than policy B;

• if RB
A is close to zero, than the two policies have similar performance.

Thus, policy B is considered a good lower bound for policy A if the two previous conditions
hold, i.e., RB

A & 0.

2.3 Balanced Policy

The Balanced Policy (BP) is a threshold policy where, on average, each device transmits
in all non-zero energy levels with probability bi, i.e.,

ηi,BP(e) = b̄iχ{ei > 0}, i ∈ {1, 2}. (2.31)

Note that, in each non-zero energy state, the BP matches the energy consumption rate
to the energy harvesting rate, thus balancing the EHD operation.

This policy can be considered as a special case of EIP when b̄1 + b̄2 ≤ 1.
Except in some particular cases, an analytical formulation of GBP cannot be computed.

Therefore, in the next, we derive its approximation ĜBP, so as to characterize the perfor-
mance obtained by BP in a closed-form expression.3 Furthermore, we will numerically
show that:

RB̂P
BP & 0, (2.32)

i.e., the B̂P is a good lower bound of the BP. Since we �nd an analytical expression of GB̂P
and GOP ≥ GBP ≥ GB̂P, it is possible to �nd an analytical lower bound to the optimum
reward GOP.

The basic idea, in order to reduce the problem complexity, is to divide the set of energy
states in four classes and force the steady-state probability of all states in the same class
to be equal. With this hypothesis, we solve a reduced system of steady-state equations
and we �nd explicitly the value of the approximate steady-state distribution, from which
the approximate reward function ĜBP can be computed.

3In the next, B̂P refers to the approximate performance of the BP.
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CHAPTER 2. TWO EHDS - CENTRALIZED CASE

2.3.1 Computation of the Approximate Reward Function

To �nd the exact expression of GBP, the steady-state probabilities should be found. This
can be done solving a system of (emax,1 + 1)(emax,2 + 1) equations.

In order to simplify the problem, we introduce the approximate steady-state distribu-
tion π̂BP(e1, e2) that can be found according to the following working assumption:

π̂BP(e1, e2) =


π0, if e1 = 0, e2 = 0,

π1, if e1 > 0, e2 = 0,

π2, if e1 = 0, e2 > 0,

π12, if e1 > 0, e2 > 0

(2.33)

and we �nd the previous values solving the reduced system of equations involving states
(0, 1), (1, 0) and (1, 1) and the normalization equation

∑emax,1

e1=0

∑emax,2

e2=0 π̂BP(e1, e2) = 1. In
Figure 2.1 we represent the considered transmission probabilities with continuous lines.

(0, 0) (0, 1) (0, 2) . . .

(1, 0) (1, 1) (1, 2) . . .

(2, 0) (2, 1) (2, 2) . . .

...
...

...
. . .

Figure 2.1: Sub-graph of the MC of the system. Continuous lines represent the transitions
considered for the computation of the approximate balanced policy.
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2.3. BALANCED POLICY

In particular, we solve the system of the four following equations:

π̂BP(0, 1) =π̂BP(0, 0)p(0,0)→(0,1) + π̂BP(0, 1)p(0,1)→(0,1) + π̂BP(0, 2)p(0,2)→(0,1)+

+π̂BP(1, 0)p(1,0)→(0,1) + π̂BP(1, 1)p(1,1)→(0,1),
(2.34)

π̂BP(1, 0) =π̂BP(0, 0)p(0,0)→(1,0) + π̂BP(0, 1)p(0,1)→(1,0)+

+π̂BP(1, 0)p(1,0)→(1,0) + π̂BP(1, 1)p(1,1)→(1,0)+

+π̂BP(2, 0)p(2,0)→(1,0),

(2.35)

π̂BP(1, 1) =π̂BP(0, 0)p(0,0)→(1,1) + π̂BP(0, 1)p(0,1)→(1,1) + π̂BP(0, 2)p(0,2)→(1,1)+

+π̂BP(1, 0)p(1,0)→(1,1) + π̂BP(1, 1)p(1,1)→(1,1) + π̂BP(1, 2)p(1,2)→(1,1)+

+π̂BP(2, 0)p(2,0)→(1,1) + π̂BP(2, 1)p(2,1)→(1,1),

(2.36)

emax,1∑
e1=0

emax,2∑
e2=0

π̂BP(e1, e2) = 1. (2.37)

It can be easily proved that the solution is:
π0

π1

π2

π12

 =
1

D


1− b̄1 − b̄2 + 2b̄1b̄2

1− b̄2
1− b̄1

1

 , (2.38)

where

D = (emax,1 + 1)(emax,2 + 1)− b̄1(emax,2 + 1)− b̄2(emax,1 + 1) + 2b̄1b̄2. (2.39)

The approximate reward function ĜBP is thus de�ned as:

ĜBP = emax,1π1g1 + emax,2π2g2 + emax,1emax,2π12g12 (2.40)

where we have de�ned g1 , g(b̄1, 0), g2 , g(0, b̄2) and g12 , g(b̄1, b̄2).4

2.3.2 Approximation Accuracy

We introduce the vectors π̂tot and πtot as follow:

π̂tot =


π0

π̂tot
1

π̂tot
2

π̂tot
12

 ,


π0

emax,1π1

emax,2π2

emax,1emax,2π12

 , (2.41)

4We always assume that g(η1, η2) is an increasing function of η1 and η2, therefore gi ≤ g12, i = 1, 2
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CHAPTER 2. TWO EHDS - CENTRALIZED CASE

πtot =


π(0, 0)
πtot

1

πtot
2

πtot
12

 ,


π(0, 0)∑emax,1

e1=1 πBP(e1, 0)∑emax,2

e2=1 πBP(0, e2)∑emax,1

e1=1

∑emax,2

e2=1 πBP(e1, e2)

 . (2.42)

Note that the long-term expected reward and its approximation can be written as:

GBP = πtot
1 g1 + πtot

12 g2 + πtot
12 g12, (2.43)

ĜBP = π̂tot
1 g1 + π̂tot

12 g2 + π̂tot
12 g12, (2.44)

therefore the approximation ĜBP of GBP is accurate if π̂tot is close to πtot. Note that
π̂BP(e1, e2) ≈ πBP(e1, e2) for all e1 and e2 is a su�cient but not necessary condition to
achieve π̂tot ≈ πtot.

We introduce two parameters to evaluate the performance of the approximation:

• quadratic distance D: we compute D as:

D , ‖π̂tot − πtot‖22 = (π0 − π(0, 0))2 +
∑

i∈{e1,e2,e1e2}
(π̂tot
i − πtot

i )2. (2.45)

The approximation is as good as D is close to zero.

• reward precision RB̂P
BP: according to the de�nition (2.30), RB̂P

BP is equal to:

RB̂P
BP ,

GBP − ĜBP

GBP
. (2.46)

The approximation is as good as RB̂P
BP is close to zero. Furthermore, if RB̂P

BP > 0, B̂P
is a lower bound for BP.

In Section 2.6 we present the results of the numerical evaluation, showing that D ≈ 0

and RB̂P
BP & 0.

2.3.3 Properties

We discuss several properties of the function ĜBP as a function of emax,i and b̄i. The
complete expression of ĜBP is:

ĜBP =
emax,1(1− b̄2)g1 + emax,2(1− b̄1)g2 + emax,1emax,2g12

(emax,1 + 1)(emax,2 + 1)− b̄1(emax,2 + 1)− b̄2(emax,1 + 1) + 2b̄1b̄2
. (2.47)

Theorem 1. ĜBP is an increasing function of emax,1 or emax,2.

Proof. Focusing on the �rst case, the goal is to prove that:

ĜBP(emax,1, emax,2) ≤ ĜBP(emax,1 + 1, emax,2). (2.48)

emax,2 can be considered a parameter, therefore the function ĜBP can be rewritten as:

ĜBP =
αemax,1 + β

γemax,1 + δ
, (2.49)

14



2.3. BALANCED POLICY

where α, β, γ and δ do not depend upon emax,1. The previous expression is a hyperbola
in emax,1, and it is an increasing function if the condition αδ ≥ βγ is satis�ed:

αδ − βγ =

((1− b̄2) · g1 + emax,2 · g12)(emax,2 + 1− b̄1(emax,2 + 1)− b̄2 + 2b̄1b̄2)+

− (emax,2 + 1− b̄2)(emax,2 · (1− b̄1) · g2) ≥
≥ ((1− b̄2) · g1 + emax,2 · g12)(emax,2 + 1− b̄1(emax,2 + 1)− b̄2 + b̄1b̄2)+

− (emax,2 + 1− b̄2)emax,2 · (1− b̄1) · g2 =

= (emax,2 + 1− b̄2)(1− b̄1)
(

(1− b̄2) · g1 + emax,2 · g12 − emax,2 · g2

)
= (emax,2 + 1− b̄2)(1− b̄1)

(
(1− b̄2) · g1 + emax,2 · (g12 − g2)

)
≥ 0,

(2.50)

where the last inequality is due to the hypothesis g12 ≥ g2.

Similarly it can be shown that ĜBP is an increasing function of emax,2.

Theorem 2. ĜBP is a convex downward function function of emax,1 or emax,2.

Proof. It is obvious from the previous proof because of ĜBP is a hyperbola.

Proposition 1. When emax,1, emax,2 or both go to in�nity, we obtain:

lim
emax,1→∞

ĜBP =
(1− b̄2) · g1 + emax,2 · g12

emax,2 + 1− b̄2
, (2.51)

lim
emax,2→∞

ĜBP =
(1− b̄1) · g2 + emax,1 · g12

emax,1 + 1− b̄1
, (2.52)

lim
emax,1→∞
emax,2→∞

ĜBP = g12. (2.53)

From the previous equations, it is possible to derive the gap between the asymptotic reward
(when both emax,i → ∞) and the one achieved in a scenario where only a single device i
has a large battery, as g12 − limemax,i→∞ ĜBP. For example, if emax,1 →∞, we have

g12 − lim
emax,1→∞

ĜBP = (1− b̄2)
g12 − g1

emax,2 + 1− b̄2
, (2.54)

which allows us to justify the reward loss in the non symmetric case.

Proposition 2. In Section 2.6, we show that the approximate reward function ĜBP nu-
merically results to be a lower bound for the Balanced Policy. Furthermore, as GBP ≤ GOP

for every parameter choice and, if b̄1+b̄2 ≤ 1, GOP ≤ g12 (see [17]), the following inequality
chain holds:

ĜBP ≤ GBP ≤ GOP ≤ g12, (2.55)

i.e., ĜBP can be used as an analytical lower bound for the optimal reward GOP.
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2.4 Constrained Energy Independent Policy

In this Section we focus on the case b̄1 + b̄2 > 1. With this constraint, the following policies
can be de�ned: OP, EIP with its optimized version OEIP, CEIP with its optimized version
OCEIP and, lastly, HCEIP.

Note that if b̄1 + b̄2 > 1 a BP where η1 = b̄1 and η2 = b̄2 cannot be de�ned, otherwise
η1 + η2 > 1, which would be infeasible. Therefore, we must have:

η1 + η2 < b̄1 + b̄2 (2.56)

and the choice of the marginal transmission probabilities is not obvious.

An EIP is a threshold policy where, on average, each device transmits in all non-zero
energy levels with probability ηi,EIP, i.e.,

ηi,EIP(e) = ηi,EIPχ{ei > 0}, i ∈ {1, 2} (2.57)

and the CEIP is a particular case of EIP where we add two constraints:

ηi,CEIP(e) = ηi,CEIPχ{ei > 0}, i ∈ {1, 2}
η1,CEIP + η2,CEIP = 1,

min{η1,CEIP, η2,CEIP} ≤ min{b̄1, b̄2}.
(2.58)

The �rst one means that η0,CEIP is forced to be zero, i.e., if it is possible, there is always
a transmission. The second constraint will be useful to design the HCEIP described next.

Note that, with the proposed formulation, the CEIP can be de�ned for each pair (b̄1, b̄2),
but we focus on the case b̄1 + b̄2 > 1, as, if b̄1 + b̄2 ≤ 1, the simpler Balanced Policy already
achieves good performance.

It can be numerically shown (see example 2) that the Optimal-CEIP behaves di�er-
ently from the Optimal-EIP, i.e., ηi,OCEIP 6= ηi,OEIP. However, due to the �rst constraint
η1,CEIP + η2,CEIP = 1, the CEIP has the peculiarity of allowing to reduce the number of
the variables from two to one. Therefore, to compute the OCEIP, only one parameter
needs to be optimized. Even if the optimization in one or two variables is not so much
di�erent from a computational point of view, we use this result to de�ne the Heuristic
Constrained Energy Independent Policy, whose marginal transmission probabilities are an
approximation of the OCEIP's ones.

2.4.1 Heuristic Constrained Energy Independent Policy

The Heuristic Constrained Energy Independent Policy (HCEIP) is a particular case of
CEIP. It is interesting because:

• for a given set of b̄1, b̄2, emax,1 and emax,2, it provides the values of η1,HCEIP and
η2,HCEIP with no optimization needed;

• it achieves near optimal performance among the CEIPs, i.e., GHCEIP . GOCEIP.

We consider only the case emax,1 = emax,2 , emax, leaving the asymmetric case as future
work.
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The design of the HCEIP is based on the analysis of the marginal transmission proba-
bilities of the OCEIP. In particular we approximate η1,OCEIP and η2,OCEIP with η1,HCEIP

and η2,HCEIP respectively, which are simple functions of the system parameters.
In the next we assume b̄2 ≤ b̄1, because the other case can be found by symmetry. The

behaviour of η2,OCEIP as a function of b̄2 can be divided in three regions:

1. a �rst linear zone with slope equal to one:

η2,OCEIP = b̄2; (2.59)

2. a second non-linear part:

η2,OCEIP = f(b̄2); (2.60)

3. a last constant zone:

η2,OCEIP = 0.5, (2.61)

where we recall that η1,OCEIP = 1− η2,OCEIP.
We de�ne the two thresholds that divide the three regions as Ψ1 and Ψ2 (with Ψ1 < Ψ2)

(see Figure 2.2).

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Ψ
1

Ψ
2

 

 

b̄2

η 2

η2,HCEIP

η2,OCEIP

linear zone non− linear zone constant zone

Figure 2.2: η2,HCEIP and η2,OCEIP as a function of b̄2 in the range [0.02, 1] with b̄1 = 0.98
and emax = 6

Given Ψ1 and Ψ2 for each b̄1 and emax, we deduce η2,HCEIP as a function of these
thresholds, approximating the central non-linear region as a straight line. With the previ-
ous assumptions, we have:

η2,HCEIP =


b̄2, if b̄2 ≤ Ψ1,
0.5−Ψ1
Ψ2−Ψ1

(b̄2 −Ψ1) + Ψ1, if Ψ1 < b̄2 ≤ Ψ2,

0.5, if Ψ2 < b̄2.

(2.62)
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Thresholds

In the general case, each threshold is a function of both emax and b̄1. However, we numer-
ically veri�ed that:

Ψ1 , Ψ1(b̄1, emax) ≈ Ψ1(b̄1), (2.63)

Ψ2 , Ψ2(b̄1, emax) ≈ min{ψ2(emax), b̄1}, (2.64)

that is, Ψ1 only depends on b̄1, while Ψ2 also depends on a function ψ2(emax), de�ned
in (2.66).

In Figure 2.2 we show, as an example, both η2,OCEIP and η2,HCEIP as a function of b̄2,
with the thresholds Ψ1 and Ψ2 when b̄1 = 0.98 and emax = 6.

We now discuss how the derivation of Ψ1 and Ψ2 was accomplished. Ψ1 was computed
numerically, for di�erent values of emax and b̄1, as the value for which η2 is no longer
equal to b̄2. Since it can be observed that Ψ1 is approximately independent of emax, for
each value of b̄1 we dropped this dependence averaging Ψ1 over all possible values of emax.
Finally, by a linear interpolation with respect to b̄1, (2.65) was derived.

Ψ2 was determined as the value for which η2 saturates to 0.5. We found that Ψ2 has
the structure of equation (2.64), where ψ2 was determined with a technique similar to the
one used to �nd Ψ1, �rst averaging on b̄1 and then interpolating in emax, resulting in (2.66).

The resulting heuristic expressions of the thresholds Ψ1(b̄1) and ψ2(emax) are given by

Ψ1(b̄1) = −0.6875b̄1 + 0.84375, (2.65)

ψ2(emax) = 0.5159e−0.1775emax + 0.5624 (2.66)

and are valid for every possible choice of emax and b̄1 and hence represent a general result
for this scenario.

From (2.63-2.66), it is possible to compute Ψ1 and Ψ2, used to derive η2,HCEIP from
(2.62) and η1,HCEIP = 1 − η2,HCEIP, for all values of b̄1, b̄2 and emax. Finally, with the
marginal probabilities, GHCEIP is obtained.

2.5 Examples

We now introduce two examples in the simple scenario where emax,1 = emax,2 = 1.
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The transition probabilities of the Markov Chain are:

p(0,0)→(k,l) =


(1− b̄1)(1− b̄2), if k = 0, l = 0,

(1− b̄1)b̄2, if k = 0, l = 1,

b̄1(1− b̄2), if k = 1, l = 0,

b̄1b̄2, if k = 1, l = 1;

p(0,1)→(k,l) =


(1− b̄1)(1− b̄2)η2(0, 1), if k = 0, l = 0,

(1− b̄1)(η0(0, 1) + b̄2η2(0, 1)), if k = 0, l = 1,

b̄1(1− b̄2)η2(0, 1), if k = 1, l = 0,

b̄1(η0(0, 1) + b̄2η2(0, 1)), if k = 1, l = 1;

p(1,0)→(k,l) =


(1− b̄1)(1− b̄2)η1(1, 0), if k = 0, l = 0,

(1− b̄1)b̄2η1(1, 0), if k = 0, l = 1,

(1− b̄2)(η0(1, 0) + b̄1η1(1, 0)), if k = 1, l = 0,

b̄2(η0(0, 1) + b̄1η1(1, 0)), if k = 1, l = 1;

p(1,1)→(k,l) =


0, if k = 0, l = 0,

(1− b̄1)η1(1, 1), if k = 0, l = 1,

(1− b̄2)η2(1, 1), if k = 1, l = 0,

b̄1η1(1, 1) + b̄2η2(1, 1) + η0(1, 1), if k = 1, l = 1.

(2.67)

For the examples we use the following notation:

[ηi] ,

(
ηi(0, 0) ηi(0, 1)
ηi(1, 0) ηi(1, 1)

)
, (2.68)

[π] ,

(
π(0, 0) π(0, 1)
π(1, 0) π(1, 1)

)
. (2.69)

Example 1. we consider b̄ , b̄1 = b̄2 = 0.1 (this is the case b̄1 + b̄2 ≤ 1). Since the problem
is symmetric, it follows that η1(e1, e2) = η2(e2, e1). The EIP and BP can be de�ned as:

[η1,EIP] =

(
0 0

ηEIP ηEIP

)
= [η2,EIP]T , (2.70)

[η1,BP] =

(
0 0
b̄ b̄

)
= [η2,BP]T . (2.71)

It can be numerically found that:

[η1,OP] =

(
0 0

0.1889 0.1758

)
= [η2,OP]T , (2.72)

[η1,OEIP] =

(
0 0

0.1839 0.1839

)
= [η2,OEIP]T . (2.73)
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and the steady-state probabilities are:

[πOP] =

(
0.3848 0.2389
0.2389 0.1374

)
, (2.74)

[πOEIP] =

(
0.3806 0.2427
0.2427 0.1339

)
, (2.75)

[πBP] =

(
0.2180 0.2557
0.2557 0.2706

)
. (2.76)

The long-term average rewards are:

GOP = 0.3707, (2.77)

GOEIP = 0.3706, (2.78)

GBP = 0.3462. (2.79)

Note that, even if the transmission probabilities of the BP and OP are slightly di�erent
(almost a factor of two), RBP

OP = 6.6% that is a small value.

Example 2. We consider b̄1 = 0.8 and b̄2 = 0.21 (this is one case with b̄1 + b̄2 > 1). The
EIP and CEIP can be de�ned (according to equation (2.58)) as:

[η1,EIP] =

(
0 0

η1,EIP η1,EIP

)
, [η2,EIP] =

(
0 η2,EIP

0 η2,EIP

)
, (2.80)

[η1,CEIP] =

(
0 0

1− ηCEIP 1− ηCEIP

)
, [η2,CEIP] =

(
0 ηCEIP

0 ηCEIP

)
, (2.81)

with the constraint:

ηCEIP ≤ b̄2. (2.82)

It can be numerically found that:

[η1,OP] =

(
0 0

0.8212 0.6768

)
, [η2,OP] =

(
0 0.3830
0 0.2274

)
, (2.83)

η1,OEIP = 0.7293, η2,OEIP = 0.2340, (2.84)

ηOCEIP = 0.21. (2.85)

Note that η0,OEIP > 0, which proves that the condition η1,OEIP + η2,OEIP = 1 is not
always satis�ed by the OEIP.

Furthermore, ηi,HCEIP can be simply computed and it would be found ηi,OCEIP = ηi,HCEIP,
i.e., the approximation of the OCEIP is perfect in this case.

The long-term average rewards are:

GOP = 1.0696, (2.86)

GOEIP = 1.0629, (2.87)

GOCEIP = GHCEIP = 1.0603. (2.88)

it can be seen that OEIP and OCEIP are very close to the Optimal Policy.
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2.6 Performance evaluation of the introduced policies

In our numerical evaluation we used the following parameters: emax,1, emax,2 ∈ {1, . . . , 20},
b̄1, b̄2 ∈ {0.05, 0.10, . . . , 1} and Λ1 = Λ2. Since there are twenty cases for each parameter,
we have a total number of cases equal to 204 = 160000.

In the following, we show that the reward functions ĜBP and GHCEIP are good lower
bounds for GOP in most cases of interest.

Table 2.2: Policies comparison in the worst-case scenarios.

EH condition Policies max{RB
A}

b̄1 + b̄2 R 1 OP OEIP 5.36%

b̄1 + b̄2 ≤ 1
OEIP BP 10.17%
OP BP 10.18%

BP B̂P 4.14%

b̄1 + b̄2 > 1
OEIP OCEIP 1.59%
OCEIP HCEIP 0.45%
OP HCEIP 4.56%

We now comment the results shown in Table 2.2, based on the value of b̄1 + b̄2.

2.6.1 b̄1 + b̄2 Q 1

OP and OEIP comparison

As max{ROEIP
OP } = 5.36%, OEIP is a good lower bound for OP.

2.6.2 b̄1 + b̄2 ≤ 1

OEIP and BP comparison

BP is not always a good lower bound for OEIP, as max{RBP
OEIP} = 10.17%. However, in

general, BP is rather close to OEIP, especially if emax,1 and/or emax,2 are not too small.
In particular, we noticed that RBP

OEIP is high when both b̄1 and b̄2 are close to 0, which is
not a very practical scenario. For example, if emax,1 = emax,2 = 1 and b̄1 = 0.4, b̄2 = 0.2,
RBP

OEIP = 1.2%, but if emax,1 = emax,2 = 5, this value decreases to 0.14%. We can therefore
say that BP is a good lower bound for OEIP in most cases of interest.

OP and BP comparison

From Sections 2.6.1 and 2.6.2, we can state that in most cases of interest BP is a good lower
bound for OP. As an example, in Figure 2.3, we plot the worst case scenario (b̄1 = b̄2 =
0.05) for RBP

OP, with di�erent values of emax,i. It can be seen that RBP
OP decreases quickly

when emax,1 and/or emax,2 increase, i.e., the Balanced Policy is better for high values of
emax, as expected.
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Figure 2.3: Percentage reward precision RBP
OP when b̄1 = b̄2 = 0.05 (worst case) and emax,1

and emax,2 range between 1 and 20

B̂P and BP comparison

For each pair of emax,1 and emax,2, the maximum of RB̂P
BP is reached when b̄1 = b̄2 = 0.5

and, in particular, in the worst possible case RB̂P
BP is equal to 4.14%. Moreover, the lower

bound of RB̂P
BP is 0, i.e., ĜBP is always lower than GBP. Since RB̂P

BP & 0, we can state that
the approximate balanced policy can be considered as a good lower bound for the BP.
Note that this result is not obvious, as ĜBP has been derived as an approximation of GBP.

In Figure 2.4, we depict the reward precision RB̂P
BP for emax,1 = emax,2 = 2, for di�erent

values of b̄1 and b̄2. It can be seen that b̄1 = b̄2 = 0.5 is the worst case, but for low values
of b̄1 or b̄2, the two rewards are comparable.

For this comparison we introduced also the quadratic distance D (equation (2.45)). In
Figure 2.5 we represent this quantity as a function of emax,1 = emax,2. The results comply
with the previous ones, i.e., the approximation becomes better when the battery sizes
increase and when the average harvesting rates decrease.

2.6.3 b̄1 + b̄2 > 1

OEIP and OCEIP comparison

The di�erence between OCEIP and OEIP is mainly due to the constraint η1 + η2 = 1.
However, we veri�ed that η1,OEIP + η2,OEIP ≈ 1, even for the optimal unconstrained EIP.
The results show that ROCEIP

OEIP is always lower than 1.59%, and the worst case occurs
when b̄1 + b̄2 & 1. In fact, in this case, OEIP is more conservative than OCEIP, i.e.,
η1,OEIP < η1,OCEIP and η2,OEIP < η2,OCEIP, because OEIP generally attempts to avoid
energy outage, whose probability increases if b̄1 and b̄2 decrease.
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Figure 2.4: Percentage reward precision RB̂P
BP when emax,1 = emax,2 = 2 and b̄1 and b̄2 range

between 0.05 and 1 with b̄1 + b̄2 ≤ 1
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Figure 2.5: Quadratic distance D for several values of b̄1 and b̄2 when emax,1 = emax,2 ∈
{2, . . . , 20}

OCEIP and HCEIP comparison

We veri�ed that the quantity RHCEIP
OCEIP has a maximum that is less than 0.45%, i.e., with

the considered parameters, the heuristic approximation can be considered as a good lower
bound for OCEIP. Clearly, the approximation performs worse when b̄2 ∈ (Ψ1,Ψ2), where
we �tted a non-linear function with a straight line. In Figure 2.6, we show the reward
precision RHCEIP

OCEIP as a function of b̄2 for the same parameters of Figure 2.2. It can be seen
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that RHCEIP
OCEIP is low even in the non-linear zone, where the approximation is worse.
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Figure 2.6: Percentage reward precision RHCEIP
OCEIP as a function of b̄2 that range in [0.02, 1]

with b̄1 = 0.98 and emax = 6

OP and HCEIP comparison

By the aforementioned results, it follows that

GOP & GOEIP & GOCEIP & GHCEIP, (2.89)

i.e., HCEIP is a good lower bound for OP. In particular, from Table 2.2, max{RHCEIP
OP } =

4.56%: this is an interesting result, as HCEIP, di�erently from OP, can be analytically
formulated with a closed form expression.

Finally, in Figures 2.7 and 2.8 we compare GOP, GOEIP, ĜBP and GHCEIP, when
emax,1 = emax,2 ∈ {1, . . . , 20}. It can be seen that all policies approach OP for high values
of emax,i and are very close already for emax = 20.
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and b̄1 = b̄2 = 0.4
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2.7 Conclusions

In the �rst part of this work we studied the case of two Energy Harvesting Devices (EHDs)
which report data of di�erent importance to a common Receiver (RX) and are managed
by a Central Controller (CC). We distinguished two cases, depending on the global energy
harvesting rate of the system. In the �rst case, when b̄1 + b̄2 ≤ 1, we used the Balanced
Policy (BP) and derived an analytic approximation of its performance. We showed that
BP can be considered as a good lower bound for the Optimal Policy (OP) when b̄1 and
b̄2 are not too close to zero. Furthermore, we numerically derived an approximate reward
function of BP, that is always lower than or equal to the real reward function. In this
way, we found an analytical lower bound to BP and, consequently, to OP. Future work
will complete the analysis of BP in the particular case emax,1 = 1 or emax,2 = 1. In the
case b̄1 + b̄2 > 1, we introduced a chain of policies that leads to the Heuristic Constrained
Energy Independent Policy (HCEIP), a policy computable with no optimization which
nevertheless achieves good performance with respect to OP. We leave as future work the
case emax,1 6= emax,2.

26



Chapter 3

EH Transmitter and EH Receiver

pair

In this part we study a network composed of an Energy Harvesting Transmitter (EHTX)
and an Energy Harvesting Receiver (EHRX). EHTX can receive packets from other nodes
in the WSN or can generate a packet after sensing. EHTX transmits packets to EHRX,
that may or may not receive the data, depending on its current energy level and on the
packet importance.

3.1 System model

The model is similar to the one presented in Chapter 2, therefore we emphasize only the
di�erences.

The transmitter sends packets to the receiver. Time is slotted and slot k is the time
interval [k, k + 1), k ∈ N0. In slot k, the node can transmit over the interval [k, k + δk),
where δk ∈ (0, 1] is the duty cycle.

We model the energy storage capability of both transmitter and receiver as a bu�er
and each position in the bu�er can hold one energy quantum. The transmission and the
reception of one packet require one energy quantum each, and the maximum number of
quanta that can be stored in the batteries is emax,t and emax,r for EHTX and EHRX,
respectively. We assume that EHRX can consume an energy quantum also for listening to
the channel, i.e., EHRX may consume energy even if there is no transmission.

At time k + 1, the energies in the bu�ers are:

Et,k+1 = min{(Et,k −Qt,k)+ +Bt,k, emax,t}, (3.1)

Er,k+1 = min{(Er,k −Qr,k)+ +Br,k, emax,r}, (3.2)

where {Bt,k} and {Br,k}, de�ned as in (2.1), are the energy arrival processes (i.i.d. Bernoulli)
with mean b̄t and b̄r, {Qt,k} is the transmitter action process (1 if there is a transmission,
0 otherwise) and {Qr,k} is the reception action process (1 if EHRX receives or listens to
the channel, 0 otherwise).

In the next we consider several scenarios:
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• Centralized case (C): EHTX and EHRX are coordinated by a Central Controller
(CC). In this case the following implications hold:

Qt,k = 1⇔ Qr,k = 1, (3.3)

i.e., EHTX transmits a packet if and only if EHRX can receive it.

• Semi-Independent case: EHTX and EHRX are not coordinated but we assume:

Qt,k = 0⇒ Qr,k = 0, (3.4)

because we suppose that if there is no transmission, the receiver does not consume
energy.

However, in this case, the following event may happen:

{Qt,k = 1 ∩Qr,k = 0}. (3.5)

The devices can have di�erent degrees of knowledge about the overall energy status
and in particular we can divide the following cases:

� global knowledge: EHTX knows Er,k and EHRX knows Et,k.

� partial knowledge: EHTX knows only if EHRX is in outage and vice-versa. In
this case the following implications hold:

Et,k = 0⇒ Qr,k = 0,

Er,k = 0⇒ Qt,k = 0.
(3.6)

� local knowledge: EHTX does not have any information about Er,k and vice-
versa.

• Totally-Independent case: EHTX and EHRX are not coordinated. In this case, the
following events may happen:

{Qt,k = 1 ∩Qr,k = 0},
{Qt,k = 0 ∩Qr,k = 1}. (3.7)

Also here the devices can have di�erent degrees of knowledge about the overall energy
status and we can divide the cases as before.

We also de�ne Vk ∈ R+ as the current packet importance. Vk has probability density
function (pdf) fV (v), v ≥ 0. In all cases, we suppose that both EHTX and EHRX know
the packet importance, otherwise the problem should be de�ned in another way.

The state of the system in slot k is de�ned as

Sk = (Et,k, Er,k, Vk). (3.8)
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3.2 Policy De�nition and General Optimization Problem

Given Sk, a policy determines (Qt,k, Qr,k) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)} in slot k.

µ((i, j); e, v) is the probability of drawing i and j energy quanta from EHTX and EHRX
respectively, given that Ek = e and Vk = v.

The long-term average reward under a policy µ is de�ned as:

G(µ,S0) = lim
K→∞

inf
1

K
E

[
K−1∑
k=0

Qt,kQr,kVk

∣∣∣S0

]
. (3.9)

Note that, di�erently from the case of Chapter 2, in the previous formula we have the
product of Qt,k and Qr,k, because the reward increases only if EHTX transmits and EHRX
receives at the same time.

The optimization problem is to �nd the µ∗ such that:

µ∗ = arg max
µ
{G(µ, S0)}. (3.10)

Theorem 3. The optimal policy has the following structure:{
µ((1, 1); e, v) = 1, if v > vth(e),

µ((0, 0); e, v) = 1, if v ≤ vth(e).
(3.11)

Proof. See Appendix A.2.

However, in the next we consider also the following sub-optimal policy:
µ((1, 1); e, v) = 1, if v > vt,th(e) ∩ v > vr,th(e),

µ((1, 0); e, v) = 1, if v > vt,th(e) ∩ v ≤ vr,th(e),

µ((0, 1); e, v) = 1, if v ≤ vt,th(e) ∩ v > vr,th(e),

µ((0, 0); e, v) = 1, if v ≤ vt,th(e) ∩ v ≤ vr,th(e),

(3.12)

i.e., we introduce a threshold for EHTX and another threshold for EHRX. In general,
vt,th(e) and vr,th(e) can be di�erent, especially in the cases where the devices do not have
global information about the system. However, if vt,th(e) = vr,th(e), then the sub-optimal
policy degenerates in the optimal one.

We de�ne the marginal probabilities as:

ηij(e) , EV [µ((i, j); e, v)] = P(Qt,k = i, Qr,k = j|Et,k = et ∩ Er,k = er), i, j ∈ {0, 1}
(3.13)

and we indicate as η(e) the vector [η00(e), η01(e), η10(e), η11(e)]. Furthermore, we intro-
duce the marginal transmission and reception probabilities as:

ηt(e) , P(Qt,k = 1|Ek = e) = η10(e) + η11(e), (3.14)

ηr(e) , P(Qr,k = 1|Ek = e) = η01(e) + η11(e), (3.15)
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respectively. Similarly to [16], the thresholds can be found as:

ηt(e) =

∫ ∞
vt,th(e)

fV (ν)dν, (3.16)

ηr(e) =

∫ ∞
vr,th(e)

fV (ν)dν (3.17)

and, from equations (3.12) and (3.13), we obtain:

η00(e) =

∫ min{vt,th(e),vr,th(e)}

0
fV (ν)dν, (3.18)

η10(e) =

{∫ vr,th(e)

vt,th(e) fV (ν)dν, if vr,th(e) > vt,th(e),

0, otherwise,
(3.19)

η01(e) =

{∫ vt,th(e)

vr,th(e) fV (ν)dν, if vt,th(e) > vr,th(e),

0, otherwise,
(3.20)

η11(e) =

∫ ∞
max{vt,th(e),vr,th(e)}

fV (ν)dν. (3.21)

The expected reward is:

g(η(e)) , EV [Qt,kQr,kVk|Et,k = et ∩ Er,k = er] =

∫ ∞
vth(e)

vfV (v)dv, (3.22)

where we �nd the threshold vth as:

η11(e) =

∫ ∞
vth(e)

fV (ν)dν, (3.23)

vth(e) , max{vt,th(e), vr,th(e)}. (3.24)

Note that the reward is non zero only if both EHTX and EHRX consume an energy
quantum.

As in Chapter 2, the long-term average reward given a policy η can be rewritten as:

G(η(e)) =

emax,t∑
et=0

emax,r∑
er=0

π(e)g(η(e)), (3.25)

where π(e) is the steady-state probability of being in state e.

The transmission probabilities of the Markov Chain for the generic state e with et ∈
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{1, . . . , emax,t − 1} and er ∈ {1, . . . , emax,r − 1} are:

p(et,er)→(k,l) =



(1− b̄t)(1− b̄r)η11(e), if k = et − 1, l = er − 1,

(1− b̄t)b̄rη11(e) + (1− b̄t)(1− b̄r)η10(e), if k = et − 1, l = er,

(1− b̄t)b̄rη10(e), if k = et − 1, l = er + 1,

b̄t(1− b̄r)η11(e) + (1− b̄t)(1− b̄r)η01(e), if k = et, l = er − 1,

b̄t(b̄rη11(e) + (1− b̄r)η10(e))+

+(1− b̄t)(b̄rη01(e) + (1− b̄r)η00(e)), if k = et, l = er,

(1− b̄t)b̄rη00(e) + b̄tb̄rη10(e), if k = et, l = er + 1,

b̄t(1− b̄r)η01(e), if k = et + 1, l = er − 1,

b̄t(1− b̄r)η00(e) + b̄tb̄rη01(e), if k = et + 1, l = er,

b̄r b̄tη00(e), if k = et + 1, l = er + 1,

0, otherwise

(3.26)

and if et ∈ {0, emax,t} and/or er ∈ {0, emax,r} the previous probabilities must be appropri-
ately corrected.

3.2.1 Maximization of the transmission rate

Similarly to equation (2.15), we assume:

Vk = ln(1 + ΛHk). (3.27)

Λ is the Signal to Noise Ratio (SNR) and the channel gain H has pdf fH(h) = e−h, h > 0.
We �nd:

hth(e) = ln

(
1

η11(e)

)
, (3.28)

g(η(e)) =

∫ ∞
hth(e)

ln(1 + SNRh)e−hdh, (3.29)

where hth is the channel threshold associated to the importance threshold vth(e).
For a �xed policy η, using (3.26) it is possible to �nd the steady state probabilities

πη(e), therefore, with (3.29), the long-term average reward G of equation (3.25) can be
found.

3.3 Centralized Case

In this case we suppose that the transmitter and the receiver are coordinated by a Central
Controller, therefore EHTX transmits if only if EHRX receives the packet. This is an upper
bound of the achievable performance in every scenario because energy is never wasted.

We recall that

Qt,k = 1⇔ Qr,k = 1. (3.30)
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The choice of the thresholds that satis�es the previous conditions is:

vt,th(e) = vr,th(e), (3.31)

indeed, the events {Qt,k = 1 ∩Qr,k = 0} and {Qt,k = 0 ∩Qr,k = 1} cannot happen.
In terms of marginal transmission probabilities, we obtain:

η10(e) = η01(e) = 0, (3.32)

⇒η11(e) = 1− η00(e). (3.33)

Note that, thanks to equation (3.32), in order to maximize (3.25), only η11(e) or η00(e)
need to be optimized and this can be done via the Policy Iteration Algorithm (PIA).

From equation (3.31) and from the way G was de�ned (eq. (3.25)), in this case the
reward function is a symmetric function of emax,t and emax,r if b̄t = b̄r. This can be seen,
as an example, in Figure 3.1, where we represent the optimal reward in the Centralized
case as a function of emax,t and emax,r when b̄t = b̄r = 0.5.
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Figure 3.1: Reward functionGC−OP when emax,t, emax,r ∈ {1, . . . , 20} and b̄t = 0.5, b̄r = 0.5

3.4 Semi-Independent case

In this scenario we suppose that if EHTX is not transmitting, then EHRX will not consume
energy to listen to the channel, i.e.,:

Qt,k = 0⇒ Qr,k = 0. (3.34)

The previous condition can be translated in

vr,th(e) ≥ vt,th(e). (3.35)
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In terms of marginal transmission probabilities, we obtain:

η01(e) = 0. (3.36)

Note that the transmitter can have di�erent information about the receiver energy level
and vice-versa, therefore in the next we consider several cases.

3.4.1 Global knowledge

We suppose that, in each slot, the transmitter knows the energy level of the receiver Er,k
and vice-versa.

The optimal thresholds choice is vt,th(e) = vr,th(e). Indeed, with these thresholds, this
case has the same performance as the centralized one, because the transmission probabili-
ties are deterministic functions of e and v.

3.4.2 Partial knowledge

We suppose that, in each slot, EHTX knows if EHRX is in outage and vice-versa, therefore
we assume:

Et,k = 0⇒ Qr,k = 0,

Er,k = 0⇒ Qt,k = 0.
(3.37)

Note that the �rst implication is already expressed in equation (3.34) because Et,k = 0⇒
Qt,k = 0.

The marginal transmission probabilities can be written as:

ηt(e) , P(Qt,k = 1|Ek = e) = η10(e) + η11(e) =

{
ρt(et), if er > 0,

0, if er = 0,
(3.38)

ηr(e) , P(Qr,k = 1|Ek = e) = η11(e) =

{
ρr(er), if et > 0,

0, if et = 0,
(3.39)

with:

ρt(et) , P(Qt,k = 1|Et,k = et ∩ Er,k > 0), (3.40)

ρr(er) , P(Qr,k = 1|Et,k > 0 ∩ Er,k = er), (3.41)

therefore the optimization process requires to optimize both ρt(et) and ρr(et) under the
constraint that can be derived from equations (3.38-3.39):

max
er∈{1,...,emax,r}

{ρr(er)} < min
et∈{1,...,emax,t}

{ρt(et)}. (3.42)

The previous constraint can be written in a linear form:

ρr(er)− ρt(et) ≤ 0, ∀et ∈ {1, . . . , emax,t}, ∀er ∈ {1, . . . , emax,r}, (3.43)

that corresponds to a system of emax,t · emax,r inequalities.
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Unfortunately, maximizing (3.25) considering (3.38-3.39) is not a convex problem and
it can be numerically veri�ed that there are a lot of local maxima. Since trying to solve the
problem with several starting points is computational demanding, we make the following
assumption:

ρt(et) =

{
ρt, if et > 0,

0, if et = 0,
, ρt ∈ [0, 1], (3.44)

ρr(er) =

{
ρr, if er > 0,

0, if er = 0,
, ρr ∈ [0, 1], (3.45)

i.e., we consider an Energy Independent Policy (EIP). With these probabilities, the maxi-
mization problem is simpli�ed because only ρt and ρr need to be optimized.

Considering (3.44-3.45) is interesting because we show in Section 3.6 that this policy
has good performance compared to the optimal ones.

3.4.3 Local knowledge

We suppose that EHTX does not have any information about the energy of EHRX and
vice-versa. Similarly to the previous case, the marginal transmission probabilities can be
written as:

ηt(e) , P(Qt,k = 1|Ek = e) = η10(e) + η11(e) = ρt(et), (3.46)

ηr(e) , P(Qr,k = 1|Ek = e) = η11(e) =

{
ρr(er), if et > 0,

0, if et = 0,
(3.47)

with:

ρt(et) , P(Qt,k = 1|Et,k = et), (3.48)

ρr(er) , P(Qr,k = 1|Et,k > 0 ∩ Er,k = er). (3.49)

Note that ηr(0, er) = 0 because ηt(0, er) = 0 and we suppose that if there is no trans-
mission, then EHRX does not consume energy. Formally: Et,k = 0⇒ Qt,k = 0⇒ Qr,k = 0.

As in the previous Section, equations (3.46) and (3.47) imply the constraint (3.42).

Also in this case the maximization problem is not convex, therefore we consider again
an EIP, de�ned as in equations (3.44) and (3.45).

3.5 Totally independent case

In this section we do not assume any hypothesis for the marginal transmission probabilities,
therefore, in general, η00(e), η10(e), η01(e) and η11(e) are all greater than zero. This is the
case where the devices are completely independent. As before, in general, the device may
have a di�erent amount of information about the other Energy Harvesting Device (EHD),
therefore, in the next, we analyse these cases.

For this scenario we only set up the model, leaving further considerations as future
work.
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3.5.1 Global knowledge

As in Section 3.4.1, choosing vt,th(e) = vr,th(e) provides the same performance of the
centralized case.

3.5.2 Partial knowledge

We suppose that, in each slot, the EHTX knows if the EHRX is in outage and vice-versa,
therefore we assume:

Et,k = 0⇒ Qr,k = 0,

Er,k = 0⇒ Qt,k = 0.
(3.50)

The marginal transmission probabilities can be written as:

ηt(e) , P(Qt,k = 1|Ek = e) = η10(e) + η11(e) =

{
ρt(et), if er > 0,

0, if er = 0,
(3.51)

ηr(e) , P(Qr,k = 1|Ek = e) = η01(e) + η11(e) =

{
ρr(er), if et > 0,

0, if et = 0,
(3.52)

with ρt(et) and ρr(er) de�ned as in (3.40-3.41). Note that, since we consider the indepen-
dent case, we obtain:

η11(e) , P(Qt,k = 1 ∩Qr,k = 1|Ek = e) = ηt(e)ηr(e), (3.53)

η10(e) , P(Qt,k = 1 ∩Qr,k = 0|Ek = e) = ηt(e)(1− ηr(e)), (3.54)

η01(e) , P(Qt,k = 0 ∩Qr,k = 1|Ek = e) = (1− ηt(e))ηr(e), (3.55)

η00(e) , P(Qt,k = 0 ∩Qr,k = 0|Ek = e) = (1− ηt(e))(1− ηr(e)). (3.56)

3.5.3 Local knowledge

We suppose that EHTX does not have any information about the energy of EHRX and
vice-versa. Similarly to the previous case, the marginal transmission probabilities can be
written as:

ηt(e) , P(Qt,k = 1|Ek = e) = η10(e) + η11(e) = ρt(et), (3.57)

ηr(e) , P(Qr,k = 1|Ek = e) = η01(e) + η11(e) = ρr(er), (3.58)

with:

ρt(et) , P(Qt,k = 1|Et,k = et), (3.59)

ρr(er) , P(Qr,k = 1|Er,k = er). (3.60)

3.6 Performance evaluation

We focus on the Centralized and Semi-Independent cases, leaving the Totally-Independent
one as future work. In our numerical evaluation we used the following parameters: emax,t,
emax,r ∈ {1, . . . , 20}, b̄t, b̄r ∈ {0.05, 0.10, 0.2, . . . , 0.9, 0.95} and Λ = 10 dB.
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3.6.1 Centralized case

We notice that, when one of the two EHDs has a higher average probability of receiving
energy, then the maximum energy level of this device is approximately non in�uential in
the optimal reward. In Figure 3.2 we plot the long-term average reward (transmission
rate) GC−OP as a function of emax,t and emax,r when b̄t = 0.9 and b̄r = 0.5. It can be seen
that, except for emax,t = 1, the optimal reward is independent of emax,t. Also, it can be
noticed that GC−OP, as expected, increases with emax,r and saturates when emax,r ≈ 10
because the impact of outage and over�ow decreases, therefore it is not necessary to use
large batteries.
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Figure 3.2: Reward function GC−OP (Centralized case-Optimal Policy) when
emax,t, emax,r ∈ {1, . . . , 20} and b̄t = 0.9, b̄r = 0.5

3.6.2 Cases comparison

Table 3.1: Case acronyms.

Case acronym Case

C Centralized case
S,P Semi-Independent case with Partial knowledge
S,L Semi-Independent case with Local knowledge

In the next, with the notation �R-P� we indicate the case R with the policy P. In our
work we consider the following case-policy pairs: C-OP; S,P-OP; S,P-OEIP; S,L-OP; S,L-
OEIP. We recall that OP is the Optimal Policy, that is the policy that maximizes (3.25)
and OEIP is the Optimal-EIP, that is, among all the EIP, the one that maximizes (3.25).
EIP is a policy that does not depend on the energy levels of the batteries, provided that
they are not empty.
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Centralized and Semi-Independent cases

Partial knowledge In our numerical evaluation we consider an EIP because:

• it is easy to implement;

• its performance is close to the Optimal Policy (OP) in the Centralized case, that is
an upper bound.

In the range of the considered parameters, we �nd that the reward precision (de�ned
as in (2.30))

RS,P−OEIP
C−OP =

GC−OP −GS,P−OEIP

GC−OP
(3.61)

is always lower than 0.36%. Therefore, since:

GS,P−OEIP ≤ GS,P−OP ≤ GC−OP, (3.62)

it follows that:

RS,P−OP
C−OP ≤ 0.36%, (3.63)

that is, if we suppose η01(e) = 0 and that EHTX knows if EHRX is in outage and vice-versa,
the performance obtained is very close to the optimal one.

Local knowledge In this case we evaluate an energy independent policy. We �nd that,
in general, GC−OP and GS,L−OEIP are quite distant:

max
{
RS,L−OEIP

C−OP

}
≈ 30%. (3.64)

The following chain of inequalities holds:

GS,L−OEIP ≤ GS,L−OP ≤ GC−OP (3.65)

and, since GC−OP � GS,L−OEIP, we cannot say which values GS,L−OP assumes. However,
we computed GS,L−OP for some cases and we �nd GS,L−OP & GS,L−OEIP. We leave as
future work further investigation about GS,L−OP.

Since RS,P−OEIP
C−OP & 0 and RS,L−OEIP

C−OP � 0, we can say that the outage information is
essential for the devices, if an energy independent policy is used. In particular, we noticed
that RS,L−OEIP

C−OP is high when emax,r and b̄r are low. Indeed, in these cases, the outage
probability of the receiver is high, therefore the outage information becomes important.
As examples, in Figures 3.3 and 3.4 we compare GC−OP, GS,P−OEIP and GS,L−OEIP when
b̄t = b̄r = 0.05 (small value). In the �rst �gure we consider emax,r = 1 and in the second
one emax,r = 20. Since in the �rst case the EHRX outage probability is high, GS,L−OEIP

is quite distant from the optimal reward. Instead, in the second �gure, GS,L−OEIP is close
to GS,P−OEIP because the EHRX outage probability is low. It can be also noticed that
the distance between GC−OP and GS,P−OEIP is lower in the case emax,r = 1. This happens
because, when emax,r = 1, the partial knowledge is equivalent to the global knowledge
from the EHTX point of view, i.e., the transmitter always knows the energy state of the
receiver. Instead, in the case emax,r = 20, the outage knowledge is not equivalent to the
global knowledge, therefore the performance with S,P-OEIP is worse than with C-OP.
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Figure 3.3: Comparison of di�erent reward functions G when emax,t ∈ {1, . . . , 20}, emax,r =
1 and b̄t = b̄r = 0.05
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Figure 3.4: Comparison of di�erent reward functions G when emax,t ∈ {1, . . . , 20}, emax,r =
20 and b̄t = b̄r = 0.05

3.7 Conclusions

As a second problem, we studied an Energy Harvesting Transmitter (EHTX) and Energy
Harvesting Receiver (EHRX) pair. We adapted the model of Chapter 2 to this case,
specializing it according to the degree of knowledge the devices have. We noticed that the
optimal performance in the Centralized case (C) is achieved also in the Semi-Independent
or Totally-Independent cases with global knowledge. Then, we studied the cases of partial
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or local knowledge about the state of charge of the batteries. The former presumed that
each EHD knows if the other one is in outage or not, while the second case supposed that
a device has information only about its battery status. We computed the Optimal Policy
(OP) and described some of its properties. Finally, we showed numerically that the outage
information is essential to achieve high transmission rates. As future work we will complete
the study of the Totally-Independent case and we will further investigate the optimization
problem regarding the Local-knowledge cases.
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Chapter 4

One EHD with a Data Queue

In this Chapter, we study a single Energy Harvesting Device (EHD) with a data queue.
The device stores the packets in a FIFO queue and when the queue is non empty it can
transmit the �rst packet to a receiver.

Initially, we study an in�nite data queue and we �nd a su�cient condition for the
queue stability. In particular, we �nd that if the node transmits with a probability greater
than a �xed threshold, then the data queue is stable. Then, we use this information to
understand how the optimal transmission policy works in the �nite data queue scenario
and, consequently, how to design a low complexity policy that performs close to the optimal
one. This is a simple piece-wise linear transmission policy, that is easy to implement and
is energy independent, therefore it can also be used in the cases of imperfect knowledge of
the battery level of charge.

4.1 System model

As in Chapter 3, the model is similar to the one presented in Chapter 2, therefore we
emphasize only the di�erences.

We consider a device that reports data to a central node. Time is slotted and slot k
is the time interval [k, k + 1), k ∈ N0. In slot k, the node can transmit over the interval
[k, k + δk), where δk ∈ (0, 1] is the duty cycle.

The battery of the EHD is modeled as an energy bu�er. Each position in the bu�er
can hold one energy quantum and the transmission of one packet requires the expenditure
of one energy quantum. The maximum amount of energy that can be stored in the energy
bu�er is emax and the set of its possible energy status is E = {0, 1, . . . , emax}.

The queue policy is FIFO and its length at time k is Fk. The queue size is fmax ∈
N ∪ {∞}\{0}. In slot k, only the header packet, if any, can be transmitted.

At time k + 1, the energy in the bu�er and the queue size are updated according to:

Ek+1 = min{(Ek −Qk)+ +Bk, emax}, (4.1)

Fk+1 = min{(Fk −Qk)+ + Ck, fmax}, (4.2)

where {Bk} and {Qk}, de�ned as in (2.1), are the energy arrival process and the action
process respectively. Similarly, {Ck} is the packet arrival process. We assume that {Ck}
is a Bernoulli i.i.d. random arrival process with mean c̄ ∈ (0, 1]. Furthermore, an energy
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quantum harvested in slot k can be used only in a time slot > k. Similarly, a packet
generated or received in slot k can be transmitted only in a time slot > k.

In addition to the energy outage and over�ow, in this scenario also the queue outage
and queue over�ow may happen:

De�nition 4 (queue outage). In slot k, queue outage occurs if Fk = 0.

De�nition 5 (queue over�ow). In slot k, queue over�ow occurs if (Fk = fmax) ∩ (Ck =
1) ∩ (Qk = 0).

According to the metric to optimize, queue outage may be a situation to avoid or not.
If the metric is, e.g., the average delay of the packets, then the aim is to empty the queue
and queue outage is a positive situation. However, in the next, supposing that the channel
gain changes temporally, we consider as metric the average transmission rate. In this case
queue outage should be avoided because it may induce an energy over�ow situation: if the
data queue is empty and the battery is fully charged, without any packet to send, any new
quantum arrival is wasted. This is not convenient because a lost quantum corresponds to
the loss of the possibility of transmitting a future packet, therefore it lowers the possible
amount of sent data and, as a consequence, the average transmission rate. Furthermore,
queue over�ow should always be avoided because it corresponds to a packet loss.

Di�erently from the previous Chapters, we suppose that the importance level of every
packet is equal. Indeed, if the packets could have di�erent importance levels, then a FIFO
queue would not be a suitable structure to manage the data and a di�erent policy should
be used. However, we analyze a system where the importance Vk associated with slot k
is related to the channel gain: if the channel rate is low (high), then Vk is low (high).
We model Vk as a continuous random variable with probability density function (pdf)
fV (v), v ≥ 0. Note that, in Chapters 2 and 3, a new packet is considered in every slot,
therefore associating the importance level to the packets or to the channel is the same.

With the introduced quantities, we de�ne the state of the system

Sk = (Ek, Fk, Vk). (4.3)

4.2 Policy De�nition and Optimization Problem

The policy µ is de�ned as:

µ(i; (e, f), v) = P(draw i from the EHD|(e, f), v), i ∈ {0, 1}, (4.4)

and the long-term average reward using a policy µ is:

G(µ,S0) = lim
K→∞

inf
1

K
E

[
K−1∑
k=0

QkVk

∣∣∣∣S0

]
. (4.5)

The optimal policy µ∗ is the one that maximizes G.

Theorem 4. The optimal policy has the following structure:{
µ(1; (e, f), v) = 1, if v > vth(e, f),

µ(0; (e, f), v) = 1, if v ≤ vth(e, f).
(4.6)
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Proof. Similar to the proof of Theorem 3.

The marginal transmission probability in state (e, f) is:

η(e, f) = EV [µ(1; (e, f), v)] = P(Qk = 1|Ek = e ∩ Fk = f). (4.7)

The expected reward is:

g(η(e, f)) = E[QkVk|Ek = e ∩ Fk = f ] (4.8)

and, as in Chapter 2, the long-term average reward given a policy η can be rewritten as:

Gη =

emax∑
e=0

fmax∑
f=0

πη(e, f)g(η(e, f)), (4.9)

where πη(e, f) is the steady-state probability of being in state (e, f) given the policy η (in
the next, for notational convenience, we neglect the dependence on η).

The transmission probabilities of the Markov Chain (MC) for the generic state (e, f)
with e ∈ {1, . . . , emax − 1} and f ∈ {1, . . . , fmax − 1} are:

p(e,f)→(k,l) =



(1− b̄)(1− c̄)η(e, f), if k = e− 1, l = f − 1,

(1− b̄)c̄η(e, f), if k = e− 1, l = f,

0, if k = e− 1, l = f + 1,

b̄(1− c̄)η(e, f), if k = e, l = f − 1,

b̄c̄η(e, f) + (1− b̄)(1− c̄)(1− η(e, f)), if k = e, l = f,

(1− b̄)c̄(1− η(e, f)), if k = e, l = f + 1,

0, if k = e+ 1, l = f − 1,

b̄(1− c̄)(1− η(e, f)), if k = e+ 1, l = f,

b̄c̄(1− η(e, f)), if k = e+ 1, l = f + 1,

0, otherwise

(4.10)

and if e ∈ {0, emax} and/or f ∈ {0, fmax} the previous probabilities must be appropriately
corrected.

4.2.1 Maximization of the transmission rate

Similarly to equation (2.15), we assume:

Vk = ln(1 + ΛHk). (4.11)

Λ is the SNR and the channel gain H has pdf fH(h) = e−h, h > 0. We �nd (as in [16]):

hth(e, f) = ln

(
1

η(e, f)

)
, (4.12)

g(η(e, f)) =

∫ ∞
hth(e,f)

ln(1 + Λh)e−hdh, (4.13)
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where hth is the channel threshold associated to the importance threshold vth(e, f).
For a �xed policy η, using (4.10) it is possible to �nd the steady state probabilities

πη(e, f), therefore, with (4.13), the long-term average reward Gη of equation (4.9) can be
found. In this case Gη is the long-term average transmission rate (in the next we call this
transmission rate for brevity).

4.3 Analysis

We now consider emax = 1 and we relax later this hypothesis. In the next proposition we
introduce an important relation between the steady state probabilities.

Proposition 3. We consider a MC with emax = 1. The following relation for the steady-
state probabilities holds:

π(1, f) = A(f)π(1, f − 1) +B(f)π(1, f + 1), f ≥ 1 (4.14)

with:

A(f) ,
(1− b̄)c̄(1− η(1, f − 1))

c̄+ b̄− b̄c̄+ η(1, f)(1− c̄− 2b̄+ b̄c̄)
, (4.15)

B(f) ,
b̄1−c̄

c̄ η(1, f + 1)

c̄+ b̄− b̄c̄+ η(1, f)(1− c̄− 2b̄+ b̄c̄)
. (4.16)

Proof. The relation between the steady-state probabilities is (f > 0):

π(0, f) = π(0, f)(1− b̄)(1− c̄) + π(1, f)η(1, f)(1− b̄)c̄
+ π(1, f + 1)η(1, f + 1)(1− b̄)(1− c̄) + π(0, f − 1)(1− b̄)c̄,

π(1, f) = π(1, f)
(
η(1, f)b̄c̄+ (1− η(1, f))(1− c̄)

)
+ π(1, f − 1)(1− η(1, f − 1))c̄

+ π(1, f + 1)η(1, f + 1)(1− c̄)b̄+ π(0, f − 1)b̄c̄+ π(0, f)b̄(1− c̄)
and putting together the two previous ones we obtain:

π(1, f) = α(f)π(1, f − 1) + β(f)π(1, f + 1) + δ(f)π(0, f − 1), (4.17)

with:

α(f) =
(1− η(1, f − 1))c̄

1−
(
η(1, f)b̄c̄+ (1− η(1, f))(1− c̄)

)
− η(1, f)b̄(1− c̄) (1−b̄)c̄

1−(1−b̄)(1−c̄)

,

β(f) =
η(1, f + 1) b̄(1−c̄)

1−(1−b̄)(1−c̄)

1−
(
η(1, f)b̄c̄+ (1− η(1, f))(1− c̄)

)
− η(1, f)b̄(1− c̄) (1−b̄)c̄

1−(1−b̄)(1−c̄)

,

δ(f) =

b̄c̄
1−(1−b̄)(1−c̄)

1−
(
η(1, f)b̄c̄+ (1− η(1, f))(1− c̄)

)
− η(1, f)b̄(1− c̄) (1−b̄)c̄

1−(1−b̄)(1−c̄)

.

We now use the fact that in the long-term, the frequency of transitions from queue level
f − 1 to f and from f to f − 1 must be the same:

π(0, f)c̄+ π(1, f)(1− η(1, f))c̄ = π(1, f + 1)η(1, f + 1)(1− c̄), (4.18)
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therefore, equation (4.17) can be rewritten as:

π(1, f) = A(f)π(1, f − 1) +B(f)π(1, f + 1),

with A(f) and B(f) as speci�ed in (4.15-4.16).

4.3.1 In�nite Queue

We now consider fmax =∞. The MC can be positive recurrent, null recurrent or transient.
Its behaviour depends on the energy and packet arrival rates and on the transmission
probabilities η(1, f). Intuitively, if b̄ ≤ c̄, the MC cannot be positive recurrent because
too many packets arrive with respect to the energy arrivals. Formally this is stated in the
following theorem.

Theorem 5. We consider an irreducible and aperiodic MC and we set fmax = ∞. If we
have:

c̄ > b̄, (4.19)

then the MC is unstable.

Proof. We consider an interval of n slots and we choose η(e, f) = 1, ∀e > 0, ∀f > 0. If
the MC is not positive recurrent in this case, it cannot be positive recurrent in any case,
because this choice of the marginal transmission probabilities is the most aggressive among
all.

In n slots, on average, n · b̄ energy quanta and n · c̄ packets arrive. At the end of the
considered slots, the queue collects, on average, at least n · (c̄− b̄) > 0 packets, thus, when
n→∞, the queue diverges.

More formally, we prove the theorem for the case emax = 1 with the drift analysis. The
drift when there are f > f0 > 1 packets in the queue is:

D(f) = E[Fk+1 − Fk|Fk = f ] =

=
π(0, f)

π(0, f) + π(1, f)

(
c̄(f + 1) + (1− c̄)f

)
+

+
π(1, f)

π(0, f) + π(1, f)

(
c̄f + (1− c̄)(f − 1)

)
− f

= (c̄− b̄+ f)− f > 0

(4.20)

where we used the equations (4.16) and (4.18). Note that π(i,f)
π(0,f)+π(1,f) is the probability

of being in the state (i, f) given that Fk = f . Since the drift is greater than zero for each
f > f0 and P(f → j) = 0, ∀f, j : j < f −1, then the MC is unstable (Kaplan's Theorem).

To prove the theorem in the case emax > 1, it is su�cient to �nd the relations between
the steady-state probabilities (as in equations (4.15), (4.16)) and apply the drift analysis.

Note that the previous theorem is true for every emax.
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Theorem 6. We consider an irreducible and aperiodic MC and we set fmax = ∞. If we
have:

c̄ = b̄, (4.21)

then the MC is null recurrent.

Proof. Similar to the proof of Theorem 5.

Vice-versa, if b̄ > c̄, there always exists a choice of the marginal transmission probabil-
ities that makes the MC positive recurrent.

Theorem 7. We consider an irreducible and aperiodic MC and we set fmax = ∞. If we
have:

c̄ < b̄, (4.22)

then there exists a choice of η(1, f) such that the MC is positive recurrent.

Proof. Similar to the proof of Theorem 5.

We now consider the steady-state probabilities whose tail decreases at least geomet-
rically. If the MC is well de�ned, this is a su�cient condition for positive recurrence.
Formally:

Theorem 8. We consider an irreducible and aperiodic MC and we set emax = 1 and
fmax =∞. If ∃f0 and q ∈ (0, 1) such that

π(1, f + 1)

π(1, f)
≤ q < 1, ∀f ≥ f0, (4.23)

then the MC is positive recurrent.

Proof. We want to show that the following series are convergent:

∞∑
f=0

π(0, f) +

∞∑
f=0

π(1, f).

Since

π(0, f)c̄ = π(1, f + 1)η(1, f + 1)(1− c̄)− π(1, f)(1− η(1, f))c̄,

we have that
∑∞

f=0 π(0, f) is proportional to
∑∞

f=0 π(1, f), therefore we study only the
convergence of the second sum.

Exploiting the hypothesis, we have:

lim
f→∞

sup
π(1, f + 1)

π(1, f)
≤ q < 1,

therefore, by D'Alembert's criterion, the thesis is proved.
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One of our main results is stated in the next theorem, that gives a su�cient condition
to have a positive recurrent MC.

Theorem 9. We consider an irreducible and aperiodic MC and we set emax = 1 and
fmax =∞. If ∃f0 and q ∈ (0, 1) such that

π(1, f0 + 1)

π(1, f0)
≤ q < 1, (4.24)

1−A(f)

B(f)
≤ q < 1, ∀f > f0, (4.25)

then

π(1, f + 1)

π(1, f)
≤ q < 1, ∀f ≥ f0. (4.26)

Proof. Proof by induction on f :

• base case: f = f0

π(1, f0 + 1)

π(1, f0)
≤ q < 1

is true by hypothesis.

• inductive hypothesis: f = x− 1 > f0

π(1, x)

π(1, x− 1)
≤ q < 1.

• inductive step: f = x > f0

π(1, x) = A(x)π(1, x− 1) +B(x)π(1, x+ 1) > A(x)π(1, x) +B(x)π(1, x+ 1)

⇔ π(1, x+ 1)

π(1, x)
<

1−A(x)

B(x)
≤ q < 1.

Remark 1. The converse in general is not true. However, if we assume (4.24), then the
conditions (4.25) and (4.26) are equivalent.

A possible choice of η(1, f) is the queue independent one, i.e., η(1, f) = ηχ{f > 0}, η ∈
[0, 1]. With these marginal transmission probabilities, condition (4.25) becomes:

η > ηth ,
1

1 + 1
c̄ − 1

b̄

. (4.27)

Therefore, if we consider a policy such that

η(1, f) = η + θ(1, f), ∀f > f0, (4.28)

with η > ηth and θ(1, f) ∈ [0, 1− η], then condition (4.25) is satis�ed.
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4.3.2 Finite Queue

η(1, f) > ηth, ∀f ≥ f0 hypothesis of thm 9
satisfied

π decreasing at least
geometrically

all policies

OP

Figure 4.1: Venn diagram of the possible policies

We now consider fmax < ∞, emax = 1 and b̄ − c̄ ≥ 0.05 (we discuss later the case b̄ ≈ c̄).
We computed numerically the Optimal Policy (OP) ηOP(1, f) in several cases. With the
OP, the probabilities of being in the �nal data queue states are low and decrease with f
in order to avoid data bu�er over�ow. Furthermore, it can be numerically veri�ed that
the OP satis�es the hypothesis of Theorem 9 and, in particular, it always veri�es the
condition 4.28 (see Figure 4.1). However, note that di�erently from the OP, in the general
case the steady-state distribution tail may not decrease. As an example, in Figure 4.2 we
represent the steady state probabilities when b̄ = 0.6, c̄ = 0.4 and fmax = 50 for a test
policy ηTEST(e, f) = 0.3χ{e > 0}χ{f > 0}. It can be seen that the π(e, f) increases with
f .
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e = 0

e = 1 πTEST(·, f)

Figure 4.2: Steady-state probabilities πTEST(·, f) as a function of f when fmax = 50,
emax = 1, b̄ = 0.6 and c̄ = 0.4.

In Figure 4.3 we represent the shape of ηOP(1, f) when b̄ = 0.6, c̄ = 0.4 and fmax = 50.
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It can be seen that ηOP(1, f) is low when the queue is almost empty in order to avoid
queue outage, whereas it is high when f is high to avoid queue over�ow (we recall that our
metric is the transmission rate). The middle value is ηOP(25) ≈ ηth = 0.55.

We veri�ed that the shape of ηOP(1, f) does not change when b̄ and c̄ range in (0, 1].
Therefore, we introduce a Low Complexity Policy (LCP) that approximates the optimal
one:

ηLCP(f) =


ηth
5 f if f ≤ 5,

ηth if 5 < f ≤ fmax − 3,
ηend−ηth

3 (f − (fmax − 3)) + ηth if fmax − 3 < f,

(4.29)

where we de�ne the following point:

ηend =
1.16c̄+ 0.01

c̄+ 0.17
. (4.30)

To �nd ηend we computed the OP for several values of b̄ and c̄ and, since we had
noticed that the end point ηend is approximately independent of b̄, we interpolated ηend as
a function of c̄, �nding the hyperbole of equation (4.30).

As an example, in Figure 4.3 we compare the transmission probabilities η(1, f) for the
Optimal Policy and the Low Complexity Policy when b̄ = 0.6, c̄ = 0.4, fmax = 50 and
emax = 1. Furthermore, with the same parameters, in Figure 4.3 we represent the steady-
state probabilities π(0, f) and π(1, f) for the two policies. It can be seen that πOP(0, f)
and πOP(1, f) decrease quickly for high values of f (at least geometrically).

Case b̄ ≈ c̄

In the previous Section we neglected the case b̄ ≈ c̄ and we supposed a di�erence of at
least 0.05 between the b̄ and c̄. Indeed, when the two values are very close, OP has a
di�erent behaviour: the tail of the steady state probabilities is not necessarily decreasing.
Moreover, equation (4.28) is not satis�ed, therefore LCP should be de�ned in another way.
A possible technique to �nd a Low Complexity Policy for this case is, for example, to
compute OP for a wide range of the parameters and to interpolate the results in order to
understand the trend of the policy.

Analytically, the behaviour of the OP can be justi�ed from the fact that, when c̄
approaches b̄, the system is going from the stability region to the instability one, therefore,
since when we compute the policy we do not impose any stability condition, OP can easily
lead to an unstable system. Indeed, when b̄ ≈ c̄, in order to keep the system stable,
the transmission probabilities should be, generally, close to one, but this condition is not
guaranteed in the computation of the OP.

4.3.3 Extension

The previous analysis assumes emax = 1. In the general case when emax > 1 a relation
similar to that in equation (4.14) can be found and the previous reasoning can be followed
in order to obtain a new threshold for the marginal transmission probabilities. Intuitively,
when emax increases, the threshold decreases. This also can be veri�ed numerically.
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Figure 4.3: Marginal transmission probabilities ηOP(1, f), ηLCP(1, f) and steady-state
probabilities πOP(·, f), πLCP(·, f) as a function of f when fmax = 50, emax = 1, b̄ = 0.6
and c̄ = 0.4. Note that LCP1 is equal to LCP2 in this case.

We numerically veri�ed that the Optimal Policy gives:

η(e1, f) ≈ η(e2, f), (4.31)

for e1 and e2 not too small, i.e., the marginal transmission probabilities are approximately
independent of the current energy state (see Figure 4.4). In order to approximate the trend
of the OP, we use an Energy Independent Policy (EIP), i.e., we impose η(e1, f) ≈ η(e2, f)
for all e1 and e2. Note that, even if this approximation is rough for the low energy states,
we use it anyway because it provides good results as shown in Section 4.4.
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For the EIP we use the same transmission probabilities of the case emax = 1:

η(e, f) , ηLCP(f), ∀e ∈ {1, . . . , emax}, (4.32)

with ηLCP(f) de�ned in (4.29) but instead of using ηth as de�ned in (4.27), we use η
′
th(emax)

or η′′th(emax) because we noticed that these are a better �t than ηth if emax > 1. The �rst
one is de�ned as:

η′th(emax) =

{
ηth, if emax = 1,

ηth − 0.1χ{ηth > 0.5}, if emax > 1
(4.33)

The o�set 0.1 is used because we noticed that it gives good performance for a wide range
of values of b̄ and c̄. However, a better approach is the following:

η′′th(emax) ,
ηth − c̄
e−β

e−βemax + c̄ (4.34)

To �nd the previous function, we:

• �xed b̄ and c̄;

• found ηOP(emax, f0) as a function of emax, with f0 = bfmax

2 c;

• imposed η′′th(emax) as the interpolation of ηOP(emax, f0) (following the reasoning of
the case emax = 1);

• noticed that a good interpolation of ηOP(emax, f0) is the exponential one:

η′′th(emax) = w1e
−βemax + w2; (4.35)

• imposed the boundary conditions η′′th(1) = ηth and limemax→∞ η
′′
th(emax) = c̄:

w1 =
ηth − c̄
e−β

, (4.36)

w2 = c̄; (4.37)

Indeed, when the battery is su�ciently large, the threshold value becomes c̄ because
transmitting with probability at least c̄ is su�cient to keep the queue stable.

• changed b̄ and c̄ in order to �nd β. In particular, through an interpolation process,
we found:

β ≈ 3b̄+ 1.038e−5c̄ + 0.1857− 3(c̄+ 0.05) (4.38)

that is a straight line in b̄ whose y-intercept is a function of c̄.

This second policy is asymptotically optimal. In the following we refer to the two
variations of the LCP with the labels LCP1 and LCP2, respectively.

We show in the next Section that these sub-optimal policies have performance close to
the optimal one.
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Figure 4.4: Marginal transmission probabilities ηOP(·, f), ηLCP1(·, f) and ηLCP2(·, f) as a
function of f when fmax = 50, emax = 20, b̄ = 0.6 and c̄ = 0.4.

4.4 Performance Evaluation

We performed a numerical evaluation in order to characterize the Optimal Policy and
to compare the performance of OP with LCP. We considered emax ∈ {1, . . . , 20}, b̄, c̄ ∈
{0.05, 0.10, . . . , 1} with b̄ > c̄ and Λ = 10 dB. Furthermore, we do not consider fmax too
small (< 10) because in a real device the bu�er size is very large [10].

4.4.1 Optimal Policy

In Figure 4.5, we plot the long-term average reward (transmission rate) for di�erent values
of c̄ when b̄ = 0.5. We notice that the transmission rate keeps increasing in the capacity
of the battery until emax ≈ 6 (this value depends on c̄). In general, when emax ≈ 10, the
saturation region is already reached. This is because, the larger the battery, the smaller the
impact of energy over�ow and outage, i.e., when the battery becomes su�ciently large, the
improvement due to the decreased outage and over�ow probabilities becomes negligible.
Furthermore, the reward increases with the average packet arrival rate c̄. Also in Figure 4.6,
we represent the transmission rate as a function of emax, but in this case we keep c̄ �xed
and we range b̄. It can be seen that the reward increases with b̄ only when emax is low,
indeed, when emax ≈ 10, all curves saturate to the same value. This happens because the
bottleneck is due to the low average packet arrival rate, therefore, if c̄ does not increase,
the transmission rate cannot grow.

Moreover, with the considered range of fmax ≥ 10, the transmission rate is approx-
imately independent of the queue size, e.g., with b̄ = 0.6, c̄ = 0.4 and emax = 1 the
transmission rate is equal to 1.053 if fmax = 10 and to 1.081 if fmax = 100. Note that this
holds because we suppose b̄− c̄ ≥ 0.05.
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Figure 4.5: Reward functions GOP for several values of c̄ when emax ranges in {1, . . . , 20}
and b̄ = 0.5
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Figure 4.6: Reward functions GOP for several values of b̄ when emax ranges in {1, . . . , 10}
and c̄ = 0.45
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4.4.2 Policies comparison

We computed the Optimal Policy and the two Low Complexity Policy versions in the
considered range of the parameters. We veri�ed that, with these parameters, the reward
precision (de�ned as in (2.30))

RLCP1
OP =

GOP −GLCP1

GOP
(4.39)

is always lower than 6% and also smaller for LCP2.
In Figure 4.7 we compare GOP and GLCP when emax ∈ {1, . . . , 20} in a worst case

scenario b̄ = 0.5 and c̄ = 0.45. Note that, even if emax increases, GLCP1 does not approach
GOP, di�erently from GLCP2.

In Figure 4.8 we represent RLCP1
OP and RLCP2

OP as a function of emax for several values of
b̄ and c̄. It can be seen that RLCP1

OP is maximum when b̄ = 0.5 and c̄ = 0.45. In particular,
we veri�ed that this is one of the worst cases. Obviously, when emax = 1, RLCP1

OP and
RLCP2

OP are low, because we designed LCP for this particular case. When emax increases,
RLCP1

OP saturates to a constant value. This happens because ηOP(e, f) is approximately
independent of e (except for the �rst energy levels) as can be seen in Figure 4.4. Therefore,
even if the battery size grows, the approximation does not get worse. Instead, for LCP2,
the reward precision decreases with emax (beyond a certain threshold) and it goes to zero
when emax → ∞, i.e., it is asymptotically optimal. Note that RLCP1

OP is not a decreasing
function of c̄, e.g., the curve c̄ = 0.3 is lower than the one with c̄ = 0.4 but higher than
the one with c̄ = 0.35.
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Figure 4.7: Comparison of the reward functions GOP, GLCP1 and GLCP2 when emax ∈
{1, . . . , 20}, b̄ = 0.5 and c̄ = 0.45
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Figure 4.8: Percentage reward precisions RLPC1
OP and RLPC2

OP for several values of c̄ when
emax ranges in {1, . . . , 20} and b̄ = 0.5

4.5 Conclusions

In the third part of this work we studied the case of one Energy Harvesting Device (EHD)
with a FIFO data queue which transmits data of di�erent importance. Firstly we supposed
emax = 1, fmax =∞ and, starting from the steady-state probabilities relation, we derived
an analytical su�cient condition such that the Markov Chain is positive recurrent. Then,
we considered fmax < ∞ and veri�ed numerically that the Optimal Policy (OP), under
certain constraints, satis�es that su�cient condition. With this information, we designed
a Low Complexity Policy (LCP) for the case emax = 1 that is a policy computable without
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any optimization. Furthermore, we extended LCP to the case emax > 1 with two variations
and showed that they achieve good performance with respect to OP. We leave as future
work the case c̄ & b̄. Also, we will study other metrics, e.g. the delay and seek a deeper
understanding of LCP when the battery or the queue sizes grow so as to characterize the
asymptotic behaviour of the system.
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Conclusions

This work studied several cases about the use of Energy Harvesting Devices (EHDs) in
Wireless Sensor Networks (WSNs). In our numerical evaluations we considered the case of
the transmission of packets over a channel with time-varying gain and we computed the
long-term average transmission rates. Generally our main results consist in the formulation
of low-complexity sub-optimal policies, that exhibit good performance, and in the de�nition
of several models for di�erent scenarios.

In Chapter 2 we analyzed the case of two EHDs with a Central Controller (CC).
Depending on the global average harvesting rate, we introduced di�erent sub-optimal low-
complexity policies that approach the performance of the optimal one. We computed an
analytical approximation for one of these policies and we showed that this is to be a good
lower bound of the Optimal Policy (OP). As future work we will complete our analysis in
order to cover a wider range of parameters: for the Balanced Policy (BP) we will consider
the case of very small batteries and for the Heuristic Constrained Energy Independent
Policy (HCEIP) we will study a context where the batteries of the devices are not equal.

A scenario with an Energy Harvesting Transmitter (EHTX) and Energy Harvesting
Receiver (EHRX) pair was studied in Chapter 3. We analyzed several cases as a function
of the amount of information the devices have about the system. We showed that for
an Energy Independent Policy (EIP) the outage information is important to achieve high
transmission rates. Future work will investigate optimal and low-complexity policies for
the considered cases.

The last problem, in Chapter 4, consisted of the study of an EHD with a FIFO data
queue. In the case of a very small battery and an in�nite data queue, we derived several
analytical results in order to characterize the queue stability. Then, we considered a
�nite queue, we computed the OP for several cases of interest and we introduced a Low
Complexity Policy (LCP), with two variations, that approximates the trend of the OP.
Numerical evaluation showed that the introduced policies are close to the optimal one. As
future work, we will modify the hypothesis of the system, e.g. the amount of packets that
can be sent in a slot, in order to consider a more realistic scenario and to characterize other
metrics.

In all the problems, a future extension will be a system with a higher number of nodes.
This can be useful to analyze also other problems related to the interaction among the
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devices, such as channel contention or routing issues. Finally, a non-ideal channel can be
studied and retransmission of packets can be considered.
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Optimization

A.1 Lagrangian relaxation

The results of this Section can be found in [33].
Consider following problem (P):

min f(x), (A.1)

x ∈ Rn, (A.2)

gi(x) ≤ 0, i ∈ I = {1, . . . ,m}, (A.3)

hj(x) = 0, j ∈ E = {1, . . . , p}, (A.4)

where, in general, gi(x) and hj(x) are non-linear continuous functions. We can de�ne the
lagrangian multipliers

ui ∈ R+, ∀i ∈ I, (A.5)

vj ∈ R, ∀j ∈ E (A.6)

and the auxiliary problem (R):

w(u, v) = minL(x;u, v), (A.7)

L(x;u, v) = f(x) +
∑
i∈I

uigi(x) +
∑
j∈E

vjhj(x), (A.8)

where L : Rn → R is called lagrangian function.

De�nition 6 (saddle point). The triple (x̄, ū, v̄), x̄ ∈ Rn, ū ∈ Rm+ , v̄ ∈ Rp is a saddle
point if

L(x̄, u, v) ≤ L(x̄, ū, v̄) ≤ L(x, ū, v̄), ∀x ∈ Rn, u ∈ Rm+ , v ∈ Rp. (A.9)

Theorem 10. Let f, gi i ∈ I, hj j ∈ E be continuous functions. If (x̄, ū, v̄) is a saddle
point, then x̄ is a global minimum for the problem (P).

Remark 2. The previous theorem gives some su�cient conditions to say that an admissible
point x̄ is a global minimum for (P), i.e., there exist some lagrangian multipliers ū and v̄
such that (x̄, ū, v̄) is a saddle point. In the general case this condition is not necessary.
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A.2 Proofs

Proof of Theorem 3

Proof. This proof follows the reasoning of [29].
We de�ne Rµ as the set of stationary randomized policies such that:

EV [µ̃((i, j), e, V )] = EV [µ((i, j), e, V )], ∀(i, j) ∈ {(0, 0), (1, 1)}, ∀et, er, ∀µ̃ ∈ Rµ.
(A.10)

Since µ ∈ Rµ, we have:

G(µ,S0) ≤ max
µ̃∈Rµ

G(µ̃,S0). (A.11)

The function G(µ,S0) can be also written as in equation (3.25):

G(µ̃,S0) =

emax,t∑
et=0

emax,r∑
er=0

πµ̃(e;S0)EV [µ̃((1, 1), e, V )V ], (A.12)

where:

πµ̃(e;S0) , lim inf
K→∞

1

K

K−1∑
k=0

Pµ̃(Ek = e|S0). (A.13)

It can be proved by induction on k that Pµ̃(Ek = e|S0) depends on µ̃ only through its
expectation η̃(e) (de�ned as in equation (3.13)).

From equation (A.10), we have η̃(e) = η(e), ∀µ̃ ∈ Rµ, therefore:

πη(e;S0) , πµ̃(e;S0) = πµ(e;S0), ∀µ̃ ∈ Rµ. (A.14)

Equation (A.11) can be rewritten as:

G(µ,S0) ≤
emax,t∑
et=0

emax,r∑
er=0

πη((1, 1), e;S0)EV [µ∗(e, V )V ], (A.15)

where µ∗(e, V ) is the solution of the following problem P:

µ∗(e, ·) = arg min
µ̃((1,1);e,·)

− EV [µ̃((1, 1); e, V )V ],

EV [µ̃((1, 1); e, V )]− η11(e) = 0.
(A.16)

We now want to �nd the structure of µ∗ using the lagrangian relaxation. The auxiliary
problem R is:

min
µ̃
L(µ̃, v)

L(µ̃, v) = −EV [µ̃((1, 1); e, V )V ] + v
(
EV [µ̃((1, 1); e, V )]− η11(e)

)
.

(A.17)

Note that:

L(µ∗, vth(e)) = −EV [µ∗((1, 1); e, V )V ]. (A.18)

In the following we prove that (µ∗((1, 1); e, V ), vth(e)) is a saddle point.
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1. left inequality:

L(µ∗, v) =− EV [µ∗((1, 1); e, V )V ] + v
(
EV [µ∗((1, 1); e, V )]− η11(e)

)
=

− EV [µ∗((1, 1); e, V )V ] = L(µ∗, vth(e));
(A.19)

where we used that fact that EV [µ∗((1, 1); e, V )] = η11(e) because of the constraint
of equation (A.16).

2. right inequality:

L(µ∗, vth(e))
?
≤ L(µ̃, vth(e))

⇔ L(µ∗, vth(e)) = −EV [µ∗((1, 1); e, V )V ]
?
≤

?
≤ −EV [µ̃((1, 1); e, V )V ] + vth(e)

(
EV [µ̃((1, 1); e, V )]− η11(e)

)
=

= −EV [µ̃((1, 1); e, V )(V − vth(e))]− vth(e)η11(e)

⇔ EV [µ∗((1, 1);e, V )V ]
?
≥ EV [µ̃((1, 1); e, V )(V − vth(e))] + vth(e)η11(e).

(A.20)

(µ∗((1, 1); e, V ), vth(e)) is a saddle point if the previous inequality is true for every
µ̃. In particular, if we choose

µ∗((1, 1); e, ·) = arg max
µ̃((1,1);e,·)

EV [µ̃((1, 1); e, V )(V − vth(e))], (A.21)

then the right term is maximized when µ̃ = µ∗, and the second inequality can be
proved:

EV [µ∗((1, 1); e, V )V ]
?
≥ EV [µ∗((1, 1); e, V )(V − vth(e))] + vth(e)η11(e)

⇔ 0
?
≥ vth(e)

(
η11(e)− EV [µ∗((1, 1); e, V )]

)
= 0.

(A.22)

Since (µ∗((1, 1); e, V ), vth(e)) is a saddle point, µ∗((1, 1); e, V ) is a global minimum for
the problem P (see Theorem 10).

Since µ∗((1, 1); e, ·) is de�ned as in equation (A.21), the structure in (3.11) is proved.
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